1
|
Pivato M, Costa A, Wheeler G, Ballottari M. Abiotic Stress-Induced Chloroplast and Cytosolic Ca 2+ Dynamics in the Green Alga Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2025; 48:3939-3954. [PMID: 39853747 PMCID: PMC12050392 DOI: 10.1111/pce.15401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/15/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Calcium (Ca2+)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca2+ signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised. Here, compartment-specific Ca2+ dynamics were monitored in Chlamydomonas reinhardtii cells in response to environmental stressors, such as nutrient availability, osmotic stress, temperature fluctuations and carbon sensing. An in vivo single-cell imaging approach was adopted to directly visualise changes of Ca2+ concentrations at the level of specific subcellular compartments, using C. reinhardtii lines expressing a genetically encoded ratiometric Ca2+ indicator. Hyper-osmotic shock caused cytosolic and chloroplast Ca2+ elevations, whereas high temperature and inorganic carbon availability primarily induced Ca2+ transients in the chloroplast. In contrast, hypo-osmotic stress only induced Ca2+ elevations in the cytosol. The results herein reported show that in Chlamydomonas cells compartment-specific Ca2+ transients are closely related to specific external environmental stimuli, providing useful guidance for studying signal transduction mechanisms exploited by microalgae to respond to specific natural conditions.
Collapse
Affiliation(s)
- Matteo Pivato
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Alex Costa
- Department of BiosciencesUniversity of MilanMilanItaly
- Institute of BiophysicsNational Research Council of Italy (CNR)MilanoItaly
| | - Glen Wheeler
- Marine Biological AssociationThe LaboratoryPlymouthUK
| | | |
Collapse
|
2
|
Wu D, Zhang S, Bai C, Liu Y, Sun Z, Ma M, Liu H, Yong JWH, Lambers H. Supplementary Calcium Overcomes Nocturnal Chilling-Induced Carbon Source-Sink Limitations of Cyclic Electron Transport in Peanuts. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40159655 DOI: 10.1111/pce.15467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025]
Abstract
'Calcium (Ca2+) priming' is an effective strategy to restore efficient carbon assimilation with undergoing unfavourable cold stress (day/night: 25°C/8°C). However, it is unclear how exogenous calcium strengthens the cyclic electron transfer (CET) to attain optimal carbon flux. To assess the nutrient fortification role of Ca2+ (15 mM) in facilitating this process for peanuts, we added antimycin (AA, 100 μM) and rotenone (R, 100 μM) as specific inhibitors. Our results revealed that inhibiting CET caused a negative effect on photosynthesis. The Ca2+ treatment accelerated the turnover of non-structural carbohydrates, and linear electron carriers while balancing the photosystem I (PSI) bilateral redox potential. The treatment also strengthened the PROTON GRADIENT REGULATION5 (PGR5)/PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) and the NADH dehydrogenase-like (NDH)-mediated CET, with plausible crosstalk between thioredoxin (Trx) system and Ca2+ signalling, to regulate chloroplast redox homoeostasis. Specifically, exogenous Ca2+ strengthened the PGR5/PGRL1-mediated CET by providing sufficient ATP and adequate photoprotection during the long-term exposure; the NDH-mediated CET served to alleviate limitations on the PSI acceptor side by translocating protons. This study demonstrated the effectiveness of harnessing optimal nutrient supply, in the form of foliar Ca2+-based sprays to strengthen the eco-physiological resilience of peanuts against cold stress.
Collapse
Affiliation(s)
- Di Wu
- College of Land and Environment, National Engineering Research Centre for Efficient Utilisation of Soil and Fertiliser Resources, Northeast China Plant Nutrition and Fertilisation Scientific Observation and Research Centre for Ministry of Agriculture and Rural Affairs, Shenyang, China
- Pratacultural College, Inner Mongolia University for Nationalities, Tongliao, China
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Engineering Research Centre for Efficient Utilisation of Soil and Fertiliser Resources, Northeast China Plant Nutrition and Fertilisation Scientific Observation and Research Centre for Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Chunming Bai
- Liaoning Academy of Agricultural Sciences, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Centre for Efficient Utilisation of Soil and Fertiliser Resources, Northeast China Plant Nutrition and Fertilisation Scientific Observation and Research Centre for Ministry of Agriculture and Rural Affairs, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Zhiyu Sun
- College of Land and Environment, National Engineering Research Centre for Efficient Utilisation of Soil and Fertiliser Resources, Northeast China Plant Nutrition and Fertilisation Scientific Observation and Research Centre for Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Mingzhu Ma
- College of Land and Environment, National Engineering Research Centre for Efficient Utilisation of Soil and Fertiliser Resources, Northeast China Plant Nutrition and Fertilisation Scientific Observation and Research Centre for Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Huan Liu
- College of Land and Environment, National Engineering Research Centre for Efficient Utilisation of Soil and Fertiliser Resources, Northeast China Plant Nutrition and Fertilisation Scientific Observation and Research Centre for Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Hans Lambers
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Flori S, Dickenson J, Gaikwad T, Cole I, Smirnoff N, Helliwell KE, Brownlee C, Wheeler GL. Diatoms exhibit dynamic chloroplast calcium signals in response to high light and oxidative stress. PLANT PHYSIOLOGY 2024; 197:kiae591. [PMID: 39515781 DOI: 10.1093/plphys/kiae591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/09/2024] [Accepted: 09/21/2024] [Indexed: 11/16/2024]
Abstract
Diatoms are a group of silicified algae that play a major role in marine and freshwater ecosystems. Diatom chloroplasts were acquired by secondary endosymbiosis and exhibit important structural and functional differences from the primary plastids of land plants and green algae. Many functions of primary plastids, including photoacclimation and inorganic carbon acquisition, are regulated by calcium-dependent signaling processes. Calcium signaling has also been implicated in the photoprotective responses of diatoms; however, the nature of calcium elevations in diatom chloroplasts and their wider role in cell signaling remains unknown. Using genetically encoded calcium indicators, we find that the diatom Phaeodactylum tricornutum exhibits dynamic calcium elevations within the chloroplast stroma. Stromal calcium ([Ca2+]str) acts independently from the cytosol and is not elevated by stimuli that induce large cytosolic calcium ([Ca2+]cyt) elevations. In contrast, high light and exogenous hydrogen peroxide (H2O2) induce large, sustained [Ca2+]str elevations that are not replicated in the cytosol. Measurements using the fluorescent H2O2 sensor roGFP2-Oxidant Receptor Peroxidase 1 (Orp1) indicate that [Ca2+]str elevations induced by these stimuli correspond to the accumulation of H2O2 in the chloroplast. [Ca2+]str elevations were also induced by adding methyl viologen, which generates superoxide within the chloroplast, and by treatments that disrupt nonphotochemical quenching (NPQ). The findings indicate that diatoms generate specific [Ca2+]str elevations in response to high light and oxidative stress that likely modulate the activity of calcium-sensitive components in photoprotection and other regulatory pathways.
Collapse
Affiliation(s)
- Serena Flori
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| | - Jack Dickenson
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| | - Trupti Gaikwad
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| | - Isobel Cole
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Katherine E Helliwell
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Colin Brownlee
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| | - Glen L Wheeler
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| |
Collapse
|
4
|
Zhang Y, Wang X, Sun Y. A newly identified algicidal bacterium of Pseudomonas fragi YB2: Algicidal compounds and effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135490. [PMID: 39141946 DOI: 10.1016/j.jhazmat.2024.135490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Harmful algal bloom (HAB) is an unresolved existing problem worldwide. Here, we reported a novel algicidal bacterium, Pseudomonas fragi YB2, capable of lysing multiple algal species. To Chlorella vulgaris, YB2 exhibited a maximum algicidal rate of 95.02 % at 120 h. The uniqueness of YB2 lies in its ability to self-produce three algicidal compounds: 2-methyl-1, 3-cyclohexanedione (2-MECHD), N-phenyl-2-naphthylamine, and cyclo (Pro-Leu). The algicidal properties of 2-MECHD have not been previously reported. YB2 significantly affected the chloroplast and mitochondrion, thus decreasing in chlorophyll a by 4.74 times for 120 h and succinate dehydrogenase activity by 103 times for 36 h. These physiological damages disrupted reactive oxygen species and Ca2+ homeostasis at the cellular level, increasing cytosolic superoxide dismutase (23 %), catalase (35 %), and Ca2+ influx. Additionally, the disruption of Ca2+ homeostasis rarely reported in algicidal bacteria-algae interaction was observed using the non-invasive micro-test technology. We proposed a putative algicidal mechanism based on the algicidal outcomes and physiological algicidal effects and explored the potential of YB2 through an algicidal simulation test. Overall, this study is the first to report the algicidal bacterium P. fragi and identify a novel algicidal compound, 2-MECHD, providing new insights and a potent microbial resource for the biocontrol of HAB.
