1
|
Sabelleck B, Deb S, Levecque SCJ, Freh M, Reinstädler A, Spanu PD, Thordal-Christensen H, Panstruga R. A powdery mildew core effector protein targets the host endosome tethering complexes HOPS and CORVET in barley. PLANT PHYSIOLOGY 2025; 197:kiaf067. [PMID: 39973312 PMCID: PMC12002017 DOI: 10.1093/plphys/kiaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 02/21/2025]
Abstract
Powdery mildew fungi are serious pathogens affecting many plant species. Their genomes encode extensive repertoires of secreted effector proteins that suppress host immunity. Here, we revised and analyzed the candidate secreted effector protein (CSEP) effectome of the powdery mildew fungus, Blumeria hordei (Bh). We identified seven putative effectors that are broadly conserved in powdery mildew species, suggesting that they are core effectors of these phytopathogens. We showed that one of these effectors, CSEP0214, interacts with the barley (Hordeum vulgare) vacuolar protein-sorting 18 (VPS18) protein, a shared component of the class C core vacuole/endosome tethering (CORVET) and homotypic fusion and protein-sorting (HOPS) endosomal tethering complexes that mediate fusion of early endosomes and multivesicular bodies, respectively, with the central vacuole. Overexpression of CSEP0214 and knockdown of either VPS18, HOPS-specific VPS41, or CORVET-specific VPS8 blocked the vacuolar pathway and the accumulation of the fluorescent vacuolar marker protein (SP)-RFP-AFVY in the endoplasmic reticulum. Moreover, CSEP0214 inhibited the interaction between VPS18 and VPS16, which are both shared components of CORVET as well as HOPS. Additionally, introducing CSEP0214 into barley leaf cells blocked the hypersensitive cell death response associated with resistance gene-mediated immunity, indicating that endomembrane trafficking is required for this process. CSEP0214 expression also prevented callose deposition in cell wall appositions at attack sites and encasements of fungal infection structures. Our results indicate that the powdery mildew core effector CSEP0214 is an essential suppressor of plant immunity.
Collapse
Affiliation(s)
- Björn Sabelleck
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
- Department of Plant and Environmental Sciences, Section for Plant and Soil Sciences, University of Copenhagen, Frederiksberg C 1871 Denmark
| | - Sohini Deb
- Department of Plant and Environmental Sciences, Section for Plant and Soil Sciences, University of Copenhagen, Frederiksberg C 1871 Denmark
| | - Sophie C J Levecque
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Matthias Freh
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Anja Reinstädler
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Pietro D Spanu
- Department of Life Sciences, Imperial College London, Imperial College Road, London SW7 2AZ, UK
| | - Hans Thordal-Christensen
- Department of Plant and Environmental Sciences, Section for Plant and Soil Sciences, University of Copenhagen, Frederiksberg C 1871 Denmark
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| |
Collapse
|
2
|
Shi J, Yang C, Qin Y, Liu Q, Hua S, Wu D, Dong W. Phytoalexin deficient 4 is associated with the lesion mimic trait in watermelon clalm mutant (Citrullus lanatus). BMC PLANT BIOLOGY 2025; 25:92. [PMID: 39844070 PMCID: PMC11755929 DOI: 10.1186/s12870-025-06071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
In watermelon (Citrullus lanatus), lesion mimic is a rare, valuable trait that can be used by breeders for selection at early growth stages. In this study, we tested a seven-generation family to determine the inheritance and genetic basis of this trait. As revealed by analysis of the lesion mimic mutant clalm, this trait is controlled by a single dominant gene. Whole genome resequencing-bulked segregant analysis demonstrated that this gene is located on chromosome 4 from 3,760,000 bp to 7,440,000 bp, a region corresponding to a physical distance of 3.68 Mb encompassing approximately 72 annotated genes. There are 6 genes with non-synonymous mutation SNP sites. The predicted target gene, ClCG04G001930, encodes a Phytoalexin deficient 4 (PAD4), a protein that plays an important regulatory role in leaf senescence in many plant species. According to quantitative real-time PCR analysis, the expression level of ClCG04G001930 was significantly higher in the clalm mutant than in normal watermelon. Twenty-five SNPs were identified in the ClCG04G001930 gene of F2 individuals of the clalm mutant. Overexpression the ClCG04G001930 gene, designated as ClPAD4, yielded transgenic lines whose leaves gradually developed chlorotic lesions over 3 weeks. RNA interference of the ClPAD4 yielded transgenic lines whose cotyledon prone to diseased over 2 weeks. Our results suggest that ClPAD4 might be the candidate gene responsible for lesion mimic in the clalm mutant. Our findings may serve as a foundation for elucidating the mechanism underlying the molecular metabolism of programmed cell death and should be useful for marker-assisted selection breeding in watermelon.
Collapse
Affiliation(s)
- Jiale Shi
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Congji Yang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yuanyuan Qin
- School of Life Science, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Qingqing Liu
- School of Life Science, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Shengqi Hua
- School of Life Science, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Defeng Wu
- School of Life Science, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Wei Dong
- School of Life Science, Henan University, Kaifeng, Henan, 475004, People's Republic of China.
| |
Collapse
|
3
|
Chakraborty J. A comprehensive review of soybean RNL and TIR domain proteins. PLANT MOLECULAR BIOLOGY 2024; 114:78. [PMID: 38922375 DOI: 10.1007/s11103-024-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Both prokaryotic and eukaryotic organisms use the nucleotide-binding domain/leucine-rich repeat (NBD/LRR)-triggered immunity (NLR-triggered immunity) signaling pathway to defend against pathogens. Plant NLRs are intracellular immune receptors that can bind to effector proteins secreted by pathogens. Dicotyledonous plants express a type of NLR known as TIR domain-containing NLRs (TNLs). TIR domains are enzymes that catalyze the production of small molecules that are essential for immune signaling and lead to plant cell death. The activation of downstream TNL signaling components, such as enhanced disease susceptibility 1 (EDS1), phytoalexin deficient 4 (PAD4), and senescence-associated gene 101 (SAG101), is facilitated by these small molecules. Helper NLRs (hNLRs) and the EDS1-PAD4/SAG101 complex associate after activation, causing the hNLRs to oligomerize, translocate to the plasma membrane (PM), and produce cation-selective channels. According to a recent theory, cations enter cells through pores created by oligomeric hNLRs and trigger cell death. Occasionally, TNLs can self-associate to create higher-order oligomers. Here, we categorized soybean TNLs based on the protein domains that they possess. We believe that TNLs may help soybean plants effectively fight pathogens by acting as a source of genetic resistance. In summary, the purpose of this review is to elucidate the range of TNLs that are expressed in soybean.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- School of Plant Sciences and Food Security, Tel Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
4
|
Horton KN, Gassmann W. Greater than the sum of their parts: an overview of the AvrRps4 effector family. FRONTIERS IN PLANT SCIENCE 2024; 15:1400659. [PMID: 38799092 PMCID: PMC11116571 DOI: 10.3389/fpls.2024.1400659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Phytopathogenic microbes use secreted effector proteins to increase their virulence in planta. If these effectors or the results of their activity are detected by the plant cell, the plant will mount an immune response which applies evolutionary pressure by reducing growth and success of the pathogen. Bacterial effector proteins in the AvrRps4 family (AvrRps4, HopK1, and XopO) have commonly been used as tools to investigate plant immune components. At the same time, the in planta functions of this family of effectors have yet to be fully characterized. In this minireview we summarize current knowledge about the AvrRps4 effector family with emphasis on properties of the proteins themselves. We hypothesize that the HopK1 C-terminus and the AvrRps4 C-terminus, though unrelated in sequence and structure, are broadly related in functions that counteract plant defense responses.
Collapse
Affiliation(s)
| | - Walter Gassmann
- Division of Plant Science and Technology, Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Moya YS, Medina C, Herrera B, Chamba F, Yu LX, Xu Z, Samac DA. Genetic Mapping of Tolerance to Bacterial Stem Blight Caused by Pseudomonas syringae pv. syringae in Alfalfa ( Medicago sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 13:110. [PMID: 38202418 PMCID: PMC10780931 DOI: 10.3390/plants13010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
The bacterial stem blight of alfalfa (Medicago sativa L.), first reported in the United States in 1904, has emerged recently as a serious disease problem in the western states. The causal agent, Pseudomonas syringae pv. syringae, promotes frost damage and disease that can reduce first harvest yields by 50%. Resistant cultivars and an understanding of host-pathogen interactions are lacking in this pathosystem. With the goal of identifying DNA markers associated with disease resistance, we developed biparental F1 mapping populations using plants from the cultivar ZG9830. Leaflets of plants in the mapping populations were inoculated with a bacterial suspension using a needleless syringe and scored for disease symptoms. Bacterial populations were measured by culture plating and using a quantitative PCR assay. Surprisingly, leaflets with few to no symptoms had bacterial loads similar to leaflets with severe disease symptoms, indicating that plants without symptoms were tolerant to the bacterium. Genotyping-by-sequencing identified 11 significant SNP markers associated with the tolerance phenotype. This is the first study to identify DNA markers associated with tolerance to P. syringae. These results provide insight into host responses and provide markers that can be used in alfalfa breeding programs to develop improved cultivars to manage the bacterial stem blight of alfalfa.
