1
|
Bezvoda R, Landeo‐Ríos YM, Kubátová Z, Kollárová E, Kulich I, Busch W, Žárský V, Cvrčková F. A Genome-Wide Association Screen for Genes Affecting Leaf Trichome Development and Epidermal Metal Accumulation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2025; 48:3708-3734. [PMID: 39812181 PMCID: PMC11963502 DOI: 10.1111/pce.15357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
To identify novel genes engaged in plant epidermal development, we characterized the phenotypic variability of rosette leaf epidermis of 310 sequenced Arabidopsis thaliana accessions, focusing on trichome shape and distribution, compositional characteristics of the trichome cell wall, and histologically detectable metal ion distribution. Some of these traits correlated with cLimate parameters of our accession's locations of origin, suggesting environmental selection. A novel metal deposition pattern in stomatal guard cells was observed in some accessions. Subsequent GWAS analysis identified 1546 loci with protein sequence-altering SNPs associated with one or more traits, including 5 genes with previously reported relevant mutant phenotypes and 80 additional genes with known or predicted roles in relevant developmental and cellular processes. Some candidates, including GFS9/TT9, exhibited environmentally correlated allele distribution. Several large gene famiLies, namely DUF674, DUF784, DUF1262, DUF1985, DUF3741, cytochrome P450, receptor-Like kinases, Cys/His-rich C1 domain proteins and formins were overrepresented among the candidates for various traits, suggesting epidermal development-related functions. A possible participation of formins in guard cell metal deposition was supported by observations in available loss of function mutants. Screening of candidate gene lists against the STRING interactome database uncovered several predominantly nuclear protein interaction networks with possible novel roles in epidermal development.
Collapse
Affiliation(s)
- Radek Bezvoda
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | | | - Zdeňka Kubátová
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | - Eva Kollárová
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, and Integrative Biology LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesVienna Biocenter (VBC)ViennaAustria
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
- Institute of Experimental BotanyCzech Academy of SciencesPragueCzechia
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| |
Collapse
|
2
|
Xu C, Zhang J, Li W, Guo J. The role of Exo70s in plant defense against pathogens and insect pests and their application for crop breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:17. [PMID: 39850652 PMCID: PMC11751289 DOI: 10.1007/s11032-025-01539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
Plant diseases caused by pathogens and pests lead to crop losses, posing a threat to global food security. The secretory pathway is an integral component of plant defense. The exocyst complex regulates the final step of the secretory pathway and is thus essential for secretory defense. In the last decades, several subunits of the exocyst complex have been reported to be involved in plant defense, especially Exo70s. This comprehensive review focuses on the functions of the exocyst Exo70s in plant immunity, particularly in recognizing pathogen and pest signatures. We discussed Exo70's interactions with immune receptors and other immune-related proteins, its symbiotic relationships with microbes, and its role in non-host resistance. Finally, we discussed the future engineering breeding of crops with resistance to pathogens and pests based on our current understanding of Exo70s.
Collapse
Affiliation(s)
- Chunxue Xu
- Department of Early Childhood Education, Wuhan City Polytechnic, Wuhan, 430072 China
| | - Jing Zhang
- School of Agricultural Science, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Wenqian Li
- Department of Early Childhood Education, Wuhan City Polytechnic, Wuhan, 430072 China
| | - Jianping Guo
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
3
|
Yu X, Qu M, Wu P, Zhou M, Lai E, Liu H, Guo S, Li S, Yao X, Gao L. Super pan-genome reveals extensive genomic variations associated with phenotypic divergence in Actinidia. MOLECULAR HORTICULTURE 2025; 5:4. [PMID: 39849617 PMCID: PMC11758757 DOI: 10.1186/s43897-024-00123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 10/24/2024] [Indexed: 01/25/2025]
Abstract
Kiwifruit is an economically and nutritionally important horticultural fruit crop worldwide. The genomic data of several kiwifruit species have been released, providing an unprecedented opportunity for pan-genome analysis to comprehensively investigate the inter- and intra-species genetic diversity and facilitate utilization for kiwifruit breeding. Here, we generated a kiwifruit super pan-genome using 15 high-quality assemblies of eight Actinidia species. For gene-based pan-genome, a total of 61,465 gene families were identified, and the softcore and dispensable genes were enriched in biological processes like response to endogenous stimulus, response to hormone and cell wall organization or biogenesis. Then, structural variations (SVs) against A. chinensis 'Donghong' were identified and then used to construct a graph-based genome. Further population-scale SVs based on resequencing data from 112 individuals of 20 species revealed extensive SVs which probably contributed to the phenotypic diversity among the Actinidia species. SV hotspot regions were found contributed to environmental adaptation. Furthermore, we systematically identified resistance gene analogs (RGAs) in the 15 assemblies and generated a pan-RGA dataset to reveal the diversity of genes potentially involved in disease resistance in Actinidia. The pan-genomic data obtained here is useful for evolutionary and functional genomic studies in Actinidia, and facilitates breeding design.
Collapse
Affiliation(s)
- Xiaofen Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Minghao Qu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Miao Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Enhui Lai
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Bioinformatics Center, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Sumin Guo
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Shan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Xiaohong Yao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| | - Lei Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China.
| |
Collapse
|
4
|
Drs M, Krupař P, Škrabálková E, Haluška S, Müller K, Potocká A, Brejšková L, Serrano N, Voxeur A, Vernhettes S, Ortmannová J, Caldarescu G, Fendrych M, Potocký M, Žárský V, Pečenková T. Chitosan stimulates root hair callose deposition, endomembrane dynamics, and inhibits root hair growth. PLANT, CELL & ENVIRONMENT 2025; 48:451-469. [PMID: 39267452 PMCID: PMC11615431 DOI: 10.1111/pce.15111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 09/17/2024]
Abstract
Although angiosperm plants generally react to immunity elicitors like chitin or chitosan by the cell wall callose deposition, this response in particular cell types, especially upon chitosan treatment, is not fully understood. Here we show that the growing root hairs (RHs) of Arabidopsis can respond to a mild (0.001%) chitosan treatment by the callose deposition and by a deceleration of the RH growth. We demonstrate that the glucan synthase-like 5/PMR4 is vital for chitosan-induced callose deposition but not for RH growth inhibition. Upon the higher chitosan concentration (0.01%) treatment, RHs do not deposit callose, while growth inhibition is prominent. To understand the molecular and cellular mechanisms underpinning the responses to two chitosan treatments, we analysed early Ca2+ and defence-related signalling, gene expression, cell wall and RH cellular endomembrane modifications. Chitosan-induced callose deposition is also present in the several other plant species, including functionally analogous and evolutionarily only distantly related RH-like structures such as rhizoids of bryophytes. Our results point to the RH callose deposition as a conserved strategy of soil-anchoring plant cells to cope with mild biotic stress. However, high chitosan concentration prominently disturbs RH intracellular dynamics, tip-localised endomembrane compartments, growth and viability, precluding callose deposition.
Collapse
Affiliation(s)
- Matěj Drs
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Pavel Krupař
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Eliška Škrabálková
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Samuel Haluška
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Karel Müller
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - Andrea Potocká
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - Lucie Brejšková
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - Natalia Serrano
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - Aline Voxeur
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin (IJPB)VersaillesFrance
| | - Samantha Vernhettes
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin (IJPB)VersaillesFrance
| | - Jitka Ortmannová
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - George Caldarescu
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Viktor Žárský
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| |
Collapse
|
5
|
Zhu Z, Peng J, Yu P, Fei J, Huang Z, Deng Y, Yang X, Luo J, Li T, Huang Y. Foliar uptake, translocation and its contribution to Cadmium accumulation in rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177945. [PMID: 39671931 DOI: 10.1016/j.scitotenv.2024.177945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Rice may absorb Cadmium (Cd) from the air through its leaves. The process of Cd foliar absorption, accumulation, and redistribution is yet unknown, nevertheless. In this study, the process of Cd absorption from rice leaves and its accumulation and redistribution during all stages of the rice plant's growth were examined. Stable isotope (108Cd) tracing was used to investigate the distribution of Cd absorbed by leaves in different organs, and a short-term targeted leaf feeding experiment was used to explore the transport pathways and distribution of leaf-absorbed Cd in rice. Leaf-absorbed Cd could be transported to other parts of rice over long distances. Most of it was retained in the leaves and husks, a small part in the grains, and it was rarely distributed to the roots. The contribution of leaf-absorbed Cd to total Cd accumulation was the maximum in the husks (48.96 %-88.24 %), followed by the shoots (23.13 %-44.11 %), grains (22.13 %-24.15 %), and roots (4.57 %-15.21 %). Though the Cd accumulated in grains was predominately derived from root uptake compared with foliar uptake, foliar uptake was not negligible and the contribution rate was >20 %. Additionally, with the short-term fluorescent labeling experiment of leaf-targeted feeding, strong Cd fluorescence signals were observed in the phloem of both labeled and upper leaves, indicating that the Cd retransport process between the above- and belowground parts of rice was very active. Our findings preliminarily revealed the pathway and physiological mechanism of Cd absorption and reuse in rice leaves and provided theoretical support for the formulation of field management policies and control of Cd accumulation in rice. ENVIRONMENTAL IMPLICATION: Previous research indicates that the absorption of soil Cd by rice roots is the main mechanism responsible for Cd accumulation in plants. Therefore, many scholars have proposed various deterrent measures for overcoming soil pollution but neglected the role of leaves in absorbing heavy metals, e.g., Cd, from the atmosphere. Moreover, Cd foliar uptake, accumulation, and redistribution processes are still unclear. Our findings preliminarily revealed the physiological mechanism and pathway of Cd absorption and reuse in rice leaves and provided theoretical support for the formulation of field management policies and control of Cd accumulation in rice.
Collapse
Affiliation(s)
- Zhen Zhu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resource, Hunan Agricultural University, Hunan 410128, China
| | - Jianwei Peng
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resource, Hunan Agricultural University, Hunan 410128, China
| | - Pengyue Yu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resource, Hunan Agricultural University, Hunan 410128, China
| | - Jiangchi Fei
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resource, Hunan Agricultural University, Hunan 410128, China
| | - Zhi Huang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resource, Hunan Agricultural University, Hunan 410128, China
| | - Yaocheng Deng
- College of Environment and Ecology, Hunan Agricultural University, Hunan 410128, China
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Jipeng Luo
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Tingqiang Li
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Ying Huang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resource, Hunan Agricultural University, Hunan 410128, China.
| |
Collapse
|
6
|
Sinha A, Narula K, Bhola L, Sengupta A, Choudhary P, Nalwa P, Kumar M, Elagamey E, Chakraborty N, Chakraborty S. Proteomic signatures uncover phenotypic plasticity of susceptible and resistant genotypes by wall remodelers in rice blast. PLANT, CELL & ENVIRONMENT 2024; 47:3846-3864. [PMID: 38825969 DOI: 10.1111/pce.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024]
Abstract
Molecular communication between macromolecules dictates extracellular matrix (ECM) dynamics during pathogen recognition and disease development. Extensive research has shed light on how plant immune components are activated, regulated and function in response to pathogen attack. However, two key questions remain largely unresolved: (i) how does ECM dynamics govern susceptibility and disease resistance, (ii) what are the components that underpin these phenomena? Rice blast, caused by Magnaporthe oryzae adversely affects rice productivity. To understand ECM regulated genotype-phenotype plasticity in blast disease, we temporally profiled two contrasting rice genotypes in disease and immune state. Morpho-histological, biochemical and electron microscopy analyses revealed that increased necrotic lesions accompanied by electrolyte leakage governs disease state. Wall carbohydrate quantification showed changes in pectin level was more significant in blast susceptible compared to blast resistant cultivar. Temporally resolved quantitative disease- and immune-responsive ECM proteomes identified 308 and 334 proteins, respectively involved in wall remodelling and integrity, signalling and disease/immune response. Pairwise comparisons between time and treatment, messenger ribonucleic acid expression, diseasome and immunome networks revealed novel blast-related functional modules. Data demonstrated accumulation of α-galactosidase and phosphatase were associated with disease state, while reactive oxygen species, induction of Lysin motif proteins, CAZymes and extracellular Ca-receptor protein govern immune state.
