1
|
Ling Z, Jiang A, Hu M, Peng X, Zheng Y. Lipid metabolism in Cycas panzhihuaensis exposed to combined stress of drought and high temperatures and subsequent recovery. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109808. [PMID: 40184903 DOI: 10.1016/j.plaphy.2025.109808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/07/2025]
Abstract
Cycas panzhihuaensis inhabits regions where summer temperatures can exceed 40 °C, and these extreme conditions may intensify with ongoing global warming. However, how this species adapts to such thermal extremes is not well understood. To investigate the responses of C. panzhihuaensis to heat stress, some physiological characteristics along with lipid and fatty acid profiles were analyzed. The results show that heat stress induced soil water loss but did not cause leaf water loss and visible symptoms of leaf damage. However, photoinhibition was induced and heat dissipation was inhibited under the stress. In the recovered plants, both heat dissipation and maximum photochemical efficiency exhibited significant increases compared to the stressed plants but did not return to the control level. Most lipid categories including phospholipids and saccharolipids accumulated significantly following both the stress and subsequent recovery. However, the content of total neutral glycerolipids maintained unchanged after various treatments. The ratio of phosphatidylcholine/phosphatidylethanolamine decreased significantly and the ratios of both digalactosyldiacylglycerol/monogalactosyldiacylglycerol and triacylglycerol/diacylglycerol increased significantly in the stressed plants. Compared to the control plants, the relative content of polyunsaturated fatty acids significantly increased, while that of both saturated and monounsaturated fatty acids significantly declined in both stressed and recovered plants. Under stress conditions, the unsaturation levels of total neutral glycerolipids and their constituent components significantly increased, whereas those of phosphatidylglycerol and total saccharolipids exhibited a marked decrease. In conclusion, C. panzhihuaensis can tolerate extremely high temperatures to some extent which might be associated with the adjustments in lipid composition and unsaturation levels.
Collapse
Affiliation(s)
- Zhiwei Ling
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China
| | - Aiguo Jiang
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China
| | - Miaomiao Hu
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China
| | - Xiaoling Peng
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China
| | - Yanling Zheng
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China.
| |
Collapse
|
2
|
Wei W, Wang LF, Tao JJ, Zhang WK, Chen SY, Song Q, Zhang JS. The comprehensive regulatory network in seed oil biosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:649-668. [PMID: 39821491 DOI: 10.1111/jipb.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025]
Abstract
Plant oils play a crucial role in human nutrition, industrial applications and biofuel production. While the enzymes involved in fatty acid (FA) biosynthesis are well-studied, the regulatory networks governing these processes remain largely unexplored. This review explores the intricate regulatory networks modulating seed oil biosynthesis, focusing on key pathways and factors. Seed oil content is determined by the efficiency of de novo FA synthesis as well as influenced by sugar transport, lipid metabolism, FA synthesis inhibitors and fine-tuning mechanisms. At the center of this regulatory network is WRINKLED1 (WRI1), which plays a conserved role in promoting seed oil content across various plant species. WRI1 interacts with multiple proteins, and its expression level is regulated by upstream regulators, including members of the LAFL network. Beyond the LAFL network, we also discuss a potential nuclear factor-Y (NF-Y) regulatory network in soybean with an emphasis on NF-YA and NF-YB and their associated proteins. This NF-Y network represents a promising avenue for future efforts aimed at enhancing oil accumulation and improving stress tolerance in soybean. Additionally, the application of omics-based approaches is of great significance. Advances in omics technologies have greatly facilitated the identification of gene resources, opening new opportunities for genetic improvement. Importantly, several transcription factors involved in oil biosynthesis also participate in stress responses, highlighting a potential link between the two processes. This comprehensive review elucidates the complex mechanisms underlying the regulation of oil biosynthesis, offering insights into potential biotechnological strategies for improving oil production and stress tolerance in oil crops.
Collapse
Affiliation(s)
- Wei Wei
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long-Fei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Jian-Jun Tao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan-Ke Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shou-Yi Chen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Jin-Song Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
van Veen H, Triozzi PM, Loreti E. Metabolic strategies in hypoxic plants. PLANT PHYSIOLOGY 2024; 197:kiae564. [PMID: 39446413 DOI: 10.1093/plphys/kiae564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/04/2024] [Indexed: 12/25/2024]
Abstract
Complex multicellular organisms have evolved in an oxygen-enriched atmosphere. Oxygen is therefore essential for all aerobic organisms, including plants, for energy production through cellular respiration. However, plants can experience hypoxia following extreme flooding events and also under aerated conditions in proliferative organs or tissues characterized by high oxygen consumption. When oxygen availability is compromised, plants adopt different strategies to cope with hypoxia and limited aeration. A common feature among different plant species is the activation of an anaerobic fermentative metabolism to provide ATP to maintain cellular homeostasis under hypoxia. Fermentation also requires many sugar substrates, which is not always feasible, and alternative metabolic strategies are thus needed. Recent findings have also shown that the hypoxic metabolism is also active in specific organs or tissues of the plant under aerated conditions. Here, we describe the regulatory mechanisms that control the metabolic strategies of plants and how they enable them to thrive despite challenging conditions. A comprehensive mechanistic understanding of the genetic and physiological components underlying hypoxic metabolism should help to provide opportunities to improve plant resilience under the current climate change scenario.
Collapse
Affiliation(s)
- Hans van Veen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747AG Groningen, The Netherlands
| | - Paolo Maria Triozzi
- PlantLab, Institute of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy
| | - Elena Loreti
- Institute of Agricultural Biology and Biotechnology, CNR, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
4
|
Burchardt S, Czernicka M, Kućko A, Pokora W, Kapusta M, Domagalski K, Jasieniecka-Gazarkiewicz K, Karwaszewski J, Wilmowicz E. Exploring the response of yellow lupine (Lupinus luteus L.) root to drought mediated by pathways related to phytohormones, lipid, and redox homeostasis. BMC PLANT BIOLOGY 2024; 24:1049. [PMID: 39506671 PMCID: PMC11539565 DOI: 10.1186/s12870-024-05748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Yellow lupine (Lupinus luteus L.) is a high-protein crop of considerable economic and ecological significance. It has the ability to fix atmospheric nitrogen in symbiosis with Rhizobium, enriching marginal soils with this essential nutrient and reducing the need for artificial fertilizers. Additionally, lupine produces seeds with a high protein content, making it valuable for animal feed production. However, drought negatively affects lupine development, its mutualistic relationship with bacteria, and overall yield. To understand how lupine responds to this stress, global transcriptome sequencing was conducted, along with in-depth biochemical, chromatography, and microscopy analyses of roots subjected to drought. The results presented here contribute to strategies aimed at mitigating the effects of water deficit on lupine growth and development. RESULTS Based on RNA-seq, drought-specific genes were identified and annotated to biological pathways involved in phytohormone biosynthesis/signaling, lipid metabolism, and redox homeostasis. Our findings indicate that drought-induced disruption of redox balance characterized by the upregulation of reactive oxygen species (ROS) scavenging enzymes, coincided with the accumulation of lipid-metabolizing enzymes, such as phospholipase D (PLD) and lipoxygenase (LOX). This disruption also led to modifications in lipid homeostasis, including increased levels of triacylglycerols (TAG) and free fatty acids (FFA), along with a decrease in polar lipid content. Additionally, the stress response involved alterations in the transcriptional regulation of the linolenic acid metabolism network, resulting in changes in the composition of fatty acids containing 18 carbons. CONCLUSION The first comprehensive global transcriptomic profiles of lupine roots, combined with the identification of key stress-responsive molecules, represent a significant advancement in understanding lupine's responses to abiotic stress. The increased expression of the Δ12DESATURASE gene and enhanced PLD activity lead to higher level of linoleic acid (18:2), which is subsequently oxidized by LOX, resulting in membrane damage and malondialdehyde (MDA) accumulation. Oxidative stress elevates the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT), while the conversion of FFAs into TAGs provides protection against ROS. This research offers valuable molecular and biochemical candidates with significant potential to enhance drought tolerance . It enables innovative strategies in lupine breeding and crop improvement to address critical agricultural challenges.
Collapse
Affiliation(s)
- Sebastian Burchardt
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, Toruń, 87-100, Poland
| | - Małgorzata Czernicka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, Krakow, 31-120, Poland
| | - Agata Kućko
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences- SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Wojciech Pokora
- Department of Plant Physiology and Biotechnology, University of Gdańsk, 59 Wita Stwosza, Gdańsk, 80-308, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, University of Gdańsk, 59 Wita Stwosza, Gdańsk, 80-308, Poland
| | - Krzysztof Domagalski
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, Toruń, 87-100, Poland
| | | | - Jacek Karwaszewski
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, Toruń, 87-100, Poland
| | - Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, Toruń, 87-100, Poland.
| |
Collapse
|
5
|
Shimizu S, Hori K, Ishizaki K, Ohta H, Shimojima M. SENSITIVE TO FREEZING2 is crucial for growth of Marchantia polymorpha under acidic conditions. JOURNAL OF PLANT RESEARCH 2024; 137:1115-1126. [PMID: 39098962 PMCID: PMC11525325 DOI: 10.1007/s10265-024-01564-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
Land plants have evolved many systems to adapt to a wide range of environmental stresses. In seed plants, oligogalactolipid synthesis is involved in tolerance to freezing and dehydration, but it has not been analyzed in non-vascular plants. Here we analyzed trigalactosyldiacylglycerol (TGDG) synthesis in Marchantia polymorpha. TGDG is synthesized by galactolipid: galactolipid galactosyltransferase [GGGT; SENSITIVE TO FREEZING2 (SFR2) in Arabidopsis]. We analyzed the subcellular localization and GGGT activity of two M. polymorpha SFR2 homologs (MpGGGT1 and MpGGGT2, each as a GFP-fusion protein) using a transient expression system in Nicotiana benthamiana leaves and found that MpGGGT1-GFP localized in the chloroplast envelope membrane. We produced mutants Mpgggt1 and Mpgggt2 and found that TGDG did not accumulate in Mpgggt1 upon treatment of the thallus with acetic acid. Moreover, growth of Mpgggt1 mutants was impaired by acetic acid treatment. Microscopy revealed that the acetic acid treatment of M. polymorpha plants damaged intracellular membranes. The fact that the effect was similar for wild-type and Mpgggt1 plants suggested that MpGGGT has a role in recovery from damage. These results indicate that MpGGGT plays a crucial role in M. polymorpha growth under conditions of acid stress, which may have been encountered during the ancient terrestrial colonization of plants.
Collapse
Affiliation(s)
- Shinsuke Shimizu
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Kanagawa, Japan
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Kanagawa, Japan
| | | | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Kanagawa, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-65, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Kanagawa, Japan.
| |
Collapse
|
6
|
Chen K, Bhunia RK, Wendt MM, Campidilli G, McNinch C, Hassan A, Li L, Nikolau BJ, Yandeau-Nelson MD. Cuticle development and the underlying transcriptome-metabolome associations during early seedling establishment. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6500-6522. [PMID: 39031128 PMCID: PMC11522977 DOI: 10.1093/jxb/erae311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
The plant cuticle is a complex extracellular lipid barrier that has multiple protective functions. This study investigated cuticle deposition by integrating metabolomics and transcriptomics data gathered from six different maize seedling organs of four genotypes, the inbred lines B73 and Mo17, and their reciprocal hybrids. These datasets captured the developmental transition of the seedling from heterotrophic skotomorphogenic growth to autotrophic photomorphogenic growth, a transition that is highly vulnerable to environmental stresses. Statistical interrogation of these data revealed that the predominant determinant of cuticle composition is seedling organ type, whereas the seedling genotype has a smaller effect on this phenotype. Gene-to-metabolite associations assessed by integrated statistical analyses identified three gene networks associated with the deposition of different elements of the cuticle: cuticular waxes; monomers of lipidized cell wall biopolymers, including cutin and suberin; and both of these elements. These gene networks reveal three metabolic programs that appear to support cuticle deposition, including processes of chloroplast biogenesis, lipid metabolism, and molecular regulation (e.g. transcription factors, post-translational regulators, and phytohormones). This study demonstrates the wider physiological metabolic context that can determine cuticle deposition and lays the groundwork for new targets for modulating the properties of this protective barrier.
