1
|
Adamakis IDS, Sotiriou P, Ntanou N, Nelson JM, Giannoutsou E. Tissue-Specific Differential Distribution of Cell Wall Epitopes in Sphagnum compactum and Marchantia polymorpha. Int J Mol Sci 2025; 26:3602. [PMID: 40332118 PMCID: PMC12026656 DOI: 10.3390/ijms26083602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Bryophytes, or non-vascular plants, provide valuable models for studying plant adaptation to land, as their physiology differs significantly from that of vascular plants. This study examines the cell wall structure of bryophytes, focusing on the tissue-specific distribution of cell wall epitopes in Sphagnum compactum (a peat moss) and Marchantia polymorpha (the model liverwort) using specific stains and immunolabeling techniques. In S. compactum, chlorocysts and hyalocysts exhibit distinct polysaccharide compositions, with methylesterified and demethylesterified homogalacturonans, arabinans, and hemicelluloses contributing to water retention, structural integrity, and photosynthetic efficiency. In contrast, M. polymorpha demonstrates a simpler yet polarized distribution of homogalacturonans, arabinans, mannans, and xyloglucans, with arabinogalactan proteins uniquely localized in rhizoids, improving their flexibility and anchorage to the substrate. Cellulose was uniformly distributed throughout all tissues in both bryophytes, while crystalline cellulose was only faintly observed. These findings highlight how cell wall adaptations contribute to ecological specialization, providing insights into the evolutionary innovations that enable bryophytes to thrive in terrestrial environments.
Collapse
Affiliation(s)
- Ioannis-Dimosthenis S. Adamakis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (P.S.); (N.N.); (E.G.)
| | - Penelope Sotiriou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (P.S.); (N.N.); (E.G.)
| | - Natalia Ntanou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (P.S.); (N.N.); (E.G.)
| | | | - Eleni Giannoutsou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (P.S.); (N.N.); (E.G.)
| |
Collapse
|
2
|
Djikanović D, Jovanović J, Kalauzi A, Maksimović JD, Radotić K. Effects of Silicon Concentration and Synthesis Duration on Lignin Structure: A Spectroscopic and Microscopic Study. Biopolymers 2025; 116:e23640. [PMID: 39614829 DOI: 10.1002/bip.23640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024]
Abstract
Silicon (Si) is a highly abundant mineral in Earth's crust. It plays a vital role in plant growth, providing mechanical support, enhancing grain yield, facilitating mineral nutrition, and aiding stress response mechanisms. The intricate relationship between silicification and lignin chemistry significantly impacts cell wall structure. Yet, the precise influence of Si on lignin synthesis remains elusive. This study investigated the interaction between Si and lignin model compounds during in vitro synthesis. Employing spectroscopic and microscopic analyses, we delineated how Si concentrations modulate lignin polymerization dynamics, particularly affecting molecular conformation and aggregation behavior over time. Fluctuations in the polymer structure are directly related to both the synthesis time and the concentration of silica. Our results demonstrate that lower Si concentrations promote the aggregation of lignin oligomers into larger particles, while higher concentrations increase the possibility of oligomer repulsion, thus preventing particle growth. These findings elucidate the intricate interplay between Si and lignin, which is crucial for understanding plant cell wall structure and stress resilience. Moreover, the results provide insights for developing lignin-silica materials with increasing applications in industry and medicine.
Collapse
Affiliation(s)
- Daniela Djikanović
- The University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
| | - Jelena Jovanović
- The University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
| | - Aleksandar Kalauzi
- The University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
| | | | - Ksenija Radotić
- The University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
| |
Collapse
|
3
|
Fuertes-Rabanal M, Rebaque D, Largo-Gosens A, Encina A, Mélida H. Cell walls, a comparative view of the composition of cell surfaces of plants, algae and microorganisms. JOURNAL OF EXPERIMENTAL BOTANY 2024:erae512. [PMID: 39705009 DOI: 10.1093/jxb/erae512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 12/21/2024]
Abstract
While evolutionary studies indicate that the most ancient groups of organisms on Earth likely descended from a common wall-less ancestor, contemporary organisms lacking a carbohydrate-rich cell surface are exceedingly rare. By developing a cell wall to cover the plasma membrane, cells were able to withstand higher osmotic pressures, colonise new habitats and develop complex multicellular structures. This way, the cells of plants, algae and microorganisms are covered by a cell wall, which can generally be defined as a highly complex structure whose main framework is usually composed of carbohydrates. Rather than static structures, they are highly dynamic and serve a multitude of functions that modulate vital cellular processes, such as growth and interactions with neighbouring cells or the surrounding environment. Thus, despite its vital importance for many groups of life, it is striking that there are few comprehensive documents comparing the cell wall composition of these groups. Thus, the aim of this review was to compare the cell walls of plants with those of algae and microorganisms, paying particular attention to their polysaccharide components. It should be highlighted that, despite the important differences in composition, we have also found numerous common aspects and functionalities.
Collapse
Affiliation(s)
- María Fuertes-Rabanal
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Diego Rebaque
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| |
Collapse
|
4
|
Li L, Tang J, Wu A, Fan C, Li H. Genome-Wide Identification and Functional Analysis of the GUX Gene Family in Eucalyptus grandis. Int J Mol Sci 2024; 25:8199. [PMID: 39125768 PMCID: PMC11311485 DOI: 10.3390/ijms25158199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Xylan, one of the most important structures and polysaccharides, plays critical roles in plant development, growth, and defense responses to pathogens. Glucuronic acid substitution of xylan (GUX) functions in xylan sidechain decoration, which is involved in a wide range of physiological processes in plants. However, the specifics of GUXs in trees remain unclear. In this study, the characterization and evolution of the GUX family genes in E. grandis, a fast-growing forest tree belonging to the Myrtaceae family, were performed. A total of 23 EgGUXs were identified from the E. grandis genome, of which all members contained motif 2, 3, 5, and 7. All GUX genes were phylogeneticly clustered into five distinct groups. Among them, EgGUX01~EgGUX05 genes were clustered into group III and IV, which were more closely related to the AtGUX1, AtGUX2, and AtGUX4 members of Arabidopsis thaliana known to possess glucuronyltransferase activity, while most other members were clustered into group I. The light-responsive elements, hormone-responsive elements, growth and development-responsive elements, and stress-responsive elements were found in the promoter cis-acting elements, suggesting the expression of GUX might also be regulated by abiotic factors. RNA-Seq data confirmed that EgGUX02, EgGUX03, and EgGUX10 are highly expressed in xylem, and EgGUX09, EgGUX10, and EgGUX14 were obviously responses to abiotic stresses. The results of this paper will provide a comprehensive determination of the functions of the EgGUX family members, which will further contribute to understanding E. grandis xylan formation.
Collapse
Affiliation(s)
- Linsi Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China; (L.L.); (J.T.); (A.W.)
| | - Jiye Tang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China; (L.L.); (J.T.); (A.W.)
| | - Aimin Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China; (L.L.); (J.T.); (A.W.)
| | - Chunjie Fan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Huiling Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China; (L.L.); (J.T.); (A.W.)
| |
Collapse
|
5
|
Michalak KM, Wojciechowska N, Marzec-Schmidt K, Bagniewska-Zadworna A. Conserved autophagy and diverse cell wall composition: unifying features of vascular tissues in evolutionarily distinct plants. ANNALS OF BOTANY 2024; 133:559-572. [PMID: 38324309 PMCID: PMC11037490 DOI: 10.1093/aob/mcae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND AND AIMS The formation of multifunctional vascular tissues represents a significant advancement in plant evolution. Differentiation of conductive cells is specific, involving two main pathways, namely protoplast clearance and cell wall modification. In xylogenesis, autophagy is a crucial process for complete protoplast elimination in tracheary elements, whose cell wall also undergoes strong changes. Knowledge pertaining to living sieve elements, which lose most of their protoplast during phloemogenesis, remains limited. We hypothesized that autophagy plays a crucial role, not only in complete cytoplasmic clearance in xylem but also in partial degradation in phloem. Cell wall elaborations of mature sieve elements are not so extensive. These analyses performed on evolutionarily diverse model species potentially make it possible to understand phloemogenesis to an equal extent to xylogenesis. METHODS We investigated the distribution of ATG8 protein, which is an autophagy marker, and cell wall components in the roots of ferns, gymnosperms and angiosperms (monocots, dicot herbaceous plants and trees). Furthermore, we conducted a bioinformatic analysis of complete data on ATG8 isoforms for Ceratopteris richardii. KEY RESULTS The presence of ATG8 protein was confirmed in both tracheary elements and sieve elements; however, the composition of cell wall components varied considerably among vascular tissues in the selected plants. Arabinogalactan proteins and β-1,4-galactan were detected in the roots of all studied species, suggesting their potential importance in phloem formation or function. In contrast, no evolutionary pattern was observed for xyloglucan, arabinan or homogalacturonan. CONCLUSIONS Our findings indicate that the involvement of autophagy in plants is universal during the development of tracheary elements that are dead at maturity and sieve elements that remain alive. Given the conserved nature of autophagy and its function in protoplast degradation for uninterrupted flow, autophagy might have played a vital role in the development of increasingly complex biological organizations, including the formation of vascular tissues. However, different cell wall compositions of xylem and phloem in different species might indicate diverse functionality and potential for substance transport, which is crucial in plant evolution.
Collapse
Affiliation(s)
- Kornel M Michalak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | | | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
6
|
Narula K, Sinha A, Choudhary P, Ghosh S, Elagamey E, Sharma A, Sengupta A, Chakraborty N, Chakraborty S. Combining extracellular matrix proteome and phosphoproteome of chickpea and meta-analysis reveal novel proteoforms and evolutionary significance of clade-specific wall-associated events in plant. PLANT DIRECT 2024; 8:e572. [PMID: 38500675 PMCID: PMC10945595 DOI: 10.1002/pld3.572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2023] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Extracellular matrix (ECM) plays central roles in cell architecture, innate defense and cell wall integrity (CWI) signaling. During transition to multicellularity, modular domain structures of ECM proteins and proteoforms have evolved due to continuous adaptation across taxonomic clades under different ecological niche. Although this incredible diversity has to some extent been investigated at protein level, extracellular phosphorylation events and molecular evolution of ECM proteoform families remains unexplored. We developed matrisome proteoform atlas in a grain legume, chickpea and performed meta-analyses of 74 plant matrisomes. MS/MS analysis identified 1,424 proteins and 315 phosphoproteins involved in diverse functions. Cross-species ECM protein network identified proteoforms associated with CWI maintenance system. Phylogenetic characterization of eighteen matrix protein families highlighted the role of taxon-specific paralogs and orthologs. Novel information was acquired on gene expansion and loss, co-divergence, sub functionalization and neofunctionalization during evolution. Modular networks of matrix protein families and hub proteins showed higher diversity across taxonomic clades than among organs. Furthermore, protein families differ in nonsynonymous to synonymous substitution rates. Our study pointed towards the matrix proteoform functionality, sequence divergence variation, interactions between wall remodelers and molecular evolution using a phylogenetic framework. This is the first report on comprehensive matrisome proteoform network illustrating presence of CWI signaling proteins in land plants.