Collapse
Affiliation(s)
- Arunima Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Kanika Narula
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Latika Bhola
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Atreyee Sengupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Pooja Choudhary
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Pragya Nalwa
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Mohit Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Eman Elagamey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
7
|
Zajączkowska U, Dmitruk D, Sekulska-Nalewajko J, Gocławski J, Dołkin-Lewko A, Łotocka B. The impact of mechanical stress on anatomy, morphology, and gene expression in Urtica dioica L. PLANTA 2024; 260:46. [PMID: 38970646 PMCID: PMC11227470 DOI: 10.1007/s00425-024-04477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
MAIN CONCLUSION Mechanical stress induces distinct anatomical, molecular, and morphological changes in Urtica dioica, affecting trichome development, gene expression, and leaf morphology under controlled conditions The experiments were performed on common nettle, a widely known plant characterized by high variability of leaf morphology and responsiveness to mechanical touch. A specially constructed experimental device was used to study the impact of mechanical stress on Urtica dioica plants under strictly controlled parameters of the mechanical stimulus (touching) and environment in the growth chamber. The general anatomical structure of the plants that were touched was similar to that of control plants, but the shape of the internodes' cross section was different. Stress-treated plants showed a distinct four-ribbed structure. However, as the internodes progressed, the shape gradually approached a rectangular form. The epidermis of control plants included stinging, glandular and simple setulose trichomes, but plants that were touched had no stinging trichomes, and setulose trichomes accumulated more callose. Cell wall lignification occurred in the older internodes of the control plants compared to stress-treated ones. Gene analysis revealed upregulation of the expression of the UdTCH1 gene in touched plants compared to control plants. Conversely, the expression of UdERF4 and UdTCH4 was downregulated in stressed plants. These data indicate that the nettle's response to mechanical stress reaches the level of regulatory networks of gene expression. Image analysis revealed reduced leaf area, increased asymmetry and altered contours in touched leaves, especially in advanced growth stages, compared to control plants. Our results indicate that mechanical stress triggers various anatomical, molecular, and morphological changes in nettle; however, further interdisciplinary research is needed to better understand the underlying physiological mechanisms.
Collapse
Affiliation(s)
- Urszula Zajączkowska
- Department of Forest Botany, Warsaw University of Life Sciences, Nowoursynowska 166, 02-776, Warsaw, Poland.
| | - Dominika Dmitruk
- Department of Botany, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Joanna Sekulska-Nalewajko
- Institute of Applied Computer Science, Lodz University of Technology, Stefanowskiego 18/22, 90-924, Lodz, Poland
| | - Jarosław Gocławski
- Institute of Applied Computer Science, Lodz University of Technology, Stefanowskiego 18/22, 90-924, Lodz, Poland
| | - Alicja Dołkin-Lewko
- Department of Forest Botany, Warsaw University of Life Sciences, Nowoursynowska 166, 02-776, Warsaw, Poland
| | - Barbara Łotocka
- Department of Botany, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| |
Collapse
|
8
|
Huebbers JW, Caldarescu GA, Kubátová Z, Sabol P, Levecque SCJ, Kuhn H, Kulich I, Reinstädler A, Büttgen K, Manga-Robles A, Mélida H, Pauly M, Panstruga R, Žárský V. Interplay of EXO70 and MLO proteins modulates trichome cell wall composition and susceptibility to powdery mildew. THE PLANT CELL 2024; 36:1007-1035. [PMID: 38124479 PMCID: PMC10980356 DOI: 10.1093/plcell/koad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Exocyst component of 70-kDa (EXO70) proteins are constituents of the exocyst complex implicated in vesicle tethering during exocytosis. MILDEW RESISTANCE LOCUS O (MLO) proteins are plant-specific calcium channels and some MLO isoforms enable fungal powdery mildew pathogenesis. We here detected an unexpected phenotypic overlap of Arabidopsis thaliana exo70H4 and mlo2 mlo6 mlo12 triple mutant plants regarding the biogenesis of leaf trichome secondary cell walls. Biochemical and Fourier transform infrared spectroscopic analyses corroborated deficiencies in the composition of trichome cell walls in these mutants. Transgenic lines expressing fluorophore-tagged EXO70H4 and MLO exhibited extensive colocalization of these proteins. Furthermore, mCherry-EXO70H4 mislocalized in trichomes of the mlo triple mutant and, vice versa, MLO6-GFP mislocalized in trichomes of the exo70H4 mutant. Expression of GFP-marked PMR4 callose synthase, a known cargo of EXO70H4-dependent exocytosis, revealed reduced cell wall delivery of GFP-PMR4 in trichomes of mlo triple mutant plants. In vivo protein-protein interaction assays in plant and yeast cells uncovered isoform-preferential interactions between EXO70.2 subfamily members and MLO proteins. Finally, exo70H4 and mlo6 mutants, when combined, showed synergistically enhanced resistance to powdery mildew attack. Taken together, our data point to an isoform-specific interplay of EXO70 and MLO proteins in the modulation of trichome cell wall biogenesis and powdery mildew susceptibility.
Collapse
Affiliation(s)
- Jan W Huebbers
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - George A Caldarescu
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Zdeňka Kubátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Peter Sabol
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Sophie C J Levecque
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Hannah Kuhn
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Anja Reinstädler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Kim Büttgen
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Alba Manga-Robles
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, 24071 León, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, 24071 León, Spain
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
- Institute of Experimental Botany of the Czech Academy of Sciences, Laboratory of Cell Biology, Rozvojová 263, 165 02 Prague 6 Lysolaje, Czech Republic
| |
Collapse
|
9
|
Liu L, Chen J, Gu C, Wang S, Xue Y, Wang Z, Han L, Song W, Liu X, Zhang J, Li M, Li C, Wang L, Zhang X, Zhou Z. The exocyst subunit CsExo70B promotes both fruit length and disease resistance via regulating receptor kinase abundance at plasma membrane in cucumber. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:347-362. [PMID: 37795910 PMCID: PMC10826989 DOI: 10.1111/pbi.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Plant defence against pathogens generally occurs at the expense of growth and yield. Uncoupling the inverse relationship between growth and defence is of great importance for crop breeding, while the underlying genes and regulatory mechanisms remain largely elusive. The exocytosis complex was shown to play an important role in the trafficking of receptor kinases (RKs) to the plasma membrane (PM). Here, we found a Cucumis sativus exocytosis subunit Exo70B (CsExo70B) regulates the abundance of both development and defence RKs at the PM to promote fruit elongation and disease resistance in cucumber. Knockout of CsExo70B resulted in shorter fruit and susceptibility to pathogens. Mechanistically, CsExo70B associates with the developmental RK CsERECTA, which promotes fruit longitudinal growth in cucumber, and contributes to its accumulation at the PM. On the other side, CsExo70B confers to the spectrum resistance to pathogens in cucumber via a similar regulatory module of defence RKs. Moreover, CsExo70B overexpression lines showed an increased fruit yield as well as disease resistance. Collectively, our work reveals a regulatory mechanism that CsExo70B promotes both fruit elongation and disease resistance by maintaining appropriate RK levels at the PM and thus provides a possible strategy for superior cucumber breeding with high yield and robust pathogen resistance.
Collapse
Affiliation(s)
- Liu Liu
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Jiacai Chen
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Chaoheng Gu
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Shaoyun Wang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Yufan Xue
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Zhongyi Wang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Lijie Han
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Weiyuan Song
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Jiahao Zhang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Min Li
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Chuang Li
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
- Sanya lnstitute of China Agricultural UniversitySanyaChina
| | - Liming Wang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
- Sanya lnstitute of China Agricultural UniversitySanyaChina
| | - Zhaoyang Zhou
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
- Sanya lnstitute of China Agricultural UniversitySanyaChina
| |
Collapse
|
10
|
Ding N, Cai J, Xiao S, Jiang L. Heterologous expression of rice OsEXO70FX1 confers tolerance to cadmium in Arabidopsis thaliana and fission yeast. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108268. [PMID: 38091933 DOI: 10.1016/j.plaphy.2023.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 02/15/2024]
Abstract
Cadmium (Cd) is an environmental toxicant that accumulates in grains, which greatly increases the risk of human exposure to Cd via food chain. The exocytosis of Cd is one of the essential detoxification mechanisms in plants. OsEXO70s, which facilitate the fusion of secretory vesicles and target membranes, has undergone significant expansion in rice. Here, we uncovered 40 OsEXO70 genes characterized by genome-wide profiling and focused on the potential functions of OsEXO70s, especially OsEXO70FX1, in Cd stress. Overexpression of OsEXO70FX1 enhanced both diamide and Cd tolerances in Schizosaccharomyces pombe (S. pombe), and in Arabidopsis resulted in 11% more seedlings survival rate and about 70% longer primary roots under Cd treatment compared with WT (empty vector). Meanwhile, Cd treatment upregulated the expression levels of some exocyst subunits in overexpression lines. Trichomes isolated from overexpression lines were observed to accumulate more Cd. Also, reactive oxygen species (ROS) induced by Cd stress reflected less sensitivity of OsEXO70FX1 overexpression lines to Cd stress, which was evidenced in the Cd determination assay. These results provide the fundament to future research on rice EXO70 family and suggest that it may have evolved a specialized role in response to Cd stress.
Collapse
Affiliation(s)
- Ning Ding
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Jiajia Cai
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shimin Xiao
- Shanwei Marine Industry Institute, Shanwei Institute of Technology, Shanwei, 516600, China
| | - Li Jiang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
11
|
Liao C, Li Y, Wu X, Wu W, Zhang Y, Zhan P, Meng X, Hu G, Yang S, Lin H. ZmHMA3, a Member of the Heavy-Metal-Transporting ATPase Family, Regulates Cd and Zn Tolerance in Maize. Int J Mol Sci 2023; 24:13496. [PMID: 37686302 PMCID: PMC10487686 DOI: 10.3390/ijms241713496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The pollution of heavy metals is extremely serious in China, including zinc (Zn), copper (Cu), lead (Pb), and cadmium (Cd). Heavy-metal-transporting ATPase (HMA) belongs to a subfamily of the P-ATPase family, which absorbs and transports Zn, Cu, Pb, and Cd in plants. Here, we describe a ZmHMA-encoding HMA family protein that positively regulates Cd and Zn tolerance. The real-time fluorescence quantification (RT-PCR) results revealed that ZmHMA3 had a high expression in B73, and the expression of ZmHMA3 was sensitive to Cd in yeast cells, which was related to Cd accumulation in yeast. Additionally, the Arabidopsis thaliana homologous mutants of AtHMA2 showed Cd sensitivity compared with WT. The overexpressing ZmHMA3 plants showed higher tolerance under Cd and Zn stresses than the wild type. The overexpression of ZmHMA3 led to higher Cd and Zn accumulation in tissues based on the subcellular distribution analysis. We propose that ZmHMA3 improves maize tolerance to Cd and Zn stresses by absorbing and transporting Cd and Zn ions. This study elucidates the gene function of the ZmHMA3 response to Cd and Zn stress and provides a reference for improving the characteristics of heavy metals enrichment in existing maize varieties and the plant remediation technology of heavy-metal-contaminated soil.