Collapse
Affiliation(s)
- Keting Chen
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Bioinformatics & Computational Biology Graduate Program, Iowa State University, Ames, IA, USA
| | - Rupam Kumar Bhunia
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Matthew M Wendt
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, USA
| | - Grace Campidilli
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Undergraduate Genetics Major, Iowa State University, Ames, IA, USA
| | - Colton McNinch
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State University, Ames, IA, USA
| | - Ahmed Hassan
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Undergraduate Data Science Major, Iowa State University, Ames, IA, USA
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Basil J Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State University, Ames, IA, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, USA
| | - Marna D Yandeau-Nelson
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Bioinformatics & Computational Biology Graduate Program, Iowa State University, Ames, IA, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State University, Ames, IA, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
7
|
Coulon D, Nacir H, Bahammou D, Jouhet J, Bessoule JJ, Fouillen L, Bréhélin C. Roles of plastoglobules and lipid droplets in leaf neutral lipid accumulation during senescence and nitrogen deprivation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6542-6562. [PMID: 38995052 DOI: 10.1093/jxb/erae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
Upon abiotic stress or senescence, the size and/or abundance of plastid-localized plastoglobules and cytosolic lipid droplets, both compartments devoted to neutral lipid storage, increase in leaves. Meanwhile, plant lipid metabolism is also perturbed, notably with the degradation of thylakoidal monogalactosyldiacylglycerol (MGDG) and the accumulation of neutral lipids. Although these mechanisms are probably linked, they have never been jointly studied, and the respective roles of plastoglobules and lipid droplets in the plant response to stress are totally unknown. To address this question, we determined and compared the glycerolipid composition of both lipid droplets and plastoglobules, followed their formation in response to nitrogen starvation, and studied the kinetics of lipid metabolism in Arabidopsis leaves. Our results demonstrated that plastoglobules preferentially store phytyl-esters, while triacylglycerols (TAGs) and steryl-esters accumulated within lipid droplets. Thanks to a pulse-chase labeling approach and lipid analyses of the fatty acid desaturase 2 (fad2) mutant, we showed that MGDG-derived C18:3 fatty acids were exported to lipid droplets, while MGDG-derived C16:3 fatty acids were stored within plastoglobules. The export of lipids from plastids to lipid droplets was probably facilitated by the physical contact occurring between both organelles, as demonstrated by our electron tomography study. The accumulation of lipid droplets and neutral lipids was transient, suggesting that stress-induced TAGs were remobilized during the plant recovery phase by a mechanism that remains to be explored.
Collapse
Affiliation(s)
- Denis Coulon
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Houda Nacir
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Delphine Bahammou
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Juliette Jouhet
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Laboratoire de Physiologie Cellulaire et Végétale, F-38000 Grenoble, France
| | - Jean-Jacques Bessoule
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Laëtitia Fouillen
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Claire Bréhélin
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| |
Collapse
|
8
|
Striesow J, Welle M, Busch LM, Bekeschus S, Wende K, Stöhr C. Hypoxia increases triacylglycerol levels and unsaturation in tomato roots. BMC PLANT BIOLOGY 2024; 24:909. [PMID: 39350052 PMCID: PMC11441241 DOI: 10.1186/s12870-024-05578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Plants are designed to endure stress, but increasingly extreme weather events are testing the limits. Events like flooding result in submergence of plant organs, triggering an energy crisis due to hypoxia and threaten plant growth and productivity. Lipids are relevant as building blocks and energy vault and are substantially intertwined with primary metabolism, making them an ideal readout for plant stress. RESULTS By high resolution mass spectrometry, a distinct, hypoxia-related lipid composition of Solanum lycopersicum root tissue was observed. Out of 491 lipid species, 11 were exclusively detected in this condition. Among the lipid classes observed, glycerolipids and glycerophospholipids dominated by far (78%). Differences between the lipidomic profiles of both analyzed conditions were significantly driven by changes in the abundance of triacylglycerols (TGs) whereas sitosterol esters, digalactosyldiacylglycerols, and phosphatidylcholine play a significantly negligible role in separation. Alongside, an increased level of polyunsaturation was observed in the fatty acid chains, with 18:2 and 18:3 residues showing a significant increase. Of note, hexadecatetraenoic acid (16:4) was identified in hypoxia condition samples. Changes in gene expression of enzymes related to lipid metabolism corroborate the above findings. CONCLUSION To our knowledge, this is the first report on a hypoxia-induced increase in TG content in tomato root tissue, closing a knowledge gap in TG abiotic stress response. The results suggest that the increase in TGs and TG polyunsaturation degree are common features of hypoxic response in plant roots.
Collapse
Affiliation(s)
- Johanna Striesow
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Marcel Welle
- Institute of Botany & Landscape Ecology, Greifswald University, Soldmannstr. 15, 17489, Greifswald, Germany.
| | - Larissa Milena Busch
- Department of Functional Genomics, Greifswald University Medical Center, Felix-Hausdorff- Str. 8, 17489, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| | - Christine Stöhr
- Institute of Botany & Landscape Ecology, Greifswald University, Soldmannstr. 15, 17489, Greifswald, Germany
| |
Collapse
|
9
|
Li Q, Zhao X, Wu J, Shou H, Wang W. The F-Box Protein TaFBA1 Positively Regulates Drought Resistance and Yield Traits in Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:2588. [PMID: 39339563 PMCID: PMC11434774 DOI: 10.3390/plants13182588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Environmental stresses, including drought stress, seriously threaten food security. Previous studies reported that wheat F-box protein, TaFBA1, responds to abiotic stresses in tobacco. Here, we generated transgenic wheat with enhanced (overexpression, OE) or suppressed (RNA interference, RNAi) expression of TaFBA1. The TaFBA1-OE seedlings showed enhanced drought tolerance, as measured by survival rate and fresh weight under severe drought stress, whereas the RNAi plants showed the opposite phenotype. Furthermore, the OE plants had stronger antioxidant capacity compared to WT and RNAi plants and maintained stomatal opening, which resulted in higher water loss under drought stress. However, stronger water absorption capacity in OE roots contributed to higher relative water contents in leaves under drought stress. Moreover, the postponed stomatal closure in OE lines helped to maintain photosynthesis machinery to produce more photoassimilate and ultimately larger seed size. Transcriptomic analyses conducted on WT and OE plants showed that genes involved in antioxidant, fatty acid and lipid metabolism and cellulose synthesis were significantly induced by drought stress in the leaves of OE lines. Together, our studies determined that the F-box protein TaFBA1 modulated drought tolerance and affected yield in wheat and the TaFBA1 gene could provide a desirable target for further breeding of wheat.
Collapse
Affiliation(s)
- Qinxue Li
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining 314400, China;
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (J.W.)
| | - Xiaoyu Zhao
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (J.W.)
| | - Jiajie Wu
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (J.W.)
| | - Huixia Shou
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining 314400, China;
| | - Wei Wang
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (J.W.)
| |
Collapse
|
10
|
Wang X, Zhan W, Zhou S, He S, Wang S, Yu Y, Fan H. The synthesis of triacylglycerol by diacylglycerol acyltransferases (CsDGAT1A and CsDGAT2D) is essential for tolerance of cucumber's resistance to low-temperature stress. PLANT CELL REPORTS 2024; 43:196. [PMID: 39009888 DOI: 10.1007/s00299-024-03282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
KEY MESSAGE CsDGAT1A and CsDGAT2D play a positive regulatory role in cucumber's response to low-temperature stress and positively regulate the synthesis of triacylglycerol (TAG). Triacylglycerol (TAG), a highly abundant and significant organic compound in plants, plays crucial roles in plant growth, development, and stress responses. The final acetylation step of TAG synthesis is catalyzed by diacylglycerol acyltransferases (DGATs). However, the involvement of DGATs in cucumber's low-temperature stress response remains unexplored. This study focused on two DGAT genes, CsDGAT1A and CsDGAT2D, investigating their function in enhancing cucumber's low-temperature stress tolerance. Our results revealed that both proteins were the members of the diacylglycerol acyltransferase family and were predominantly localized in the endoplasmic reticulum. Functional analysis demonstrated that transient silencing of CsDGAT1A and CsDGAT2D significantly compromised cucumber's low-temperature stress tolerance, whereas transient overexpression enhanced it. Furthermore, the TAG content quantification indicated that CsDGAT1A and CsDGAT2D promoted TAG accumulation. In conclusion, this study elucidates the lipid metabolism mechanism in cucumber's low-temperature stress response and offers valuable insights for the cultivation of cold-tolerant cucumber plants.
Collapse
Affiliation(s)
- Xue Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wei Zhan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuang Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Siyao He
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Siqi Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
11
|
Barghi A, Jung HW. Insights into Bacillus zanthoxyli HS1-mediated systemic tolerance: multifunctional implications for enhanced plant tolerance to abiotic stresses. PHYSIOLOGIA PLANTARUM 2024; 176:e14458. [PMID: 39105251 DOI: 10.1111/ppl.14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Abiotic stresses significantly impact agricultural productivity and food security. Innovative strategies, including the use of plant-derived compounds and plant growth-promoting rhizobacteria (PGPR), are necessary to enhance plant resilience. This study delved into how Bacillus zanthoxyli HS1 (BzaHS1) and BzaHS1-derived volatile organic compounds (VOC) conferred systemic tolerance against salt and heat stresses in cabbage and cucumber plants. Direct application of a BzaHS1 strain or exposure of BzaHS1-derived VOC to cabbage and cucumber plants promoted seedling growth under stressed conditions. This induced systemic tolerance was associated with increased mRNA expression and enzymatic activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), or ascorbate peroxidase (EC 1.11.1.1), leading to a reduction in oxidative stress in cabbage and cucumber plants. Plants co-cultured with BzaHS1 and exposed to BzaHS1-derived VOC triggered the accumulation of callose and minimized stomatal opening in response to high salt and temperature stresses, respectively. In contrast, exogenous treatment of azelaic acid, a well-characterized plant defense primer, had no significant impact on the seedling growth of cabbage and cucumber plants grown under abiotic stress conditions. Taken together, BzaHS1 and its VOC show potential for enhancing plant tolerance responses to salt and heat stresses through modulation of osmotic stress-regulatory networks.
Collapse
Affiliation(s)
- Anahita Barghi
- Institute of Agricultural Life Science, Dong-A University, Busan, Korea
| | - Ho Won Jung
- Institute of Agricultural Life Science, Dong-A University, Busan, Korea
- Department of Applied Bioscience, Dong-A University, Busan, Korea
- Department of Molecular Genetics, Dong-A University, Busan, Korea
| |
Collapse
|
12
|
Adigun OA, Pham TH, Grapov D, Nadeem M, Jewell LE, Galagedara L, Cheema M, Thomas R. Lipid mediated plant immunity in susceptible and tolerant soybean cultivars in response to Phytophthora sojae colonization and infection. BMC PLANT BIOLOGY 2024; 24:154. [PMID: 38424489 PMCID: PMC10905861 DOI: 10.1186/s12870-024-04808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Soybean is one of the most cultivated crops globally and a staple food for much of the world's population. The annual global crop losses due to infection by Phytophthora sojae is currently estimated at $20B USD, yet we have limited understanding of the role of lipid mediators in the adaptative strategies used by the host plant to limit infection. Since root is the initial site of this infection, we examined the infection process in soybean root infected with Phytophthora sojae using scanning electron microscopy to observe the changes in root morphology and a multi-modal lipidomics approach to investigate how soybean cultivars remodel their lipid mediators to successfully limit infection by Phytophthora sojae. RESULTS The results reveal the presence of elevated biogenic crystals and more severe damaged cells in the root morphology of the infected susceptible cultivar compared to the infected tolerant cultivars. Furthermore, induced accumulation of stigmasterol was observed in the susceptible cultivar whereas, induced accumulation of phospholipids and glycerolipids occurred in tolerant cultivar. CONCLUSION The altered lipidome reported in this study suggest diacylglycerol and phosphatidic acid mediated lipid signalling impacting phytosterol anabolism appears to be a strategy used by tolerant soybean cultivars to successfully limit infection and colonization by Phytophthora sojae.