Collapse
Affiliation(s)
- Kanika Narula
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Arunima Sinha
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Sudip Ghosh
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Eman Elagamey
- National Institute of Plant Genome ResearchNew DelhiIndia
- Plant Pathology Research InstituteAgricultural Research Center (ARC)GizaEgypt
| | - Archana Sharma
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | | | | |
Collapse
|
7
|
Franková L, Fry SC. Chara — a living sister to the land plants with pivotal enzymic toolkit for mannan and xylan remodelling. PHYSIOLOGIA PLANTARUM 2024; 176. [PMCID: PMC10962555 DOI: 10.1111/ppl.14134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/09/2023] [Indexed: 02/04/2025]
Abstract
AbstractLand‐plant transglycosylases ‘cut‐and‐paste’ cell‐wall polysaccharides by endo‐transglycosylation (transglycanases) and exo‐transglycosylation (transglycosidases). Such enzymes may remodel the wall, adjusting extensibility and adhesion. Charophytes have cell‐wall polysaccharides that broadly resemble, but appreciably differ from land‐plants'. We investigated whether Chara vulgaris has wall‐restructuring enzymes mirroring those of land‐plants.Wall enzymes extracted from Chara were assayed in vitro for transglycosylase activities on various donor substrates — β‐(1→4)‐glucan‐based [xyloglucan and mixed‐linkage glucans (MLGs)], β‐(1→4)‐xylans and β‐(1→4)‐mannans — plus related acceptor substrates (tritium‐labelled oligosaccharides, XXXGol, Xyl6‐ol and Man6‐ol), thus 12 donor:acceptor permutations. Also, fluorescent oligosaccharides were incubated in situ with Chara, revealing endogenous enzyme action on endogenous (potentially novel) polysaccharides.Chara enzymes acted on the glucan‐based polysaccharides with [3H]XXXGol as acceptor substrate, demonstrating ‘glucan:glucan‐type’ transglucanases. Such activities were unexpected because Chara lacks biochemically detectable xyloglucan and MLG. With xylans as donor and [3H]Xyl6‐ol (but not [3H]Man6‐ol) as acceptor, high trans‐β‐xylanase activity was detected. With mannans as donor and either [3H]Man6‐ol or [3H]Xyl6‐ol as acceptor, we detected high levels of both mannan:mannan homo‐trans‐β‐mannanase and mannan:xylan hetero‐trans‐β‐mannanase activity, showing that Chara can not only ‘cut/paste’ these hemicelluloses by homo‐transglycosylation but also hetero‐transglycosylate them, forming mannan→xylan (but not xylan→mannan) hybrid hemicelluloses. In in‐situ assays, Chara walls attached endogenous polysaccharides to exogenous sulphorhodamine‐labelled Man6‐ol, indicating transglycanase (possibly trans‐mannanase) action on endogenous polysaccharides.In conclusion, cell‐wall transglycosylases, comparable to but different from those of land‐plants, pre‐dated the divergence of the Charophyceae from its sister clade (Coleochaetophyceae/Zygnematophyceae/land‐plants). Thus, the ability to ‘cut/paste’ wall polysaccharides is an evolutionarily ancient streptophytic trait.
Collapse
Affiliation(s)
- Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences The University of Edinburgh Edinburgh UK
| | - Stephen C. Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences The University of Edinburgh Edinburgh UK
| |
Collapse
|
8
|
Domozych DS, LoRicco JG. The extracellular matrix of green algae. PLANT PHYSIOLOGY 2023; 194:15-32. [PMID: 37399237 PMCID: PMC10762512 DOI: 10.1093/plphys/kiad384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Green algae display a wide range of extracellular matrix (ECM) components that include various types of cell walls (CW), scales, crystalline glycoprotein coverings, hydrophobic compounds, and complex gels or mucilage. Recently, new information derived from genomic/transcriptomic screening, advanced biochemical analyses, immunocytochemical studies, and ecophysiology has significantly enhanced and refined our understanding of the green algal ECM. In the later diverging charophyte group of green algae, the CW and other ECM components provide insight into the evolution of plants and the ways the ECM modulates during environmental stress. Chlorophytes produce diverse ECM components, many of which have been exploited for various uses in medicine, food, and biofuel production. This review highlights major advances in ECM studies of green algae.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | | |
Collapse
|
9
|
Stratilová B, Šesták S, Stratilová E, Vadinová K, Kozmon S, Hrmova M. Engineering of substrate specificity in a plant cell-wall modifying enzyme through alterations of carboxyl-terminal amino acid residues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1529-1544. [PMID: 37658783 DOI: 10.1111/tpj.16435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023]
Abstract
Structural determinants of substrate recognition remain inadequately defined in broad specific cell-wall modifying enzymes, termed xyloglucan xyloglucosyl transferases (XETs). Here, we investigate the Tropaeolum majus seed TmXET6.3 isoform, a member of the GH16_20 subfamily of the GH16 network. This enzyme recognises xyloglucan (XG)-derived donors and acceptors, and a wide spectrum of other chiefly saccharide substrates, although it lacks the activity with homogalacturonan (pectin) fragments. We focus on defining the functionality of carboxyl-terminal residues in TmXET6.3, which extend acceptor binding regions in the GH16_20 subfamily but are absent in the related GH16_21 subfamily. Site-directed mutagenesis using double to quintuple mutants in the carboxyl-terminal region - substitutions emulated on barley XETs recognising the XG/penta-galacturonide acceptor substrate pair - demonstrated that this activity could be gained in TmXET6.3. We demonstrate the roles of semi-conserved Arg238 and Lys237 residues, introducing a net positive charge in the carboxyl-terminal region (which complements a negative charge of the acidic penta-galacturonide) for the transfer of xyloglucan fragments. Experimental data, supported by molecular modelling of TmXET6.3 with the XG oligosaccharide donor and penta-galacturonide acceptor substrates, indicated that they could be accommodated in the active site. Our findings support the conclusion on the significance of positively charged residues at the carboxyl terminus of TmXET6.3 and suggest that a broad specificity could be engineered via modifications of an acceptor binding site. The definition of substrate specificity in XETs should prove invaluable for defining the structure, dynamics, and function of plant cell walls, and their metabolism; these data could be applicable in various biotechnologies.
Collapse
Affiliation(s)
- Barbora Stratilová
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Sergej Šesták
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Eva Stratilová
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Kristína Vadinová
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Stanislav Kozmon
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Maria Hrmova
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Waite Research Precinct, Glen Osmond, South Australia, 5064, Australia
- Jiangsu Collaborative Innovation Centre for Regional Modern Agriculture and Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an, 223300, China
| |
Collapse
|
10
|
Fradera-Soler M, Mravec J, Harholt J, Grace OM, Jørgensen B. Cell wall polysaccharide and glycoprotein content tracks growth-form diversity and an aridity gradient in the leaf-succulent genus Crassula. PHYSIOLOGIA PLANTARUM 2023; 175:e14007. [PMID: 37882271 DOI: 10.1111/ppl.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 10/27/2023]
Abstract
Cell wall traits are believed to be a key component of the succulent syndrome, an adaptive syndrome to drought, yet the variability of such traits remains largely unknown. In this study, we surveyed the leaf polysaccharide and glycoprotein composition in a wide sampling of Crassula species that occur naturally along an aridity gradient in southern Africa, and we interpreted its adaptive significance in relation to growth form and arid adaptation. To study the glycomic diversity, we sampled leaf material from 56 Crassula taxa and performed comprehensive microarray polymer profiling to obtain the relative content of cell wall polysaccharides and glycoproteins. This analysis was complemented by the determination of monosaccharide composition and immunolocalization in leaf sections using glycan-targeting antibodies. We found that compact and non-compact Crassula species occupy distinct phenotypic spaces in terms of leaf glycomics, particularly in regard to rhamnogalacturonan I, its arabinan side chains, and arabinogalactan proteins (AGPs). Moreover, these cell wall components also correlated positively with increasing aridity, which suggests that they are likely advantageous in terms of arid adaptation. These differences point to compact Crassula species having more elastic cell walls with plasticizing properties, which can be interpreted as an adaptation toward increased drought resistance. Furthermore, we report an intracellular pool of AGPs associated with oil bodies and calcium oxalate crystals, which could be a peculiarity of Crassula and could be linked to increased drought resistance. Our results indicate that glycomics may be underlying arid adaptation and drought resistance in succulent plants.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Royal Botanic Gardens, London, UK
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Plant Science and Biodiversity Center, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| | | | - Olwen M Grace
- Royal Botanic Gardens, London, UK
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
11
|
Zygnematophycean algae: Possible models for cellular and evolutionary biology. Semin Cell Dev Biol 2023; 134:59-68. [PMID: 35430142 DOI: 10.1016/j.semcdb.2022.03.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/20/2022]
Abstract
Plant terrestrialization was a critical event for our planet. For the study of plant evolution, charophytes have received a great deal of attention because of their phylogenetic position. Among charophytes, the class Zygnematophyceae is the closest lineage to land plants. During sexual reproduction, they show isogamous conjugation by immotile gametes, which is characteristic of zygnematophycean algae. Here, we introduce the genera Mougeotia, Penium, and Closterium, which are representative model organisms of Zygnematophyceae in terms of chloroplast photorelocation movement, the cell wall, and sexual reproduction, respectively.
Collapse
|
12
|
Permann C, Gierlinger N, Holzinger A. Zygospores of the green alga Spirogyra: new insights from structural and chemical imaging. FRONTIERS IN PLANT SCIENCE 2022; 13:1080111. [PMID: 36561459 PMCID: PMC9763465 DOI: 10.3389/fpls.2022.1080111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Zygnematophyceae, a class of streptophyte green algae and sister group to land plants (Embryophytes) live in aquatic to semi-terrestrial habitats. The transition from aquatic to terrestrial environments requires adaptations in the physiology of vegetative cells and in the structural properties of their cell walls. Sexual reproduction occurs in Zygnematophyceae by conjugation and results in the formation of zygospores, possessing unique multi-layered cell walls, which might have been crucial in terrestrialization. We investigated the structure and chemical composition of field sampled Spirogyra sp. zygospore cell walls by multiple microscopical and spectral imaging techniques: light microscopy, confocal laser scanning microscopy, transmission electron microscopy following high pressure freeze fixation/freeze substitution, Raman spectroscopy and atomic force microscopy. This comprehensive analysis allowed the detection of the subcellular organization and showed three main layers of the zygospore wall, termed endo-, meso- and exospore. The endo- and exospore are composed of polysaccharides with different ultrastructural appearance, whereas the electron dense middle layer contains aromatic compounds as further characterized by Raman spectroscopy. The possible chemical composition remains elusive, but algaenan or a sporopollenin-like material is suggested. Similar compounds with a non-hydrolysable character can be found in moss spores and pollen of higher plants, suggesting a protective function against desiccation stress and high irradiation. While the tripartite differentiation of the zygospore wall is well established in Zygnematopyhceae, Spirogyra showed cellulose fibrils arranged in a helicoidal pattern in the endo- and exospore. Initial incorporation of lipid bodies during early zygospore wall formation was also observed, suggesting a key role of lipids in zygospore wall synthesis. Multimodal imaging revealed that the cell wall of the sexually formed zygospores possess a highly complex internal structure as well as aromatics, likely acting as protective compounds and leading to impregnation. Both, the newly discovered special three-dimensional arrangement of microfibrils and the integration of highly resistant components in the cell wall are not found in the vegetative state. The variety of methods gave a comprehensive view on the intricate zygospore cell wall and its potential key role in the terrestrial colonization and plant evolution is discussed.