Collapse
Affiliation(s)
- Changjian Liao
- Technical Research Center of Dry Crop Variety Breeding in Fujian Province, Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (C.L.)
| | - Youqiang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.)
| | - Xiaohong Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.)
| | - Wenmei Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.)
| | - Yang Zhang
- Technical Research Center of Dry Crop Variety Breeding in Fujian Province, Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (C.L.)
| | - Penglin Zhan
- Technical Research Center of Dry Crop Variety Breeding in Fujian Province, Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (C.L.)
| | - Xin Meng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.)
| | - Gaojiao Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.)
| | - Shiqi Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.)
| | - Haijian Lin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.)
| |
Collapse
|
12
|
Dong Y, Gupta S, Wargent JJ, Putterill J, Macknight RC, Gechev TS, Mueller-Roeber B, Dijkwel PP. Comparative Transcriptomics of Multi-Stress Responses in Pachycladon cheesemanii and Arabidopsis thaliana. Int J Mol Sci 2023; 24:11323. [PMID: 37511083 PMCID: PMC10379395 DOI: 10.3390/ijms241411323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The environment is seldom optimal for plant growth and changes in abiotic and biotic signals, including temperature, water availability, radiation and pests, induce plant responses to optimise survival. The New Zealand native plant species and close relative to Arabidopsis thaliana, Pachycladon cheesemanii, grows under environmental conditions that are unsustainable for many plant species. Here, we compare the responses of both species to different stressors (low temperature, salt and UV-B radiation) to help understand how P. cheesemanii can grow in such harsh environments. The stress transcriptomes were determined and comparative transcriptome and network analyses discovered similar and unique responses within species, and between the two plant species. A number of widely studied plant stress processes were highly conserved in A. thaliana and P. cheesemanii. However, in response to cold stress, Gene Ontology terms related to glycosinolate metabolism were only enriched in P. cheesemanii. Salt stress was associated with alteration of the cuticle and proline biosynthesis in A. thaliana and P. cheesemanii, respectively. Anthocyanin production may be a more important strategy to contribute to the UV-B radiation tolerance in P. cheesemanii. These results allowed us to define broad stress response pathways in A. thaliana and P. cheesemanii and suggested that regulation of glycosinolate, proline and anthocyanin metabolism are strategies that help mitigate environmental stress.
Collapse
Affiliation(s)
- Yanni Dong
- School of Natural Sciences, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| | - Saurabh Gupta
- Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam, Germany
| | - Jason J Wargent
- School of Agriculture & Environment, Massey University, Palmerston North 4442, New Zealand
| | - Joanna Putterill
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Richard C Macknight
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Tsanko S Gechev
- Center of Plant Systems Biology and Biotechnology (CPSBB), 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
- Department of Plant Physiology and Plant Molecular Biology, University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria
| | - Bernd Mueller-Roeber
- Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Paul P Dijkwel
- School of Natural Sciences, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| |
Collapse
|
13
|
Liu L, Gu C, Zhang J, Guo J, Zhang X, Zhou Z. Genome-Wide Analysis of Exocyst Complex Subunit Exo70 Gene Family in Cucumber. Int J Mol Sci 2023; 24:10929. [PMID: 37446106 DOI: 10.3390/ijms241310929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable worldwide, but its yield is affected by a wide range of pathogens and pests. As the major subunit of the exocyst complex, the roles of Exo70 members have been shown in Arabidopsis and rice, but their function are unknown in cucumber. Here, we identified 18 CsExo70 members in cucumber, which were divided into three groups (Exo70.1-Exo70.3) and nine subgroups (Exo70A-Exo70I) based on the phylogenetic tree. Subsequently, systematical analyses were performed, including collinearity, gene structure, cis-acting elements, conserved motifs, expression patterns, and subcellular localization. Our results showed that CsExo70 genes were generally expressed in all tissues, and CsExo70C1 and CsExo70C2 were highly expressed in the stamen. Moreover, the expression levels of most CsExo70 genes were induced by Pseudomonas syringae pv. lachrymans (Psl) and Fusarium oxysporum f. sp. cucumerinum Owen (Foc), especially CsExo70E2 and CsExo70H3. In addition, these CsExo70s displayed similar location patterns with discrete and punctate signals in the cytoplasm. Together, our results indicate that CsExo70 members may be involved in plant development and resistance, and provide a reference for future in-depth studies of Exo70 genes in cucumber.
Collapse
Affiliation(s)
- Liu Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Chaoheng Gu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Jiahao Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Jingyu Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaoyang Zhou
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Li X, Zhu P, Chen YJ, Huang L, Wang D, Newton DT, Hsu CC, Lin G, Tao WA, Staiger CJ, Zhang C. The EXO70 inhibitor Endosidin2 alters plasma membrane protein composition in Arabidopsis roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1171957. [PMID: 37324680 PMCID: PMC10264680 DOI: 10.3389/fpls.2023.1171957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
To sustain normal growth and allow rapid responses to environmental cues, plants alter the plasma membrane protein composition under different conditions presumably by regulation of delivery, stability, and internalization. Exocytosis is a conserved cellular process that delivers proteins and lipids to the plasma membrane or extracellular space in eukaryotes. The octameric exocyst complex contributes to exocytosis by tethering secretory vesicles to the correct site for membrane fusion; however, whether the exocyst complex acts universally for all secretory vesicle cargo or just for specialized subsets used during polarized growth and trafficking is currently unknown. In addition to its role in exocytosis, the exocyst complex is also known to participate in membrane recycling and autophagy. Using a previously identified small molecule inhibitor of the plant exocyst complex subunit EXO70A1, Endosidin2 (ES2), combined with a plasma membrane enrichment method and quantitative proteomic analysis, we examined the composition of plasma membrane proteins in the root of Arabidopsis seedlings, after inhibition of the ES2-targetted exocyst complex, and verified our findings by live imaging of GFP-tagged plasma membrane proteins in root epidermal cells. The abundance of 145 plasma membrane proteins was significantly reduced following short-term ES2 treatments and these likely represent candidate cargo proteins of exocyst-mediated trafficking. Gene Ontology analysis showed that these proteins play diverse functions in cell growth, cell wall biosynthesis, hormone signaling, stress response, membrane transport, and nutrient uptake. Additionally, we quantified the effect of ES2 on the spatial distribution of EXO70A1 with live-cell imaging. Our results indicate that the plant exocyst complex mediates constitutive dynamic transport of subsets of plasma membrane proteins during normal root growth.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
| | - Yen-Ju Chen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Lei Huang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Diwen Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - David T. Newton
- Department of Statistics, Purdue University, West Lafayette, IN, United States
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Guang Lin
- Department of Mathematics, Purdue University, West Lafayette, IN, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| | - W. Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
| | - Christopher J. Staiger
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
15
|
De la Concepcion JC, Fujisaki K, Bentham AR, Cruz Mireles N, Sanchez de Medina Hernandez V, Shimizu M, Lawson DM, Kamoun S, Terauchi R, Banfield MJ. A blast fungus zinc-finger fold effector binds to a hydrophobic pocket in host Exo70 proteins to modulate immune recognition in rice. Proc Natl Acad Sci U S A 2022; 119:e2210559119. [PMID: 36252011 PMCID: PMC9618136 DOI: 10.1073/pnas.2210559119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Exocytosis plays an important role in plant-microbe interactions, in both pathogenesis and symbiosis. Exo70 proteins are integral components of the exocyst, an octameric complex that mediates tethering of vesicles to membranes in eukaryotes. Although plant Exo70s are known to be targeted by pathogen effectors, the underpinning molecular mechanisms and the impact of this interaction on infection are poorly understood. Here, we show the molecular basis of the association between the effector AVR-Pii of the blast fungus Maganaporthe oryzae and rice Exo70 alleles OsExo70F2 and OsExo70F3, which is sensed by the immune receptor pair Pii via an integrated RIN4/NOI domain. The crystal structure of AVR-Pii in complex with OsExo70F2 reveals that the effector binds to a conserved hydrophobic pocket in Exo70, defining an effector/target binding interface. Structure-guided and random mutagenesis validates the importance of AVR-Pii residues at the Exo70 binding interface to sustain protein association and disease resistance in rice when challenged with fungal strains expressing effector mutants. Furthermore, the structure of AVR-Pii defines a zinc-finger effector fold (ZiF) distinct from the MAX (Magnaporthe Avrs and ToxB-like) fold previously described for a majority of characterized M. oryzae effectors. Our data suggest that blast fungus ZiF effectors bind a conserved Exo70 interface to manipulate plant exocytosis and that these effectors are also baited by plant immune receptors, pointing to new opportunities for engineering disease resistance.
Collapse
Affiliation(s)
| | - Koki Fujisaki
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
| | - Adam R. Bentham
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Neftaly Cruz Mireles
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
- The Sainsbury Laboratory, University of East Anglia, Norwich, NR4 7UH, United Kingdom
| | | | - Motoki Shimizu
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
| | - David M. Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, NR4 7UH, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8501, Japan
| | - Mark J. Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
16
|
Holden S, Bergum M, Green P, Bettgenhaeuser J, Hernández-Pinzón I, Thind A, Clare S, Russell JM, Hubbard A, Taylor J, Smoker M, Gardiner M, Civolani L, Cosenza F, Rosignoli S, Strugala R, Molnár I, Šimková H, Doležel J, Schaffrath U, Barrett M, Salvi S, Moscou MJ. A lineage-specific Exo70 is required for receptor kinase-mediated immunity in barley. SCIENCE ADVANCES 2022; 8:eabn7258. [PMID: 35857460 PMCID: PMC9258809 DOI: 10.1126/sciadv.abn7258] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the evolution of land plants, the plant immune system has experienced expansion in immune receptor and signaling pathways. Lineage-specific expansions have been observed in diverse gene families that are potentially involved in immunity but lack causal association. Here, we show that Rps8-mediated resistance in barley to the pathogen Puccinia striiformis f. sp. tritici (wheat stripe rust) is conferred by a genetic module: Pur1 and Exo70FX12, which are together necessary and sufficient. Pur1 encodes a leucine-rich repeat receptor kinase and is the ortholog of rice Xa21, and Exo70FX12 belongs to the Poales-specific Exo70FX clade. The Exo70FX clade emerged after the divergence of the Bromeliaceae and Poaceae and comprises from 2 to 75 members in sequenced grasses. These results demonstrate the requirement of a lineage-specific Exo70FX12 in Pur1-mediated immunity and suggest that the Exo70FX clade may have evolved a specialized role in receptor kinase signaling.
Collapse
Affiliation(s)
- Samuel Holden
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Molly Bergum
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Phon Green
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jan Bettgenhaeuser
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Anupriya Thind
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Shaun Clare
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - James M. Russell
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Amelia Hubbard
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, England, UK
| | - Jodi Taylor
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew Smoker
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew Gardiner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Laura Civolani
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127 Bologna, Italy
| | - Francesco Cosenza
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127 Bologna, Italy
| | - Serena Rosignoli
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127 Bologna, Italy
| | - Roxana Strugala
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
| | - István Molnár
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Ulrich Schaffrath
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
| | - Matthew Barrett
- Australian Tropical Herbarium, James Cook University, Smithfield 4878, Australia
| | - Silvio Salvi
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127 Bologna, Italy
| | - Matthew J. Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Corresponding author.
| |
Collapse
|
17
|
Žárský V. Exocyst functions in plants - secretion and autophagy. FEBS Lett 2022; 596:2324-2334. [PMID: 35729750 DOI: 10.1002/1873-3468.14430] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/09/2022]
Abstract
Tethering complexes mediate vesicle-target compartment contact. Octameric complex exocyst initiates vesicle exocytosis at specific cytoplasmic membrane domains. Plant exocyst is possibly stabilized at the membrane by a direct interaction between SEC3 and EXO70A. Land plants evolved three basic membrane-targeting EXO70 subfamilies, the evolution of which resulted in several types of exocyst with distinct functions within the same cell. Surprisingly, some of these EXO70-exocyst versions are implicated in autophagy as is animal exocyst or are involved in host defense, cell-wall fortification and secondary metabolites transport. Interestingly, EXO70Ds act as selective autophagy receptors in the regulation of cytokinin signalling pathway. Secretion of double membrane autophagy-related structures formed with the contribution of EXO70s to the apoplast hints at the possibility of secretory autophagy in plants.
