1
|
Suzuki H, Savane P, Marion‐Poll L, Sechet J, Frey A, Berger A, Belcram K, Borrega N, Seo M, Voxeur A, Mouille G, Marion‐Poll A. Analysis of xyloglucan metabolism mutants highlights the prominent role of xylose cleavage in seed dormancy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70063. [PMID: 40162689 PMCID: PMC11956407 DOI: 10.1111/tpj.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 04/02/2025]
Abstract
Seed dormancy is an adaptive trait that delays germination until environmental conditions become favorable for seedling survival and growth. Germination has been shown to depend on the mechanical resistance strength of the covering layers (testa and endosperm) that counteracts the growth force of the embryo. Cell wall remodeling is essential in the regulation of germination processes. In Arabidopsis thaliana, the side chain trimming of xyloglucans (XyG), the major hemicellulose in cell walls, by the apoplastic XYLOSIDASE1 (XYL1), has been previously shown to regulate XyG side chain length and seed dormancy. To investigate to what extent side chain complexity impacts on cell wall mechanical properties and regulates seed germination, xyl1 mutations were combined here with mutations in the two other glycosidases, the fucosidase AXY8 and the beta-galactosidase BGAL10. Analysis of germination phenotypes in axy8 bgal10 xyl1 and in several XyG biosynthesis mutants did not show any link between dormancy depth and side chain length. The very specific effect of xyl1 on seed dormancy in single and multiple mutants was clearly correlated with alterations in XyG intracellular localization, together with release and oxidation of free oligosaccharides (XGO). Accumulation of oxidized XGO could negatively impact cell wall remodeling by impairing remobilization and polarized secretion in cell walls, thus reducing growth anisotropy in elongating organs and modifying mechanical characteristics in seed tissues.
Collapse
Affiliation(s)
- Hiromi Suzuki
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
- RIKEN Center for Sustainable Resource ScienceYokohamaKanagawa230‐0045Japan
- Present address:
School of Bioscience and BiotechnologyTokyo University of TechnologyTokyo192‐0982Japan
| | - Parisa Savane
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Lucile Marion‐Poll
- Department of Basic Neurosciences, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Julien Sechet
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
- Present address:
Alkion BioInnovations78000VersaillesFrance
| | - Anne Frey
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Adeline Berger
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
- Present address:
Université Clermont Auvergne, INRAE, UR QuaPA63122Saint‐Genès ChampanelleFrance
| | - Katia Belcram
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Nero Borrega
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource ScienceYokohamaKanagawa230‐0045Japan
- Present address:
Tropical Biosphere Research CenterUniversity of the RyukyusOkinawa903‐0213Japan
| | - Aline Voxeur
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Grégory Mouille
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Annie Marion‐Poll
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| |
Collapse
|
2
|
Khoulali C, Pastor JM, Galeano J, Vissenberg K, Miedes E. Cell Wall-Based Machine Learning Models to Predict Plant Growth Using Onion Epidermis. Int J Mol Sci 2025; 26:2946. [PMID: 40243585 PMCID: PMC11989001 DOI: 10.3390/ijms26072946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
The plant cell wall (CW) is a physical barrier that plays a dual role in plant physiology, providing structural support for growth and development. Understanding the dynamics of CW growth is crucial for optimizing crop yields. In this study, we employed onion (Allium cepa L.) epidermis as a model system, leveraging its layered organization to investigate growth stages. Microscopic analysis revealed proportional variations in cell size in different epidermal layers, offering insights into growth dynamics and CW structural adaptations. Fourier transform infrared spectroscopy (FTIR) identified 11 distinct spectral intervals associated with CW components, highlighting structural modifications that influence wall elasticity and rigidity. Biochemical assays across developmental layers demonstrated variations in cellulose, soluble sugars, and antioxidant content, reflecting biochemical shifts during growth. The differential expression of ten cell wall enzyme (CWE) genes, analyzed via RT-qPCR, revealed significant correlations between gene expression patterns and CW composition changes across developmental layers. Notably, the gene expression levels of the pectin methylesterase and fucosidase enzymes were associated with the contents in cellulose, soluble sugar, and antioxidants. To complement these findings, machine learning models, including Support Vector Machines (SVM), k-Nearest Neighbors (kNN), and Neural Networks, were employed to integrate FTIR data, biochemical parameters, and CWE gene expression profiles. Our models achieved high accuracy in predicting growth stages. This underscores the intricate interplay among CW composition, CW enzymatic activity, and growth dynamics, providing a predictive framework with applications in enhancing crop productivity and sustainability.
Collapse
Affiliation(s)
- Celia Khoulali
- Department of Biotechnology—Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Biodiversity and Conservation of Plant Genetic Resources—UPM Research Group, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Juan Manuel Pastor
- Complex System Research Group—UPM, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (J.M.P.); (J.G.)
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Javier Galeano
- Complex System Research Group—UPM, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (J.M.P.); (J.G.)
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Kris Vissenberg
- Department of Biology, Faculty of Science, University of Antwerp, 2020 Antwerpen, Belgium;
- Department of Agriculture, Hellenic Mediterranean University, 71410 Heraklion, Crete, Greece
| | - Eva Miedes
- Department of Biotechnology—Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Biodiversity and Conservation of Plant Genetic Resources—UPM Research Group, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Zhang L, Sasaki-Sekimoto Y, Kosetsu K, Aoyama T, Murata T, Kabeya Y, Sato Y, Koshimizu S, Shimojima M, Ohta H, Hasebe M, Ishikawa M. An ABCB transporter regulates anisotropic cell expansion via cuticle deposition in the moss Physcomitrium patens. THE NEW PHYTOLOGIST 2024; 241:665-675. [PMID: 37865886 DOI: 10.1111/nph.19337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023]
Abstract
Anisotropic cell expansion is crucial for the morphogenesis of land plants, as cell migration is restricted by the rigid cell wall. The anisotropy of cell expansion is regulated by mechanisms acting on the deposition or modification of cell wall polysaccharides. Besides the polysaccharide components in the cell wall, a layer of hydrophobic cuticle covers the outer cell wall and is subjected to tensile stress that mechanically restricts cell expansion. However, the molecular machinery that deposits cuticle materials in the appropriate spatiotemporal manner to accommodate cell and tissue expansion remains elusive. Here, we report that PpABCB14, an ATP-binding cassette transporter in the moss Physcomitrium patens, regulates the anisotropy of cell expansion. PpABCB14 localized to expanding regions of leaf cells. Deletion of PpABCB14 resulted in impaired anisotropic cell expansion. Unexpectedly, the cuticle proper was reduced in the mutants, and the cuticular lipid components decreased. Moreover, induced PpABCB14 expression resulted in deformed leaf cells with increased cuticle lipid accumulation on the cell surface. Taken together, PpABCB14 regulates the anisotropy of cell expansion via cuticle deposition, revealing a regulatory mechanism for cell expansion in addition to the mechanisms acting on cell wall polysaccharides.
Collapse
Affiliation(s)
- Liechi Zhang
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Yuko Sasaki-Sekimoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Ken Kosetsu
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Tsuyoshi Aoyama
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Takashi Murata
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Yukiko Kabeya
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Yoshikatsu Sato
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | | | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Masaki Ishikawa
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| |
Collapse
|
4
|
Huang Y, Li Y, Zou K, Wang Y, Ma Y, Meng D, Luo H, Qu J, Li F, Xuan Y, Du W. The Resistance of Maize to Ustilago maydis Infection Is Correlated with the Degree of Methyl Esterification of Pectin in the Cell Wall. Int J Mol Sci 2023; 24:14737. [PMID: 37834187 PMCID: PMC10573042 DOI: 10.3390/ijms241914737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Common smut caused by Ustilago maydis is one of the dominant fungal diseases in plants. The resistance mechanism to U. maydis infection involving alterations in the cell wall is poorly studied. In this study, the resistant single segment substitution line (SSSL) R445 and its susceptible recurrent parent line Ye478 of maize were infected with U. maydis, and the changes in cell wall components and structure were studied at 0, 2, 4, 8, and 12 days postinfection. In R445 and Ye478, the contents of cellulose, hemicellulose, pectin, and lignin increased by varying degrees, and pectin methylesterase (PME) activity increased. The changes in hemicellulose and pectin in the cell wall after U. maydis infection were analyzed via immunolabeling using monoclonal antibodies against hemicellulsic xylans and high/low-methylated pectin. U. maydis infection altered methyl esterification of pectin, and the degree of methyl esterification was correlated with the resistance of maize to U. maydis. Furthermore, the relationship between methyl esterification of pectin and host resistance was validated using 15 maize inbred lines with different resistance levels. The results revealed that cell wall components, particularly pectin, were important factors affecting the colonization and propagation of U. maydis in maize, and methyl esterification of pectin played a role in the resistance of maize to U. maydis infection.
Collapse
Affiliation(s)
- Yingni Huang
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Li
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Kunkun Zou
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Wang
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuting Ma
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Dexuan Meng
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Haishan Luo
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Jianzhou Qu
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Fengcheng Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Wanli Du
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
5
|
Li H, Tao H, Xiao Y, Qin L, Lan C, Cheng B, Roberts JA, Zhang X, Lu X. ZmXYL modulates auxin-induced maize growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1699-1715. [PMID: 37300848 DOI: 10.1111/tpj.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Plant architecture, lodging resistance, and yield are closely associated with height. In this paper, we report the identification and characterization of two allelic EMS-induced mutants of Zea mays, xyl-1, and xyl-2 that display dwarf phenotypes. The mutated gene, ZmXYL, encodes an α-xylosidase which functions in releasing xylosyl residue from a β-1,4-linked glucan chain. Total α-xylosidase activity in the two alleles is significantly decreased compared to wild-type plants. Loss-of-function mutants of ZmXYL resulted in a decreased xylose content, an increased XXXG content in xyloglucan (XyG), and a reduced auxin content. We show that auxin has an antagonistic effect with XXXG in promoting cell divisions within mesocotyl tissue. xyl-1 and xyl-2 were less sensitive to IAA compared to B73. Based on our study, a model is proposed that places XXXG, an oligosaccharide derived from XyG and the substrate of ZmXYL, as having a negative impact on auxin homeostasis resulting in the dwarf phenotypes of the xyl mutants. Our results provide a insight into the roles of oligosaccharides released from plant cell walls as signals in mediating plant growth and development.