Collapse
Affiliation(s)
- Yini Zhang
- School of Environment, Northeast Normal University, Changchun 130117, Jilin, PR China.
| | - Xiaoyu Wang
- School of Environment, Northeast Normal University, Changchun 130117, Jilin, PR China.
| | - Yu Sun
- School of Environment, Northeast Normal University, Changchun 130117, Jilin, PR China.
| |
Collapse
|
5
|
Kunz HH, Armbruster U, Mühlbauer S, de Vries J, Davis GA. Chloroplast ion homeostasis - what do we know and where should we go? THE NEW PHYTOLOGIST 2024; 243:543-559. [PMID: 38515227 DOI: 10.1111/nph.19661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024]
Abstract
Plant yields heavily depend on proper macro- and micronutrient supply from the soil. In the leaf cells, nutrient ions fulfill specific roles in biochemical reactions, especially photosynthesis housed in the chloroplast. Here, a well-balanced ion homeostasis is maintained by a number of ion transport proteins embedded in the envelope and thylakoid membranes. Ten years ago, the first alkali metal transporters from the K+ EFFLUX ANTIPORTER family were discovered in the model plant Arabidopsis. Since then, our knowledge about the physiological importance of these carriers and their substrates has greatly expanded. New insights into the role of alkali ions in plastid gene expression and photoprotective mechanisms, both prerequisites for plant productivity in natural environments, were gained. The discovery of a Cl- channel in the thylakoid and several additional plastid alkali and alkali metal transport proteins have advanced the field further. Nevertheless, scientists still have long ways to go before a complete systemic understanding of the chloroplast's ion transportome will emerge. In this Tansley review, we highlight and discuss the achievements of the last decade. More importantly, we make recommendations on what areas to prioritize, so the field can reach the next milestones. One area, laid bare by our similarity-based comparisons among phototrophs is our lack of knowledge what ion transporters are used by cyanobacteria to buffer photosynthesis fluctuations.
Collapse
Affiliation(s)
- Hans-Henning Kunz
- Plant Biochemistry, Biology, LMU Munich, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Ute Armbruster
- Institute of Molecular Photosynthesis, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Susanne Mühlbauer
- Plant Biochemistry, Biology, LMU Munich, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, Goettingen Center for Molecular Biosciences (GZMB), Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidtstr. 1, D-37077, Göttingen, Germany
| | - Geoffry A Davis
- Plant Biochemistry, Biology, LMU Munich, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
6
|
Wang Q, Cang X, Yan H, Zhang Z, Li W, He J, Zhang M, Lou L, Wang R, Chang M. Activating plant immunity: the hidden dance of intracellular Ca 2+ stores. THE NEW PHYTOLOGIST 2024; 242:2430-2439. [PMID: 38586981 DOI: 10.1111/nph.19717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
Calcium ion (Ca2+) serves as a versatile and conserved second messenger in orchestrating immune responses. In plants, plasma membrane-localized Ca2+-permeable channels can be activated to induce Ca2+ influx from extracellular space to cytosol upon pathogen infection. Notably, different immune elicitors can induce dynamic Ca2+ signatures in the cytosol. During pattern-triggered immunity, there is a rapid and transient increase in cytosolic Ca2+, whereas in effector-triggered immunity, the elevation of cytosolic Ca2+ is strong and sustained. Numerous Ca2+ sensors are localized in the cytosol or different intracellular organelles, which are responsible for detecting and converting Ca2+ signals. In fact, Ca2+ signaling coordinated by cytosol and subcellular compartments plays a crucial role in activating plant immune responses. However, the complete Ca2+ signaling network in plant cells is still largely ambiguous. This review offers a comprehensive insight into the collaborative role of intracellular Ca2+ stores in shaping the Ca2+ signaling network during plant immunity, and several intriguing questions for future research are highlighted.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyan Cang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haiqiao Yan
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zilu Zhang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Li
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyu He
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Laiqing Lou
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ming Chang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
7
|
Gutiérrez-Mireles ER, Páez-Franco JC, Rodríguez-Ruíz R, Germán-Acacio JM, López-Aquino MC, Gutiérrez-Aguilar M. An Arabidopsis mutant line lacking the mitochondrial calcium transport regulator MICU shows an altered metabolite profile. PLANT SIGNALING & BEHAVIOR 2023; 18:2271799. [PMID: 37879964 PMCID: PMC10601504 DOI: 10.1080/15592324.2023.2271799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Plant metabolism is constantly changing and requires input signals for efficient regulation. The mitochondrial calcium uniporter (MCU) couples organellar and cytoplasmic calcium oscillations leading to oxidative metabolism regulation in a vast array of species. In Arabidopsis thaliana, genetic deletion of AtMICU leads to altered mitochondrial calcium handling and ultrastructure. Here we aimed to further assess the consequences upon genetic deletion of AtMICU. Our results confirm that AtMICU safeguards intracellular calcium transport associated with carbohydrate, amino acid, and phytol metabolism modifications. The implications of such alterations are discussed.
Collapse
Affiliation(s)
- Emilia R. Gutiérrez-Mireles
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - José Carlos Páez-Franco
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Raúl Rodríguez-Ruíz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Juan Manuel Germán-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - M. Casandra López-Aquino
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Manuel Gutiérrez-Aguilar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
8
|
Pivato M, Grenzi M, Costa A, Ballottari M. Compartment-specific Ca 2+ imaging in the green alga Chlamydomonas reinhardtii reveals high light-induced chloroplast Ca 2+ signatures. THE NEW PHYTOLOGIST 2023; 240:258-271. [PMID: 37488718 DOI: 10.1111/nph.19142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 07/26/2023]
Abstract
To investigate the role of intracellular Ca2+ signaling in the perception and response mechanisms to light in unicellular microalgae, the genetically encoded ratiometric Ca2+ indicator Yellow Cameleon (YC3.6) was expressed in the model organism for green algae Chlamydomonas reinhardtii, targeted to cytosol, chloroplast, and mitochondria. Through in vivo single-cell confocal microscopy imaging, light-induced Ca2+ signaling was investigated in different conditions and different genotypes, including the photoreceptors mutants phot and acry. A genetically encoded H2 O2 sensor was also adopted to investigate the possible role of H2 O2 formation in light-dependent Ca2+ signaling. Light-dependent Ca2+ response was observed in Chlamydomonas reinhardtii cells only in the chloroplast as an organelle-autonomous response, influenced by light intensity and photosynthetic electron transport. The absence of blue and red-light photoreceptor aCRY strongly reduced the light-dependent chloroplast Ca2+ response, while the absence of the blue photoreceptor PHOT had no significant effects. A correlation between high light-induced chloroplast H2 O2 gradients and Ca2+ transients was drawn, supported by H2 O2 -induced chloroplast Ca2+ transients in the dark. In conclusion, different triggers are involved in the light-induced chloroplast Ca2+ signaling as saturation of the photosynthetic electron transport, H2 O2 formation, and aCRY-dependent light perception.
