1
|
Huang H, Liu X, Liu Y, Wu F, Jin W. Genome-Wide Identification and Expression Analysis of 1-Aminocyclopropane-1-Carboxylate Synthase (ACS) Gene Family in Myrica rubra. Int J Mol Sci 2025; 26:4580. [PMID: 40429726 PMCID: PMC12111025 DOI: 10.3390/ijms26104580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/30/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Ethylene plays a crucial role in plant growth, development, and stress responses, with 1-aminocyclopropane-1-carboxylate synthase (ACS) being a key enzyme in its biosynthetic pathway. However, the ACS gene family of Myrica rubra has not yet been systematically identified and characterized. In this study, we identified and characterized seven ACS genes (MrACS) in Myrica rubra through genome-wide analysis. Phylogenetic analysis revealed that these genes belong to three major subfamilies, with certain members clustering closely with ACS genes from Rosaceae species, suggesting a conserved evolutionary relationship. Gene structure and the conserved motif analyses confirmed functional conservation, while chromosomal localization indicated an uneven distribution across the genome. Collinearity analysis revealed strong homologous relationships between Myrica rubra and other plant species, particularly Solanum lycopersicum, Vitis vinifera, and Prunus persica. Furthermore, the transcriptome data demonstrated distinct temporal and tissue-specific expression patterns, with MrACS5 showing fruit-specific expression, suggesting its potential role in fruit ripening. These findings provide comprehensive insights into the ACS gene family in Myrica rubra, offering a valuable foundation for further functional studies on ethylene biosynthesis and its regulatory mechanisms in fruit development.
Collapse
Affiliation(s)
- Huanhui Huang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.H.); (X.L.); (Y.L.); (F.W.)
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312366, China
| | - Xintong Liu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.H.); (X.L.); (Y.L.); (F.W.)
| | - Yiqing Liu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.H.); (X.L.); (Y.L.); (F.W.)
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312366, China
| | - Fangli Wu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.H.); (X.L.); (Y.L.); (F.W.)
| | - Weibo Jin
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.H.); (X.L.); (Y.L.); (F.W.)
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312366, China
| |
Collapse
|
2
|
Ashikari M, Nagai K, Bailey-Serres J. Surviving floods: Escape and quiescence strategies of rice coping with submergence. PLANT PHYSIOLOGY 2025; 197:kiaf029. [PMID: 39880379 DOI: 10.1093/plphys/kiaf029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 01/31/2025]
Abstract
Historical and recent insights into the molecular mechanisms of escape and quiescence strategies employed by rice to survive flooding.
Collapse
Affiliation(s)
- Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Keisuke Nagai
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
- Plant Stress Resilience, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
3
|
Zhou L, Li X, Hao S, Hong L, Chen L, Li QQ. Distinct molecular responses of mangrove plants to hypoxia and reoxygenation stresses contribute to their resilience in coastal wetland environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177357. [PMID: 39500460 DOI: 10.1016/j.scitotenv.2024.177357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/10/2024]
Abstract
Mangroves adapt to periodical submergence and constitute resilient ecosystems in coastal environments. The question is whether they can sustain long submergence stress when sea level rises as a consequence of climate change. To address this, seedlings of two representative mangrove species that acclimate to low to mid tide (Avicennia marina) and mid to high tide (Kandelia obovata) conditions were treated with continual submergence for 7 days as extended hypoxia, or semi-diurnal cyclic submergence and reoxygenation for 7 days. At specific time points, leaves were collected to construct RNA-Sequencing libraries for gene expression analysis. Through the lens of transcriptome, the initial response of A. marina to submergence was mild but more dramatic after prolong immersion. However, the initial response of K. obovata was drastic and reduced in latitude later, suggesting distinct species-specific responses. After adapting to diurnal cycles, both species minimized transcriptome fluctuations similarly. Metabolically, during initial response, sucrose and starch were converted into glucose for fermentation to increase glycolytic flux, coupled with regeneration of NAD+. The energy amelioration was accompanied by longer term phytohormone regulations where ethylene signal transduction pathway was enhanced, but abscisic acid biosynthesis was reduced. Notably, gibberellic acids biosynthesis increased in A. marina but decreased in K. obovata as a unique feature. Genomic level analysis indicated that only about 30 % of the conserved plant submergence responsive genes were expressed during submergence in these mangroves. The function of an ethylene responsive gene was validated in transgenic Arabidopsis. This research elucidates distinct molecular mechanisms and metabolic pathways that empower A. marina and K. obovata to endure prolonged submergence and hypoxia. By highlighting their unique adaptive strategies in response to rising sea levels, these findings enhance our understanding of mangrove resilience and provide insights for the conservation and management of these essential coastal ecosystems in the face of climate change.
Collapse
Affiliation(s)
- Lichun Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiao Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Saiqi Hao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Liwei Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Luzhen Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
4
|
Liu XD, Zeng YY, Hasan MM, Ghimire S, Jiang H, Qi SH, Tian XQ, Fang XW. Diverse functional interactions between ABA and ethylene in plant development and responses to stress. PHYSIOLOGIA PLANTARUM 2024; 176:e70000. [PMID: 39686889 DOI: 10.1111/ppl.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Abscisic acid (ABA) and ethylene are two essential hormones that play crucial roles throughout the entire plant life cycle and in their tolerance to abiotic or biotic stress. In recent decades, increasing research has revealed that, in addition to their individual roles, these two hormones are more likely to function through their interactions, forming a complex regulatory network. More importantly, their functions change and their interactions vary from synergistic to antagonistic depending on the specific plant organ and development stage, which is less focused, compared and systematically summarized. In this review, we first introduce the general synthesis and action signaling pathways of these two plant hormones individually and their interactions in relation to seed dormancy and germination, primary root growth, shoot development, fruit ripening, leaf senescence and abscission, and stomatal movement regulation under both normal and stress conditions. A better understanding of the complex interactions between ABA and ethylene will enhance our knowledge of how plant hormones regulate development and respond to stress and may facilitate the development of crops with higher yields and greater tolerance to stressful environments through tissue-specific genetic modifications in the future.
Collapse
Affiliation(s)
- Xu-Dong Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Yuan-Yuan Zeng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Md Mahadi Hasan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Shantwana Ghimire
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Hui Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Shi-Hua Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xue-Qian Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiang-Wen Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Cao D, Depaepe T, Sanchez-Muñoz R, Janssens H, Lemière F, Willems T, Winne J, Prinsen E, Van Der Straeten D. A UPLC-MS/MS method for quantification of metabolites in the ethylene biosynthesis pathway and its biological validation in Arabidopsis. THE NEW PHYTOLOGIST 2024; 243:1262-1275. [PMID: 38849316 DOI: 10.1111/nph.19878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
The plant hormone ethylene is of vital importance in the regulation of plant development and stress responses. Recent studies revealed that 1-aminocyclopropane-1-carboxylic acid (ACC) plays a role beyond its function as an ethylene precursor. However, the absence of reliable methods to quantify ACC and its conjugates malonyl-ACC (MACC), glutamyl-ACC (GACC), and jasmonyl-ACC (JA-ACC) hinders related research. Combining synthetic and analytical chemistry, we present the first, validated methodology to rapidly extract and quantify ACC and its conjugates using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Its relevance was confirmed by application to Arabidopsis mutants with altered ACC metabolism and wild-type plants under stress. Pharmacological and genetic suppression of ACC synthesis resulted in decreased ACC and MACC content, whereas induction led to elevated levels. Salt, wounding, and submergence stress enhanced ACC and MACC production. GACC and JA-ACC were undetectable in vivo; however, GACC was identified in vitro, underscoring the broad applicability of the method. This method provides an efficient tool to study individual functions of ACC and its conjugates, paving the road toward exploration of novel avenues in ACC and ethylene metabolism, and revisiting ethylene literature in view of the recent discovery of an ethylene-independent role of ACC.
Collapse
Affiliation(s)
- Da Cao
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Raul Sanchez-Muñoz
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Hilde Janssens
- Department of Organic Chemistry, Polymer Chemistry Research Group and Laboratory for Organic Synthesis, Ghent University, 9000, Ghent, Belgium
| | - Filip Lemière
- Department of Chemistry, Biomolecular and Analytical Mass Spectrometry, University of Antwerp, 2020, Antwerp, Belgium
| | - Tim Willems
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium
| | - Johan Winne
- Department of Organic Chemistry, Polymer Chemistry Research Group and Laboratory for Organic Synthesis, Ghent University, 9000, Ghent, Belgium
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
6
|
Khan S, Alvi AF, Saify S, Iqbal N, Khan NA. The Ethylene Biosynthetic Enzymes, 1-Aminocyclopropane-1-Carboxylate (ACC) Synthase (ACS) and ACC Oxidase (ACO): The Less Explored Players in Abiotic Stress Tolerance. Biomolecules 2024; 14:90. [PMID: 38254690 PMCID: PMC10813531 DOI: 10.3390/biom14010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Ethylene is an essential plant hormone, critical in various physiological processes. These processes include seed germination, leaf senescence, fruit ripening, and the plant's response to environmental stressors. Ethylene biosynthesis is tightly regulated by two key enzymes, namely 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Initially, the prevailing hypothesis suggested that ACS is the limiting factor in the ethylene biosynthesis pathway. Nevertheless, accumulating evidence from various studies has demonstrated that ACO, under specific circumstances, acts as the rate-limiting enzyme in ethylene production. Under normal developmental processes, ACS and ACO collaborate to maintain balanced ethylene production, ensuring proper plant growth and physiology. However, under abiotic stress conditions, such as drought, salinity, extreme temperatures, or pathogen attack, the regulation of ethylene biosynthesis becomes critical for plants' survival. This review highlights the structural characteristics and examines the transcriptional, post-transcriptional, and post-translational regulation of ACS and ACO and their role under abiotic stress conditions. Reviews on the role of ethylene signaling in abiotic stress adaptation are available. However, a review delineating the role of ACS and ACO in abiotic stress acclimation is unavailable. Exploring how particular ACS and ACO isoforms contribute to a specific plant's response to various abiotic stresses and understanding how they are regulated can guide the development of focused strategies. These strategies aim to enhance a plant's ability to cope with environmental challenges more effectively.