Collapse
Affiliation(s)
- Haiyan Li
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Huifang Tao
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Yao Xiao
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Li Qin
- Institute of Advanced Agricultural Technology, Qilu Normal University, Jinan, 250200, China
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Jeremy A Roberts
- Faculty of Science and Engineering, School of Biological & Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, China
| | - Xiaoduo Lu
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei, 230036, China
- Institute of Advanced Agricultural Technology, Qilu Normal University, Jinan, 250200, China
- Lab of Molecular Breeding by Design in Maize Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572000, China
| |
Collapse
|
6
|
Oelmüller R, Tseng YH, Gandhi A. Signals and Their Perception for Remodelling, Adjustment and Repair of the Plant Cell Wall. Int J Mol Sci 2023; 24:ijms24087417. [PMID: 37108585 PMCID: PMC10139151 DOI: 10.3390/ijms24087417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The integrity of the cell wall is important for plant cells. Mechanical or chemical distortions, tension, pH changes in the apoplast, disturbance of the ion homeostasis, leakage of cell compounds into the apoplastic space or breakdown of cell wall polysaccharides activate cellular responses which often occur via plasma membrane-localized receptors. Breakdown products of the cell wall polysaccharides function as damage-associated molecular patterns and derive from cellulose (cello-oligomers), hemicelluloses (mainly xyloglucans and mixed-linkage glucans as well as glucuronoarabinoglucans in Poaceae) and pectins (oligogalacturonides). In addition, several types of channels participate in mechanosensing and convert physical into chemical signals. To establish a proper response, the cell has to integrate information about apoplastic alterations and disturbance of its wall with cell-internal programs which require modifications in the wall architecture due to growth, differentiation or cell division. We summarize recent progress in pattern recognition receptors for plant-derived oligosaccharides, with a focus on malectin domain-containing receptor kinases and their crosstalk with other perception systems and intracellular signaling events.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
7
|
Shi H, Liu Y, Ding A, Wang W, Sun Y. Induced defense strategies of plants against Ralstonia solanacearum. Front Microbiol 2023; 14:1059799. [PMID: 36778883 PMCID: PMC9910360 DOI: 10.3389/fmicb.2023.1059799] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Plants respond to Ralstonia solanacearum infestation through two layers of immune system (PTI and ETI). This process involves the production of plant-induced resistance. Strategies for inducing resistance in plants include the formation of tyloses, gels, and callose and changes in the content of cell wall components such as cellulose, hemicellulose, pectin, lignin, and suberin in response to pathogen infestation. When R. solanacearum secrete cell wall degrading enzymes, plants also sense the status of cell wall fragments through the cell wall integrity (CWI) system, which activates deep-seated defense responses. In addition, plants also fight against R. solanacearum infestation by regulating the distribution of metabolic networks to increase the production of resistant metabolites and reduce the production of metabolites that are easily exploited by R. solanacearum. We review the strategies used by plants to induce resistance in response to R. solanacearum infestation. In particular, we highlight the importance of plant-induced physical and chemical defenses as well as cell wall defenses in the fight against R. solanacearum.
Collapse
Affiliation(s)
- Haoqi Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
- The Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Liu
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Anming Ding
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Weifeng Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| |
Collapse
|
8
|
Swaminathan S, Lionetti V, Zabotina OA. Plant Cell Wall Integrity Perturbations and Priming for Defense. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243539. [PMID: 36559656 PMCID: PMC9781063 DOI: 10.3390/plants11243539] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 05/13/2023]
Abstract
A plant cell wall is a highly complex structure consisting of networks of polysaccharides, proteins, and polyphenols that dynamically change during growth and development in various tissues. The cell wall not only acts as a physical barrier but also dynamically responds to disturbances caused by biotic and abiotic stresses. Plants have well-established surveillance mechanisms to detect any cell wall perturbations. Specific immune signaling pathways are triggered to contrast biotic or abiotic forces, including cascades dedicated to reinforcing the cell wall structure. This review summarizes the recent developments in molecular mechanisms underlying maintenance of cell wall integrity in plant-pathogen and parasitic interactions. Subjects such as the effect of altered expression of endogenous plant cell-wall-related genes or apoplastic expression of microbial cell-wall-modifying enzymes on cell wall integrity are covered. Targeted genetic modifications as a tool to study the potential of cell wall elicitors, priming of signaling pathways, and the outcome of disease resistance phenotypes are also discussed. The prime importance of understanding the intricate details and complete picture of plant immunity emerges, ultimately to engineer new strategies to improve crop productivity and sustainability.
Collapse
Affiliation(s)
- Sivakumar Swaminathan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, 00185 Rome, Italy
| | - Olga A. Zabotina
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Correspondence:
| |
Collapse
|
9
|
Li Q, Li K, Zhang Z, Li J, Wang B, Zhang Z, Zhu Y, Pan C, Sun K, He C. Transcriptomic comparison sheds new light on regulatory networks for dimorphic flower development in response to photoperiod in Viola prionantha. BMC PLANT BIOLOGY 2022; 22:336. [PMID: 35820812 PMCID: PMC9277944 DOI: 10.1186/s12870-022-03732-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Chasmogamous (CH)-cleistogamous (CL) dimorphic flowers are developed in Viola prionantha. However, the environmental and genetic factors necessary for the CH-CL transition are unknown. RESULTS In the present work, short-day (SD) conditions induced CH flowers, whereas long days (LDs) triggered CL flowers in V. prionantha. Compared to fully developed CH flowers, CL flowers had less mature stamens, no nectar glands, and immature petals. Comparative transcriptomics revealed differentially expressed genes (DEGs) during CL and CH development. Core genes in the photoperiod pathway, such as V. prionantha orthologs of GIGANTEA (GI), CONSTANS (CO), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), which promote floral induction, were highly expressed in CL flowers, whereas UNUSUAL FLORAL ORGANS (UFO) and B-class MADS-box genes for floral organ identity and development showed an opposite alteration. Moreover, genes in the glycolytic process, sucrose metabolic process, and fatty acid biosynthetic process were all highly expressed in CH flowers. Interestingly, V. prionantha orthologs of the B-class MADS-box genes APETALA3 (AP3) and PISTILLATA (PI) might relate to these sugar-fatty acid processes and were co-expressed with GAIP-B-like and YABBY5 (YAB5), which regulate the development of the petal, stamen, and nectary. Compared to CH flowers, DEGs and hub genes in the most significantly correlated modules of the gene co-expression network, which are involved in abiotic and biotic responses, were upregulated in CL flowers. CONCLUSIONS We proposed an integrative model for transcription regulation of genes in the photoperiod pathway, floral organ development, stress response, and sugar-fatty acid processes to determine CH-CL flower development in V. prionantha. Particularly, under LDs, activated GI may induce genes involved in the stress-response pathways, and then downregulated AP3 and PI or UFO to inhibit the sugar-fatty acid metabolic processes, together forming CL flowers. In contrast, CH flowers were produced under SDs. This work provides novel insights into the developmental evolution of dimorphic flowers in Viola.
Collapse
Affiliation(s)
- Qiaoxia Li
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China.
| | - Kunpeng Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengrong Zhang
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Jigang Li
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Bo Wang
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Zuoming Zhang
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Yuanyuan Zhu
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Chaochao Pan
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Kun Sun
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Di Marzo M, Viana VE, Banfi C, Cassina V, Corti R, Herrera-Ubaldo H, Babolin N, Guazzotti A, Kiegle E, Gregis V, de Folter S, Sampedro J, Mantegazza F, Colombo L, Ezquer I. Cell wall modifications by α-XYLOSIDASE1 are required for control of seed and fruit size in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1499-1515. [PMID: 34849721 DOI: 10.1093/jxb/erab514] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Cell wall modifications are of pivotal importance during plant development. Among cell wall components, xyloglucans are the major hemicellulose polysaccharide in primary cell walls of dicots and non-graminaceous monocots. They can connect the cellulose microfibril surface to affect cell wall mechanical properties. Changes in xyloglucan structure are known to play an important role in regulating cell growth. Therefore, the degradation of xyloglucan is an important modification that alters the cell wall. The α-XYLOSIDASE1 (XYL1) gene encodes the only α-xylosidase acting on xyloglucans in Arabidopsis thaliana. Here, we showed that mutation of XYL1 strongly influences seed size, seed germination, and fruit elongation. We found that the expression of XYL1 is directly regulated in developing seeds and fruit by the MADS-box transcription factor SEEDSTICK. We demonstrated that XYL1 complements the stk smaller seed phenotype. Finally, by atomic force microscopy, we investigated the role of XYL1 activity in maintaining cell stiffness and growth, confirming the importance of cell wall modulation in shaping organs.
Collapse
Affiliation(s)
- Maurizio Di Marzo
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Vívian Ebeling Viana
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
- Plant Genomics and Breeding Center, Federal University of Pelotas, Capão do Leão-RS, Brazil
| | - Camilla Banfi
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Valeria Cassina
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milan-Bicocca, Monza, Italy
| | - Roberta Corti
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milan-Bicocca, Monza, Italy
- Department of Materials Science, University of Milan-Bicocca, Milan, Italy
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36824 Irapuato, Guanajuato, México
| | - Nicola Babolin
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Andrea Guazzotti
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Edward Kiegle
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Veronica Gregis
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36824 Irapuato, Guanajuato, México
| | - Javier Sampedro
- Universidad de Santiago de Compostela, Departamento de Fisiología Vegetal, Facultad de Biología, Rúa Lope Gómez de Marzoa, s/n. Campus sur, 15782 Santiago de Compostela, A Coruña, Spain
| | - Francesco Mantegazza
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milan-Bicocca, Monza, Italy
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| |
Collapse
|
11
|
Steinbrecher T, Leubner-Metzger G. Xyloglucan remodelling enzymes and the mechanics of plant seed and fruit biology. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1253-1257. [PMID: 35235657 PMCID: PMC8890615 DOI: 10.1093/jxb/erac020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This article comments on: Di Marzo M, Ebeling Viana V, Banfi C, Cassina V, Corti R, Herrera-Ubaldo H, Babolin N, Guazzotti A, Kiegle E, Gregis V, de Folter S, Sampedro J, Mantegazza F, Colombo L, Ezquer I. 2022. Cell wall modifications by α-XYLOSIDASE1 are required for the control of seed and fruit size. Journal of Experimental Botany 73, 1499–1515.