Collapse
Affiliation(s)
- Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague, Czech Republic.,Institute of Experimental Botany, v.v.i., Czech Academy of Sciences, Rozvojová 263, 165 02, Prague, Czech Republic
| |
Collapse
|
18
|
Ma L, An R, Jiang L, Zhang C, Li Z, Zou C, Yang C, Pan G, Lübberstedt T, Shen Y. Effects of ZmHIPP on lead tolerance in maize seedlings: Novel ideas for soil bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128457. [PMID: 35180524 DOI: 10.1016/j.jhazmat.2022.128457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 05/19/2023]
Abstract
Extensive lead (Pb) absorption by plants affects their growth and development and causes damage to the human body by entering the food chain. In this study, we cloned ZmHIPP, a gene associated with Pb tolerance and accumulation in maize, using combined linkage mapping and weighted gene co-expression network analysis. We show that ZmHIPP, which encodes a heavy metal-associated isoprenylated plant protein, positively modulated Pb tolerance and accumulation in maize seedlings, Arabidopsis, and yeast. The genetic variation locus (A/G) in the promoter of ZmHIPP contributed to the phenotypic disparity in Pb tolerance among different maize inbred lines by altering the expression abundance of ZmHIPP. Knockdown of ZmHIPP significantly inhibited growth and decreased Pb accumulation in maize seedlings under Pb stress. ZmHIPP facilitated Pb deposition in the cell wall and prevented it from entering the intracellular organelles, thereby alleviating Pb toxicity in maize seedlings. Compared to that in the mutant zmhipp, the accumulated Pb in the wild-type line mainly consisted of the low-toxicity forms of Pb. Our study increases the understanding of the mechanism underlying Pb tolerance in maize and provides new insights into the bioremediation of Pb-polluted soil.
Collapse
Affiliation(s)
- Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong An
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chen Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhaoling Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Cong Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | | | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
19
|
Wu D, Guo J, Zhang Q, Shi S, Guan W, Zhou C, Chen R, Du B, Zhu L, He G. Necessity of rice resistance to planthoppers for OsEXO70H3 regulating SAMSL excretion and lignin deposition in cell walls. THE NEW PHYTOLOGIST 2022; 234:1031-1046. [PMID: 35119102 PMCID: PMC9306520 DOI: 10.1111/nph.18012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The planthopper resistance gene Bph6 encodes a protein that interacts with OsEXO70E1. EXO70 forms a family of paralogues in rice. We hypothesized that the EXO70-dependent trafficking pathway affects the excretion of resistance-related proteins, thus impacting plant resistance to planthoppers. Here, we further explored the function of EXO70 members in rice resistance against planthoppers. We used the yeast two-hybrid and co-immunoprecipitation assays to identify proteins that play roles in Bph6-mediated planthopper resistance. The functions of the identified proteins were characterized via gene transformation, plant resistance evaluation, insect performance, cell excretion observation and cell wall component analyses. We discovered that another EXO70 member, OsEXO70H3, interacted with BPH6 and functioned in cell excretion and in Bph6-mediated planthopper resistance. We further found that OsEXO70H3 interacted with an S-adenosylmethionine synthetase-like protein (SAMSL) and increased the delivery of SAMSL outside the cells. The functional impairment of OsEXO70H3 and SAMSL reduced the lignin content and the planthopper resistance level of rice plants. Our results suggest that OsEXO70H3 may recruit SAMSL and help its excretion to the apoplast where it may be involved in lignin deposition in cell walls, thus contributing to rice resistance to planthoppers.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Jianping Guo
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Qian Zhang
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Shaojie Shi
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Wei Guan
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Cong Zhou
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Bo Du
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Lili Zhu
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Guangcun He
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| |
Collapse
|
20
|
Huebbers JW, Büttgen K, Leissing F, Mantz M, Pauly M, Huesgen PF, Panstruga R. An advanced method for the release, enrichment and purification of high-quality Arabidopsis thaliana rosette leaf trichomes enables profound insights into the trichome proteome. PLANT METHODS 2022; 18:12. [PMID: 35086542 PMCID: PMC8796501 DOI: 10.1186/s13007-021-00836-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rosette leaf trichomes of Arabidopsis thaliana have been broadly used to study cell development, cell differentiation and, more recently, cell wall biogenesis. However, trichome-specific biochemical or -omics analyses require a proper separation of trichomes from residual plant tissue. Thus, different strategies were proposed in the past for trichome isolation, which mostly rely on harsh conditions and suffer from low yield, thereby limiting the spectrum of downstream analyses. RESULTS To take trichome-leaf separation to the next level, we revised a previously proposed method for isolating A. thaliana trichomes by optimizing the mechanical and biochemical specifications for trichome release. We additionally introduced a density gradient centrifugation step to remove residual plant debris. We found that prolonged, yet mild seedling agitation increases the overall trichome yield by more than 60% compared to the original protocol. We noticed that subsequent density gradient centrifugation further visually enhances trichome purity, which may be advantageous for downstream analyses. Gene expression analysis by quantitative reverse transcriptase-polymerase chain reaction validated a substantial enrichment upon purification of trichomes by density gradient centrifugation. Histochemical and biochemical investigation of trichome cell wall composition indicated that unlike the original protocol gentle agitation during trichome release largely preserves trichome integrity. We used enriched and density gradient-purified trichomes for proteomic analysis in comparison to trichome-depleted leaf samples and present a comprehensive reference data set of trichome-resident and -enriched proteins. Collectively we identified 223 proteins that are highly enriched in trichomes as compared to trichome-depleted leaves. We further demonstrate that the procedure can be applied to retrieve diverse glandular and non-glandular trichome types from other plant species. CONCLUSIONS We provide an advanced method for the isolation of A. thaliana leaf trichomes that outcompetes previous procedures regarding yield and purity. Due to the large amount of high-quality trichomes our method enabled profound insights into the so far largely unexplored A. thaliana trichome proteome. We anticipate that our protocol will be of use for a variety of downstream analyses, which are expected to shed further light on the biology of leaf trichomes in A. thaliana and possibly other plant species.
Collapse
Affiliation(s)
- Jan W Huebbers
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Kim Büttgen
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Franz Leissing
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Institute of Biochemistry, Department for Chemistry, University of Cologne, Cologne, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany.
| |
Collapse
|
21
|
Ortmannová J, Sekereš J, Kulich I, Šantrůček J, Dobrev P, Žárský V, Pečenková T. Arabidopsis EXO70B2 exocyst subunit contributes to papillae and encasement formation in antifungal defence. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:742-755. [PMID: 34664667 DOI: 10.1093/jxb/erab457] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
In the reaction to non-adapted Blumeria graminis f. sp. hordei (Bgh), Arabidopsis thaliana leaf epidermal cells deposit cell wall reinforcements called papillae or seal fungal haustoria in encasements, both of which involve intensive exocytosis. A plant syntaxin, SYP121/PEN1, has been found to be of key importance for the timely formation of papillae, and the vesicle tethering complex exocyst subunit EXO70B2 has been found to contribute to their morphology. Here, we identify a specific role for the EXO70B2-containing exocyst complex in the papillae membrane domains important for callose deposition and GFP-SYP121 delivery to the focal attack sites, as well as its contribution to encasement formation. The mRuby2-EXO70B2 co-localizes with the exocyst core subunit SEC6 and GFP-SYP121 in the membrane domain of papillae, and EXO70B2 and SYP121 proteins have the capacity to directly interact. The exo70B2/syp121 double mutant produces a reduced number of papillae and haustorial encasements in response to Bgh, indicating an additive role of the exocyst in SYP121-coordinated non-host resistance. In summary, we report cooperation between the plant exocyst and a SNARE protein in penetration resistance against non-adapted fungal pathogens.
Collapse
Affiliation(s)
- Jitka Ortmannová
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Juraj Sekereš
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Ivan Kulich
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Charles University in Prague, Faculty of Science, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Jiří Šantrůček
- Laboratory of Applied Proteomics, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Petre Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Charles University in Prague, Faculty of Science, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Tamara Pečenková
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| |
Collapse
|
22
|
Gao PP, Zhang XM, Xue PY, Dong JW, Dong Y, Zhao QL, Geng LP, Lu Y, Zhao JJ, Liu WJ. Mechanism of Pb accumulation in Chinese cabbage leaves: Stomata and trichomes regulate foliar uptake of Pb in atmospheric PM 2.5. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118585. [PMID: 34848290 DOI: 10.1016/j.envpol.2021.118585] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/21/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Chinese cabbage (Brassica rapa ssp. pekinensis) is one of the most popular and frequently consumed leafy vegetables. It was found that atmospheric PM2.5-Pb contributes to Pb accumulation in the edible leaves of Chinese cabbage via stomata in North China during haze seasons with high concentrations of fine particulate matter in autumn and winter. However, it is unclear whether both stomata and trichomes co-regulate foliar transfer of PM2.5-Pb from atmospheric deposition to the leaf of Chinese cabbage genotypes with trichomes. Field and hydroponic experiments were conducted to investigate the effects of foliar uptake of PM2.5-Pb on Pb accumulation in leaves using two genotypes of Chinese cabbage, one without trichomes and one with trichomes. It was verified that open stoma is a prominent pathway of foliar PM2.5-Pb transfer in the short-term exposure for 6 h, contributing 74.5% of Pb accumulation in leaves, whereas Pb concentrations in the leaves of with-trichome genotype in the rosette stage were 6.52- and 1.04-fold higher than that of without-trichome genotype in greenhouse and open field, respectively, which suggests that stomata and trichomes co-regulate foliar Pb uptake of from atmospheric PM2.5. Moreover, subcellular Pb in the leaves was distributed in the following order of cytoplasm (53.8%) > cell wall (38.5%)> organelle (7.8%), as confirmed through high-resolution secondary ion mass spectrometry (NanoSIMS). The Leadmium™ Green AM dye manifested that Pb in PM2.5 entered cellular space of trichomes and accumulated in the basal compartment, enhancing foliar Pb uptake in the edible leaves of cabbage. The results of these experiments are evidence that both stomata and trichomes are important pathways in the regulation of foliar Pb uptake and translocation in Chinese cabbage.
Collapse
Affiliation(s)
- Pei-Pei Gao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China
| | - Xiao-Meng Zhang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Centre of Vegetable Industry in Hebei, College of Horticulture, Hebei, Baoding, 071000, China
| | - Pei-Ying Xue
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China
| | - Jun-Wen Dong
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China
| | - Yan Dong
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China
| | - Quan-Li Zhao
- The Teaching and Experimental Station, Hebei Agricultural University, Hebei, Baoding, 071000, China
| | - Li-Ping Geng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China
| | - Yin Lu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Centre of Vegetable Industry in Hebei, College of Horticulture, Hebei, Baoding, 071000, China
| | - Jian-Jun Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Centre of Vegetable Industry in Hebei, College of Horticulture, Hebei, Baoding, 071000, China
| | - Wen-Ju Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China.
| |
Collapse
|
23
|
Roy D, Adhikari S, Adhikari A, Ghosh S, Azahar I, Basuli D, Hossain Z. Impact of CuO nanoparticles on maize: Comparison with CuO bulk particles with special reference to oxidative stress damages and antioxidant defense status. CHEMOSPHERE 2022; 287:131911. [PMID: 34461334 DOI: 10.1016/j.chemosphere.2021.131911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/20/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The present study aimed to systematically investigate the particle size effects of copper (II) oxide [CuO nanoparticles (<50 nm) and CuO bulk particles (<10 μm)] on maize (Zea mays L.). Bioaccumulation of Cu, in vivo ROS generation, membrane damage, transcriptional modulation of antioxidant genes, cellular redox status of glutathione and ascorbate pool, expression patterns of COPPER TRANSPORTER 4 and stress responsive miRNAs (miR398a, miR171b, miR159f-3p) with their targets were investigated for better understanding of the underlying mechanisms and the extent of CuO nanoparticles and CuO bulk particles induced oxidative stress damages. More restricted seedling growth, comparatively higher membrane injury, marked decline in the levels of chlorophylls and carotenoids and severe oxidative burst were evident in CuO bulk particles challenged leaves. Dihydroethidium and CM-H2DCFDA staining further supported elevated reactive oxygen species generation in CuO bulk particles stressed roots. CuO bulk particles exposed seedlings accumulated much higher amount of Cu in roots as compared to CuO nanoparticles stressed plants with low root-to-shoot Cu translocation. Moderately high GR expression with maintenance of a steady GSH-GSSG ratio in CuO nanoparticles challenged leaves might be accountable for their rather improved performance under stressed condition. miR171b-mediated enhanced expression of SCARECROW 6 might participate in the marked decline of chlorophyll content in CuO bulk particles exposed leaves. Ineffective recycling of AsA pool is another decisive feature of inadequate performance of CuO bulk particles stressed seedlings in combating oxidative stress damages. Taken together, our findings revealed that toxicity of CuO bulk particles was higher than CuO nanoparticles and the adverse effects of CuO bulk particles on maize seedlings might be due to higher Cu ions dissolution.