Collapse
Affiliation(s)
- Matteo Pivato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Matteo Grenzi
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milan, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milan, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), Milan, 20133, Italy
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
9
|
Corti F, Festa M, Stein F, Stevanato P, Siroka J, Navazio L, Vothknecht UC, Alboresi A, Novák O, Formentin E, Szabò I. Comparative analysis of wild-type and chloroplast MCU-deficient plants reveals multiple consequences of chloroplast calcium handling under drought stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1228060. [PMID: 37692417 PMCID: PMC10485843 DOI: 10.3389/fpls.2023.1228060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023]
Abstract
Introduction Chloroplast calcium homeostasis plays an important role in modulating the response of plants to abiotic and biotic stresses. One of the greatest challenges is to understand how chloroplast calcium-permeable pathways and sensors are regulated in a concerted manner to translate specific information into a calcium signature and to elucidate the downstream effects of specific chloroplast calcium dynamics. One of the six homologs of the mitochondrial calcium uniporter (MCU) was found to be located in chloroplasts in the leaves and to crucially contribute to drought- and oxidative stress-triggered uptake of calcium into this organelle. Methods In the present study we integrated comparative proteomic analysis with biochemical, genetic, cellular, ionomic and hormone analysis in order to gain an insight into how chloroplast calcium channels are integrated into signaling circuits under watered condition and under drought stress. Results Altogether, our results indicate for the first time a link between chloroplast calcium channels and hormone levels, showing an enhanced ABA level in the cmcu mutant already in well-watered condition. Furthermore, we show that the lack of cMCU results in an upregulation of the calcium sensor CAS and of enzymes of chlorophyll synthesis, which are also involved in retrograde signaling upon drought stress, in two independent KO lines generated in Col-0 and Col-4 ecotypes. Conclusions These observations point to chloroplasts as important signaling hubs linked to their calcium dynamics. Our results obtained in the model plant Arabidopsis thaliana are discussed also in light of our limited knowledge regarding organellar calcium signaling in crops and raise the possibility of an involvement of such signaling in response to drought stress also in crops.
Collapse
Affiliation(s)
| | | | - Frank Stein
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Jitka Siroka
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Olomouc, Czechia
| | | | - Ute C. Vothknecht
- Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | | | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Olomouc, Czechia
| | | | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
10
|
Alonso MT, Torres-Vidal P, Calvo B, Rodriguez C, Delrio-Lorenzo A, Rojo-Ruiz J, Garcia-Sancho J, Patel S. Use of aequorin-based indicators for monitoring Ca 2+ in acidic organelles. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119481. [PMID: 37142127 DOI: 10.1016/j.bbamcr.2023.119481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Over the last years, there is accumulating evidence that acidic organelles can accumulate and release Ca2+ upon cell activation. Hence, reliable recording of Ca2+ dynamics in these compartments is essential for understanding the physiopathological aspects of acidic organelles. Genetically encoded Ca2+ indicators (GECIs) are valuable tools to monitor Ca2+ in specific locations, although their use in acidic compartments is challenging due to the pH sensitivity of most available fluorescent GECIs. By contrast, bioluminescent GECIs have a combination of features (marginal pH sensitivity, low background, no phototoxicity, no photobleaching, high dynamic range and tunable affinity) that render them advantageous to achieve an enhanced signal-to-noise ratio in acidic compartments. This article reviews the use of bioluminescent aequorin-based GECIs targeted to acidic compartments. A need for more measurements in highly acidic compartments is identified.
Collapse
Affiliation(s)
- M T Alonso
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, 47003 Valladolid, Spain.
| | - P Torres-Vidal
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - B Calvo
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - C Rodriguez
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - A Delrio-Lorenzo
- Universidad Alfonso X el Sabio, Madrid, Avenida Universidad, 1, 28691 Villanueva de la Cañada, Madrid, Spain
| | - J Rojo-Ruiz
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - J Garcia-Sancho
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - S Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
11
|
Photosynthetic acclimation to changing environments. Biochem Soc Trans 2023; 51:473-486. [PMID: 36892145 DOI: 10.1042/bst20211245] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 03/10/2023]
Abstract
Plants are exposed to environments that fluctuate of timescales varying from seconds to months. Leaves that develop in one set of conditions optimise their metabolism to the conditions experienced, in a process called developmental acclimation. However, when plants experience a sustained change in conditions, existing leaves will also acclimate dynamically to the new conditions. Typically this process takes several days. In this review, we discuss this dynamic acclimation process, focussing on the responses of the photosynthetic apparatus to light and temperature. We briefly discuss the principal changes occurring in the chloroplast, before examining what is known, and not known, about the sensing and signalling processes that underlie acclimation, identifying likely regulators of acclimation.
Collapse
|
12
|
Ruberti C, Feitosa-Araujo E, Xu Z, Wagner S, Grenzi M, Darwish E, Lichtenauer S, Fuchs P, Parmagnani AS, Balcerowicz D, Schoenaers S, de la Torre C, Mekkaoui K, Nunes-Nesi A, Wirtz M, Vissenberg K, Van Aken O, Hause B, Costa A, Schwarzländer M. MCU proteins dominate in vivo mitochondrial Ca2+ uptake in Arabidopsis roots. THE PLANT CELL 2022; 34:4428-4452. [PMID: 35938694 PMCID: PMC9614509 DOI: 10.1093/plcell/koac242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Ca2+ signaling is central to plant development and acclimation. While Ca2+-responsive proteins have been investigated intensely in plants, only a few Ca2+-permeable channels have been identified, and our understanding of how intracellular Ca2+ fluxes is facilitated remains limited. Arabidopsis thaliana homologs of the mammalian channel-forming mitochondrial calcium uniporter (MCU) protein showed Ca2+ transport activity in vitro. Yet, the evolutionary complexity of MCU proteins, as well as reports about alternative systems and unperturbed mitochondrial Ca2+ uptake in knockout lines of MCU genes, leave critical questions about the in vivo functions of the MCU protein family in plants unanswered. Here, we demonstrate that MCU proteins mediate mitochondrial Ca2+ transport in planta and that this mechanism is the major route for fast Ca2+ uptake. Guided by the subcellular localization, expression, and conservation of MCU proteins, we generated an mcu triple knockout line. Using Ca2+ imaging in living root tips and the stimulation of Ca2+ transients of different amplitudes, we demonstrated that mitochondrial Ca2+ uptake became limiting in the triple mutant. The drastic cell physiological phenotype of impaired subcellular Ca2+ transport coincided with deregulated jasmonic acid-related signaling and thigmomorphogenesis. Our findings establish MCUs as a major mitochondrial Ca2+ entry route in planta and link mitochondrial Ca2+ transport with phytohormone signaling.
Collapse
Affiliation(s)
| | - Elias Feitosa-Araujo
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, D-48143, Germany
| | - Zhaolong Xu
- Department of Biosciences, University of Milano, Milan, I-20133, Italy
- Jiangsu Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | | | - Matteo Grenzi
- Department of Biosciences, University of Milano, Milan, I-20133, Italy
| | - Essam Darwish
- Department of Biology, Lund University, Lund, 22362, Sweden
- Agricultural Botany Department, Faculty of Agriculture, Plant Physiology Section, Cairo University, Giza, 12613, Egypt
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, D-48143, Germany
| | | | | | - Daria Balcerowicz
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
| | - Carolina de la Torre
- NGS Core Facility, Medical Faculty Mannheim, University of Heidelberg, Mannheim, D-68167, Germany
| | - Khansa Mekkaoui
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), D-06120, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Markus Wirtz
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, Heidelberg, D-69120, Germany
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
- Department of Agriculture, Plant Biochemistry and Biotechnology Lab, Hellenic Mediterranean University, Heraklion, 71410, Greece
| | | | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), D-06120, Germany
| | - Alex Costa
- Authors for correspondence: (A.C); (M.S.)
| | | |
Collapse
|
13
|
Quantitative Analysis of Plant Cytosolic Calcium Signals in Response to Water Activated by Low-Power Non-Thermal Plasma. Int J Mol Sci 2022; 23:ijms231810752. [PMID: 36142664 PMCID: PMC9506352 DOI: 10.3390/ijms231810752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Non-thermal plasma technology is increasingly being applied in the plant biology field. Despite the variety of beneficial effects of plasma-activated water (PAW) on plants, information about the mechanisms of PAW sensing by plants is still limited. In this study, in order to link PAW perception to the positive downstream responses of plants, transgenic Arabidopsis thaliana seedlings expressing the Ca2+-sensitive photoprotein aequorin in the cytosol were challenged with water activated by low-power non-thermal plasma generated by a dielectric barrier discharge (DBD) source. PAW sensing by plants resulted in the occurrence of cytosolic Ca2+ signals, whose kinetic parameters were found to strictly depend on the operational conditions of the plasma device and thus on the corresponding mixture of chemical species contained in the PAW. In particular, we highlighted the effect on the intracellular Ca2+ signals of low doses of DBD-PAW chemicals and also presented the effects of consecutive plant treatments. The results were discussed in terms of the possibility of using PAW-triggered Ca2+ signatures as benchmarks to accurately modulate the chemical composition of PAW in order to induce environmental stress resilience in plants, thus paving the way for further applications in agriculture.