Collapse
Affiliation(s)
- Yeidymar Sierra Moya
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA; (Y.S.M.); (B.H.)
| | - Cesar Medina
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA;
| | - Bianca Herrera
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA; (Y.S.M.); (B.H.)
| | | | - Long-Xi Yu
- USDA-ARS-Plant Germplasm Introduction and Testing Research Unit, Prosser, WA 99350, USA;
| | - Zhanyou Xu
- USDA-ARS-Plant Science Research Unit, St. Paul, MN 55108, USA;
| | - Deborah A. Samac
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA; (Y.S.M.); (B.H.)
- USDA-ARS-Plant Science Research Unit, St. Paul, MN 55108, USA;
| |
Collapse
|
6
|
Huang S, Jia A, Ma S, Sun Y, Chang X, Han Z, Chai J. NLR signaling in plants: from resistosomes to second messengers. Trends Biochem Sci 2023; 48:776-787. [PMID: 37394345 DOI: 10.1016/j.tibs.2023.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
Nucleotide binding and leucine-rich repeat-containing receptors (NLRs) have a critical role in plant immunity through direct or indirect recognition of pathogen effectors. Recent studies have demonstrated that such recognition induces formation of large protein complexes called resistosomes to mediate NLR immune signaling. Some NLR resistosomes activate Ca2+ influx by acting as Ca2+-permeable channels, whereas others function as active NADases to catalyze the production of nucleotide-derived second messengers. In this review we summarize these studies on pathogen effector-induced assembly of NLR resistosomes and resistosome-mediated production of the second messengers of Ca2+ and nucleotide derivatives. We also discuss downstream events and regulation of resistosome signaling.
Collapse
Affiliation(s)
- Shijia Huang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Aolin Jia
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Shoucai Ma
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Yue Sun
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Chang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Zhifu Han
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Jijie Chai
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China; Institute of Biochemistry, University of Cologne, Cologne 50674, Germany; Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Cologne 50829, Germany; School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
7
|
Wu CH, Derevnina L. The battle within: How pathogen effectors suppress NLR-mediated immunity. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102396. [PMID: 37295294 DOI: 10.1016/j.pbi.2023.102396] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
To successfully colonise plants, pathogens must circumvent the plant immune system. Intracellular immune receptors of the nucleotide-binding leucine-rich repeat (NLR) class of proteins are major components of the plant immune system. NLRs function as disease resistance genes by recognising effectors secreted by diverse pathogens, triggering a localised form of programmed cell death known as the hypersensitive response. To evade detection, effectors have evolved to suppress NLR-mediated immunity by targeting NLRs either directly or indirectly. Here, we compile the latest discoveries related to NLR-suppressing effectors and categorise these effectors based on their mode of action. We discuss the diverse strategies pathogens use to perturb NLR-mediated immunity, and how we can use our understanding of effector activity to help guide new approaches for disease resistance breeding.
Collapse
Affiliation(s)
- Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Lida Derevnina
- Crop Science Centre, Department of Plant Science, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
8
|
Iakovidis M, Chung EH, Saile SC, Sauberzweig E, El Kasmi F. The emerging frontier of plant immunity's core hubs. FEBS J 2023; 290:3311-3335. [PMID: 35668694 DOI: 10.1111/febs.16549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The ever-growing world population, increasingly frequent extreme weather events and conditions, emergence of novel devastating crop pathogens and the social strive for quality food products represent a huge challenge for current and future agricultural production systems. To address these challenges and find realistic solutions, it is becoming more important by the day to understand the complex interactions between plants and the environment, mainly the associated organisms, but in particular pathogens. In the past several years, research in the fields of plant pathology and plant-microbe interactions has enabled tremendous progress in understanding how certain receptor-based plant innate immune systems function to successfully prevent infections and diseases. In this review, we highlight and discuss some of these new ground-breaking discoveries and point out strategies of how pathogens counteract the function of important core convergence hubs of the plant immune system. For practical reasons, we specifically place emphasis on potential applications that can be detracted by such discoveries and what challenges the future of agriculture has to face, but also how these challenges could be tackled.
Collapse
Affiliation(s)
- Michail Iakovidis
- Horticultural Genetics and Biotechnology Department, Mediterranean Agricultural Institute of Chania, Greece
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, Korea
| | - Svenja C Saile
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Elke Sauberzweig
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Farid El Kasmi
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| |
Collapse
|
9
|
Chu J, Li W, Yang Z, Shao Z, Zhang H, Rong S, Kong Y, Du H, Li X, Zhang C. Genome resequencing reveals genetic loci and genes conferring resistance to SMV-SC8 in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:129. [PMID: 37193909 DOI: 10.1007/s00122-023-04373-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/28/2023] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE A soybean natural population genotyped by resequencing and another RIL population genotyped by SoySNP6K were used to explore consistent genetic loci and genes under greenhouse- and field-conditions for SMV-SC8 resistance. Soybean mosaic virus (SMV) is a member of the genus Potyvirus that occurs in all soybean-growing areas of the world and causes serious losses of yield and seed quality. In this study, a natural population composed of 209 accessions resequenced at an average depth of 18.44 × and another RIL population containing 193 lines were used to explore genetic loci and genes conferring resistance to SMV-SC8. There were 3030 SNPs significantly associated with resistance to SC8 on chromosome 13 in the natural population, among which 327 SNPs were located within an ~ 0.14 Mb region (from 28.46 to 28.60 Mb) of the major QTL qRsc8F in the RIL population. Two genes among 21 candidate genes, GmMACPF1 and GmRad60, were identified in the region of consistent linkage and association. Compared to the mock control, the changes in the expression of these two genes after inoculation with SC8 differed between resistant and susceptible accessions. More importantly, GmMACPF1 was shown to confer resistance to SC8 by significantly decreasing virus content in soybean hairy roots overexpressing this gene. A functional marker, FMSC8, was developed based on the allelic variation of GmMACPF1, and a high coincidence rate of 80.19% between the disease index and marker genotype was identified in the 419 soybean accessions. The results provide valuable resources for studies on the molecular mechanism of SMV resistance and genetic improvement in soybean.
Collapse
Affiliation(s)
- Jiahao Chu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Wenlong Li
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Zhanwu Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Zhenqi Shao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Hua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Shaoda Rong
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Youbin Kong
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Hui Du
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Xihuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China.
| | - Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
10
|
Liao M, Ma Z, Kang Y, Zhang B, Gao X, Yu F, Yang P, Ke Y. ENHANCED DISEASE SUSCEPTIBILITY 1 promotes hydrogen peroxide scavenging to enhance rice thermotolerance. PLANT PHYSIOLOGY 2023:kiad257. [PMID: 37099454 PMCID: PMC10400032 DOI: 10.1093/plphys/kiad257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
Heat stress is a major factor limiting the production and geographic distribution of rice (Oryza sativa), and breeding rice varieties with tolerance to heat stress is of immense importance. Although extensive studies have revealed that reactive oxygen species (ROS) play a critical role in rice acclimation to heat stress, the molecular basis of rice controlling ROS homeostasis remains largely unclear. In this study, we discovered a novel heat stress-responsive strategy that orchestrates ROS homeostasis centering on an immune activator, rice ENHANCED DISEASE SUSCEPTIBILITY 1 (OsEDS1). OsEDS1, which confers heat stress tolerance, promotes hydrogen peroxide (H2O2) scavenging by stimulating catalase activity through the OsEDS1-catalase association. The loss-of-function mutation in OsEDS1 causes increased sensitivity to heat stress, whereas overexpression of OsEDS1 enhances thermotolerance. Furthermore, overexpression lines greatly improved rice tolerance to heat stress during the reproductive stage, which was associated with substantially increased seed setting, grain weight, and plant yield. Rice CATALASE C (OsCATC), whose activity is promoted by OsEDS1, degrades H2O2 to activate rice heat stress tolerance. Our findings greatly expand our understanding of heat stress responses in rice. We reveal a molecular framework that promotes heat tolerance through ROS homeostasis regulation, suggesting a theoretical basis and providing genetic resources for breeding heat-tolerant rice varieties.
Collapse
Affiliation(s)
- Min Liao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zemin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yuanrong Kang
- Department of plant pathology, university of Kentucky, Lexington, Ky, 40506, USA
| | - Biaoming Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xuanlin Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Feng Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yinggen Ke
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
11
|
Identifications of QTLs and Candidate Genes Associated with Pseudomonas syringae Responses in Cultivated Soybean ( Glycine max) and Wild Soybean ( Glycine soja). Int J Mol Sci 2023; 24:ijms24054618. [PMID: 36902050 PMCID: PMC10003559 DOI: 10.3390/ijms24054618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Soybeans (Glycine max) are a key food crop, serving as a valuable source of both oil and plant-derived protein. Pseudomonas syringae pv. glycinea (Psg) is among the most aggressive and prevalent pathogens affecting soybean production, causing a form of bacterial spot disease that impacts soybean leaves and thereby reduces crop yields. In this study, 310 natural soybean varieties were screened for Psg resistance and susceptibility. The identified susceptible and resistant varieties were then used for linkage mapping, BSA-seq, and whole genome sequencing (WGS) analyses aimed at identifying key QTLs associated with Psg responses. Candidate Psg-related genes were further confirmed through WGS and qPCR analyses. Candidate gene haplotype analyses were used to explore the associations between haplotypes and soybean Psg resistance. In addition, landrace and wild soybean plants were found to exhibit a higher degree of Psg resistance as compared to cultivated soybean varieties. In total, 10 QTLs were identified using chromosome segment substitution lines derived from Suinong14 (cultivated soybean) and ZYD00006 (wild soybean). Glyma.10g230200 was found to be induced in response to Psg, with the Glyma.10g230200 haplotype corresponding to soybean disease resistance. The QTLs identified herein can be leveraged to guide the marker-assisted breeding of soybean cultivars that exhibit partial resistance to Psg. Moreover, further functional and molecular studies of Glyma.10g230200 have the potential to offer insight into the mechanistic basis for soybean Psg resistance.