Collapse
Affiliation(s)
- Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
12
|
Coexpression of Fungal Cell Wall-Modifying Enzymes Reveals Their Additive Impact on Arabidopsis Resistance to the Fungal Pathogen, Botrytis cinerea. BIOLOGY 2021; 10:biology10101070. [PMID: 34681168 PMCID: PMC8533531 DOI: 10.3390/biology10101070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary In the present study, we created transgenic Arabidopsis plants overexpressing two fungal acetylesterases and a fungal feruloylesterase that acts on cell wall polysaccharides and studied their possible complementary additive effects on host defense reactions against the fungal pathogen, Botrytis cinerea. Our results showed that the Arabidopsis plants overexpressing two acetylesterases together contributed significantly higher resistance to B. cinerea in comparison with single protein expression. Conversely, coexpression of either of the acetyl esterases together with feruloylesterase compensates the latter’s negative impact on plant resistance. The results also provided evidence that combinatorial coexpression of some cell wall polysaccharide-modifying enzymes might exert an additive effect on plant immune response by constitutively priming plant defense pathways even before pathogen invasion. These findings have potential uses in protecting valuable crops against pathogens. Abstract The plant cell wall (CW) is an outer cell skeleton that plays an important role in plant growth and protection against both biotic and abiotic stresses. Signals and molecules produced during host–pathogen interactions have been proven to be involved in plant stress responses initiating signal pathways. Based on our previous research findings, the present study explored the possibility of additively or synergistically increasing plant stress resistance by stacking beneficial genes. In order to prove our hypothesis, we generated transgenic Arabidopsis plants constitutively overexpressing three different Aspergillus nidulans CW-modifying enzymes: a xylan acetylesterase, a rhamnogalacturonan acetylesterase and a feruloylesterase. The two acetylesterases were expressed either together or in combination with the feruloylesterase to study the effect of CW polysaccharide deacetylation and deferuloylation on Arabidopsis defense reactions against a fungal pathogen, Botrytis cinerea. The transgenic Arabidopsis plants expressing two acetylesterases together showed higher CW deacetylation and increased resistance to B. cinerea in comparison to wild-type (WT) Col-0 and plants expressing single acetylesterases. While the expression of feruloylesterase alone compromised plant resistance, coexpression of feruloylesterase together with either one of the two acetylesterases restored plant resistance to the pathogen. These CW modifications induced several defense-related genes in uninfected healthy plants, confirming their impact on plant resistance. These results demonstrated that coexpression of complementary CW-modifying enzymes in different combinations have an additive effect on plant stress response by constitutively priming the plant defense pathways. These findings might be useful for generating valuable crops with higher protections against biotic stresses.
Collapse
|
13
|
Wan J, He M, Hou Q, Zou L, Yang Y, Wei Y, Chen X. Cell wall associated immunity in plants. STRESS BIOLOGY 2021; 1:3. [PMID: 37676546 PMCID: PMC10429498 DOI: 10.1007/s44154-021-00003-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/13/2021] [Indexed: 09/08/2023]
Abstract
The plant cell wall is the first physical and defensive barrier against pathogens. The plant cell wall usually undergoes dynamic remodeling as an immune response to prevent infection by pathogens. In this review, we summarize advances on relationship between cell wall and immunity in plants. In particular, we outline current progresses regarding the regulation of the cell wall components, including cellulose, hemicellulose, pectin and lignin, on plant disease resistance. We also discuss the impacts of cell wall-derived cellodextrin, oligogalacturonic acid and xyloglucan/xylan oligosaccharides as potent elicitors or signal molecules to trigger plant immune response. We further propose future studies on dissecting the molecular regulation of cell wall on plant immunity, which have potentials in practical application of crop breeding aiming at improvement of plant disease resistance.
Collapse
Affiliation(s)
- Jiangxue Wan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Lijuan Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, 621000, Sichuan, China
| | - Yihua Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yan Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
14
|
Cruz-Valderrama JE, Bernal-Gallardo JJ, Herrera-Ubaldo H, de Folter S. Building a Flower: The Influence of Cell Wall Composition on Flower Development and Reproduction. Genes (Basel) 2021; 12:genes12070978. [PMID: 34206830 PMCID: PMC8304806 DOI: 10.3390/genes12070978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Floral patterning is a complex task. Various organs and tissues must be formed to fulfill reproductive functions. Flower development has been studied, mainly looking for master regulators. However, downstream changes such as the cell wall composition are relevant since they allow cells to divide, differentiate, and grow. In this review, we focus on the main components of the primary cell wall-cellulose, hemicellulose, and pectins-to describe how enzymes involved in the biosynthesis, modifications, and degradation of cell wall components are related to the formation of the floral organs. Additionally, internal and external stimuli participate in the genetic regulation that modulates the activity of cell wall remodeling proteins.
Collapse
|
15
|
Riglet L, Rozier F, Kodera C, Bovio S, Sechet J, Fobis-Loisy I, Gaude T. KATANIN-dependent mechanical properties of the stigmatic cell wall mediate the pollen tube path in Arabidopsis. eLife 2020; 9:57282. [PMID: 32867920 PMCID: PMC7462616 DOI: 10.7554/elife.57282] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/27/2020] [Indexed: 01/03/2023] Open
Abstract
Successful fertilization in angiosperms depends on the proper trajectory of pollen tubes through the pistil tissues to reach the ovules. Pollen tubes first grow within the cell wall of the papilla cells, applying pressure to the cell. Mechanical forces are known to play a major role in plant cell shape by controlling the orientation of cortical microtubules (CMTs), which in turn mediate deposition of cellulose microfibrils (CMFs). Here, by combining imaging, genetic and chemical approaches, we show that isotropic reorientation of CMTs and CMFs in aged Col-0 and katanin1-5 (ktn1-5) papilla cells is accompanied by a tendency of pollen tubes to coil around the papillae. We show that this coiled phenotype is associated with specific mechanical properties of the cell walls that provide less resistance to pollen tube growth. Our results reveal an unexpected role for KTN1 in pollen tube guidance on the stigma by ensuring mechanical anisotropy of the papilla cell wall. Flowering plants produce small particles known as pollen that – with the help of the wind, bees and other animals – carry male sex cells (sperm) to female sex cells (eggs) contained within flowers. When a grain of pollen lands on the female organ of a flower, called the pistil, it gives rise to a tube that grows through the pistil towards the egg cells at the base. The surface of the pistil is covered in a layer of long cells named papillae. Like most plant cells, the papillae are surrounded by a rigid structure known as the cell wall, which is mainly composed of strands known as microfibrils. The pollen tube exerts pressure on a papilla to allow it to grow through the cell wall towards the base of the pistil. Previous studies have shown that the pistil produces signals that guide pollen tubes to the eggs. However, it remains unclear how pollen tubes orient themselves on the surface of papillae to grow in the right direction through the pistil. Riglet et al. combined microscopy, genetic and chemical approaches to study how pollen tubes grow through the surface of the pistils of a small weed known as Arabidopsis thaliana. The experiments showed that an enzyme called KATANIN conferred mechanical properties to the cell walls of papillae that allowed pollen tubes to grow towards the egg cells, and also altered the orientation of the microfibrils in these cell walls. In A. thaliana plants that were genetically modified to lack KATANIN the pollen tubes coiled around the papillae and sometimes grew in the opposite direction to where the eggs were. KATANIN is known to cut structural filaments inside the cells of plants, animals and most other living things. By revealing an additional role for KATANIN in regulating the mechanical properties of the papilla cell wall, these findings indicate this enzyme may also regulate the mechanical properties of cells involved in other biological processes.
Collapse
Affiliation(s)
- Lucie Riglet
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, Allée d'Italie, France
| | - Frédérique Rozier
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, Allée d'Italie, France
| | - Chie Kodera
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, Allée d'Italie, France
| | - Simone Bovio
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, Allée d'Italie, France
| | - Julien Sechet
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Isabelle Fobis-Loisy
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, Allée d'Italie, France
| | - Thierry Gaude
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, Allée d'Italie, France
| |
Collapse
|
16
|
Mélida H, Bacete L, Ruprecht C, Rebaque D, del Hierro I, López G, Brunner F, Pfrengle F, Molina A. Arabinoxylan-Oligosaccharides Act as Damage Associated Molecular Patterns in Plants Regulating Disease Resistance. FRONTIERS IN PLANT SCIENCE 2020; 11:1210. [PMID: 32849751 PMCID: PMC7427311 DOI: 10.3389/fpls.2020.01210] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/24/2020] [Indexed: 05/20/2023]
Abstract
Immune responses in plants can be triggered by damage/microbe-associated molecular patterns (DAMPs/MAMPs) upon recognition by plant pattern recognition receptors (PRRs). DAMPs are signaling molecules synthesized by plants or released from host cellular structures (e.g., plant cell walls) upon pathogen infection or wounding. Despite the hypothesized important role of plant cell wall-derived DAMPs in plant-pathogen interactions, a very limited number of these DAMPs are well characterized. Recent work demonstrated that pectin-enriched cell wall fractions extracted from the cell wall mutant impaired in Arabidopsis Response Regulator 6 (arr6), that showed altered disease resistance to several pathogens, triggered more intense immune responses than those activated by similar cell wall fractions from wild-type plants. It was hypothesized that arr6 cell wall fractions could be differentially enriched in DAMPs. In this work, we describe the characterization of the previous immune-active fractions of arr6 showing the highest triggering capacities upon further fractionation by chromatographic means. These analyses pointed to a role of pentose-based oligosaccharides triggering plant immune responses. The characterization of several pentose-based oligosaccharide structures revealed that β-1,4-xylooligosaccharides of specific degrees of polymerization and carrying arabinose decorations are sensed as DAMPs by plants. Moreover, the pentasaccharide 33-α-L-arabinofuranosyl-xylotetraose (XA3XX) was found as a highly active DAMP structure triggering strong immune responses in Arabidopsis thaliana and enhancing crop disease resistance.
Collapse
Affiliation(s)
- Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
| | - Laura Bacete
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Colin Ruprecht
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Diego Rebaque
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
- PlantResponse Biotech S.L., Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - Irene del Hierro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Gemma López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
| | - Frédéric Brunner
- PlantResponse Biotech S.L., Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - Fabian Pfrengle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| |
Collapse
|
17
|
Pfrengle F. Automated Glycan Assembly of Plant Cell Wall Oligosaccharides. Methods Mol Biol 2020; 2149:503-512. [PMID: 32617953 DOI: 10.1007/978-1-0716-0621-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Synthetic cell wall oligosaccharides are promising molecular tools for investigating the structure and function of plant cell walls. Their well-defined structure and high purity prevents misinterpretations of experimental data, and the possibility to introduce chemical handles provides means for easier localization and detection. Automated glycan assembly as emerged has a powerful new method for the efficient preparation of oligosaccharide libraries. We recently made use of this technology to prepare a collection of plant cell wall glycans for cell wall research. In this chapter, detailed experimental procedures for the automated synthesis of oligosaccharides that are ready for use in biological assays are described.