Collapse
|
14
|
Ohnishi N, Sugimoto M, Kondo H, Shioya KI, Zhang L, Sakamoto W. Distinctive in vitro ATP Hydrolysis Activity of AtVIPP1, a Chloroplastic ESCRT-III Superfamily Protein in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:949578. [PMID: 35903241 PMCID: PMC9315428 DOI: 10.3389/fpls.2022.949578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Vesicle-inducing protein in plastid 1 (VIPP1), characteristic to oxygenic photosynthetic organisms, is a membrane-remodeling factor that forms homo-oligomers and functions in thylakoid membrane formation and maintenance. The cyanobacterial VIPP1 structure revealed a monomeric folding pattern similar to that of endosomal sorting complex required for transport (ESCRT) III. Characteristic to VIPP1, however, is its own GTP and ATP hydrolytic activity without canonical domains. In this study, we found that histidine-tagged Arabidopsis VIPP1 (AtVIPP1) hydrolyzed GTP and ATP to produce GDP and ADP in vitro, respectively. Unexpectedly, the observed GTPase and ATPase activities were biochemically distinguishable, because the ATPase was optimized for alkaline conditions and dependent on Ca2+ as well as Mg2+, with a higher affinity for ATP than GTP. We found that a version of AtVIPP1 protein with a mutation in its nucleotide-binding site, as deduced from the cyanobacterial structure, retained its hydrolytic activity, suggesting that Arabidopsis and cyanobacterial VIPP1s have different properties. Negative staining particle analysis showed that AtVIPP1 formed particle or rod structures that differed from those of cyanobacteria and Chlamydomonas. These results suggested that the nucleotide hydrolytic activity and oligomer formation of VIPP1 are common in photosynthetic organisms, whereas their properties differ among species.
Collapse
Affiliation(s)
- Norikazu Ohnishi
- Institute for Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Manabu Sugimoto
- Institute for Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Hideki Kondo
- Institute for Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Ken-ichi Shioya
- Institute for Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Lingang Zhang
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wataru Sakamoto
- Institute for Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
15
|
Guo J, He J, Dehesh K, Cui X, Yang Z. CamelliA-based simultaneous imaging of Ca2+ dynamics in subcellular compartments. PLANT PHYSIOLOGY 2022; 188:2253-2271. [PMID: 35218352 PMCID: PMC8968278 DOI: 10.1093/plphys/kiac020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
As a universal second messenger, calcium (Ca2+) transmits specific cellular signals via a spatiotemporal signature generated from its extracellular source and internal stores. Our knowledge of the mechanisms underlying the generation of a Ca2+ signature is hampered by limited tools for simultaneously monitoring dynamic Ca2+ levels in multiple subcellular compartments. To overcome the limitation and to further improve spatiotemporal resolutions, we have assembled a molecular toolset (CamelliA lines) in Arabidopsis (Arabidopsis thaliana) that enables simultaneous and high-resolution monitoring of Ca2+ dynamics in multiple subcellular compartments through imaging different single-colored genetically encoded calcium indicators. We uncovered several Ca2+ signatures in three types of Arabidopsis cells in response to internal and external cues, including rapid oscillations of cytosolic Ca2+ and apical plasma membrane Ca2+ influx in fast-growing Arabidopsis pollen tubes, the spatiotemporal relationship of Ca2+ dynamics in four subcellular compartments of root epidermal cells challenged with salt, and a shockwave-like Ca2+ wave propagating in laser-wounded leaf epidermis. These observations serve as a testimony to the wide applicability of the CamelliA lines for elucidating the subcellular sources contributing to the Ca2+ signatures in plants.
Collapse
Affiliation(s)
- Jingzhe Guo
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Botany and Plant Sciences, University of California, Riverside, 92521 California, USA
| | - Jiangman He
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Botany and Plant Sciences, University of California, Riverside, 92521 California, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Botany and Plant Sciences, University of California, Riverside, 92521 California, USA
| | - Xinping Cui
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Statistics, University of California, Riverside, 92521 California, USA
| | | |
Collapse
|
16
|
Cortese E, Moscatiello R, Pettiti F, Carraretto L, Baldan B, Frigerio L, Vothknecht UC, Szabo I, De Stefani D, Brini M, Navazio L. Monitoring calcium handling by the plant endoplasmic reticulum with a low-Ca 2+ -affinity targeted aequorin reporter. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1014-1027. [PMID: 34837294 PMCID: PMC9299891 DOI: 10.1111/tpj.15610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 05/15/2023]
Abstract
Precise measurements of dynamic changes in free Ca2+ concentration in the lumen of the plant endoplasmic reticulum (ER) have been lacking so far, despite increasing evidence for the contribution of this intracellular compartment to Ca2+ homeostasis and signalling in the plant cell. In the present study, we targeted an aequorin chimera with reduced Ca2+ affinity to the ER membrane and facing the ER lumen. To this aim, the cDNA for a low-Ca2+ -affinity aequorin variant (AEQmut) was fused to the nucleotide sequence encoding a non-cleavable N-terminal ER signal peptide (fl2). The correct targeting of fl2-AEQmut was confirmed by immunocytochemical analyses in transgenic Arabidopsis thaliana (Arabidopsis) seedlings. An experimental protocol well-established in animal cells - consisting of ER Ca2+ depletion during photoprotein reconstitution followed by ER Ca2+ refilling - was applied to carry out ER Ca2+ measurements in planta. Rapid and transient increases of the ER luminal Ca2+ concentration ([Ca2+ ]ER ) were recorded in response to different environmental stresses, displaying stimulus-specific Ca2+ signatures. The comparative analysis of ER and chloroplast Ca2+ dynamics indicates a complex interplay of these organelles in shaping cytosolic Ca2+ signals during signal transduction events. Our data highlight significant differences in basal [Ca2+ ]ER and Ca2+ handling by plant ER compared to the animal counterpart. The set-up of an ER-targeted aequorin chimera extends and complements the currently available toolkit of organelle-targeted Ca2+ indicators by adding a reporter that improves our quantitative understanding of Ca2+ homeostasis in the plant endomembrane system.
Collapse
Affiliation(s)
- Enrico Cortese
- Department of BiologyUniversity of PadovaPadova35131Italy
| | | | | | | | - Barbara Baldan
- Department of BiologyUniversity of PadovaPadova35131Italy
- Botanical GardenUniversity of PadovaPadova35123Italy
| | | | - Ute C. Vothknecht
- Plant Cell BiologyInstitute of Cellular and Molecular BotanyUniversity of BonnBonnD‐53115Germany
| | - Ildiko Szabo
- Department of BiologyUniversity of PadovaPadova35131Italy
- Botanical GardenUniversity of PadovaPadova35123Italy
| | - Diego De Stefani
- Department of Biomedical SciencesUniversity of PadovaPadova35131Italy
| | - Marisa Brini
- Department of BiologyUniversity of PadovaPadova35131Italy
| | - Lorella Navazio
- Department of BiologyUniversity of PadovaPadova35131Italy
- Botanical GardenUniversity of PadovaPadova35123Italy
| |
Collapse
|
17
|
Yao P, Vanneste S, Navazio L, Van Breusegem F, Stael S. Chemical Perturbation of Chloroplast Ca 2+ Dynamics in Arabidopsis thaliana Suspension Cell Cultures and Seedlings. Methods Mol Biol 2022; 2494:149-158. [PMID: 35467206 DOI: 10.1007/978-1-0716-2297-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ca2+ signaling is part of universal signal transduction pathways to respond to external and internal stimuli or stress and in plants plays a central role in chloroplasts, such as in the regulation of photosynthetic enzymes or the transition from light to dark. Only recently, the underlying molecular machinery, e.g., transporters and channels that enable chloroplast Ca2+ fluxes, has started to be elucidated. However, chemical tools to specifically perturb these chloroplast Ca2+ fluxes are largely lacking. Here, we describe an efficient aequorin-based system in Arabidopsis thaliana suspension cell cultures to screen for chemicals that alter light-to-dark-induced chloroplast stroma Ca2+ signals. Subsequently, the effect of the hits on chloroplast Ca2+ signals is validated in Arabidopsis seedlings. The research lays a foundation for the identification of novel proteins involved in Ca2+ transport in chloroplast stroma under light-to-dark transition and for investigating the interaction of chloroplast Ca2+ signaling with photosynthesis in general.