Collapse
Affiliation(s)
- Oludoyin Adeseun Adigun
- School of Science and the Environment/Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada.
| | - Thu Huong Pham
- School of Science and the Environment/Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
| | | | - Muhammad Nadeem
- School of Science and the Environment/Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
| | - Linda Elizabeth Jewell
- St. John's Research and Development Centre, Agriculture and Agri-Food Canada, 204 Brookfield Road, St. John's, Newfoundland and Labrador, A1E 6J5, Canada
| | - Lakshman Galagedara
- School of Science and the Environment/Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
| | - Mumtaz Cheema
- School of Science and the Environment/Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
| | - Raymond Thomas
- Department of Biology/Biotron Climate Change Experimental Research Centre, Western University, London, ON, Canada.
| |
Collapse
|
13
|
Chen D, Chen J, Dai R, Zheng X, Han Y, Chen Y, Xue T. Integration analysis of ATAC-seq and RNA-seq provides insight into fatty acid biosynthesis in Schizochytrium limacinum under nitrogen limitation stress. BMC Genomics 2024; 25:141. [PMID: 38311722 PMCID: PMC10840233 DOI: 10.1186/s12864-024-10043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/22/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Schizochytrium limacinum holds significant value utilized in the industrial-scale synthesis of natural DHA. Nitrogen-limited treatment can effectively increase the content of fatty acids and DHA, but there is currently no research on chromatin accessibility during the process of transcript regulation. The objective of this research was to delve into the workings of fatty acid production in S. limacinum by examining the accessibility of promoters and profiling gene expressions. RESULTS Results showed that differentially accessible chromatin regions (DARs)-associated genes were enriched in fatty acid metabolism, signal transduction mechanisms, and energy production. By identifying and annotating DARs-associated motifs, the study obtained 54 target transcription factor classes, including BPC, RAMOSA1, SPI1, MYC, and MYB families. Transcriptomics results revealed that several differentially expressed genes (DEGs), including SlFAD2, SlALDH, SlCAS1, SlNSDHL, and SlDGKI, are directly related to the biosynthesis of fatty acids, meanwhile, SlRPS6KA, SlCAMK1, SlMYB3R1, and SlMYB3R5 serve as transcription factors that could potentially influence the regulation of fatty acid production. In the integration analysis of DARs and ATAC-seq, 13 genes were identified, which were shared by both DEGs and DARs-associated genes, including SlCAKM, SlRP2, SlSHOC2, SlTN, SlSGK2, SlHMP, SlOGT, SlclpB, and SlDNAAF3. CONCLUSIONS SlCAKM may act as a negative regulator of fatty acid and DHA synthesis, while SlSGK2 may act as a positive regulator, which requires further study in the future. These insights enhance our comprehension of the processes underlying fatty acid and DHA production in S. limacinum. They also supply a foundational theoretical framework and practical assistance for the development of strains rich in fatty acids and DHA.
Collapse
Affiliation(s)
- Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jing Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Rongchun Dai
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xuehai Zheng
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yuying Han
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Ting Xue
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
14
|
Zhu F, Tan X, Wang X, Zhang Q. Does periphyton turn less palatable under grazing pressure? ISME COMMUNICATIONS 2024; 4:ycae146. [PMID: 39759835 PMCID: PMC11697170 DOI: 10.1093/ismeco/ycae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/16/2024] [Indexed: 01/07/2025]
Abstract
Periphyton acts as an important primary producer in stream food webs with bottom-up grazing pressure and is also subject to effects of top-down grazing pressure. However, the underlying mechanisms of these interactions remain unclear. In this study we conducted a mesocosm experiment to explore the periphyton response to grazing pressure by the freshwater snail Bellamya aeruginosa in relation to food quality indicated by polyunsaturated fatty acid (PUFA) biomarkers, including eicosapentaenoic acid (20:5n3) and the 22C fatty acid docosahexaenoic acid (22:6n3), which are essential for cell growth and reproduction and cannot be synthesized by most consumers of periphyton. Results indicated that periphyton grazing pressure led to a decrease in Bacillariophyta, which contain high-quality PUFAs such as eicsapentaenoic acid and docosahexaenoic acid, and an increase in Cyanophyta and Chlorophyta, which are rich in 18C PUFAs such as linoleic acid (18:2n6) and alpha-linolenic acid (18:3n3). We observed upregulation of genes that participate in lipid metabolism promoting unsaturated fatty acid biosynthesis, alpha-linolenic acid metabolism, and glycerophospholipid metabolism, which are related to the carbohydrate and energy metabolism maintaining the energy stability of periphyton. These results demonstrate that the food quality of periphyton decreased under grazing pressure and also elucidate the compositional, chemical, and molecular perspectives of the interactive bottom-up and top-down effects on structuring stream food webs.
Collapse
Affiliation(s)
- Feng Zhu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P.R. China
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming 650031, P.R. China
| | - Xiang Tan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P.R. China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan 430074, P.R. China
| | - Xingzhong Wang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, P.R. China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P.R. China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan 430074, P.R. China
| |
Collapse
|
15
|
Mathur J, Kunjumon TK, Mammone A, Mathur N. Membrane contacts with the endoplasmic reticulum modulate plastid morphology and behaviour. FRONTIERS IN PLANT SCIENCE 2023; 14:1293906. [PMID: 38111880 PMCID: PMC10726010 DOI: 10.3389/fpls.2023.1293906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023]
Abstract
Plastid behaviour often occurs in tandem with endoplasmic reticulum (ER) dynamics. In order to understand the underlying basis for such linked behaviour we have used time-lapse imaging-based analysis of plastid movement and pleomorphy, including the extension and retraction of stromules. Stable transgenic plants that simultaneously express fluorescent fusion proteins targeted to the plastid stroma, and the ER along with BnCLIP1-eGFP, an independent plastid envelope localized membrane contact site (MCS) marker were utilized. Our experiments strongly suggest that transient MCS formed between the plastid envelope and the ER are responsible for their concomitant behaviour.
Collapse
Affiliation(s)
- Jaideep Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | | | |
Collapse
|
16
|
Xiao R, Youngjun O, Zhang X, Thi NN, Lu H, Hwang I. Osmotic stress-induced localisation switch of CBR1 from mitochondria to the endoplasmic reticulum triggers ATP production via β-oxidation to respond to osmotic shock. PLANT, CELL & ENVIRONMENT 2023; 46:3420-3432. [PMID: 37469026 DOI: 10.1111/pce.14671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
Drought and high salinity are major environmental factors that reduce plant growth and development, leading to loss of plant productivity in agriculture. Under these stress conditions, photosynthesis is greatly suppressed despite the high cellular energy cost of stress response processes. Currently, the process that allows plants to secure the energy required for osmotic stress responses remains elusive. Here, we provide evidence that cytochrome b5 reductase 1 (CBR1), a cytochrome b5 reductase, plays an important role in ATP production in response to NaCl and dehydration stresses. Overexpression and loss of function of CBR1 led to enhanced resistance and sensitivity, respectively, to osmotic stress. Upon exposure to osmotic stress, CBR1 was localised to the endoplasmic reticulum (ER) instead of to mitochondria, where it was localised under normal conditions. Transgenic plants overexpressing ER-targeted CBR1 showed enhanced resistance to osmotic stress. Moreover, CBR1-ER and CBR1-OX plants, had higher levels of ATP and unsaturated fatty acids under osmotic stress. However, these effects were abrogated by thioridazine and 2-deoxy glucose, inhibitors of β-oxidation and glycolysis, respectively. Based on these results, we propose that ER-localised CBR1 triggers ATP production via the production and β-oxidation of polyunsaturated fatty acids under osmotic stress.
Collapse
Affiliation(s)
- Ruixue Xiao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Oh Youngjun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Xiuxiu Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - NguyenThO Nguyen Thi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Hai Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| |
Collapse
|
17
|
Córdoba SC, Tong H, Burgos A, Zhu F, Alseekh S, Fernie AR, Nikoloski Z. Identification of gene function based on models capturing natural variability of Arabidopsis thaliana lipid metabolism. Nat Commun 2023; 14:4897. [PMID: 37580345 PMCID: PMC10425450 DOI: 10.1038/s41467-023-40644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
Lipids play fundamental roles in regulating agronomically important traits. Advances in plant lipid metabolism have until recently largely been based on reductionist approaches, although modulation of its components can have system-wide effects. However, existing models of plant lipid metabolism provide lumped representations, hindering detailed study of component modulation. Here, we present the Plant Lipid Module (PLM) which provides a mechanistic description of lipid metabolism in the Arabidopsis thaliana rosette. We demonstrate that the PLM can be readily integrated in models of A. thaliana Col-0 metabolism, yielding accurate predictions (83%) of single lethal knock-outs and 75% concordance between measured transcript and predicted flux changes under extended darkness. Genome-wide associations with fluxes obtained by integrating the PLM in diel condition- and accession-specific models identify up to 65 candidate genes modulating A. thaliana lipid metabolism. Using mutant lines, we validate up to 40% of the candidates, paving the way for identification of metabolic gene function based on models capturing natural variability in metabolism.
Collapse
Affiliation(s)
- Sandra Correa Córdoba
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| | - Hao Tong
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Asdrúbal Burgos
- Department of Zoology and Botany, University of Guadalajara, Guadalajara, Mexico
| | - Feng Zhu
- National R&D Center for Citrus Preservation, Hubei Hongshan Laboratory, National Key Laboratory for Germplasm Innovation and Utilization for Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Saleh Alseekh
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair R Fernie
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria.
| |
Collapse
|
18
|
Bouchnak I, Coulon D, Salis V, D’Andréa S, Bréhélin C. Lipid droplets are versatile organelles involved in plant development and plant response to environmental changes. FRONTIERS IN PLANT SCIENCE 2023; 14:1193905. [PMID: 37426978 PMCID: PMC10327486 DOI: 10.3389/fpls.2023.1193905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Since decades plant lipid droplets (LDs) are described as storage organelles accumulated in seeds to provide energy for seedling growth after germination. Indeed, LDs are the site of accumulation for neutral lipids, predominantly triacylglycerols (TAGs), one of the most energy-dense molecules, and sterol esters. Such organelles are present in the whole plant kingdom, from microalgae to perennial trees, and can probably be found in all plant tissues. Several studies over the past decade have revealed that LDs are not merely simple energy storage compartments, but also dynamic structures involved in diverse cellular processes like membrane remodeling, regulation of energy homeostasis and stress responses. In this review, we aim to highlight the functions of LDs in plant development and response to environmental changes. In particular, we tackle the fate and roles of LDs during the plant post-stress recovery phase.
Collapse
Affiliation(s)
- Imen Bouchnak
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Denis Coulon
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Vincent Salis
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sabine D’Andréa
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Claire Bréhélin
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| |
Collapse
|
19
|
Félix JW, Granados-Alegría MI, Gómez-Tah R, Tzec-Simá M, Ruíz-May E, Canto-Canché B, Zamora-Briseño JA, Bojórquez-Velázquez E, Oropeza-Salín C, Islas-Flores I. Proteome Landscape during Ripening of Solid Endosperm from Two Different Coconut Cultivars Reveals Contrasting Carbohydrate and Fatty Acid Metabolic Pathway Modulation. Int J Mol Sci 2023; 24:10431. [PMID: 37445609 DOI: 10.3390/ijms241310431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Cocos nucifera L. is a crop grown in the humid tropics. It is grouped into two classes of varieties: dwarf and tall; regardless of the variety, the endosperm of the coconut accumulates carbohydrates in the early stages of maturation and fatty acids in the later stages, although the biochemical factors that determine such behavior remain unknown. We used tandem mass tagging with synchronous precursor selection (TMT-SPS-MS3) to analyze the proteomes of solid endosperms from Yucatan green dwarf (YGD) and Mexican pacific tall (MPT) coconut cultivars. The analysis was conducted at immature, intermediate, and mature development stages to better understand the regulation of carbohydrate and lipid metabolisms. Proteomic analyses showed 244 proteins in YGD and 347 in MPT; from these, 155 proteins were shared between both cultivars. Furthermore, the proteomes related to glycolysis, photosynthesis, and gluconeogenesis, and those associated with the biosynthesis and elongation of fatty acids, were up-accumulated in the solid endosperm of MPT, while in YGD, they were down-accumulated. These results support that carbohydrate and fatty acid metabolisms differ among the developmental stages of the solid endosperm and between the dwarf and tall cultivars. This is the first proteomics study comparing different stages of maturity in two contrasting coconut cultivars and may help in understanding the maturity process in other palms.