Collapse
Affiliation(s)
- Fabian Pfrengle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
18
|
Zhong R, Cui D, Phillips DR, Richardson EA, Ye ZH. A Group of O-Acetyltransferases Catalyze Xyloglucan Backbone Acetylation and Can Alter Xyloglucan Xylosylation Pattern and Plant Growth When Expressed in Arabidopsis. PLANT & CELL PHYSIOLOGY 2020; 61:1064-1079. [PMID: 32167545 PMCID: PMC7295396 DOI: 10.1093/pcp/pcaa031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/08/2020] [Indexed: 05/23/2023]
Abstract
Xyloglucan is a major hemicellulose in plant cell walls and exists in two distinct types, XXXG and XXGG. While the XXXG-type xyloglucan from dicot species only contains O-acetyl groups on side-chain galactose (Gal) residues, the XXGG-type xyloglucan from Poaceae (grasses) and Solanaceae bears O-acetyl groups on backbone glucosyl (Glc) residues. Although O-acetyltransferases responsible for xyloglucan Gal acetylation have been characterized, the biochemical mechanism underlying xyloglucan backbone acetylation remains to be elucidated. In this study, we showed that recombinant proteins of a group of DUF231 members from rice and tomato were capable of transferring acetyl groups onto O-6 of Glc residues in cello-oligomer acceptors, indicating that they are xyloglucan backbone 6-O-acetyltransferases (XyBATs). We further demonstrated that XyBAT-acetylated cellohexaose oligomers could be readily xylosylated by AtXXT1 (Arabidopsis xyloglucan xylosyltransferase 1) to generate acetylated, xylosylated cello-oligomers, whereas AtXXT1-xylosylated cellohexaose oligomers were much less effectively acetylated by XyBATs. Heterologous expression of a rice XyBAT in Arabidopsis led to a severe reduction in cell expansion and plant growth and a drastic alteration in xyloglucan xylosylation pattern with the formation of acetylated XXGG-type units, including XGG, XGGG, XXGG, XXGG,XXGGG and XXGGG (G denotes acetylated Glc). In addition, recombinant proteins of two Arabidopsis XyBAT homologs also exhibited O-acetyltransferase activity toward cellohexaose, suggesting their possible role in mediating xyloglucan backbone acetylation in vivo. Our findings provide new insights into the biochemical mechanism underlying xyloglucan backbone acetylation and indicate the importance of maintaining the regular xyloglucan xylosylation pattern in cell wall function.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Dongtao Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | | | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
19
|
Ezquer I, Salameh I, Colombo L, Kalaitzis P. Plant Cell Walls Tackling Climate Change: Insights into Plant Cell Wall Remodeling, Its Regulation, and Biotechnological Strategies to Improve Crop Adaptations and Photosynthesis in Response to Global Warming. PLANTS (BASEL, SWITZERLAND) 2020; 9:E212. [PMID: 32041306 PMCID: PMC7076711 DOI: 10.3390/plants9020212] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 11/16/2022]
Abstract
Plant cell wall (CW) is a complex and intricate structure that performs several functions throughout the plant life cycle. The CW of plants is critical to the maintenance of cells' structural integrity by resisting internal hydrostatic pressures, providing flexibility to support cell division and expansion during tissue differentiation, and acting as an environmental barrier that protects the cells in response to abiotic stress. Plant CW, comprised primarily of polysaccharides, represents the largest sink for photosynthetically fixed carbon, both in plants and in the biosphere. The CW structure is highly varied, not only between plant species but also among different organs, tissues, and cell types in the same organism. During the developmental processes, the main CW components, i.e., cellulose, pectins, hemicelluloses, and different types of CW-glycoproteins, interact constantly with each other and with the environment to maintain cell homeostasis. Differentiation processes are altered by positional effect and are also tightly linked to environmental changes, affecting CW both at the molecular and biochemical levels. The negative effect of climate change on the environment is multifaceted, from high temperatures, altered concentrations of greenhouse gases such as increasing CO2 in the atmosphere, soil salinity, and drought, to increasing frequency of extreme weather events taking place concomitantly, therefore, climate change affects crop productivity in multiple ways. Rising CO2 concentration in the atmosphere is expected to increase photosynthetic rates, especially at high temperatures and under water-limited conditions. This review aims to synthesize current knowledge regarding the effects of climate change on CW biogenesis and modification. We discuss specific cases in crops of interest carrying cell wall modifications that enhance tolerance to climate change-related stresses; from cereals such as rice, wheat, barley, or maize to dicots of interest such as brassica oilseed, cotton, soybean, tomato, or potato. This information could be used for the rational design of genetic engineering traits that aim to increase the stress tolerance in key crops. Future growing conditions expose plants to variable and extreme climate change factors, which negatively impact global agriculture, and therefore further research in this area is critical.
Collapse
Affiliation(s)
- Ignacio Ezquer
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Ilige Salameh
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), P.O. Box 85, 73100 Chania, Greece; (I.S.); (P.K.)
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), P.O. Box 85, 73100 Chania, Greece; (I.S.); (P.K.)
| |
Collapse
|
20
|
Zhao F, Chen W, Sechet J, Martin M, Bovio S, Lionnet C, Long Y, Battu V, Mouille G, Monéger F, Traas J. Xyloglucans and Microtubules Synergistically Maintain Meristem Geometry and Phyllotaxis. PLANT PHYSIOLOGY 2019; 181:1191-1206. [PMID: 31537749 PMCID: PMC6836833 DOI: 10.1104/pp.19.00608] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/09/2019] [Indexed: 05/07/2023]
Abstract
The shoot apical meristem (SAM) gives rise to all aerial plant organs. Cell walls are thought to play a central role in this process, translating molecular regulation into dynamic changes in growth rate and direction, although their precise role in morphogenesis during organ formation is poorly understood. Here, we investigated the role of xyloglucans (XyGs), a major, yet functionally poorly characterized, wall component in the SAM of Arabidopsis (Arabidopsis thaliana). Using immunolabeling, biochemical analysis, genetic approaches, microindentation, laser ablation, and live imaging, we showed that XyGs are important for meristem shape and phyllotaxis. No difference in the Young's modulus (i.e. an indicator of wall stiffness) of the cell walls was observed when XyGs were perturbed. Mutations in enzymes required for XyG synthesis also affect other cell wall components such as cellulose content and pectin methylation status. Interestingly, control of cortical microtubule dynamics by the severing enzyme KATANIN became vital when XyGs were perturbed or absent. This suggests that the cytoskeleton plays an active role in compensating for altered cell wall composition.
Collapse
Affiliation(s)
- Feng Zhao
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 69364 Lyon cedex 07, France
| | - Wenqian Chen
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 69364 Lyon cedex 07, France
| | - Julien Sechet
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, ERL3559 CNRS Bâtiment 1, INRA Centre de Versailles-Grignon, 78026 Versailles cedex, France
| | - Marjolaine Martin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 69364 Lyon cedex 07, France
| | - Simone Bovio
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 69364 Lyon cedex 07, France
| | - Claire Lionnet
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 69364 Lyon cedex 07, France
| | - Yuchen Long
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 69364 Lyon cedex 07, France
| | - Virginie Battu
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 69364 Lyon cedex 07, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, ERL3559 CNRS Bâtiment 1, INRA Centre de Versailles-Grignon, 78026 Versailles cedex, France
| | - Françoise Monéger
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 69364 Lyon cedex 07, France
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 69364 Lyon cedex 07, France
| |
Collapse
|
21
|
Rubianes D, Valdivia ER, Revilla G, Zarra I, Sampedro J. Xyloglucan exoglycosidases in the monocot model Brachypodium distachyon and the conservation of xyloglucan disassembly in angiosperms. PLANT MOLECULAR BIOLOGY 2019; 100:495-509. [PMID: 31028613 DOI: 10.1007/s11103-019-00875-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Brachypodium distachyon has a full set of exoglycosidases active on xyloglucan, including α-xylosidase, β-galactosidase, soluble and membrane-bound β-glucosidases and two α-fucosidases. However, unlike in Arabidopsis, both fucosidases are likely cytosolic. Xyloglucan is present in primary walls of all angiosperms. While in most groups it regulates cell wall extension, in Poaceae its role is still unclear. Five exoglycosidases participate in xyloglucan hydrolysis in Arabidopsis: α-xylosidase, β-galactosidase, α-fucosidase, soluble β-glucosidase and GPI-anchored β-glucosidase. Mutants in the corresponding genes show alterations in xyloglucan composition. In this work putative orthologs in the model grass Brachypodium distachyon were tested for their ability to complement Arabidopsis mutants. Xylosidase and galactosidase mutants were complemented, respectively, by BdXYL1 (Bd2g02070) and BdBGAL1 (Bd2g56607). BdBGAL1, unlike other xyloglucan β-galactosidases, is able to remove both galactoses from XLLG oligosaccharides. In addition, soluble β-glucosidase BdBGLC1 (Bd1g08550) complemented a glucosidase mutant. Closely related BdBGLC2 (Bd2g51280), which has a putative GPI-anchor sequence, was found associated with the plasma membrane and only a truncated version without GPI-anchor complemented the mutant, proving that Brachypodium also has soluble and membrane-bound xyloglucan glucosidases. Both BdXFUC1 (Bd3g25226) and BdXFUC2 (Bd1g28366) can hydrolyze fucose from xyloglucan oligosaccharides but were unable to complement a fucosidase mutant. Fluorescent protein fusions of BdXFUC1 localized to the cytosol and both proteins lack a signal peptide. Signal peptides appear to have evolved only in some eudicot lineages of this family, like the one leading to Arabidopsis. These results could be explained if cytosolic xyloglucan α-fucosidases are the ancestral state in angiosperms, with fucosylated oligosaccharides transported across the plasma membrane.
Collapse
Affiliation(s)
- Diego Rubianes
- Dpto. Biología Funcional, Facultad de Biología, Universidade de Santiago, 15782, Santiago de Compostela, Spain
| | - Elene R Valdivia
- Dpto. Biología Funcional, Facultad de Biología, Universidade de Santiago, 15782, Santiago de Compostela, Spain
| | - Gloria Revilla
- Dpto. Biología Funcional, Facultad de Biología, Universidade de Santiago, 15782, Santiago de Compostela, Spain
| | - Ignacio Zarra
- Dpto. Biología Funcional, Facultad de Biología, Universidade de Santiago, 15782, Santiago de Compostela, Spain
| | - Javier Sampedro
- Dpto. Biología Funcional, Facultad de Biología, Universidade de Santiago, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
22
|
Zhou K. Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis and One of Their Common Roles in Signaling Transduction. FRONTIERS IN PLANT SCIENCE 2019; 10:1022. [PMID: 31555307 PMCID: PMC6726743 DOI: 10.3389/fpls.2019.01022] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/22/2019] [Indexed: 05/17/2023]
Abstract
Diverse proteins are found modified with glycosylphosphatidylinositol (GPI) at their carboxyl terminus in eukaryotes, which allows them to associate with membrane lipid bilayers and anchor on the external surface of the plasma membrane. GPI-anchored proteins (GPI-APs) play crucial roles in various processes, and more and more GPI-APs have been identified and studied. In this review, previous genomic and proteomic predictions of GPI-APs in Arabidopsis have been updated, which reveal their high abundance and complexity. From studies of individual GPI-APs in Arabidopsis, certain GPI-APs have been found associated with partner receptor-like kinases (RLKs), targeting RLKs to their subcellular localization and helping to recognize extracellular signaling polypeptide ligands. Interestingly, the association might also be involved in ligand selection. The analyses suggest that GPI-APs are essential and widely involved in signal transduction through association with RLKs.