Collapse
Affiliation(s)
- Panfeng Yao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Plants and Crops, Ghent University, Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon, Republic of Korea
| | - Lorella Navazio
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
18
|
Resentini F, Ruberti C, Grenzi M, Bonza MC, Costa A. The signatures of organellar calcium. PLANT PHYSIOLOGY 2021; 187:1985-2004. [PMID: 33905517 PMCID: PMC8644629 DOI: 10.1093/plphys/kiab189] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/10/2021] [Indexed: 05/23/2023]
Abstract
Recent insights about the transport mechanisms involved in the in and out of calcium ions in plant organelles, and their role in the regulation of cytosolic calcium homeostasis in different signaling pathways.
Collapse
Affiliation(s)
| | - Cristina Ruberti
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | - Matteo Grenzi
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | | | - Alex Costa
- Department of Biosciences, University of Milan, Milano 20133, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), Milano 20133, Italy
| |
Collapse
|
19
|
He J, Rössner N, Hoang MTT, Alejandro S, Peiter E. Transport, functions, and interaction of calcium and manganese in plant organellar compartments. PLANT PHYSIOLOGY 2021; 187:1940-1972. [PMID: 35235665 PMCID: PMC8890496 DOI: 10.1093/plphys/kiab122] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/02/2021] [Indexed: 05/05/2023]
Abstract
Calcium (Ca2+) and manganese (Mn2+) are essential elements for plants and have similar ionic radii and binding coordination. They are assigned specific functions within organelles, but share many transport mechanisms to cross organellar membranes. Despite their points of interaction, those elements are usually investigated and reviewed separately. This review takes them out of this isolation. It highlights our current mechanistic understanding and points to open questions of their functions, their transport, and their interplay in the endoplasmic reticulum (ER), vesicular compartments (Golgi apparatus, trans-Golgi network, pre-vacuolar compartment), vacuoles, chloroplasts, mitochondria, and peroxisomes. Complex processes demanding these cations, such as Mn2+-dependent glycosylation or systemic Ca2+ signaling, are covered in some detail if they have not been reviewed recently or if recent findings add to current models. The function of Ca2+ as signaling agent released from organelles into the cytosol and within the organelles themselves is a recurrent theme of this review, again keeping the interference by Mn2+ in mind. The involvement of organellar channels [e.g. glutamate receptor-likes (GLR), cyclic nucleotide-gated channels (CNGC), mitochondrial conductivity units (MCU), and two-pore channel1 (TPC1)], transporters (e.g. natural resistance-associated macrophage proteins (NRAMP), Ca2+ exchangers (CAX), metal tolerance proteins (MTP), and bivalent cation transporters (BICAT)], and pumps [autoinhibited Ca2+-ATPases (ACA) and ER Ca2+-ATPases (ECA)] in the import and export of organellar Ca2+ and Mn2+ is scrutinized, whereby current controversial issues are pointed out. Mechanisms in animals and yeast are taken into account where they may provide a blueprint for processes in plants, in particular, with respect to tunable molecular mechanisms of Ca2+ versus Mn2+ selectivity.
Collapse
Affiliation(s)
- Jie He
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Nico Rössner
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Minh T T Hoang
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Santiago Alejandro
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Edgar Peiter
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
- Author for communication:
| |
Collapse
|
20
|
Cortese E, Settimi AG, Pettenuzzo S, Cappellin L, Galenda A, Famengo A, Dabalà M, Antoni V, Navazio L. Plasma-Activated Water Triggers Rapid and Sustained Cytosolic Ca 2+ Elevations in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112516. [PMID: 34834879 PMCID: PMC8622995 DOI: 10.3390/plants10112516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 05/15/2023]
Abstract
Increasing evidence indicates that water activated by plasma discharge, termed as plasma-activated water (PAW), can promote plant growth and enhance plant defence responses. Nevertheless, the signalling pathways activated in plants in response to PAW are still largely unknown. In this work, we analysed the potential involvement of calcium as an intracellular messenger in the transduction of PAW by plants. To this aim, Arabidopsis thaliana (Arabidopsis) seedlings stably expressing the bioluminescent Ca2+ reporter aequorin in the cytosol were challenged with PAW generated by a plasma torch. Ca2+ measurement assays demonstrated the induction by PAW of rapid and sustained cytosolic Ca2+ elevations in Arabidopsis seedlings. The dynamics of the recorded Ca2+ signals were found to depend upon different parameters, such as the operational conditions of the torch, PAW storage, and dilution. The separate administration of nitrate, nitrite, and hydrogen peroxide at the same doses as those measured in the PAW did not trigger any detectable Ca2+ changes, suggesting that the unique mixture of different reactive chemical species contained in the PAW is responsible for the specific Ca2+ signatures. Unveiling the signalling mechanisms underlying plant perception of PAW may allow to finely tune its generation for applications in agriculture, with potential advantages in the perspective of a more sustainable agriculture.
Collapse
Affiliation(s)
- Enrico Cortese
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy;
| | - Alessio G. Settimi
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy; (A.G.S.); (M.D.)
| | - Silvia Pettenuzzo
- Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38010 San Michele all’Adige, Italy;
- Research and Innovation Centre, Edmund Mach Foundation, Via E. Mach 1, 38010 San Michele all’Adige, Italy
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy;
| | - Luca Cappellin
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy;
| | - Alessandro Galenda
- CNR Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), Corso Stati Uniti 4, 35127 Padova, Italy; (A.G.); (A.F.)
| | - Alessia Famengo
- CNR Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), Corso Stati Uniti 4, 35127 Padova, Italy; (A.G.); (A.F.)
| | - Manuele Dabalà
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy; (A.G.S.); (M.D.)
| | - Vanni Antoni
- Consorzio RFX, Corso Stati Uniti 4, 35127 Padova, Italy;
| | - Lorella Navazio
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy;
- Botanical Garden, University of Padova, Via Orto Botanico 15, 35123 Padova, Italy
- Correspondence:
| |
Collapse
|
21
|
Grenzi M, Resentini F, Vanneste S, Zottini M, Bassi A, Costa A. Illuminating the hidden world of calcium ions in plants with a universe of indicators. PLANT PHYSIOLOGY 2021; 187:550-571. [PMID: 35237821 PMCID: PMC8491032 DOI: 10.1093/plphys/kiab339] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/15/2021] [Indexed: 05/20/2023]
Abstract
The tools available to carry out in vivo analysis of Ca2+ dynamics in plants are powerful and mature technologies that still require the proper controls.
