1
|
Khan MA, Zaman F, Liu YZ, Alam SM, Han H, Luo Y, Ateeq M. CsMYB1-CwINV6 Module Involves in the Promotion of Soluble Sugar Accumulation in Citrus Fruits Under Drought Stress. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40205701 DOI: 10.1111/pce.15539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/08/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
Drought can promote soluble sugar accumulation in fruits by increasing the fruit sink strength. Cell wall invertase (CwINV) plays a pivotal role in determining sink strength by regulating sucrose partitioning into the extracellular matrix. Research has demonstrated that drought stress significantly increases the transcript level of citrus CwINV6, but the transcriptional mechanisms governing its regulation under drought conditions remain elusive. In this study, we characterised the MYB transcription factor gene CsMYB1 from the citrus genome. CsMYB1 is localised in the cell nucleus, and CwINV6 is localised in the cell wall. Furthermore, the transcript levels of both CsMYB1 and CwINV6 significantly increased in 'Nanfeng' tangerine fruits (Citrus reticulata) in response to drought or ABA treatment. Transient overexpression of CsMYB1 or CwINV6 promoted the accumulation of glucose and fructose in 'Nanfeng' fruits. Conversely, transient VIGS of CsMYB1 or CwINV6 resulted in the opposite trend. Additionally, stable overexpression of CsMYB1 or CwINV6 significantly increased the soluble sugar content in the fruits of the 'Micro-Tom' tomato lines. Y1H and luciferase assays confirmed that CsMYB1 can bind to the CwINV6 promoter and positively regulate its expression. Taken together, our findings reveal that drought promotes soluble sugar distribution in citrus fruits by increasing sink strength via the CsMYB1-CwINV6 module.
Collapse
Affiliation(s)
- Muhammad Abbas Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Fatima Zaman
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yong-Zhong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Shariq Mahmood Alam
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Han Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yin Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Ateeq
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Borghi M. Roles of sugar metabolism and transport in flower development. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102722. [PMID: 40184919 DOI: 10.1016/j.pbi.2025.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Flowers, which are primarily heterotrophic, thrive on photosynthates transported to the floral receptacle through the phloem. Once phloem unloading occurs, carbohydrates are distributed to various flower organs to support growth and development. This brief review summarizes how flowers acquire carbohydrates and transport them to different organs and tissues through the coordinated actions of transporters and enzymes, as well as the developmental issues that arise from carbohydrate imbalances. It will also discuss recently discovered transcription factors that regulate carbohydrate utilization in anthers and pistils. Additionally, the review provides an overview of the role of sugars as signaling molecules regulating floral organ development and the interaction between sugars and hormones.
Collapse
Affiliation(s)
- Monica Borghi
- Utah State University, Department of Biology, 5305 Old Main Hill, Logan, UT, 84322-5305, USA.
| |
Collapse
|
3
|
Huang C, Wang ZW, Lin YH, Liang XG, Chen HM, Hong B, Chen XM, Zhou YN, Chen ZY, Dong S, Wang X, Shen S, Zhou SL. Siblicide between fertilized and unfertilized ovaries within the maize ear. Commun Biol 2025; 8:528. [PMID: 40164830 PMCID: PMC11958663 DOI: 10.1038/s42003-025-07784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
Evolutionarily, plants overproduce ovaries but selectively eliminate those inferiors to ensure competitive offspring to set. This sibling rivalry, reducing grain number, is detrimental agronomically. However, the interaction between early-fertilized and unfertilized ovaries in sequentially-pollinated panicles is unclear. Here, we fertilized the ovaries on half rows of maize ear (HP) while keeping the rest unfertilized to investigate their interaction. HP reduced the growth of unfertilized ovaries while promoting fertilized ovary (grain) development. 13C-isotope labeling of grains led to isotope signal detected in the unlabeled ovaries, validating their interactions. Transcriptionally, HP caused cell wall degradation and senescence of unfertilized ovaries, reducing their viability. These ovaries showed promoted auxin and jasmonic acid levels with activated auxin signaling but suppressed MAPK signaling. Conversely, HP grains activated MAPK signaling, sugar utilization, and cell proliferation. These findings demonstrate that grains suppress ovaries in ear to consolidate sugar utilization advantage for development, potentially through hormone and MAPK signaling.
Collapse
Affiliation(s)
- Cheng Huang
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Zhi-Wei Wang
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Yi-Hsuan Lin
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Xiao-Gui Liang
- Research Center on Ecological Science, Jiangxi Agricultural University, Nanchang, China
| | - Hui-Min Chen
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Bo Hong
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Xian-Min Chen
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Ya-Ning Zhou
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Zhen-Yuan Chen
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Shuai Dong
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, 100193, Beijing, China
| | - Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China.
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, 100193, Beijing, China.
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei Province, Wuqiao, China.
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, 100193, Beijing, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei Province, Wuqiao, China
| |
Collapse
|
4
|
Feng J, Tian J, Cao W. Naa50 regulates ovule and embryo sac development in Arabidopsis. PLANT CELL REPORTS 2025; 44:35. [PMID: 39847150 DOI: 10.1007/s00299-025-03431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
KEY MESSAGE N-terminal acetyltransferase Naa50 plays an important regulatory role in ovule development by indirectly promoting cell wall invertase 2/4 expression.
Collapse
Affiliation(s)
- Jinlin Feng
- College of Life Sciences, Shanxi Normal University, Taiyuan, 031002, Shanxi, China.
- Shanxi Key Laboratory of Plant Macromolecules Response to Stress, Shanxi Normal University, Taiyuan, 031002, Shanxi, China.
| | - Jiachuan Tian
- College of Life Sciences, Shanxi Normal University, Taiyuan, 031002, Shanxi, China
- Shanxi Key Laboratory of Plant Macromolecules Response to Stress, Shanxi Normal University, Taiyuan, 031002, Shanxi, China
| | - Weihong Cao
- College of Life Sciences, Shanxi Normal University, Taiyuan, 031002, Shanxi, China
- Shanxi Key Laboratory of Plant Macromolecules Response to Stress, Shanxi Normal University, Taiyuan, 031002, Shanxi, China
| |
Collapse
|
5
|
Wang Y, Gong C, Liu L, Wang T. The invertase gene PWIN1 confers chilling tolerance of rice at the booting stage via mediating pollen development. PLANT, CELL & ENVIRONMENT 2024; 47:4651-4663. [PMID: 39051263 DOI: 10.1111/pce.15053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Pollen fertility is a primary regulator of grain yield and is highly susceptible to cold and other environmental stress. We revealed the roles of rice cell wall invertase gene PWIN1 in pollen development and chilling tolerance. We uncovered its preferential expression in microspores and bicellular pollen and identified its knock-down and knock-out mutants. pwin1 mutants produced a higher proportion of abnormal pollen than wild-type plants. The contents of sucrose, glucose, and fructose were increased, while ATP content and primary metabolism activity were reduced in the mutant pollen. Furthermore, the loss of function of PWIN1 coincided with an increase in SnRK1 activity and a decrease in TOR activity. Under chilling conditions, pwin1 mutants displayed significantly reduced pollen viability and seed-setting rate, while overexpressing PWIN1 notably increased pollen viability and seed-setting rate as compared with the wild-type, indicating that PWIN1 is essential for rice pollen development and grain yield under cold stress. This study provides insights into the molecular mechanisms underlying rice pollen fertility during chilling stress, and a new module to improve chilling tolerance of rice at the booting stage by molecular design.
Collapse
Affiliation(s)
- Yanli Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chunyan Gong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
6
|
Shi H, Yun P, Zhu Y, Wang L, Wang Y, Li P, Zhou H, Cheng S, Liu R, Gao G, Zhang Q, Xiao J, Li Y, Xiong L, You A, He Y. Natural variation of WBR7 confers rice high yield and quality by modulating sucrose supply in sink organs. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2985-2999. [PMID: 38943653 PMCID: PMC11501006 DOI: 10.1111/pbi.14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 06/09/2024] [Indexed: 07/01/2024]
Abstract
Grain chalkiness is an undesirable trait that negatively regulates grain yield and quality in rice. However, the regulatory mechanism underlying chalkiness is complex and remains unclear. We identified a positive regulator of white-belly rate (WBR). The WBR7 gene encodes sucrose synthase 3 (SUS3). A weak functional allele of WBR7 is beneficial in increasing grain yield and quality. During the domestication of indica rice, a functional G/A variation in the coding region of WBR7 resulted in an E541K amino acid substitution in the GT-4 glycosyltransferase domain, leading to a significant decrease in decomposition activity of WBR7A (allele in cultivar Jin23B) compared with WBR7G (allele in cultivar Beilu130). The NIL(J23B) and knockout line NIL(BL130)KO exhibited lower WBR7 decomposition activity than that of NIL(BL130) and NIL(J23B)COM, resulting in less sucrose decomposition and metabolism in the conducting organs. This caused more sucrose transportation to the endosperm, enhancing the synthesis of storage components in the endosperm and leading to decreased WBR. More sucrose was also transported to the anthers, providing sufficient substrate and energy supply for pollen maturation and germination, ultimately leading to an increase rate of seed setting and increased grain yield. Our findings elucidate a mechanism for enhancing rice yield and quality by modulating sucrose metabolism and allocation, and provides a valuable allele for improved rice quality.
Collapse
Affiliation(s)
- Huan Shi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Peng Yun
- Rice Research Institute, Anhui Academy of Agricultural SciencesHefeiChina
| | - Yun Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Lu Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Yipei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Pingbo Li
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural SciencesJinanChina
| | - Hao Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Shiyuan Cheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Rongjia Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Aiqing You
- Institute of Food Crop, Hubei Academy of Agricultural ScienceWuhanChina
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
7
|
Wu L, Fan S, Li S, Li J, Zhang Z, Qin Y, Hu G, Zhao J. LcINH1 as an inhibitor of cell wall invertase LcCWIN5 regulates early seed development in Litchi chinensis Sonn. Int J Biol Macromol 2024; 278:134497. [PMID: 39116976 DOI: 10.1016/j.ijbiomac.2024.134497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/18/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Sugar signal mediated by Cell wall invertase (CWIN) plays a central role in seed development. In higher plants, invertase inhibitors (INHs) suppress CWIN activities at a post-translational level. In Litchi chinensis cultivar 'Nuomici', impaired CWIN expression is associated with seed abortion. Here, the expression of LcINH1 was significantly higher in the funicle of seed-aborting cultivar 'Nuomici' than big-seeded cultivar 'Heiye'. Promoter analyses found LcINH1 contained a 404 bp repeat fragment with an endosperm regulatory element of Skn-1_motif. LcINH1 and LcCWIN2/5 were located in plasma membrane. LcINH1 was able to interact with LcCWIN5, but not with LcCWIN2. In vitro enzyme activity assay demonstrated that LcINH1 could inhibit CWIN activity. Silencing LcINH1 in 'Nuomici' resulted in normal seed development, paralleled increased CWIN activities and glucose levels. Transcriptome analysis identified 1079 differentially expressed genes (DEGs) in LcINH1-silenced fruits. KEGG analysis showed significant enrichment of DEGs in pathways related to transporters and plant hormone signal transduction. Weighted gene co-expression network analysis indicated that the turquoise module was highly correlated with fructose content, and LcSWEET3b was closely associated with early seed development. These findings suggest that LcINH1 regulate LcCWIN5 activity at the post-translational level to alter sucrose metabolism, thereby affecting early seed development in litchi.