Collapse
Affiliation(s)
- Charlotte Permann
- Department of Botany, University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| | - Notburga Gierlinger
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| |
Collapse
|
13
|
Domozych DS, Bagdan K. The cell biology of charophytes: Exploring the past and models for the future. PLANT PHYSIOLOGY 2022; 190:1588-1608. [PMID: 35993883 PMCID: PMC9614468 DOI: 10.1093/plphys/kiac390] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Charophytes (Streptophyta) represent a diverse assemblage of extant green algae that are the sister lineage to land plants. About 500-600+ million years ago, a charophyte progenitor successfully colonized land and subsequently gave rise to land plants. Charophytes have diverse but relatively simple body plans that make them highly attractive organisms for many areas of biological research. At the cellular level, many charophytes have been used for deciphering cytoskeletal networks and their dynamics, membrane trafficking, extracellular matrix secretion, and cell division mechanisms. Some charophytes live in challenging habitats and have become excellent models for elucidating the cellular and molecular effects of various abiotic stressors on plant cells. Recent sequencing of several charophyte genomes has also opened doors for the dissection of biosynthetic and signaling pathways. While we are only in an infancy stage of elucidating the cell biology of charophytes, the future application of novel analytical methodologies in charophyte studies that include a broader survey of inclusive taxa will enhance our understanding of plant evolution and cell dynamics.
Collapse
Affiliation(s)
| | - Kaylee Bagdan
- Department of Biology, Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866, USA
| |
Collapse
|
14
|
Pfeifer L, Mueller KK, Classen B. The cell wall of hornworts and liverworts: innovations in early land plant evolution? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4454-4472. [PMID: 35470398 DOI: 10.1093/jxb/erac157] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
An important step for plant diversification was the transition from freshwater to terrestrial habitats. The bryophytes and all vascular plants share a common ancestor that was probably the first to adapt to life on land. A polysaccharide-rich cell wall was necessary to cope with newly faced environmental conditions. Therefore, some pre-requisites for terrestrial life have to be shared in the lineages of modern bryophytes and vascular plants. This review focuses on hornwort and liverwort cell walls and aims to provide an overview on shared and divergent polysaccharide features between these two groups of bryophytes and vascular plants. Analytical, immunocytochemical, and bioinformatic data were analysed. The major classes of polysaccharides-cellulose, hemicelluloses, and pectins-seem to be present but have diversified structurally during evolution. Some polysaccharide groups show structural characteristics which separate hornworts from the other bryophytes or are too poorly studied in detail to be able to draw absolute conclusions. Hydroxyproline-rich glycoprotein backbones are found in hornworts and liverworts, and show differences in, for example, the occurrence of glycosylphosphatidylinositol (GPI)-anchored arabinogalactan-proteins, while glycosylation is practically unstudied. Overall, the data are an appeal to researchers in the field to gain more knowledge on cell wall structures in order to understand the changes with regard to bryophyte evolution.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| | - Kim-Kristine Mueller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| |
Collapse
|
15
|
Degola F, Sanità di Toppi L, Petraglia A. Bryophytes: how to conquer an alien planet and live happily (ever after). JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4267-4272. [PMID: 35849121 DOI: 10.1093/jxb/erac252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Francesca Degola
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | | | - Alessandro Petraglia
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
16
|
Fradera-Soler M, Grace OM, Jørgensen B, Mravec J. Elastic and collapsible: current understanding of cell walls in succulent plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2290-2307. [PMID: 35167681 PMCID: PMC9015807 DOI: 10.1093/jxb/erac054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/11/2022] [Indexed: 05/11/2023]
Abstract
Succulent plants represent a large functional group of drought-resistant plants that store water in specialized tissues. Several co-adaptive traits accompany this water-storage capacity to constitute the succulent syndrome. A widely reported anatomical adaptation of cell walls in succulent tissues allows them to fold in a regular fashion during extended drought, thus preventing irreversible damage and permitting reversible volume changes. Although ongoing research on crop and model species continuously reports the importance of cell walls and their dynamics in drought resistance, the cell walls of succulent plants have received relatively little attention to date, despite the potential of succulents as natural capital to mitigate the effects of climate change. In this review, we summarize current knowledge of cell walls in drought-avoiding succulents and their effects on tissue biomechanics, water relations, and photosynthesis. We also highlight the existing knowledge gaps and propose a hypothetical model for regulated cell wall folding in succulent tissues upon dehydration. Future perspectives of methodological development in succulent cell wall characterization, including the latest technological advances in molecular and imaging techniques, are also presented.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Correspondence: or
| | | | | | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Correspondence: or
| |
Collapse
|
17
|
Pancaldi F, van Loo EN, Schranz ME, Trindade LM. Genomic Architecture and Evolution of the Cellulose synthase Gene Superfamily as Revealed by Phylogenomic Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:870818. [PMID: 35519813 PMCID: PMC9062648 DOI: 10.3389/fpls.2022.870818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The Cellulose synthase superfamily synthesizes cellulose and different hemicellulosic polysaccharides in plant cell walls. While much has been discovered about the evolution and function of these genes, their genomic architecture and relationship with gene (sub-)functionalization and evolution remains unclear. By using 242 genomes covering plant evolution from green algae to eudicots, we performed a large-scale analysis of synteny, phylogenetic, and functional data of the CesA superfamily. Results revealed considerable gene copy number variation across species and gene families, and also two patterns - singletons vs. tandem arrays - in chromosomic gene arrangement. Synteny analysis revealed exceptional conservation of gene architecture across species, but also lineage-specific patterns across gene (sub-)families. Synteny patterns correlated with gene sub-functionalization into primary and secondary CesAs and distinct CslD functional isoforms. Furthermore, a genomic context shift of a group of cotton secondary CesAs was associated with peculiar properties of cotton fiber synthesis. Finally, phylogenetics suggested that primary CesA sequences appeared before the secondary CesAs, while phylogenomic analyses unveiled the genomic trace of the CslD duplication that initiated the CslF family. Our results describe in detail the genomic architecture of the CesA superfamily in plants, highlighting its crucial relevance for gene diversification and sub-functionalization, and for understanding their evolution.
Collapse
Affiliation(s)
- Francesco Pancaldi
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | | | - M. Eric Schranz
- Biosystematics group, Wageningen University & Research, Wageningen, Netherlands
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
18
|
Radotić K, Djikanović D, Kalauzi A, Tanasijević G, Maksimović V, Dragišić Maksimović J. Influence of silicon on polymerization process during lignin synthesis. Implications for cell wall properties. Int J Biol Macromol 2022; 198:168-174. [PMID: 34968543 DOI: 10.1016/j.ijbiomac.2021.12.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Silicon (Si) is considered a beneficial element for plants, mostly accumulating in cell walls, where its location and content are primed by the chemistry and structure of lignin. It is unrevealed how Si interacts with the process of lignin formation in the CWs. We studied, in an in vitro system, the interaction of SiO2 with the peroxidase-catalyzed polymerization of a lignin monomer into the lignin model compound, imitating conditions of the last step of lignin formation. FTIR and fluorescence spectroscopy and microscopy showed that Si is bound to the final polymer, and the structure of the Si-DHP differs from pure DHP. Fluorescence spectroscopy showed that Si does not bind to the monomers, so Si probably inhibits the formation of the larger lignin fragments, as evidenced by HPLC-DAD, by binding to dimmers formed during DHP synthesis. The structural changes of the polymer are related to the changed proportion of the fractions of various MW. The enzyme catalyzing DHP synthesis was not inhibited by Si. HRP activity was increased in presence of Si except for 6 mM Si. This may indicate that the complex formed with Si and short oligomers activates the enzyme, and prevents the formation of the large fragments.
Collapse
Affiliation(s)
- Ksenija Radotić
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia.
| | - Daniela Djikanović
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Aleksandar Kalauzi
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Gordana Tanasijević
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Vuk Maksimović
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Jelena Dragišić Maksimović
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia.
| |
Collapse
|
19
|
Kolkas H, Balliau T, Chourré J, Zivy M, Canut H, Jamet E. The Cell Wall Proteome of Marchantia polymorpha Reveals Specificities Compared to Those of Flowering Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:765846. [PMID: 35095945 PMCID: PMC8792609 DOI: 10.3389/fpls.2021.765846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/16/2021] [Indexed: 05/30/2023]
Abstract
Primary plant cell walls are composite extracellular structures composed of three major classes of polysaccharides (pectins, hemicelluloses, and cellulose) and of proteins. The cell wall proteins (CWPs) play multiple roles during plant development and in response to environmental stresses by remodeling the polysaccharide and protein networks and acting in signaling processes. To date, the cell wall proteome has been mostly described in flowering plants and has revealed the diversity of the CWP families. In this article, we describe the cell wall proteome of an early divergent plant, Marchantia polymorpha, a Bryophyte which belong to one of the first plant species colonizing lands. It has been possible to identify 410 different CWPs from three development stages of the haploid gametophyte and they could be classified in the same functional classes as the CWPs of flowering plants. This result underlied the ability of M. polymorpha to sustain cell wall dynamics. However, some specificities of the M. polymorpha cell wall proteome could be highlighted, in particular the importance of oxido-reductases such as class III peroxidases and polyphenol oxidases, D-mannose binding lectins, and dirigent-like proteins. These proteins families could be related to the presence of specific compounds in the M. polymorpha cell walls, like mannans or phenolics. This work paves the way for functional studies to unravel the role of CWPs during M. polymorpha development and in response to environmental cues.