Collapse
Affiliation(s)
- Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Ameena Fatima Alvi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Sadaf Saify
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Noushina Iqbal
- Department of Botany, Jamia Hamdard, New Delhi 110062, India;
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| |
Collapse
|
7
|
Kirasak K, Kunyamee S, Ketsa S. 1-MCP prevents ultrastructural changes in the organelles of Dendrobium petals that are induced by exogenous ethylene. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107758. [PMID: 37267754 DOI: 10.1016/j.plaphy.2023.107758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 06/04/2023]
Abstract
Ethylene is a plant hormone that causes flower senescence. Dendrobium flowers are sensitive to ethylene and ethylene can induce premature senescence depending on the cultivar and the ethylene concentration. Dendrobium 'Lucky Duan' is one of the most sensitive cultivars to ethylene exposure. Open florets of 'Lucky Duan' were subjected to ethylene, 1-MCP, or 1-MCP plus ethylene treatments and compared with an untreated control. Ethylene induced earlier development of color fading, drooping and venation in petals, whereas 1-MCP pre-treatment counteracted these changes. Under light microscopy, epidermal cells and mesophyll parenchyma tissue around the vascular bundles of petals treated with ethylene showed collapsed cells whereas 1-MCP pre-treatment counteracted this collapse. An scanning electron microscopy (SEM) study confirmed clearly that ethylene treatment caused the collapse of mesophyll parenchyma tissue around vascular bundles. Ultrastructural changes were also studied using transmission electron microscopy (TEM) and showed that ethylene treatment induced morphological changes in conjunction with disorganization of the plasma membrane, the nuclei, chromatin, the nucleoli, myelin bodies, multivesicular bodies, and mitochondria including changes in size and number, breakages of membranes, enlargement of intercellular spaces and disintegration. 1-MCP pre-treatment was observed to counter these changes that were induced by ethylene. The role of ethylene-induced ultrastructural changes in the different organelles was apparently associated with membrane damage.
Collapse
Affiliation(s)
- Kanjana Kirasak
- Khon Khaen Field Crops Research Center, Amphur Muang, Khon Kaen, 40000, Thailand
| | - Sutin Kunyamee
- Mahidol University, Amnatcharoen Campus, Amphur Muang, Amnatcharoen, 37000, Thailand
| | - Saichol Ketsa
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Academy of Science, The Royal Society, Dusit, Bangkok, 10300, Thailand.
| |
Collapse
|
8
|
Mittal L, Tayyeba S, Sinha AK. Finding a breather for Oryza sativa: Understanding hormone signalling pathways involved in rice plants to submergence stress. PLANT, CELL & ENVIRONMENT 2022; 45:279-295. [PMID: 34971465 DOI: 10.1111/pce.14250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
During the course of evolution, different ecotypes of rice (Oryza sativa L.) have evolved distinct strategies to cope with submergence stress. Such contrasting responses are mediated by plant hormones that are principle regulators of growth, development and responses to various biotic and abiotic stresses. These hormones act cooperatively and show extensive crosstalk which is mediated by key regulatory genes that serve as nodes of molecular communication. The presence or absence of such genes leads to significant changes in hormone signalling pathways and hence, governs the type of response that the plant will exhibit. As flooding is one of the leading causes of crop loss across all the major rice-producing countries, it is crucial to deeply understand the molecular nexus governing the response to submergence to produce flood resilient varieties. This review focuses on the hormonal signalling pathways that mediate two contrasting responses of the rice plant to submergence stress namely, rapid internode elongation to escape flood waters and quiescence response that enables the plant to survive under complete submergence. The significance of several key genes such as Sub1A-1, SLR1, SD1 and SK1/SK2, in defining the ultimate response to submergence has also been discussed.
Collapse
Affiliation(s)
- Lavanya Mittal
- National Institute of Plant Genome Research, New Delhi, India
| | - Sumaira Tayyeba
- National Institute of Plant Genome Research, New Delhi, India
| | - Alok K Sinha
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
9
|
Understanding a Mechanistic Basis of ABA Involvement in Plant Adaptation to Soil Flooding: The Current Standing. PLANTS 2021; 10:plants10101982. [PMID: 34685790 PMCID: PMC8537370 DOI: 10.3390/plants10101982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
Soil flooding severely impairs agricultural crop production. Plants can cope with flooding conditions by embracing an orchestrated set of morphological adaptations and physiological adjustments that are regulated by the elaborated hormonal signaling network. The most prominent of these hormones is ethylene, which has been firmly established as a critical signal in flooding tolerance. ABA (abscisic acid) is also known as a “stress hormone” that modulates various responses to abiotic stresses; however, its role in flooding tolerance remains much less established. Here, we discuss the progress made in the elucidation of morphological adaptations regulated by ABA and its crosstalk with other phytohormones under flooding conditions in model plants and agriculturally important crops.
Collapse
|
10
|
Aleem M, Raza MM, Haider MS, Atif RM, Ali Z, Bhat JA, Zhao T. Comprehensive RNA-seq analysis revealed molecular pathways and genes associated with drought tolerance in wild soybean (Glycine soja Sieb. and Zucc.). PHYSIOLOGIA PLANTARUM 2021; 172:707-732. [PMID: 32984966 DOI: 10.1111/ppl.13219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Drought stress at the germination stage is an important environmental stress limiting crop yield. Hence, our study investigated comparative root transcriptome profiles of four contrasting soybean genotypes viz., drought-tolerant (PI342618B/DTP and A214/DTL) and drought-sensitive (NN86-4/DSP and A195/DSL) under drought stress using RNA-Seq approach. A total of 4850 and 6272 differentially expressed genes (DEGs) were identified in tolerant (DTP and DTL) and sensitive (DSP and DSL) genotypes, respectively. Principle component analysis (PCA) and correlation analysis revealed higher correlation between DTP and DTL. Both gene ontology (GO) and MapMan analyses showed that the drought response was enriched in DEGs associated with water and auxin transport, cell wall/membrane, antioxidant activity, catalytic activity, secondary metabolism, signaling and transcription factor (TF) activities. Out of 981 DEGs screened from above terms, only 547 showed consistent opposite expression between contrasting genotypes. Twenty-eight DEGs of 547 were located on Chr.08 rich in QTLs and "Hotspot regions" associated with drought stress, and eight of them showed non-synonymous single nucleotide polymorphism. Hence, 10 genes (including above eight genes plus two hub genes) were predicated as possible candidates regulating drought tolerance, which needs further functional validation. Overall, the transcriptome profiling provided in-depth understanding about the genetic mechanism and candidate genes underlying drought tolerance in soybean.
Collapse
Affiliation(s)
- Muqadas Aleem
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad M Raza
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Muhammad S Haider
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Rana M Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Javaid A Bhat
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Tan H, Yu Y, Tang J, Liu T, Miao R, Huang Z, Martin FM, Peng W. Build Your Own Mushroom Soil: Microbiota Succession and Nutritional Accumulation in Semi-Synthetic Substratum Drive the Fructification of a Soil-Saprotrophic Morel. Front Microbiol 2021; 12:656656. [PMID: 34108948 PMCID: PMC8180906 DOI: 10.3389/fmicb.2021.656656] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022] Open
Abstract
Black morel, a widely prized culinary delicacy, was once an uncultivable soil-saprotrophic ascomycete mushroom that can now be cultivated routinely in farmland soils. It acquires carbon nutrients from an aboveground nutritional supplementation, while it remains unknown how the morel mycelium together with associated microbiota in the substratum metabolizes and accumulates specific nutrients to support the fructification. In this study, a semi-synthetic substratum of quartz particles mixed with compost was used as a replacement and mimic of the soil. Two types of composts (C1 and C2) were used, respectively, plus a bare-quartz substratum (NC) as a blank reference. Microbiota succession, substrate transformation as well as the activity level of key enzymes were compared between the three types of substrata that produced quite divergent yields of morel fruiting bodies. The C1 substratum, with the highest yield, possessed higher abundances of Actinobacteria and Chloroflexi. In comparison with C2 and NC, the microbiota in C1 could limit over-expansion of microorganisms harboring N-fixing genes, such as Cyanobacteria, during the fructification period. Driven by the microbiota, the C1 substratum had advantages in accumulating lipids to supply morel fructification and maintaining appropriate forms of nitrogenous substances. Our findings contribute to an increasingly detailed portrait of microbial ecological mechanisms triggering morel fructification.
Collapse
Affiliation(s)
- Hao Tan
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Mushroom Research Center, Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- School of Life Sciences, Jiangnan University, Wuxi, China
- Scientific Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yang Yu
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Mushroom Research Center, Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Scientific Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jie Tang
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Mushroom Research Center, Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Scientific Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Tianhai Liu
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Mushroom Research Center, Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Scientific Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Renyun Miao
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Mushroom Research Center, Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Scientific Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Zhongqian Huang
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Mushroom Research Center, Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Scientific Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Francis M. Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Weihong Peng
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Mushroom Research Center, Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Scientific Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
12
|
Iqbal MF, Liu S, Zhu J, Zhao L, Qi T, Liang J, Luo J, Xiao X, Fan X. Limited aerenchyma reduces oxygen diffusion and methane emission in paddy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111583. [PMID: 33187783 DOI: 10.1016/j.jenvman.2020.111583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Greenhouse gasses (GHG) emission from the agricultural lands is a serious threat to the environment. Plants such as rice (Oryza sativa L.) that are cultivated in submerged conditions (paddy field) contribute up to 19% of CH4 emission from agricultural lands. Such plants have evolved lysigenous aerenchyma in their root system which facilitates the exchange of O2 and GHG between aerial parts of plant and rhizosphere. Currently, the regulation of GHG and O2 via aerenchyma formation is poorly understood in plants, especially in rice. Here, a reverse genetic approach was employed to reduce the aerenchyma formation by analyzing two mutants i.e., oslsd1.1-m12 and oslsd1.1-m51 generated by Tos17 and T-DNA insertion. The wild-type (WT) and the mutants were grown in paddy (flooded), non-paddy and hydroponic system to assess phenotypic traits including O2 diffusion, GHG emission and aerenchyma formation. The mutants exhibited significant reductions in several morphophysiological traits including 20-60% aerenchyma formation at various distances from the root apex, 25% root development, 50% diffusion of O2 and 27-36% emission of methane (CH4) as compared to WT. The differential effects of the oslsd1.1 mutants in aerenchyma-mediated CH4 mitigation were also evident in the diversity of (pmoA, mcrA) methanotrophs in the rhizosphere. Our results indicate the novel pathway in which reduced aerenchyma in rice is responsible for the mitigation of CH4, diffusion of O2 and the root growth in rice. Limited aerenchyma mediated approach to mitigate GHG specially CH4 mitigation in agriculture is helpful technique for sustainable development.