Collapse
Affiliation(s)
- Jean Wildort Félix
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - María Inés Granados-Alegría
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Rufino Gómez-Tah
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Miguel Tzec-Simá
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Eliel Ruíz-May
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Colonia El Haya, Xalapa C.P. 91073, Veracruz, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Jesús Alejandro Zamora-Briseño
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Colonia El Haya, Xalapa C.P. 91073, Veracruz, Mexico
| | - Esaú Bojórquez-Velázquez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Colonia El Haya, Xalapa C.P. 91073, Veracruz, Mexico
| | - Carlos Oropeza-Salín
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
20
|
Lewandowska M, Zienkiewicz A, Feussner K, König S, Kunst L, Feussner I. Wound-induced triacylglycerol biosynthesis is jasmonoy-l-isoleucin and abscisic acid independent. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:509-517. [PMID: 36800436 DOI: 10.1111/plb.13513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/14/2023] [Indexed: 05/17/2023]
Abstract
Triacylglycerol (TAG) plays a significant role during plant stress - it maintains lipid homeostasis. Upon wounding plants accumulate TAG, likely as a storage form of fatty acids (FAs) that originate from damaged membranes. This study asked if this process depends on the two phytohormones jasmonoyl-isoleucine (JA-Ile) and abscisic acid (ABA), which are involved in wound signalling. To analyse regulation of wound-induced TAG accumulation, we used mutants deficient in JA-Ile, with reduced ABA and the myb96 mutant, which is deficient in an ABA-dependent transcription factor. The expression of genes involved in TAG biosynthesis, and TAG content after wounding were analysed via LC-MS and GC-FID, plastidial lipid content in all mentioned mutant lines was also determined. The localization of newly synthesized TAG was investigated using lipid droplet staining. TAG accumulation upon wounding was confirmed as well as the fact that the newly synthesized TAG are mostly composed of polyunsaturated fatty acids. Nevertheless, all tested mutant lines were able to accumulate TAG similar to the WT. We observed differences in reduction of plastidial lipids - in WT plants this was higher than in mutant lines. Newly synthesized TAGs were stored in lipid droplets at and around the wounded area. Our results show that TAG accumulation upon wounding is not dependent on JA-Ile or ABA. The newly synthesized TAG species are composed of unsaturated fatty acids of membrane origin, and most likely serves as a transient energy store.
Collapse
Affiliation(s)
- M Lewandowska
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - A Zienkiewicz
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - K Feussner
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - S König
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - L Kunst
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - I Feussner
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
- Department for Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| |
Collapse
|
21
|
Luzarowska U, Ruß AK, Joubès J, Batsale M, Szymański J, P Thirumalaikumar V, Luzarowski M, Wu S, Zhu F, Endres N, Khedhayir S, Schumacher J, Jasinska W, Xu K, Correa Cordoba SM, Weil S, Skirycz A, Fernie AR, Li-Beisson Y, Fusari CM, Brotman Y. Hello darkness, my old friend: 3-KETOACYL-COENZYME A SYNTHASE4 is a branch point in the regulation of triacylglycerol synthesis in Arabidopsis thaliana. THE PLANT CELL 2023; 35:1984-2005. [PMID: 36869652 DOI: 10.1093/plcell/koad059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 05/30/2023]
Abstract
Plant lipids are important as alternative sources of carbon and energy when sugars or starch are limited. Here, we applied combined heat and darkness or extended darkness to a panel of ∼300 Arabidopsis (Arabidopsis thaliana) accessions to study lipid remodeling under carbon starvation. Natural allelic variation at 3-KETOACYL-COENZYME A SYNTHASE4 (KCS4), a gene encoding an enzyme involved in very long chain fatty acid (VLCFA) synthesis, underlies the differential accumulation of polyunsaturated triacylglycerols (puTAGs) under stress. Ectopic expression of KCS4 in yeast and plants proved that KCS4 is a functional enzyme localized in the endoplasmic reticulum with specificity for C22 and C24 saturated acyl-CoA. Allelic mutants and transient overexpression in planta revealed the differential role of KCS4 alleles in VLCFA synthesis and leaf wax coverage, puTAG accumulation, and biomass. Moreover, the region harboring KCS4 is under high selective pressure and allelic variation at KCS4 correlates with environmental parameters from the locales of Arabidopsis accessions. Our results provide evidence that KCS4 plays a decisive role in the subsequent fate of fatty acids released from chloroplast membrane lipids under carbon starvation. This work sheds light on both plant response mechanisms and the evolutionary events shaping the lipidome under carbon starvation.
Collapse
Affiliation(s)
- Urszula Luzarowska
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Anne-Kathrin Ruß
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, University Bordeaux, F-33140 Villenave d'Ornon, France
| | - Marguerite Batsale
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, University Bordeaux, F-33140 Villenave d'Ornon, France
| | - Jędrzej Szymański
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, 06466 Seeland, Germany
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428 Jülich, Germany
| | | | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Feng Zhu
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Niklas Endres
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Sarah Khedhayir
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Julia Schumacher
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Weronika Jasinska
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Ke Xu
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | - Simy Weil
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair Robert Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Yonghua Li-Beisson
- CEA, CNRS, BIAM, Institute de Biosciences et Biotechnologies Aix-Marseille, Aix Marseille Univ., F-13108 Saint Paul-Lez-Durance, France
| | - Corina M Fusari
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET-UNR), Suipacha 570, S2000LRJ Rosario, Argentina
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| |
Collapse
|
22
|
Yu L, Shen W, Fan J, Sah SK, Mavraganis I, Wang L, Gao P, Gao J, Zheng Q, Meesapyodsuk D, Yang H, Li Q, Zou J, Xu C. A chloroplast diacylglycerol lipase modulates glycerolipid pathway balance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37006186 DOI: 10.1111/tpj.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Two parallel pathways compartmentalized in the chloroplast and the endoplasmic reticulum contribute to thylakoid lipid synthesis in plants, but how these two pathways are coordinated during thylakoid biogenesis and remodeling remains unknown. We report here the molecular characterization of a homologous ADIPOSE TRIGLYCERIDE LIPASE-LIKE gene, previously referred to as ATGLL. The ATGLL gene is ubiquitously expressed throughout development and rapidly upregulated in response to a wide range of environmental cues. We show that ATGLL is a chloroplast non-regioselective lipase with a hydrolytic activity preferentially towards 16:0 of diacylglycerol (DAG). Comprehensive lipid profiling and radiotracer labeling studies revealed a negative correlation of ATGLL expression and the relative contribution of the chloroplast lipid pathway to thylakoid lipid biosynthesis. Additionally, we show that genetic manipulation of ATGLL expression resulted in changes in triacylglycerol levels in leaves. We propose that ATGLL, through affecting the level of prokaryotic DAG in the chloroplast, plays important roles in balancing the two glycerolipid pathways and in maintaining lipid homeostasis in plants.
Collapse
Affiliation(s)
- Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
- State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shanxi, China
| | - Wenyun Shen
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Saroj Kumar Sah
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Ioannis Mavraganis
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Liping Wang
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Peng Gao
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Jie Gao
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Qian Zheng
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Dauenpen Meesapyodsuk
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Hui Yang
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Qiang Li
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Jitao Zou
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| |
Collapse
|
23
|
Korte P, Unzner A, Damm T, Berger S, Krischke M, Mueller MJ. High triacylglycerol turnover is required for efficient opening of stomata during heat stress in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36976526 DOI: 10.1111/tpj.16210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/04/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Heat stress triggers the accumulation of triacylglycerols in Arabidopsis leaves, which increases basal thermotolerance. However, how triacylglycerol synthesis is linked to thermotolerance remains unclear and the mechanisms involved remain to be elucidated. It has been shown that triacylglycerol and starch degradation are required to provide energy for stomatal opening induced by blue light at dawn. To investigate whether triacylglycerol turnover is involved in heat-induced stomatal opening during the day, we performed feeding experiments with labeled fatty acids. Heat stress strongly induced both triacylglycerol synthesis and degradation to channel fatty acids destined for peroxisomal ß-oxidation through the triacylglycerol pool. Analysis of mutants defective in triacylglycerol synthesis or peroxisomal fatty acid uptake revealed that triacylglycerol turnover and fatty acid catabolism are required for heat-induced stomatal opening in illuminated leaves. We show that triacylglycerol turnover is continuous (1.2 mol% per min) in illuminated leaves even at 22°C. The ß-oxidation of triacylglycerol-derived fatty acids generates C2 carbon units that are channeled into the tricarboxylic acid pathway in the light. In addition, carbohydrate catabolism is required to provide oxaloacetate as an acceptor for peroxisomal acetyl-CoA and maintain the tricarboxylic acid pathway for energy and amino acid production during the day.
Collapse
Affiliation(s)
- Pamela Korte
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Amelie Unzner
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Theresa Damm
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Susanne Berger
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Markus Krischke
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Martin J Mueller
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| |
Collapse
|
24
|
Magni NN, Veríssimo ACS, Silva H, Pinto DCGA. Metabolomic Profile of Salicornia perennis Plant's Organs under Diverse In Situ Stress: The Ria de Aveiro Salt Marshes Case. Metabolites 2023; 13:metabo13020280. [PMID: 36837899 PMCID: PMC9960996 DOI: 10.3390/metabo13020280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Salicornia perennis is a halophyte belonging to the botanical subfamily Salicornioideae that forms extensive perennial salt marsh patches. This subfamily has excellent potential, still unexplored, as a source of food, medicine, and phytoremediation. This study aimed to evaluate the lipophilic composition of the Salicornia perennis different organs inhabiting salt marshes of Ria de Aveiro under different stress regimes. For this purpose, the lipophilic content was extracted with hexane and subsequent GC-MS analysis of the extracts for each plant organ, which was collected in three different salt marshes of the Ria de Aveiro. High sugar content was detected in the stems, whereas in fruiting articles, the higher content was in fatty acids. Shorter-chain organic acids were concentrated in the stems and vegetative articles; waxes were detected in greater quantity in photosynthetic organs. More or less stressful environments induce changes in the ratio and composition of molecules, such as acclimatization and oxidative stress reduction strategies; for example, fatty acid content was higher in plants subjected to a higher stress regime. These data contribute to understand the metabolic pathways of the species under study, suggesting new research approaches to its potential as food, medicine, and phytoremediator.
Collapse
Affiliation(s)
- Natasha N. Magni
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana C. S. Veríssimo
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Silva
- CESAM, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: ; +351-234-401407
| |
Collapse
|
25
|
Perlikowski D, Skirycz A, Marczak Ł, Lechowicz K, Augustyniak A, Michaelis Ä, Kosmala A. Metabolism of crown tissue is crucial for drought tolerance and recovery after stress cessation in Lolium/Festuca forage grasses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:396-414. [PMID: 36214776 DOI: 10.1093/jxb/erac398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
A process of plant recovery after drought cessation is a complex trait which has not been fully recognized. The most important organ associated with this phenomenon in monocots, including forage grasses, is the crown tissue located between shoots and roots. The crown tissue is a meristematic crossroads for metabolites and other compounds between these two plant organs. Here, for the first time, we present a metabolomic and lipidomic study focused on the crown tissue under drought and recovery in forage grasses, important for agriculture in European temperate regions. The plant materials involve high (HDT) and low drought-tolerant (LDT) genotypes of Festuca arundinacea, and Lolium multiflorum/F. arundinacea introgression forms. The obtained results clearly demonstrated that remodeling patterns of the primary metabolome and lipidome in the crown under drought and recovery were different between HDT and LDT plants. Furthermore, HDT plants accumulated higher contents of primary metabolites under drought in the crown tissue, especially carbohydrates which could function as osmoprotectants and storage materials. On the other hand, LDT plants characterized by higher membranes damage under drought, simultaneously accumulated membrane phospholipids in the crown and possessed the capacity to recover their metabolic functions after stress cessation to the levels observed in HDT plants.