Collapse
Affiliation(s)
- Doyel Roy
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sinchan Adhikari
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Ayan Adhikari
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Supriya Ghosh
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Ikbal Azahar
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Debapriya Basuli
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Zahed Hossain
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
24
|
Liu H, Liu S, Huang G, Xu F. Effect of gene mutation of plants on their mechano-sensibility: the mutant of EXO70H4 influences the buckling of Arabidopsis trichomes. Analyst 2021; 146:5169-5176. [PMID: 34291780 DOI: 10.1039/d1an00682g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the development of molecular biology, more and more mutants of plants have been constructed, where gene mutants have been found to influence not only the biological processes but also biophysical behaviors of plant cells. Trichomes are an important appendage, which has been found to act as an active mechanosensory switch transducing mechanical signals into physiology changes, where the mechanical property of trichomes is vital for such functions. Up to now, over 40 different genes have been found with the function of regulating trichome cell morphogenesis; however, the effect of gene mutants on trichome mechanosensory function remains elusive. In this study, we found that EXO70H4, one of the most up-regulated genes in the mature trichome, not only affects the thickness of the trichome cell wall but also the mechanical property (i.e., the Young's modulus) of trichomes. Finite element method simulation results show that the buckling instability and stress concentration (e.g., exerted by insects) cannot occur on the base of the mutant exo70H4 trichome, which might further interrupt the mechanical signal transduction from branches to the base of trichomes. These results indicated that the mutant exo70H4 trichome might lack the ability to act as an active mechanosensory switch against chewing insect herbivores. Our findings provide new information about the effect of gene mutation (like crop mutants) on the mechano-sensibility and capability to resist the agricultural pests or lodging, which could be of great significance to the development of agriculture.
Collapse
Affiliation(s)
- Han Liu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450016, China
| | | | | | | |
Collapse
|
25
|
Marković V, Kulich I, Žárský V. Functional Specialization within the EXO70 Gene Family in Arabidopsis. Int J Mol Sci 2021; 22:7595. [PMID: 34299214 PMCID: PMC8303320 DOI: 10.3390/ijms22147595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/20/2023] Open
Abstract
Localized delivery of plasma-membrane and cell-wall components is a crucial process for plant cell growth. One of the regulators of secretory-vesicle targeting is the exocyst tethering complex. The exocyst mediates first interaction between transport vesicles and the target membrane before their fusion is performed by SNARE proteins. In land plants, genes encoding the EXO70 exocyst subunit underwent an extreme proliferation with 23 paralogs present in the Arabidopsis (Arabidopsis thaliana) genome. These paralogs often acquired specialized functions during evolution. Here, we analyzed functional divergence of selected EXO70 paralogs in Arabidopsis. Performing a systematic cross-complementation analysis of exo70a1 and exo70b1 mutants, we found that EXO70A1 was functionally substituted only by its closest paralog, EXO70A2. In contrast, none of the EXO70 isoforms tested were able to substitute EXO70B1, including its closest relative, EXO70B2, pointing to a unique function of this isoform. The presented results document a high degree of functional specialization within the EXO70 gene family in land plants.
Collapse
Affiliation(s)
- Vedrana Marković
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Prague, Czech Republic; (V.M.); (V.Ž.)
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Prague, Czech Republic; (V.M.); (V.Ž.)
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Prague, Czech Republic; (V.M.); (V.Ž.)
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| |
Collapse
|
26
|
Gao W, Guo C, Hu J, Dong J, Zhou LH. Mature trichome is the earliest sequestration site of Cd ions in Arabidopsis thaliana leaves. Heliyon 2021; 7:e07501. [PMID: 34307941 PMCID: PMC8287149 DOI: 10.1016/j.heliyon.2021.e07501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 04/21/2021] [Accepted: 07/03/2021] [Indexed: 11/27/2022] Open
Abstract
Sequestration of heavy metals by plants in non-glandular leaf trichomes is important for survival in toxic soils and has the potential for environmental remediation. Although heavy metals are particularly toxic to many plants during development, the integration of sequestration into the developmental timecourse is unknown. We tested the hypothesis that plants preferentially sequester heavy metals into mature trichomes by investigating the timecourse of Cd2+ ions into the leaves of the model plant Arabidopsis thaliana. Results supported the hypothesis and surprisingly showed no Cd2+ ions accumulated in earlier trichome development stages and that sequestration and release by mature trichomes were periodic and dynamic. Studies in mutants suggested that these dynamics were governed by the trichome's secondary cell wall, which matures late in development. Results suggest a developmentally timed pathway for excluding heavy metal toxins and the existence of mechanisms for controlled release that may relate to proposed functions of mature trichomes in plants.
Collapse
Affiliation(s)
- Wenqiang Gao
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, 071001, Baoding, China
- Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Agricultural University, 071001, Baoding, China
| | - Chao Guo
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, 071001, Baoding, China
- Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Agricultural University, 071001, Baoding, China
| | - Jingjing Hu
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, 071001, Baoding, China
- Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Agricultural University, 071001, Baoding, China
| | - Jingao Dong
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, 071001, Baoding, China
- Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Agricultural University, 071001, Baoding, China
| | - Li Hong Zhou
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, 071001, Baoding, China
- Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Agricultural University, 071001, Baoding, China
| |
Collapse
|
27
|
Conditional destabilization of the TPLATE complex impairs endocytic internalization. Proc Natl Acad Sci U S A 2021; 118:2023456118. [PMID: 33876766 DOI: 10.1073/pnas.2023456118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In plants, endocytosis is essential for many developmental and physiological processes, including regulation of growth and development, hormone perception, nutrient uptake, and defense against pathogens. Our toolbox to modulate this process is, however, rather limited. Here, we report a conditional tool to impair endocytosis. We generated a partially functional TPLATE allele by substituting the most conserved domain of the TPLATE subunit of the endocytic TPLATE complex (TPC). This substitution destabilizes TPC and dampens the efficiency of endocytosis. Short-term heat treatment increases TPC destabilization and reversibly delocalizes TPLATE from the plasma membrane to aggregates in the cytoplasm. This blocks FM uptake and causes accumulation of various known endocytic cargoes at the plasma membrane. Short-term heat treatment therefore transforms the partially functional TPLATE allele into an effective conditional tool to impair endocytosis. Next to their role in endocytosis, several TPC subunits are also implicated in actin-regulated autophagosomal degradation. Inactivating TPC via the WDX mutation, however, does not impair autophagy, thus enabling specific and reversible modulation of endocytosis in planta.
Collapse
|
28
|
Ricachenevsky FK, Punshon T, Salt DE, Fett JP, Guerinot ML. Arabidopsis thaliana zinc accumulation in leaf trichomes is correlated with zinc concentration in leaves. Sci Rep 2021; 11:5278. [PMID: 33674630 PMCID: PMC7935932 DOI: 10.1038/s41598-021-84508-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/17/2021] [Indexed: 11/21/2022] Open
Abstract
Zinc (Zn) is a key micronutrient for plants and animals, and understanding Zn homeostasis in plants can improve both agriculture and human health. While root Zn transporters in plant model species have been characterized in detail, comparatively little is known about shoot processes controlling Zn concentrations and spatial distribution. Previous work showed that Zn hyperaccumulator species such as Arabidopsis halleri accumulate Zn and other metals in leaf trichomes. To date there is no systematic study regarding Zn accumulation in the trichomes of the non-accumulating, genetic model species A. thaliana. Here, we used Synchrotron X-Ray Fluorescence mapping to show that Zn accumulates at the base of trichomes of A. thaliana. Using transgenic and natural accessions of A thaliana that vary in bulk leaf Zn concentration, we demonstrate that higher leaf Zn increases total Zn found at the base of trichome cells. Our data indicates that Zn accumulation in trichomes is a function of the Zn status of the plant, and provides the basis for future studies on a genetically tractable plant species to understand the molecular steps involved in Zn spatial distribution in leaves.
Collapse
Affiliation(s)
- Felipe K Ricachenevsky
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul, Porto Alegre, Brazil. .,Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Porto Alegre, RS, 9500, Brazil. .,Department of Biological Sciences, Life Sciences Center, Dartmouth College, 78 College St, Hanover, NH, 03755, USA.
| | - Tracy Punshon
- Department of Biological Sciences, Life Sciences Center, Dartmouth College, 78 College St, Hanover, NH, 03755, USA
| | - David E Salt
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Janette P Fett
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul, Porto Alegre, Brazil.,Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Porto Alegre, RS, 9500, Brazil
| | - Mary Lou Guerinot
- Department of Biological Sciences, Life Sciences Center, Dartmouth College, 78 College St, Hanover, NH, 03755, USA.
| |
Collapse
|
29
|
Wang Y, Li X, Fan B, Zhu C, Chen Z. Regulation and Function of Defense-Related Callose Deposition in Plants. Int J Mol Sci 2021; 22:ijms22052393. [PMID: 33673633 PMCID: PMC7957820 DOI: 10.3390/ijms22052393] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/15/2023] Open
Abstract
Plants are constantly exposed to a wide range of potential pathogens and to protect themselves, have developed a variety of chemical and physical defense mechanisms. Callose is a β-(1,3)-D-glucan that is widely distributed in higher plants. In addition to its role in normal growth and development, callose plays an important role in plant defense. Callose is deposited between the plasma membrane and the cell wall at the site of pathogen attack, at the plasmodesmata, and on other plant tissues to slow pathogen invasion and spread. Since it was first reported more than a century ago, defense-related callose deposition has been extensively studied in a wide-spectrum of plant-pathogen systems. Over the past 20 years or so, a large number of studies have been published that address the dynamic nature of pathogen-induced callose deposition, the complex regulation of synthesis and transport of defense-related callose and associated callose synthases, and its important roles in plant defense responses. In this review, we summarize our current understanding of the regulation and function of defense-related callose deposition in plants and discuss both the progresses and future challenges in addressing this complex defense mechanism as a critical component of a plant immune system.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (Y.W.); (X.L.)
| | - Xifeng Li
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (Y.W.); (X.L.)
| | - Baofang Fan
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA;
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (Y.W.); (X.L.)
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-86836090 (C.Z.); +1-765-494-4657 (Z.C.)
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (Y.W.); (X.L.)
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA;
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-86836090 (C.Z.); +1-765-494-4657 (Z.C.)
| |
Collapse
|
30
|
Comparative Transcriptome Analysis Reveals Key Genes and Pathways Involved in Prickle Development in Eggplant. Genes (Basel) 2021; 12:genes12030341. [PMID: 33668977 PMCID: PMC7996550 DOI: 10.3390/genes12030341] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 12/02/2022] Open
Abstract
Eggplant is one of the most important vegetables worldwide. Prickles on the leaves, stems and fruit calyxes of eggplant may cause difficulties during cultivation, harvesting and transportation, and therefore is an undesirable agronomic trait. However, limited knowledge about molecular mechanisms of prickle morphogenesis has hindered the genetic improvement of eggplant. In this study, we performed the phenotypic characterization and transcriptome analysis on prickly and prickleless eggplant genotypes to understand prickle development at the morphological and molecular levels. Morphological analysis revealed that eggplant prickles were multicellular, lignified and layered organs. Comparative transcriptome analysis identified key pathways and hub genes involved in the cell cycle as well as flavonoid biosynthetic, photosynthetic, and hormone metabolic processes during prickle development. Interestingly, genes associated with flavonoid biosynthesis were up-regulated in developing prickles, and genes associated with photosynthesis were down-regulated in developing and matured prickles. It was also noteworthy that several development-related transcription factors such as bHLH, C2H2, MYB, TCP and WRKY were specifically down- or up-regulated in developing prickles. Furthermore, four genes were found to be differentially expressed within the Pl locus interval. This study provides new insights into the regulatory molecular mechanisms underlying prickle morphogenesis in eggplant, and the genes identified might be exploited in breeding programs to develop prickleless eggplant cultivars.