Collapse
Affiliation(s)
- Muhammad Faseeh Iqbal
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuhua Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingwen Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Limei Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tiantian Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Liang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xin Xiao
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
13
|
Tang H, Bi H, Liu B, Lou S, Song Y, Tong S, Chen N, Jiang Y, Liu J, Liu H. WRKY33 interacts with WRKY12 protein to up-regulate RAP2.2 during submergence induced hypoxia response in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 229:106-125. [PMID: 33098101 DOI: 10.1111/nph.17020] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/12/2020] [Indexed: 05/23/2023]
Abstract
Tolerance of hypoxia is essential for most plants, but the underlying mechanisms are largely unknown. Here we show that adaptation to submergence induced hypoxia in Arabidopsis involves up-regulation of RAP2.2 through interactive action of WRKY33 and WRKY12. WRKY33- or WRKY12-overexpressing plants showed enhanced resistance to hypoxia. Y2H, BiFC, Co-IP and pull-down experiments confirmed the interaction of WRKY33 with WRKY12. Genetic experiments showed that RAP2.2 acts downstream of WRKY33/WRKY12. WRKY33 and WRKY12 can bind to and activate RAP2.2 individually. Genetic and molecular experiments demonstrate that the two WRKYs can synergistically enhance activation towards RAP2.2 to increase hypoxia tolerance. WRKY33 expression is increased in RAP2.2-overexpressing plants, indicating a feedback regulation by RAP2.2 during submergence process, which was corroborated by EMSA, ChIP, dual-LUC and genetic experiments. Our results show that a regulatory cascade module involving WRKY33, WRKY12 and RAP2.2 plays a key role in submergence induced hypoxia response of Arabidopsis and illuminate functions of WRKYs in hypoxia tolerance.
Collapse
Affiliation(s)
- Hu Tang
- Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Hao Bi
- Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Bao Liu
- Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Shangling Lou
- Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Yan Song
- Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Shaofei Tong
- Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Ningning Chen
- Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Yuanzhong Jiang
- Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Huanhuan Liu
- Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
14
|
Qi X, Li Q, Ma X, Qian C, Wang H, Ren N, Shen C, Huang S, Xu X, Xu Q, Chen X. Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling. PLANT, CELL & ENVIRONMENT 2019; 42:1458-1470. [PMID: 30556134 DOI: 10.1111/pce.13504] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/01/2018] [Accepted: 12/09/2018] [Indexed: 05/21/2023]
Abstract
Development of adventitious roots (ARs) at the base of the shoot is an important adaptation of plants to waterlogging stress; however, its physiological mechanisms remain unclear. Here, we investigated the regulation of AR formation under waterlogged conditions by hormones and reactive oxygen species (ROS) in Cucumis sativus L., an agriculturally and economically important crop in China. We found that ethylene, auxin, and ROS accumulated in the waterlogged cucumber plants. On the other hand, application of the ethylene receptor inhibitor 1-methylcyclopropene (1-MCP), the auxin transport inhibitor 1-naphthylphthalamic acid (NPA), or the NADPH oxidase inhibitor diphenyleneiodonium (DPI) decreased the number of ARs induced by waterlogging. Auxin enhanced the expression of ethylene biosynthesis genes, which led to ethylene entrapment in waterlogged plants. Both ethylene and auxin induced the generation of ROS. Auxin-induced AR formation was inhibited by 1-MCP, although ethylene-induced AR formation was not inhibited by NPA. Both ethylene- and auxin-induced AR formation were counteracted by DPI. These results indicate that auxin-induced AR formation is dependent on ethylene, whereas ethylene-induced AR formation is independent of auxin. They also show that ROS signals mediate both ethylene- and auxin-induced AR formation in cucumber plants.
Collapse
Affiliation(s)
- Xiaohua Qi
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qianqian Li
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiaotian Ma
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Chunlu Qian
- Department of Food Science, School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Huihui Wang
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Nannan Ren
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Chenxi Shen
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Shumiao Huang
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuewen Xu
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qiang Xu
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuehao Chen
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Lee HY, Chen Z, Zhang C, Yoon GM. Editing of the OsACS locus alters phosphate deficiency-induced adaptive responses in rice seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1927-1940. [PMID: 30810167 PMCID: PMC6436150 DOI: 10.1093/jxb/erz074] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/04/2019] [Indexed: 05/21/2023]
Abstract
Phosphate (Pi) deficiency severely influences the growth and reproduction of plants. To cope with Pi deficiency, plants initiate morphological and biochemical adaptive responses upon sensing low Pi in the soil, and the plant hormone ethylene plays a crucial role during this process. However, how regulation of ethylene biosynthesis influences the Pi-induced adaptive responses remains unclear. Here, we determine the roles of rice 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), the rate-limiting enzymes in ethylene biosynthesis, in response to Pi deficiency. Through analysis of tissue-specific expression of OsACS in response to Pi deficiency and OsACS mutants generated by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9] genome editing, we found that two members of the OsACS family, i.e. OsACS1 and OsACS2, are involved but differed in their importance in controlling the remodeling of root system architecture, transcriptional regulation of Pi starvation-induced genes, and cellular phosphorus homeostasis. Interestingly, in contrast to the known inhibitory role of ethylene on root elongation, both OsACS mutants, especially OsACS1, almost fail to promote lateral root growth in response to Pi deficiency, demonstrating a stimulatory role for ethylene in lateral root development under Pi-deficient conditions. Together, this study provides new insights into the roles of ethylene in Pi deficiency response in rice seedlings and the isoform-specific function of OsACS genes in this process.
Collapse
Affiliation(s)
- Han Yong Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Cankui Zhang
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
16
|
Hu LY, Li D, Sun K, Cao W, Fu WQ, Zhang W, Dai CC. Mutualistic fungus Phomopsis liquidambari increases root aerenchyma formation through auxin-mediated ethylene accumulation in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:367-376. [PMID: 30055345 DOI: 10.1016/j.plaphy.2018.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
The fungal endophyte Phomopsis liquidambari can improve nitrification rates and alter the abundance and composition of ammonia-oxidizers in the soil rhizosphere of rice. Aerenchyma is related to oxygen transport efficiency and contributes to the enhanced rhizospheric nitrification under flooding conditions. However, whether and how P. liquidambari affects aerenchyma formation is largely unknown. We therefore conducted pot and hydroponic experiments to investigate the changes of aerenchyma area, ethylene and indole-3-acetic acid (IAA) levels in rice with or without P. liquidambari infection. Our results showed that the larger aerenchyma area in rice roots with P. liquidambari inoculation was associated with markedly up-regulated expression of genes related to aerenchyma formation. Meanwhile, P. liquidambari inoculation substantially elevated root porosity (POR) and radial oxygen loss (ROL), leading to the enhancement of oxidation-reduction potential (ORP) under pot condition. Besides, P. liquidambari significantly increased IAA and ethylene levels in rice by stimulating the expression of genes involved in auxin and ethylene biosyntheses. Furthermore, auxin that partly acting upstream of ethylene signalling played an essential role in P. liquidambari-promoted aerenchyma formation. These results verified the direct contribution of P. liquidambari in promoting aerenchyma formation via the accumulation of IAA and ethylene in rice roots, which provides a constructive suggestion for improving hypoxia tolerance through plant-endophyte interactions.
Collapse
Affiliation(s)
- Li-Yan Hu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Dan Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Wei Cao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Wan-Qiu Fu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
17
|
Minami A, Yano K, Gamuyao R, Nagai K, Kuroha T, Ayano M, Nakamori M, Koike M, Kondo Y, Niimi Y, Kuwata K, Suzuki T, Higashiyama T, Takebayashi Y, Kojima M, Sakakibara H, Toyoda A, Fujiyama A, Kurata N, Ashikari M, Reuscher S. Time-Course Transcriptomics Analysis Reveals Key Responses of Submerged Deepwater Rice to Flooding. PLANT PHYSIOLOGY 2018; 176:3081-3102. [PMID: 29475897 PMCID: PMC5884608 DOI: 10.1104/pp.17.00858] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 02/15/2018] [Indexed: 05/29/2023]
Abstract
Water submergence is an environmental factor that limits plant growth and survival. Deepwater rice (Oryza sativa) adapts to submergence by rapidly elongating its internodes and thereby maintaining its leaves above the water surface. We performed a comparative RNA sequencing transcriptome analysis of the shoot base region, including basal nodes, internodes, and shoot apices of seedlings at two developmental stages from two varieties with contrasting deepwater growth responses. A transcriptomic comparison between deepwater rice cv C9285 and nondeepwater rice cv Taichung 65 revealed both similar and differential expression patterns between the two genotypes during submergence. The expression of genes related to gibberellin biosynthesis, trehalose biosynthesis, anaerobic fermentation, cell wall modification, and transcription factors that include ethylene-responsive factors was significantly different between the varieties. Interestingly, in both varieties, the jasmonic acid content at the shoot base decreased during submergence, while exogenous jasmonic acid inhibited submergence-induced internode elongation in cv C9285, suggesting that jasmonic acid plays a role in the submergence response of rice. Furthermore, a targeted de novo transcript assembly revealed transcripts that were specific to cv C9285, including submergence-induced biotic stress-related genes. Our multifaceted transcriptome approach using the rice shoot base region illustrates a differential response to submergence between deepwater and nondeepwater rice. Jasmonic acid metabolism appears to participate in the submergence-mediated internode elongation response of deepwater rice.
Collapse
Affiliation(s)
- Anzu Minami
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kenji Yano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Rico Gamuyao
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Keisuke Nagai
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takeshi Kuroha
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Madoka Ayano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Masanari Nakamori
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Masaya Koike
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yuma Kondo
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoko Niimi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Takamasa Suzuki
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- ERATO Higashiyama Live-Holonics Project, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Tetsuya Higashiyama
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- ERATO Higashiyama Live-Holonics Project, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya Aichi 464-8601, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Mishima 411-8540, Japan
| | - Asao Fujiyama
- Center for Information Biology, National Institute of Genetics, Mishima 411-8540, Japan
| | - Nori Kurata
- Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan
| | - Motoyuki Ashikari
- Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan
| | - Stefan Reuscher
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
18
|
Zhang W, Li Z, Fang H, Zhang M, Duan L. Analysis of the genetic basis of plant height-related traits in response to ethylene by QTL mapping in maize (Zea mays L.). PLoS One 2018; 13:e0193072. [PMID: 29466465 PMCID: PMC5821358 DOI: 10.1371/journal.pone.0193072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/04/2018] [Indexed: 02/06/2023] Open
Abstract
Ethylene (ET) is critical importance in the growth, development, and stress responses of plants. Plant hormonal stress responses have been extensively studied, however, the role of ET in plant growth, especially plant height (PH) remains unclear. Understanding the genetic control for PH in response to ET will provide insights into the regulation of maize development. To clarify the genetic basis of PH-related traits of maize in response to ET, we mapped QTLs for PH, ear height (EH), and internode length above the uppermost ear (ILAU) in two recombinant inbred line (RIL) populations of Zea mays after ET treatment and in an untreated control (CK) group. Sixty QTLs for the three traits were identified. Twenty-two QTLs were simultaneously detected under both ET treatment and untreated control, and five QTLs were detected at two geographic locations under ET treatment only. Individual QTL can be explained 3.87-17.71% of the phenotypic variance. One QTL (q2PH9-1, q1PH9, q1EH9/q1ILAU9-1, q2ILAU9, and q2EH9) for the measured traits (PH, EH, ILAU) was consistent across both populations. Two QTLs (q2PH2-5, q2ILAU2-2, q1PH2-2, and q1ILAU2-2; q1PH8-1, q1EH8-1, q2PH8-1) were identified for up to two traits in both locations and populations under both ET treatment and untreated control. These consistent and stable regions are important QTLs of potential hot spots for PH, ear height (EH), and internode length above the uppermost ear (ILAU) response to ET in maize; therefore, QTL fine-mapping and putative candidate genes validation should enable the cloning of PH, EH, and ILAU related genes to ET response. These results will be valuable for further fine-mapping and quantitative trait nucleotides (QTNs) determination, and elucidate the underlying molecular mechanisms of ET responses in maize.