Collapse
|
23
|
Rodrigues AS, De Vega JJ, Miguel CM. Comprehensive assembly and analysis of the transcriptome of maritime pine developing embryos. BMC PLANT BIOLOGY 2018; 18:379. [PMID: 30594130 PMCID: PMC6310951 DOI: 10.1186/s12870-018-1564-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/22/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND There are clear differences in embryo development between angiosperm and gymnosperm species. Most of the current knowledge on gene expression and regulation during plant embryo development has derived from studies on angiosperms species, in particular from the model plant Arabidopsis thaliana. The few published studies on transcript profiling of conifer embryogenesis show the existence of many putative embryo-specific transcripts without an assigned function. In order to extend the knowledge on the transcriptomic expression during conifer embryogenesis, we sequenced the transcriptome of zygotic embryos for several developmental stages that cover most of Pinus pinaster (maritime pine) embryogenesis. RESULTS Total RNA samples collected from five zygotic embryo developmental stages were sequenced with Illumina technology. A de novo transcriptome was assembled as no genome sequence is yet published for Pinus pinaster. The transcriptome of reference for the period of zygotic embryogenesis in maritime pine contains 67,429 transcripts, which likely encode 58,527 proteins. The annotation shows a significant percentage, 31%, of predicted proteins exclusively present in pine embryogenesis. Functional categories and enrichment analysis of the differentially expressed transcripts evidenced carbohydrate transport and metabolism over-representation in early embryo stages, as highlighted by the identification of many putative glycoside hydrolases, possibly associated with cell wall modification, and carbohydrate transport transcripts. Moreover, the predominance of chromatin remodelling events was detected in early to middle embryogenesis, associated with an active synthesis of histones and their post-translational modifiers related to increased transcription, as well as silencing of transposons. CONCLUSIONS Our results extend the understanding of gene expression and regulation during zygotic embryogenesis in conifers and are a valuable resource to support further improvements in somatic embryogenesis for vegetative propagation of conifer species. Specific transcripts associated with carbohydrate metabolism, monosaccharide transport and epigenetic regulation seem to play an important role in pine early embryogenesis and may be a source of reliable molecular markers for early embryogenesis.
Collapse
Affiliation(s)
- Andreia S. Rodrigues
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - José J. De Vega
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK
| | - Célia M. Miguel
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
24
|
Kim BM, Lotter‐Stark HCT, Rybicki EP, Chikwamba RK, Palmer KE. Characterization of the hypersensitive response-like cell death phenomenon induced by targeting antiviral lectin griffithsin to the secretory pathway. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1811-1821. [PMID: 29509998 PMCID: PMC6131415 DOI: 10.1111/pbi.12917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 02/24/2018] [Accepted: 02/28/2018] [Indexed: 05/23/2023]
Abstract
Griffithsin (GRFT) is an antiviral lectin, originally derived from a red alga, which is currently being investigated as a topical microbicide to prevent transmission of human immunodeficiency virus (HIV). Targeting GRFT to the apoplast for production in Nicotiana benthamiana resulted in necrotic symptoms associated with a hypersensitive response (HR)-like cell death, accompanied by H2 O2 generation and increased PR1 expression. Mannose-binding lectins surfactant protein D (SP-D), cyanovirin-N (CV-N) and human mannose-binding lectin (hMBL) also induce salicylic acid (SA)-dependent HR-like cell death in N. benthamiana, and this effect is mediated by the lectin's glycan binding activity. We found that secreted GRFT interacts with an endogenous glycoprotein, α-xylosidase (XYL1), which is involved in cell wall organization. The necrotic effect could be mitigated by overexpression of Arabidopsis XYL1, and by co-expression of SA-degrading enzyme NahG, providing strategies for enhancing expression of oligomannose-binding lectins in plants.
Collapse
Affiliation(s)
- Bo Min Kim
- Center for Predictive MedicineJames Graham Brown Cancer CenterDepartment of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | | | - Edward P. Rybicki
- Department of Molecular & Cell BiologyInstitute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Rachel K. Chikwamba
- BiosciencesCouncil for Scientific and Industrial Research (CSIR)PretoriaSouth Africa
| | - Kenneth E. Palmer
- Center for Predictive MedicineJames Graham Brown Cancer CenterDepartment of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| |
Collapse
|
25
|
Del-Bem LE. Xyloglucan evolution and the terrestrialization of green plants. THE NEW PHYTOLOGIST 2018; 219:1150-1153. [PMID: 29851097 DOI: 10.1111/nph.15191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Xyloglucan (XyG) is the major noncellulosic nonpectic matrix polysaccharide in cell walls of most land plants. Initially thought to be restricted to land plants, the last decade has seen the detection of XyG and the discovery of synthesis and modification/degradation genes in charophycean green algae (CGA). Recently, a totally new function of XyG was discovered as a potent soil aggregator released by roots and rhizoids of all major groups of land plants. In this Viewpoint, I show the presence of a complex XyG genetic machinery in most CGA groups. I discuss the context of XyG evolution in light of the terrestrialization of early CGA that gave rise to embryophytes and its possible role in early soil formation.
Collapse
Affiliation(s)
- Luiz-Eduardo Del-Bem
- Instituto de Ciências da Saúde (ICS), Universidade Federal da Bahia (UFBA), Av. Reitor Miguel Calmon, s/n - Vale do Canela, 40110-100, Salvador-BA, Brazil
| |
Collapse
|
26
|
Bacete L, Mélida H, Miedes E, Molina A. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:614-636. [PMID: 29266460 DOI: 10.1111/tpj.13807] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance.
Collapse
Affiliation(s)
- Laura Bacete
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| |
Collapse
|
27
|
Wan JX, Zhu XF, Wang YQ, Liu LY, Zhang BC, Li GX, Zhou YH, Zheng SJ. Xyloglucan Fucosylation Modulates Arabidopsis Cell Wall Hemicellulose Aluminium binding Capacity. Sci Rep 2018; 8:428. [PMID: 29323145 PMCID: PMC5765015 DOI: 10.1038/s41598-017-18711-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 12/16/2017] [Indexed: 01/08/2023] Open
Abstract
Although xyloglucan (XyG) is reported to bind Aluminium (Al), the influence of XyG fucosylation on the cell wall Al binding capacity and plant Al stress responses is unclear. We show that Arabidopsis T-DNA insertion mutants with reduced AXY3 (XYLOSIDASE1) function and consequent reduced levels of fucosylated XyG are more sensitive to Al than wild-type Col-0 (WT). In contrast, T-DNA insertion mutants with reduced AXY8 (FUC95A) function and consequent increased levels of fucosylated XyG are more Al resistant. AXY3 transcript levels are strongly down regulated in response to 30 min Al treatment, whilst AXY8 transcript levels also repressed until 6 h following treatment onset. Mutants lacking AXY3 or AXY8 function exhibit opposing effects on Al contents of root cell wall and cell wall hemicellulose components. However, there was no difference in the amount of Al retained in the pectin components between mutants and WT. Finally, whilst the total sugar content of the hemicellulose fraction did not change, the altered hemicellulose Al content of the mutants is shown to be a likely consequence of their different XyG fucosylation levels. We conclude that variation in XyG fucosylation levels influences the Al sensitivity of Arabidopsis by affecting the Al-binding capacity of hemicellulose.
Collapse
Affiliation(s)
- Jiang-Xue Wan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yu-Qi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin-Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bao-Cai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gui-Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Hua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shao-Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Barnes WJ, Anderson CT. Release, Recycle, Rebuild: Cell-Wall Remodeling, Autodegradation, and Sugar Salvage for New Wall Biosynthesis during Plant Development. MOLECULAR PLANT 2018; 11:31-46. [PMID: 28859907 DOI: 10.1016/j.molp.2017.08.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 05/20/2023]
Abstract
Plant cell walls contain elaborate polysaccharide networks and regulate plant growth, development, mechanics, cell-cell communication and adhesion, and defense. Despite conferring rigidity to support plant structures, the cell wall is a dynamic extracellular matrix that is modified, reorganized, and degraded to tightly control its properties during growth and development. Far from being a terminal carbon sink, many wall polymers can be degraded and recycled by plant cells, either via direct re-incorporation by transglycosylation or via internalization and metabolic salvage of wall-derived sugars to produce new precursors for wall synthesis. However, the physiological and metabolic contributions of wall recycling to plant growth and development are largely undefined. In this review, we discuss long-standing and recent evidence supporting the occurrence of cell-wall recycling in plants, make predictions regarding the developmental processes to which wall recycling might contribute, and identify outstanding questions and emerging experimental tools that might be used to address these questions and enhance our understanding of this poorly characterized aspect of wall dynamics and metabolism.
Collapse
Affiliation(s)
- William J Barnes
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
29
|
Sampedro J, Gianzo C, Guitián E, Revilla G, Zarra I. Analysis of Xyloglucan Composition in Arabidopsis Leaves. Bio Protoc 2017; 7:e2569. [PMID: 34595252 DOI: 10.21769/bioprotoc.2569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/09/2017] [Accepted: 09/13/2017] [Indexed: 11/02/2022] Open
Abstract
Xyloglucan is one of the main components of the primary cell wall in most species of plants. This protocol describes a method to analyze the composition of the enzyme-accessible and enzyme-inaccessible fractions of xyloglucan in the model species Arabidopsis thaliana. It is based on digestion with an endoglucanase that attacks unsubstituted glucose residues in the backbone. The identities and relative amounts of released xyloglucan fragments are then determined using MALDI-TOF mass spectrometry.
Collapse
Affiliation(s)
- Javier Sampedro
- Dpto. de Bioloxía Funcional, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cristina Gianzo
- Dpto. de Bioloxía Funcional, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Esteban Guitián
- Unidade de Espectrometría de Masas e Proteómica, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gloria Revilla
- Dpto. de Bioloxía Funcional, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ignacio Zarra
- Dpto. de Bioloxía Funcional, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
30
|
Naoumkina M, Hinchliffe DJ, Fang DD, Florane CB, Thyssen GN. Role of xyloglucan in cotton (Gossypium hirsutum L.) fiber elongation of the short fiber mutant Ligon lintless-2 (Li 2). Gene 2017; 626:227-233. [PMID: 28546126 DOI: 10.1016/j.gene.2017.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/08/2017] [Accepted: 05/21/2017] [Indexed: 10/19/2022]
Abstract
Xyloglucan is a matrix polysaccharide found in the cell walls of all land plants. In growing cells, xyloglucan is thought to connect cellulose microfibrils and regulate their separation during wall extension. Ligon lintless-2 (Li2) is a monogenic dominant cotton fiber mutation that causes extreme reduction in lint fiber length with no pleiotropic effects on vegetative growth. Li2 represents an excellent model system to study fiber elongation. To understand the role of xyloglucan in cotton fiber elongation we used the short fiber mutant Li2 and its near isogenic wild type for analysis of xyloglucan content and expression of xyloglucan-related genes in developing fibers. Accumulation of xyloglucan was significantly higher in Li2 developing fibers than in wild type. Genes encoding enzymes for nine family members of xyloglucan biosynthesis were identified in the draft Gossypium hirsutum genome. RNAseq analysis revealed that most differentially expressed xyloglucan-related genes were down-regulated in Li2 fiber cells. RT-qPCR analysis revealed that the peak of expression for the majority of xyloglucan-related genes in wild type developing fibers was 5-16days post anthesis (DPA) compared to 1-3 DPA in Li2 fibers. Thus, our results suggest that early activation of xyloglucan-related genes and down regulation of xyloglucan degradation genes during the elongation phase lead to elevated accumulation of xyloglucan that restricts elongation of fiber cells in Li2.