Collapse
|
31
|
Saccomanno A, Potocký M, Pejchar P, Hála M, Shikata H, Schwechheimer C, Žárský V. Regulation of Exocyst Function in Pollen Tube Growth by Phosphorylation of Exocyst Subunit EXO70C2. FRONTIERS IN PLANT SCIENCE 2021; 11:609600. [PMID: 33519861 PMCID: PMC7840542 DOI: 10.3389/fpls.2020.609600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Exocyst is a heterooctameric protein complex crucial for the tethering of secretory vesicles to the plasma membrane during exocytosis. Compared to other eukaryotes, exocyst subunit EXO70 is represented by many isoforms in land plants whose cell biological and biological roles, as well as modes of regulation remain largely unknown. Here, we present data on the phospho-regulation of exocyst isoform EXO70C2, which we previously identified as a putative negative regulator of exocyst function in pollen tube growth. A comprehensive phosphoproteomic analysis revealed phosphorylation of EXO70C2 at multiple sites. We have now performed localization and functional studies of phospho-dead and phospho-mimetic variants of Arabidopsis EXO70C2 in transiently transformed tobacco pollen tubes and stably transformed Arabidopsis wild type and exo70C2 mutant plants. Our data reveal a dose-dependent effect of AtEXO70C2 overexpression on pollen tube growth rate and cellular architecture. We show that changes of the AtEXO70C2 phosphorylation status lead to distinct outcomes in wild type and exo70c2 mutant cells, suggesting a complex regulatory pattern. On the other side, phosphorylation does not affect the cytoplasmic localization of AtEXO70C2 or its interaction with putative secretion inhibitor ROH1 in the yeast two-hybrid system.
Collapse
Affiliation(s)
- Antonietta Saccomanno
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Potocký
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Přemysl Pejchar
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Michal Hála
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Hiromasa Shikata
- Plant Systems Biology, Technische Universität München, Freising, Germany
| | | | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
32
|
Marković V, Cvrčková F, Potocký M, Kulich I, Pejchar P, Kollárová E, Synek L, Žárský V. EXO70A2 Is Critical for Exocyst Complex Function in Pollen Development. PLANT PHYSIOLOGY 2020; 184:1823-1839. [PMID: 33051268 PMCID: PMC7723085 DOI: 10.1104/pp.19.01340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 10/01/2020] [Indexed: 05/15/2023]
Abstract
Pollen development, pollen grain germination, and pollen tube elongation are crucial biological processes in angiosperm plants that need precise regulation to deliver sperm cells to ovules for fertilization. Highly polarized secretion at a growing pollen tube tip requires the exocyst tethering complex responsible for specific targeting of secretory vesicles to the plasma membrane. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) EXO70A2 (At5g52340) is the main exocyst EXO70 isoform in the male gametophyte, governing the conventional secretory function of the exocyst, analogous to EXO70A1 (At5g03540) in the sporophyte. Our analysis of a CRISPR-generated exo70a2 mutant revealed that EXO70A2 is essential for efficient pollen maturation, pollen grain germination, and pollen tube growth. GFP:EXO70A2 was localized to the nucleus and cytoplasm in developing pollen grains and later to the apical domain in growing pollen tube tips characterized by intensive exocytosis. Moreover, EXO70A2 could substitute for EXO70A1 function in the sporophyte, but not vice versa, indicating partial functional redundancy of these two closely related isoforms and higher specificity of EXO70A2 for pollen development-related processes. Phylogenetic analysis revealed that the ancient duplication of EXO70A, one of which is always highly expressed in pollen, occurred independently in monocots and dicots. In summary, EXO70A2 is a crucial component of the exocyst complex in Arabidopsis pollen that is required for efficient plant sexual reproduction.
Collapse
Affiliation(s)
- Vedrana Marković
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague 2, Czech Republic
- Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague 2, Czech Republic
| | - Martin Potocký
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague 2, Czech Republic
- Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague 2, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Eva Kollárová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague 2, Czech Republic
| | - Lukáš Synek
- Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague 2, Czech Republic
- Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| |
Collapse
|
33
|
OsExo70B1 Positively Regulates Disease Resistance to Magnaporthe oryzae in Rice. Int J Mol Sci 2020; 21:ijms21197049. [PMID: 32992695 PMCID: PMC7582735 DOI: 10.3390/ijms21197049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/21/2023] Open
Abstract
The exocyst, an evolutionarily conserved octameric protein complex, mediates tethering of vesicles to the plasma membrane in the early stage of exocytosis. Arabidopsis Exo70, a subunit of the exocyst complex, has been found to be involved in plant immunity. Here, we characterize the function of OsExo70B1 in rice. OsExo70B1 mainly expresses in leaf and shoot and its expression is induced by pathogen-associated molecular patterns (PAMPs) and rice blast fungus Magnaporthe oryzae (M. oryzae). Knocking out OsExo70B1 results in significantly decreased resistance and defense responses to M. oryzae compared to the wild type, including more disease lesions and enhanced fungal growth, downregulated expression of pathogenesis-related (PR) genes, and decreased reactive oxygen species accumulation. In contrast, the exo70B1 mutant does not show any defects in growth and development. Furthermore, OsExo70B1 can interact with the receptor-like kinase OsCERK1, an essential component for chitin reception in rice. Taken together, our data demonstrate that OsExo70B1 functions as an important regulator in rice immunity.
Collapse
|
34
|
Wang W, Liu N, Gao C, Cai H, Romeis T, Tang D. The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. THE NEW PHYTOLOGIST 2020; 227:529-544. [PMID: 32119118 DOI: 10.1111/nph.16515] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
The plasma membrane (PM)-localized receptor kinase FLAGELLIN SENSING 2 (FLS2) recognizes bacterial flagellin or its immunogenic epitope flg22, and initiates microbe-associated molecular pattern-triggered immunity, which inhibits infection by bacterial pathogens. The localization, abundance and activity of FLS2 are under dynamic control. Here, we demonstrate that Arabidopsis thaliana EXO70B1, a subunit of the exocyst complex, plays a critical role in FLS2 signaling that is independent of the truncated Toll/interleukin-1 receptor-nucleotide binding sequence protein TIR-NBS2 (TN2). In the exo70B1-3 mutant, the abundance of FLS2 protein at the PM is diminished, consistent with the impaired flg22 response of this mutant. EXO70B1-GFP plants showed increased FLS2 accumulation at the PM and therefore enhanced FLS2 signaling. The EXO70B1-mediated trafficking of FLS2 to the PM is partially independent of the PENETRATION 1 (PEN1)-containing secretory pathway. In addition, EXO70B1 interacts with EXO70B2, a close homolog of EXO70B1, and both proteins associate with FLS2 and contribute to the accumulation of FLS2 at the PM. Taken together, our data suggest that the exocyst complex subunits EXO70B1 and EXO70B2 regulate the trafficking of FLS2 to the PM, which represents a new layer of regulation of FLS2 function in plant immunity.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Na Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiren Cai
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tina Romeis
- Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
35
|
Pečenková T, Potocká A, Potocký M, Ortmannová J, Drs M, Janková Drdová E, Pejchar P, Synek L, Soukupová H, Žárský V, Cvrčková F. Redundant and Diversified Roles Among Selected Arabidopsis thaliana EXO70 Paralogs During Biotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2020; 11:960. [PMID: 32676093 PMCID: PMC7333677 DOI: 10.3389/fpls.2020.00960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/11/2020] [Indexed: 05/28/2023]
Abstract
The heterooctameric vesicle-tethering complex exocyst is important for plant development, growth, and immunity. Multiple paralogs exist for most subunits of this complex; especially the membrane-interacting subunit EXO70 underwent extensive amplification in land plants, suggesting functional specialization. Despite this specialization, most Arabidopsis exo70 mutants are viable and free of developmental defects, probably as a consequence of redundancy among isoforms. Our in silico data-mining and modeling analysis, corroborated by transcriptomic experiments, pinpointed several EXO70 paralogs to be involved in plant biotic interactions. We therefore tested corresponding single and selected double mutant combinations (for paralogs EXO70A1, B1, B2, H1, E1, and F1) in their two biologically distinct responses to Pseudomonas syringae, root hair growth stimulation and general plant susceptibility. A shift in defense responses toward either increased or decreased sensitivity was found in several double mutants compared to wild type plants or corresponding single mutants, strongly indicating both additive and compensatory effects of exo70 mutations. In addition, our experiments confirm the lipid-binding capacity of selected EXO70s, however, without the clear relatedness to predicted C-terminal lipid-binding motifs. Our analysis uncovers that there is less of functional redundancy among isoforms than we could suppose from whole sequence phylogeny and that even paralogs with overlapping expression pattern and similar membrane-binding capacity appear to have exclusive roles in plant development and biotic interactions.
Collapse
Affiliation(s)
- Tamara Pečenková
- Institute of Experimental Botany, CAS, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | | | - Martin Potocký
- Institute of Experimental Botany, CAS, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | | | - Matěj Drs
- Institute of Experimental Botany, CAS, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Edita Janková Drdová
- Institute of Experimental Botany, CAS, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Přemysl Pejchar
- Institute of Experimental Botany, CAS, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Lukáš Synek
- Institute of Experimental Botany, CAS, Prague, Czechia
| | | | - Viktor Žárský
- Institute of Experimental Botany, CAS, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
36
|
Guerriero G, Piasecki E, Berni R, Xu X, Legay S, Hausman JF. Identification of Callose Synthases in Stinging Nettle and Analysis of Their Expression in Different Tissues. Int J Mol Sci 2020; 21:ijms21113853. [PMID: 32481765 PMCID: PMC7313033 DOI: 10.3390/ijms21113853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 11/29/2022] Open
Abstract
Callose is an important biopolymer of β-1,3-linked glucose units involved in different phases of plant development, reproduction and response to external stimuli. It is synthesized by glycosyltransferases (GTs) known as callose synthases (CalS) belonging to family 48 in the Carbohydrate-Active enZymes (CAZymes) database. These GTs are anchored to the plasma membrane via transmembrane domains. Several genes encoding CalS have been characterized in higher plants with 12 reported in the model organism Arabidopsis thaliana. Recently, the de novo transcriptome of a fibre-producing clone of stinging nettle (Urtica dioica L.) was published and here it is mined for CalS genes with the aim of identifying members differentially expressed in the core and cortical tissues of the stem. The goal is to understand whether specific CalS genes are associated with distinct developmental stages of the stem internodes (elongation, thickening). Nine genes, eight of which encoding full-length CalS, are identified in stinging nettle. The phylogenetic analysis with CalS proteins from other fibre crops, namely textile hemp and flax, reveals grouping into 6 clades. The expression profiles in nettle tissues (roots, leaves, stem internodes sampled at different heights) reveal differences that are most noteworthy in roots vs. leaves. Two CalS are differentially expressed in the internodes sampled at the top and middle of the stem. Implications of their role in nettle stem tissue development are discussed.
Collapse
Affiliation(s)
- Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg; (E.P.); (X.X.); (S.L.); (J.-F.H.)
- Correspondence: ; Tel.: +352-275-888-5096; Fax: +352-275-8885
| | - Emilie Piasecki
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg; (E.P.); (X.X.); (S.L.); (J.-F.H.)
| | - Roberto Berni
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, I-53100 Siena, Italy;
| | - Xuan Xu
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg; (E.P.); (X.X.); (S.L.); (J.-F.H.)
| | - Sylvain Legay
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg; (E.P.); (X.X.); (S.L.); (J.-F.H.)
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg; (E.P.); (X.X.); (S.L.); (J.-F.H.)
| |
Collapse
|
37
|
Abstract
Anionic phospholipids, which include phosphatidic acid, phosphatidylserine, and phosphoinositides, represent a small percentage of membrane lipids. They are able to modulate the physical properties of membranes, such as their surface charges, curvature, or clustering of proteins. Moreover, by mediating interactions with numerous membrane-associated proteins, they are key components in the establishment of organelle identity and dynamics. Finally, anionic lipids also act as signaling molecules, as they are rapidly produced or interconverted by a set of dedicated enzymes. As such, anionic lipids are major regulators of many fundamental cellular processes, including cell signaling, cell division, membrane trafficking, cell growth, and gene expression. In this review, we describe the functions of anionic lipids from a cellular perspective. Using the localization of each anionic lipid and its related metabolic enzymes as starting points, we summarize their roles within the different compartments of the endomembrane system and address their associated developmental and physiological consequences.