Collapse
Affiliation(s)
- Weiqiang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Zhi Li
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Hui Fang
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| |
Collapse
|
19
|
Yu M, Yau CP, Yip WK. Differentially localized rice ethylene receptors OsERS1 and OsETR2 and their potential role during submergence. PLANT SIGNALING & BEHAVIOR 2017; 12:e1356532. [PMID: 28758833 PMCID: PMC5616157 DOI: 10.1080/15592324.2017.1356532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ethylene is gaseous plant hormone that controls a variety of physiologic activities. OsERS1 and OsETR2 are major ethylene receptors in rice that have been reported to have different regulatory functions. The GFP fused N-terminus of OsERS1 and OsETR2 showed differentially localization patterns when transiently expressed in onion epidermal cells. Base on these results, we suggested that OsERS1 could be localized to plasma membranes, whereas OsETR2 could be localized to the endoplasmic reticulum. Furthermore, instead of the constitutive expression profile of OsERS1, OsETR2 is differentially expressed in seedlings of light/dark-grown conditions, submergence or exogenous ethylene treatments. Our results and others support the notion that OsERS1 and OsETR2 could have different roles during rice plant submergence.
Collapse
Affiliation(s)
- Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Chi Ping Yau
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Wing Kin Yip
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- CONTACT Wing Kin Yip 7S09 Kadoorie Biological Sciences Building, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Singh A, Septiningsih EM, Balyan HS, Singh NK, Rai V. Genetics, Physiological Mechanisms and Breeding of Flood-Tolerant Rice (Oryza sativa L.). PLANT & CELL PHYSIOLOGY 2017; 58:185-197. [PMID: 28069894 DOI: 10.1093/pcp/pcw206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Flooding of rice fields is a serious problem in the river basins of South and South-East Asia where about 15 Mha of lowland rice cultivation is regularly affected. Flooding creates hypoxic conditions resulting in poor germination and seedling establishment. Flash flooding, where rice plants are completely submerged for 10-15 d during their vegetative stage, causes huge losses. Water stagnation for weeks to months also leads to substantial yield losses when large parts of rice aerial tissues are inundated. The low-yielding traditional varieties and landraces of rice adapted to these flooding conditions have been replaced by flood-sensitive high-yielding rice varieties. The 'FR13A' rice variety and the Submergence 1A (SUB1A) gene were identified for flash flooding and subsequently introgressed to high-yielding rice varieties. The challenge is to find superior alleles of the SUB1A gene, or even new genes that may confer greater tolerance to submergence. Similarly, genes have been identified in tolerant landraces of rice for their ability to survive by rapid stem elongation (SNORKEL1 and SNORKEL2) during deep-water flooding, and for anaerobic germination ability (TPP7). Research on rice genotypes and novel genes that are tolerant to prolonged water stagnation is in progress. These studies will greatly assist in devising more efficient and precise molecular breeding strategies for developing climate-resilient high-yielding rice varieties for flood-prone regions. Here we review the state of our knowledge of flooding tolerance in rice and its application in varietal improvement.
Collapse
Affiliation(s)
- Anuradha Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Endang M Septiningsih
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
- International Rice Research Institute, DAPO, Metro Manila, Philippines
| | - Harendra S Balyan
- International Rice Research Institute, DAPO, Metro Manila, Philippines
| | - Nagendra K Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| |
Collapse
|
21
|
Li G, Deng Y, Geng Y, Zhou C, Wang Y, Zhang W, Song Z, Gao L, Yang J. Differentially Expressed microRNAs and Target Genes Associated with Plastic Internode Elongation in Alternanthera philoxeroides in Contrasting Hydrological Habitats. FRONTIERS IN PLANT SCIENCE 2017; 8:2078. [PMID: 29259617 PMCID: PMC5723390 DOI: 10.3389/fpls.2017.02078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/21/2017] [Indexed: 05/10/2023]
Abstract
Phenotypic plasticity is crucial for plants to survive in changing environments. Discovering microRNAs, identifying their targets and further inferring microRNA functions in mediating plastic developmental responses to environmental changes have been a critical strategy for understanding the underlying molecular mechanisms of phenotypic plasticity. In this study, the dynamic expression patterns of microRNAs under contrasting hydrological habitats in the amphibious species Alternanthera philoxeroides were identified by time course expression profiling using high-throughput sequencing technology. A total of 128 known and 18 novel microRNAs were found to be differentially expressed under contrasting hydrological habitats. The microRNA:mRNA pairs potentially associated with plastic internode elongation were identified by integrative analysis of microRNA and mRNA expression profiles, and were validated by qRT-PCR and 5' RLM-RACE. The results showed that both the universal microRNAs conserved across different plants and the unique microRNAs novelly identified in A. philoxeroides were involved in the responses to varied water regimes. The results also showed that most of the differentially expressed microRNAs were transiently up-/down-regulated at certain time points during the treatments. The fine-scale temporal changes in microRNA expression highlighted the importance of time-series sampling in identifying stress-responsive microRNAs and analyzing their role in stress response/tolerance.
Collapse
Affiliation(s)
- Gengyun Li
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Ying Deng
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Yupeng Geng
- Institute of Ecology and Geobotany, Yunnan University, Kunming, China
| | - Chengchuan Zhou
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Yuguo Wang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Wenju Zhang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Zhiping Song
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Lexuan Gao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- *Correspondence: Lexuan Gao, Ji Yang,
| | - Ji Yang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- *Correspondence: Lexuan Gao, Ji Yang,
| |
Collapse
|
22
|
Yamauchi T, Tanaka A, Mori H, Takamure I, Kato K, Nakazono M. Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize. PLANT, CELL & ENVIRONMENT 2016; 39:2145-57. [PMID: 27169562 DOI: 10.1111/pce.12766] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 05/25/2023]
Abstract
In roots of gramineous plants, lysigenous aerenchyma is created by the death and lysis of cortical cells. Rice (Oryza sativa) constitutively forms aerenchyma under aerobic conditions, and its formation is further induced under oxygen-deficient conditions. However, maize (Zea mays) develops aerenchyma only under oxygen-deficient conditions. Ethylene is involved in lysigenous aerenchyma formation. Here, we investigated how ethylene-dependent aerenchyma formation is differently regulated between rice and maize. For this purpose, in rice, we used the reduced culm number1 (rcn1) mutant, in which ethylene biosynthesis is suppressed. Ethylene is converted from 1-aminocyclopropane-1-carboxylic acid (ACC) by the action of ACC oxidase (ACO). We found that OsACO5 was highly expressed in the wild type, but not in rcn1, under aerobic conditions, suggesting that OsACO5 contributes to aerenchyma formation in aerated rice roots. By contrast, the ACO genes in maize roots were weakly expressed under aerobic conditions, and thus ACC treatment did not effectively induce ethylene production or aerenchyma formation, unlike in rice. Aerenchyma formation in rice roots after the initiation of oxygen-deficient conditions was faster and greater than that in maize. These results suggest that the difference in aerenchyma formation in rice and maize is due to their different mechanisms for regulating ethylene biosynthesis.
Collapse
Affiliation(s)
- Takaki Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan.
| | - Akihiro Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Itsuro Takamure
- Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Kiyoaki Kato
- Department of Crop Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
23
|
Van de Poel B, Cooper ED, Van Der Straeten D, Chang C, Delwiche CF. Transcriptome Profiling of the Green Alga Spirogyra pratensis (Charophyta) Suggests an Ancestral Role for Ethylene in Cell Wall Metabolism, Photosynthesis, and Abiotic Stress Responses. PLANT PHYSIOLOGY 2016; 172:533-45. [PMID: 27489312 PMCID: PMC5074641 DOI: 10.1104/pp.16.00299] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/01/2016] [Indexed: 05/26/2023]
Abstract
It is well known that ethylene regulates a diverse set of developmental and stress-related processes in angiosperms, yet its roles in early-diverging embryophytes and algae are poorly understood. Recently, it was shown that ethylene functions as a hormone in the charophyte green alga Spirogyra pratensis Since land plants evolved from charophytes, this implies conservation of ethylene as a hormone in green plants for at least 450 million years. However, the physiological role of ethylene in charophyte algae has remained unknown. To gain insight into ethylene responses in Spirogyra, we used mRNA sequencing to measure changes in gene expression over time in Spirogyra filaments in response to an ethylene treatment. Our analyses show that at the transcriptional level, ethylene predominantly regulates three processes in Spirogyra: (1) modification of the cell wall matrix by expansins and xyloglucan endotransglucosylases/hydrolases, (2) down-regulation of chlorophyll biosynthesis and photosynthesis, and (3) activation of abiotic stress responses. We confirmed that the photosynthetic capacity and chlorophyll content were reduced by an ethylene treatment and that several abiotic stress conditions could stimulate cell elongation in an ethylene-dependent manner. We also found that the Spirogyra transcriptome harbors only 10 ethylene-responsive transcription factor (ERF) homologs, several of which are regulated by ethylene. These results provide an initial understanding of the hormonal responses induced by ethylene in Spirogyra and help to reconstruct the role of ethylene in ancestral charophytes prior to the origin of land plants.