Collapse
Affiliation(s)
- Lijun Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shuying Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Sha Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jinzhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhike Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
8
|
Huang D, Wu B, Chen G, Xing W, Xu Y, Ma F, Li H, Hu W, Huang H, Yang L, Song S. Genome-wide analysis of the passion fruit invertase gene family reveals involvement of PeCWINV5 in hexose accumulation. BMC PLANT BIOLOGY 2024; 24:836. [PMID: 39243043 PMCID: PMC11378628 DOI: 10.1186/s12870-024-05392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/05/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Invertases (INVs) are key enzymes in sugar metabolism, cleaving sucrose into glucose and fructose and playing an important role in plant development and the stress response, however, the INV gene family in passion fruit has not been systematically reported. RESULTS In this study, a total of 16 PeINV genes were identified from the passion fruit genome and named according to their subcellular location and chromosome position. These include six cell wall invertase (CWINV) genes, two vacuolar invertase (VINV) genes, and eight neutral/alkaline invertase (N/AINV) genes. The gene structures, phylogenetic tree, and cis-acting elements of PeINV gene family were predicted using bioinformatics methods. Results showed that the upstream promoter region of the PeINV genes contained various response elements; particularly, PeVINV2, PeN/AINV3, PeN/AINV5, PeN/AINV6, PeN/AINV7, and PeN/AINV8 had more response elements. Additionally, the expression profiles of PeINV genes under different abiotic stresses (drought, salt, cold temperature, and high temperature) indicated that PeCWINV5, PeCWINV6, PeVINV1, PeVINV2, PeN/AINV2, PeN/AINV3, PeN/AINV6, and PeN/AINV7 responded significantly to these abiotic stresses, which was consistent with cis-acting element prediction results. Sucrose, glucose, and fructose are main soluble components in passion fruit pulp. The contents of total soluble sugar, hexoses, and sweetness index increased significantly at early stages during fruit ripening. Transcriptome data showed that with an increase in fruit development and maturity, the expression levels of PeCWINV2, PeCWINV5, and PeN/AINV3 exhibited an up-regulated trend, especially for PeCWINV5 which showed highest abundance, this correlated with the accumulation of soluble sugar and sweetness index. Transient overexpression results demonstrated that the contents of fructose, glucose and sucrose increased in the pulp of PeCWINV5 overexpressing fruit. It is speculated that this cell wall invertase gene, PeCWINV5, may play an important role in sucrose unloading and hexose accumulation. CONCLUSION In this study, we systematically identified INV genes in passion fruit for the first time and further investigated their physicochemical properties, evolution, and expression patterns. Furthermore, we screened out a key candidate gene involved in hexose accumulation. This study lays a foundation for further study on INV genes and will be beneficial on the genetic improvement of passion fruit breeding.
Collapse
Affiliation(s)
- Dongmei Huang
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs / Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province / Germplasm Repository of Passiflora, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P.R. China
| | - Bin Wu
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs / Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province / Germplasm Repository of Passiflora, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P.R. China
| | - Ge Chen
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Key Laboratory of Passion fruit Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, P.R. China
| | - Wenting Xing
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs / Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province / Germplasm Repository of Passiflora, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P.R. China
| | - Yi Xu
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs / Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province / Germplasm Repository of Passiflora, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P.R. China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Seed Industry Laboratory, Sanya, Hainan, 572025, P.R. China
| | - Funing Ma
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs / Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province / Germplasm Repository of Passiflora, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P.R. China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Seed Industry Laboratory, Sanya, Hainan, 572025, P.R. China
| | - Hongli Li
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs / Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province / Germplasm Repository of Passiflora, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P.R. China
| | - Wenbin Hu
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs / Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province / Germplasm Repository of Passiflora, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P.R. China
| | - Haijie Huang
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs / Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province / Germplasm Repository of Passiflora, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P.R. China
| | - Liu Yang
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Key Laboratory of Passion fruit Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, P.R. China.
| | - Shun Song
- Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs / Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province / Germplasm Repository of Passiflora, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P.R. China.
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Seed Industry Laboratory, Sanya, Hainan, 572025, P.R. China.
| |
Collapse
|
9
|
Zhao Y, Wang T, Wan S, Tong Y, Wei Y, Li P, Hu N, Liu Y, Chen H, Pan X, Zhang B, Peng R, Hu S. Genome-wide identification and functional analysis of the SiCIN gene family in foxtail millet (Setaria italica L.). Gene 2024; 921:148499. [PMID: 38718970 DOI: 10.1016/j.gene.2024.148499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
Cell wall invertase (CIN) is a vital member of plant invertase (INV) and plays a key role in the breakdown of sucrose. This enzyme facilitates the hydrolysis of sucrose into glucose and fructose, which is crucial for various aspects of plant growth and development. However, the function of CIN genes in foxtail millet (Setaria italica) is less studied. In this research, we used the blast-p of NCBI and TBtools for bidirectional comparison, and a total of 13 CIN genes (named SiCINs) were identified from foxtail millet by using Arabidopsis and rice CIN sequences as reference sequences. The phylogenetic tree analysis revealed that the CIN genes can be categorized into three subfamilies: group 1, group 2, and group 3. Furthermore, upon conducting chromosomal localization analysis, it was observed that the 13 SiCINs were distributed unevenly across five chromosomes. Cis-acting elements of SiCIN genes can be classified into three categories: plant growth and development, stress response, and hormone response. The largest number of cis-acting elements were those related to light response (G-box) and the cis-acting elements related to seed-specific regulation (RY-element). qRT-PCR analysis further confirmed that the expression of SiCIN7 and SiCIN8 in the grain was higher than that in any other tissues. The overexpression of SiCIN7 in Arabidopsis improved the grain size and thousand-grain weight, suggesting that SiCIN7 could positively regulate grain development. Our findings will help to further understand the grain-filling mechanism of SiCIN and elucidate the biological mechanism underlying the grain development of SiCIN.
Collapse
Affiliation(s)
- Yongqing Zhao
- College of Agricultural, Tarim University, Alar 843300, Xinjiang, China; College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China; Key Laboratory of Genetic Improvement and Efficient Production for Specialty Crops in Arid Southern Xinjiang of Xinjiang Corp, China
| | - Tao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Sumei Wan
- College of Agricultural, Tarim University, Alar 843300, Xinjiang, China; Key Laboratory of Genetic Improvement and Efficient Production for Specialty Crops in Arid Southern Xinjiang of Xinjiang Corp, China
| | - Yan Tong
- Anyang Academy of Agriculture Sciences, Anyang 455000, Henan, China
| | - Yangyang Wei
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Pengtao Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Nan Hu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Yuling Liu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Hongqi Chen
- Anyang Academy of Agriculture Sciences, Anyang 455000, Henan, China
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC 27858, United States
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, United States.
| | - Renhai Peng
- College of Agricultural, Tarim University, Alar 843300, Xinjiang, China; College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China; Key Laboratory of Genetic Improvement and Efficient Production for Specialty Crops in Arid Southern Xinjiang of Xinjiang Corp, China.
| | - Shoulin Hu
- College of Agricultural, Tarim University, Alar 843300, Xinjiang, China; Key Laboratory of Genetic Improvement and Efficient Production for Specialty Crops in Arid Southern Xinjiang of Xinjiang Corp, China.
| |
Collapse
|
10
|
Ma G, Zuo Z, Xie L, Han J. Genome-wide identification and characterization of the sucrose invertase gene family in Hemerocallis citrina. PeerJ 2024; 12:e17999. [PMID: 39221283 PMCID: PMC11366234 DOI: 10.7717/peerj.17999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Background Sucrose invertase is an important catalytic enzyme that is widely distributed in plants and can irreversibly hydrolyze sucrose into fructose and glucose. Daylily is an important perennial flower worldwide and a traditional vegetable in East Asia. Previous studies have suggested that sucrose invertase is involved in the aging of daylily flowers. However, knowledge about the number, physicochemical properties, and expression patterns of daylily sucrose invertases is still lacking. Identifying the daylily sucrose invertase family genes in the genome is highly important for understanding phylogenetic evolution and determining the genetic function of sucrose invertase. Methods To obtain basic knowledge about the number, classification, sequence composition, and physicochemical properties of sucrose invertases in daylily, bioinformatics software was used to analyze the genome of Hemerocallis citrina (H. citrina), and the basic properties of sucrose invertase genes and proteins were obtained. Then, combined with transcriptome data from flower organs at different developmental stages, the expression patterns of each gene were clarified. Finally, the reliability of the transcriptome data was verified by quantitative real-time polymerase chain reaction (PCR). Results Through software analysis, 35 sucrose invertases were identified from the H. citrina genome and named HcINV1-HcINV35; these enzymes belong to three subfamilies: cell wall invertases, vacuolar invertases, and chloroplast invertases. The amino acid composition, motif types, promoter composition, gene structure, protein physicochemical properties, gene chromosomal localization, and evolutionary adaptability of daylily invertases were determined; these results provided a comprehensive understanding of daylily invertases. The transcriptome expression profile combined with fluorescence quantitative reverse transcription-polymerase chain reaction (RT‒PCR) analysis suggested that almost all daylily invertase genes were expressed in flower organs, but even genes belonging to the same subfamily did not exhibit the same expression pattern at different developmental stages, suggesting that there may be redundancy or dissimilation in the function of daylily sucrose invertases.