Collapse
Affiliation(s)
- Lise C Noack
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure (ENS) de Lyon, L'Université Claude Bernard (UCB) Lyon 1, CNRS, INRAE, 69342 Lyon, France; ,
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure (ENS) de Lyon, L'Université Claude Bernard (UCB) Lyon 1, CNRS, INRAE, 69342 Lyon, France; ,
| |
Collapse
|
38
|
Cao H, Li J, Ye Y, Lin H, Hao Z, Ye N, Yue C. Integrative Transcriptomic and Metabolic Analyses Provide Insights into the Role of Trichomes in Tea Plant ( Camellia Sinensis). Biomolecules 2020; 10:biom10020311. [PMID: 32079100 PMCID: PMC7072466 DOI: 10.3390/biom10020311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/01/2020] [Accepted: 02/12/2020] [Indexed: 12/31/2022] Open
Abstract
Trichomes, which develop from epidermal cells, are regarded as one of the key features that are involved in the evaluation of tea quality and tea germplasm resources. The metabolites from trichomes have been well characterized in tea products. However, little is known regarding the metabolites in fresh tea trichomes and the molecular differences in trichomes and tea leaves per se. In this study, we developed a method to collect trichomes from tea plant tender shoots, and their main secondary metabolites, including catechins, caffeine, amino acids, and aroma compounds, were determined. We found that the majority of these compounds were significantly less abundant in trichomes than in tea leaves. RNA-Seq was used to investigate the differences in the molecular regulatory mechanism between trichomes and leaves to gain further insight into the differences in trichomes and tea leaves. In total, 52.96 Gb of clean data were generated, and 6560 differentially expressed genes (DEGs), including 4471 upregulated and 2089 downregulated genes, were identified in the trichomes vs. leaves comparison. Notably, the structural genes of the major metabolite biosynthesis pathways, transcription factors, and other key DEGs were identified and comparatively analyzed between trichomes and leaves, while trichome-specific genes were also identified. Our results provide new insights into the differences between tea trichomes and leaves at the metabolic and transcriptomic levels, and open up new doors to further recognize and re-evaluate the role of trichomes in tea quality formation and tea plant growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chuan Yue
- Correspondence: ; Tel.: +86-591-83789281
| |
Collapse
|
39
|
Oblessuc PR, Matiolli CC, Melotto M. Novel molecular components involved in callose-mediated Arabidopsis defense against Salmonella enterica and Escherichia coli O157:H7. BMC PLANT BIOLOGY 2020; 20:16. [PMID: 31914927 PMCID: PMC6950905 DOI: 10.1186/s12870-019-2232-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/30/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Food contamination with Salmonella enterica and enterohemorrhagic Escherichia coli is among the leading causes of foodborne illnesses worldwide and crop plants are associated with > 50% of the disease outbreaks. However, the mechanisms underlying the interaction of these human pathogens with plants remain elusive. In this study, we have explored plant resistance mechanisms against these enterobacteria and the plant pathogen Pseudomonas syringae pv. tomato (Pst) DC3118, as an opportunity to improve food safety. RESULTS We found that S. enterica serovar Typhimurium (STm) transcriptionally modulates stress responses in Arabidopsis leaves, including induction of two hallmark processes of plant defense: ROS burst and cell wall modifications. Analyses of plants with a mutation in the potentially STm-induced gene EXO70H4 revealed that its encoded protein is required for stomatal defense against STm and E. coli O157:H7, but not against Pst DC3118. In the apoplast however, EXO70H4 is required for defense against STm and Pst DC3118, but not against E. coli O157:H7. Moreover, EXO70H4 is required for callose deposition, but had no function in ROS burst, triggered by all three bacteria. The salicylic acid (SA) signaling and biosynthesis proteins NPR1 and ICS1, respectively, were involved in stomatal and apoplastic defense, as well as callose deposition, against human and plant pathogens. CONCLUSIONS The results show that EXO70H4 is involved in stomatal and apoplastic defenses in Arabidopsis and suggest that EXO70H4-mediated defense play a distinct role in guard cells and leaf mesophyll cells in a bacteria-dependent manner. Nonetheless, EXO70H4 contributes to callose deposition in response to both human and plant pathogens. NPR1 and ICS1, two proteins involved in the SA signaling pathway, are important to inhibit leaf internalization and apoplastic persistence of enterobacteria and proliferation of phytopathogens. These findings highlight the existence of unique and shared plant genetic components to fight off diverse bacterial pathogens providing specific targets for the prevention of foodborne diseases.
Collapse
Affiliation(s)
- Paula Rodrigues Oblessuc
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | | | - Maeli Melotto
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
40
|
Žárský V, Sekereš J, Kubátová Z, Pečenková T, Cvrčková F. Three subfamilies of exocyst EXO70 family subunits in land plants: early divergence and ongoing functional specialization. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:49-62. [PMID: 31647563 DOI: 10.1093/jxb/erz423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/10/2019] [Indexed: 05/27/2023]
Abstract
Localized delivery of plasma membrane and cell wall components is an essential process in all plant cells. The vesicle-tethering complex, the exocyst, an ancient eukaryotic hetero-octameric protein cellular module, assists in targeted delivery of exocytosis vesicles to specific plasma membrane domains. Analyses of Arabidopsis and later other land plant genomes led to the surprising prediction of multiple putative EXO70 exocyst subunit paralogues. All land plant EXO70 exocyst subunits (including those of Bryophytes) form three distinct subfamilies-EXO70.1, EXO70.2, and EXO70.3. Interestingly, while the basal well-conserved EXO70.1 subfamily consists of multiexon genes, the remaining two subfamilies contain mostly single exon genes. Published analyses as well as public transcriptomic and proteomic data clearly indicate that most cell types in plants express and also use several different EXO70 isoforms. Here we sum up recent advances in the characterization of the members of the family of plant EXO70 exocyst subunits and present evidence that members of the EXO70.2 subfamily are often recruited to non-canonical functions in plant membrane trafficking pathways. Engagement of the most evolutionarily dynamic EXO70.2 subfamily of EXO70s in biotic interactions and defence correlates well with massive proliferation and conservation of new protein variants in this subfamily.
Collapse
Affiliation(s)
- Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
- Institute of Experimental Botany, v.v.i., Czech Academy of Sciences, Rozvojová, Prague, Czech Republic
| | - Juraj Sekereš
- Institute of Experimental Botany, v.v.i., Czech Academy of Sciences, Rozvojová, Prague, Czech Republic
| | - Zdeňka Kubátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
| | - Tamara Pečenková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
- Institute of Experimental Botany, v.v.i., Czech Academy of Sciences, Rozvojová, Prague, Czech Republic
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
| |
Collapse
|
41
|
Lawaju BR, Niraula P, Lawrence GW, Lawrence KS, Klink VP. The Glycine max Conserved Oligomeric Golgi (COG) Complex Functions During a Defense Response to Heterodera glycines. FRONTIERS IN PLANT SCIENCE 2020; 11:564495. [PMID: 33262774 PMCID: PMC7686354 DOI: 10.3389/fpls.2020.564495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/02/2020] [Indexed: 05/07/2023]
Abstract
The conserved oligomeric Golgi (COG) complex, functioning in retrograde trafficking, is a universal structure present among eukaryotes that maintains the correct Golgi structure and function. The COG complex is composed of eight subunits coalescing into two sub-complexes. COGs1-4 compose Sub-complex A. COGs5-8 compose Sub-complex B. The observation that COG interacts with the syntaxins, suppressors of the erd2-deletion 5 (Sed5p), is noteworthy because Sed5p also interacts with Sec17p [alpha soluble NSF attachment protein (α-SNAP)]. The α-SNAP gene is located within the major Heterodera glycines [soybean cyst nematode (SCN)] resistance locus (rhg1) and functions in resistance. The study presented here provides a functional analysis of the Glycine max COG complex. The analysis has identified two paralogs of each COG gene. Functional transgenic studies demonstrate at least one paralog of each COG gene family functions in G. max during H. glycines resistance. Furthermore, treatment of G. max with the bacterial effector harpin, known to function in effector triggered immunity (ETI), leads to the induced transcription of at least one member of each COG gene family that has a role in H. glycines resistance. In some instances, altered COG gene expression changes the relative transcript abundance of syntaxin 31. These results indicate that the G. max COG complex functions through processes involving ETI leading to H. glycines resistance.
Collapse
Affiliation(s)
- Bisho Ram Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Prakash Niraula
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Gary W. Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Vincent P. Klink
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
- Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Starkville, MS, United States
- *Correspondence: Vincent P. Klink, ;
| |
Collapse
|
42
|
Kubátová Z, Pejchar P, Potocký M, Sekereš J, Žárský V, Kulich I. Arabidopsis Trichome Contains Two Plasma Membrane Domains with Different Lipid Compositions Which Attract Distinct EXO70 Subunits. Int J Mol Sci 2019; 20:ijms20153803. [PMID: 31382643 PMCID: PMC6695903 DOI: 10.3390/ijms20153803] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/23/2022] Open
Abstract
Plasma membrane (PM) lipid composition and domain organization are modulated by polarized exocytosis. Conversely, targeting of secretory vesicles at specific domains in the PM is carried out by exocyst complexes, which contain EXO70 subunits that play a significant role in the final recognition of the target membrane. As we have shown previously, a mature Arabidopsis trichome contains a basal domain with a thin cell wall and an apical domain with a thick secondary cell wall, which is developed in an EXO70H4-dependent manner. These domains are separated by a cell wall structure named the Ortmannian ring. Using phospholipid markers, we demonstrate that there are two distinct PM domains corresponding to these cell wall domains. The apical domain is enriched in phosphatidic acid (PA) and phosphatidylserine, with an undetectable amount of phosphatidylinositol 4,5-bisphosphate (PIP2), whereas the basal domain is PIP2-rich. While the apical domain recruits EXO70H4, the basal domain recruits EXO70A1, which corresponds to the lipid-binding capacities of these two paralogs. Loss of EXO70H4 results in a loss of the Ortmannian ring border and decreased apical PA accumulation, which causes the PA and PIP2 domains to merge together. Using transmission electron microscopy, we describe these accumulations as a unique anatomical feature of the apical cell wall-radially distributed rod-shaped membranous pockets, where both EXO70H4 and lipid markers are immobilized.
Collapse
Affiliation(s)
- Zdeňka Kubátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Přemysl Pejchar
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
- Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic
| | - Martin Potocký
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
- Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic
| | - Juraj Sekereš
- Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
- Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic.
| |
Collapse
|
43
|
Rodrigues Oblessuc P, Vaz Bisneta M, Melotto M. Common and unique Arabidopsis proteins involved in stomatal susceptibility to Salmonella enterica and Pseudomonas syringae. FEMS Microbiol Lett 2019; 366:fnz197. [PMID: 31529017 PMCID: PMC7962777 DOI: 10.1093/femsle/fnz197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/12/2019] [Indexed: 12/23/2022] Open
Abstract
Salmonella enterica is one of the most common pathogens associated with produce outbreaks worldwide; nonetheless, the mechanisms uncovering their interaction with plants are elusive. Previous reports demonstrate that S. enterica ser. Typhimurium (STm), similar to the phytopathogen Pseudomonas syringae pv. tomato (Pst) DC3000, triggers a transient stomatal closure suggesting its ability to overcome this plant defense and colonize the leaf apoplast. In order to discover new molecular players that function in the stomatal reopening by STm and Pst DC3000, we performed an Arabidopsis mutant screening using thermal imaging. Further stomatal bioassay confirmed that the mutant plants exo70h4-3, sce1-3, bbe8, stp1, and lsu2 have smaller stomatal aperture widths than the wild type Col-0 in response to STm 14028s. The mutants bbe8, stp1 and lsu2 have impaired stomatal movement in response to Pst DC3000. These findings indicate that EXO70H4 and SCE1 are involved in bacterial-specific responses, while BBE8, STP1, and LSU2 may be required for stomatal response to a broad range of bacteria. The identification of new molecular components of the guard cell movement induced by bacteria will enable a better understanding of the initial stages of plant colonization and facilitate targeted prevention of leaf contamination with harmful pathogens.