Collapse
Affiliation(s)
- Bram Van de Poel
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| | - Endymion D Cooper
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| | - Dominique Van Der Straeten
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| | - Charles F Delwiche
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| |
Collapse
|
24
|
De Gernier H, De Pessemier J, Xu J, Cristescu SM, Van Der Straeten D, Verbruggen N, Hermans C. A Comparative Study of Ethylene Emanation upon Nitrogen Deficiency in Natural Accessions of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:70. [PMID: 26904047 PMCID: PMC4748056 DOI: 10.3389/fpls.2016.00070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/15/2016] [Indexed: 05/07/2023]
Abstract
An original approach to develop sustainable agriculture with less nitrogen fertilizer inputs is to tackle the cross-talk between nitrogen nutrition and plant growth regulators. In particular the gaseous hormone, ethylene, is a prime target for that purpose. The variation of ethylene production in natural accessions of the model species Arabidopsis thaliana was explored in response to the nitrate supply. Ethylene was measured with a laser-based photoacoustic detector. First, experimental conditions were established with Columbia-0 (Col-0) accession, which was grown in vitro on horizontal plates across a range of five nitrate concentrations (0.5, 1, 2.5, 5, or 10 mM). The concentrations of 1 and 10 mM nitrate were retained for further characterization. Along with a decrease of total dry biomass and higher biomass allocation to the roots, the ethylene production was 50% more important at 1 mM than at 10 mM nitrate. The total transcript levels of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASES (ACS) in roots and those of ACC OXIDASES (ACO) in shoots increased by 100% between the same treatments. This was mainly due to higher transcript levels of ACS6 and of ACO2 and ACO4 respectively. The assumption was that during nitrogen deficiency, the greater biomass allocation in favor of the roots was controlled by ethylene being released in the shoots after conversion of ACC originating from the roots. Second, biomass and ethylene productions were measured in 20 additional accessions. Across all accessions, the total dry biomass and ethylene production were correlated negatively at 1 mM but positively at 10 mM nitrate. Furthermore, polymorphism was surveyed in ACC and ethylene biosynthesis genes and gene products among accessions. Very few substitutions modifying the amino acids properties in conserved motifs of the enzymes were found in the accessions. Natural variation of ethylene production could be further explored to improve Nitrogen Use Efficiency (NUE), in particular by manipulating features like the biomass production and the timing of senescence upon nitrogen limitation.
Collapse
Affiliation(s)
- Hugues De Gernier
- Laboratory of Plant Physiology and Molecular Genetics, Interfacultary School of Bioengineers, Université Libre de BruxellesBrussels, Belgium
| | - Jérôme De Pessemier
- Laboratory of Plant Physiology and Molecular Genetics, Interfacultary School of Bioengineers, Université Libre de BruxellesBrussels, Belgium
| | - Jiajia Xu
- Laboratory of Plant Physiology and Molecular Genetics, Interfacultary School of Bioengineers, Université Libre de BruxellesBrussels, Belgium
| | - Simona M. Cristescu
- Trace Gas Research Group, Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud UniversityNijmegen, Netherlands
| | - Dominique Van Der Straeten
- Unit Hormone Signalling and Bio-Imaging, Laboratory of Functional Plant Biology, Department of Physiology, Ghent UniversityGhent, Belgium
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Interfacultary School of Bioengineers, Université Libre de BruxellesBrussels, Belgium
| | - Christian Hermans
- Laboratory of Plant Physiology and Molecular Genetics, Interfacultary School of Bioengineers, Université Libre de BruxellesBrussels, Belgium
| |
Collapse
|
25
|
Wei H, Bausewein A, Steininger H, Su T, Zhao H, Harms K, Greiner S, Rausch T. Linking Expression of Fructan Active Enzymes, Cell Wall Invertases and Sucrose Transporters with Fructan Profiles in Growing Taproot of Chicory ( Cichorium intybus): Impact of Hormonal and Environmental Cues. FRONTIERS IN PLANT SCIENCE 2016; 7:1806. [PMID: 27994611 PMCID: PMC5136560 DOI: 10.3389/fpls.2016.01806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/16/2016] [Indexed: 05/05/2023]
Abstract
In chicory taproot, the inulin-type fructans serve as carbohydrate reserve. Inulin metabolism is mediated by fructan active enzymes (FAZYs): sucrose:sucrose 1-fructosyltransferase (1-SST; fructan synthesis), fructan:fructan-1-fructosyltransferase (1-FFT; fructan synthesis and degradation), and fructan 1-exohydrolases (1-FEH1/2a/2b; fructan degradation). In developing taproot, fructan synthesis is affected by source-to-sink sucrose transport and sink unloading. In the present study, expression of FAZYs, sucrose transporter and CWI isoforms, vacuolar invertase and sucrose synthase was determined in leaf blade, petiole and taproot of young chicory plants (taproot diameter: 2 cm) and compared with taproot fructan profiles for the following scenarios: (i) N-starvation, (ii) abscisic acid (ABA) treatment, (iii) ethylene treatment (via 1-aminoyclopropane-1-carboxylic acid [ACC]), and (iv) cold treatment. Both N-starvation and ABA treatment induced an increase in taproot oligofructans. However, while under N-starvation this increase reflected de novo synthesis, under ABA treatment gene expression profiles indicated a role for both de novo synthesis and degradation of long-chain fructans. Conversely, under ACC and cold treatment oligofructans slightly decreased, correlating with reduced expression of 1-SST and 1-FFT and increased expression of FEHs and VI. Distinct SUT and CWI expression profiles were observed, indicating a functional alignment of SUT and CWI expression with taproot fructan metabolism under different source-sink scenarios.
Collapse
Affiliation(s)
- Hongbin Wei
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
| | - Anja Bausewein
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
| | - Heike Steininger
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
| | - Tao Su
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry UniversityNanjing, China
| | - Hongbo Zhao
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
- College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Karsten Harms
- ZAFES, Südzucker AG Mannheim/OchsenfurtObrigheim, Germany
| | - Steffen Greiner
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
| | - Thomas Rausch
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
- *Correspondence: Thomas Rausch,
| |
Collapse
|
26
|
Sasidharan R, Voesenek LACJ. Ethylene-Mediated Acclimations to Flooding Stress. PLANT PHYSIOLOGY 2015; 169:3-12. [PMID: 25897003 PMCID: PMC4577390 DOI: 10.1104/pp.15.00387] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/18/2015] [Indexed: 05/18/2023]
Abstract
Flooding is detrimental for plants, primarily because of restricted gas exchange underwater, which leads to an energy and carbohydrate deficit. Impeded gas exchange also causes rapid accumulation of the volatile ethylene in all flooded plant cells. Although several internal changes in the plant can signal the flooded status, it is the pervasive and rapid accumulation of ethylene that makes it an early and reliable flooding signal. Not surprisingly, it is a major regulator of several flood-adaptive plant traits. Here, we discuss these major ethylene-mediated traits, their functional relevance, and the recent progress in identifying the molecular and signaling events underlying these traits downstream of ethylene. We also speculate on the role of ethylene in postsubmergence recovery and identify several questions for future investigations.
Collapse
Affiliation(s)
- Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584-CH Utrecht, The Netherlands
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584-CH Utrecht, The Netherlands
| |
Collapse
|
27
|
Khan MA, Meng Y, Liu D, Tang H, Lü S, Imtiaz M, Jiang G, Lü P, Ji Y, Gao J, Ma N. Responses of rose RhACS1 and RhACS2 promoters to abiotic stresses in transgenic Arabidopsis thaliana. PLANT CELL REPORTS 2015; 34:795-804. [PMID: 25596927 DOI: 10.1007/s00299-015-1742-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
Promoter activities of RhACS1 and RhACS2 , two rose genes involved in ethylene biosynthesis, are highly sensitive to various abiotic stresses in an organ-specific manner. Our previous studies indicated that two rose (Rosa hybrida) 1-aminocyclopropane-1-carboxylic acid synthase genes, RhACS1 and RhACS2, play a role in dehydration-induced ethylene production and inhibition of cell expansion in rose petals. Here, both RhACS1 and RhACS2 promoters were analyzed using histochemical staining and glucuronidase synthase (GUS) gene reporter activity assays following their introduction into transgenic Arabidopsis thaliana plants. It was found that the promoter activities of both genes were strong throughout the course of development from young seedlings to mature flowering plants in various organs, including hypocotyls, cotyledons, leaves, roots and lateral roots. RhACS1 promoter activity was induced by drought in both rosette leaves and roots of transgenic A. thaliana lines, but was reduced following a re-hydration treatment. In contrast, RhACS2 promoter activity was decreased by drought in rosette leaves, while its response pattern was similar to that of RhACS1 in roots. A mannitol treatment induced the activity of both the RhACS1 and RhACS2 promoters, indicating that both genes are also regulated by osmotic stress. In addition, RhACS2 appeared to be abscisic acid (ABA)-inducible, while RhACS1 was less sensitive to ABA. Finally, four truncated sequences of the RhACS1 promoter were generated and GUS activity assays demonstrated that deleting a 327 bp region between bp 862 and -535 resulted in a substantial decrease of the promoter activity. Taken together, our results suggest that the RhACS1 and RhACS2 promoters respond to abiotic stresses in a developmentally regulated and spatially specific manner.