Collapse
Affiliation(s)
- Hasan Kolkas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Thierry Balliau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, PAPPSO, Gif-sur-Yvette, France
| | - Josiane Chourré
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Michel Zivy
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, PAPPSO, Gif-sur-Yvette, France
| | - Hervé Canut
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| |
Collapse
|
20
|
Althoff F, Wegner L, Ehlers K, Buschmann H, Zachgo S. Developmental Plasticity of the Amphibious Liverwort Riccia fluitans. FRONTIERS IN PLANT SCIENCE 2022; 13:909327. [PMID: 35677239 PMCID: PMC9168770 DOI: 10.3389/fpls.2022.909327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/27/2022] [Indexed: 05/21/2023]
Abstract
The colonization of land by ancestors of embryophyte plants was one of the most significant evolutionary events in the history of life on earth. The lack of a buffering aquatic environment necessitated adaptations for coping with novel abiotic challenges, particularly high light intensities and desiccation as well as the formation of novel anchoring structures. Bryophytes mark the transition from freshwater to terrestrial habitats and form adaptive features such as rhizoids for soil contact and water uptake, devices for gas exchange along with protective and repellent surface layers. The amphibious liverwort Riccia fluitans can grow as a land form (LF) or water form (WF) and was employed to analyze these critical traits in two different habitats. A combination of light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies was conducted to characterize and compare WF and LF morphologies. A complete phenotypic adaptation of a WF plant to a terrestrial habitat is accomplished within 15 days after the transition. Stable transgenic R. fluitans lines expressing GFP-TUBULIN and mCherry proteins were generated to study cell division and differentiation processes and revealed a higher cell division activity in enlarged meristematic regions at LF apical notches. Morphological studies demonstrated that the R. fluitans WF initiates air pore formation. However, these pores are arrested at an early four cell stage and do not develop further into open pores that could mediate gas exchange. Similarly, also arrested rhizoid initial cells are formed in the WF, which exhibit a distinctive morphology compared to other ventral epidermal cells. Furthermore, we detected that the LF thallus has a reduced surface permeability compared to the WF, likely mediated by formation of thicker LF cell walls and a distinct cuticle compared to the WF. Our R. fluitans developmental plasticity studies can serve as a basis to further investigate in a single genotype the molecular mechanisms of adaptations essential for plants during the conquest of land.
Collapse
Affiliation(s)
- Felix Althoff
- Department of Botany, Osnabrück University, Osnabrück, Germany
| | - Linus Wegner
- Department of Botany, Justus-Liebig University, Gießen, Germany
| | - Katrin Ehlers
- Department of Botany, Justus-Liebig University, Gießen, Germany
| | - Henrik Buschmann
- Department of Molecular Biotechnology, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Sabine Zachgo
- Department of Botany, Osnabrück University, Osnabrück, Germany
- *Correspondence: Sabine Zachgo,
| |
Collapse
|
21
|
Roig-Oliver M, Douthe C, Bota J, Flexas J. Cell wall thickness and composition are related to photosynthesis in Antarctic mosses. PHYSIOLOGIA PLANTARUM 2021; 173:1914-1925. [PMID: 34432898 DOI: 10.1111/ppl.13533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Cell wall thickness (Tcw ) has been proposed as an important anatomical trait that could determine photosynthesis through land plants' phylogeny, bryophytes being the plant group presenting the thickest walls and the lowest photosynthetic rates. Also, it has recently been suggested that cell wall composition may have the potential to influence both thickness and mesophyll conductance (gm ), representing a novel trait that could ultimately affect photosynthesis. However, only a few studies in spermatophytes have demonstrated this issue. In order to explore the role of cell wall composition in determining both Tcw and gm in mosses, we tested six species grown under field conditions in Antarctica. We performed gas exchange and chlorophyll fluorescence measurements, an anatomical characterization, and a quantitative analysis of cell wall main composition (i.e., cellulose, hemicelluloses and pectins) in these six species. We found the photosynthetic rates to vary between the species, and they also presented differences in anatomical characteristics and in cell wall composition. Whilst gm correlated negatively with Tcw and pectins content, a positive relationship between Tcw and pectins emerged, suggesting that pectins could contribute to determine cell wall porosity. Although our results do not allow us to provide conclusive statements, we suggest for the first time that cell wall composition-with pectins playing a key role-could strongly influence Tcw and gm in Antarctic mosses, ultimately defining photosynthesis.
Collapse
Affiliation(s)
- Margalida Roig-Oliver
- Departament de Biologia, Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), INAGEA, Palma, Illes Balears, Spain
| | - Cyril Douthe
- Departament de Biologia, Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), INAGEA, Palma, Illes Balears, Spain
| | - Josefina Bota
- Departament de Biologia, Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), INAGEA, Palma, Illes Balears, Spain
| | - Jaume Flexas
- Departament de Biologia, Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), INAGEA, Palma, Illes Balears, Spain
- King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Domozych DS, Kozel L, Palacio-Lopez K. The effects of osmotic stress on the cell wall-plasma membrane domains of the unicellular streptophyte, Penium margaritaceum. PROTOPLASMA 2021; 258:1231-1249. [PMID: 33928433 DOI: 10.1007/s00709-021-01644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Penium margaritaceum is a unicellular zygnematophyte (basal Streptophyteor Charophyte) that has been used as a model organism for the study of cell walls of Streptophytes and for elucidating organismal adaptations that were key in the evolution of land plants.. When Penium is incubated in sorbitol-enhance medium, i.e., hyperosmotic medium, 1000-1500 Hechtian strands form within minutes and connect the plasma membrane to the cell wall. As cells acclimate to this osmotic stress over time, further significant changes occur at the cell wall and plasma membrane domains. The homogalacturonan lattice of the outer cell wall layer is significantly reduced and is accompanied by the formation of a highly elongate, "filamentous" phenotype. Distinct peripheral thickenings appear between the CW and plasma membrane and contain membranous components and a branched granular matrix. Monoclonal antibody labeling of these thickenings indicates the presence of rhamnogalacturonan-I epitopes. Acclimatization also results in the proliferation of the cell's vacuolar networks and macroautophagy. Penium's ability to acclimatize to osmotic stress offers insight into the transition of ancient zygnematophytes from an aquatic to terrestrial existence.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY, 12866, USA.
| | - Li Kozel
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY, 12866, USA
| | - Kattia Palacio-Lopez
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
23
|
Somssich M, Vandenbussche F, Ivakov A, Funke N, Ruprecht C, Vissenberg K, VanDer Straeten D, Persson S, Suslov D. Brassinosteroids Influence Arabidopsis Hypocotyl Graviresponses through Changes in Mannans and Cellulose. PLANT & CELL PHYSIOLOGY 2021; 62:678-692. [PMID: 33570567 DOI: 10.1093/pcp/pcab024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
The force of gravity is a constant environmental factor. Plant shoots respond to gravity through negative gravitropism and gravity resistance. These responses are essential for plants to direct the growth of aerial organs away from the soil surface after germination and to keep an upright posture above ground. We took advantage of the effect of brassinosteroids (BRs) on the two types of graviresponses in Arabidopsis thaliana hypocotyls to disentangle functions of cell wall polymers during etiolated shoot growth. The ability of etiolated Arabidopsis seedlings to grow upward was suppressed in the presence of 24-epibrassinolide (EBL) but enhanced in the presence of brassinazole (BRZ), an inhibitor of BR biosynthesis. These effects were accompanied by changes in cell wall mechanics and composition. Cell wall biochemical analyses, confocal microscopy of the cellulose-specific pontamine S4B dye and cellular growth analyses revealed that the EBL and BRZ treatments correlated with changes in cellulose fibre organization, cell expansion at the hypocotyl base and mannan content. Indeed, a longitudinal reorientation of cellulose fibres and growth inhibition at the base of hypocotyls supported their upright posture whereas the presence of mannans reduced gravitropic bending. The negative effect of mannans on gravitropism is a new function for this class of hemicelluloses. We also found that EBL interferes with upright growth of hypocotyls through their uneven thickening at the base.
Collapse
Affiliation(s)
- Marc Somssich
- School of Biosciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Gent 9000, Belgium
| | - Alexander Ivakov
- Max-Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Norma Funke
- Max-Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany
- Targenomix GmbH, Am Muehlenberg 11, Potsdam 14476, Germany
| | - Colin Ruprecht
- Max-Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany
- Max-Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Kris Vissenberg
- Biology Department, Integrated Molecular Plant Physiology Research, University of Antwerp, Groenenborgerlaan 171, Antwerpen 2020, Belgium
- Plant Biochemistry and Biotechnology Lab, Department of Agriculture, Hellenic Mediterranean University, Stavromenos, Heraklion, Crete 71410, Greece
| | - Dominique VanDer Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Gent 9000, Belgium
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Dmitry Suslov
- Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7/9, Saint Petersburg 199034, Russia
| |
Collapse
|
24
|
Caseys C, Shi G, Soltis N, Gwinner R, Corwin J, Atwell S, Kliebenstein DJ. Quantitative interactions: the disease outcome of Botrytis cinerea across the plant kingdom. G3 (BETHESDA, MD.) 2021; 11:jkab175. [PMID: 34003931 PMCID: PMC8496218 DOI: 10.1093/g3journal/jkab175] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/28/2021] [Indexed: 11/12/2022]
Abstract
Botrytis cinerea is a fungal pathogen that causes necrotic disease on more than a thousand known hosts widely spread across the plant kingdom. How B. cinerea interacts with such extensive host diversity remains largely unknown. To address this question, we generated an infectivity matrix of 98 strains of B. cinerea on 90 genotypes representing eight host plants. This experimental infectivity matrix revealed that the disease outcome is largely explained by variations in either the host resistance or pathogen virulence. However, the specific interactions between host and pathogen account for 16% of the disease outcome. Furthermore, the disease outcomes cluster among genotypes of a species but are independent of the relatedness between hosts. When analyzing the host specificity and virulence of B. cinerea, generalist strains are predominant. In this fungal necrotroph, specialization may happen by a loss in virulence on most hosts rather than an increase of virulence on a specific host. To uncover the genetic architecture of Botrytis host specificity and virulence, a genome-wide association study (GWAS) was performed and revealed up to 1492 genes of interest. The genetic architecture of these traits is widespread across the B. cinerea genome. The complexity of the disease outcome might be explained by hundreds of functionally diverse genes putatively involved in adjusting the infection to diverse hosts.
Collapse
Affiliation(s)
- Celine Caseys
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Gongjun Shi
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Nicole Soltis
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California, Davis, Davis, CA 95616 USA
| | - Raoni Gwinner
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Embrapa Amazonia Ocidental, Manaus 69010-970, Brazil
| | - Jason Corwin
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Department of Ecology and Evolution Biology, University of Colorado, Boulder, CO 80309-0334, USA
| | - Susanna Atwell
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- DynaMo Center of Excellence, University of Copenhagen, Frederiksberg C DK-1871, Denmark
| |
Collapse
|
25
|
Roig-Oliver M, Rayon C, Roulard R, Fournet F, Bota J, Flexas J. Reduced photosynthesis in Arabidopsis thaliana atpme17.2 and atpae11.1 mutants is associated to altered cell wall composition. PHYSIOLOGIA PLANTARUM 2021; 172:1439-1451. [PMID: 32770751 DOI: 10.1111/ppl.13186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 05/06/2023]
Abstract
The cell wall is a complex and dynamic structure that determines plants' performance by constant remodeling of its compounds. Although cellulose is its major load-bearing component, pectins are crucial to determine wall characteristics. Changes in pectin physicochemical properties, due to pectin remodeling enzymes (PRE), induce the rearrangement of cell wall compounds, thus, modifying wall architecture. In this work, we tested for the first time how cell wall dynamics affect photosynthetic properties in Arabidopsis thaliana pectin methylesterase atpme17.2 and pectin acetylesterase atpae11.1 mutants in comparison to wild-type Col-0. Our results showed maintained PRE activities comparing mutants with wild-type and no significant differences in cellulose, but cell wall non-cellulosic neutral sugars contents changed. Particularly, the amount of galacturonic acid (GalA) - which represents to some extent the pectin cell wall proportion - was reduced in the two mutants. Additionally, physiological characterization revealed that mutants presented a decreased net CO2 assimilation (AN ) because of reductions in both stomatal (gs ) and mesophyll conductances (gm ). Thus, our results suggest that atpme17.2 and atpae11.1 cell wall modifications due to genetic alterations could play a significant role in determining photosynthesis.