Collapse
Affiliation(s)
- Guangying Ma
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, Zhejiang, China
| | - Ziwei Zuo
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, Zhejiang, China
| | - Lupeng Xie
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, Zhejiang, China
| | - Jiao Han
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Ferreira MJ, Silva J, Takeuchi H, Suzuki T, Higashiyama T, Coimbra S. Transcriptomic landscape of seedstick in Arabidopsis thaliana funiculus after fertilisation. BMC PLANT BIOLOGY 2024; 24:771. [PMID: 39134964 PMCID: PMC11320993 DOI: 10.1186/s12870-024-05489-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND In Angiosperms, the continuation of plant species is intricately dependent on the funiculus multifaceted role in nutrient transport, mechanical support, and dehiscence of seeds. SEEDSTICK (STK) is a MADS-box transcription factor involved in seed size and abscission, and one of the few genes identified as affecting funiculus growth. Given the importance of the funiculus to a correct seed development, allied with previous phenotypic observations of stk mutants, we performed a transcriptomic analysis of stk funiculi from floral stage 17, using RNA-sequencing, to infer on the deregulated networks of genes. RESULTS The generated dataset of differentially expressed genes was enriched with cell wall biogenesis, cell cycle, sugar metabolism and transport terms, all in accordance with stk phenotype observed in funiculi from floral stage 17. We selected eight differentially expressed genes for transcriptome validation using qPCR and/or promoter reporter lines. Those genes were involved with abscission, seed development or novel functions in stk funiculus, such as hormones/secondary metabolites transport. CONCLUSION Overall, the analysis performed in this study allowed delving into the STK-network established in Arabidopsis funiculus, fulfilling a literature gap. Simultaneously, our findings reinforced the reliability of the transcriptome, making it a valuable resource for candidate genes selection for functional genetic studies in the funiculus. This will enhance our understanding on the regulatory network controlled by STK, on the role of the funiculus and how seed development may be affected by them.
Collapse
Affiliation(s)
- Maria João Ferreira
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal
| | - Jessy Silva
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal
- School of Sciences, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Hidenori Takeuchi
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa- ku, Nagoya, 464-8601, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Biosciences and Biotechnology, Chubu University, Kasugai, 487-8501, Aichi, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa- ku, Nagoya, 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Sílvia Coimbra
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal.
| |
Collapse
|
12
|
Adhikari PB, Kasahara RD. An Overview on MADS Box Members in Plants: A Meta-Review. Int J Mol Sci 2024; 25:8233. [PMID: 39125803 PMCID: PMC11311456 DOI: 10.3390/ijms25158233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Most of the studied MADS box members are linked to flowering and fruit traits. However, higher volumes of studies on type II of the two types so far suggest that the florigenic effect of the gene members could just be the tip of the iceberg. In the current study, we used a systematic approach to obtain a general overview of the MADS box members' cross-trait and multifactor associations, and their pleiotropic potentials, based on a manually curated local reference database. While doing so, we screened for the co-occurrence of terms of interest within the title or abstract of each reference, with a threshold of three hits. The analysis results showed that our approach can retrieve multi-faceted information on the subject of study (MADS box gene members in the current case), which could otherwise have been skewed depending on the authors' expertise and/or volume of the literature reference base. Overall, our study discusses the roles of MADS box members in association with plant organs and trait-linked factors among plant species. Our assessment showed that plants with most of the MADS box member studies included tomato, apple, and rice after Arabidopsis. Furthermore, based on the degree of their multi-trait associations, FLC, SVP, and SOC1 are suggested to have relatively higher pleiotropic potential among others in plant growth, development, and flowering processes. The approach devised in this study is expected to be applicable for a basic understanding of any study subject of interest, regardless of the depth of prior knowledge.
Collapse
Affiliation(s)
- Prakash Babu Adhikari
- Biotechnology and Bioscience Research Center, Nagoya University, Nagoya 464-8601, Japan
| | | |
Collapse
|
13
|
Du B, Cao Y, Zhou J, Chen Y, Ye Z, Huang Y, Zhao X, Zou X, Zhang L. Sugar import mediated by sugar transporters and cell wall invertases for seed development in Camellia oleifera. HORTICULTURE RESEARCH 2024; 11:uhae133. [PMID: 38974190 PMCID: PMC11226869 DOI: 10.1093/hr/uhae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/28/2024] [Indexed: 07/09/2024]
Abstract
Seed development and yield depend on the transport and supply of sugar. However, an insufficient supply of nutrients from maternal tissues to embryos results in seed abortion and yield reduction in Camellia oleifera. In this study, we systematically examined the route and regulatory mechanisms of sugar import into developing C. oleifera seeds using a combination of histological observations, transcriptome profiling, and functional analysis. Labelling with the tracer carboxyfluorescein revealed a symplasmic route in the integument and an apoplasmic route for postphloem transport at the maternal-filial interface. Enzymatic activity and histological observation showed that at early stages [180-220 days after pollination (DAP)] of embryo differentiation, the high hexose/sucrose ratio was primarily mediated by acid invertases, and the micropylar endosperm/suspensor provides a channel for sugar import. Through Camellia genomic profiling, we identified three plasma membrane-localized proteins including CoSWEET1b, CoSWEET15, and CoSUT2 and one tonoplast-localized protein CoSWEET2a in seeds and verified their ability to transport various sugars via transformation in yeast mutants and calli. In situ hybridization and profiling of glycometabolism-related enzymes further demonstrated that CoSWEET15 functions as a micropylar endosperm-specific gene, together with the cell wall acid invertase CoCWIN9, to support early embryo development, while CoSWEET1b, CoSWEET2a, and CoSUT2 function at transfer cells and chalazal nucellus coupled with CoCWIN9 and CoCWIN11 responsible for sugar entry in bulk into the filial tissue. Collectively, our findings provide the first comprehensive evidence of the molecular regulation of sugar import into and within C. oleifera seeds and provide a new target for manipulating seed development.
Collapse
Affiliation(s)
- Bingshuai Du
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yibo Cao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Jing Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuqing Chen
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhihua Ye
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yiming Huang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Xinyan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Xinhui Zou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lingyun Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
14
|
Liu H, Yao X, Fan J, Lv L, Zhao Y, Nie J, Guo Y, Zhang L, Huang H, Shi Y, Zhang Q, Li J, Sui X. Cell wall invertase 3 plays critical roles in providing sugars during pollination and fertilization in cucumber. PLANT PHYSIOLOGY 2024; 195:1293-1311. [PMID: 38428987 DOI: 10.1093/plphys/kiae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
In plants, pollen-pistil interactions during pollination and fertilization mediate pollen hydration and germination, pollen tube growth, and seed set and development. Cell wall invertases (CWINs) help provide the carbohydrates for pollen development; however, their roles in pollination and fertilization have not been well established. In cucumber (Cucumis sativus), CsCWIN3 showed the highest expression in flowers, and we further examined CsCWIN3 for functions during pollination to seed set. Both CsCWIN3 transcript and CsCWIN3 protein exhibited similar expression patterns in the sepals, petals, stamen filaments, anther tapetum, and pollen of male flowers, as well as in the stigma, style, transmitting tract, and ovule funiculus of female flowers. Notably, repression of CsCWIN3 in cucumber did not affect the formation of parthenocarpic fruit but resulted in an arrested growth of stigma integuments in female flowers and a partially delayed dehiscence of anthers with decreased pollen viability in male flowers. Consequently, the pollen tube grew poorly in the gynoecia after pollination. In addition, CsCWIN3-RNA interference plants also showed affected seed development. Considering that sugar transporters could function in cucumber fecundity, we highlight the role of CsCWIN3 and a potential close collaboration between CWIN and sugar transporters in these processes. Overall, we used molecular and physiological analyses to determine the CsCWIN3-mediated metabolism during pollen formation, pollen tube growth, and plant fecundity. CsCWIN3 has essential roles from pollination and fertilization to seed set but not parthenocarpic fruit development in cucumber.
Collapse
Affiliation(s)
- Huan Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuehui Yao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jingwei Fan
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lijun Lv
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yalong Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jing Nie
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yicong Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lidong Zhang
- Tianjin Academy of Agricultural Sciences, Tianjin Kernel Cucumber Research Institute, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Ministry of Science and Technology of the People's Republic of China, Tianjin 300192, China
| | - Hongyu Huang
- Tianjin Academy of Agricultural Sciences, Tianjin Kernel Cucumber Research Institute, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Ministry of Science and Technology of the People's Republic of China, Tianjin 300192, China
| | - Yuzi Shi
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qian Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiawang Li
- Tianjin Academy of Agricultural Sciences, Tianjin Kernel Cucumber Research Institute, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Ministry of Science and Technology of the People's Republic of China, Tianjin 300192, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Xin Y, Chen X, Liang J, Wang S, Pan W, Wu J, Zhang M, Zaccai M, Yu X, Zhang X, Wu J, Du Y. Auxin regulates bulbil initiation by mediating sucrose metabolism in Lilium lancifolium. HORTICULTURE RESEARCH 2024; 11:uhae054. [PMID: 38706581 PMCID: PMC11069426 DOI: 10.1093/hr/uhae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/16/2024] [Indexed: 05/07/2024]
Abstract
Lily bulbils, which serve as advantageous axillary organs for vegetative propagation, have not been extensively studied in terms of the mechanism of bulbil initiation. The functions of auxin and sucrose metabolism have been implicated in axillary organ development, but their relationship in regulating bulbil initiation remains unclear. In this study, exogenous indole-3-acetic acid (IAA) treatment increased the endogenous auxin levels at leaf axils and significantly decreased bulbil number, whereas treatment with the auxin polar transport inhibitor N-1-naphthylphthalamic acid (NPA), which resulted in a low auxin concentration at leaf axils, stimulated bulbil initiation and increased bulbil number. A low level of auxin caused by NPA spraying or silencing of auxin biosynthesis genes YUCCA FLAVIN MONOOXYGENASE-LIKE 6 (LlYUC6) and TRYPTOPHAN AMINOTRANSFERASERELATED 1 (LlTAR1) facilitated sucrose metabolism by activating the expression of SUCROSE SYNTHASES 1 (LlSusy1) and CELL WALL INVERTASE 2 (LlCWIN2), resulting in enhanced bulbil initiation. Silencing LlSusy1 or LlCWIN2 hindered bulbil initiation. Moreover, the transcription factor BASIC HELIX-LOOP-HELIX 35 (LlbHLH35) directly bound the promoter of LlSusy1, but not the promoter of LlCWIN2, and activated its transcription in response to the auxin content, bridging the gap between auxin and sucrose metabolism. In conclusion, our results reveal that an LlbHLH35-LlSusy1 module mediates auxin-regulated sucrose metabolism during bulbil initiation.
Collapse
Affiliation(s)
- Yin Xin
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China
| | - Xi Chen
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Landscape Architecture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
| | - Jiahui Liang
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shaokun Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China
| | - Wenqiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China
| | - Jingxiang Wu
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China
| | - Mingfang Zhang
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Michele Zaccai
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Xiaonan Yu
- College of Landscape Architecture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
| | - Xiuhai Zhang
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China
| | - Yunpeng Du
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
16
|
Miret JA, Griffiths CA, Paul MJ. Sucrose homeostasis: Mechanisms and opportunity in crop yield improvement. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154188. [PMID: 38295650 DOI: 10.1016/j.jplph.2024.154188] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/10/2024]
Abstract
Sugar homeostasis is a critical feature of biological systems. In humans, raised and dysregulated blood sugar is a serious health issue. In plants, directed changes in sucrose homeostasis and allocation represent opportunities in crop improvement. Plant tissue sucrose varies more than blood glucose and is found at higher concentrations (cytosol and phloem ca. 100 mM v 3.9-6.9 mM for blood glucose). Tissue sucrose varies with developmental stage and environment, but cytosol and phloem exhibit tight sucrose control. Sucrose homeostasis is a consequence of the integration of photosynthesis, synthesis of storage end-products such as starch, transport of sucrose to sinks and sink metabolism. Trehalose 6-phosphate (T6P)-SnRK1 and TOR play central, still emerging roles in regulating and coordinating these processes. Overall, tissue sucrose levels are more strongly related to growth than to photosynthesis. As a key sucrose signal, T6P regulates sucrose levels, transport and metabolic pathways to coordinate source and sink at a whole plant level. Emerging evidence shows that T6P interacts with meristems. With careful targeting, T6P manipulation through exploiting natural variation, chemical intervention and genetic modification is delivering benefits for crop yields. Regulation of cereal grain set, filling and retention may be the most strategically important aspect of sucrose allocation and homeostasis for food security.