Collapse
Affiliation(s)
- Muhammad Ali Khan
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lu J, Li J, Ju H, Liu X, Erb M, Wang X, Lou Y. Contrasting effects of ethylene biosynthesis on induced plant resistance against a chewing and a piercing-sucking herbivore in rice. MOLECULAR PLANT 2014; 7:1670-1682. [PMID: 25064847 DOI: 10.1093/mp/ssu085] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ethylene is a stress hormone with contrasting effects on herbivore resistance. However, it remains unknown whether these differences are plant- or herbivore-specific. We cloned a rice 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene, OsACS2, whose transcripts were rapidly up-regulated in response to mechanical wounding and infestation by two important pests: the striped stem borer (SSB) Chilo suppressalis and the brown planthopper (BPH) Nilaparvata lugens. Antisense expression of OsACS2 (as-acs) reduced elicited ethylene emission, SSB-elicited trypsin protease inhibitor (TrypPI) activity, SSB-induced volatile release, and SSB resistance. Exogenous application of ACC restored TrypPI activity and SSB resistance. In contrast to SSB, BPH infestation increased volatile emission in as-acs lines. Accordingly, BPH preferred to feed and oviposit on wild-type (WT) plants--an effect that could be attributed to two repellent volatiles, 2-heptanone and 2-heptanol, that were emitted in higher amounts by as-acs plants. BPH honeydew excretion was reduced and natural enemy attraction was enhanced in as-acs lines, resulting in higher overall resistance to BPH. These results demonstrate that ethylene signaling has contrasting, herbivore-specific effects on rice defense responses and resistance against a chewing and a piercing-sucking insect, and may mediate resistance trade-offs between herbivores of different feeding guilds in rice.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiancai Li
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongping Ju
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Liu
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Xia Wang
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Vu HTT, Manangkil OE, Mori N, Yoshida S, Nakamura C. Induction and Repression of Gene Expression Mediating Ethylene Biosynthesis and Sodium/Proton Exchange in Rice Seedlings Under Submergence Stress. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
30
|
Van de Poel B, Van Der Straeten D. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! FRONTIERS IN PLANT SCIENCE 2014; 5:640. [PMID: 25426135 PMCID: PMC4227472 DOI: 10.3389/fpls.2014.00640] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/28/2014] [Indexed: 05/20/2023]
Abstract
Ethylene is a simple two carbon atom molecule with profound effects on plants. There are quite a few review papers covering all aspects of ethylene biology in plants, including its biosynthesis, signaling and physiology. This is merely a logical consequence of the fascinating and pleiotropic nature of this gaseous plant hormone. Its biochemical precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) is also a fairly simple molecule, but perhaps its role in plant biology is seriously underestimated. This triangularly shaped amino acid has many more features than just being the precursor of the lead-role player ethylene. For example, ACC can be conjugated to three different derivatives, but their biological role remains vague. ACC can also be metabolized by bacteria using ACC-deaminase, favoring plant growth and lowering stress susceptibility. ACC is also subjected to a sophisticated transport mechanism to ensure local and long-distance ethylene responses. Last but not least, there are now a few exciting studies where ACC has been reported to function as a signal itself, independently from ethylene. This review puts ACC in the spotlight, not to give it the lead-role, but to create a picture of the stunning co-production of the hormone and its precursor.
Collapse
Affiliation(s)
- Bram Van de Poel
- Department of Cell Biology and Molecular Genetics, University of Maryland, College ParkMD, USA
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent UniversityGhent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent UniversityGhent, Belgium
- *Correspondence: Dominique Van Der Straeten, Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium e-mail:
| |
Collapse
|
31
|
Miro B, Ismail AM. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2013; 4:269. [PMID: 23888162 PMCID: PMC3719019 DOI: 10.3389/fpls.2013.00269] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/02/2013] [Indexed: 05/20/2023]
Abstract
Rice is semi-aquatic, adapted to a wide range of hydrologies, from aerobic soils in uplands to anaerobic and flooded fields in waterlogged lowlands, to even deeply submerged soils in flood-prone areas. Considerable diversity is present in native rice landraces selected by farmers over centuries. Our understanding of the adaptive features of these landraces to native ecosystems has improved considerably over the recent past. In some cases, major genes associated with tolerance have been cloned, such as SUB1A that confers tolerance of complete submergence and SNORKEL genes that control plant elongation to escape deepwater. Modern rice varieties are sensitive to flooding during germination and early growth, a problem commonly encountered in rainfed areas, but few landraces capable of germination under these conditions have recently been identified, enabling research into tolerance mechanisms. Major QTLs were also identified, and are being targeted for molecular breeding and for cloning. Nevertheless, limited progress has been made in identifying regulatory processes for traits that are unique to tolerant genotypes, including faster germination and coleoptile elongation, formation of roots and leaves under hypoxia, ability to catabolize starch into simple sugars for subsequent use in glycolysis and fermentative pathways to generate energy. Here we discuss the state of knowledge on the role of the PDC-ALDH-ACS bypass and the ALDH enzyme as the likely candidates effective in tolerant rice genotypes. Potential involvement of factors such as cytoplasmic pH regulation, phytohormones, reactive oxygen species scavenging and other metabolites is also discussed. Further characterization of contrasting genotypes would help in elucidating the genetic and biochemical regulatory and signaling mechanisms associated with tolerance. This could facilitate breeding rice varieties suitable for direct seeding systems and guide efforts for improving waterlogging tolerance in other crops.
Collapse
Affiliation(s)
| | - Abdelbagi M. Ismail
- Crop and Environmental Sciences Division, International Rice Research InstituteManila, Philippines
| |
Collapse
|
32
|
Hsu FC, Chou MY, Chou SJ, Li YR, Peng HP, Shih MC. Submergence confers immunity mediated by the WRKY22 transcription factor in Arabidopsis. THE PLANT CELL 2013; 25:2699-713. [PMID: 23897923 PMCID: PMC3753392 DOI: 10.1105/tpc.113.114447] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/30/2013] [Accepted: 07/08/2013] [Indexed: 05/17/2023]
Abstract
Transcriptional control plays an important role in regulating submergence responses in plants. Although numerous genes are highly induced during hypoxia, their individual roles in hypoxic responses are still poorly understood. Here, we found that expression of genes that encode members of the WRKY transcription factor family was rapidly and strongly induced upon submergence in Arabidopsis thaliana, and this induction correlated with induction of a large portion of innate immunity marker genes. Furthermore, prior submergence treatment conferred higher resistance to the bacterial pathogen Pseudomonas syringae in Arabidopsis. Among the WRKY genes tested, WRKY22 had the highest level of induction during the early stages of submergence. Compared with the wild type, WRKY22 T-DNA insertion mutants wrky22-1 and wrky22-2 had lower disease resistance and lower induction of innate immunity markers, such as FLG22-INDUCED RECEPTOR-LIKE KINASE1 (FRK1) and WRKY53, after submergence. Furthermore, transcriptomic analyses of wrky22-2 and chromatin immunoprecipitation identified several potential targets of WRKY22, which included genes encoding a TIR domain-containing protein, a plant peptide hormone, and many OLIGO PEPTIDE TRANSPORTER genes, all of which may lead to induction of innate immunity. In conclusion, we propose that submergence triggers innate immunity in Arabidopsis via WRKY22, a response that may protect against a higher probability of pathogen infection either during or after flooding.
Collapse
Affiliation(s)
- Fu-Chiun Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | |
Collapse
|
33
|
Sauter M. Root responses to flooding. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:282-6. [PMID: 23608517 DOI: 10.1016/j.pbi.2013.03.013] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 05/04/2023]
Abstract
Soil water-logging and submergence pose a severe threat to plants. Roots are most prone to flooding and the first to suffer from oxygen shortage. Roots are vital for plant function, however, and maintenance of a functional root system upon flooding is essential. Flooding-resistant plants possess a number of adaptations that help maintain oxygen supply to the root. Plants are also capable of initiating organogenesis to replace their original root system with adventitious roots if oxygen supply becomes impossible. This review summarizes current findings on root development and de novo root genesis in response to flooding.
Collapse
Affiliation(s)
- Margret Sauter
- Plant Developmental Biology and Plant Physiology, Kiel University, Am Botanischen Garten 5, 24118 Kiel, Germany.
| |
Collapse
|
34
|
Licausi F. Molecular elements of low-oxygen signaling in plants. PHYSIOLOGIA PLANTARUM 2013; 148:1-8. [PMID: 23167298 DOI: 10.1111/ppl.12011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 10/28/2012] [Accepted: 11/05/2012] [Indexed: 05/07/2023]
Abstract
Oxygen and its limitation are emerging as a crucial factor in plant fitness, growth and development. Recent studies revealed the mechanisms by which oxygen is perceived by plant cells. This sensory system partly relies on an oxygen-mediated branch of the N-end rule pathway for protein degradation acting on a specific clade of ethylene responsive transcription factors (ERF-VII). A complementary regulative step is provided by aerobic sequestration of an ERF-VII protein at the plasma membrane and its timely release when hypoxia occurs. Complete absence of oxygen triggers the transient accumulation of reactive hydrogen peroxide and induces an additional set of reactive oxygen species-related genes involved in both signaling and attenuation of oxidative stress. Moreover, temporary hypoxic environments that are built up as consequence of dense cell packing have been demonstrated to trigger cell-fate determination in maize anthers. Similarly, limited oxygen delivery in bulky fruit or tuber tissues growing in aerobic conditions were shown to stimulate anaerobic-like responses. These advances in low-oxygen signaling and its effect on cell development highlight the importance of taking hypoxia into account in agronomical practices as well as in breeding programs.
Collapse
|
35
|
Yasumura Y, Pierik R, Fricker MD, Voesenek LACJ, Harberd NP. Studies of Physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:947-59. [PMID: 23046428 DOI: 10.1111/tpj.12005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Colonization of the land by multicellular green plants was a fundamental step in the evolution of life on earth. Land plants evolved from fresh-water aquatic algae, and the transition to a terrestrial environment required the acquisition of developmental plasticity appropriate to the conditions of water availability, ranging from drought to flood. Here we show that extant bryophytes exhibit submergence-induced developmental plasticity, suggesting that submergence responses evolved relatively early in the evolution of land plants. We also show that a major component of the bryophyte submergence response is controlled by the phytohormone ethylene, using a perception mechanism that has subsequently been conserved throughout the evolution of land plants. Thus a plant environmental response mechanism with major ecological and agricultural importance probably had its origins in the very earliest stages of the colonization of the land.
Collapse
Affiliation(s)
- Yuki Yasumura
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UKPlant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Guo D, Wong WS, Xu WZ, Sun FF, Qing DJ, Li N. Cis-cinnamic acid-enhanced 1 gene plays a role in regulation of Arabidopsis bolting. PLANT MOLECULAR BIOLOGY 2011; 75:481-95. [PMID: 21298397 DOI: 10.1007/s11103-011-9746-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 01/22/2011] [Indexed: 05/22/2023]
Abstract
Cis-cinnamic acid (CA) is one of many cis-phenylpropanoids found in both monocots and dicots. It is produced in planta via sunlight-mediated isomerization of trans-cinnamic acid. This pair of isomers plays a differential role in regulation of plant growth. A functional proteomics approach has been adopted to identify genes of cis/trans-CA mixture-enhanced expression. Out of 1,241 proteins identified by mass spectrometry, 32 were CA-enhanced and 13 repressed. Further analysis with the molecular biology approach revealed 2 cis-CA (Z usammen-CA)-E nhanced genes, named ZCE1 and ZCE2, which encode members of the major latex protein-like (MLPL) gene family. The transcript accumulation of both genes is positively correlated with the amount of cis-CA applied externally, ranging from 1 to 100 μM. ZCE1 transcript accumulation is enhanced largely by cis-CA and slightly by other cis-phenylpropanoids. Treatment of several well-characterized plant growth regulator perception-deficient mutants with cis-CA is able to promote ZCE1 transcript accumulation, suggestive of distinct signaling pathways regulating cis-CA response. The zce1 loss-of-function mutant produced via the RNA-interference technique produces an earlier bolting phenotype in Arabidopsis, suggesting that ZCE1 plays a role in promoting vegetative growth and delay flowering.