Collapse
Affiliation(s)
- Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, 07122, Spain
| | - Catherine Rayon
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, 80039, France
| | - Romain Roulard
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, 80039, France
| | - François Fournet
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, 80039, France
| | - Josefina Bota
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, 07122, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, 07122, Spain
| |
Collapse
|
26
|
Wang J, Sheng J, Zhu J, Hu Z, Diao Y. Comparative transcriptome analysis and identification of candidate adaptive evolution genes of Miscanthus lutarioriparius and Miscanthus sacchariflorus. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1499-1512. [PMID: 34366592 PMCID: PMC8295449 DOI: 10.1007/s12298-021-01030-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Miscanthus species are perennial C4 grasses that are considered promising energy crops because of their high biomass yields, excellent adaptability and low management costs. Miscanthus lutarioriparius and Miscanthus sacchariflorus are closely related subspecies that are distributed in different habitats. However, there are only a few reports on the mechanisms by which Miscanthus adapts to different environments. Here, comparative transcriptomic and morphological analyses were used to study the evolutionary adaptation of M. lutarioriparius and M. sacchariflorus to different habitats. In total, among 7586 identified orthologs, 2060 orthologs involved in phenylpropanoid biosynthesis and plant hormones were differentially expressed between the two species. Through an analysis of the Ka/Ks ratios of the orthologs, we estimated that the divergence time between the two species was approximately 4.37 Mya. In addition, 37 candidate positively selected orthologs (PSGs) that played important roles in the adaptation of these species to different habitats were identified. Then, the expression levels of 20 PSGs in response to flooding and drought stress were analyzed, and the analysis revealed significant changes in their expression levels. These results facilitate our understanding of the evolutionary adaptation to habitats and the speciation of M. lutarioriparius and M. sacchariflorus. We hypothesise that lignin synthesis genes are the main cause of the morphological differences between the two species. In summary, the plant nonspecific phospholipase C gene family and the receptor-like protein kinase gene family played important roles in the evolution of these two species. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01030-1.
Collapse
Affiliation(s)
- Jia Wang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001 People’s Republic of China
| | - Jiajing Sheng
- College of Life Sciences, Nantong University, Nantong, 226019 People’s Republic of China
| | - Jianyong Zhu
- College of Forestry and Life Sciences, Chongqing University of Arts and Sciences, Chongqing, 402160 People’s Republic of China
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Ying Diao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| |
Collapse
|
27
|
Feng X, Holzinger A, Permann C, Anderson D, Yin Y. Characterization of Two Zygnema Strains ( Zygnema circumcarinatum SAG 698-1a and SAG 698-1b) and a Rapid Method to Estimate Nuclear Genome Size of Zygnematophycean Green Algae. FRONTIERS IN PLANT SCIENCE 2021; 12:610381. [PMID: 33643345 PMCID: PMC7902510 DOI: 10.3389/fpls.2021.610381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/15/2021] [Indexed: 05/07/2023]
Abstract
Zygnematophyceae green algae (ZGA) have been shown to be the closest relatives of land plants. Three nuclear genomes (Spirogloea muscicola, Mesotaenium endlicherianum, and Penium margaritaceum) of ZGA have been recently published, and more genomes are underway. Here we analyzed two Zygnema circumcarinatum strains SAG 698-1a (mating +) and SAG 698-1b (mating -) and found distinct cell sizes and other morphological differences. The molecular identities of the two strains were further investigated by sequencing their 18S rRNA, psaA and rbcL genes. These marker genes of SAG 698-1a were surprisingly much more similar to Z. cylindricum (SAG 698-2) than to SAG 698-1b. Phylogenies of these marker genes also showed that SAG 698-1a and SAG 698-1b were well separated into two different Zygnema clades, where SAG 698-1a was clustered with Z. cylindricum, while SAG 698-1b was clustered with Z. tunetanum. Additionally, physiological parameters like ETRmax values differed between SAG 698-1a and SAG 698-1b after 2 months of cultivation. The de-epoxidation state (DEPS) of the xanthophyll cycle pigments also showed significant differences. Surprisingly, the two strains could not conjugate, and significantly differed in the thickness of the mucilage layer. Additionally, ZGA cell walls are highly enriched with sticky and acidic polysaccharides, and therefore the widely used plant nuclear extraction protocols do not work well in ZGA. Here, we also report a fast and simple method, by mechanical chopping, for efficient nuclear extraction in the two SAG strains. More importantly, the extracted nuclei were further used for nuclear genome size estimation of the two SAG strains by flow cytometry (FC). To confirm the FC result, we have also used other experimental methods for nuclear genome size estimation of the two strains. Interestingly, the two strains were found to have very distinct nuclear genome sizes (313.2 ± 2.0 Mb in SAG 698-1a vs. 63.5 ± 0.5 Mb in SAG 698-1b). Our multiple lines of evidence strongly indicate that SAG 698-1a possibly had been confused with SAG 698-2 prior to 2005, and most likely represents Z. cylindricum or a closely related species.
Collapse
Affiliation(s)
- Xuehuan Feng
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | | | - Dirk Anderson
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Yanbin Yin
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
28
|
Roig-Oliver M, Bresta P, Nadal M, Liakopoulos G, Nikolopoulos D, Karabourniotis G, Bota J, Flexas J. Cell wall composition and thickness affect mesophyll conductance to CO2 diffusion in Helianthus annuus under water deprivation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7198-7209. [PMID: 32905592 DOI: 10.1093/jxb/eraa413] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Water deprivation affects photosynthesis, leaf anatomy, and cell wall composition. Although the former effects have been widely studied, little is known regarding those changes in cell wall major (cellulose, hemicelluloses, pectin, and lignin) and minor (cell wall-bound phenolics) compounds in plants acclimated to short- and long-term water deprivation and during recovery. In particular, how these cell wall changes impact anatomy and/or photosynthesis, specifically mesophyll conductance to CO2 diffusion (gm), has been scarcely studied. To induce changes in photosynthesis, cell wall composition and anatomy, Helianthus annuus plants were studied under five conditions: (i) control (i.e. without stress) (CL); (ii) long-term water deficit stress (LT); (iii) long-term water deficit stress with recovery (LT-Rec); (iv) short-term water deficit stress (ST); and (v) short-term water deficit stress with recovery (ST-Rec), resulting in a wide photosynthetic range (from 3.80 ± 1.05 μmol CO2 m-2 s-1 to 24.53 ± 0.42 μmol CO2 m-2 s-1). Short- and long-term water deprivation and recovery induced distinctive responses of the examined traits, evidencing a cell wall dynamic turnover during plants acclimation to each condition. In particular, we demonstrated for the first time how gm correlated negatively with lignin and cell wall-bound phenolics and how the (cellulose+hemicelloses)/pectin ratio was linked to cell wall thickness (Tcw) variations.
Collapse
Affiliation(s)
- Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Panagiota Bresta
- Laboratory of Plant Physiology and Morphology, Department of Crop Science, Agricultural University of Athens (AUA), Iera Odos 75, Botanikos, Athens, Greece
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Georgios Liakopoulos
- Laboratory of Plant Physiology and Morphology, Department of Crop Science, Agricultural University of Athens (AUA), Iera Odos 75, Botanikos, Athens, Greece
| | - Dimosthenis Nikolopoulos
- Laboratory of Plant Physiology and Morphology, Department of Crop Science, Agricultural University of Athens (AUA), Iera Odos 75, Botanikos, Athens, Greece
| | - George Karabourniotis
- Laboratory of Plant Physiology and Morphology, Department of Crop Science, Agricultural University of Athens (AUA), Iera Odos 75, Botanikos, Athens, Greece
| | - Josefina Bota
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
29
|
Stratilová B, Kozmon S, Stratilová E, Hrmova M. Plant Xyloglucan Xyloglucosyl Transferases and the Cell Wall Structure: Subtle but Significant. Molecules 2020; 25:E5619. [PMID: 33260399 PMCID: PMC7729885 DOI: 10.3390/molecules25235619] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Plant xyloglucan xyloglucosyl transferases or xyloglucan endo-transglycosylases (XET; EC 2.4.1.207) catalogued in the glycoside hydrolase family 16 constitute cell wall-modifying enzymes that play a fundamental role in the cell wall expansion and re-modelling. Over the past thirty years, it has been established that XET enzymes catalyse homo-transglycosylation reactions with xyloglucan (XG)-derived substrates and hetero-transglycosylation reactions with neutral and charged donor and acceptor substrates other than XG-derived. This broad specificity in XET isoforms is credited to a high degree of structural and catalytic plasticity that has evolved ubiquitously in algal, moss, fern, basic Angiosperm, monocot, and eudicot enzymes. These XET isoforms constitute gene families that are differentially expressed in tissues in time- and space-dependent manners during plant growth and development, and in response to biotic and abiotic stresses. Here, we discuss the current state of knowledge of broad specific plant XET enzymes and how their inherently carbohydrate-based transglycosylation reactions tightly link with structural diversity that underlies the complexity of plant cell walls and their mechanics. Based on this knowledge, we conclude that multi- or poly-specific XET enzymes are widespread in plants to allow for modifications of the cell wall structure in muro, a feature that implements the multifaceted roles in plant cells.
Collapse
Affiliation(s)
- Barbora Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (B.S.); (S.K.); (E.S.)