Collapse
|
12
|
Decsi K, Kutasy B, Hegedűs G, Alföldi ZP, Kálmán N, Nagy Á, Virág E. Natural immunity stimulation using ELICE16INDURES® plant conditioner in field culture of soybean. Heliyon 2023; 9:e12907. [PMID: 36691550 PMCID: PMC9860300 DOI: 10.1016/j.heliyon.2023.e12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Recently, climate change has had an increasing impact on the world. Innate defense mechanisms operating in plants - such as PAMP-triggered Immunity (PTI) - help to reduce the adverse effects caused by various abiotic and biotic stressors. In this study, the effects of ELICE16INDURES® plant conditioner for organic farming, developed by the Research Institute for Medicinal Plants and Herbs Ltd. Budakalász Hungary, were studied in a soybean population in Northern Hungary. The active compounds and ingredients of this product were selected in such a way as to facilitate the triggering of general plant immunity without the presence and harmful effects of pathogens, thereby strengthening the healthy plant population and preparing it for possible stress effects. In practice, treatments of this agent were applied at two different time points and two concentrations. The conditioning effect was well demonstrated by using agro-drone and ENDVI determination in the soybean field. The genetic background of healthier plants was investigated by NGS sequencing, and by the expression levels of genes encoding enzymes involved in the catalysis of metabolic pathways regulating PTI. The genome-wide transcriptional profiling resulted in 13 contigs related to PAMP-triggered immunity and activated as a result of the treatments. Further analyses showed 16 additional PTI-related contigs whose gene expression changed positively as a result of the treatments. The gene expression values of genes encoded in these contigs were determined by in silico mRNA quantification and validated by RT-qPCR. Both - relatively low and high treatments - showed an increase in gene expression of key genes involving AOC, IFS, MAPK4, MEKK, and GST. Transcriptomic results indicated that the biosyntheses of jasmonic acid (JA), salicylic acid (SA), phenylpropanoid, flavonoid, phytoalexin, and cellular detoxification processes were triggered in the appropriate molecular steps and suggested that plant immune reactions may be activated also artificially, and innate immunity can be enhanced with proper plant biostimulants.
Collapse
Affiliation(s)
- Kincső Decsi
- Department of Plant Physiology and Plant Ecology, Campus Keszthely, Hungarian University of Agriculture and Life Sciences Georgikon, Keszthely, Hungary
| | - Barbara Kutasy
- Department of Plant Physiology and Plant Ecology, Campus Keszthely, Hungarian University of Agriculture and Life Sciences Georgikon, Keszthely, Hungary
| | - Géza Hegedűs
- EduCoMat Ltd., Keszthely, Hungary
- Department of Information Technology and Its Applications, Faculty of Information Technology, University of Pannonia, Zalaegerszeg, Hungary
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary
| | - Zoltán Péter Alföldi
- Department of Environmental Biology, Campus Keszthely, Hungarian University of Agriculture and Life Sciences Georgikon, Keszthely, Hungary
| | - Nikoletta Kálmán
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Ágnes Nagy
- Research Institute for Medicinal Plants and Herbs Ltd., Budakalász, Hungary
| | - Eszter Virág
- EduCoMat Ltd., Keszthely, Hungary
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary
- Research Institute for Medicinal Plants and Herbs Ltd., Budakalász, Hungary
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
13
|
Kourelis J, Adachi H. Activation and Regulation of NLR Immune Receptor Networks. PLANT & CELL PHYSIOLOGY 2022; 63:1366-1377. [PMID: 35941738 DOI: 10.1093/pcp/pcac116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Plants have many types of immune receptors that recognize diverse pathogen molecules and activate the innate immune system. The intracellular immune receptor family of nucleotide-binding domain leucine-rich repeat-containing proteins (NLRs) perceives translocated pathogen effector proteins and executes a robust immune response, including programmed cell death. Many plant NLRs have functionally specialized to sense pathogen effectors (sensor NLRs) or to execute immune signaling (helper NLRs). Sub-functionalized NLRs form a network-type receptor system known as the NLR network. In this review, we highlight the concept of NLR networks, discussing how they are formed, activated and regulated. Two main types of NLR networks have been described in plants: the ACTIVATED DISEASE RESISTANCE 1/N REQUIREMENT GENE 1 network and the NLR-REQUIRED FOR CELL DEATH network. In both networks, multiple helper NLRs function as signaling hubs for sensor NLRs and cell-surface-localized immune receptors. Additionally, the networks are regulated at the transcriptional and posttranscriptional levels, and are also modulated by other host proteins to ensure proper network activation and prevent autoimmunity. Plant pathogens in turn have converged on suppressing NLR networks, thereby facilitating infection and disease. Understanding the NLR immune system at the network level could inform future breeding programs by highlighting the appropriate genetic combinations of immunoreceptors to use while avoiding deleterious autoimmunity and suppression by pathogens.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hiroaki Adachi
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto, 617-0001 Japan
- JST-PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
14
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
15
|
Goyal N, Bhatia G, Garewal N, Upadhyay A, Singh K. Identification of defense related gene families and their response against powdery and downy mildew infections in Vitis vinifera. BMC Genomics 2021; 22:776. [PMID: 34717533 PMCID: PMC8556916 DOI: 10.1186/s12864-021-08081-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/10/2021] [Indexed: 12/04/2022] Open
Abstract
Background Grapevine (Vitis vinifera) productivity has been severely affected by various bacterial, viral and fungal diseases worldwide. When a plant is infected with the pathogen, various defense mechanisms are subsequently activated in plants at various molecular levels. Thus, for substantiating the disease control in an eco-friendly way, it is essential to understand the molecular mechanisms governing pathogen resistance in grapes. Results In our study, we performed genome-wide identification of various defensive genes expressed during powdery mildew (PM) and downy mildew (DM) infections in grapevine. Consequently, we identified 6, 21, 2, 5, 3 and 48 genes of Enhanced Disease Susceptibility 1 (EDS1), Non-Race-specific Disease Resistance (NDR1), Phytoalexin deficient 4 (PAD4), Nonexpressor of PR Gene (NPR), Required for Mla-specified resistance (RAR) and Pathogenesis Related (PR), respectively, in the grapevine genome. The phylogenetic study revealed that V. vinifera defensive genes are evolutionarily related to Arabidopsis thaliana. Differential expression analysis resulted in identification of 2, 4, 7, 2, 4, 1 and 7 differentially expressed Nucleotide-binding leucine rich repeat receptor (NLR), EDS1, NDR1, PAD4, NPR, RAR1 and PR respectively against PM infections and 28, 2, 5, 4, 1 and 19 differentially expressed NLR, EDS1, NDR1, NPR, RAR1 and PR respectively against DM infections in V. vinifera. The co-expression study showed the occurrence of closely correlated defensive genes that were expressed during PM and DM stress conditions. Conclusion The PM and DM responsive defensive genes found in this study can be characterized in future for impelling studies relaying fungal and oomycete resistance in plants, and the functionally validated genes would then be available for conducting in-planta transgenic gene expression studies for grapes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08081-4.
Collapse
Affiliation(s)
- Neetu Goyal
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh, -160014, India
| | - Garima Bhatia
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh, -160014, India
| | - Naina Garewal
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh, -160014, India
| | - Anuradha Upadhyay
- National Research Centre for Grapes, Solapur Road, Pune, Maharashtra, 412 307, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh, -160014, India.
| |
Collapse
|
16
|
Yang B, Yang S, Guo B, Wang Y, Zheng W, Tian M, Dai K, Liu Z, Wang H, Ma Z, Wang Y, Ye W, Dong S, Wang Y. The Phytophthora effector Avh241 interacts with host NDR1-like proteins to manipulate plant immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1382-1396. [PMID: 33586843 DOI: 10.1111/jipb.13082] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/12/2021] [Indexed: 05/27/2023]
Abstract
Plant pathogens rely on effector proteins to suppress host innate immune responses and facilitate colonization. Although the Phytophthora sojae RxLR effector Avh241 promotes Phytophthora infection, the molecular basis of Avh241 virulence remains poorly understood. Here we identified non-race specific disease resistance 1 (NDR1)-like proteins, the critical components in plant effector-triggered immunity (ETI) responses, as host targets of Avh241. Avh241 interacts with NDR1 in the plasma membrane and suppresses NDR1-participated ETI responses. Silencing of GmNDR1s increases the susceptibility of soybean to P. sojae infection, and overexpression of GmNDR1s reduces infection, which supports its positive role in plant immunity against P. sojae. Furthermore, we demonstrate that GmNDR1 interacts with itself, and Avh241 probably disrupts the self-association of GmNDR1. These data highlight an effective counter-defense mechanism by which a Phytophthora effector suppresses plant immune responses, likely by disturbing the function of NDR1 during infection.