Collapse
Affiliation(s)
- Marina Naoumkina
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA.
| | - Doug J Hinchliffe
- Cotton Chemistry and Utilization Research Unit, USDA-ARS-SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - Christopher B Florane
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - Gregory N Thyssen
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA; Cotton Chemistry and Utilization Research Unit, USDA-ARS-SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| |
Collapse
|
31
|
Goulao LF, Fernandes JC, Amâncio S. How the Depletion in Mineral Major Elements Affects Grapevine ( Vitis vinifera L.) Primary Cell Wall. FRONTIERS IN PLANT SCIENCE 2017; 8:1439. [PMID: 28871267 PMCID: PMC5566972 DOI: 10.3389/fpls.2017.01439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/03/2017] [Indexed: 05/29/2023]
Abstract
The noteworthy fine remodeling that plant cell walls (CWs) undergo to adapt to developmental, physiological and environmental cues and the observation that its composition and dynamics differ between species represents an opportunity to couple crop species agronomic studies with research on CW modifications. Vitis vinifera is one of the most important crops from an economic point-of-view due to the high value of the fruit, predominantly for winemaking. The availability of some information related to this species' CWs allows researching its responses to imposed conditions that affect the plant's development. Mineral deficiency, in particular nitrogen, phosphorus, potassium and sulfur, strongly affects plant metabolism, reducing both growth and crop yield. Despite the importance of mineral nutrition in development, its influence on CW synthesis and modifications is still insufficiently documented. Addressing this knowledge gap, V. vinifera experimental models were used to study CW responses to imposed mineral depletion in unorganized (callus) and organized (shoots) tissues. The discussion of the obtained results is the main focus of this review. Callus and shoots submitted to mineral restriction are impaired in specific CW components, predominantly cellulose. Reorganization on structure and deposition of several other polymers, in particular the degree and pattern of pectin methyl-esterification and the amount of xyloglucan (XyG), arabinan and extensin, is also observed. In view of recently proposed CW models that consider biomechanical hotspots and direct linkages between pectins and XyG/cellulose, the outcome of these modifications in explaining maintenance of CW integrity through compensatory stiffening can be debated. Nutrient stresses do not affect evenly all tissues with undifferentiated callus tissues showing more pronounced responses, followed by shoot mature internodes, and then newly formed internodes. The impact of nitrogen depletion leads to more noticeable responses, supporting this nutrient's primary role in plant development and metabolism. The consequential compensatory mechanisms highlight the pivotal role of CW in rearranging under environmental stresses.
Collapse
|
32
|
Sampedro J, Valdivia ER, Fraga P, Iglesias N, Revilla G, Zarra I. Soluble and Membrane-Bound β-Glucosidases Are Involved in Trimming the Xyloglucan Backbone. PLANT PHYSIOLOGY 2017; 173:1017-1030. [PMID: 27956490 PMCID: PMC5291047 DOI: 10.1104/pp.16.01713] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/09/2016] [Indexed: 05/23/2023]
Abstract
In many flowering plants, xyloglucan is a major component of primary cell walls, where it plays an important role in growth regulation. Xyloglucan can be degraded by a suite of exoglycosidases that remove specific sugars. In this work, we show that the xyloglucan backbone, formed by (1→4)-linked β-d-glucopyranosyl residues, can be attacked by two different Arabidopsis (Arabidopsis thaliana) β-glucosidases from glycoside hydrolase family 3. While BGLC1 (At5g20950; for β-glucosidase active against xyloglucan 1) is responsible for all or most of the soluble activity, BGLC3 (At5g04885) is usually a membrane-anchored protein. Mutations in these two genes, whether on their own or combined with mutations in other exoglycosidase genes, resulted in the accumulation of partially digested xyloglucan subunits, such as GXXG, GXLG, or GXFG. While a mutation in BGLC1 had significant effects on its own, lack of BGLC3 had only minor effects. On the other hand, double bglc1 bglc3 mutants revealed a synergistic interaction that supports a role for membrane-bound BGLC3 in xyloglucan metabolism. In addition, bglc1 bglc3 was complemented by overexpression of either BGLC1 or BGLC3 In overexpression lines, BGLC3 activity was concentrated in a microsome-enriched fraction but also was present in soluble form. Finally, both genes were generally expressed in the same cell types, although, in some cases, BGLC3 was expressed at earlier stages than BGLC1 We propose that functional specialization could explain the separate localization of both enzymes, as a membrane-bound β-glucosidase could specifically digest soluble xyloglucan without affecting the wall-bound polymer.
Collapse
Affiliation(s)
- Javier Sampedro
- Departemento Biología Funcional, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782 Spain
| | - Elene R Valdivia
- Departemento Biología Funcional, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782 Spain
| | - Patricia Fraga
- Departemento Biología Funcional, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782 Spain
| | - Natalia Iglesias
- Departemento Biología Funcional, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782 Spain
| | - Gloria Revilla
- Departemento Biología Funcional, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782 Spain
| | - Ignacio Zarra
- Departemento Biología Funcional, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782 Spain
| |
Collapse
|
33
|
Shigeyama T, Watanabe A, Tokuchi K, Toh S, Sakurai N, Shibuya N, Kawakami N. α-Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5615-5629. [PMID: 27605715 PMCID: PMC5066485 DOI: 10.1093/jxb/erw321] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Regulation and maintenance of cell wall physical properties are crucial for plant growth and environmental response. In the germination process, hypocotyl cell expansion and endosperm weakening are prerequisites for dicot seeds to complete germination. We have identified the Arabidopsis mutant thermoinhibition-resistant germination 1 (trg1), which has reduced seed dormancy and insensitivity to unfavourable conditions for germination owing to a loss-of-function mutation of TRG1/XYL1, which encodes an α-xylosidase. Compared to those of wild type, the elongating stem of trg1 showed significantly lower viscoelasticity, and the fruit epidermal cells were longitudinally shorter and horizontally enlarged. Actively growing tissues of trg1 over-accumulated free xyloglucan oligosaccharides (XGOs), and the seed cell wall had xyloglucan with a greatly reduced molecular weight. These observations suggest that XGOs reduce xyloglucan size by serving as an acceptor in transglycosylation and eventually enhancing cell wall loosening. TRG1/XYL1 gene expression was abundant in growing wild-type organs and tissues but relatively low in cells at most actively elongating part of the tissues, suggesting that α-xylosidase contributes to maintaining the mechanical integrity of the primary cell wall in the growing and pre-growing tissues. In germinating seeds of trg1, expression of genes encoding specific abscisic acid and gibberellin metabolism enzymes was altered in accordance with the aberrant germination phenotype. Thus, cell wall integrity could affect seed germination not only directly through the physical properties of the cell wall but also indirectly through the regulation of hormone gene expression.
Collapse
Affiliation(s)
- Takuma Shigeyama
- Department of Life Sciences, School of Agriculture, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki 214-8571, Japan
| | - Asuka Watanabe
- Department of Life Sciences, School of Agriculture, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki 214-8571, Japan
| | - Konatsu Tokuchi
- Department of Life Sciences, School of Agriculture, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki 214-8571, Japan
| | - Shigeo Toh
- Department of Life Sciences, School of Agriculture, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki 214-8571, Japan
| | - Naoki Sakurai
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-3-2, Higashihiroshima 739-8528, Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki 214-8571, Japan
| | - Naoto Kawakami
- Department of Life Sciences, School of Agriculture, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki 214-8571, Japan
| |
Collapse
|
34
|
Pauly M, Keegstra K. Biosynthesis of the Plant Cell Wall Matrix Polysaccharide Xyloglucan. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:235-59. [PMID: 26927904 DOI: 10.1146/annurev-arplant-043015-112222] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Xyloglucan (XyG) is a matrix polysaccharide that is present in the cell walls of all land plants. It consists of a β-1,4-linked glucan backbone that is further substituted with xylosyl residues. These xylosyl residues can be further substituted with other glycosyl and nonglycosyl substituents that vary depending on the plant family and specific tissue. Advances in plant mutant isolation and characterization, functional genomics, and DNA sequencing have led to the identification of nearly all transferases and synthases necessary to synthesize XyG. Thus, in terms of the molecular mechanisms of plant cell wall polysaccharide biosynthesis, XyG is the most well understood. However, much remains to be learned about the molecular mechanisms of polysaccharide assembly and the regulation of these processes. Knowledge of the XyG biosynthetic machinery allows the XyG structure to be tailored in planta to ascertain the functions of this polysaccharide and its substituents in plant growth and interactions with the environment.
Collapse
Affiliation(s)
- Markus Pauly
- Department of Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Kenneth Keegstra
- DOE Great Lakes Bioenergy Research Center, DOE Plant Research Laboratory, and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
35
|
Sechet J, Frey A, Effroy-Cuzzi D, Berger A, Perreau F, Cueff G, Charif D, Rajjou L, Mouille G, North HM, Marion-Poll A. Xyloglucan Metabolism Differentially Impacts the Cell Wall Characteristics of the Endosperm and Embryo during Arabidopsis Seed Germination. PLANT PHYSIOLOGY 2016; 170:1367-80. [PMID: 26826221 PMCID: PMC4775114 DOI: 10.1104/pp.15.01312] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/27/2016] [Indexed: 05/03/2023]
Abstract
Cell wall remodeling is an essential mechanism for the regulation of plant growth and architecture, and xyloglucans (XyGs), the major hemicellulose, are often considered as spacers of cellulose microfibrils during growth. In the seed, the activity of cell wall enzymes plays a critical role in germination by enabling embryo cell expansion leading to radicle protrusion, as well as endosperm weakening prior to its rupture. A screen for Arabidopsis (Arabidopsis thaliana) mutants affected in the hormonal control of germination identified a mutant, xyl1, able to germinate on paclobutrazol, an inhibitor of gibberellin biosynthesis. This mutant also exhibited reduced dormancy and increased resistance to high temperature. The XYL1 locus encodes an α-xylosidase required for XyG maturation through the trimming of Xyl. The xyl1 mutant phenotypes were associated with modifications to endosperm cell wall composition that likely impact on its resistance, as further demonstrated by the restoration of normal germination characteristics by endosperm-specific XYL1 expression. The absence of phenotypes in mutants defective for other glycosidases, which trim Gal or Fuc, suggests that XYL1 plays the major role in this process. Finally, the decreased XyG abundance in hypocotyl longitudinal cell walls of germinating embryos indicates a potential role in cell wall loosening and anisotropic growth together with pectin de-methylesterification.