Collapse
Affiliation(s)
- Javier A Miret
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Cara A Griffiths
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Matthew J Paul
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
| |
Collapse
|
17
|
Cui Y, Ji X, Zhang Y, Liu Y, Bai Q, Su S. Transcriptomic and Metabolic Profiling Reveal the Mechanism of Ovule Development in Castanea mollissima. Int J Mol Sci 2024; 25:1974. [PMID: 38396651 PMCID: PMC10888392 DOI: 10.3390/ijms25041974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Ovule abortion, which is the main cause of empty burs in the Chinese chestnut, affects the formation of embryos and further reduces yield; therefore, it is important to study the mechanism of ovule abortion. In this study, we analyzed the transcriptomic and metabolomic data of ovules at critical developmental stages to explore the key regulatory networks affecting ovule development. The metabolites were enriched mainly in pathways involved in phytohormone signaling, energy metabolism, and amino acid synthesis in the endoplasmic reticulum. Analysis of the differentially expressed genes (DEGs) revealed that the HSP genes were significantly down-regulated during fertilization, indicating that this process is extremely sensitive to temperature. The hormone and sucrose contents of ovules before and after fertilization and of fertile and abortive ovules at different developmental stages showed significant differences, and it is hypothesized that that abnormal temperature may disrupt hormone synthesis, affecting the synthesis and catabolism of sucrose and ultimately resulting in the abortive development of Chinese chestnut ovules. At the pollination and fertilization stage of chestnuts, spraying with ethylene, ACC, and AIB significantly increased the number of developing fruit in each prickly pod compared to CK (water) treatment. These results indicated that both ethylene and ACC increased the rate of ovule development. This study provides an important theoretical molecular basis for the subsequent regulation of ovule development and nut yield in the Chinese chestnut.
Collapse
Affiliation(s)
- Yanhong Cui
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.C.); (X.J.); (Y.Z.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| | - Xingzhou Ji
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.C.); (X.J.); (Y.Z.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| | - Yu Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.C.); (X.J.); (Y.Z.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| | - Yang Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China;
| | - Qian Bai
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.C.); (X.J.); (Y.Z.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| | - Shuchai Su
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.C.); (X.J.); (Y.Z.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| |
Collapse
|
18
|
Zhao S, Rong J. Single-cell RNA-seq reveals a link of ovule abortion and sugar transport in Camellia oleifera. FRONTIERS IN PLANT SCIENCE 2024; 15:1274013. [PMID: 38371413 PMCID: PMC10869455 DOI: 10.3389/fpls.2024.1274013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
Camellia oleifera is the most important woody oil crop in China. Seed number per fruit is an important yield trait in C. oleifera. Ovule abortion is generally observed in C. oleifera and significantly decreases the seed number per fruit. However, the mechanisms of ovule abortion remain poorly understood at present. Single-cell RNA sequencing (scRNA-seq) was performed using mature ovaries of two C. oleifera varieties with different ovule abortion rates (OARs). In total, 20,526 high-quality cells were obtained, and 18 putative cell clusters were identified. Six cell types including female gametophyte, protoxylem, protophloem, procambium, epidermis, and parenchyma cells were identified from three main tissue types of ovule, placenta, and pericarp inner layer. A comparative analysis on scRNA-seq data between high- and low-OAR varieties demonstrated that the overall expression of CoSWEET and CoCWINV in procambium cells, and CoSTP in the integument was significantly upregulated in the low-OAR variety. Both the infertile ovule before pollination and the abortion ovule producing after compatible pollination might be attributed to selective abortion caused by low sugar levels in the apoplast around procambium cells and a low capability of hexose uptake in the integument. Here, the first single-cell transcriptional landscape is reported in woody crop ovaries. Our investigation demonstrates that ovule abortion may be related to sugar transport in placenta and ovules and sheds light on further deciphering the mechanism of regulating sugar transport and the improvement of seed yield in C. oleifera.
Collapse
Affiliation(s)
- Songzi Zhao
- Jiangxi Province Key Laboratory of Camellia Germplasm Conservation and Utilization, Jiangxi Academy of Forestry, Nanchang, China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Niu M, Chen X, Guo Y, Song J, Cui J, Wang L, Su N. Sugar Signals and R2R3-MYBs Participate in Potassium-Repressed Anthocyanin Accumulation in Radish. PLANT & CELL PHYSIOLOGY 2023; 64:1601-1616. [PMID: 37862259 DOI: 10.1093/pcp/pcad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 10/22/2023]
Abstract
Anthocyanin biosynthesis in plants is influenced by a wide range of environmental factors, such as light, temperature and nutrient availability. In this study, we revealed that the potassium-repressed anthocyanin accumulation in radish hypocotyls was associated with altered sugar distribution and sugar signaling pathways rather than changes in oxidative stress status. Sugar-feeding experiments suggested a hexokinase-independent glucose signal acted as a major contributor in regulating anthocyanin biosynthesis, transport and regulatory genes at the transcriptional level. Several R2R3-MYBs were identified as anthocyanin-related MYBs. Phylogenetic and protein sequence analyses suggested that RsMYB75 met the criteria of subgroup 6 MYB activator, while RsMYB39 and RsMYB82 seemed to be a non-canonical MYB anthocyanin activator and repressor, respectively. Through yeast-one-hybrid, dual-luciferase and transient expression assays, we confirmed that RsMYB39 strongly induced the promoter activity of anthocyanin transport-related gene RsGSTF12, while RsMYB82 significantly reduced anthocyanin biosynthesis gene RsANS1 expression. Molecular models are proposed in the discussion, allowing speculation on how these novel RsMYBs may regulate the expression levels of anthocyanin-related structural genes. Together, our data evidenced the strong impacts of potassium on sugar metabolism and signaling and its regulation of anthocyanin accumulation through different sugar signals and R2R3-MYBs in a hierarchical regulatory system.
Collapse
Affiliation(s)
- Mengyang Niu
- College of Life Sciences, Nanjing Agricultural University, No. 1, Weigang, Xiaoling Wei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Xuan Chen
- College of Life Sciences, Nanjing Agricultural University, No. 1, Weigang, Xiaoling Wei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Youyou Guo
- College of Life Sciences, Nanjing Agricultural University, No. 1, Weigang, Xiaoling Wei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Jinxue Song
- College of Life Sciences, Nanjing Agricultural University, No. 1, Weigang, Xiaoling Wei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Jin Cui
- College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310027, China
| | - Lu Wang
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, No. 1, Weigang, Xiaoling Wei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| |
Collapse
|
20
|
Zheng P, Shen M, Liu R, Cai X, Lin J, Wang L, Chen Y, Chen G, Cao S, Qin Y. Revealing Further Insights into Astringent Seeds of Chinese Fir by Integrated Metabolomic and Lipidomic Analyses. Int J Mol Sci 2023; 24:15103. [PMID: 37894783 PMCID: PMC10607028 DOI: 10.3390/ijms242015103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) stands as one of the pivotal afforestation tree species and timber resources in southern China. Nevertheless, the occurrence of seed abortion and a notably high proportion of astringent seeds significantly curtail the yield and quality of elite seeds, resulting in substantial economic losses. The development of astringent seeds is accompanied by significant physiological and biochemical alterations. Here, the first combined lipidomic and metabolomic analysis was performed to gain a comprehensive understanding of astringent seed traits. A total of 744 metabolites and 616 lipids were detected, of which 489 differential metabolites and 101 differential lipids were identified. In astringent seeds, most flavonoids and tannins, as well as proline and γ-aminobutyric acid, were more accumulated, along with a notable decrease in lipid unsaturation, indicating oxidative stress in the cells of astringent seeds. Conversely, numerous elemental metabolites were less accumulated, including amino acids and their derivatives, saccharides and alcohols, organic acids and nucleotides and their derivatives. Meanwhile, most lipid subclasses, mainly associated with energy storage (triglyceride and diglyceride) and cell membrane composition (phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine), also exhibited significant reductions. These results reflected a disruption in the cellular system or the occurrence of cell death, causing a reduction in viable cells within astringent seeds. Furthermore, only one lipid subclass, sphingosine phosphate (SoP), was more accumulated in astringent seeds. Additionally, lower accumulation of indole-3-acetic acid and more accumulation of salicylic acid (SA) were also identified in astringent seeds. Both SA and SoP were closely associated with the promotion of programmed cell death in astringent seeds. Collectively, our study revealed significant abnormal changes in phytohormones, lipids and various metabolites in astringent seeds, allowing us to propose a model for the development of astringent seeds in Chinese fir based on existing research and our findings. This work enriches our comprehension of astringent seeds and presents valuable bioindicators for the identification of astringent seeds.
Collapse
Affiliation(s)
- Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.Z.); (M.S.); (X.C.); (J.L.); (G.C.)
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Mengqian Shen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.Z.); (M.S.); (X.C.); (J.L.); (G.C.)
| | - Ruoyu Liu
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xinkai Cai
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.Z.); (M.S.); (X.C.); (J.L.); (G.C.)
| | - Jinting Lin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.Z.); (M.S.); (X.C.); (J.L.); (G.C.)
| | - Lulu Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.Z.); (M.S.); (X.C.); (J.L.); (G.C.)
| | - Yu Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Guangwei Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.Z.); (M.S.); (X.C.); (J.L.); (G.C.)
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.Z.); (M.S.); (X.C.); (J.L.); (G.C.)