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská Dolina, SK-84215 Bratislava, Slovakia
| | - Stanislav Kozmon
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (B.S.); (S.K.); (E.S.)
| | - Eva Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (B.S.); (S.K.); (E.S.)
| | - Maria Hrmova
- School of Life Science, Huaiyin Normal University, Huai’an 223300, China
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia
| |
Collapse
|
30
|
Davis DJ, Wang M, Sørensen I, Rose JKC, Domozych DS, Drakakaki G. Callose deposition is essential for the completion of cytokinesis in the unicellular alga Penium margaritaceum. J Cell Sci 2020; 133:jcs249599. [PMID: 32895244 DOI: 10.1242/jcs.249599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/27/2020] [Indexed: 11/20/2022] Open
Abstract
Cytokinesis in land plants involves the formation of a cell plate that develops into the new cell wall. Callose, a β-1,3 glucan, accumulates at later stages of cell plate development, presumably to stabilize this delicate membrane network during expansion. Cytokinetic callose is considered specific to multicellular plant species, because it has not been detected in unicellular algae. Here we present callose at the cytokinesis junction of the unicellular charophyte, Penium margaritaceum Callose deposition at the division plane of P. margaritaceum showed distinct, spatiotemporal patterns likely representing distinct roles of this polymer in cytokinesis. Pharmacological inhibition of callose deposition by endosidin 7 resulted in cytokinesis defects, consistent with the essential role for this polymer in P. margaritaceum cell division. Cell wall deposition at the isthmus zone was also affected by the absence of callose, demonstrating the dynamic nature of new wall assembly in P. margaritaceum The identification of candidate callose synthase genes provides molecular evidence for callose biosynthesis in P. margaritaceum The evolutionary implications of cytokinetic callose in this unicellular zygnematopycean alga is discussed in the context of the conquest of land by plants.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Destiny J Davis
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Minmin Wang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
31
|
Protoplast Isolation and Manipulation in the Unicellular Model Plant Penium margaritaceum. Methods Mol Biol 2020; 2149:111-124. [PMID: 32617932 DOI: 10.1007/978-1-0716-0621-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The unicellular freshwater green alga Penium margaritaceum has become a novel and valuable model organism for elucidating cell wall dynamics in plants. We describe a rapid and simple means for isolating protoplasts using commercial enzymes in a mannitol-based buffer. Protoplasts can be cultured and cell wall recovery can be monitored in sequentially diluted mannitol-based medium. We also describe an optimized protocol to prepare highly pure, organelle-free nuclei fractions from protoplasts using sucrose gradients. This technology provides a new and effective tool in Penium biology that can be used for analysis of cell wall polymer deposition, organelle isolation and characterization, and molecular research including genetic transformation and somatic hybridization.
Collapse
|
32
|
Park SH, Kim HS, Kalita PJ, Choi SB. Structural and functional similarities and differences in nucleolar Pumilio RNA-binding proteins between Arabidopsis and the charophyte Chara corallina. BMC PLANT BIOLOGY 2020; 20:230. [PMID: 32448230 PMCID: PMC7247198 DOI: 10.1186/s12870-020-02444-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/13/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Pumilio RNA-binding proteins are evolutionarily conserved throughout eukaryotes and are involved in RNA decay, transport, and translation repression in the cytoplasm. Although a majority of Pumilio proteins function in the cytoplasm, two nucleolar forms have been reported to have a function in rRNA processing in Arabidopsis. The species of the genus Chara have been known to be most closely related to land plants, as they share several characteristics with modern Embryophyta. RESULTS In this study, we identified two putative nucleolar Pumilio protein genes, namely, ChPUM2 and ChPUM3, from the transcriptome of Chara corallina. Of the two ChPUM proteins, ChPUM2 was most similar in amino acid sequence (27% identity and 45% homology) and predicted protein structure to Arabidopsis APUM23, while ChPUM3 was similar to APUM24 (35% identity and 54% homology). The transient expression of 35S:ChPUM2-RFP and 35S:ChPUM3-RFP showed nucleolar localization of fusion proteins in tobacco leaf cells, similar to the expression of 35S:APUM23-GFP and 35S:APUM24-GFP. Moreover, 35S:ChPUM2 complemented the morphological defects of the apum23 phenotypes but not those of apum24, while 35S:ChPUM3 could not complement the apum23 and apum24 mutants. Similarly, the 35S:ChPUM2/apum23 plants rescued the pre-rRNA processing defect of apum23, but 35S:ChPUM3/apum24+/- plants did not rescue that of apum24. Consistent with these complementation results, a known target RNA-binding sequence at the end of the 18S rRNA (5'-GGAAUUGACGG) for APUM23 was conserved in Arabidopsis and C. corallina, whereas a target region of ITS2 pre-rRNA for APUM24 was 156 nt longer in C. corallina than in A. thaliana. Moreover, ChPUM2 and APUM23 were predicted to have nearly identical structures, but ChPUM3 and APUM24 have different structures in the 5th C-terminal Puf RNA-binding domain, which had a longer random coil in ChPUM3 than in APUM24. CONCLUSIONS ChPUM2 of C. corallina was functional in Arabidopsis, similar to APUM23, but ChPUM3 did not substitute for APUM24 in Arabidopsis. Protein homology modeling showed high coverage between APUM23 and ChPUM2, but displayed structural differences between APUM24 and ChPUM3. Together with the protein structure of ChPUM3 itself, a short ITS2 of Arabidopsis pre-rRNA may interrupt the binding of ChPUM3 to 3'-extended 5.8S pre-rRNA.
Collapse
Affiliation(s)
- Su Hyun Park
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Hyung-Sae Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Prakash Jyoti Kalita
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Sang-Bong Choi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea.
| |
Collapse
|
33
|
Derbyshire MC. Bioinformatic Detection of Positive Selection Pressure in Plant Pathogens: The Neutral Theory of Molecular Sequence Evolution in Action. Front Microbiol 2020; 11:644. [PMID: 32328056 PMCID: PMC7160247 DOI: 10.3389/fmicb.2020.00644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/20/2020] [Indexed: 11/13/2022] Open
Abstract
The genomes of plant pathogenic fungi and oomycetes are often exposed to strong positive selection pressure. During speciation, shifts in host range and preference can lead to major adaptive changes. Furthermore, evolution of total host resistance to most isolates can force rapid evolutionary changes in host-specific pathogens. Crop pathogens are subjected to particularly intense selective pressures from monocultures and fungicides. Detection of the footprints of positive selection in plant pathogen genomes is a worthwhile endeavor as it aids understanding of the fundamental biology of these important organisms. There are two main classes of test for detection of positively selected alleles. Tests based on the ratio of non-synonymous to synonymous substitutions per site detect the footprints of multiple fixation events between divergent lineages. Thus, they are well-suited to the study of ancient adaptation events spanning speciations. On the other hand, tests that scan genomes for local fluctuations in allelic diversity within populations are suitable for detection of recent positive selection in populations. In this review, I briefly describe some of the more widely used tests of positive selection and the theory underlying them. I then discuss various examples of their application to plant pathogen genomes, emphasizing the types of genes that are associated with signatures of positive selection. I conclude with a discussion of the practicality of such tests for identification of pathogen genes of interest and the important features of pathogen ecology that must be taken into account for accurate interpretation.
Collapse
Affiliation(s)
- Mark C. Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
34
|
Gallinari RH, Coletta RD, Araújo P, Menossi M, Nery MF. Bringing to light the molecular evolution of GUX genes in plants. Genet Mol Biol 2020; 43:e20180208. [PMID: 32232316 PMCID: PMC7198009 DOI: 10.1590/1678-4685-gmb-2018-0208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 05/06/2019] [Indexed: 11/30/2022] Open
Abstract
Hemicellulose and cellulose are essential polysaccharides for plant development and major components of cell wall. They are also an important energy source for the production of ethanol from plant biomass, but their conversion to fermentable sugars is hindered by the complex structure of cell walls. The glucuronic acid substitution of xylan (GUX) enzymes attach glucuronic acid to xylan, a major component of hemicellulose, decreasing the efficiency of enzymes used for ethanol production. Since loss-of-function gux mutants of Arabidopsis thaliana enhance enzyme accessibility and cell wall digestion without adverse phenotypes, GUX genes are potential targets for genetically improving energy crops. However, comprehensive identification of GUX in important species and their evolutionary history are largely lacking. Here, we identified putative GUX proteins using hidden Markov model searches with the GT8 domain and a GUX-specific motif, and inferred the phylogenetic relationship of 18 species with Maximum likelihood and Bayesian approaches. Each species presented a variable number of GUX, and their evolution can be explained by a mixture of divergent, concerted and birth-and-death evolutionary models. This is the first broad insight into the evolution of GUX gene family in plants and will potentially guide genetic and functional studies in species used for biofuel production.
Collapse
Affiliation(s)
- Rafael Henrique Gallinari
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Campinas, SP, Brazil
| | - Rafael Della Coletta
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Campinas, SP, Brazil
| | - Pedro Araújo
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Campinas, SP, Brazil
| | - Marcelo Menossi
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Campinas, SP, Brazil
| | - Mariana Freitas Nery
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Campinas, SP, Brazil
| |
Collapse
|
35
|
A Screen for Gene Paralogies Delineating Evolutionary Branching Order of Early Metazoa. G3-GENES GENOMES GENETICS 2020; 10:811-826. [PMID: 31879283 PMCID: PMC7003098 DOI: 10.1534/g3.119.400951] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The evolutionary diversification of animals is one of Earth’s greatest marvels, yet its earliest steps are shrouded in mystery. Animals, the monophyletic clade known as Metazoa, evolved wildly divergent multicellular life strategies featuring ciliated sensory epithelia. In many lineages epithelial sensoria became coupled to increasingly complex nervous systems. Currently, different phylogenetic analyses of single-copy genes support mutually-exclusive possibilities that either Porifera or Ctenophora is sister to all other animals. Resolving this dilemma would advance the ecological and evolutionary understanding of the first animals and the evolution of nervous systems. Here we describe a comparative phylogenetic approach based on gene duplications. We computationally identify and analyze gene families with early metazoan duplications using an approach that mitigates apparent gene loss resulting from the miscalling of paralogs. In the transmembrane channel-like (TMC) family of mechano-transducing channels, we find ancient duplications that define separate clades for Eumetazoa (Placozoa + Cnidaria + Bilateria) vs. Ctenophora, and one duplication that is shared only by Eumetazoa and Porifera. In the Max-like protein X (MLX and MLXIP) family of bHLH-ZIP regulators of metabolism, we find that all major lineages from Eumetazoa and Porifera (sponges) share a duplicated gene pair that is sister to the single-copy gene maintained in Ctenophora. These results suggest a new avenue for deducing deep phylogeny by choosing rather than avoiding ancient gene paralogies.
Collapse
|
36
|
Happ K, Classen B. Arabinogalactan-Proteins from the Liverwort Marchantia polymorpha L., a Member of a Basal Land Plant Lineage, Are Structurally Different to Those of Angiosperms. PLANTS (BASEL, SWITZERLAND) 2019; 8:E460. [PMID: 31671872 PMCID: PMC6918356 DOI: 10.3390/plants8110460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 01/18/2023]
Abstract
The thalloid liverwort Marchantia polymorpha as a member of a basal land plant lineage has to cope with the challenge of terrestrial life. Obviously, the plant cell wall has been strongly involved in the outstanding evolutionary process of water-to-land-transition. AGPs are signaling glycoproteins of the cell wall, which seem to be ubiquitous in seed plants and might play a role in adaption to abiotic and biotic stress situations. Therefore, we investigated the cell wall composition of Marchantia polymorpha with special focus on structural characterization of arabinogalactan-proteins. The Marchantia AGP shows typical features known from seed plant AGPs like precipitation with β-glucosyl-Yariv's reagent, a protein moiety with hydroxyproline and a carbohydrate part with 1,3,6-linked galactose and terminal arabinose residues. On the other hand, striking differences to AGPs of angiosperms are the occurrence of terminal 3-O-methyl-rhamnose and a highly branched galactan lacking appreciable amounts of 1,6-linked galactose. Binding of different AGP-antibodies (JIM13, KM1, LM2, LM6, LM14, LM26, and MAC207) to Marchantia AGP was investigated and confirmed structural differences between liverwort and angiosperm AGP, possibly due to deviating functions of these signaling molecules in the different taxonomic groups.