Collapse
Affiliation(s)
- Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sen Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baodian Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyin Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenyue Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengjun Tian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaixin Dai
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zehan Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haonan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
17
|
Ngaki MN, Sahoo DK, Wang B, Bhattacharyya MK. Overexpression of a plasma membrane protein generated broad-spectrum immunity in soybean. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:502-516. [PMID: 32954627 PMCID: PMC7957895 DOI: 10.1111/pbi.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/17/2020] [Accepted: 08/06/2020] [Indexed: 05/10/2023]
Abstract
Plants fight-off pathogens and pests by manifesting an array of defence responses using their innate immunity mechanisms. Here we report the identification of a novel soybean gene encoding a plasma membrane protein, transcription of which is suppressed following infection with the fungal pathogen, Fusarium virguliforme. Overexpression of the protein led to enhanced resistance against not only against F. virguliforme, but also against spider mites (Tetranychus urticae, Koch), soybean aphids (Aphis glycines, Matsumura) and soybean cyst nematode (Heterodera glycines). We, therefore, name this protein as Glycine max disease resistance 1 (GmDR1; Glyma.10g094800). The homologues of GmDR1 have been detected only in legumes, cocoa, jute and cotton. The deduced GmDR1 protein contains 73 amino acids. GmDR1 is predicted to contain an ecto- and two transmembrane domains. Transient expression of the green fluorescent protein fused GmDR1 protein in soybean leaves showed that it is a plasma membrane protein. We investigated if chitin, a pathogen-associated molecular pattern (PAMP), common to all pathogen and pests considered in this study, can significantly enhance defence pathways among the GmDR1-overexpressed transgenic soybean lines. Chitin induces marker genes of the salicylic- and jasmonic acid-mediated defence pathways, but suppresses the defence pathway regulated by ethylene. Chitin induced SA- and JA-regulated defence pathways may be one of the mechanisms involved in generating broad-spectrum resistance among the GmDR1-overexpressed transgenic soybean lines against two serious pathogens and two pests including spider mites, against which no known resistance genes have been identified in soybean and among the most other crop species.
Collapse
Affiliation(s)
| | | | - Bing Wang
- Department of AgronomyIowa State UniversityAmesIAUSA
- Present address:
Department of EnergyJoint Genome InstituteWalnut CreekCAUSA
| | | |
Collapse
|
18
|
McCabe CE, Graham MA. New tools for characterizing early brown stem rot disease resistance signaling in soybean. THE PLANT GENOME 2020; 13:e20037. [PMID: 33217212 DOI: 10.1002/tpg2.20037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 05/12/2023]
Abstract
Brown stem rot (BSR) reduces soybean [Glycine max (L.) Merr.] yield by up to 38%. The BSR causal agent is Phialophora gregata f. sp. sojae, a slow-growing, necrotrophic fungus whose life cycle includes latent and pathogenic phases, each lasting several weeks. Brown stem rot foliar symptoms are often misdiagnosed as other soybean diseases or nutrient stress, making BSR resistance especially difficult to phenotype. To shed light on the genes and networks contributing to P. gregata resistance, we conducted RNA sequencing (RNA-seq) of a resistant genotype (PI 437970, Rbs3). Leaf, stem, and root tissues were collected 12, 24, and 36 h after stab inoculation with P. gregata, or mock infection, in the plant stem. By using multiple tissues and time points, we could see that leaves, stems, and roots use the same defense pathways. Our analyses suggest that P. gregata induces a biphasic defense response, with pathogen-associated molecular pattern (PAMP) triggered immunity observed in leaves at 12 and 24 h after infection (HAI) and effector triggered immunity detected at 36 h after infection in the stems. Gene networks associated with defense, photosynthesis, nutrient homeostasis, DNA replication, and growth are the hallmarks of resistance to P. gregata. While P. gregata is a slow-growing pathogen, our results demonstrate that pathogen recognition occurs hours after infection. By exploiting the genes and networks described here, we will be able to develop novel diagnostic tools to facilitate breeding and screening for BSR resistance.
Collapse
Affiliation(s)
- Chantal E McCabe
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011-1010, USA
| | - Michelle A Graham
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011-1010, USA
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA
| |
Collapse
|
19
|
Valandro F, Menguer PK, Cabreira-Cagliari C, Margis-Pinheiro M, Cagliari A. Programmed cell death (PCD) control in plants: New insights from the Arabidopsis thaliana deathosome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110603. [PMID: 32900441 DOI: 10.1016/j.plantsci.2020.110603] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/28/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Programmed cell death (PCD) is a genetically controlled process that leads to cell suicide in both eukaryotic and prokaryotic organisms. In plants PCD occurs during development, defence response and when exposed to adverse conditions. PCD acts controlling the number of cells by eliminating damaged, old, or unnecessary cells to maintain cellular homeostasis. Unlike in animals, the knowledge about PCD in plants is limited. The molecular network that controls plant PCD is poorly understood. Here we present a review of the current mechanisms involved with the genetic control of PCD in plants. We also present an updated version of the AtLSD1 deathosome, which was previously proposed as a network controlling HR-mediated cell death in Arabidopsis thaliana. Finally, we discuss the unclear points and open questions related to the AtLSD1 deathosome.
Collapse
Affiliation(s)
- Fernanda Valandro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Paloma Koprovski Menguer
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | | | - Márcia Margis-Pinheiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Alexandro Cagliari
- Programa de Pós-Graduação em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul, RS, Brazil; Universidade Estadual do Rio Grande do Sul (UERGS), RS, Brazil.
| |
Collapse
|
20
|
Lapin D, Bhandari DD, Parker JE. Origins and Immunity Networking Functions of EDS1 Family Proteins. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:253-276. [PMID: 32396762 DOI: 10.1146/annurev-phyto-010820-012840] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The EDS1 family of structurally unique lipase-like proteins EDS1, SAG101, and PAD4 evolved in seed plants, on top of existing phytohormone and nucleotide-binding-leucine-rich-repeat (NLR) networks, to regulate immunity pathways against host-adapted biotrophic pathogens. Exclusive heterodimers between EDS1 and SAG101 or PAD4 create essential surfaces for resistance signaling. Phylogenomic information, together with functional studies in Arabidopsis and tobacco, identify a coevolved module between the EDS1-SAG101 heterodimer and coiled-coil (CC) HET-S and LOP-B (CCHELO) domain helper NLRs that is recruited by intracellular Toll-interleukin1-receptor (TIR) domain NLR receptors to confer host cell death and pathogen immunity. EDS1-PAD4 heterodimers have a different and broader activity in basal immunity that transcriptionally reinforces local and systemic defenses triggered by various NLRs. Here, we consider EDS1 family protein functions across seed plant lineages in the context of networking with receptor and helper NLRs and downstream resistance machineries. The different modes of action and pathway connectivities of EDS1 family members go some way to explaining their central role in biotic stress resilience.
Collapse
Affiliation(s)
- Dmitry Lapin
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824, USA
| | - Deepak D Bhandari
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Li Q, Wang J, Bai T, Zhang M, Jia Y, Shen D, Zhang M, Dou D. A Phytophthora capsici effector suppresses plant immunity via interaction with EDS1. MOLECULAR PLANT PATHOLOGY 2020; 21:502-511. [PMID: 31997517 PMCID: PMC7060136 DOI: 10.1111/mpp.12912] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 05/22/2023]
Abstract
EDS1 (Enhanced Disease Susceptibility 1) plays a crucial role in both effector-triggered immunity activation and plant basal defence. However, whether pathogen effectors can target EDS1 or an EDS1-related pathway to manipulate immunity is rarely reported. In this study, we identified a Phytophthora capsici Avirulence Homolog (Avh) RxLR (Arg-any amino acid-Leu-Arg) effector PcAvh103 that interacts with EDS1. We demonstrated that PcAvh103 can facilitate P. capsici infection and is required for pathogen virulence. Furthermore, genetic evidence showed that PcAvh103 contributes to virulence through targeting EDS1. Finally, PcAvh103 specifically interacts with the lipase domain of EDS1 and can promote the disassociation of EDS1-PAD4 (Phytoalexin Deficient 4) complex in planta. Together, our results revealed that the P. capsici RxLR effector PcAvh103 targets host EDS1 to suppress plant immunity, probably through disrupting the EDS1-PAD4 immune signalling pathway.