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
21
|
Du K, Zhao W, Lv Z, Liu L, Ali S, Chen B, Hu W, Zhou Z, Wang Y. Auxin and abscisic acid play important roles in promoting glucose metabolism of reactivated young kernels of maize (Zea mays L.). PHYSIOLOGIA PLANTARUM 2023; 175:e14019. [PMID: 37882255 DOI: 10.1111/ppl.14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 10/27/2023]
Abstract
In maize, young kernels that are less competitive and have poor sink activity often abort. Studies have indicated that such poor competitiveness depends, in part, on the regulation by auxin (IAA) and abscisic acid (ABA). However, the mechanisms for such effects remain unclear. We used pollination-blocking and hand-pollination treatments accompanied by multi-omics and physiological tests, to identify underlying mechanism by which IAA and ABA, along with sugar signaling affect kernel development. Results showed that preventing pollination of the primary ears reactivated kernels in the secondary ears and altered both sugar metabolism and hormone signaling pathways. This was accompanied by increased enzyme activities in carbon metabolism and concentrations of glucose and starch, as well as increased levels of IAA and decreased levels of ABA in the reactivated kernels. Positive and negative correlations were observed between IAA, ABA contents and cell wall invertase (CWIN) activity, and glucose contents, respectively. In vitro culture revealed that the expression of genes involved in glucose utilization was upregulated by IAA, but downregulated by ABA. IAA could promote the expression of ABA signaling genes ZmPP2C9 and ZmPP2C13 but downregulated the expression of Zmnced5, an ABA biosynthesis gene, and ZmSnRK2.10, which is involved in ABA signal transduction. However, these genes showed opposite trends when IAA transport was inhibited. To summarize, we suggest a regulatory model for how IAA inhibits ABA metabolism by promoting the smooth utilization of glucose in reactivated young kernels. Our findings highlight the importance of IAA in ABA signaling by regulating glucose production and transport in maize.
Collapse
Affiliation(s)
- Kang Du
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Wenqing Zhao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agricultural University, Nanjing, China
| | - Zhiwei Lv
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Lin Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Saif Ali
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Binglin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agricultural University, Nanjing, China
| | - Wei Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agricultural University, Nanjing, China
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agricultural University, Nanjing, China
| | - Youhua Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Qi C, Xv L, Xia W, Zhu Y, Wang Y, Zhang Z, Dai H, Miao M. Genome-Wide Identification and Expression Patterns of Cucumber Invertases and Their Inhibitor Genes. Int J Mol Sci 2023; 24:13421. [PMID: 37686228 PMCID: PMC10487868 DOI: 10.3390/ijms241713421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Invertases and their inhibitors play important roles in sucrose metabolism, growth and development, signal transduction, and biotic and abiotic stress tolerance in many plant species. However, in cucumber, both the gene members and functions of invertase and its inhibitor families remain largely unclear. In this study, in comparison with the orthologues of Citrullus lanatus (watermelon), Cucumis melo (melon), and Arabidopsis thaliana (Arabidopsis), 12 invertase genes and 12 invertase inhibitor genes were identified from the genome of Cucumis sativus (cucumber). Among them, the 12 invertase genes were classified as 4 cell wall invertases, 6 cytoplasmic invertases, and 2 vacuolar invertases. Most invertase genes were conserved in cucumber, melon, and watermelon, with several duplicate genes in melon and watermelon. Transcriptome analysis distinguished these genes into various expression patterns, which included genes CsaV3_2G025540 and CsaV3_2G007220, which were significantly expressed in different tissues, organs, and development stages, and genes CsaV3_7G034730 and CsaV3_5G005910, which might be involved in biotic and abiotic stress. Six genes were further validated in cucumber based on quantitative real-time PCR (qRT-PCR), and three of them showed consistent expression patterns as revealed in the transcriptome. These results provide important information for further studies on the physiological functions of cucumber invertases (CSINVs) and their inhibitors (CSINHs).
Collapse
Affiliation(s)
- Chenze Qi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Liyun Xv
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Wenhao Xia
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Yunyi Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Yudan Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Zhiping Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Haibo Dai
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Minmin Miao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics, The Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
23
|
Chen J, Sun M, Xiao G, Shi R, Zhao C, Zhang Q, Yang S, Xuan Y. Starving the enemy: how plant and microbe compete for sugar on the border. FRONTIERS IN PLANT SCIENCE 2023; 14:1230254. [PMID: 37600180 PMCID: PMC10433384 DOI: 10.3389/fpls.2023.1230254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
As the primary energy source for a plant host and microbe to sustain life, sugar is generally exported by Sugars Will Eventually be Exported Transporters (SWEETs) to the host extracellular spaces or the apoplast. There, the host and microbes compete for hexose, sucrose, and other important nutrients. The host and microbial monosaccharide transporters (MSTs) and sucrose transporters (SUTs) play a key role in the "evolutionary arms race". The result of this competition hinges on the proportion of sugar distribution between the host and microbes. In some plants (such as Arabidopsis, corn, and rice) and their interacting pathogens, the key transporters responsible for sugar competition have been identified. However, the regulatory mechanisms of sugar transporters, especially in the microbes require further investigation. Here, the key transporters that are responsible for the sugar competition in the host and pathogen have been identified and the regulatory mechanisms of the sugar transport have been briefly analyzed. These data are of great significance to the increase of the sugar distribution in plants for improvement in the yield.
Collapse
Affiliation(s)
- Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Miao Sun
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Rujie Shi
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Chanjuan Zhao
- Chongqing Three Gorges Vocational College, Wanzhou, China
| | - Qianqian Zhang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Shuo Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
24
|
Shen S, Ma S, Wu L, Zhou SL, Ruan YL. Winners take all: competition for carbon resource determines grain fate. TRENDS IN PLANT SCIENCE 2023; 28:893-901. [PMID: 37080837 DOI: 10.1016/j.tplants.2023.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
As an evolutionary strategy, plants overproduce ovaries as a safety net for survival, with those losing in the competition for resources being aborted. Grain abortion is, however, highly detrimental agronomically. The molecular basis of selective abortion of grain siblings remains unknown. In this opinion article we assess the current understanding of the molecular players controlling carbon resource import into ovaries and young grains, followed by an evaluation of the spatial hierarchy of sink capacity among grain siblings, focusing on the roles exerted by sugar transporters and enzymes. We argue that, upon sequential pollination and fertilization, robust activation of the carbon import and sugar signaling system plays a key role in establishing the capacity of grain siblings to acquire enough carbon resources to survive and thrive.
Collapse
Affiliation(s)
- Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Si Ma
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Limin Wu
- Agriculture and Food, CSIRO, Canberra, ACT 2617, Australia
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong-Ling Ruan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, China; Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
25
|
Seitz J, Reimann TM, Fritz C, Schröder C, Knab J, Weber W, Stadler R. How pollen tubes fight for food: the impact of sucrose carriers and invertases of Arabidopsis thaliana on pollen development and pollen tube growth. FRONTIERS IN PLANT SCIENCE 2023; 14:1063765. [PMID: 37469768 PMCID: PMC10352115 DOI: 10.3389/fpls.2023.1063765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/05/2023] [Indexed: 07/21/2023]
Abstract
Pollen tubes of higher plants grow very rapidly until they reach the ovules to fertilize the female gametes. This growth process is energy demanding, however, the nutrition strategies of pollen are largely unexplored. Here, we studied the function of sucrose transporters and invertases during pollen germination and pollen tube growth. RT-PCR analyses, reporter lines and knockout mutants were used to study gene expression and protein function in pollen. The genome of Arabidopsis thaliana contains eight genes that encode functional sucrose/H+ symporters. Apart from AtSUC2, which is companion cell specific, all other AtSUC genes are expressed in pollen tubes. AtSUC1 is present in developing pollen and seems to be the most important sucrose transporter during the fertilization process. Pollen of an Atsuc1 knockout plant contain less sucrose and have defects in pollen germination and pollen tube growth. The loss of other sucrose carriers affects neither pollen germination nor pollen tube growth. A multiple knockout line Atsuc1Atsuc3Atsuc8Atsuc9 shows a phenotype that is comparable to the Atsuc1 mutant line. Loss of AtSUC1 can`t be complemented by AtSUC9, suggesting a special function of AtSUC1. Besides sucrose carriers, pollen tubes also synthesize monosaccharide carriers of the AtSTP family as well as invertases. We could show that AtcwINV2 and AtcwINV4 are expressed in pollen, AtcwINV1 in the transmitting tissue and AtcwINV5 in the funiculi of the ovary. The vacuolar invertase AtVI2 is also expressed in pollen, and a knockout of AtVI2 leads to a severe reduction in pollen germination. Our data indicate that AtSUC1 mediated sucrose accumulation during late stages of pollen development and cleavage of vacuolar sucrose into monosaccharides is important for the process of pollen germination.
Collapse
Affiliation(s)
- Jessica Seitz
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Theresa Maria Reimann
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Carolin Fritz
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Carola Schröder
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Johanna Knab
- Cell Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Walter Weber
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ruth Stadler
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
26
|
Considine MJ, Foyer CH. Metabolic regulation of quiescence in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1132-1148. [PMID: 36994639 PMCID: PMC10952390 DOI: 10.1111/tpj.16216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 05/31/2023]
Abstract
Quiescence is a crucial survival attribute in which cell division is repressed in a reversible manner. Although quiescence has long been viewed as an inactive state, recent studies have shown that it is an actively monitored process that is influenced by environmental stimuli. Here, we provide a perspective of the quiescent state and discuss how this process is tuned by energy, nutrient and oxygen status, and the pathways that sense and transmit these signals. We not only highlight the governance of canonical regulators and signalling mechanisms that respond to changes in nutrient and energy status, but also consider the central significance of mitochondrial functions and cues as key regulators of nuclear gene expression. Furthermore, we discuss how reactive oxygen species and the associated redox processes, which are intrinsically linked to energy carbohydrate metabolism, also play a key role in the orchestration of quiescence.
Collapse
Affiliation(s)
- Michael J. Considine
- The UWA Institute of Agriculture and the School of Molecular SciencesThe University of Western AustraliaPerthWestern Australia6009Australia
- The Department of Primary Industries and Regional DevelopmentPerthWestern Australia6000Australia
| | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonB15 2TTUK
| |
Collapse
|
27
|
Lv G, Zhang Y, Ma L, Yan X, Yuan M, Chen J, Cheng Y, Yang X, Qiao Q, Zhang L, Niaz M, Sun X, Zhang Q, Zhong S, Chen F. A cell wall invertase modulates resistance to fusarium crown rot and sharp eyespot in common wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36912577 DOI: 10.1111/jipb.13478] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/09/2023] [Indexed: 05/09/2023]
Abstract
Fusarium crown rot (FCR) and sharp eyespot (SE) are serious soil-borne diseases in wheat and its relatives that have been reported to cause wheat yield losses in many areas. In this study, the expression of a cell wall invertase gene, TaCWI-B1, was identified to be associated with FCR resistance through a combination of bulk segregant RNA sequencing and genome resequencing in a recombinant inbred line population. Two bi-parental populations were developed to further verify TaCWI-B1 association with FCR resistance. Overexpression lines and ethyl methanesulfonate (EMS) mutants revealed TaCWI-B1 positively regulating FCR resistance. Determination of cell wall thickness and components showed that the TaCWI-B1-overexpression lines exhibited considerably increased thickness and pectin and cellulose contents. Furthermore, we found that TaCWI-B1 directly interacted with an alpha-galactosidase (TaGAL). EMS mutants showed that TaGAL negatively modulated FCR resistance. The expression of TaGAL is negatively correlated with TaCWI-B1 levels, thus may reduce mannan degradation in the cell wall, consequently leading to thickening of the cell wall. Additionally, TaCWI-B1-overexpression lines and TaGAL mutants showed higher resistance to SE; however, TaCWI-B1 mutants were more susceptible to SE than controls. This study provides insights into a FCR and SE resistance gene to combat soil-borne diseases in common wheat.