Collapse
Affiliation(s)
- Dawid Perlikowski
- Plant Physiology Team, Institute of Plant Genetics Polish Academy of Sciences, Strzeszyńska 34, Poznan 60-479, Poland
| | - Aleksandra Skirycz
- Department of Molecular Physiology, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland
| | - Katarzyna Lechowicz
- Plant Physiology Team, Institute of Plant Genetics Polish Academy of Sciences, Strzeszyńska 34, Poznan 60-479, Poland
| | - Adam Augustyniak
- Plant Physiology Team, Institute of Plant Genetics Polish Academy of Sciences, Strzeszyńska 34, Poznan 60-479, Poland
- Centre for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznan 61-614, Poland
| | - Änna Michaelis
- Department of Molecular Physiology, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Arkadiusz Kosmala
- Plant Physiology Team, Institute of Plant Genetics Polish Academy of Sciences, Strzeszyńska 34, Poznan 60-479, Poland
| |
Collapse
|
26
|
Litwin A, Mironenka J, Bernat P, Soboń A, Różalska S. Accumulation of pyrethroids induces changes in metabolism of the entomopathogenic fungus Beauveria bassiana-Proteomic and lipidomic background. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114418. [PMID: 36527849 DOI: 10.1016/j.ecoenv.2022.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Advances in the agrochemical industry, such as using plant protection products e.g. pyrethroid insecticides, lead to environmental pollution via the accumulation of toxic compounds in soil. An interesting approach to overcoming this threat is using biopreparations based on entomopathogenic fungi that come into contact with the residues of the insecticides in the environment. The aim of this study was to determine whether the soil-dwelling entomopathogenic fungus Beauveria bassiana ARSEF 2860 is capable of accumulating pyrethroids (λ-cyhalothrin, α-cypermethrin and deltamethrin) and to identify the metabolomics and proteomic implications of this process. In this work, we demonstrated for the first time that the tested fungus accumulated pyrethroids as early as on day 2 of incubation with an average efficiency of 90%. Pyrethroids accumulated in large quantities in the mycelium of B. bassiana induced oxidative stress and interacted differently with the enzymes of the basic metabolic pathways, enzymes associated with the organization of the actin cytoskeleton and cell walls, as well as extracellular enzymes responsible for the infectious abilities (α-cypermethrin caused a 61% decrease in PR1, λ-cyhalothrin - a 31% decrease in PR2, which are proteolytic enzymes with a confirmed role in the infectious process). This study also revealed that the accumulated pyrethroids decreased the activity of phospholipase C, which increased the triacylglycerols/diacylglycerols (TAG/DAG) ratio, especially in mycelium in which α-cypermethrin was accumulated. It should be emphasized that the accumulation of pyrethroids in the environment is not fully understood, and current research suggests that entomopathogenic fungi may be part of the process.
Collapse
Affiliation(s)
- Anna Litwin
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | | | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | | | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|
27
|
Song S, Zhang L, Zhao Y, Sheng C, Zhou W, Dossou SSK, Wang L, You J, Zhou R, Wei X, Zhang X. Metabolome genome-wide association study provides biochemical and genetic insights into natural variation of primary metabolites in sesame. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1051-1069. [PMID: 36176211 DOI: 10.1111/tpj.15995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Plants' primary metabolites are of great importance from the survival and nutritional perspectives. However, the genetic bases underlying the profiles of primary metabolites in oilseed crops remain largely unclear. As one of the main oilseed crops, sesame (Sesamum indicum L.) is a potential model plant for investigating oil metabolism in plants. Therefore, the objective of this study is to disclose the genetic variants associated with variation in the content of primary metabolites in sesame. We performed a comprehensive metabolomics analysis of primary metabolites in 412 diverse sesame accessions using gas chromatography-mass spectrometry and identified a total of 45 metabolites, including fatty acids, monoacylglycerols (MAGs), and amino acids. Genome-wide association study unveiled 433 significant single-nucleotide polymorphism loci associated with variation in primary metabolite contents in sesame. By integrating diverse genomic analyses, we identified 10 key candidate causative genes of variation in MAG, fatty acid, asparagine, and sucrose contents. Among them, SiDSEL was significantly associated with multiple traits. SiCAC3 and SiKASI were strongly associated with variation in oleic acid and linoleic acid contents. Overexpression of SiCAC3, SiKASI, SiLTPI.25, and SiLTPI.26 in transgenic Arabidopsis and Saccharomyces cerevisiae revealed that SiCAC3 is a potential target gene for improvement of unsaturated fatty acid levels in crops. Furthermore, we found that it may be possible to breed several quality traits in sesame simultaneously. Our results provide valuable genetic resources for improving sesame seed quality and our understanding of oilseed crops' primary metabolism.
Collapse
Affiliation(s)
- Shengnan Song
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Liangxiao Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Yan Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Chen Sheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Wangyi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| |
Collapse
|
28
|
Cai Y, Zhai Z, Blanford J, Liu H, Shi H, Schwender J, Xu C, Shanklin J. Purple acid phosphatase2 stimulates a futile cycle of lipid synthesis and degradation, and mitigates the negative growth effects of triacylglycerol accumulation in vegetative tissues. THE NEW PHYTOLOGIST 2022; 236:1128-1139. [PMID: 35851483 DOI: 10.1111/nph.18392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Storage lipids (mostly triacylglycerols, TAGs) serve as an important energy and carbon reserve in plants, and hyperaccumulation of TAG in vegetative tissues can have negative effects on plant growth. Purple acid phosphatase2 (PAP2) was previously shown to affect carbon metabolism and boost plant growth. However, the effects of PAP2 on lipid metabolism remain unknown. Here, we demonstrated that PAP2 can stimulate a futile cycle of fatty acid (FA) synthesis and degradation, and mitigate negative growth effects associated with high accumulation of TAG in vegetative tissues. Constitutive expression of PAP2 in Arabidopsis thaliana enhanced both lipid synthesis and degradation in leaves and led to a substantial increase in seed oil yield. Suppressing lipid degradation in a PAP2-overexpressing line by disrupting sugar-dependent1 (SDP1), a predominant TAG lipase, significantly elevated vegetative TAG content and improved plant growth. Diverting FAs from membrane lipids to TAGs in PAP2-overexpressing plants by constitutively expressing phospholipid:diacylglycerol acyltransferase1 (PDAT1) greatly increased TAG content in vegetative tissues without compromising biomass yield. These results highlight the potential of combining PAP2 with TAG-promoting factors to enhance carbon assimilation, FA synthesis and allocation to TAGs for optimized plant growth and storage lipid accumulation in vegetative tissues.
Collapse
Affiliation(s)
- Yingqi Cai
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Zhiyang Zhai
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Hui Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Hai Shi
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jorg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
29
|
Li G, Jian T, Liu X, Lv Q, Zhang G, Ling J. Application of Metabolomics in Fungal Research. Molecules 2022; 27:7365. [PMID: 36364192 PMCID: PMC9654507 DOI: 10.3390/molecules27217365] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Metabolomics is an essential method to study the dynamic changes of metabolic networks and products using modern analytical techniques, as well as reveal the life phenomena and their inherent laws. Currently, more and more attention has been paid to the development of metabolic histochemistry in the fungus field. This paper reviews the application of metabolomics in fungal research from five aspects: identification, response to stress, metabolite discovery, metabolism engineering, and fungal interactions with plants.
Collapse
Affiliation(s)
- Guangyao Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tongtong Jian
- Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaojin Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingtao Lv
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guoying Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jianya Ling
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
30
|
Sharma I, Kirti PB, Pati PK. Autophagy: a game changer for plant development and crop improvement. PLANTA 2022; 256:103. [PMID: 36307739 DOI: 10.1007/s00425-022-04004-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Manipulation of autophagic pathway represents a tremendous opportunity for designing climate-smart crops with improved yield and better adaptability to changing environment. For exploiting autophagy to its full potential, identification and comprehensive characterization of adapters/receptor complex and elucidation of its regulatory network in crop plants is highly warranted. Autophagy is a major intracellular trafficking pathway in eukaryotes involved in vacuolar degradation of cytoplasmic constituents, mis-folded proteins, and defective organelles. Under optimum conditions, autophagy operates at a basal level to maintain cellular homeostasis, but under stressed conditions, it is induced further to provide temporal stress relief. Our understanding of this highly dynamic process has evolved exponentially in the past few years with special reference to several plant-specific roles of autophagy. Here, we review the most recent advances in the field of autophagy in plants and discuss its potential implications in designing crops with improved stress and disease-tolerance, enhanced yield potential, and improved capabilities for producing metabolites of high economic value. We also assess the current knowledge gaps and the possible strategies to develop a robust module for biotechnological application of autophagy to enhance bioeconomy and sustainability of agriculture.
Collapse
Affiliation(s)
- Isha Sharma
- AgriBiotech Foundation, PJTS Agriculture University, Rajendranagar, Hyderabad, Telangana, 500032, India.
- International Crops Research Institute for the Semi-Arid Tropics, 502324, Patancheru, Telangana, India.
| | | | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 140301, India
| |
Collapse
|
31
|
Young DY, Pang N, Shachar-Hill Y. 13C-labeling reveals how membrane lipid components contribute to triacylglycerol accumulation in Chlamydomonas. PLANT PHYSIOLOGY 2022; 189:1326-1344. [PMID: 35377446 PMCID: PMC9237737 DOI: 10.1093/plphys/kiac154] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Lipid metabolism in microalgae has attracted much interest due to potential utilization of lipids as feedstocks for biofuels, nutraceuticals, and other high-value compounds. Chlamydomonas reinhardtii is a model organism for characterizing the synthesis of the neutral lipid triacylglycerol (TAG), from which biodiesel is made. While much of TAG accumulation under N-deprivation is the result of de novo fatty acid (FA) synthesis, recent work has revealed that approximately one-third of FAs, especially polyunsaturated FAs (PUFAs), come from preexisting membrane lipids. Here, we used 13C-isotopic labeling and mass spectrometry to analyze the turnover of glycerol backbones, headgroups, FAs, whole molecules, and molecular fragments of individual lipids. About one-third of the glyceryl backbones in TAG are derived from preexisting membrane lipids, as are approximately one-third of FAs. The different moieties of the major galactolipids turn over synchronously, while the FAs of diacylglyceryltrimethylhomoserine (DGTS), the most abundant extraplastidial lipid, turn over independently of the rest of the molecule. The major plastidic lipid monogalactosyldiacylglycerol (MGDG), whose predominant species is 18:3α/16:4, was previously shown to be a major source of PUFAs for TAG synthesis. This study reveals that MGDG turns over as whole molecules, the 18:3α/16:4 species is present in both DAG and TAG, and the positional distribution of these PUFAs is identical in MGDG, DAG, and TAG. We conclude that headgroup removal with subsequent acylation is the mechanism by which the major MGDG species is converted to TAG during N-deprivation. This has noteworthy implications for engineering the composition of microalgal TAG for food, fuel, and other applications.
Collapse
Affiliation(s)
- Danielle Yvonne Young
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Na Pang
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
32
|
Lin YX, Xu HJ, Yin GK, Zhou YC, Lu XX, Xin X. Dynamic Changes in Membrane Lipid Metabolism and Antioxidant Defense During Soybean ( Glycine max L. Merr.) Seed Aging. FRONTIERS IN PLANT SCIENCE 2022; 13:908949. [PMID: 35812982 PMCID: PMC9263854 DOI: 10.3389/fpls.2022.908949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Seed viability depends upon the maintenance of functional lipids; however, how membrane lipid components dynamically change during the seed aging process remains obscure. Seed storage is accompanied by the oxidation of membrane lipids and loss of seed viability. Understanding membrane lipid changes and their effect on the cell membrane during seed aging can contribute to revealing the mechanism of seed longevity. In this study, the potential relationship between oxidative stress and membrane lipid metabolism was evaluated by using a non-targeted lipidomics approach during artificial aging of Glycine max L. Merr. Zhongdou No. 27 seeds. We determined changes in reactive oxygen species, malondialdehyde content, and membrane permeability and assessed antioxidant system activity. We found that decreased non-enzymatic antioxidant contents and catalase activity might lead to reactive oxygen species accumulation, resulting in higher electrolyte leakage and lipid peroxidation. The significantly decreased phospholipids and increased glycerolipids and lysophospholipids suggested that hydrolysis of phospholipids to form glycerolipids and lysophospholipids could be the primary pathway of membrane metabolism during seed aging. Moreover, the ratio of phosphatidylcholine to phosphatidylethanolamine, double bond index, and acyl chain length of phospholipids were found to jointly regulate membrane function. In addition, the observed changes in lipid metabolism suggest novel potential hallmarks of soybean seed aging, such as diacylglycerol 36:4; phosphatidylcholine 34:2, 36:2, and 36:4; and phosphatidylethanolamine 34:2. This knowledge can be of great significance for elucidating the molecular mechanism underlying seed aging and germplasm conservation.