Collapse
Affiliation(s)
- Di Guo
- Division of Life Science, The Hong Kong University of Science and Technology, Clear water bay, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
37
|
Dubois V, Moritz T, García-Martínez JL. Comparison of the role of gibberellins and ethylene in response to submergence of two lowland rice cultivars, Senia and Bomba. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:233-241. [PMID: 20889230 DOI: 10.1016/j.jplph.2010.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/09/2010] [Accepted: 07/11/2010] [Indexed: 05/29/2023]
Abstract
We examined the gibberellin (GA) and ethylene regulation of submergence-induced elongation in seedlings of the submergence-tolerant lowland rice (Oryza sativa L.) cvs Senia and Bomba. Elongation was enhanced after germination to facilitate water escape and reach air. We found that submergence-induced elongation depends on GA because it was counteracted by paclobutrazol (an inhibitor of GA biosynthesis), an effect that was negated by GA(3). Moreover, in the cv Senia, submergence increased the content of active GA(1) and its immediate precursors (GA(53), GA(19) and GA(20)) by enhancing expression of several GA biosynthesis genes (OsGA20ox1 and -2, and OsGA3ox2), but not by decreasing expression of several OsGA2ox (GA inactivating genes). Senia seedlings, in contrast to Bomba seedlings, did not elongate in response to ethylene or 1-aminocyclopropane-1-carboxylic-acid (ACC; an ethylene precursor) application, and submergence-induced elongation was not reduced in the presence of 1-methylcyclopropene (1-MCP; an ethylene perception inhibitor). Ethylene emanation was similar in Senia seedlings grown in air and in submerged-grown seedlings following de-submergence, while it increased in Bomba. The expression of ethylene biosynthesis genes (OsACS1, -2 and -3, and OsACO1) was not affected in Senia, but expression of OsACS5 was rapidly enhanced in Bomba upon submergence. Our results support the conclusion that submergence elongation enhancement of lowland rice is due to alteration of GA metabolism leading to an increase in active GA (GA(1)) content. Interestingly, in the cv Senia, in contrast to cv Bomba, this was triggered through an ethylene-independent mechanism.
Collapse
Affiliation(s)
- Vincent Dubois
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | | | | |
Collapse
|
38
|
Dubois V, Moritz T, García-Martínez JL. Examination of two lowland rice cultivars reveals that gibberellin-dependent early response to submergence is not necessarily mediated by ethylene. PLANT SIGNALING & BEHAVIOR 2011; 6:134-136. [PMID: 21224726 PMCID: PMC3122026 DOI: 10.4161/psb.6.1.14268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 11/22/2010] [Indexed: 05/30/2023]
Abstract
Using two lowland rice (Oryza sativa L.) cultivars we found that in both cases submerged-induced elongation early after germination depends on gibberellins (GAs). Submergence increases the content of the active GA 1 by enhancing the expression of GA biosynthesis genes, thus facilitating the seedlings to escape from the water and preventing asphyxiation. However, the two cultivars differ in their response to ethylene. The cultivar Senia (short), by contrast to cultivar Bomba (tall), does not elongate after ethylene application, and submerged-induced elongation is not negated by an inhibitor of ethylene perception. Also, while ethylene emanation in Senia is not altered by submergence, Bomba seedlings emanate more ethylene upon de-submergence, associated with enhanced expression of the ethylene biosynthesis gene OsACS5. The cultivar Senia thus allows the possibility of clarifying the role of ethylene and other factors as triggers of GA biosynthesis enhancement in rice seedlings under submergence.
Collapse
Affiliation(s)
- Vincent Dubois
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio s/n, Valencia, Spain
| | | | | |
Collapse
|
39
|
|
40
|
Gallie DR, Geisler-Lee J, Chen J, Jolley B. Tissue-specific expression of the ethylene biosynthetic machinery regulates root growth in maize. PLANT MOLECULAR BIOLOGY 2009; 69:195-211. [PMID: 18979169 DOI: 10.1007/s11103-008-9418-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 10/14/2008] [Indexed: 05/23/2023]
Abstract
Although the hormonal control of root growth and development has been extensively studied, relatively little is known about the role that ethylene plays in cereal root development. In this work, we have investigated how the ethylene biosynthetic machinery is spatially regulated in maize roots and how changes in its expression alter root growth. ACC synthase (ZmACS) expression was observed in the root cap and in cortical cells whereas ACC oxidase (ZmACO) expression was detected in the root cap, protophloem sieve elements, and the companion cells associated with metaphloem sieve elements. Roots from Zmacs6 mutants exhibited significantly reduced ethylene production, a smaller root cap of increased cell number but smaller cell size, accelerated elongation of metaxylem, cortical, and epidermal cells, and increased vacuolation of cells in the calyptrogen of the root cap, phenotypes that were complemented by exogenous ACC. Zmacs6 mutant roots exhibited increased growth when largely unimpeded, a phenotype complemented by exogenous ACC, whereas loss of ZmACS2 expression had less of an effect. In contrast, Zmacs6 plants exhibited reduced root growth in soil. These results suggest that expression of ZmACS6 is important in regulating growth of maize roots in response to physical resistance.
Collapse
Affiliation(s)
- Daniel R Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA.
| | | | | | | |
Collapse
|
41
|
Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci U S A 2008; 105:16814-9. [PMID: 18936491 DOI: 10.1073/pnas.0807821105] [Citation(s) in RCA: 265] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Submergence-tolerant rice maintains viability during complete submergence by limiting underwater elongation until floodwaters recede. Acclimation responses to submergence are coordinated by the submergence-inducible Sub1A, which encodes an ethylene-responsive factor-type transcription factor (ERF). Sub1A is limited to tolerant genotypes and sufficient to confer submergence tolerance to intolerant accessions. Here we evaluated the role of Sub1A in the integration of ethylene, abscisic acid (ABA), and gibberellin (GA) signaling during submergence. The submergence-stimulated decrease in ABA content was Sub1A-independent, whereas GA-mediated underwater elongation was significantly restricted by Sub1A. Transgenics that ectopically express Sub1A displayed classical GA-insensitive phenotypes, leading to the hypothesis that Sub1A limits the response to GA. Notably Sub1A increased the accumulation of the GA signaling repressors Slender Rice-1 (SLR1) and SLR1 Like-1 (SLRL1) and concomitantly diminished GA-inducible gene expression under submerged conditions. In the Sub1A overexpression line, SLR1 protein levels declined under prolonged submergence but were accompanied by an increase in accumulation of SLRL1, which lacks the DELLA domain. In the presence of Sub1A, the increase in these GA signaling repressors and decrease in GA responsiveness were stimulated by ethylene, which promotes Sub1A expression. Conversely, ethylene promoted GA responsiveness and shoot elongation in submergence-intolerant lines. Together, these results demonstrate that Sub1A limits ethylene-promoted GA responsiveness during submergence by augmenting accumulation of the GA signaling repressors SLR1 and SLRL1.
Collapse
|
42
|
Bailey-Serres J, Voesenek LACJ. Flooding stress: acclimations and genetic diversity. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:313-39. [PMID: 18444902 DOI: 10.1146/annurev.arplant.59.032607.092752] [Citation(s) in RCA: 766] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flooding is an environmental stress for many natural and man-made ecosystems worldwide. Genetic diversity in the plant response to flooding includes alterations in architecture, metabolism, and elongation growth associated with a low O(2) escape strategy and an antithetical quiescence scheme that allows endurance of prolonged submergence. Flooding is frequently accompanied with a reduction of cellular O(2) content that is particularly severe when photosynthesis is limited or absent. This necessitates the production of ATP and regeneration of NAD(+) through anaerobic respiration. The examination of gene regulation and function in model systems provides insight into low-O(2)-sensing mechanisms and metabolic adjustments associated with controlled use of carbohydrate and ATP. At the developmental level, plants can escape the low-O(2) stress caused by flooding through multifaceted alterations in cellular and organ structure that promote access to and diffusion of O(2). These processes are driven by phytohormones, including ethylene, gibberellin, and abscisic acid. This exploration of natural variation in strategies that improve O(2) and carbohydrate status during flooding provides valuable resources for the improvement of crop endurance of an environmental adversity that is enhanced by global warming.
Collapse
Affiliation(s)
- J Bailey-Serres
- Center for Plant Cell Biology, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
43
|
Jackson MB. Ethylene-promoted elongation: an adaptation to submergence stress. ANNALS OF BOTANY 2008; 101:229-48. [PMID: 17956854 PMCID: PMC2711016 DOI: 10.1093/aob/mcm237] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 06/26/2007] [Accepted: 07/13/2007] [Indexed: 05/20/2023]
Abstract
BACKGROUND A sizeable minority of taxa is successful in areas prone to submergence. Many such plants elongate with increased vigour when underwater. This helps to restore contact with the aerial environment by shortening the duration of inundation. Poorly adapted species are usually incapable of this underwater escape. SCOPE Evidence implicating ethylene as the principal factor initiating fast underwater elongation by leaves or stems is evaluated comprehensively along with its interactions with other hormones and gases. These interactions make up a sequence of events that link the perception of submergence to a prompt acceleration of extension. The review encompasses whole plant physiology, cell biology and molecular genetics. It includes assessments of how submergence threatens plant life and of the extent to which the submergence escape demonstrably improves the likelihood of survival. CONCLUSIONS Experimental testing over many years establishes ethylene-promoted underwater extension as one of the most convincing examples of hormone-mediated stress adaptation by plants. The research has utilized a wide range of species that includes numerous angiosperms, a fern and a liverwort. It has also benefited from detailed physiological and molecular studies of underwater elongation by rice (Oryza sativa) and the marsh dock (Rumex palustris). Despite complexities and interactions, the work reveals that the signal transduction pathway is initiated by the simple expediency of physical entrapment of ethylene within growing cells by a covering of water.