Collapse
Affiliation(s)
- Guoguo Lv
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yixiao Zhang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Lin Ma
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Xiangning Yan
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Mingjie Yuan
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Jianhui Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yongzhen Cheng
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Xi Yang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Qi Qiao
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Leilei Zhang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Mohsin Niaz
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Xiaonan Sun
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Qijun Zhang
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, USA
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, USA
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| |
Collapse
|
28
|
Takasaki H, Ikeda M, Hasegawa R, Zhang Y, Sakamoto S, Maruyama D, Mitsuda N, Kinoshita T, Ohme-Takagi M. Elongation of Siliques Without Pollination 3 Regulates Nutrient Flow Necessary for Embryogenesis. PLANT & CELL PHYSIOLOGY 2023; 64:117-123. [PMID: 36264192 DOI: 10.1093/pcp/pcac151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Apomixis, defined as the transfer of maternal germplasm to offspring without fertilization, enables the fixation of F1-useful traits, providing advantages in crop breeding. However, most apomictic plants require pollination to produce the endosperm. The endosperm is essential for embryogenesis, and its development is suppressed until fertilization. We show that the expression of a chimeric repressor of the Elongation of Siliques without Pollination 3 (ESP3) gene (Pro35S:ESP3-SRDX) induces ovule enlargement without fertilization in Arabidopsis thaliana. The ESP3 gene encodes a protein similar to the flowering Wageningen homeodomain transcription factor containing a StAR-related lipid transfer domain. However, ESP3 lacks the homeobox-encoding region. Genes related to the cell cycle and sugar metabolism were upregulated in unfertilized Pro35S:ESP3-SRDX ovules similar to those in fertilized seeds, while those related to autophagy were downregulated similar to those in fertilized seeds. Unfertilized Pro35S:ESP3-SRDX ovules partially nourished embryos when only the egg was fertilized, accumulating hexoses without central cell proliferation. ESP3 may regulate nutrient flow during seed development, and ESP3-SRDX could be a useful tool for complete apomixis that does not require pseudo-fertilization.
Collapse
Affiliation(s)
- Hironori Takasaki
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570 Japan
| | - Miho Ikeda
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570 Japan
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Fukui, 910-1195 Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8570 Japan
| | - Reika Hasegawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570 Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8570 Japan
| | - Yilin Zhang
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570 Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8570 Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Toksuka-ku, Yokohama, Kanagawa, 244-0813 Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8570 Japan
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Toksuka-ku, Yokohama, Kanagawa, 244-0813 Japan
| | - Masaru Ohme-Takagi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570 Japan
- Institute of Tropical Plant Science and Microbiology, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| |
Collapse
|
29
|
Ahmad A, Li W, Zhang H, Wang H, Wang P, Jiao Y, Zhao C, Yang G, Hong D. Linkage and association mapping of ovule number per ovary (ON) in oilseed rape ( Brassica napus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:11. [PMID: 37313129 PMCID: PMC10248604 DOI: 10.1007/s11032-023-01355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/11/2023] [Indexed: 06/15/2023]
Abstract
Ovule number (ON) produced during flower development determines the maximum number of seeds per silique and thereby affects crop productivity; however, the genetic basis of ON remains poorly understood in oilseed rape (Brassica napus). In this study, we genetically dissected the ON variations in a double haploid (DH) population and in natural population (NP) by linkage mapping and genome-wide association analysis. Phenotypic analysis showed that ON displayed normal distribution in both populations with the broad-sense heritability of 0.861 (DH population) and 0.930 (natural population). Linkage mapping identified 5 QTLs related to ON, including qON-A03, qON-A07, qON-A07-2, qON-A10, and qON-C06. Genome-wide association studies (GWAS) revealed 214, 48, and 40 significant single-nucleotide polymorphisms (SNPs) by individually using the single-locus model GLM and the multiple-locus model MrMLM and FASTMrMLM. The phenotypic variation explained (PVE) by these QTLs and SNPs ranged from 2.00-17.40% to 5.03-7.33%, respectively. Integration of the results from both strategies identified four consensus genomic regions associated with ON from the chromosomes A03, A07, and A10. Our results preliminarily resolved the genetic basis of ON and provides useful molecular markers for plant yield improvement in B. napus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01355-7.
Collapse
Affiliation(s)
- Ali Ahmad
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Wenhui Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Yushun Jiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Chenqi Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
30
|
Chen J, Pan B, Li Z, Xu Y, Cao X, Jia J, Shen H, Sun L. Fruit shape loci sun, ovate, fs8.1 and their interactions affect seed size and shape in tomato. FRONTIERS IN PLANT SCIENCE 2023; 13:1091639. [PMID: 36714752 PMCID: PMC9879704 DOI: 10.3389/fpls.2022.1091639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Seed size and shape are not only critical for plant reproduction and dispersal, but also important agronomic traits. Tomato fruit shape loci sun, ovate and fs8.1 regulate the morphology of fruit, flower, leaf and stem, and recently their functions in seed morphogenesis have also been noticed. However, mechanism underlying seed morphology variation has not been systematically investigated yet. Thus, using the near isogenic lines (NILs) harboring one, two or three of the fruit shape loci, histological, physiological and transcriptional bases of seed morphology change have been studied. sun and ovate showed potential abilities in decreasing seed size, whereas, fs8.1 had a potential ability in increasing this parameter. Interactions between two loci and the interaction among three loci all led to significant decrease of seed size. All the loci significantly down-regulated seed shape index (SSI), except for sun/fs8.1 double NIL, which resulted in the reductions in both seed length and width and finally led to a decreased trend of SSI. Histologically, seed morphological changes were mainly attributed to the cell number variations. Transcriptional and physiological analyses discovered that phytohormone-, cytoskeleton- as well as sugar transportation- and degradation-related genes were involved in the regulation of seed morphology by the fruit shape loci.
Collapse
Affiliation(s)
- Jie Chen
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Bingqing Pan
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Zixiong Li
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Yue Xu
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaomeng Cao
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Jingjing Jia
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Huolin Shen
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Liang Sun
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Du J, Shi Q, Liu Y, Shi G, Li X, Li X. Integrated microRNA and transcriptome profiling reveals the regulatory network of embryo abortion in jujube. TREE PHYSIOLOGY 2023; 43:142-153. [PMID: 35972818 PMCID: PMC9833866 DOI: 10.1093/treephys/tpac098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/01/2022] [Indexed: 06/01/2023]
Abstract
Hybridization is an important approach to the production of new varieties with exceptional traits. Although the kernel rate of wild jujube (Ziziphus jujuba Mill. var. spinosa Hu.) is generally high, that of cultivated jujube (Z. jujuba Mill.) is low, greatly hampering the jujube breeding process. However, the mechanism by which this trait changed during jujube domestication remains unclear. Here, we explored the potential regulatory network that governs jujube embryo abortion using correlation analysis of population traits, artificial pollination, sugar content measurements and multi-omics analysis. The results showed that embryo abortion was an important reason for the low kernel rate of cultivated jujube, and kernel rate was negatively correlated with edible rate. Twenty-one days after pollination was a critical period for embryo abortion. At this time, the sugar content of cultivated 'Junzao' kernels decreased significantly compared with that of the pulp, but sugar content remained relatively stable in kernels of wild 'Suanzao'. A total of 1142 differentially expressed genes targeted by 93 microRNAs (miRNAs) were identified by transcriptome, miRNA and degradome sequencing, and may be involved in the regulation of embryo abortion during kernel development. Among them, DELLA protein, TCP14 and bHLH93 transcription factors have been shown to participate in the regulation of embryonic development. Our findings suggest that carbohydrate flow between different tissues of cultivated jujube exhibits a bias toward the pulp at 21 days after pollination, thereby restricting the process of kernel development. This information enhances our understanding of the embryo abortion process and reveals miRNA-target gene pairs that may be useful for molecular-assisted breeding.
Collapse
Affiliation(s)
- Jiangtao Du
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Qianqian Shi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Yu Liu
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Guozhao Shi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xi Li
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xingang Li
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Research Center for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
32
|
Huang Y, Li Y, Liu Z, Chen W, Wang Y, Wang X, Liu Y, Zheng Y. Combined analysis of the transcriptome and metabolome provides insights into the fleshy stem expansion mechanism in stem lettuce. FRONTIERS IN PLANT SCIENCE 2022; 13:1101199. [PMID: 36589074 PMCID: PMC9798005 DOI: 10.3389/fpls.2022.1101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
As a stem variety of lettuce, the fleshy stem is the main product organ of stem lettuce. The molecular mechanism of fleshy stem expansion in stem lettuce is a complex biological process. In the study, the material accumulation, gene expression, and morphogenesis during fleshy stem expansion process were analyzed by the comparative analysis of metabolome, transcriptome and the anatomical studies. The anatomical studies showed that the occurrence and activity of vascular cambium mainly led to the development of fleshy stems; and the volume of pith cells gradually increased and arranged tightly during the expansion process. A total of 822 differential metabolites and 9,383 differentially expressed genes (DEGs) were identified by the metabolomics and transcriptomics analyses, respectively. These changes significantly enriched in sugar synthesis, glycolysis, and plant hormone anabolism. The expression profiles of genes in the sugar metabolic pathway gradually increased in fleshy stem expansion process. But the sucrose content was the highest in the early stage of fleshy stem expansion, other sugars such as fructose and glucose content increased during fleshy stem expansion process. Plant hormones, including IAA, GA, CTK, and JA, depicted important roles at different stem expansion stages. A total of 1,805 DEGs were identified as transcription factors, such as MYB, bHLH, and bZIP, indicating that these transcription factor families might regulate the fleshy stems expansion in lettuce. In addition, the expression patterns identified by qRT-PCR were consistent with the expression abundance identified by the transcriptome data. The important genes and metabolites identified in the lettuce fleshy stem expansion process will provide important information for the further molecular mechanism study of lettuce fleshy stem growth and development.