Collapse
Affiliation(s)
- Yi-xin Lin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Hai-jin Xu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Guang-kun Yin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan-chang Zhou
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Xin-xiong Lu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xia Xin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Guo Q, Liu L, Rupasinghe TWT, Roessner U, Barkla BJ. Salt stress alters membrane lipid content and lipid biosynthesis pathways in the plasma membrane and tonoplast. PLANT PHYSIOLOGY 2022; 189:805-826. [PMID: 35289902 PMCID: PMC9157097 DOI: 10.1093/plphys/kiac123] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/22/2022] [Indexed: 05/25/2023]
Abstract
Plant cell membranes are the sites of sensing and initiation of rapid responses to changing environmental factors including salinity stress. Understanding the mechanisms involved in membrane remodeling is important for studying salt tolerance in plants. This task remains challenging in complex tissue due to suboptimal subcellular membrane isolation techniques. Here, we capitalized on the use of a surface charge-based separation method, free flow electrophoresis, to isolate the tonoplast (TP) and plasma membrane (PM) from leaf tissue of the halophyte ice plant (Mesembryanthemum crystallinum L.). Results demonstrated a membrane-specific lipidomic remodeling in this plant under salt conditions, including an increased proportion of bilayer forming lipid phosphatidylcholine in the TP and an increase in nonbilayer forming and negatively charged lipids (phosphatidylethanolamine and phosphatidylserine) in the PM. Quantitative proteomics showed salt-induced changes in proteins involved in fatty acid synthesis and desaturation, glycerolipid, and sterol synthesis, as well as proteins involved in lipid signaling, binding, and trafficking. These results reveal an essential plant mechanism for membrane homeostasis wherein lipidome remodeling in response to salt stress contributes to maintaining the physiological function of individual subcellular compartments.
Collapse
Affiliation(s)
- Qi Guo
- Faculty of Science and Engineering, Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Thusitha W T Rupasinghe
- School of BioSciences, The University of Melbourne, Parkville 3010, Australia
- Sciex, Mulgrave, VIC 3170, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville 3010, Australia
| | - Bronwyn J Barkla
- Faculty of Science and Engineering, Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
34
|
Xu XJ, Geng C, Jiang SY, Zhu Q, Yan ZY, Tian YP, Li XD. A maize triacylglycerol lipase inhibits sugarcane mosaic virus infection. PLANT PHYSIOLOGY 2022; 189:754-771. [PMID: 35294544 PMCID: PMC9157127 DOI: 10.1093/plphys/kiac126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 05/13/2023]
Abstract
Triacylglycerol lipase (TGL) plays critical roles in providing energy for seed germination and plant development. However, the role of TGL in regulating plant virus infection is largely unknown. In this study, we adopted affinity purification coupled with mass spectrometry and identified that a maize (Zea mays) pathogenesis-related lipase protein Z. mays TGL (ZmTGL) interacted with helper component-proteinase (HC-Pro) of sugarcane mosaic virus (SCMV). Yeast two-hybrid, luciferase complementation imaging, and bimolecular fluorescence complementation assays confirmed that ZmTGL directly interacted with SCMV HC-Pro in vitro and in vivo. The 101-460 residues of SCMV HC-Pro were important for its interaction with ZmTGL. ZmTGL and SCMV HC-Pro co-localized at the mitochondria. Silencing of ZmTGL facilitated SCMV infection, and over-expression of ZmTGL reduced the RNA silencing suppression activity, most likely through reducing HC-Pro accumulation. Our results provided evidence that the lipase hydrolase activity of ZmTGL was associated with reducing HC-Pro accumulation, activation of salicylic acid (SA)-mediated defense response, and inhibition of SCMV infection. We show that ZmTGL inhibits SCMV infection by reducing HC-Pro accumulation and activating the SA pathway.
Collapse
Affiliation(s)
- Xiao-Jie Xu
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Chao Geng
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Shao-Yan Jiang
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Qing Zhu
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Zhi-Yong Yan
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yan-Ping Tian
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
- Author for correspondence:
| | - Xiang-Dong Li
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
35
|
Krawczyk HE, Sun S, Doner NM, Yan Q, Lim MSS, Scholz P, Niemeyer PW, Schmitt K, Valerius O, Pleskot R, Hillmer S, Braus GH, Wiermer M, Mullen RT, Ischebeck T. SEED LIPID DROPLET PROTEIN1, SEED LIPID DROPLET PROTEIN2, and LIPID DROPLET PLASMA MEMBRANE ADAPTOR mediate lipid droplet-plasma membrane tethering. THE PLANT CELL 2022; 34:2424-2448. [PMID: 35348751 PMCID: PMC9134073 DOI: 10.1093/plcell/koac095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 05/27/2023]
Abstract
Membrane contact sites (MCSs) are interorganellar connections that allow for the direct exchange of molecules, such as lipids or Ca2+ between organelles, but can also serve to tether organelles at specific locations within cells. Here, we identified and characterized three proteins of Arabidopsis thaliana that form a lipid droplet (LD)-plasma membrane (PM) tethering complex in plant cells, namely LD-localized SEED LD PROTEIN (SLDP) 1 and SLDP2 and PM-localized LD-PLASMA MEMBRANE ADAPTOR (LIPA). Using proteomics and different protein-protein interaction assays, we show that both SLDPs associate with LIPA. Disruption of either SLDP1 and SLDP2 expression, or that of LIPA, leads to an aberrant clustering of LDs in Arabidopsis seedlings. Ectopic co-expression of one of the SLDPs with LIPA is sufficient to reconstitute LD-PM tethering in Nicotiana tabacum pollen tubes, a cell type characterized by dynamically moving LDs in the cytosolic streaming. Furthermore, confocal laser scanning microscopy revealed both SLDP2.1 and LIPA to be enriched at LD-PM contact sites in seedlings. These and other results suggest that SLDP and LIPA interact to form a tethering complex that anchors a subset of LDs to the PM during post-germinative seedling growth in Arabidopsis.
Collapse
Affiliation(s)
- Hannah Elisa Krawczyk
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Siqi Sun
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Nathan M Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Qiqi Yan
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Molecular Biology of Plant-Microbe Interactions Research Group, University of Göttingen, Göttingen, Germany
| | - Magdiel Sheng Satha Lim
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Patricia Scholz
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Philipp William Niemeyer
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Kerstin Schmitt
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Department for Molecular Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Oliver Valerius
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Department for Molecular Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Roman Pleskot
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stefan Hillmer
- Electron Microscopy Core Facility, Heidelberg University, Heidelberg, Germany
| | - Gerhard H Braus
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Department for Molecular Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Marcel Wiermer
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Molecular Biology of Plant-Microbe Interactions Research Group, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Till Ischebeck
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Institute of Plant Biology and Biotechnology (IBBP), Green Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
36
|
Yang J, Li W, Xing C, Xing G, Guo Y, Yuan H. Ca 2+ participates in the regulation of microalgae triacylglycerol metabolism under heat stress. ENVIRONMENTAL RESEARCH 2022; 208:112696. [PMID: 35016864 DOI: 10.1016/j.envres.2022.112696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Microalgae are the largest CO2 fixer and O2 producer on the earth and occupy an increasingly important position in human life and production. Various environmental factors have a significant impact on the growth and metabolism of microalgae. As global warming intensifies, heat stress has become a crucial factor affecting the microalgae industry. However, till now, it has not been clear how microalgae sensed the temperature stress, transmitted stress signals and adjusted in intracellular metabolic pathways. In this study, the growth of microalgae Auxenochlorella protothecoides UTEX2341 was inhibited at 32 °C, but the single cell dry weight increased. The cell component analyses showed that both the carbohydrate and total protein content decreased significantly, while the lipid content increased by 158%. Meanwhile, the intracellular Ca2+ concentration increased continuously, with a maximum increase of 1.65 times. According to the transcriptome analyses, the up-regulation of Ca2+ influx channel protein mid1-complementing activity 1 (MCA1) gene and the down-regulation of efflux channel protein cation exchanger 1(CAX) and autoinhibited Ca2+-ATPase 1 (ACA1) genes in cytoplasmic membrane jointly facilitated the increase of Ca2+ in the cytoplasm. Coexpression network analysis indicated that the fluctuation of Ca2+ in the cytoplasm could activate the expression of transcription factors MYB3 and AP2-4 through calmodulin (CAM) and calcium-dependent protein kinase (CDPK), and then regulate glycerol-3-phosphate acyltransferases (GPAT) at the beginning of TAG synthesis and diacylglycerol acyltransferase (DGAT)/phospholipid: diacylglycerol acyltransferase (PDAT) in the last step of TAG synthesis. Furthermore, the addition of Ca2+ specific chelator BAPTA-AM inhibited the expression of GPAT, which was consistent with the decrease in microalgae lipid content. The results proved that Ca2+ participated in the regulation of microalgae TAG synthesis under heat stress, which provided a new view for the understanding of the microalgae lipid accumulation mechanism.
Collapse
Affiliation(s)
- Jinshui Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Wenli Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Chao Xing
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Guanlan Xing
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yinxue Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
37
|
Xu C, Fan J. Links between autophagy and lipid droplet dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2848-2858. [PMID: 35560198 DOI: 10.1093/jxb/erac003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/06/2022] [Indexed: 06/15/2023]
Abstract
Autophagy is a catabolic process in which cytoplasmic components are delivered to vacuoles or lysosomes for degradation and nutrient recycling. Autophagy-mediated degradation of membrane lipids provides a source of fatty acids for the synthesis of energy-rich, storage lipid esters such as triacylglycerol (TAG). In eukaryotes, storage lipids are packaged into dynamic subcellular organelles, lipid droplets. In times of energy scarcity, lipid droplets can be degraded via autophagy in a process termed lipophagy to release fatty acids for energy production via fatty acid β-oxidation. On the other hand, emerging evidence suggests that lipid droplets are required for the efficient execution of autophagic processes. Here, we review recent advances in our understanding of metabolic interactions between autophagy and TAG storage, and discuss mechanisms of lipophagy. Free fatty acids are cytotoxic due to their detergent-like properties and their incorporation into lipid intermediates that are toxic at high levels. Thus, we also discuss how cells manage lipotoxic stresses during autophagy-mediated mobilization of fatty acids from lipid droplets and organellar membranes for energy generation.
Collapse
Affiliation(s)
- Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
38
|
Nam JW, Lee HG, Do H, Kim HU, Seo PJ. Transcriptional regulation of triacylglycerol accumulation in plants under environmental stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2905-2917. [PMID: 35560201 DOI: 10.1093/jxb/erab554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 06/15/2023]
Abstract
Triacylglycerol (TAG), a major energy reserve in lipid form, accumulates mainly in seeds. Although TAG concentrations are usually low in vegetative tissues because of the repression of seed maturation programs, these programs are derepressed upon the exposure of vegetative tissues to environmental stresses. Metabolic reprogramming of TAG accumulation is driven primarily by transcriptional regulation. A substantial proportion of transcription factors regulating seed TAG biosynthesis also participates in stress-induced TAG accumulation in vegetative tissues. TAG accumulation leads to the formation of lipid droplets and plastoglobules, which play important roles in plant tolerance to environmental stresses. Toxic lipid intermediates generated from environmental-stress-induced lipid membrane degradation are captured by TAG-containing lipid droplets and plastoglobules. This review summarizes recent advances in the transcriptional control of metabolic reprogramming underlying stress-induced TAG accumulation, and provides biological insight into the plant adaptive strategy, linking TAG biosynthesis with plant survival.