Collapse
Affiliation(s)
- Kathrin Happ
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany.
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany.
| |
Collapse
|
37
|
Hesse L, Bunk K, Leupold J, Speck T, Masselter T. Structural and functional imaging of large and opaque plant specimens. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3659-3678. [PMID: 31188449 DOI: 10.1093/jxb/erz186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/08/2019] [Indexed: 05/20/2023]
Abstract
Three- and four-dimensional imaging techniques are a prerequisite for spatially resolving the form-structure-function relationships in plants. However, choosing the right imaging method is a difficult and time-consuming process as the imaging principles, advantages and limitations, as well as the appropriate fields of application first need to be compared. The present study aims to provide an overview of three imaging methods that allow for imaging opaque, large and thick (>5 mm, up to several centimeters), hierarchically organized plant samples that can have complex geometries. We compare light microscopy of serial thin sections followed by 3D reconstruction (LMTS3D) as an optical imaging technique, micro-computed tomography (µ-CT) based on ionizing radiation, and magnetic resonance imaging (MRI) which uses the natural magnetic properties of a sample for image acquisition. We discuss the most important imaging principles, advantages, and limitations, and suggest fields of application for each imaging technique (LMTS, µ-CT, and MRI) with regard to static (at a given time; 3D) and dynamic (at different time points; quasi 4D) structural and functional plant imaging.
Collapse
Affiliation(s)
- Linnea Hesse
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
| | - Katharina Bunk
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
| | - Jochen Leupold
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Speck
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Germany
| | - Tom Masselter
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
| |
Collapse
|
38
|
Development of a physicochemical method to quantify the extracellular liquid volume: Application to the transformation of cassava into gari. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Han W, Fan X, Teng L, Kaczurowski MJS, Zhang X, Xu D, Yin Y, Ye N. Identification, classification, and evolution of putative xylosyltransferases from algae. PROTOPLASMA 2019; 256:1119-1132. [PMID: 30941581 DOI: 10.1007/s00709-019-01358-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/15/2019] [Indexed: 05/28/2023]
Abstract
Xylosyltransferases (XylTs) play key roles in the biosynthesis of many different polysaccharides. These enzymes transfer D-xylose from UDP-xylose to substrate acceptors. In this study, we identified 30 XylTs from primary endosymbionts (green algae, red algae, and glaucophytes) and secondary or higher endosymbionts (brown algae, diatoms, Eustigmatophyceae, Pelagophyceae, and Cryptophyta). We performed comparative phylogenetic studies on key XylT subfamilies, and investigated the functional divergence of genes using RNA-Seq. Of the 30 XylTs, one β-1,4-XylT IRX14-related, one β-1,4 XylT IRX10L-related, and one xyloglucan 6-XylT 1-related gene were identified in the Charophyta, showing strong similarities to their land plant descendants. This implied the ancient occurrence of xylan and xyloglucan biosynthetic machineries in Charophyta. The other 27 XylTs were identified as UDP-D-xylose: L-fucose-α-1,3-D-XylT (FucXylT) type that specifically transferred D-xylose to fucose. We propose that FucXylTs originated from the last eukaryotic common ancestor, rather than being plant specific, because they are also distributed in Choanoflagellatea and Echinodermata. Considering the evidence from many aspects, we hypothesize that the FucXylTs likely participated in fucoidan biosynthesis in brown algae. We provide the first insights into the evolutionary history and functional divergence of FucXylT in algal biology.
Collapse
Affiliation(s)
- Wentao Han
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes,, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Linhong Teng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- College of Life Science, Dezhou University, Dezhou, 253023, China
| | | | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yanbin Yin
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes,, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
40
|
Zhang H, Liu H, Yang R, Xu X, Liu X, Xu J. Over-expression of PttEXPA8 gene showed various resistances to diverse stresses. Int J Biol Macromol 2019; 130:50-57. [PMID: 30797010 DOI: 10.1016/j.ijbiomac.2019.02.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 01/19/2023]
Abstract
Expansins play a pivotal role in plant adaptation to environmental stress via cell wall loosening. To evaluate the roles of expansin in response to different environmental stress conditions, the expansin gene PttEXPA8 from Populus tomentosa was transformed into tobacco. Analysis of physiological indices demonstrated the transgenic plants with improved resistance to heat, drought, salt, cold, and cadmium stress but to different extents. In mature plants, PttEXPA8 exerted the greatest effect on heat stress, with a response index value of 137.46%, followed by drought, cadmium, cold, and salt stress with response index values of 101.04%, 70.61%, 69.95%, and 54.68%, respectively. Over-expression of PttEXPA8 resulted in differential responses in physiological indices to the stresses. Soluble sugar content showed the highest response to the stresses, with an average response index value of 29.29%, whereas the absolute response index value for malondialdehyde content, relative electrolyte leakage, chlorophyll content, and superoxide dismutase activity ranged from 11.01% to 19.21%. The present results provide insight into the roles of expansin in stress resistance in Populus.
Collapse
Affiliation(s)
- Hao Zhang
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Huabo Liu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Ruixia Yang
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Xiao Xu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Xiao Liu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Jichen Xu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
41
|
Canteri MH, Renard CM, Le Bourvellec C, Bureau S. ATR-FTIR spectroscopy to determine cell wall composition: Application on a large diversity of fruits and vegetables. Carbohydr Polym 2019; 212:186-196. [DOI: 10.1016/j.carbpol.2019.02.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 01/07/2023]
|
42
|
Vicente CSL, Nemchinov LG, Mota M, Eisenback JD, Kamo K, Vieira P. Identification and characterization of the first pectin methylesterase gene discovered in the root lesion nematode Pratylenchus penetrans. PLoS One 2019; 14:e0212540. [PMID: 30794636 PMCID: PMC6386239 DOI: 10.1371/journal.pone.0212540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/05/2019] [Indexed: 02/04/2023] Open
Abstract
Similar to other plant-parasitic nematodes, root lesion nematodes possess an array of enzymes that are involved in the degradation of the plant cell wall. Here we report the identification of a gene encoding a cell wall-degrading enzyme, pectin methylesterase PME (EC 3.1.1.11), in the root lesion nematode Pratylenchus penetrans. Both genomic and coding sequences of the gene were cloned for this species, that included the presence of four introns which eliminated a possible contamination from bacteria. Expression of the Pp-pme gene was localized in the esophageal glands of P. penetrans as determined by in situ hybridization. Temporal expression of Pp-pme in planta was validated at early time points of infection. The possible function and activity of the gene were assessed by transient expression of Pp-pme in plants of Nicotiana benthamiana plants via a Potato virus X-based vector. To our knowledge, this is the first report on identification and characterization of a PME gene within the phylum Nematoda.
Collapse
Affiliation(s)
- Cláudia S. L. Vicente
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Lev G. Nemchinov
- Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Manuel Mota
- Departamento de Biologia & ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Jonathan D. Eisenback
- School of Plant Environmental Science, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Kathryn Kamo
- Floral and Nursery Plants Research Unit, United States of National Arboretum, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Paulo Vieira
- Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
- School of Plant Environmental Science, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
43
|
Xu P, Lu B, Liu J, Chao J, Donkersley P, Holdbrook R, Lu Y. Duplication and expression of horizontally transferred polygalacturonase genes is associated with host range expansion of mirid bugs. BMC Evol Biol 2019; 19:12. [PMID: 30626314 PMCID: PMC6327464 DOI: 10.1186/s12862-019-1351-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/02/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUD Horizontal gene transfer and gene duplication are two major mechanisms contributing to the evolutionary adaptation of organisms. Previously, polygalacturonase genes (PGs) were independently horizontally transferred and underwent multiple duplications in insects (e.g., mirid bugs and beetles). Here, we chose three phytozoophagous mirid bugs (Adelphocoris suturalis, A. fasciaticollis, A. lineolatus) and one zoophytophagous mirid bug (Nesidiocoris tenuis) to detect whether the duplication, molecular evolution, and expression levels of PGs were related to host range expansion in mirid bugs. RESULTS By RNA-seq, we reported 30, 20, 19 and 8 PGs in A. suturalis, A. fasciaticollis, A. lineolatus and N. tenuis, respectively. Interestingly, the number of PGs was significantly positive correlation to the number of host plants (P = 0.0339) in mirid bugs. Most PGs (> 17) were highly expressed in the three phytozoophagous mirid bugs, while only one PG was relatively highly expressed in the zoophytophagous mirid bug. Natural selection analysis clearly showed that a significant relaxation of selection pressure acted on the PGs in zoophytophagous mirid bugs (K = 0.546, P = 0.0158) rather than in phytozoophagous mirid bugs (K = 1, P = 0.92), suggesting a function constraint of PGs in phytozoophagous mirid bugs. CONCLUSION Taken together with gene duplication, molecular evolution, and expression levels, our results suggest that PGs are more strictly required by phytozoophagous than by zoophytophagous mirid bugs and that the duplication of PGs is associated with the expansion of host plant ranges in mirid bugs.
Collapse
Affiliation(s)
- Pengjun Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101 People’s Republic of China
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ UK
| | - Bin Lu
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041 People’s Republic of China
| | - Jinyan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101 People’s Republic of China
| | - Jiangtao Chao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101 People’s Republic of China
| | - Philip Donkersley
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ UK
| | - Robert Holdbrook
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ UK
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| |
Collapse
|
44
|
Shtein I, Bar-On B, Popper ZA. Plant and algal structure: from cell walls to biomechanical function. PHYSIOLOGIA PLANTARUM 2018; 164:56-66. [PMID: 29572853 DOI: 10.1111/ppl.12727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/04/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Plant and algal cell walls are complex biomaterials composed of stiff cellulose microfibrils embedded in a soft matrix of polysaccharides, proteins and phenolic compounds. Cell wall composition differs between taxonomic groups and different tissue types (or even at the sub-cellular level) within a plant enabling specific biomechanical properties important for cell/tissue function. Moreover, cell wall composition changes may be induced in response to environmental conditions. Plant structure, habit, morphology and internal anatomy are also dependent on the taxonomic group as well as abiotic and biotic factors. This review aims to examine the complex and incompletely understood interactions of cell wall composition, plant form and biomechanical function.