Collapse
Affiliation(s)
- Ying Huang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| | - Yanwen Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Zhenning Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| | - Wanqin Chen
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, China
| | - Yalin Wang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, China
| | - Xiaohua Wang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| | - Yangxia Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
33
|
Genome-Wide Identification and Expression Analysis of the Aux/IAA Gene Family of the Drumstick Tree ( Moringa oleifera Lam.) Reveals Regulatory Effects on Shoot Regeneration. Int J Mol Sci 2022; 23:ijms232415729. [PMID: 36555370 PMCID: PMC9779525 DOI: 10.3390/ijms232415729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Auxin plays a critical role in organogenesis in plants. The classical auxin signaling pathway holds that auxin initiates downstream signal transduction by degrading Aux/IAA transcription repressors that interact with ARF transcription factors. In this study, 23 MoIAA genes were identified in the drumstick tree genome. All MoIAA genes were located within five subfamilies based on phylogenetic evolution analysis; the gene characteristics and promoter cis-elements were also analyzed. The protein interaction network between the MoIAAs with MoARFs was complex. The MoIAA gene family responded positively to NAA treatment, exhibiting different patterns and degrees, notably for MoIAA1, MoIAA7 and MoIAA13. The three genes expressed and functioned in the nucleus; only the intact encoding protein of MoIAA13 exhibited transcriptional activation activity. The shoot regeneration capacity in the 35S::MoIAA13-OE transgenic line was considerably lower than in the wild type. These results establish a foundation for further research on MoIAA gene function and provide useful information for improved tissue culture efficiency and molecular breeding of M. oleifera.
Collapse
|
34
|
Liu C, Hu S, Liu S, Shi W, Xie D, Chen Q, Sun H, Song L, Li Z, Jiang R, Lv D, Wang J, Liu X. Functional characterization of a cell wall invertase inhibitor StInvInh1 revealed its involvement in potato microtuber size in vitro. FRONTIERS IN PLANT SCIENCE 2022; 13:1015815. [PMID: 36262645 PMCID: PMC9574400 DOI: 10.3389/fpls.2022.1015815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Cell wall invertase (CWI) is as an essential coordinator in carbohydrate partitioning and sink strength determination, thereby playing key roles in plant development. Emerging evidence revealed that the subtle regulation of CWI activity considerably depends on the post-translational mechanism by their inhibitors (INHs). In our previous research, two putative INHs (StInvInh1 and StInvInh3) were expected as targets of CWI in potato (Solanum tubersum), a model species of tuberous plants. Here, transcript analysis revealed that StInvInh1 showed an overall higher expression than StInhInh3 in all tested organs. Then, StInvInh1 was further selected to study. In accordance with this, the activity of StInvInh1 promoter increased with the development of leaves in plantlets but decreased with the development of microtubers in vitro and mainly appeared in vascular bundle. The recombinant protein StInvInh1 displayed inhibitory activities on the extracted CWI in vitro and StInvInh1 interacted with a CWI StcwINV2 in vivo by bimolecular fluorescence complementation. Furthermore, silencing StInvInh1 in potato dramatically increased the CWI activity without changing activities of vacuolar and cytoplasmic invertase, indicating that StInvInh1 functions as a typical INH of CWI. Releasing CWI activity in StInvInh1 RNA interference transgenic potato led to improvements in potato microtuber size in coordination with higher accumulations of dry matter in vitro. Taken together, these findings demonstrate that StInvInh1 encodes an INH of CWI and regulates the microtuber development process through fine-tuning apoplastic sucrose metabolism, which may provide new insights into tuber development.
Collapse
|
35
|
Ren Z, Zhang D, Jiao C, Li D, Wu Y, Wang X, Gao C, Lin Y, Ruan Y, Xia Y. Comparative transcriptome and metabolome analyses identified the mode of sucrose degradation as a metabolic marker for early vegetative propagation in bulbs of Lycoris. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:115-134. [PMID: 35942603 PMCID: PMC9826282 DOI: 10.1111/tpj.15935] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/26/2022] [Accepted: 08/07/2022] [Indexed: 06/01/2023]
Abstract
Vegetative propagation (VP) is an important practice for production in many horticultural plants. Sugar supply constitutes the basis of VP in bulb flowers, but the underlying molecular basis remains elusive. By performing a combined sequencing technologies coupled with ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry approach for metabolic analyses, we compared two Lycoris species with contrasting regeneration rates: high-regeneration Lycoris sprengeri and low-regeneration Lycoris aurea. A comprehensive multi-omics analyses identified both expected processes involving carbohydrate metabolism and transcription factor networks, as well as the metabolic characteristics for each developmental stage. A higher abundance of the differentially expressed genes including those encoding ethylene responsive factors was detected at bulblet initiation stage compared to the late stage of bulblet development. High hexose-to-sucrose ratio correlated to bulblet formation across all the species examined, indicating its role in the VP process in Lycoris bulb. Importantly, a clear difference between cell wall invertase (CWIN)-catalyzed sucrose unloading in high-regeneration species and the sucrose synthase-catalyzed pathway in low-regeneration species was observed at the bulblet initiation stage, which was supported by findings from carboxyfluorescein tracing and quantitative real-time PCR analyses. Collectively, the findings indicate a sugar-mediated model of the regulation of VP in which high CWIN expression or activity may promote bulblet initiation via enhancing apoplasmic unloading of sucrose or sugar signals, whereas the subsequent high ratio of hexose-to-sucrose likely supports cell division characterized in the next phase of bulblet formation.
Collapse
Affiliation(s)
- Zi‐Ming Ren
- Department of Landscape Architecture, School of Civil Engineering and ArchitectureZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Dong Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Chen Jiao
- Key Lab of Molecular Biology of Crop Pathogens and InsectsInstitute of Biotechnology, Zhejiang UniversityHangzhou310058China
| | - Dan‐Qing Li
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Yun Wu
- Department of Landscape Architecture, School of Civil Engineering and ArchitectureZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Xiu‐Yun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Cong Gao
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Ye‐Fan Lin
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Yong‐Ling Ruan
- Division of Plant Sciences, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Yazhou Bay LaboratorySanya572024China
| | - Yi‐Ping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| |
Collapse
|
36
|
Tahir J, Crowhurst R, Deroles S, Hilario E, Deng C, Schaffer R, Le Lievre L, Brendolise C, Chagné D, Gardiner SE, Knaebel M, Catanach A, McCallum J, Datson P, Thomson S, Brownfield LR, Nardozza S, Pilkington SM. First Chromosome-Scale Assembly and Deep Floral-Bud Transcriptome of a Male Kiwifruit. Front Genet 2022; 13:852161. [PMID: 35651931 PMCID: PMC9149279 DOI: 10.3389/fgene.2022.852161] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jibran Tahir
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Ross Crowhurst
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Simon Deroles
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Elena Hilario
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Robert Schaffer
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Liam Le Lievre
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Cyril Brendolise
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Manawatu Mail Centre, Palmerston North, New Zealand
| | - Susan E Gardiner
- The New Zealand Institute for Plant and Food Research Limited, Manawatu Mail Centre, Palmerston North, New Zealand
| | - Mareike Knaebel
- The New Zealand Institute for Plant and Food Research Limited, Manawatu Mail Centre, Palmerston North, New Zealand
| | - Andrew Catanach
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - John McCallum
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Paul Datson
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Susan Thomson
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | | | - Simona Nardozza
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Sarah M Pilkington
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
37
|
Lu Z, Hu W, Ye X, Lu J, Gu H, Li X, Cong R, Ren T. Potassium regulates diel leaf growth of Brassica napus by coordinating the rhythmic carbon supply and water balance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3686-3698. [PMID: 35176159 DOI: 10.1093/jxb/erac060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Carbon and water are two main factors limiting leaf expansion. Restriction of leaf growth by low availability of carbon or water is among the earliest visible effects of potassium (K) deficiency. It is not known how K is involved in regulating the rhythmic supply of these two substrates, which differ remarkably across the day-night cycle, affecting leaf expansion. We investigated the effects of different K regimes on the time courses of leaf expansion, carbon assimilation, carbohydrates, and hydraulic properties of Brassica napus. Potassium supply increased leaf area, predominantly by promoting night-time leaf expansion (>60%), which was mainly associated with increased availability of carbohydrates from photosynthetic carbon fixation and import from old leaves rather than improvement of leaf hydraulics. However, sufficient K improved leaf hydraulic conductance to balance diurnal evaporative water loss and increase the osmotic contribution of water-soluble carbohydrates, thereby maintaining leaf turgor and increasing the daytime expansion rate. The results also indicated an ontogenetic role of K in modifying the amplitude of circadian expansion; almost 80% of the increase in leaf area occurred before the area reached 66.9% of the mature size. Our data provide mechanistic insight into K-mediated diel coordination of rhythmic carbon supply and water balance in leaf expansion.
Collapse
Affiliation(s)
- Zhifeng Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Wenshi Hu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Xiaolei Ye
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Jianwei Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Hehe Gu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Xiaokun Li
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Rihuan Cong
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Tao Ren
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| |
Collapse
|
38
|
Ko HY, Tseng HW, Ho LH, Wang L, Chang TF, Lin A, Ruan YL, Neuhaus HE, Guo WJ. Hexose translocation mediated by SlSWEET5b is required for pollen maturation in Solanum lycopersicum. PLANT PHYSIOLOGY 2022; 189:344-359. [PMID: 35166824 PMCID: PMC9070840 DOI: 10.1093/plphys/kiac057] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 05/31/2023]
Abstract
Pollen fertility is critical for successful fertilization and, accordingly, for crop yield. While sugar unloading affects the growth and development of all types of sink organs, the molecular nature of sugar import to tomato (Solanum lycopersicum) pollen is poorly understood. However, sugar will eventually be exported transporters (SWEETs) have been proposed to be involved in pollen development. Here, reverse transcription-quantitative polymerase chain reaction (PCR) revealed that SlSWEET5b was markedly expressed in flowers when compared to the remaining tomato SlSWEETs, particularly in the stamens of maturing flower buds undergoing mitosis. Distinct accumulation of SlSWEET5b-β-glucuronidase activities was present in mature flower buds, especially in anther vascular and inner cells, symplasmic isolated microspores (pollen grains), and styles. The demonstration that SlSWEET5b-GFP fusion proteins are located in the plasma membrane supports the idea that the SlSWEET5b carrier functions in apoplasmic sugar translocation during pollen maturation. This is consistent with data from yeast complementation experiments and radiotracer uptake, showing that SlSWEET5b operates as a low-affinity hexose-specific passive facilitator, with a Km of ∼36 mM. Most importantly, RNAi-mediated suppression of SlSWEET5b expression resulted in shrunken nucleus-less pollen cells, impaired germination, and low seed yield. Moreover, stamens from SlSWEET5b-silenced tomato mutants showed significantly lower amounts of sucrose (Suc) and increased invertase activity, indicating reduced carbon supply and perturbed Suc homeostasis in these tissues. Taken together, our findings reveal the essential role of SlSWEET5b in mediating apoplasmic hexose import into phloem unloading cells and into developing pollen cells to support pollen mitosis and maturation in tomato flowers.