Collapse
Affiliation(s)
| | - Mariana Vaz Bisneta
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Plant Breeding and Genetics Graduate Program, Universidade Estadual de Maringá, Maringa, Parana 87020-900, Brazil
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
44
|
Liu CW, Breakspear A, Stacey N, Findlay K, Nakashima J, Ramakrishnan K, Liu M, Xie F, Endre G, de Carvalho-Niebel F, Oldroyd GED, Udvardi MK, Fournier J, Murray JD. A protein complex required for polar growth of rhizobial infection threads. Nat Commun 2019; 10:2848. [PMID: 31253759 PMCID: PMC6599036 DOI: 10.1038/s41467-019-10029-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
During root nodule symbiosis, intracellular accommodation of rhizobia by legumes is a prerequisite for nitrogen fixation. For many legumes, rhizobial colonization initiates in root hairs through transcellular infection threads. In Medicago truncatula, VAPYRIN (VPY) and a putative E3 ligase LUMPY INFECTIONS (LIN) are required for infection thread development but their cellular and molecular roles are obscure. Here we show that LIN and its homolog LIN-LIKE interact with VPY and VPY-LIKE in a subcellular complex localized to puncta both at the tip of the growing infection thread and at the nuclear periphery in root hairs and that the punctate accumulation of VPY is positively regulated by LIN. We also show that an otherwise nuclear and cytoplasmic exocyst subunit, EXO70H4, systematically co-localizes with VPY and LIN during rhizobial infection. Genetic analysis shows that defective rhizobial infection in exo70h4 is similar to that in vpy and lin. Our results indicate that VPY, LIN and EXO70H4 are part of the symbiosis-specific machinery required for polar growth of infection threads.
Collapse
Affiliation(s)
- Cheng-Wu Liu
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Andrew Breakspear
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Nicola Stacey
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Kim Findlay
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jin Nakashima
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | - Miaoxia Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Gabriella Endre
- Institute of Plant Biology, Biological Research Centre, Szeged, 6726, Hungary
| | | | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Michael K Udvardi
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Joëlle Fournier
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France.
| | - Jeremy D Murray
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
45
|
Janková Drdová E, Klejchová M, Janko K, Hála M, Soukupová H, Cvrčková F, Žárský V. Developmental plasticity of Arabidopsis hypocotyl is dependent on exocyst complex function. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1255-1265. [PMID: 30649396 PMCID: PMC6382343 DOI: 10.1093/jxb/erz005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/15/2018] [Accepted: 12/21/2018] [Indexed: 05/08/2023]
Abstract
The collet (root-hypocotyl junction) region is an important plant transition zone between soil and atmospheric environments. Despite its crucial importance for plant development, little is known about how this transition zone is specified. Here we document the involvement of the exocyst complex in this process. The exocyst, an octameric tethering complex, participates in secretion and membrane recycling and is central to numerous cellular and developmental processes, such as growth of root hairs, cell expansion, recycling of PIN auxin efflux carriers and many others. We show that dark-grown Arabidopsis mutants deficient in exocyst subunits can form a hair-bearing ectopic collet-like structure above the true collet, morphologically resembling the true collet but also retaining some characteristics of the hypocotyl. The penetrance of this phenotypic defect is significantly influenced by cultivation temperature and carbon source, and is related to a defect in auxin regulation. These observations provide new insights into the regulation of collet region formation and developmental plasticity of the hypocotyl.
Collapse
Affiliation(s)
- Edita Janková Drdová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
- Correspondence:
| | - Martina Klejchová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic
| | - Michal Hála
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Hana Soukupová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Viktor Žárský
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
| |
Collapse
|
46
|
Yan YY, Yang B, Lan XY, Li XY, Xu FL. Cadmium accumulation capacity and resistance strategies of a cadmium-hypertolerant fern - Microsorum fortunei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:1209-1223. [PMID: 30308892 DOI: 10.1016/j.scitotenv.2018.08.281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Microsorum fortunei (M. fortunei), a close relative to the cadmium (Cd) hyperaccumulator Microsorum pteropus, is an epiphytic Polypodiaceae fern with strong antioxidant activity. The Cd-accumulation capacities and Cd-resistance mechanisms of M. fortunei were analyzed in this study by measuring metal contents (Cd, Fe, Mg, Ca, Zn, Mn, K and Na) and chlorophyll fluorescence parameters (Fv/Fm, qN, qP, Y(II), Y(NPQ) and Y(NO)) and by performing an RNA-sequencing analysis. M. fortunei could accumulate up to 2249.10 μg/g DW Cd in roots under a 15-day 1000 μmol/L Cd treatment, with little Cd translocated into the leaves (maximum 138.26 μg/g DW). The M. fortunei leaves could maintain their normal physiological functions with no phytosynthesis damage and few changes in metal contents or differentially expressed genes. M. fortunei roots showed a decrease in Zn concentration, with potential Cd-tolerance mechanisms such as heavy metal transporters, vesicle trafficking and fusion proteins, antioxidant systems, and primary metabolites like plant hormones, revealed by differentially expressed functional genes. In conclusion, M. fortunei may serve as a potential cadmium-hypertolerant fern that sequesters and detoxifies most cadmium in the roots, with a minimum root-to-shoot Cd translocation to guarantee the physiological functions in the more vulnerable leaves.
Collapse
Affiliation(s)
- Yun-Yun Yan
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Bin Yang
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Xin-Yu Lan
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Xin-Yuan Li
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Fu-Liu Xu
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
47
|
Kalmbach L, Helariutta Y. Sieve Plate Pores in the Phloem and the Unknowns of Their Formation. PLANTS (BASEL, SWITZERLAND) 2019; 8:E25. [PMID: 30678196 PMCID: PMC6409547 DOI: 10.3390/plants8020025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 01/13/2023]
Abstract
Sieve pores of the sieve plates connect neighboring sieve elements to form the conducting sieve tubes of the phloem. Sieve pores are critical for phloem function. From the 1950s onwards, when electron microscopes became increasingly available, the study of their formation had been a pillar of phloem research. More recent work on sieve elements instead has largely focused on sieve tube hydraulics, phylogeny, and eco-physiology. Additionally, advanced molecular and genetic tools available for the model species Arabidopsis thaliana helped decipher several key regulatory mechanisms of early phloem development. Yet, the downstream differentiation processes which form the conductive sieve tube are still largely unknown, and our understanding of sieve pore formation has only moderately progressed. Here, we summarize our current knowledge on sieve pore formation and present relevant recent advances in related fields such as sieve element evolution, physiology, and plasmodesmata formation.
Collapse
Affiliation(s)
- Lothar Kalmbach
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK.
| | - Ykä Helariutta
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK.
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
48
|
Wang Z, Li X, Wang X, Liu N, Xu B, Peng Q, Guo Z, Fan B, Zhu C, Chen Z. Arabidopsis Endoplasmic Reticulum-Localized UBAC2 Proteins Interact with PAMP-INDUCED COILED-COIL to Regulate Pathogen-Induced Callose Deposition and Plant Immunity. THE PLANT CELL 2019; 31:153-171. [PMID: 30606781 PMCID: PMC6391690 DOI: 10.1105/tpc.18.00334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/26/2018] [Accepted: 12/27/2018] [Indexed: 05/27/2023]
Abstract
Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) is initiated upon PAMP recognition by pattern recognition receptors (PRR). PTI signals are transmitted through activation of mitogen-activated protein kinases (MAPKs), inducing signaling and defense processes such as reactive oxygen species (ROS) production and callose deposition. Here, we examine mutants for two Arabidopsis thaliana genes encoding homologs of UBIQUITIN-ASSOCIATED DOMAIN-CONTAINING PROTEIN 2 (UBAC2), a conserved endoplasmic reticulum (ER) protein implicated in ER protein quality control. The ubac2 mutants were hypersusceptible to a type III secretion-deficient strain of the bacterial pathogen Pseudomonas syringae, indicating a PTI defect. The ubac2 mutants showed normal PRR biogenesis, MAPK activation, ROS burst, and PTI-associated gene expression. Pathogen- and PAMP-induced callose deposition, however, was compromised in ubac2 mutants. UBAC2 proteins interact with the plant-specific long coiled-coil protein PAMP-INDUCED COILED COIL (PICC), and picc mutants were compromised in callose deposition and PTI. Compromised callose deposition in the ubac2 and picc mutants was associated with reduced accumulation of the POWDERY MILDEW RESISTANT 4 (PMR4) callose synthase, which is responsible for pathogen-induced callose synthesis. Constitutive overexpression of PMR4 restored pathogen-induced callose synthesis and PTI in the ubac2 and picc mutants. These results uncover an ER pathway involving the conserved UBAC2 and plant-specific PICC proteins that specifically regulate pathogen-induced callose deposition in plant innate immunity.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
| | - Xifeng Li
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Xiaoting Wang
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095 China
| | - Nana Liu
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Binjie Xu
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Qi Peng
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- Institute of Economic Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Zhifu Guo
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Baofang Fan
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
49
|
Identification and Characterization of the EXO70 Gene Family in Polyploid Wheat and Related Species. Int J Mol Sci 2018; 20:ijms20010060. [PMID: 30586859 PMCID: PMC6337732 DOI: 10.3390/ijms20010060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022] Open
Abstract
The EXO70 gene family is involved in different biological processes in plants, ranging from plant polar growth to plant immunity. To date, analysis of the EXO70 gene family has been limited in Triticeae species, e.g., hexaploidy Triticum aestivum and its ancestral/related species. By in silico analysis of multiple Triticeae sequence databases, a total of 200 EXO70 members were identified. By homologue cloning approaches, 15 full-length cDNA of EXO70s were cloned from diploid Haynaldia villosa. Phylogenetic relationship analysis of 215 EXO70 members classified them into three groups (EXO70.1, EXO70.2, and EXO70.3) and nine subgroups (EXO70A to EXO70I). The distribution of most EXO70 genes among different species/sub-genomes were collinear, implying their orthologous relationship. The EXO70A subgroup has the most introns (at least five introns), while the remaining seven subgroups have only one intron on average. The expression profiling of EXO70 genes from wheat revealed that 40 wheat EXO70 genes were expressed in at least one tissue (leaf, stem, or root), of which 25 wheat EXO70 genes were in response to at least one biotic stress (stripe rust or powdery mildew) or abiotic stress (drought or heat). Subcellular localization analysis showed that ten EXO70-V proteins had distinct plasma membrane localization, EXO70I1-V showed a distinctive spotted pattern on the membrane. The 15 EXO70-V genes were differentially expressed in three tissue. Apart from EXO70D2-V, the remaining EXO70-V genes were in response to at least one stress (flg22, chitin, powdery mildew, drought, NaCl, heat, or cold) or phytohormones (salicylic acid, methyl jasmonate, ethephon, or abscisic acid) and hydrogen peroxide treatments. This research provides a genome-wide glimpse of the Triticeae EXO70 gene family and those up- or downregulated genes require further validation of their biological roles in response to biotic/abiotic stresses.
Collapse
|
50
|
Guerriero G, Stokes I, Exley C. Is callose required for silicification in plants? Biol Lett 2018; 14:rsbl.2018.0338. [PMID: 30282746 PMCID: PMC6227863 DOI: 10.1098/rsbl.2018.0338] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022] Open
Abstract
The cell wall polymer callose catalyses the formation of silica in vitro and is heavily implicated in biological silicification in Equisetum (horsetail) and Arabidopsis (thale cress) in vivo. Callose, a β-1,3-glucan, is an ideal partner for silicification, because its amorphous structure and ephemeral nature provide suitable microenvironments to support the condensation of silicic acid into silica. Herein, using scanning electron microscopy, immunohistochemistry and fluorescence, we provide further evidence of the cooperative nature of callose and silica in biological silicification in rice, an important crop plant and known silica accumulator. These new data along with recently published research enable us to propose a model to describe the intracellular events that together determine callose-driven biological silicification.
Collapse
Affiliation(s)
- Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esche/Alzette, Luxembourg
| | - Ian Stokes
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire, UK
| | - Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire, UK
| |
Collapse
|