Collapse
Affiliation(s)
- Matteo Grenzi
- Department of Biosciences, University of Milan, 20133 Milano, Italy
| | | | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 21985, South Korea
| | - Michela Zottini
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Andrea Bassi
- Department of Physics, Politecnico di Milano, 20133 Milano, Italy
- Institute of Photonics and Nanotechnologies, National Research Council of Italy (CNR), 20133 Milano, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milano, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), 20133 Milano, Italy
- Author for communication:
| |
Collapse
|
22
|
Lee HJ, Seo PJ. Ca 2+talyzing Initial Responses to Environmental Stresses. TRENDS IN PLANT SCIENCE 2021; 26:849-870. [PMID: 33706981 DOI: 10.1016/j.tplants.2021.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 05/24/2023]
Abstract
Plants have evolved stress-sensing machineries that initiate rapid adaptive environmental stress responses. Cytosolic calcium ion (Ca2+) is the most prominent second messenger that couples extracellular signals with specific intracellular responses. Essential early events that generate a cytosolic Ca2+ spike in response to environmental stress are starting to emerge. We review sensory machineries, including ion channels and transporters, which perceive various stress stimuli and allow cytosolic Ca2+ influx. We highlight integrative roles of Ca2+ channels in plant responses to various environmental stresses, as well as possible interplay of Ca2+ with other early signaling components, which facilitates signal propagation for systemic spread and spatiotemporal variations in respect to external cues. The early Ca2+ signaling schemes inspire the identification of additional stress sensors.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
23
|
Pirayesh N, Giridhar M, Ben Khedher A, Vothknecht UC, Chigri F. Organellar calcium signaling in plants: An update. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118948. [PMID: 33421535 DOI: 10.1016/j.bbamcr.2021.118948] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Calcium ion (Ca2+) is a versatile signaling transducer in all eukaryotic organisms. In plants, intracellular changes in free Ca2+ levels act as regulators in many growth and developmental processes. Ca2+ also mediates the cellular responses to environmental stimuli and thus plays an important role in providing stress tolerance to plants. Ca2+ signals are decoded by a tool kit of various families of Ca2+-binding proteins and their downstream targets, which mediate the transformation of the Ca2+ signal into appropriate cellular response. Early interest and research on Ca2+ signaling focused on its function in the cytosol, however it has become evident that this important regulatory pathway also exists in organelles such as nucleus, chloroplast, mitochondria, peroxisomes and the endomembrane system. In this review, we give an overview on the knowledge about organellar Ca2+ signaling with a focus on recent advances and developments.
Collapse
Affiliation(s)
- Niloufar Pirayesh
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Maya Giridhar
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ahlem Ben Khedher
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ute C Vothknecht
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| | - Fatima Chigri
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| |
Collapse
|
24
|
Cortese E, Carraretto L, Baldan B, Navazio L. Arabidopsis Photosynthetic and Heterotrophic Cell Suspension Cultures. Methods Mol Biol 2020; 2200:167-185. [PMID: 33175378 DOI: 10.1007/978-1-0716-0880-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Cell suspension cultures represent a widely used experimental tool suitable to perform a variety of structural and physiological studies in a more simplified system compared to the organism in toto. In this chapter we describe the methods routinely used in our laboratory to establish and maintain Arabidopsis photosynthetic and heterotrophic cell suspension cultures, containing either chloroplasts or amyloplasts, respectively. The use of these in vitro systems may allow to obtain insights into the unique features of chloroplasts versus non-green plastids, as well as their integration in the structural and metabolic compartmentalization of the plant cell.
Collapse
Affiliation(s)
- Enrico Cortese
- Department of Biology, University of Padova, Padova, Italy
| | | | - Barbara Baldan
- Department of Biology, University of Padova, Padova, Italy.,Botanical Garden, University of Padova, Padova, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, Padova, Italy. .,Botanical Garden, University of Padova, Padova, Italy.
| |
Collapse
|
25
|
Krasitskaya VV, Bashmakova EE, Frank LA. Coelenterazine-Dependent Luciferases as a Powerful Analytical Tool for Research and Biomedical Applications. Int J Mol Sci 2020; 21:E7465. [PMID: 33050422 PMCID: PMC7590018 DOI: 10.3390/ijms21207465] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
: The functioning of bioluminescent systems in most of the known marine organisms is based on the oxidation reaction of the same substrate-coelenterazine (CTZ), catalyzed by luciferase. Despite the diversity in structures and the functioning mechanisms, these enzymes can be united into a common group called CTZ-dependent luciferases. Among these, there are two sharply different types of the system organization-Ca2+-regulated photoproteins and luciferases themselves that function in accordance with the classical enzyme-substrate kinetics. Along with deep and comprehensive fundamental research on these systems, approaches and methods of their practical use as highly sensitive reporters in analytics have been developed. The research aiming at the creation of artificial luciferases and synthetic CTZ analogues with new unique properties has led to the development of new experimental analytical methods based on them. The commercial availability of many ready-to-use assay systems based on CTZ-dependent luciferases is also important when choosing them by first-time-users. The development of analytical methods based on these bioluminescent systems is currently booming. The bioluminescent systems under consideration were successfully applied in various biological research areas, which confirms them to be a powerful analytical tool. In this review, we consider the main directions, results, and achievements in research involving these luciferases.
Collapse
Affiliation(s)
- Vasilisa V. Krasitskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
| | - Eugenia E. Bashmakova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
| | - Ludmila A. Frank
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| |
Collapse
|
26
|
Alejandro S, Höller S, Meier B, Peiter E. Manganese in Plants: From Acquisition to Subcellular Allocation. FRONTIERS IN PLANT SCIENCE 2020; 11:300. [PMID: 32273877 PMCID: PMC7113377 DOI: 10.3389/fpls.2020.00300] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/02/2020] [Indexed: 05/02/2023]
Abstract
Manganese (Mn) is an important micronutrient for plant growth and development and sustains metabolic roles within different plant cell compartments. The metal is an essential cofactor for the oxygen-evolving complex (OEC) of the photosynthetic machinery, catalyzing the water-splitting reaction in photosystem II (PSII). Despite the importance of Mn for photosynthesis and other processes, the physiological relevance of Mn uptake and compartmentation in plants has been underrated. The subcellular Mn homeostasis to maintain compartmented Mn-dependent metabolic processes like glycosylation, ROS scavenging, and photosynthesis is mediated by a multitude of transport proteins from diverse gene families. However, Mn homeostasis may be disturbed under suboptimal or excessive Mn availability. Mn deficiency is a serious, widespread plant nutritional disorder in dry, well-aerated and calcareous soils, as well as in soils containing high amounts of organic matter, where bio-availability of Mn can decrease far below the level that is required for normal plant growth. By contrast, Mn toxicity occurs on poorly drained and acidic soils in which high amounts of Mn are rendered available. Consequently, plants have evolved mechanisms to tightly regulate Mn uptake, trafficking, and storage. This review provides a comprehensive overview, with a focus on recent advances, on the multiple functions of transporters involved in Mn homeostasis, as well as their regulatory mechanisms in the plant's response to different conditions of Mn availability.
Collapse
Affiliation(s)
- Santiago Alejandro
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Salle), Germany
| | | | | | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Salle), Germany
| |
Collapse
|
27
|
Martí Ruiz MC, Jung HJ, Webb AAR. Circadian gating of dark-induced increases in chloroplast- and cytosolic-free calcium in Arabidopsis. THE NEW PHYTOLOGIST 2020; 225:1993-2005. [PMID: 31644821 PMCID: PMC7028143 DOI: 10.1111/nph.16280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/11/2019] [Indexed: 05/22/2023]
Abstract
Changes in the spatiotemporal concentration of free Ca2+ ([Ca2+ ]) in different organelles of the cell contribute to responses of plants to physiological and environmental stimuli. One example are [Ca2+ ] increases in the stroma of chloroplasts during light-to-dark transitions; however, the function and mechanisms responsible are unknown, in part because there is a disagreement in the literature concerning whether corresponding dark-induced changes in cytosolic [Ca2+ ] ([Ca2+ ]cyt ) can be detected. We have measured changes in [Ca2+ ]cyt upon darkness in addition to the already known dark-induced increases in [Ca2+ ]stroma in the aerial part of the Arabidopsis thaliana plant. These [Ca2+ ]cyt transients depend on the photoperiod and time of day, peaking at anticipated dusk, and are superimposed on daily 24 h oscillations in [Ca2+ ]cyt . We also find that the magnitude of the dark-induced increases in Ca2+ in both the cytosol and chloroplasts are gated by the nuclear circadian oscillator. The modulation of the magnitude of dark-induced increases in [Ca2+ ]stroma and [Ca2+ ]cyt by transcriptional regulators in the nucleus that are part of the circadian oscillator demonstrates a new role for the circadian system in subcellular Ca2+ signalling, in addition to its role in driving circadian oscillations of [Ca2+ ] in the cytosol and chloroplasts.