Collapse
Affiliation(s)
- Qi Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Ji Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Tian Bai
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Ming Zhang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Yuling Jia
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Danyu Shen
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Meixiang Zhang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Daolong Dou
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
22
|
Soybean Resistance to Soybean Mosaic Virus. PLANTS 2020; 9:plants9020219. [PMID: 32046350 PMCID: PMC7076706 DOI: 10.3390/plants9020219] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/18/2020] [Accepted: 02/06/2020] [Indexed: 11/26/2022]
Abstract
Soybean mosaic virus (SMV) occurs in all soybean-growing areas in the world and causes huge losses in soybean yields and seed quality. During early viral infection, molecular interactions between SMV effector proteins and the soybean resistance (R) protein, if present, determine the development of resistance/disease in soybean plants. Depending on the interacting strain and cultivar, R-protein in resistant soybean perceives a specific SMV effector, which triggers either the extreme silent resistance or the typical resistance manifested by hypersensitive responses and induction of salicylic acid and reactive oxygen species. In this review, we consider the major advances that have been made in understanding the soybean–SMV arms race. We also focus on dissecting mechanisms SMV employs to establish infection and how soybean perceives and then responds to SMV attack. In addition, progress on soybean R-genes studies, as well as those addressing independent resistance genes, are also addressed.
Collapse
|
23
|
Shine MB, Gao QM, Chowda-Reddy RV, Singh AK, Kachroo P, Kachroo A. Glycerol-3-phosphate mediates rhizobia-induced systemic signaling in soybean. Nat Commun 2019; 10:5303. [PMID: 31757957 PMCID: PMC6876567 DOI: 10.1038/s41467-019-13318-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/24/2019] [Indexed: 11/09/2022] Open
Abstract
Glycerol-3-phosphate (G3P) is a well-known mobile regulator of systemic acquired resistance (SAR), which provides broad spectrum systemic immunity in response to localized foliar pathogenic infections. We show that G3P-derived foliar immunity is also activated in response to genetically-regulated incompatible interactions with nitrogen-fixing bacteria. Using gene knock-down we show that G3P is essential for strain-specific exclusion of non-desirable root-nodulating bacteria and the associated foliar pathogen immunity in soybean. Grafting studies show that while recognition of rhizobium incompatibility is root driven, bacterial exclusion requires G3P biosynthesis in the shoot. Biochemical analyses support shoot-to-root transport of G3P during incompatible rhizobia interaction. We describe a root-shoot-root signaling mechanism which simultaneously enables the plant to exclude non-desirable nitrogen-fixing rhizobia in the root and pathogenic microbes in the shoot.
Collapse
Affiliation(s)
- M B Shine
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Qing-Ming Gao
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - R V Chowda-Reddy
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Asheesh K Singh
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
24
|
Song L, Chen W, Yao Q, Guo B, Valliyodan B, Wang Z, Nguyen HT. Genome-wide transcriptional profiling for elucidating the effects of brassinosteroids on Glycine max during early vegetative development. Sci Rep 2019; 9:16085. [PMID: 31695113 PMCID: PMC6834599 DOI: 10.1038/s41598-019-52599-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/21/2019] [Indexed: 11/10/2022] Open
Abstract
Soybean is a widely grown grain legume and one of the most important economic crop species. Brassinosteroids play a crucial role in plant vegetative growth and reproductive development. However, it remains unclear how BRs regulate the developmental processes in soybean, and the molecular mechanism underlying soybean early development is largely unexplored. In this study, we first characterized how soybean early vegetative growth was specifically regulated by the BR biosynthesis inhibitor propiconazole; this characterization included shortened root and shoot lengths, reduced leaf area, and decreased chlorophyll content. In addition, the growth inhibition induced by Pcz could be rescued by exogenous brassinolide application. The RNA-seq technique was employed to investigate the BR regulatory networks during soybean early vegetative development. Identification and analysis of differentially expressed genes indicated that BRs orchestrate a wide range of cellular activities and biological processes in soybean under various BR concentrations. The regulatory networks between BRs and multiple hormones or stress-related pathways were investigated. The results provide a comprehensive view of the physiological functions of BRs and new insights into the molecular mechanisms at the transcriptional level of BR regulation of soybean early development.
Collapse
Affiliation(s)
- Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
| | - Wei Chen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Qiuming Yao
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Binhui Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
| | - Babu Valliyodan
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Zhiyong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
25
|
Zhang C, Chen H, Zhuang RR, Chen YT, Deng Y, Cai TC, Wang SY, Liu QZ, Tang RH, Shan SH, Pan RL, Chen LS, Zhuang WJ. Overexpression of the peanut CLAVATA1-like leucine-rich repeat receptor-like kinase AhRLK1 confers increased resistance to bacterial wilt in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5407-5421. [PMID: 31173088 PMCID: PMC6793444 DOI: 10.1093/jxb/erz274] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/31/2019] [Indexed: 06/04/2023]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a devastating disease affecting hundreds of plant species, yet the host factors remain poorly characterized. The leucine-rich repeat receptor-like kinase gene AhRLK1, characterized as CLAVATA1, was found to be up-regulated in peanut upon inoculation with R. solanacearum. The AhRLK1 protein was localized in the plasma membrane and cell wall. qPCR results showed AhRLK1 was induced in a susceptible variety but little changed in a resistant cultivar after inoculated with R. solanacearum. Hormones such as salicylic acid, abscisic acid, methyl jasmonate, and ethephon induced AhRLK1 expression. In contrast, AhRLK1 expression was down-regulated under cold and drought treatments. Transient overexpression of AhRLK1 led to a hypersensitive response (HR) in Nicotiana benthamiana. Furthermore, AhRLK1 overexpression in tobacco significantly increased the resistance to R. solanacearum. Besides, the transcripts of most representative defense responsive genes in HR and hormone signal pathways were significantly increased in the transgenic lines. EDS1 and PAD4 in the R gene signaling pathway were also up-regulated, but NDR1 was down-regulated. Accordingly, AhRLK1 may increase the defense response to R. solanacearum via HR and hormone defense signaling, in particular through the EDS1 pathway of R gene signaling. These results provide a new understanding of the CLAVATA1 function and will contribute to genetic enhancement of peanut.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hua Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rui-Rong Zhuang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu-Ting Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ye Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tie-Cheng Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuai-Yin Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qin-Zheng Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rong-Hua Tang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shi-Hua Shan
- Shandong Peanut Research Institute, Qingdao, China
| | - Rong-Long Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, Taiwan
| | - Li-Song Chen
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei-Jian Zhuang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
26
|
Bernacki MJ, Czarnocka W, Szechyńska-Hebda M, Mittler R, Karpiński S. Biotechnological Potential of LSD1, EDS1, and PAD4 in the Improvement of Crops and Industrial Plants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E290. [PMID: 31426325 PMCID: PMC6724177 DOI: 10.3390/plants8080290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022]
Abstract
Lesion Simulating Disease 1 (LSD1), Enhanced Disease Susceptibility (EDS1) and Phytoalexin Deficient 4 (PAD4) were discovered a quarter century ago as regulators of programmed cell death and biotic stress responses in Arabidopsis thaliana. Recent studies have demonstrated that these proteins are also required for acclimation responses to various abiotic stresses, such as high light, UV radiation, drought and cold, and that their function is mediated through secondary messengers, such as salicylic acid (SA), reactive oxygen species (ROS), ethylene (ET) and other signaling molecules. Furthermore, LSD1, EDS1 and PAD4 were recently shown to be involved in the modification of cell walls, and the regulation of seed yield, biomass production and water use efficiency. The function of these proteins was not only demonstrated in model plants, such as Arabidopsis thaliana or Nicotiana benthamiana, but also in the woody plant Populus tremula x tremuloides. In addition, orthologs of LSD1, EDS1, and PAD4 were found in other plant species, including different crop species. In this review, we focus on specific LSD1, EDS1 and PAD4 features that make them potentially important for agricultural and industrial use.
Collapse
Affiliation(s)
- Maciej Jerzy Bernacki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- The Division of Plant Sciences, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Magdalena Szechyńska-Hebda
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek Street 21, 30-239 Cracow, Poland
- The Plant Breeding and Acclimatization Institute - National Research Institute, 05-870 Błonie, Radzików, Poland
| | - Ron Mittler
- The Division of Plant Sciences, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| |
Collapse
|
27
|
Ke Y, Kang Y, Wu M, Liu H, Hui S, Zhang Q, Li X, Xiao J, Wang S. Jasmonic Acid-Involved OsEDS1 Signaling in Rice-Bacteria Interactions. RICE (NEW YORK, N.Y.) 2019; 12:25. [PMID: 30989404 PMCID: PMC6465387 DOI: 10.1186/s12284-019-0283-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/27/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND The function of Arabidopsis enhanced disease susceptibility 1 (AtEDS1) and its sequence homologs in other dicots have been extensively studied. However, it is unknown whether rice EDS1 homolog (OsEDS1) plays a role in regulating the rice-pathogen interaction. RESULTS In this study, a OsEDS1-knouckout mutant (oseds1) was characterized and shown to have increased susceptibility to Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), suggesting the positive role of OsEDS1 in regulating rice disease resistance. However, the following evidence suggests that OsEDS1 shares some differences with AtEDS1 in its way to regulate the host-pathogen interactions. Firstly, OsEDS1 modulates the rice-bacteria interactions involving in jasmonic acid (JA) signaling pathway, while AtEDS1 regulates Arabidopsis disease resistance against biotrophic pathogens depending on salicylic acid (SA) signaling pathway. Secondly, introducing AtEDS1 could reduce oseds1 mutant susceptibility to Xoo rather than to Xoc. Thirdly, exogenous application of JA and SA cannot complement the susceptible phenotype of the oseds1 mutant, while exogenous application of SA is capable of complementing the susceptible phenotype of the ateds1 mutant. Finally, OsEDS1 is not required for R gene mediated resistance, while AtEDS1 is required for disease resistance mediated by TIR-NB-LRR class of R proteins. CONCLUSION OsEDS1 is a positive regulator in rice-pathogen interactions, and shares both similarities and differences with AtEDS1 in its way to regulate plant-pathogen interactions.