Collapse
Affiliation(s)
- Ilana Shtein
- Department of Mechanical Engineering, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
- Botany and Plant Science, Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- Eastern Region Research and Development Center, Ariel, Israel
| | - Benny Bar-On
- Department of Mechanical Engineering, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Zoë A Popper
- Botany and Plant Science, Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
45
|
Del-Bem LE. Xyloglucan evolution and the terrestrialization of green plants. THE NEW PHYTOLOGIST 2018; 219:1150-1153. [PMID: 29851097 DOI: 10.1111/nph.15191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Xyloglucan (XyG) is the major noncellulosic nonpectic matrix polysaccharide in cell walls of most land plants. Initially thought to be restricted to land plants, the last decade has seen the detection of XyG and the discovery of synthesis and modification/degradation genes in charophycean green algae (CGA). Recently, a totally new function of XyG was discovered as a potent soil aggregator released by roots and rhizoids of all major groups of land plants. In this Viewpoint, I show the presence of a complex XyG genetic machinery in most CGA groups. I discuss the context of XyG evolution in light of the terrestrialization of early CGA that gave rise to embryophytes and its possible role in early soil formation.
Collapse
Affiliation(s)
- Luiz-Eduardo Del-Bem
- Instituto de Ciências da Saúde (ICS), Universidade Federal da Bahia (UFBA), Av. Reitor Miguel Calmon, s/n - Vale do Canela, 40110-100, Salvador-BA, Brazil
| |
Collapse
|
46
|
Avci U, Peña MJ, O'Neill MA. Changes in the abundance of cell wall apiogalacturonan and xylogalacturonan and conservation of rhamnogalacturonan II structure during the diversification of the Lemnoideae. PLANTA 2018; 247:953-971. [PMID: 29288327 DOI: 10.1007/s00425-017-2837-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
The diversification of the Lemnoideae was accompanied by a reduction in the abundance of cell wall apiogalacturonan and an increase in xylogalacturonan whereas rhamnogalacturonan II structure and cross-linking are conserved. The subfamily Lemnoideae is comprised of five genera and 38 species of small, fast-growing aquatic monocots. Lemna minor and Spirodela polyrhiza belong to this subfamily and have primary cell walls that contain large amounts of apiogalacturonan and thus are distinct from the primary walls of most other flowering plants. However, the pectins in the cell walls of other members of the Lemnoideae have not been investigated. Here, we show that apiogalacturonan decreased substantially as the Lemnoideae diversified since Wolffiella and Wolffia walls contain between 63 and 88% less apiose than Spirodela, Landoltia, and Lemna walls. In Wolffia, the most derived genus, xylogalacturonan is far more abundant than apiogalacturonan, whereas in Wolffiella pectic polysaccharides have a high arabinose content, which may arise from arabinan sidechains of RG I. The apiose-containing pectin rhamnogalacturonan II (RG-II) exists in Lemnoideae walls as a borate cross-linked dimer and has a glycosyl sequence similar to RG-II from terrestrial plants. Nevertheless, species-dependent variations in the extent of methyl-etherification of RG-II sidechain A and arabinosylation of sidechain B are discernible. Immunocytochemical studies revealed that pectin methyl-esterification is higher in developing daughter frond walls than in mother frond walls, indicating that methyl-esterification is associated with expanding cells. Our data support the notion that a functional cell wall requires conservation of RG-II structure and cross-linking but can accommodate structural changes in other pectins. The Lemnoideae provide a model system to study the mechanisms by which wall structure and composition has changed in closely related plants with similar growth habits.
Collapse
Affiliation(s)
- Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Faculty of Engineering, Bioengineering Department, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Maria J Peña
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Malcolm A O'Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
47
|
Kinnaert C, Daugaard M, Nami F, Clausen MH. Chemical Synthesis of Oligosaccharides Related to the Cell Walls of Plants and Algae. Chem Rev 2017; 117:11337-11405. [DOI: 10.1021/acs.chemrev.7b00162] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Christine Kinnaert
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| | - Mathilde Daugaard
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| | - Faranak Nami
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| | - Mads H. Clausen
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
48
|
Johnson KL, Cassin AM, Lonsdale A, Wong GKS, Soltis DE, Miles NW, Melkonian M, Melkonian B, Deyholos MK, Leebens-Mack J, Rothfels CJ, Stevenson DW, Graham SW, Wang X, Wu S, Pires JC, Edger PP, Carpenter EJ, Bacic A, Doblin MS, Schultz CJ. Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes. PLANT PHYSIOLOGY 2017; 174:904-921. [PMID: 28446636 PMCID: PMC5462033 DOI: 10.1104/pp.17.00295] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/21/2017] [Indexed: 05/19/2023]
Abstract
The carbohydrate-rich cell walls of land plants and algae have been the focus of much interest given the value of cell wall-based products to our current and future economies. Hydroxyproline-rich glycoproteins (HRGPs), a major group of wall glycoproteins, play important roles in plant growth and development, yet little is known about how they have evolved in parallel with the polysaccharide components of walls. We investigate the origins and evolution of the HRGP superfamily, which is commonly divided into three major multigene families: the arabinogalactan proteins (AGPs), extensins (EXTs), and proline-rich proteins. Using motif and amino acid bias, a newly developed bioinformatics pipeline, we identified HRGPs in sequences from the 1000 Plants transcriptome project (www.onekp.com). Our analyses provide new insights into the evolution of HRGPs across major evolutionary milestones, including the transition to land and the early radiation of angiosperms. Significantly, data mining reveals the origin of glycosylphosphatidylinositol (GPI)-anchored AGPs in green algae and a 3- to 4-fold increase in GPI-AGPs in liverworts and mosses. The first detection of cross-linking (CL)-EXTs is observed in bryophytes, which suggests that CL-EXTs arose though the juxtaposition of preexisting SPn EXT glycomotifs with refined Y-based motifs. We also detected the loss of CL-EXT in a few lineages, including the grass family (Poaceae), that have a cell wall composition distinct from other monocots and eudicots. A key challenge in HRGP research is tracking individual HRGPs throughout evolution. Using the 1000 Plants output, we were able to find putative orthologs of Arabidopsis pollen-specific GPI-AGPs in basal eudicots.
Collapse
Affiliation(s)
- Kim L Johnson
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Andrew M Cassin
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Andrew Lonsdale
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Gane Ka-Shu Wong
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Douglas E Soltis
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Nicholas W Miles
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Michael Melkonian
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Barbara Melkonian
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Michael K Deyholos
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - James Leebens-Mack
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Carl J Rothfels
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Dennis W Stevenson
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Sean W Graham
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Xumin Wang
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Shuangxiu Wu
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - J Chris Pires
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Patrick P Edger
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Eric J Carpenter
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Antony Bacic
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Monika S Doblin
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Carolyn J Schultz
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.);
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.);
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.);
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.);
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.);
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.);
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.);
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.);
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.);
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.);
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| |
Collapse
|
49
|
Van de Poel B, Cooper ED, Van Der Straeten D, Chang C, Delwiche CF. Transcriptome Profiling of the Green Alga Spirogyra pratensis (Charophyta) Suggests an Ancestral Role for Ethylene in Cell Wall Metabolism, Photosynthesis, and Abiotic Stress Responses. PLANT PHYSIOLOGY 2016; 172:533-45. [PMID: 27489312 PMCID: PMC5074641 DOI: 10.1104/pp.16.00299] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/01/2016] [Indexed: 05/26/2023]
Abstract
It is well known that ethylene regulates a diverse set of developmental and stress-related processes in angiosperms, yet its roles in early-diverging embryophytes and algae are poorly understood. Recently, it was shown that ethylene functions as a hormone in the charophyte green alga Spirogyra pratensis Since land plants evolved from charophytes, this implies conservation of ethylene as a hormone in green plants for at least 450 million years. However, the physiological role of ethylene in charophyte algae has remained unknown. To gain insight into ethylene responses in Spirogyra, we used mRNA sequencing to measure changes in gene expression over time in Spirogyra filaments in response to an ethylene treatment. Our analyses show that at the transcriptional level, ethylene predominantly regulates three processes in Spirogyra: (1) modification of the cell wall matrix by expansins and xyloglucan endotransglucosylases/hydrolases, (2) down-regulation of chlorophyll biosynthesis and photosynthesis, and (3) activation of abiotic stress responses. We confirmed that the photosynthetic capacity and chlorophyll content were reduced by an ethylene treatment and that several abiotic stress conditions could stimulate cell elongation in an ethylene-dependent manner. We also found that the Spirogyra transcriptome harbors only 10 ethylene-responsive transcription factor (ERF) homologs, several of which are regulated by ethylene. These results provide an initial understanding of the hormonal responses induced by ethylene in Spirogyra and help to reconstruct the role of ethylene in ancestral charophytes prior to the origin of land plants.
Collapse
Affiliation(s)
- Bram Van de Poel
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| | - Endymion D Cooper
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| | - Dominique Van Der Straeten
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| | - Charles F Delwiche
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| |
Collapse
|
50
|
Galindo-Trigo S, Gray JE, Smith LM. Conserved Roles of CrRLK1L Receptor-Like Kinases in Cell Expansion and Reproduction from Algae to Angiosperms. FRONTIERS IN PLANT SCIENCE 2016; 7:1269. [PMID: 27621737 PMCID: PMC5002434 DOI: 10.3389/fpls.2016.01269] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/10/2016] [Indexed: 05/20/2023]
Abstract
Receptor-like kinases (RLKs) are regulators of plant development through allowing cells to sense their extracellular environment. They facilitate detection of local endogenous signals, in addition to external biotic and abiotic stimuli. The Catharanthus roseus RLK1-like (CrRLK1L) protein kinase subfamily, which contains FERONIA, plays a central role in regulating fertilization and in cell expansion mechanisms such as cell elongation and tip growth, as well as having indirect links to plant-pathogen interactions. Several components of CrRLK1L signaling pathways have been identified, including an extracellular ligand, coreceptors, and downstream signaling elements. The presence and abundance of the CrRLK1L proteins in the plant kingdom suggest an origin within the Streptophyta lineage, with a notable increase in prevalence in the seeded land plants. Given the function of the sole CrRLK1L protein in a charophycean alga, the possibility of a conserved role in detection and/or regulation of cell wall integrity throughout the Strephtophytes is discussed. Orthologs of signaling pathway components are also present in extant representatives of non-vascular land plants and early vascular land plants including the liverwort Marchantia polymorpha, the moss Physcomitrella patens and the lycophyte Selaginella moellendorffii. Deciphering the roles in development of the CrRLK1L protein kinases in early diverging land plants will provide insights into their ancestral function, furthering our understanding of this diversified subfamily of receptors in higher plants.
Collapse
Affiliation(s)
| | - Julie E. Gray
- Department of Molecular Biology and Biotechnology, University of SheffieldSheffield, UK
| | - Lisa M. Smith
- Department of Animal and Plant Sciences, University of SheffieldSheffield, UK
| |
Collapse
|