Collapse
Affiliation(s)
- María Carmen Martí Ruiz
- Department of Stress Biology and Plant PathologyCEBAS‐CSICCampus Universitario de EspinardoMurcia30100Spain
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridge,CB2 3EAUK
| | - Hyun Ju Jung
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridge,CB2 3EAUK
| | - Alex A. R. Webb
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridge,CB2 3EAUK
| |
Collapse
|
28
|
Navazio L, Formentin E, Cendron L, Szabò I. Chloroplast Calcium Signaling in the Spotlight. FRONTIERS IN PLANT SCIENCE 2020; 11:186. [PMID: 32226434 PMCID: PMC7081724 DOI: 10.3389/fpls.2020.00186] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 05/22/2023]
Abstract
Calcium has long been known to regulate the metabolism of chloroplasts, concerning both light and carbon reactions of photosynthesis, as well as additional non photosynthesis-related processes. In addition to undergo Ca2+ regulation, chloroplasts can also influence the overall Ca2+ signaling pathways of the plant cell. Compelling evidence indicate that chloroplasts can generate specific stromal Ca2+ signals and contribute to the fine tuning of cytoplasmic Ca2+ signaling in response to different environmental stimuli. The recent set up of a toolkit of genetically encoded Ca2+ indicators, targeted to different chloroplast subcompartments (envelope, stroma, thylakoids) has helped to unravel the participation of chloroplasts in intracellular Ca2+ handling in resting conditions and during signal transduction. Intra-chloroplast Ca2+ signals have been demonstrated to occur in response to specific environmental stimuli, suggesting a role for these plant-unique organelles in transducing Ca2+-mediated stress signals. In this mini-review we present current knowledge of stimulus-specific intra-chloroplast Ca2+ transients, as well as recent advances in the identification and characterization of Ca2+-permeable channels/transporters localized at chloroplast membranes. In particular, the potential role played by cMCU, a chloroplast-localized member of the mitochondrial calcium uniporter (MCU) family, as component of plant environmental sensing is discussed in detail, taking into account some specific structural features of cMCU. In summary, the recent molecular identification of some players of chloroplast Ca2+ signaling has opened new avenues in this rapidly developing field and will hopefully allow a deeper understanding of the role of chloroplasts in shaping physiological responses in plants.
Collapse
Affiliation(s)
- Lorella Navazio
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
| | - Elide Formentin
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
- *Correspondence: Ildikò Szabò,
| |
Collapse
|
29
|
Affiliation(s)
- Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.
| |
Collapse
|
30
|
Teardo E, Carraretto L, Moscatiello R, Cortese E, Vicario M, Festa M, Maso L, De Bortoli S, Calì T, Vothknecht UC, Formentin E, Cendron L, Navazio L, Szabo I. A chloroplast-localized mitochondrial calcium uniporter transduces osmotic stress in Arabidopsis. NATURE PLANTS 2019; 5:581-588. [PMID: 31182842 DOI: 10.1038/s41477-019-0434-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 04/23/2019] [Indexed: 05/18/2023]
Abstract
Chloroplasts are integral to sensing biotic and abiotic stress in plants, but their role in transducing Ca2+-mediated stress signals remains poorly understood1,2. Here we identify cMCU, a member of the mitochondrial calcium uniporter (MCU) family, as an ion channel mediating Ca2+ flux into chloroplasts in vivo. Using a toolkit of aequorin reporters targeted to chloroplast stroma and the cytosol in cMCU wild-type and knockout lines, we provide evidence that stress-stimulus-specific Ca2+ dynamics in the chloroplast stroma correlate with expression of the channel. Fast downstream signalling events triggered by osmotic stress, involving activation of the mitogen-activated protein kinases (MAPK) MAPK3 and MAPK6, and the transcription factors MYB60 and ethylene-response factor 6 (ERF6), are influenced by cMCU activity. Relative to wild-type plants, cMCU knockouts display increased resistance to long-term water deficit and improved recovery on rewatering. Modulation of stromal Ca2+ in specific processing of stress signals identifies cMCU as a component of plant environmental sensing.
Collapse
Affiliation(s)
- Enrico Teardo
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Enrico Cortese
- Department of Biology, University of Padova, Padova, Italy
| | - Mattia Vicario
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lorenzo Maso
- Department of Biology, University of Padova, Padova, Italy
| | | | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Elide Formentin
- Department of Biology, University of Padova, Padova, Italy.
- Botanical Garden, University of Padova, Padova, Italy.
| | - Laura Cendron
- Department of Biology, University of Padova, Padova, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, Padova, Italy.
- Botanical Garden, University of Padova, Padova, Italy.
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.
- Botanical Garden, University of Padova, Padova, Italy.
| |
Collapse
|
31
|
Mohanta TK, Yadav D, Khan AL, Hashem A, Abd Allah EF, Al-Harrasi A. Molecular Players of EF-hand Containing Calcium Signaling Event in Plants. Int J Mol Sci 2019; 20:E1476. [PMID: 30909616 PMCID: PMC6471108 DOI: 10.3390/ijms20061476] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 11/28/2022] Open
Abstract
Ca2+ is a universal second messenger that plays a pivotal role in diverse signaling mechanisms in almost all life forms. Since the evolution of life from an aquatic to a terrestrial environment, Ca2+ signaling systems have expanded and diversified enormously. Although there are several Ca2+ sensing molecules found in a cell, EF-hand containing proteins play a principal role in calcium signaling event in plants. The major EF-hand containing proteins are calmodulins (CaMs), calmodulin like proteins (CMLs), calcineurin B-like (CBL) and calcium dependent protein kinases (CDPKs/CPKs). CaMs and CPKs contain calcium binding conserved D-x-D motifs in their EF-hands (one motif in each EF-hand) whereas CMLs contain a D-x₃-D motif in the first and second EF-hands that bind the calcium ion. Calcium signaling proteins form a complex interactome network with their target proteins. The CMLs are the most primitive calcium binding proteins. During the course of evolution, CMLs are evolved into CaMs and subsequently the CaMs appear to have merged with protein kinase molecules to give rise to calcium dependent protein kinases with distinct and multiple new functions. Ca2+ signaling molecules have evolved in a lineage specific manner with several of the calcium signaling genes being lost in the monocot lineage.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman.
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman.
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Mycology and Plant Survey Department, Plant Pathology Research Institute, ARC, Giza 12511, Egypt.
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agriculture Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman.
| |
Collapse
|
32
|
Lenzoni G, Knight MR. Increases in Absolute Temperature Stimulate Free Calcium Concentration Elevations in the Chloroplast. PLANT & CELL PHYSIOLOGY 2019; 60:538-548. [PMID: 30517735 DOI: 10.1093/pcp/pcy227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/21/2018] [Indexed: 05/18/2023]
Abstract
Plants need to sense increases in temperature to be able to adapt their physiology and development to survive; however, the mechanisms of heat perception are currently relatively poorly understood. Here we demonstrate that in response to elevated temperature, the free calcium concentration of the stroma of chloroplasts increases. This response is specific to the chloroplast, as no corresponding increase in calcium is seen in the cytosol. The chloroplast calcium response is dose dependent above a threshold. The magnitude of this calcium response is dependent upon absolute temperature, not the rate of heating. This response is dynamic: repeated stimulation leads to rapid attenuation of the response, which can be overcome by sensitization at a higher temperature. More long-term acclimation to different temperatures resets the basal sensitivity of the system, such that plants acclimated to lower temperatures are more sensitive than those acclimated to higher temperatures. The heat-induced chloroplast calcium response was partially dependent upon the calcium-sensing receptor CAS which has been shown previously to regulate other chloroplast calcium signaling responses. Taken together, our data demonstrate the ability of chloroplasts to sense absolute high temperature and produce commensurately quantitative stromal calcium response, the magnitude of which is a function of both current temperature and stress history.