Collapse
Affiliation(s)
- Jeong-Won Nam
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Hyungju Do
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
39
|
Song JB, Huang RK, Guo MJ, Zhou Q, Guo R, Zhang SY, Yao JW, Bai YN, Huang X. Lipids associated with plant-bacteria interaction identified using a metabolomics approach in an Arabidopsis thaliana model. PeerJ 2022; 10:e13293. [PMID: 35502205 PMCID: PMC9055996 DOI: 10.7717/peerj.13293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
Background Systemic acquired resistance (SAR) protects plants against a wide variety of pathogens. In recent decades, numerous studies have focused on the induction of SAR, but its molecular mechanisms remain largely unknown. Methods We used a metabolomics approach based on ultra-high-performance liquid chromatographic (UPLC) and mass spectrometric (MS) techniques to identify SAR-related lipid metabolites in an Arabidopsis thaliana model. Multiple statistical analyses were used to identify the differentially regulated metabolites. Results Numerous lipids were implicated as potential factors in both plant basal resistance and SAR; these include species of phosphatidic acid (PA), monogalactosyldiacylglycerol (MGDG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), and triacylglycerol (TG). Conclusions Our findings indicate that lipids accumulated in both local and systemic leaves, while other lipids only accumulated in local leaves or in systemic leaves. PA (16:0_18:2), PE (34:5) and PE (16:0_18:2) had higher levels in both local leaves inoculated with Psm ES4326 or Psm avrRpm1 and systemic leaves of the plants locally infected with Psm avrRpm1 or Psm ES4326. PC (32:5) had high levels in leaves inoculated with Psm ES4326. Other differentially regulated metabolites, including PA (18:2_18:2), PA (16:0_18:3), PA (18:3_18:2), PE (16:0_18:3), PE (16:1_16:1), PE (34:4) and TGs showed higher levels in systemic leaves of the plants locally infected with Psm avrRpm1 or Psm ES4326. These findings will help direct future studies on the molecular mechanisms of SAR.
Collapse
Affiliation(s)
- Jian-Bo Song
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Rui-Ke Huang
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Miao-Jie Guo
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Qian Zhou
- Shanghai Omicsspace Biotechnology Co.Ltd., Shanghai, Shanghai, China
| | - Rui Guo
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Shu-Yuan Zhang
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Jing-Wen Yao
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Ya-Ni Bai
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Xuan Huang
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| |
Collapse
|
40
|
Yin X, Guo X, Hu L, Li S, Chen Y, Wang J, Wang RRC, Fan C, Hu Z. Genome-Wide Characterization of DGATs and Their Expression Diversity Analysis in Response to Abiotic Stresses in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2022; 11:1156. [PMID: 35567157 PMCID: PMC9104862 DOI: 10.3390/plants11091156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Triacylglycerol (TAG) is the most important storage lipid for oil plant seeds. Diacylglycerol acyltransferases (DGATs) are a key group of rate-limiting enzymes in the pathway of TAG biosynthesis. In plants, there are three types of DGATs, namely, DGAT1, DGAT2 and DGAT3. Brassica napus, an allotetraploid plant, is one of the most important oil plants in the world. Previous studies of Brassica napus DGATs (BnaDGATs) have mainly focused on BnaDGAT1s. In this study, four DGAT1s, four DGAT2s and two DGAT3s were identified and cloned from B. napus ZS11. The analyses of sequence identity, chromosomal location and collinearity, phylogenetic tree, exon/intron gene structures, conserved domains and motifs, and transmembrane domain (TMD) revealed that BnaDGAT1, BnaDGAT2 and BnaDGAT3 were derived from three different ancestors and shared little similarity in gene and protein structures. Overexpressing BnaDGATs showed that only four BnaDGAT1s can restore TAG synthesis in yeast H1246 and promote the accumulation of fatty acids in yeast H1246 and INVSc1, suggesting that the three BnaDGAT subfamilies had greater differentiation in function. Transcriptional analysis showed that the expression levels of BnaDGAT1s, BnaDGAT2s and BnaDGAT3s were different during plant development and under different stresses. In addition, analysis of fatty acid contents in roots, stems and leaves under abiotic stresses revealed that P starvation can promote the accumulation of fatty acids, but no obvious relationship was shown between the accumulation of fatty acids with the expression of BnaDGATs under P starvation. This study provides an extensive evaluation of BnaDGATs and a useful foundation for dissecting the functions of BnaDGATs in biochemical and physiological processes.
Collapse
Affiliation(s)
- Xiangzhen Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Y.); (X.G.); (L.H.); (S.L.); (Y.C.)
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xupeng Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Y.); (X.G.); (L.H.); (S.L.); (Y.C.)
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizong Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Y.); (X.G.); (L.H.); (S.L.); (Y.C.)
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Biology and Agriculture, Zhoukou Normal University, Zhoukou 466001, China
| | - Shuangshuang Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Y.); (X.G.); (L.H.); (S.L.); (Y.C.)
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhong Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Y.); (X.G.); (L.H.); (S.L.); (Y.C.)
| | - Jingqiao Wang
- Institute of Economical Crops, Yunnan Agricultural Academy, Kunming 650205, China;
| | - Richard R.-C. Wang
- United States Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300, USA;
| | - Chengming Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Y.); (X.G.); (L.H.); (S.L.); (Y.C.)
| | - Zanmin Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Y.); (X.G.); (L.H.); (S.L.); (Y.C.)
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Chen H, Yang Q, Fu H, Chen K, Zhao S, Zhang C, Cai T, Wang L, Lu W, Dang H, Gao M, Li H, Yuan X, Varshney RK, Zhuang W. Identification of Key Gene Networks and Deciphering Transcriptional Regulators Associated With Peanut Embryo Abortion Mediated by Calcium Deficiency. FRONTIERS IN PLANT SCIENCE 2022; 13:814015. [PMID: 35386666 PMCID: PMC8978587 DOI: 10.3389/fpls.2022.814015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Peanut embryo development is easily affected by a variety of nutrient elements in the soil, especially the calcium level. Peanut produces abortive embryos in calcium-deficient soil, but underlying mechanism remains unclear. Thus, identifying key transcriptional regulators and their associated regulatory networks promises to contribute to a better understanding of this process. In this study, cellular biology and gene expression analyses were performed to investigate peanut embryo development with the aim to discern the global architecture of gene regulatory networks underlying peanut embryo abortion under calcium deficiency conditions. The endomembrane systems tended to disintegrate, impairing cell growth and starch, protein and lipid body accumulation, resulting in aborted seeds. RNA-seq analysis showed that the gene expression profile in peanut embryos was significantly changed under calcium deficiency. Further analysis indicated that multiple signal pathways were involved in the peanut embryo abortion. Differential expressed genes (DEGs) related to cytoplasmic free Ca2+ were significantly altered. DEGs in plant hormone signaling pathways tended to be associated with increased IAA and ethylene but with decreased ABA, gibberellin, cytokinin, and brassinosteroid levels. Certain vital genes, including apoptosis-inducing factor, WRKYs and ethylene-responsive transcription factors, were up-regulated, while key regulators of embryo development, such as TCP4, WRI1, FUS3, ABI3, and GLK1 were down-regulated. Weighted gene co-expression network analysis (WGCNA) identified 16 significant modules associated with the plant hormone signaling, MAPK signaling, ubiquitin mediated proteolysis, reserve substance biosynthesis and metabolism pathways to decipher regulatory network. The most significant module was darkolivegreen2 and FUS3 (AH06G23930) had the highest connectivity among this module. Importantly, key transcription factors involved in embryogenesis or ovule development including TCP4, GLK1, ABI3, bHLH115, MYC2, etc., were also present in this module and down regulated under calcium deficiency. This study presents the first global view of the gene regulatory network involved in peanut embryo abortion under calcium deficiency conditions and lays foundation for improving peanut tolerances to calcium deficiency by a targeted manipulation of molecular breeding.
Collapse
Affiliation(s)
- Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiang Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiwen Fu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kun Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shanshan Zhao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tiecheng Cai
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lihui Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenzhi Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hao Dang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meijia Gao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Agricultural Biotechnology Center, Center for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Huaqi Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Agricultural Biotechnology Center, Center for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Xinyi Yuan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Agricultural Biotechnology Center, Center for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
42
|
Wang L, Qian B, Zhao L, Liang MH, Zhan X, Zhu J. Two Triacylglycerol Lipases Are Negative Regulators of Chilling Stress Tolerance in Arabidopsis. Int J Mol Sci 2022; 23:ijms23063380. [PMID: 35328798 PMCID: PMC8950723 DOI: 10.3390/ijms23063380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 12/18/2022] Open
Abstract
Cold stress is one of the abiotic stress conditions that severely limit plant growth and development and productivity. Triacylglycerol lipases are important metabolic enzymes for the catabolism of triacylglycerols and, therefore, play important roles in cellular activities including seed germination and early seedling establishment. However, whether they play a role in cold stress responses remains unknown. In this study, we characterized two Arabidopsis triacylglycerol lipases, MPL1 and LIP1 and defined their role in cold stress. The expression of MPL1 and LIP1 is reduced by cold stress, suggesting that they may be negative factors related to cold stress. Indeed, we found that loss-of-function of MPL1 and LIP1 resulted in increased cold tolerance and that the mpl1lip1 double mutant displayed an additive effect on cold tolerance. We performed RNA-seq analysis to reveal the global effect of the mpl1 and lip1 mutations on gene expression under cold stress. The mpl1 mutation had a small effect on gene expression under both under control and cold stress conditions whereas the lip1 mutation caused a much stronger effect on gene expression under control and cold stress conditions. The mpl1lip1 double mutant had a moderate effect on gene expression under control and cold stress conditions. Together, our results indicate that MPL1 and LIP1 triacylglycerol lipases are negative regulators of cold tolerance without any side effects on growth in Arabidopsis and that they might be ideal candidates for breeding cold-tolerant crops through genome editing technology.
Collapse
Affiliation(s)
- Ling Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China;
| | - Bilian Qian
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; (B.Q.); (L.Z.); (M.-H.L.)
| | - Lei Zhao
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; (B.Q.); (L.Z.); (M.-H.L.)
| | - Ming-Hua Liang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; (B.Q.); (L.Z.); (M.-H.L.)
| | - Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Jianhua Zhu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; (B.Q.); (L.Z.); (M.-H.L.)
- Correspondence:
| |
Collapse
|
43
|
Perlikowski D, Lechowicz K, Skirycz A, Michaelis Ä, Pawłowicz I, Kosmala A. The Role of Triacylglycerol in the Protection of Cells against Lipotoxicity under Drought in Lolium multiflorum/Festucaarundinacea Introgression Forms. PLANT & CELL PHYSIOLOGY 2022; 63:353-368. [PMID: 34994787 DOI: 10.1093/pcp/pcac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Triacylglycerol is a key lipid compound involved in maintaining homeostasis of both membrane lipids and free fatty acids (FFA) in plant cells under adverse environmental conditions. However, its role in the process of lipid remodeling has not been fully recognized, especially in monocots, including grass species. For our study, two closely related introgression forms of Lolium multiflorum (Italian ryegrass) and Festuca arundinacea (tall fescue), distinct in their level of drought tolerance, were selected as plant models to study rearrangements in plant lipidome under water deficit and further re-watering. The low drought tolerant (LDT) form revealed an elevated level of cellular membrane damage accompanied by an increased content of polyunsaturated FFA and triacylglycerol under water deficit, compared with the high drought tolerant (HDT) form. However, the LDT introgression form demonstrated also the ability to regenerate its membranes after stress cessation. The obtained results clearly indicated that accumulation of triacylglycerol under advanced drought in the LDT form could serve as a cellular protective mechanism against overaccumulation of toxic polyunsaturated FFA and other lipid intermediates. Furthermore, accumulation of triacylglycerol under drought conditions could serve also as storage of substrates required for further regeneration of membranes after stress cessation. The rearrangements in triacylglycerol metabolism were supported by the upregulation of several genes, involved in a biosynthesis of triacylglycerol. With respect to this process, diacylglycerol O-acyltransferase DGAT2 seems to play the most important role in the analyzed grasses.