Collapse
Affiliation(s)
- Julien Sechet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - Anne Frey
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - Delphine Effroy-Cuzzi
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - Adeline Berger
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - François Perreau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - Gwendal Cueff
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - Delphine Charif
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - Helen M North
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - Annie Marion-Poll
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, F-78026 Versailles, France
| |
Collapse
|
36
|
Fernandes JC, Goulao LF, Amâncio S. Regulation of cell wall remodeling in grapevine (Vitis vinifera L.) callus under individual mineral stress deficiency. JOURNAL OF PLANT PHYSIOLOGY 2016; 190:95-105. [PMID: 26735749 DOI: 10.1016/j.jplph.2015.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
Cell wall (CW) is a dynamic structure that determines the plant form, growth and response to environmental conditions. Vitis vinifera callus grown under nitrogen (-N), phosphorous (-P) and sulfur (-S) deficiency were used as a model system to address the influence of mineral stress in CW remodeling. Callus cells morphology was altered, mostly under -N, resulting in changes in cell length and width compared with the control. CW composition ascertained with specific staining and immuno-detection showed a decrease in cellulose and altered pattern of pectin methylesterification. Under mineral stress genes expression from candidate families disclosed mainly a downregulation of a glycosyl hydrolase family 9C (GH9C), xyloglucan transglycosylase/hydrolases (XTHs) with predicted hydrolytic activity and pectin methylesterases (PMEs). Conversely, upregulation of PMEs inhibitors (PMEIs) was observed. While methylesterification patterns can be associated to PME/PMEI gene expression, the lower cellulose content cannot be attributed to altered cellulose synthase (CesA) gene expression suggesting the involvement of other gene families. Salt extracts from -N and -P callus tissues increased plastic deformation in cucumber hypocotyls while no effect was observed with -S extracts. The lower endo-acting glycosyl hydrolase activity of -N callus extracts pinpoints a more expressive impact of -N on CW-remodeling.
Collapse
Affiliation(s)
- João C Fernandes
- DRAT/LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Luis F Goulao
- BioTrop, Instituto de Investigação Científica Tropical (IICT, IP), Pólo Mendes Ferrão-Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Sara Amâncio
- DRAT/LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal.
| |
Collapse
|
37
|
Dziedzic JA, McDonald AG. In vitro protein profiles in the early and late stages of Douglas-fir xylogenesis. Electrophoresis 2015; 36:2035-45. [PMID: 25999182 DOI: 10.1002/elps.201400561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 11/09/2022]
Abstract
The process of wood formation is of great interest to control and manipulate wood quality for economically important gymnosperms. A Douglas-fir tissue culture system was developed that could be induced to differentiate into tracheary elements (fibers) making it possible to monitor xylogenesis in vitro by a proteomics approach. Two proteomes were analyzed and compared, one from an early and one from a late stage of the fiber differentiation process. After 18 weeks in a differentiation-inducing medium, 80% of the callus cells were elongated while 20% showed advanced spiral thickening indicating full wood fiber differentiation. Based on 2D electrophoresis, MS, and data analyses (data are available via ProteomeXchange with identifier PXD001484.), it was shown that in nondifferentiated callus (representing an early stage of development), proteins related to protein metabolism, cellular energy, and primary cell wall metabolism were abundant. By comparison, in cells actively differentiating wood fibers (representing a late stage of development), proteins involved in cell wall polysaccharide biosynthesis predominated together with housekeeping and stress-associated proteins.
Collapse
Affiliation(s)
| | - Armando G McDonald
- Environmental Science Program, University of Idaho, Moscow, ID, USA.,Renewable Materials Program, Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
38
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
39
|
DeBlasio SL, Johnson R, Sweeney MM, Karasev A, Gray SM, MacCoss MJ, Cilia M. Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection. Proteomics 2015; 15:2098-112. [PMID: 25787689 DOI: 10.1002/pmic.201400594] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/08/2015] [Accepted: 03/16/2015] [Indexed: 01/20/2023]
Abstract
Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a nonincorporated protein in concert with numerous insect and plant proteins to regulate virus movement/transmission and tissue tropism. Affinity purification coupled to quantitative MS was used to generate protein interaction networks for a PLRV mutant that is unable to produce the read through domain (RTD) and compared to the known wild-type PLRV protein interaction network. By quantifying differences in the protein interaction networks, we identified four distinct classes of PLRV-plant interactions: those plant and nonstructural viral proteins interacting with assembled coat protein (category I); plant proteins in complex with both coat protein and RTD (category II); plant proteins in complex with the RTD (category III); and plant proteins that had higher affinity for virions lacking the RTD (category IV). Proteins identified as interacting with the RTD are potential candidates for regulating viral processes that are mediated by the RTP such as phloem retention and systemic movement and can potentially be useful targets for the development of strategies to prevent infection and/or viral transmission of Luteoviridae species that infect important crop species.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA.,USDA-Agricultural Research Service, Ithaca, NY, USA
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Alexander Karasev
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID, USA
| | - Stewart M Gray
- USDA-Agricultural Research Service, Ithaca, NY, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michelle Cilia
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA.,USDA-Agricultural Research Service, Ithaca, NY, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
40
|
Zhang HM, Wheeler S, Xia X, Radchuk R, Weber H, Offler CE, Patrick JW. Differential transcriptional networks associated with key phases of ingrowth wall construction in trans-differentiating epidermal transfer cells of Vicia faba cotyledons. BMC PLANT BIOLOGY 2015; 15:103. [PMID: 25887034 PMCID: PMC4437447 DOI: 10.1186/s12870-015-0486-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/01/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Transfer cells are characterized by intricate ingrowth walls, comprising an uniform wall upon which wall ingrowths are deposited. The ingrowth wall forms a scaffold to support an amplified plasma membrane surface area enriched in membrane transporters that collectively confers transfer cells with an enhanced capacity for membrane transport at bottlenecks for apo-/symplasmic exchange of nutrients. However, the underlying molecular mechanisms regulating polarized construction of the ingrowth wall and membrane transporter profile are poorly understood. RESULTS An RNAseq study of an inducible epidermal transfer cell system in cultured Vicia faba cotyledons identified transfer cell specific transcriptomes associated with uniform wall and wall ingrowth deposition. All functional groups of genes examined were expressed before and following transition to a transfer cell fate. What changed were the isoform profiles of expressed genes within functional groups. Genes encoding ethylene and Ca(2+) signal generation and transduction pathways were enriched during uniform wall construction. Auxin-and reactive oxygen species-related genes dominated during wall ingrowth formation and ABA genes were evenly expressed across ingrowth wall construction. Expression of genes encoding kinesins, formins and villins was consistent with reorganization of cytoskeletal components. Uniform wall and wall ingrowth specific expression of exocyst complex components and SNAREs suggested specific patterns of exocytosis while dynamin mediated endocytotic activity was consistent with establishing wall ingrowth loci. Key regulatory genes of biosynthetic pathways for sphingolipids and sterols were expressed across ingrowth wall construction. Transfer cell specific expression of cellulose synthases was absent. Rather xyloglucan, xylan and pectin biosynthetic genes were selectively expressed during uniform wall construction. More striking was expression of genes encoding enzymes for re-modelling/degradation of cellulose, xyloglucans, pectins and callose. Extensins dominated the cohort of expressed wall structural proteins and particularly so across wall ingrowth development. Ion transporters were selectively expressed throughout ingrowth wall development along with organic nitrogen transporters and a large group of ABC transporters. Sugar transporters were less represented. CONCLUSIONS Pathways regulating signalling and intracellular organization were fine tuned whilst cell wall construction and membrane transporter profiles were altered substantially upon transiting to a transfer cell fate. Each phase of ingrowth wall construction was linked with unique cohorts of expressed genes.
Collapse
Affiliation(s)
- Hui-Ming Zhang
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Simon Wheeler
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Xue Xia
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ruslana Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Gatersleben, Germany.
| | - Hans Weber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Gatersleben, Germany.
| | - Christina E Offler
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - John W Patrick
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
41
|
Franková L, Fry SC. A general method for assaying homo- and hetero-transglycanase activities that act on plant cell-wall polysaccharides. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:411-428. [PMID: 25641334 DOI: 10.1111/jipb.12337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
Transglycanases (endotransglycosylases) cleave a polysaccharide (donor-substrate) in mid-chain, and then transfer a portion onto another poly- or oligosaccharide (acceptor-substrate). Such enzymes contribute to plant cell-wall assembly and/or re-structuring. We sought a general method for revealing novel homo- and hetero-transglycanases, applicable to diverse polysaccharides and oligosaccharides, separating transglycanase-generated (3)H-polysaccharides from unreacted (3)H-oligosaccharides--the former immobilized (on filter-paper, silica-gel or glass-fiber), the latter eluted. On filter-paper, certain polysaccharides [e.g. (1→3, 1→4)-β-D-glucans] remained satisfactorily adsorbed when water-washed; others (e.g. pectins) were partially lost. Many oligosaccharides (e.g. arabinan-, galactan-, xyloglucan-based) were successfully eluted in appropriate solvents, but others (e.g. [(3)H]xylohexaitol, [(3)H]mannohexaitol [(3)H]cellohexaitol) remained immobile. On silica-gel, all (3)H-oligosaccharides left an immobile 'ghost' spot (contaminating any (3)H-polysaccharides), which was diminished but not prevented by additives e.g. sucrose or Triton X-100. The best stratum was glass-fiber (GF), onto which the reaction-mixture was dried then washed in 75% ethanol. Washing led to minimal loss or lateral migration of (3)H-polysaccharides if conducted by slow percolation of acidified ethanol. The effectiveness of GF-blotting was well demonstrated for Chara vulgaris trans-β-mannanase. In conclusion, our novel GF-blotting technique efficiently frees transglycanase-generated (3)H-polysaccharides from unreacted (3)H-oligosaccharides, enabling high-throughput screening of multiple postulated transglycanase activities utilising chemically diverse donor- and acceptor-substrates.
Collapse
Affiliation(s)
- Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | | |
Collapse
|
42
|
Park YB, Cosgrove DJ. Xyloglucan and its Interactions with Other Components of the Growing Cell Wall. ACTA ACUST UNITED AC 2015; 56:180-94. [DOI: 10.1093/pcp/pcu204] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
43
|
Structural Diversity and Function of Xyloglucan Sidechain Substituents. PLANTS 2014; 3:526-42. [PMID: 27135518 PMCID: PMC4844278 DOI: 10.3390/plants3040526] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/02/2022]
Abstract
Xyloglucan (XyG) is a hemicellulose found in the cell walls of all land plants including early-divergent groups such as liverworts, hornworts and mosses. The basic structure of XyG, a xylosylated glucan, is similar in all of these plants but additional substituents can vary depending on plant family, tissue, and developmental stage. A comprehensive list of known XyG sidechain substituents is assembled including their occurrence within plant families, thereby providing insight into the evolutionary origin of the various sidechains. Recent advances in DNA sequencing have enabled comparative genomics approaches for the identification of XyG biosynthetic enzymes in Arabidopsis thaliana as well as in non-model plant species. Characterization of these biosynthetic genes not only allows the determination of their substrate specificity but also provides insights into the function of the various substituents in plant growth and development.