Collapse
Affiliation(s)
- Gioia Lenzoni
- Department of Biosciences, Durham University, South Road, Durham, UK
| | - Marc R Knight
- Department of Biosciences, Durham University, South Road, Durham, UK
| |
Collapse
|
33
|
Frank J, Happeck R, Meier B, Hoang MTT, Stribny J, Hause G, Ding H, Morsomme P, Baginsky S, Peiter E. Chloroplast-localized BICAT proteins shape stromal calcium signals and are required for efficient photosynthesis. THE NEW PHYTOLOGIST 2019; 221:866-880. [PMID: 30169890 DOI: 10.1111/nph.15407] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/17/2018] [Indexed: 05/18/2023]
Abstract
The photosynthetic machinery of plants must be regulated to maximize the efficiency of light reactions and CO2 fixation. Changes in free Ca2+ in the stroma of chloroplasts have been observed at the transition between light and darkness, and also in response to stress stimuli. Such Ca2+ dynamics have been proposed to regulate photosynthetic capacity. However, the molecular mechanisms of Ca2+ fluxes in the chloroplasts have been unknown. By employing a Ca2+ reporter-based approach, we identified two chloroplast-localized Ca2+ transporters in Arabidopsis thaliana, BICAT1 and BICAT2, that determine the amplitude of the darkness-induced Ca2+ signal in the chloroplast stroma. BICAT2 mediated Ca2+ uptake across the chloroplast envelope, and its knockout mutation strongly dampened the dark-induced [Ca2+ ]stroma signal. Conversely, this Ca2+ transient was increased in knockout mutants of BICAT1, which transports Ca2+ into the thylakoid lumen. Knockout mutation of BICAT2 caused severe defects in chloroplast morphology, pigmentation and photosynthetic light reactions, rendering bicat2 mutants barely viable under autotrophic growth conditions, while bicat1 mutants were less affected. These results show that BICAT transporters play a role in chloroplast Ca2+ homeostasis. They are also involved in the regulation of photosynthesis and plant productivity. Further work will be required to reveal whether the effect on photosynthesis is a direct result of their role as Ca2+ transporters.
Collapse
Affiliation(s)
- Julia Frank
- Institute for Biochemistry and Biotechnology, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Ricardo Happeck
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Bastian Meier
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Minh Thi Thanh Hoang
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Jiri Stribny
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
| | - Gerd Hause
- Biocenter, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Haidong Ding
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
| | - Sacha Baginsky
- Institute for Biochemistry and Biotechnology, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Edgar Peiter
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| |
Collapse
|
34
|
Hilleary R, Choi WG, Kim SH, Lim SD, Gilroy S. Sense and sensibility: the use of fluorescent protein-based genetically encoded biosensors in plants. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:32-38. [PMID: 30041101 DOI: 10.1016/j.pbi.2018.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/27/2018] [Accepted: 07/05/2018] [Indexed: 05/09/2023]
Abstract
Fluorescent protein-based biosensors are providing us with an unprecedented, quantitative view of the dynamic nature of the cellular networks that lie at the heart of plant biology. Such bioreporters can visualize the spatial and temporal kinetics of cellular regulators such as Ca2+ and H+, plant hormones and even allow membrane transport activities to be monitored in real time in living plant cells. The fast pace of their development is making these tools increasingly sensitive and easy to use and the rapidly expanding biosensor toolkit offers great potential for new insights into a wide range of plant regulatory processes. We suggest a checklist of controls that should help avoid some of the more cryptic issues with using these bioreporter technologies.
Collapse
Affiliation(s)
- Richard Hilleary
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Won-Gyu Choi
- Department of Biochemistry and Molecular Biology, 1664 N. Virginia Street, University of Nevada, Reno, NV 89557, USA
| | - Su-Hwa Kim
- Department of Biochemistry and Molecular Biology, 1664 N. Virginia Street, University of Nevada, Reno, NV 89557, USA
| | - Sung Don Lim
- Department of Biochemistry and Molecular Biology, 1664 N. Virginia Street, University of Nevada, Reno, NV 89557, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA.
| |
Collapse
|
35
|
Moscatiello R, Sello S, Ruocco M, Barbulova A, Cortese E, Nigris S, Baldan B, Chiurazzi M, Mariani P, Lorito M, Navazio L. The Hydrophobin HYTLO1 Secreted by the Biocontrol Fungus Trichoderma longibrachiatum Triggers a NAADP-Mediated Calcium Signalling Pathway in Lotus japonicus. Int J Mol Sci 2018; 19:E2596. [PMID: 30200468 PMCID: PMC6164116 DOI: 10.3390/ijms19092596] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
Trichoderma filamentous fungi are increasingly used as biocontrol agents and plant biostimulants. Growing evidence indicates that part of the beneficial effects is mediated by the activity of fungal metabolites on the plant host. We have investigated the mechanism of plant perception of HYTLO1, a hydrophobin abundantly secreted by Trichoderma longibrachiatum, which may play an important role in the early stages of the plant-fungus interaction. Aequorin-expressing Lotus japonicus suspension cell cultures responded to HYTLO1 with a rapid cytosolic Ca2+ increase that dissipated within 30 min, followed by the activation of the defence-related genes MPK3, WRK33, and CP450. The Ca2+-dependence of these gene expression was demonstrated by using the extracellular Ca2+ chelator EGTA and Ned-19, a potent inhibitor of the nicotinic acid adenine dinucleotide phosphate (NAADP) receptor in animal cells, which effectively blocked the HYTLO1-induced Ca2+ elevation. Immunocytochemical analyses showed the localization of the fungal hydrophobin at the plant cell surface, where it forms a protein film covering the plant cell wall. Our data demonstrate the Ca2+-mediated perception by plant cells of a key metabolite secreted by a biocontrol fungus, and provide the first evidence of the involvement of NAADP-gated Ca2+ release in a signalling pathway triggered by a biotic stimulus.
Collapse
Affiliation(s)
- Roberto Moscatiello
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
| | - Simone Sello
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection, CNR, Via Università 133, 80055 Portici (NA), Italy.
| | - Ani Barbulova
- Institute of BioSciences and BioResourses, CNR, Via P. Castellino 111, 80131 Napoli, Italy.
| | - Enrico Cortese
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
| | - Sebastiano Nigris
- Botanical Garden, University of Padova, Via Orto Botanico 15, 35123 Padova, Italy.
| | - Barbara Baldan
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
- Botanical Garden, University of Padova, Via Orto Botanico 15, 35123 Padova, Italy.
| | - Maurizio Chiurazzi
- Institute of BioSciences and BioResourses, CNR, Via P. Castellino 111, 80131 Napoli, Italy.
| | - Paola Mariani
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Napoli "Federico II", Via Università 100, 80055 Portici (NA), Italy.
| | - Lorella Navazio
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
- Botanical Garden, University of Padova, Via Orto Botanico 15, 35123 Padova, Italy.
| |
Collapse
|
36
|
Costa A, Navazio L, Szabo I. The contribution of organelles to plant intracellular Calcium signalling. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4996169. [PMID: 29767757 DOI: 10.1093/jxb/ery185] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 05/18/2023]
Abstract
Calcium (Ca2+) is among the most important intracellular messengers in living organisms. Understanding of the players and dynamics of Ca2+ signalling pathways in plants may help to unravel the molecular basis of their exceptional flexibility to respond and to adapt to different stimuli. In the present review we focus on new tools that have recently revolutionized our view of organellar Ca2+ signalling as well as on the current knowledge regarding the pathways mediating Ca2+ fluxes across intracellular membranes. The contribution of organelles and cellular subcompartments to the orchestrated response via Ca2+ signalling within a cell is also discussed, underlining the fact that one of the greatest challenges in the field is the elucidation of how influx and efflux Ca2+ transporters/channels are regulated in a concerted manner to translate specific information into a Ca2+ signature.
Collapse
Affiliation(s)
- Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria, Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via G. Celoria, Milan, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, Via U. Bassi, Padova, Italy
- Botanical Garden, University of Padova, Via Orto Botanico, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Via U. Bassi, Padova, Italy
- Botanical Garden, University of Padova, Via Orto Botanico, Padova, Italy
- Institute of Neurosciences, Consiglio Nazionale delle Ricerche, Via U. Bassi, Padova, Italy
| |
Collapse
|