Collapse
Affiliation(s)
- Dawid Perlikowski
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Katarzyna Lechowicz
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Aleksandra Skirycz
- Department of Molecular Physiology, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA
| | - Änna Michaelis
- Department of Molecular Physiology, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Izabela Pawłowicz
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Arkadiusz Kosmala
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| |
Collapse
|
44
|
Zhu F, Alseekh S, Koper K, Tong H, Nikoloski Z, Naake T, Liu H, Yan J, Brotman Y, Wen W, Maeda H, Cheng Y, Fernie AR. Genome-wide association of the metabolic shifts underpinning dark-induced senescence in Arabidopsis. THE PLANT CELL 2022; 34:557-578. [PMID: 34623442 PMCID: PMC8774053 DOI: 10.1093/plcell/koab251] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/05/2021] [Indexed: 05/31/2023]
Abstract
Dark-induced senescence provokes profound metabolic shifts to recycle nutrients and to guarantee plant survival. To date, research on these processes has largely focused on characterizing mutants deficient in individual pathways. Here, we adopted a time-resolved genome-wide association-based approach to characterize dark-induced senescence by evaluating the photochemical efficiency and content of primary and lipid metabolites at the beginning, or after 3 or 6 days in darkness. We discovered six patterns of metabolic shifts and identified 215 associations with 81 candidate genes being involved in this process. Among these associations, we validated the roles of four genes associated with glycine, galactinol, threonine, and ornithine levels. We also demonstrated the function of threonine and galactinol catabolism during dark-induced senescence. Intriguingly, we determined that the association between tyrosine contents and TYROSINE AMINOTRANSFERASE 1 influences enzyme activity of the encoded protein and transcriptional activity of the gene under normal and dark conditions, respectively. Moreover, the single-nucleotide polymorphisms affecting the expression of THREONINE ALDOLASE 1 and the amino acid transporter gene AVT1B, respectively, only underlie the variation in threonine and glycine levels in the dark. Taken together, these results allow us to present a very detailed model of the metabolic aspects of dark-induced senescence, as well as the process itself.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Kaan Koper
- Department of Botany, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Hao Tong
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Zoran Nikoloski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Thomas Naake
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna 1030, Austria
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yariv Brotman
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hiroshi Maeda
- Department of Botany, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
45
|
Chu KL, Koley S, Jenkins LM, Bailey SR, Kambhampati S, Foley K, Arp JJ, Morley SA, Czymmek KJ, Bates PD, Allen DK. Metabolic flux analysis of the non-transitory starch tradeoff for lipid production in mature tobacco leaves. Metab Eng 2022; 69:231-248. [PMID: 34920088 PMCID: PMC8761171 DOI: 10.1016/j.ymben.2021.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/12/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022]
Abstract
The metabolic plasticity of tobacco leaves has been demonstrated via the generation of transgenic plants that can accumulate over 30% dry weight as triacylglycerols. In investigating the changes in carbon partitioning in these high lipid-producing (HLP) leaves, foliar lipids accumulated stepwise over development. Interestingly, non-transient starch was observed to accumulate with plant age in WT but not HLP leaves, with a drop in foliar starch concurrent with an increase in lipid content. The metabolic carbon tradeoff between starch and lipid was studied using 13CO2-labeling experiments and isotopically nonstationary metabolic flux analysis, not previously applied to the mature leaves of a crop. Fatty acid synthesis was investigated through assessment of acyl-acyl carrier proteins using a recently derived quantification method that was extended to accommodate isotopic labeling. Analysis of labeling patterns and flux modeling indicated the continued production of unlabeled starch, sucrose cycling, and a significant contribution of NADP-malic enzyme to plastidic pyruvate production for the production of lipids in HLP leaves, with the latter verified by enzyme activity assays. The results suggest an inherent capacity for a developmentally regulated carbon sink in tobacco leaves and may in part explain the uniquely successful leaf lipid engineering efforts in this crop.
Collapse
Affiliation(s)
- Kevin L Chu
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Lauren M Jenkins
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Sally R Bailey
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | | | - Kevin Foley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Jennifer J Arp
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Stewart A Morley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.
| |
Collapse
|
46
|
Lee CP, Elsässer M, Fuchs P, Fenske R, Schwarzländer M, Millar AH. The versatility of plant organic acid metabolism in leaves is underpinned by mitochondrial malate-citrate exchange. THE PLANT CELL 2021; 33:3700-3720. [PMID: 34498076 PMCID: PMC8643697 DOI: 10.1093/plcell/koab223] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/31/2021] [Indexed: 05/07/2023]
Abstract
Malate and citrate underpin the characteristic flexibility of central plant metabolism by linking mitochondrial respiratory metabolism with cytosolic biosynthetic pathways. However, the identity of mitochondrial carrier proteins that influence both processes has remained elusive. Here we show by a systems approach that DICARBOXYLATE CARRIER 2 (DIC2) facilitates mitochondrial malate-citrate exchange in vivo in Arabidopsis thaliana. DIC2 knockout (dic2-1) retards growth of vegetative tissues. In vitro and in organello analyses demonstrate that DIC2 preferentially imports malate against citrate export, which is consistent with altered malate and citrate utilization in response to prolonged darkness of dic2-1 plants or a sudden shift to darkness of dic2-1 leaves. Furthermore, isotopic glucose tracing reveals a reduced flux towards citrate in dic2-1, which results in a metabolic diversion towards amino acid synthesis. These observations reveal the physiological function of DIC2 in mediating the flow of malate and citrate between the mitochondrial matrix and other cell compartments.
Collapse
Affiliation(s)
- Chun Pong Lee
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Marlene Elsässer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Philippe Fuchs
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| |
Collapse
|
47
|
Otterbach SL, Khoury H, Rupasinghe T, Mendis H, Kwan KH, Lui V, Natera SHA, Klaiber I, Allen NM, Jarvis DE, Tester M, Roessner U, Schmöckel SM. Characterization of epidermal bladder cells in Chenopodium quinoa. PLANT, CELL & ENVIRONMENT 2021; 44:3606-3622. [PMID: 34510479 DOI: 10.1111/pce.14181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/01/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Chenopodium quinoa (quinoa) is considered a superfood with its favourable nutrient composition and being gluten free. Quinoa has high tolerance to abiotic stresses, such as salinity, water deficit (drought) and cold. The tolerance mechanisms are yet to be elucidated. Quinoa has epidermal bladder cells (EBCs) that densely cover the shoot surface, particularly the younger parts of the plant. Here, we report on the EBC's primary and secondary metabolomes, as well as the lipidome in control conditions and in response to abiotic stresses. EBCs were isolated from plants after cold, heat, high-light, water deficit and salt treatments. We used untargeted gas chromatography-mass spectrometry (GC-MS) to analyse metabolites and untargeted and targeted liquid chromatography-MS (LC-MS) for lipids and secondary metabolite analyses. We identified 64 primary metabolites, including sugars, organic acids and amino acids, 19 secondary metabolites, including phenolic compounds, betanin and saponins and 240 lipids categorized in five groups including glycerolipids and phospholipids. We found only few changes in the metabolic composition of EBCs in response to abiotic stresses; these were metabolites related with heat, cold and high-light treatments but not salt stress. Na+ concentrations were low in EBCs with all treatments and approximately two orders of magnitude lower than K+ concentrations.
Collapse
Affiliation(s)
- Sophie L Otterbach
- Department Physiology of Yield Stability, Institute Crop Science, Faculty of Agriculture, University of Hohenheim, Stuttgart, Germany
| | - Holly Khoury
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Thusitha Rupasinghe
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Himasha Mendis
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Kim H Kwan
- Metabolomics Australia, The University of Melbourne, Parkville, Victoria, Australia
| | - Veronica Lui
- Metabolomics Australia, The University of Melbourne, Parkville, Victoria, Australia
| | - Siria H A Natera
- Metabolomics Australia, The University of Melbourne, Parkville, Victoria, Australia
| | - Iris Klaiber
- Core Facility Hohenheim (640). Mass Spectrometry Unit, University of Hohenheim, Stuttgart, Germany
| | - Nathaniel M Allen
- Department Physiology of Yield Stability, Institute Crop Science, Faculty of Agriculture, University of Hohenheim, Stuttgart, Germany
| | - David E Jarvis
- Department of Plant and Wildlife Sciences, College of Life Sciences, Brigham Young University, Provo, Utah, USA
| | - Mark Tester
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sandra M Schmöckel
- Department Physiology of Yield Stability, Institute Crop Science, Faculty of Agriculture, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
48
|
Sun Y, Wang X, Chen Z, Qin L, Li B, Ouyang L, Peng X, He H. Quantitative Proteomics and Transcriptomics Reveals Differences in Proteins During Anthers Development in Oryza longistaminata. FRONTIERS IN PLANT SCIENCE 2021; 12:744792. [PMID: 34868129 PMCID: PMC8640343 DOI: 10.3389/fpls.2021.744792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/22/2021] [Indexed: 06/07/2023]
Abstract
Oryza longistaminata is an African wild rice species that possesses special traits for breeding applications. Self-incompatibility is the main cause of sterility in O. longistaminata, but here we demonstrated that its pollen vitality are normal. Lipid and carbohydrate metabolism were active throughout pollen development. In this study, we used I2-KI staining and TTC staining to investigate pollen viability. Aniline-blue-stained semithin sections were used to investigate important stages of pollen development. Tandem mass tags (TMT)-based quantitative analysis was used to investigate the profiles of proteins related to lipid and carbohydrate metabolism in 4-, 6-, and 8.5-mm O. longistaminata spikelets before flowering. Pollen was found to germinate normally in vitro and in vivo. We documented cytological changes throughout important stages of anther development, including changes in reproductive cells as they formed mature pollen grains through meiosis and mitosis. A total of 31,987 RNA transcripts and 8,753 proteins were identified, and 6,842 of the proteins could be quantified. RNA-seq and proteome association analysis indicated that fatty acids were converted to sucrose after the 6-mm spikelet stage, based on the abundance of most key enzymes of the glyoxylate cycle and gluconeogenesis. The abundance of proteins involved in pollen energy metabolism was further confirmed by combining quantitative real-time PCR with parallel reaction monitoring (PRM) analyses. In conclusion, our study provides novel insights into the pollen viability of O. longistaminata at the proteome level, which can be used to improve the efficiency of male parent pollination in hybrid rice breeding applications.
Collapse
|
49
|
Rehman NU, Zeng P, Mo Z, Guo S, Liu Y, Huang Y, Xie Q. Conserved and Diversified Mechanism of Autophagy between Plants and Animals upon Various Stresses. Antioxidants (Basel) 2021; 10:1736. [PMID: 34829607 PMCID: PMC8615172 DOI: 10.3390/antiox10111736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a highly conserved degradation mechanism in eukaryotes, executing the breakdown of unwanted cell components and subsequent recycling of cellular material for stress relief through vacuole-dependence in plants and yeast while it is lysosome-dependent in animal manner. Upon stress, different types of autophagy are stimulated to operate certain biological processes by employing specific selective autophagy receptors (SARs), which hijack the cargo proteins or organelles to the autophagy machinery for subsequent destruction in the vacuole/lysosome. Despite recent advances in autophagy, the conserved and diversified mechanism of autophagy in response to various stresses between plants and animals still remain a mystery. In this review, we intend to summarize and discuss the characterization of the SARs and their corresponding processes, expectantly advancing the scope and perspective of the evolutionary fate of autophagy between plants and animals.
Collapse
Affiliation(s)
- Naveed Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Peichun Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Zulong Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Shaoying Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences and Technology, Guangxi University, Nanning 530004, China;
| | - Yifeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310001, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| |
Collapse
|
50
|
Lipidomic response of the entomopathogenic fungus Beauveria bassiana to pyrethroids. Sci Rep 2021; 11:21319. [PMID: 34716379 PMCID: PMC8556296 DOI: 10.1038/s41598-021-00702-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/15/2021] [Indexed: 12/26/2022] Open
Abstract
Pyrethroids are chemical insecticides that are widely used to control pests. Entomopathogenic fungi are considered environmentally safe alternatives to these compounds. Pyrethroids and entomopathogenic fungi not only co-exist in the environment but can also be applied together in pest control. They are often found in contact with each other, and thus, it seems important to understand their interactions at the cellular level. In this study, we analyzed whether pyrethroids could influence the phospholipid profile of Beauveria bassiana and whether membrane changes are one of the mechanisms by which these fungi adapt to unfavorable environmental conditions. The results of our study revealed that pyrethroids changed the phospholipid profile and increased the cell membrane permeability of B. bassiana, which enabled them to enter and accumulate within the fungal cells, resulting in oxidative stress. Pyrethroids influenced the amount of neutral lipids, caused a decrease in sodium content, and also temporarily lowered the level of the secondary metabolite oosporein in the studied fungi. These findings indicate that the effect of pyrethroids on entomopathogenic fungi may be more complex than originally thought and that lipidomic studies can aid in fully understanding the influence of these chemicals on the mentioned group of fungi.
Collapse
|