Collapse
Affiliation(s)
- Michael B Jackson
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK.
| |
Collapse
|
44
|
Mardanova ES, Zamchuk LA, Ravin NV. The 5′-untranslated region of the maize alcohol dehydrogenase gene provides efficient translation of mRNA in plants under stress conditions. Mol Biol 2007. [DOI: 10.1134/s0026893307060076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Pimentel C, Van Der Straeten D, Pires E, Faro C, Rodrigues-Pousada C. Characterization and expression analysis of the aspartic protease gene family of Cynara cardunculus L. FEBS J 2007; 274:2523-39. [PMID: 17433048 DOI: 10.1111/j.1742-4658.2007.05787.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cardosin A and cardosin B are two aspartic proteases mainly found in the pistils of cardoon Cynara cardunculus L., whose flowers are traditionally used in several Mediterranean countries in the manufacture of ewe's cheese. We have been characterizing cardosins at the biochemical, structural and molecular levels. In this study, we show that the cardoon aspartic proteases are encoded by a multigene family. The genes for cardosin A and cardosin B, as well as those for two new cardoon aspartic proteases, designated cardosin C and cardosin D, were characterized, and their expression in C. cardunculus L. was analyzed by RT-PCR. Together with cardosins, a partial clone of the cyprosin B gene was isolated, revealing that cardosin and cyprosin genes coexist in the genome of the same plant. As a first approach to understanding what dictates the flower-specific pattern of cardosin genes, the respective gene 5' regulatory sequences were fused with the reporter beta-glucuronidase and introduced into Arabidopsis thaliana. A subsequent deletion analysis of the promoter region of the cardosin A gene allowed the identification of a region of approximately 500 bp essential for gene expression in transgenic flowers. Additionally, the relevance of the leader intron of the cardosin A and B genes for gene expression was evaluated. Our data showed that the leader intron is essential for cardosin B gene expression in A. thaliana. In silico analysis revealed the presence of potential regulatory motifs that lay within the aforementioned regions and therefore might be important in the regulation of cardosin expression.
Collapse
Affiliation(s)
- Catarina Pimentel
- Departamento de Biologia Molecular e Biotecnologia do Centro de Neurociências de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
46
|
Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M, Arimura SI, Miyao A, Hirochika H, Kamiya Y, Tsutsumi N, Nambara E, Nakazono M. Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8'-hydroxylase in rice. PLANT & CELL PHYSIOLOGY 2007; 48:287-98. [PMID: 17205969 DOI: 10.1093/pcp/pcm003] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A rapid decrease of the plant hormone ABA under submergence is thought to be a prerequisite for the enhanced elongation of submerged shoots of rice (Oryza sativa L.). Here, we report that the level of phaseic acid (PA), an oxidized form of ABA, increased with decreasing ABA level during submergence. The oxidation of ABA to PA is catalyzed by ABA 8'-hydroxylase, which is possibly encoded by three genes (OsABA8ox1, -2 and -3) in rice. The ABA 8'-hydroxylase activity was confirmed in microsomes from yeast expressing OsABA8ox1. OsABA8ox1-green fluorescent protein (GFP) fusion protein in onion cells was localized to the endoplasmic reticulum. The mRNA level of OsABA8ox1, but not the mRNA levels of other OsABA8ox genes, increased dramatically within 1 h after submergence. On the other hand, the mRNA levels of genes involved in ABA biosynthesis (OsZEP and OsNCEDs) decreased after 1-2 h of submergence. Treatment of aerobic seedlings with ethylene and its precursor, 1-aminocyclopropane-1-carboxylate (ACC), rapidly induced the expression of OsABA8ox1, but the ethylene treatment did not strongly affect the expression of ABA biosynthetic genes. Moreover, pre-treatment with 1-methylcyclopropene (1-MCP), a potent inhibitor of ethylene action, partially suppressed induction of OsABA8ox1 expression under submergence. The ABA level was found to be negatively correlated with OsABA8ox1 expression under ACC or 1-MCP treatment. Together, these results indicate that the rapid decrease in ABA levels in submerged rice shoots is controlled partly by ethylene-induced expression of OsABA8ox1 and partly by ethylene-independent suppression of genes involved in the biosynthesis of ABA.
Collapse
Affiliation(s)
- Hiroaki Saika
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bürstenbinder K, Rzewuski G, Wirtz M, Hell R, Sauter M. The role of methionine recycling for ethylene synthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:238-49. [PMID: 17144895 DOI: 10.1111/j.1365-313x.2006.02942.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The methionine (Met) cycle contributes to sulfur metabolism through the conversion of methylthioadenosine (MTA) to Met at the expense of ATP. MTA is released as a by-product of ethylene synthesis from S-adenosylmethionine (AdoMet). Disruption of the Met cycle in the Arabidopsis mtk mutant resulted in an imbalance of AdoMet homeostasis at sulfur-limiting conditions, irrespective of the sulfur source supplied to the plants. At a low concentration of 100 mum sulfate, the mtk mutant had reduced AdoMet levels and growth was retarded as compared with wild type. An elevated production of ethylene was measured in seedlings of the ethylene-overproducing eto3 mutant. When Met cycle knockout and ethylene overproduction were combined in the mtk/eto3 double mutant, a reduced capacity for ethylene synthesis was observed in seedlings. Even though mature eto3 plants did not produce elevated ethylene levels, and AdoMet homeostasis in eto3 plants did not differ from that in wild type, shoot growth was severely retarded. The mtk/eto3 double mutant displayed a metabolic plant phenotype that was similar to mtk with reduced AdoMet levels at sulfur-limiting conditions. We conclude from our data that the Met cycle contributes to the maintenance of AdoMet homeostasis, especially when de novo AdoMet synthesis is limited. Our data further showed that the Met cycle is required to sustain high rates of ethylene synthesis. Expression of the Met cycle genes AtMTN1, AtMTN2, AtMTK, AtARD1, AtARD2, AtARD3 and AtARD4 was not regulated by ethylene. This result is in contrast to that found in rice where OsARD1 and OsMTK are induced in response to ethylene. We hypothesize that the regulation of the Met cycle by ethylene may be restricted to plants that naturally produce high quantities of ethylene for a prolonged period of time.
Collapse
|
48
|
Rzewuski G, Cornell KA, Rooney L, Bürstenbinder K, Wirtz M, Hell R, Sauter M. OsMTN encodes a 5'-methylthioadenosine nucleosidase that is up-regulated during submergence-induced ethylene synthesis in rice (Oryza sativa L.). JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:1505-14. [PMID: 17339651 DOI: 10.1093/jxb/erm014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Methylthioadenosine (MTA) is released as a by-product of S-adenosylmethionine (AdoMet)-dependent reactions central to ethylene, polyamine, or phytosiderophore biosynthesis. MTA is hydrolysed by methylthioadenosine nucleosidase (MTN; EC 3.2.2.16) into adenine and methylthioribose which is processed through the methionine (Met) cycle to produce a new molecule of AdoMet. In deepwater rice, submergence enhances ethylene biosynthesis, and ethylene in turn influences the methionine cycle through positive feedback regulation of the acireductone dioxygenase gene OsARD1. In rice, MTN is encoded by a single gene designated OsMTN. Recombinant OsMTN enzyme had a KM for MTA of 2.1 mM and accepted a wide array of 5' substitutions of the substrate. OsMTN also metabolized S-adenosylhomocysteine (AdoHcy) with 15.9% the rate of MTA. OsMTN transcripts and OsMTN-specific activity increased slowly and in parallel upon submergence, indicating that regulation occurred mainly at the transcriptional level. Neither ethylene, MTA, nor Met regulated OsMTN expression. Analysis of steady-state metabolite levels showed that MTN activity was sufficiently high to prevent Met and AdoMet depletion during long-term ethylene biosynthesis.
Collapse
Affiliation(s)
- Guillaume Rzewuski
- Botanisches Institut, Universität Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Sauter M, Lorbiecke R, Ouyang B, Pochapsky TC, Rzewuski G. The immediate-early ethylene response gene OsARD1 encodes an acireductone dioxygenase involved in recycling of the ethylene precursor S-adenosylmethionine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:718-29. [PMID: 16297065 DOI: 10.1111/j.1365-313x.2005.02564.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Methylthioadenosine (MTA) is formed as a by-product of ethylene biosynthesis from S-adenosyl-L-methionine (AdoMet). The methionine cycle regenerates AdoMet from MTA. In two independent differential screens for submergence-induced genes and for 1-aminocyclopropane-1-carboxylic acid (ACC)-induced genes from deepwater rice (Oryza sativa L.) we identified an acireductone dioxygenase (ARD). OsARD1 is a metal-binding protein that belongs to the cupin superfamily. Acireductone dioxygenases are unique proteins that can acquire two different activities depending on the metal ion bound. Ectopically expressed apo-OsARD1 preferentially binds Fe(2+) and reconstituted Fe-OsARD1 catalyzed the formation of 2-keto-pentanoate and formate from the model substrate 1,2-dihydroxy-3-ketopent-1-ene and dioxygen, indicating that OsARD1 is capable of catalyzing the penultimate step in the methionine cycle. Two highly homologous ARD genes were identified in rice. OsARD1 mRNA levels showed a rapid, early and transient increase upon submergence and after treatment with ethylene-releasing compounds. The second gene from rice, OsARD2, is constitutively expressed. Accumulation of OsARD1 transcript was observed in the same internodal tissues, i.e. the meristem and elongation zone, which were previously shown to synthesize ethylene. OsARD1 transcripts accumulated in the presence of cycloheximide, an inhibitor of protein synthesis, indicating that OsARD1 is a primary ethylene response gene. Promoter analysis suggests that immediate-early regulation of OsARD1 by ethylene may involve an EIN3-like transcription factor. OsARD1 is induced by low levels of ethylene. We propose that early feedback activation of the methionine cycle by low levels of ethylene ensures the high and continuous rates of ethylene synthesis required for long-term ethylene-mediated submergence adaptation without depleting the tissue of AdoMet.
Collapse
|
50
|
Steffens B, Sauter M. Epidermal cell death in rice is regulated by ethylene, gibberellin, and abscisic acid. PLANT PHYSIOLOGY 2005; 139:713-21. [PMID: 16169967 PMCID: PMC1255990 DOI: 10.1104/pp.105.064469] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Programmed cell death (PCD) of epidermal cells that cover adventitious root primordia in deepwater rice (Oryza sativa) is induced by submergence. Early suicide of epidermal cells may prevent injury to the growing root that emerges under flooding conditions. Induction of PCD is dependent on ethylene signaling and is further promoted by gibberellin (GA). Ethylene and GA act in a synergistic manner, indicating converging signaling pathways. Treatment of plants with GA alone did not promote PCD. Treatment with the GA biosynthesis inhibitor paclobutrazol resulted in increased PCD in response to ethylene and GA presumably due to an increased sensitivity of epidermal cells to GA. Abscisic acid (ABA) was shown to efficiently delay ethylene-induced as well as GA-promoted cell death. The results point to ethylene signaling as a target of ABA inhibition of PCD. Accumulation of ethylene and GA and a decreased ABA level in the rice internode thus favor induction of epidermal cell death and ensure that PCD is initiated as an early response that precedes adventitious root growth.
Collapse
|