Collapse
|
44
|
Banasiak A, Ibatullin FM, Brumer H, Mellerowicz EJ. Glycoside Hydrolase Activities in Cell Walls of Sclerenchyma Cells in the Inflorescence Stems of Arabidopsis thaliana Visualized in Situ. PLANTS (BASEL, SWITZERLAND) 2014; 3:513-25. [PMID: 27135517 PMCID: PMC4844284 DOI: 10.3390/plants3040513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 11/16/2022]
Abstract
Techniques for in situ localization of gene products provide indispensable information for understanding biological function. In the case of enzymes, biological function is directly related to activity, and therefore, knowledge of activity patterns is central to understanding the molecular controls of plant development. We have previously developed a novel type of fluorogenic substrate for revealing glycoside hydrolase activity in planta, based on resorufin β-glycosides Here, we explore a wider range of such substrates to visualize glycoside hydrolase activities in Arabidopsis inflorescence stems in real time, especially highlighting distinct distribution patterns of these activities in the secondary cell walls of sclerenchyma cells. The results demonstrate that β-1,4-glucosidase, β-1,4-glucanase and β-1,4-galactosidase activities accompany secondary wall deposition. In contrast, xyloglucanase activity follows a different pattern, with the highest signal observed in mature cells, concentrated in the middle lamella. These data further the understanding of the process of cell wall deposition and function in sclerenchymatic tissues of plants.
Collapse
Affiliation(s)
- Alicja Banasiak
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| | - Farid M Ibatullin
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden.
- Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia.
| | - Harry Brumer
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden.
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z1, Canada.
- Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z1, Canada.
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umea Plant Science Centre, 90183 Umea, Sweden.
| |
Collapse
|
45
|
Vidyagina EO, Kovalitskaya YA, Loginov DS, Koroleva OV, Shestibratov KA. Expression of xyloglucanase sp-Xeg gene from Penicillium canescens accelerates growth and rooting in transgenic aspen plants. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814070060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Miedes E, Vanholme R, Boerjan W, Molina A. The role of the secondary cell wall in plant resistance to pathogens. FRONTIERS IN PLANT SCIENCE 2014; 5:358. [PMID: 25161657 PMCID: PMC4122179 DOI: 10.3389/fpls.2014.00358] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/04/2014] [Indexed: 05/18/2023]
Abstract
Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.
Collapse
Affiliation(s)
- Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica MadridMadrid, Spain
- Departamento Biotecnología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica MadridMadrid, Spain
| | - Ruben Vanholme
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology)Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology)Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica MadridMadrid, Spain
- Departamento Biotecnología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica MadridMadrid, Spain
- *Correspondence: Antonio Molina, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica Madrid, Campus Montegancedo, M40 (Km. 38), Pozuelo de Alarcón, Madrid 28223, Spain e-mail:
| |
Collapse
|
47
|
Franková L, Fry SC. Biochemistry and physiological roles of enzymes that 'cut and paste' plant cell-wall polysaccharides. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3519-50. [PMID: 23956409 DOI: 10.1093/jxb/ert201] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The plant cell-wall matrix is equipped with more than 20 glycosylhydrolase activities, including both glycosidases and glycanases (exo- and endo-hydrolases, respectively), which between them are in principle capable of hydrolysing most of the major glycosidic bonds in wall polysaccharides. Some of these enzymes also participate in the 'cutting and pasting' (transglycosylation) of sugar residues-enzyme activities known as transglycosidases and transglycanases. Their action and biological functions differ from those of the UDP-dependent glycosyltransferases (polysaccharide synthases) that catalyse irreversible glycosyl transfer. Based on the nature of the substrates, two types of reaction can be distinguished: homo-transglycosylation (occurring between chemically similar polymers) and hetero-transglycosylation (between chemically different polymers). This review focuses on plant cell-wall-localized glycosylhydrolases and the transglycosylase activities exhibited by some of these enzymes and considers the physiological need for wall polysaccharide modification in vivo. It describes the mechanism of transglycosylase action and the classification and phylogenetic variation of the enzymes. It discusses the modulation of their expression in plants at the transcriptional and translational levels, and methods for their detection. It also critically evaluates the evidence that the enzyme proteins under consideration exhibit their predicted activity in vitro and their predicted action in vivo. Finally, this review suggests that wall-localized glycosylhydrolases with transglycosidase and transglycanase abilities are widespread in plants and play important roles in the mechanism and control of plant cell expansion, differentiation, maturation, and wall repair.
Collapse
Affiliation(s)
- Lenka Franková
- Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| | | |
Collapse
|
48
|
Yang LT, Qi YP, Lu YB, Guo P, Sang W, Feng H, Zhang HX, Chen LS. iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron-deficiency. J Proteomics 2013; 93:179-206. [PMID: 23628855 DOI: 10.1016/j.jprot.2013.04.025] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/09/2013] [Accepted: 04/16/2013] [Indexed: 12/24/2022]
Abstract
UNLABELLED Seedlings of Citrus sinensis were fertilized with boron (B)-deficient (0μM H3BO3) or -sufficient (10μM H3BO3) nutrient solution for 15weeks. Thereafter, iTRAQ analysis was employed to compare the abundances of proteins from B-deficient and -sufficient roots. In B-deficient roots, 164 up-regulated and 225 down-regulated proteins were identified. These proteins were grouped into the following functional categories: protein metabolism, nucleic acid metabolism, stress responses, carbohydrate and energy metabolism, cell transport, cell wall and cytoskeleton metabolism, biological regulation and signal transduction, and lipid metabolism. The adaptive responses of roots to B-deficiency might include following several aspects: (a) decreasing root respiration; (b) improving the total ability to scavenge reactive oxygen species (ROS); and (c) enhancing cell transport. The differentially expressed proteins identified by iTRAQ are much larger than those detected using 2D gel electrophoresis, and many novel B-deficiency-responsive proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes were identified in this work. Our results indicate remarkable metabolic flexibility of citrus roots, which may contribute to the survival of B-deficient plants. This represents the most comprehensive analysis of protein profiles in response to B-deficiency. BIOLOGICAL SIGNIFICANCE In this study, we identified many new proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes that were not previously known to be associated with root B-deficiency responses. Therefore, our manuscript represents the most comprehensive analysis of protein profiles in response to B-deficiency and provides new information about the plant response to B-deficiency. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Lin-Tong Yang
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen K, Renaut J, Sergeant K, Wei H, Arora R. Proteomic changes associated with freeze-thaw injury and post-thaw recovery in onion (Allium cepa L.) scales. PLANT, CELL & ENVIRONMENT 2013; 36:892-905. [PMID: 23078084 DOI: 10.1111/pce.12027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The ability of plants to recover from freeze-thaw injury is a critical component of freeze-thaw stress tolerance. To investigate the molecular basis of freeze-thaw recovery, here we compared the proteomes of onion scales from unfrozen control (UFC), freeze-thaw injured (INJ), and post-thaw recovered (REC) treatments. Injury-related proteins (IRPs) and recovery-related proteins (RRPs) were differentiated according to their accumulation patterns. Many IRPs decreased right after thaw without any significant re-accumulation during post-thaw recovery, while others were exclusively induced in INJ tissues. Most IRPs are antioxidants, stress proteins, molecular chaperones, those induced by physical injury or proteins involved in energy metabolism. Taken together, these observations suggest that while freeze-thaw compromises the constitutive stress protection and energy supply in onion scales, it might also recruit 'first-responders' (IRPs that were induced) to mitigate such injury. RRPs, on the other hand, are involved in the injury-repair program during post-thaw environment conducive for recovery. Some RRPs were restored in REC tissues after their first reduction right after thaw, while others exhibit higher abundance than their 'constitutive' levels. RRPs might facilitate new cellular homeostasis, potentially by re-establishing ion homeostasis and proteostasis, cell-wall remodelling, reactive oxygen species (ROS) scavenging, defence against possible post-thaw infection, and regulating the energy budget to sustain these processes.
Collapse
Affiliation(s)
- Keting Chen
- Department of Horticulture, Iowa State University, Ames, Iowa 50010, USA
| | | | | | | | | |
Collapse
|
50
|
Nguema-Ona E, Moore JP, Fagerström AD, Fangel JU, Willats WGT, Hugo A, Vivier MA. Overexpression of the grapevine PGIP1 in tobacco results in compositional changes in the leaf arabinoxyloglucan network in the absence of fungal infection. BMC PLANT BIOLOGY 2013; 13:46. [PMID: 23506352 PMCID: PMC3621556 DOI: 10.1186/1471-2229-13-46] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 02/07/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND Constitutive expression of Vitis vinifera polygalacturonase-inhibiting protein 1 (Vvpgip1) has been shown to protect tobacco plants against Botrytis cinerea. Evidence points to additional roles for VvPGIP1, beyond the classical endopolygalacturonase (ePG) inhibition mechanism, in providing protection against fungal infection. Gene expression and biochemical datasets previously obtained, in the absence of infection, point to the cell wall, and particularly the xyloglucan component of transgenic VvPGIP1 lines as playing a role in fungal resistance. RESULTS To elucidate the role of wall-associated processes in PGIP-derived resistance pre-infection, a wall profiling analysis, using high-throughput and fractionation techniques, was performed on healthy leaves from wild-type and previously characterized transgenic lines. The cell wall structure profile during development was found to be altered in the transgenic lines assessed versus the wild-type plants. Immunoprofiling revealed subtle changes in pectin and cellulose components and marked changes in the hemicellulose matrix, which showed reduced binding in transgenic leaves of VvPGIP1 expressing plants. Using an enzymatic xyloglucan oligosaccharide fingerprinting technique optimized for tobacco arabinoxyloglucans, we showed that polysaccharides of the XEG-soluble domain were modified in relative abundance for certain oligosaccharide components, although no differences in ion profiles were evident between wild-type and transgenic plants. These changes did not significantly influence plant morphology or normal growth processes compared to wild-type lines. CONCLUSIONS VvPGIP1 overexpression therefore results in cell wall remodeling and reorganization of the cellulose-xyloglucan network in tobacco in advance of potential infection.
Collapse
Affiliation(s)
- Eric Nguema-Ona
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland, 7602, South Africa
- Current address: Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV). Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université. Université de Rouen, Mont Saint Aignan, 76821 Cedex, France
| | - John P Moore
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland, 7602, South Africa
| | - Alexandra D Fagerström
- Energy Biosciences Institute, University of California, 2151 Berkeley Way, Berkeley, CA, 94720-5230, USA
| | - Jonatan U Fangel
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, DK-, 1001, Denmark
| | - William GT Willats
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, DK-, 1001, Denmark
| | - Annatjie Hugo
- Department of Microbiology, Stellenbosch University, Matieland, 7602, South Africa
| | - Melané A Vivier
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|