Collapse
Affiliation(s)
- Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanrong Kang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengxiao Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shugang Hui
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
28
|
Xun H, Yang X, He H, Wang M, Guo P, Wang Y, Pang J, Dong Y, Feng X, Wang S, Liu B. Over-expression of GmKR3, a TIR-NBS-LRR type R gene, confers resistance to multiple viruses in soybean. PLANT MOLECULAR BIOLOGY 2019; 99:95-111. [PMID: 30535849 DOI: 10.1007/s11103-018-0804-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/28/2018] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE That overexpression of GmKR3 enhances innate virus resistance by stimulating. Soybean mosaic virus (SMV) is found in many soybean production areas, and SMV infection is one of the prevalent viral diseases that can cause significant yield losses in soybean. In plants, resistance (R) genes are involved in pathogen reorganization and innate immune response activation. Most R proteins have nucleotide-binding site and leucine-rich repeat (NBS-LRR) domains, and some of the NBS-LRR type R proteins in dicots have Toll/Interleukin-1 Receptor (TIR) motifs. We report here the analysis of the over-expression of GmKR3, a soybean TIR-NBS-LRR type R gene on virus resistance in soybean. When over-expressed in soybean, GmKR3 enhanced the plant's resistance to several strains of SMV, the closely related potyviruses bean common mosaic virus (BCMV) and watermelon mosaic virus (WMV), and the secovirus bean pod mottle virus (BPMV). Importantly, over-expression of GmKR3 did not affect plant growth and development, including yield and qualities of the seeds. HPLC analysis showed that abscisic acid (ABA) content increased in the 35S:GmKR3 transgenic plants, and in both wild-type and 35S:GmKR3 transgenic plants in response to virus inoculation. Consistent with this observation, we found that the expression of two ABA catabolism genes was down-regulated in 35S:GmKR3 transgenic plants. We also found that the expression of Gm04.3, an ABA responsive gene encoding BURP domain-containing protein, was up-regulated in 35S:GmKR3 transgenic plants. Taken together, our results suggest that overexpression of GmKR3 enhanced virus resistance in soybean, which was achieved at least in part via ABA signaling.
Collapse
Affiliation(s)
- Hongwei Xun
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiangdong Yang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Hongli He
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Meng Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Ying Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jinsong Pang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.
| | - Yingshan Dong
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.
- College of Life Science, Linyi University, Linyi, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
29
|
Chapman KM, Marchi-Werle L, Hunt TE, Heng-Moss TM, Louis J. Abscisic and Jasmonic Acids Contribute to Soybean Tolerance to the Soybean Aphid (Aphis glycines Matsumura). Sci Rep 2018; 8:15148. [PMID: 30310120 PMCID: PMC6181993 DOI: 10.1038/s41598-018-33477-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/01/2018] [Indexed: 12/25/2022] Open
Abstract
Plant resistance can provide effective, economical, and sustainable pest control. Tolerance to the soybean aphid has been identified and confirmed in the soybean KS4202. Although its resistance mechanisms are not fully understood, evidence suggests that enhanced detoxification of reactive oxygen species (ROS) is an active system under high aphid infestation. We further explored tolerance by evaluating the differences in constitutive and aphid-induced defenses in KS4202 through the expression of selected defense-related transcripts and the levels of the phytohormones abscisic acid (ABA), jasmonic acid (JA), JA-isoleucine (JA-Ile), cis-(+)-12-oxo-phytodienoic acid (OPDA), and salicylic acid (SA) over several time points. Higher constitutive levels of ABA and JA, and basal expression of ABA- and JA-related transcripts were found in the tolerant genotype. Conversely, aphid-induced defenses in KS4202 were expressed as an upregulation of peroxidases under prolonged aphid infestation (>7 days). Our results point at the importance of phytohormones in constitutive defense in KS4202 tolerance to the soybean aphid. Understanding the underlying mechanisms of tolerance will assist breeding for soybean with these traits, and perhaps help extend the durability of Rag (Resistance to Aphis glycines)-mediated resistance genes.
Collapse
Affiliation(s)
- Kaitlin M Chapman
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Lia Marchi-Werle
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Thomas E Hunt
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Tiffany M Heng-Moss
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
30
|
Hajimorad MR, Domier LL, Tolin SA, Whitham SA, Saghai Maroof MA. Soybean mosaic virus: a successful potyvirus with a wide distribution but restricted natural host range. MOLECULAR PLANT PATHOLOGY 2018; 19:1563-1579. [PMID: 29134790 PMCID: PMC6638002 DOI: 10.1111/mpp.12644] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 05/12/2023]
Abstract
TAXONOMY Soybean mosaic virus (SMV) is a species within the genus Potyvirus, family Potyviridae, which includes almost one-quarter of all known plant RNA viruses affecting agriculturally important plants. The Potyvirus genus is the largest of all genera of plant RNA viruses with 160 species. PARTICLE The filamentous particles of SMV, typical of potyviruses, are about 7500 Å long and 120 Å in diameter with a central hole of about 15 Å in diameter. Coat protein residues are arranged in helices of about 34 Å pitch having slightly less than nine subunits per turn. GENOME The SMV genome consists of a single-stranded, positive-sense, polyadenylated RNA of approximately 9.6 kb with a virus-encoded protein (VPg) linked at the 5' terminus. The genomic RNA contains a single large open reading frame (ORF). The polypeptide produced from the large ORF is processed proteolytically by three viral-encoded proteinases to yield about 10 functional proteins. A small ORF, partially overlapping the P3 cistron, pipo, is encoded as a fusion protein in the N-terminus of P3 (P3N + PIPO). BIOLOGICAL PROPERTIES SMV's host range is restricted mostly to two plant species of a single genus: Glycine max (cultivated soybean) and G. soja (wild soybean). SMV is transmitted by aphids non-persistently and by seeds. The variability of SMV is recognized by reactions on cultivars with dominant resistance (R) genes. Recessive resistance genes are not known. GEOGRAPHICAL DISTRIBUTION AND ECONOMIC IMPORTANCE As a consequence of its seed transmissibility, SMV is present in all soybean-growing areas of the world. SMV infections can reduce significantly seed quantity and quality (e.g. mottled seed coats, reduced seed size and viability, and altered chemical composition). CONTROL The most effective means of managing losses from SMV are the planting of virus-free seeds and cultivars containing single or multiple R genes. KEY ATTRACTIONS The interactions of SMV with soybean genotypes containing different dominant R genes and an understanding of the functional role(s) of SMV-encoded proteins in virulence, transmission and pathogenicity have been investigated intensively. The SMV-soybean pathosystem has become an excellent model for the examination of the genetics and genomics of a uniquely complex gene-for-gene resistance model in a crop of worldwide importance.
Collapse
Affiliation(s)
- M. R. Hajimorad
- Department of Entomology and Plant PathologyThe University of TennesseeKnoxvilleTN 37996USA
| | - L. L. Domier
- United States Department of Agriculture‐Agricultural Research Service and Department of Crop SciencesUniversity of IllinoisUrbanaIL 61801USA
| | - S. A. Tolin
- Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburgVA 24061USA
| | - S. A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA 50011USA
| | - M. A. Saghai Maroof
- Department of Crop and Soil Environmental SciencesVirginia TechBlacksburgVA 24061USA
| |
Collapse
|
31
|
Kachroo A, Vincelli P, Kachroo P. Signaling Mechanisms Underlying Resistance Responses: What Have We Learned, and How Is It Being Applied? PHYTOPATHOLOGY 2017; 107:1452-1461. [PMID: 28609156 DOI: 10.1094/phyto-04-17-0130-rvw] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plants have evolved highly specific mechanisms to resist pathogens including preformed barriers and the induction of elaborate signaling pathways. Induced signaling requires recognition of the pathogen either via conserved pathogen-derived factors or specific pathogen-encoded proteins called effectors. Recognition of these factors by host encoded receptor proteins can result in the elicitation of different tiers of resistance at the site of pathogen infection. In addition, plants induce a type of systemic immunity which is effective at the whole plant level and protects against a broad spectrum of pathogens. Advances in our understanding of pathogen-recognition mechanisms, identification of the underlying molecular components, and their significant conservation across diverse plant species has enabled the development of novel strategies to combat plant diseases. This review discusses key advances in plant defense signaling that have been adapted or have the potential to be adapted for plant protection against microbial diseases.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | - Paul Vincelli
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| |
Collapse
|
32
|
Islam MZ, Yun HK. Three transcripts of EDS1-like genes respond differently to Vitis flexuosa infection. ACTA ACUST UNITED AC 2017. [DOI: 10.5010/jpb.2017.44.2.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Md. Zaherul Islam
- On-Farm Research Division, Bangladesh Agricultural Research Institute, Pabna 6600, Bangladesh
| | - Hae Keun Yun
- Department of Horticulture and Life Science, Yeungnam University, Gyeonsan 38541, Korea
| |
Collapse
|
33
|
Mine A, Nobori T, Salazar-Rondon MC, Winkelmüller TM, Anver S, Becker D, Tsuda K. An incoherent feed-forward loop mediates robustness and tunability in a plant immune network. EMBO Rep 2017; 18:464-476. [PMID: 28069610 DOI: 10.15252/embr.201643051] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/09/2016] [Accepted: 12/08/2016] [Indexed: 01/09/2023] Open
Abstract
Immune signaling networks must be tunable to alleviate fitness costs associated with immunity and, at the same time, robust against pathogen interferences. How these properties mechanistically emerge in plant immune signaling networks is poorly understood. Here, we discovered a molecular mechanism by which the model plant species Arabidopsis thaliana achieves robust and tunable immunity triggered by the microbe-associated molecular pattern, flg22. Salicylic acid (SA) is a major plant immune signal molecule. Another signal molecule jasmonate (JA) induced expression of a gene essential for SA accumulation, EDS5 Paradoxically, JA inhibited expression of PAD4, a positive regulator of EDS5 expression. This incoherent type-4 feed-forward loop (I4-FFL) enabled JA to mitigate SA accumulation in the intact network but to support it under perturbation of PAD4, thereby minimizing the negative impact of SA on fitness as well as conferring robust SA-mediated immunity. We also present evidence for evolutionary conservation of these gene regulations in the family Brassicaceae Our results highlight an I4-FFL that simultaneously provides the immune network with robustness and tunability in A. thaliana and possibly in its relatives.
Collapse
Affiliation(s)
- Akira Mine
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Center for Gene Research, Nagoya University, Chikusa-Ku Nagoya, Japan
| | - Tatsuya Nobori
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Maria C Salazar-Rondon
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Thomas M Winkelmüller
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Shajahan Anver
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Dieter Becker
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kenichi Tsuda
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
34
|
Zhang C, Chen H, Cai T, Deng Y, Zhuang R, Zhang N, Zeng Y, Zheng Y, Tang R, Pan R, Zhuang W. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:39-55. [PMID: 27311738 PMCID: PMC5253469 DOI: 10.1111/pbi.12589] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/16/2016] [Accepted: 06/10/2016] [Indexed: 05/20/2023]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a ruinous soilborne disease affecting more than 450 plant species. Efficient control methods for this disease remain unavailable to date. This study characterized a novel nucleotide-binding site-leucine-rich repeat resistance gene AhRRS5 from peanut, which was up-regulated in both resistant and susceptible peanut cultivars in response to R. solanacearum. The product of AhRRS5 was localized in the nucleus. Furthermore, treatment with phytohormones such as salicylic acid (SA), abscisic acid (ABA), methyl jasmonate (MeJA) and ethephon (ET) increased the transcript level of AhRRS5 with diverse responses between resistant and susceptible peanuts. Abiotic stresses such as drought and cold conditions also changed AhRRS5 expression. Moreover, transient overexpression induced hypersensitive response in Nicotiana benthamiana. Overexpression of AhRRS5 significantly enhanced the resistance of heterogeneous tobacco to R. solanacearum, with diverse resistance levels in different transgenic lines. Several defence-responsive marker genes in hypersensitive response, including SA, JA and ET signals, were considerably up-regulated in the transgenic lines as compared with the wild type inoculated with R. solanacearum. Nonexpressor of pathogenesis-related gene 1 (NPR1) and non-race-specific disease resistance 1 were also up-regulated in response to the pathogen. These results indicate that AhRRS5 participates in the defence response to R. solanacearum through the crosstalk of multiple signalling pathways and the involvement of NPR1 and R gene signals for its resistance. This study may guide the resistance enhancement of peanut and other economic crops to bacterial wilt disease.
Collapse
Affiliation(s)
- Chong Zhang
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Hua Chen
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Tiecheng Cai
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ye Deng
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ruirong Zhuang
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ning Zhang
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Yuanhuan Zeng
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Yixiong Zheng
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of AgronomyZhongkai Agriculture and Engineering CollegeGuangzhouGuangdongChina
| | - Ronghua Tang
- Cash Crops Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ronglong Pan
- Department of Life Science and Institute of Bioinformatics and Structural BiologyCollege of Life ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Weijian Zhuang
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| |
Collapse
|
35
|
Yan Z, Xingfen W, Wei R, Jun Y, Zhiying M. Island Cotton Enhanced Disease Susceptibility 1 Gene Encoding a Lipase-Like Protein Plays a Crucial Role in Response to Verticillium dahliae by Regulating the SA Level and H 2O 2 Accumulation. FRONTIERS IN PLANT SCIENCE 2016; 7:1830. [PMID: 28018374 PMCID: PMC5156716 DOI: 10.3389/fpls.2016.01830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/21/2016] [Indexed: 05/23/2023]
Abstract
Cotton is one of the most economically important crops, but most cultivated varieties lack adequate innate immunity or resistance to Verticillium wilt. This results in serious losses to both yield and fiber quality. To identify the genetic resources for innate immunity and understand the pathways for pathogen defenses in this crop, here we focus on orthologs of the central Arabidopsis thaliana defense regulator Enhanced Disease Susceptibility 1 (EDS1). The full-length cDNA of GbEDS1 was obtained by screening the full-length cDNA library of Gossypium barbadense combining with RACE strategy. Its open reading frame is 1848 bp long, encoding 615 amino acid residues. Sequence analysis showed that GbEDS1 contains a conserved N-terminal lipase domain and an EDS1-specific KNEDT motif. Expression profiling indicated that the gene is induced by Verticillium dahliae as well as salicylic acid (SA) treatment. Subcellular localization assays revealed that GbEDS1 is located in the cell cytoplasm and nucleus. Overexpression of GbEDS1 in Arabidopsis dramatically up-regulated SA and H2O2 production, resulting in enhanced disease resistance to V. dahliae. Silencing of GbEDS1 in G. barbadense significantly decreased SA and H2O2 accumulation, leading to the cotton more susceptibility. Moreover, combining the gene expression results from transgenic Arabidopsis and silenced-GbEDS1 cotton, it indicated that GbEDS1 could activate GbNDR1 and GbBAK1 expression. These findings not only broaden our knowledge about the biological role of GbEDS1, but also provide new insights into the defense mechanisms of GbEDS1 against V. dahliae in cotton.
Collapse
|
36
|
Shine MB, Yang JW, El-Habbak M, Nagyabhyru P, Fu DQ, Navarre D, Ghabrial S, Kachroo P, Kachroo A. Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. THE NEW PHYTOLOGIST 2016; 212:627-636. [PMID: 27411159 DOI: 10.1111/nph.14078] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/23/2016] [Indexed: 05/05/2023]
Abstract
Salicylic acid (SA), an essential regulator of plant defense, is derived from chorismate via either the phenylalanine ammonia lyase (PAL) or the isochorismate synthase (ICS) catalyzed steps. The ICS pathway is thought to be the primary contributor of defense-related SA, at least in Arabidopsis. We investigated the relative contributions of PAL and ICS to defense-related SA accumulation in soybean (Glycine max). Soybean plants silenced for five PAL isoforms or two ICS isoforms were analyzed for SA concentrations and SA-derived defense responses to the hemibiotrophic pathogens Pseudomonas syringae and Phytophthora sojae. We show that, unlike in Arabidopsis, PAL and ICS pathways are equally important for pathogen-induced SA biosynthesis in soybean. Knock-down of either pathway shuts down SA biosynthesis and abrogates pathogen resistance. Moreover, unlike in Arabidopsis, pathogen infection is associated with the suppression of ICS gene expression. Pathogen-induced biosynthesis of SA via the PAL pathway correlates inversely with phenylalanine concentrations. Although infections with either virulent or avirulent strains of the pathogens increase SA concentrations, resistance protein-mediated response to avirulent P. sojae strains may function in an SA-independent manner. These results show that PAL- and ICS-catalyzed reactions function cooperatively in soybean defense and highlight the importance of PAL in pathogen-induced SA biosynthesis.
Collapse
Affiliation(s)
- M B Shine
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Jung-Wook Yang
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Mohamed El-Habbak
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Padmaja Nagyabhyru
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Da-Qi Fu
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Duroy Navarre
- Department of Plant Pathology, USDA-Agricultural Research Service, Washington State University, Prosser, WA, 99350, USA
| | - Said Ghabrial
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
37
|
Luan H, Shine MB, Cui X, Chen X, Ma N, Kachroo P, Zhi H, Kachroo A. The Potyviral P3 Protein Targets Eukaryotic Elongation Factor 1A to Promote the Unfolded Protein Response and Viral Pathogenesis. PLANT PHYSIOLOGY 2016; 172:221-34. [PMID: 27356973 PMCID: PMC5074642 DOI: 10.1104/pp.16.00505] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/14/2016] [Indexed: 05/21/2023]
Abstract
The biochemical function of the potyviral P3 protein is not known, although it is known to regulate virus replication, movement, and pathogenesis. We show that P3, the putative virulence determinant of soybean mosaic virus (SMV), targets a component of the translation elongation complex in soybean. Eukaryotic elongation factor 1A (eEF1A), a well-known host factor in viral pathogenesis, is essential for SMV virulence and the associated unfolded protein response (UPR). Silencing GmEF1A inhibits accumulation of SMV and another ER-associated virus in soybean. Conversely, endoplasmic reticulum (ER) stress-inducing chemicals promote SMV accumulation in wild-type, but not GmEF1A-knockdown, plants. Knockdown of genes encoding the eEF1B isoform, which is important for eEF1A function in translation elongation, has similar effects on UPR and SMV resistance, suggesting a link to translation elongation. P3 and GmEF1A promote each other's nuclear localization, similar to the nuclear-cytoplasmic transport of eEF1A by the Human immunodeficiency virus 1 Nef protein. Our results suggest that P3 targets host elongation factors resulting in UPR, which in turn facilitates SMV replication and place eEF1A upstream of BiP in the ER stress response during pathogen infection.
Collapse
Affiliation(s)
- Hexiang Luan
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - M B Shine
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - Xiaoyan Cui
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - Xin Chen
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - Na Ma
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - Pradeep Kachroo
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - Haijan Zhi
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| | - Aardra Kachroo
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China (H.L., N.M., H.Z.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (H.L., M.B.S., P.K., A.K.); andJiangsu Academy of Agricultural Sciences, Nanjing 210014, China (X.Cu., X.Ch.)
| |
Collapse
|
38
|
Whitham SA, Qi M, Innes RW, Ma W, Lopes-Caitar V, Hewezi T. Molecular Soybean-Pathogen Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:443-68. [PMID: 27359370 DOI: 10.1146/annurev-phyto-080615-100156] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Soybean hosts a wide variety of pathogens that cause significant yield losses. The importance of soybean as a major oilseed crop has led to research focused on its interactions with pathogens, such as Soybean mosaic virus, Pseudomonas syringae, Phytophthora sojae, Phakopsora pachyrhizi, and Heterodera glycines. Pioneering work on soybean's interactions with these organisms, which represent the five major pathogen groups (viruses, bacteria, oomycetes, fungi, and nematodes), has contributed to our understanding of the molecular mechanisms underlying virulence and immunity. These mechanisms involve conserved and unique features that validate the need for research in both soybean and homologous model systems. In this review, we discuss identification of effectors and their functions as well as resistance gene-mediated recognition and signaling. We also point out areas in which model systems and recent advances in resources and tools have provided opportunities to gain deeper insights into soybean-pathogen interactions.
Collapse
Affiliation(s)
- Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011; ,
| | - Mingsheng Qi
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011; ,
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405;
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521;
| | - Valéria Lopes-Caitar
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996; ,
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996; ,
| |
Collapse
|
39
|
Langenbach C, Campe R, Beyer SF, Mueller AN, Conrath U. Fighting Asian Soybean Rust. FRONTIERS IN PLANT SCIENCE 2016; 7:797. [PMID: 27375652 PMCID: PMC4894884 DOI: 10.3389/fpls.2016.00797] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/22/2016] [Indexed: 05/18/2023]
Abstract
Phakopsora pachyrhizi is a biotrophic fungus provoking SBR disease. SBR poses a major threat to global soybean production. Though several R genes provided soybean immunity to certain P. pachyrhizi races, the pathogen swiftly overcame this resistance. Therefore, fungicides are the only current means to control SBR. However, insensitivity to fungicides is soaring in P. pachyrhizi and, therefore, alternative measures are needed for SBR control. In this article, we discuss the different approaches for fighting SBR and their potential, disadvantages, and advantages over other measures. These encompass conventional breeding for SBR resistance, transgenic approaches, exploitation of transcription factors, secondary metabolites, and antimicrobial peptides, RNAi/HIGS, and biocontrol strategies. It seems that an integrating approach exploiting different measures is likely to provide the best possible means for the effective control of SBR.
Collapse
Affiliation(s)
- Caspar Langenbach
- Department of Plant Physiology, RWTH Aachen UniversityAachen, Germany
| | - Ruth Campe
- BASF Plant Science Company GmbHLimburgerhof, Germany
| | | | - André N. Mueller
- Department of Plant Physiology, RWTH Aachen UniversityAachen, Germany
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen UniversityAachen, Germany
| |
Collapse
|
40
|
Liu JZ, Graham MA, Pedley KF, Whitham SA. Gaining insight into soybean defense responses using functional genomics approaches. Brief Funct Genomics 2015; 14:283-90. [PMID: 25832523 DOI: 10.1093/bfgp/elv009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Soybean pathogens significantly impact yield, resulting in over $4 billion dollars in lost revenue annually in the United States. Despite the deployment of improved soybean cultivars, pathogens continue to evolve to evade plant defense responses. Thus, there is an urgent need to identify and characterize gene networks controlling defense responses to harmful pathogens. In this review, we focus on major advances that have been made in identifying the genes and gene networks regulating defense responses with an emphasis on soybean-pathogen interactions that have been amenable to gene function analyses using gene silencing technologies. Further we describe new research striving to identify genes involved in durable broad-spectrum resistance. Finally, we consider future prospects for functional genomic studies in soybean and demonstrate that understanding soybean disease and stress tolerance will be expedited at an unprecedented pace.
Collapse
|
41
|
Lee HA, Yeom SI. Plant NB-LRR proteins: tightly regulated sensors in a complex manner. Brief Funct Genomics 2015; 14:233-42. [DOI: 10.1093/bfgp/elv012] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Gao QM, Zhu S, Kachroo P, Kachroo A. Signal regulators of systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2015; 6:228. [PMID: 25918514 PMCID: PMC4394658 DOI: 10.3389/fpls.2015.00228] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/23/2015] [Indexed: 05/19/2023]
Abstract
Salicylic acid (SA) is an important phytohormone that plays a vital role in a number of physiological responses, including plant defense. The last two decades have witnessed a number of breakthroughs related to biosynthesis, transport, perception and signaling mediated by SA. These findings demonstrate that SA plays a crictical role in both local and systemic defense responses. Systemic acquired resistance (SAR) is one such SA-dependent response. SAR is a long distance signaling mechanism that provides broad spectrum and long-lasting resistance to secondary infections throughout the plant. This unique feature makes SAR a highly desirable trait in crop production. This review summarizes the recent advances in the role of SA in SAR and discusses its relationship to other SAR inducers.
Collapse
Affiliation(s)
- Qing-Ming Gao
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
| | - Shifeng Zhu
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Pradeep Kachroo
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
- *Correspondence: Aardra Kachroo, Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans drive, Lexington, KY 40546, USA
| |
Collapse
|
43
|
Gao F, Dai R, Pike SM, Qiu W, Gassmann W. Functions of EDS1-like and PAD4 genes in grapevine defenses against powdery mildew. PLANT MOLECULAR BIOLOGY 2014; 86:381-93. [PMID: 25107649 DOI: 10.1007/s11103-014-0235-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/01/2014] [Indexed: 05/20/2023]
Abstract
The molecular interactions between grapevine and the obligate biotrophic fungus Erysiphe necator are not understood in depth. One reason for this is the recalcitrance of grapevine to genetic modifications. Using defense-related Arabidopsis mutants that are susceptible to pathogens, we were able to analyze key components in grapevine defense responses. We have examined the functions of defense genes associated with the salicylic acid (SA) pathway, including ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), EDS1-LIKE 2 (EDL2), EDL5 and PHYTOALEXIN DEFICIENT 4 (PAD4) of two grapevine species, Vitis vinifera cv. Cabernet Sauvignon, which is susceptible to E. necator, and V. aestivalis cv. Norton, which is resistant. Both VaEDS1 and VvEDS1 were previously found to functionally complement the Arabidopsis eds1-1 mutant. Here we show that the promoters of both VaEDS1 and VvEDS1 were induced by SA, indicating that the heightened defense of Norton is related to its high SA level. Other than Va/VvEDS1, only VaEDL2 complemented Arabidopsis eds1-1, whereas Va/VvPAD4 did not complement Arabidopsis pad4-1. Bimolecular fluorescence complementation results indicated that Vitis EDS1 and EDL2 proteins interact with Vitis PAD4 and AtPAD4, suggesting that Vitis EDS1/EDL2 forms a complex with PAD4 to confer resistance, as is known from Arabidopsis. However, Vitis EDL5 and PAD4 did not interact with Arabidopsis EDS1 or PAD4, correlating with their inability to function in Arabidopsis. Together, our study suggests a more complicated EDS1/PAD4 module in grapevine and provides insight into molecular mechanisms that determine disease resistance levels in Vitis species native to the North American continent.
Collapse
Affiliation(s)
- Fei Gao
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, 371C Life Sciences Center, Columbia, MO, 65211-7310, USA
| | | | | | | | | |
Collapse
|