Collapse
Affiliation(s)
| | | | - Li-Hsuan Ho
- Plant Physiology, University of Kaiserslautern, 22 D-67663, Kaiserslautern, Erwin-Schrödinger-Straße, Germany
| | - Lu Wang
- School of Environmental and Life Sciences and Australia-China Research Centre for Crop Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Tzu-Fang Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 7013, Taiwan
| | - Annie Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 7013, Taiwan
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences and Australia-China Research Centre for Crop Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, 22 D-67663, Kaiserslautern, Erwin-Schrödinger-Straße, Germany
| | | |
Collapse
|
39
|
Liu YH, Song YH, Ruan YL. Sugar conundrum in plant-pathogen interactions: roles of invertase and sugar transporters depend on pathosystems. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1910-1925. [PMID: 35104311 PMCID: PMC8982439 DOI: 10.1093/jxb/erab562] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/25/2021] [Indexed: 06/12/2023]
Abstract
It has been increasingly recognized that CWIN (cell wall invertase) and sugar transporters including STP (sugar transport protein) and SWEET (sugar will eventually be exported transporters) play important roles in plant-pathogen interactions. However, the information available in the literature comes from diverse systems and often yields contradictory findings and conclusions. To solve this puzzle, we provide here a comprehensive assessment of the topic. Our analyses revealed that the regulation of plant-microbe interactions by CWIN, SWEET, and STP is conditioned by the specific pathosystems involved. The roles of CWINs in plant resistance are largely determined by the lifestyle of pathogens (biotrophs versus necrotrophs or hemibiotrophs), possibly through CWIN-mediated salicylic acid or jasmonic acid signaling and programmed cell death pathways. The up-regulation of SWEETs and STPs may enhance or reduce plant resistance, depending on the cellular sites from which pathogens acquire sugars from the host cells. Finally, plants employ unique mechanisms to defend against viral infection, in part through a sugar-based regulation of plasmodesmatal development or aperture. Our appraisal further calls for attention to be paid to the involvement of microbial sugar metabolism and transport in plant-pathogen interactions, which is an integrated but overlooked component of such interactions.
Collapse
Affiliation(s)
- Yong-Hua Liu
- School of Horticulture, Hainan University, Haikou, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Haikou, China
| | - You-Hong Song
- Innovation Cluster of Crop Molecular Biology and Breeding, Anhui Agricultural University, Hefei, China
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yong-Ling Ruan
- Innovation Cluster of Crop Molecular Biology and Breeding, Anhui Agricultural University, Hefei, China
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
40
|
Shen S, Ma S, Chen XM, Yi F, Li BB, Liang XG, Liao SJ, Gao LH, Zhou SL, Ruan YL. A transcriptional landscape underlying sugar import for grain set in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:228-242. [PMID: 35020972 DOI: 10.1111/tpj.15668] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 05/12/2023]
Abstract
Developing seed depends on sugar supply for its growth and yield formation. Maize (Zea mays L.) produces the largest grains among cereals. However, there is a lack of holistic understanding of the transcriptional landscape of genes controlling sucrose transport to, and utilization within, maize grains. By performing in-depth data mining of spatio-temporal transcriptomes coupled with histological and heterologous functional analyses, we identified transporter genes specifically expressed in the maternal-filial interface, including (i) ZmSWEET11/13b in the placento-chalazal zone, where sucrose is exported into the apoplasmic space, and (ii) ZmSTP3, ZmSWEET3a/4c (monosaccharide transporters), ZmSUT1, and ZmSWEET11/13a (sucrose transporters) in the basal endosperm transfer cells for retrieval of apoplasmic sucrose or hexoses after hydrolysis by extracellular invertase. In the embryo and its surrounding regions, an embryo-localized ZmSUT4 and a cohort of ZmSWEETs were specifically expressed. Interestingly, drought repressed those ZmSWEETs likely exporting sucrose but enhanced the expression of most transporter genes for uptake of apoplasmic sugars. Importantly, this drought-induced fluctuation in gene expression was largely attenuated by an increased C supply via controlled pollination, indicating that the altered gene expression is conditioned by C availability. Based on the analyses above, we proposed a holistic model on the spatio-temporal expression of genes that likely govern sugar transport and utilization across maize maternal and endosperm and embryo tissues during the critical stage of grain set. Collectively, the findings represent an advancement towards a holistic understanding of the transcriptional landscape underlying post-phloem sugar transport in maize grain and indicate that the drought-induced changes in gene expression are attributable to low C status.
Collapse
Affiliation(s)
- Si Shen
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xian-Min Chen
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Fei Yi
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Bin-Bin Li
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiao-Gui Liang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- Research Center on Ecological Science, Jiangxi Agricultural University, Nanchang, China
| | - Sheng-Jin Liao
- Research Center of Agricultural Information & Technology, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100193, China
| | - Li-Hong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shun-Li Zhou
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong-Ling Ruan
- School of Environmental & Life Sciences, The University of Newcastle, New South Wales, 2308, Australia
| |
Collapse
|
41
|
Coculo D, Lionetti V. The Plant Invertase/Pectin Methylesterase Inhibitor Superfamily. FRONTIERS IN PLANT SCIENCE 2022; 13:863892. [PMID: 35401607 PMCID: PMC8990755 DOI: 10.3389/fpls.2022.863892] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/02/2022] [Indexed: 05/08/2023]
Abstract
Invertases (INVs) and pectin methylesterases (PMEs) are essential enzymes coordinating carbohydrate metabolism, stress responses, and sugar signaling. INVs catalyzes the cleavage of sucrose into glucose and fructose, exerting a pivotal role in sucrose metabolism, cellulose biosynthesis, nitrogen uptake, reactive oxygen species scavenging as well as osmotic stress adaptation. PMEs exert a dynamic control of pectin methylesterification to manage cell adhesion, cell wall porosity, and elasticity, as well as perception and signaling of stresses. INV and PME activities can be regulated by specific proteinaceous inhibitors, named INV inhibitors (INVIs) and PME Inhibitors (PMEIs). Despite targeting different enzymes, INVIs and PMEIs belong to the same large protein family named "Plant Invertase/Pectin Methylesterase Inhibitor Superfamily." INVIs and PMEIs, while showing a low aa sequence identity, they share several structural properties. The two inhibitors showed mainly alpha-helices in their secondary structure and both form a non-covalent 1:1 complex with their enzymatic counterpart. Some PMEI members are organized in a gene cluster with specific PMEs. Although the most important physiological information was obtained in Arabidopsis thaliana, there are now several characterized INVI/PMEIs in different plant species. This review provides an integrated and updated overview of this fascinating superfamily, from the specific activity of characterized isoforms to their specific functions in plant physiology. We also highlight INVI/PMEIs as biotechnological tools to control different aspects of plant growth and defense. Some isoforms are discussed in view of their potential applications to improve industrial processes. A review of the nomenclature of some isoforms is carried out to eliminate confusion about the identity and the names of some INVI/PMEI member. Open questions, shortcoming, and opportunities for future research are also presented.
Collapse
Affiliation(s)
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
42
|
Abstract
Flowering plants produce flowers and one of the most complex floral structures is the pistil or the gynoecium. All the floral organs differentiate from the floral meristem. Various reviews exist on molecular mechanisms controlling reproductive development, but most focus on a short time window and there has been no recent review on the complete developmental time frame of gynoecium and fruit formation. Here, we highlight recent discoveries, including the players, interactions and mechanisms that govern gynoecium and fruit development in Arabidopsis. We also present the currently known gene regulatory networks from gynoecium initiation until fruit maturation.
Collapse
Affiliation(s)
- Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, México
| |
Collapse
|
43
|
Ruan YL. CWIN-sugar transporter nexus is a key component for reproductive success. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153572. [PMID: 34839101 DOI: 10.1016/j.jplph.2021.153572] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 05/26/2023]
Abstract
Reproductive development is critical for completion of plant life cycle and realization of crop yield potential. Reproductive organs comprise multiple distinctive or even transgenerational tissues, which are symplasmically disconnected from each other for protection and better control of nutrition and development. Cell wall invertases (CWINs) and sugar transporters are often specifically or abundantly expressed in these apoplasmic interfaces to provide carbon nutrients and sugar signals to developing pollens, endosperm and embryo. Emerging evidence shows that some of those genes were indeed targeted for selection during crop domestication. In this Opinion paper, I discuss the functional significance of the localized expression of CWINs and sugar transporters in reproductive organs followed by an analysis on how their spatial patterning may be regulated at the molecular levels and how the localized CWIN activity may be exploited for improvement of reproductive output.
Collapse
Affiliation(s)
- Yong-Ling Ruan
- School of Environmental and Life Science, University of Newcastle, NSW, 2308, Australia; Centre of Plant Reproductive and Stress Biology, Northwest A&F University, Shaanxi, 712100, China.
| |
Collapse
|
44
|
Kim JY, Loo EPI, Pang TY, Lercher M, Frommer WB, Wudick MM. Cellular export of sugars and amino acids: role in feeding other cells and organisms. PLANT PHYSIOLOGY 2021; 187:1893-1914. [PMID: 34015139 PMCID: PMC8644676 DOI: 10.1093/plphys/kiab228] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/29/2021] [Indexed: 05/20/2023]
Abstract
Sucrose, hexoses, and raffinose play key roles in the plant metabolism. Sucrose and raffinose, produced by photosynthesis, are translocated from leaves to flowers, developing seeds and roots. Translocation occurs in the sieve elements or sieve tubes of angiosperms. But how is sucrose loaded into and unloaded from the sieve elements? There seem to be two principal routes: one through plasmodesmata and one via the apoplasm. The best-studied transporters are the H+/SUCROSE TRANSPORTERs (SUTs) in the sieve element-companion cell complex. Sucrose is delivered to SUTs by SWEET sugar uniporters that release these key metabolites into the apoplasmic space. The H+/amino acid permeases and the UmamiT amino acid transporters are hypothesized to play analogous roles as the SUT-SWEET pair to transport amino acids. SWEETs and UmamiTs also act in many other important processes-for example, seed filling, nectar secretion, and pollen nutrition. We present information on cell type-specific enrichment of SWEET and UmamiT family members and propose several members to play redundant roles in the efflux of sucrose and amino acids across different cell types in the leaf. Pathogens hijack SWEETs and thus represent a major susceptibility of the plant. Here, we provide an update on the status of research on intercellular and long-distance translocation of key metabolites such as sucrose and amino acids, communication of the plants with the root microbiota via root exudates, discuss the existence of transporters for other important metabolites and provide potential perspectives that may direct future research activities.
Collapse
Affiliation(s)
- Ji-Yun Kim
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Eliza P -I Loo
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Tin Yau Pang
- Institute for Computer Science and Department of Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Martin Lercher
- Institute for Computer Science and Department of Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Wolf B Frommer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Michael M Wudick
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Author for communication:
| |
Collapse
|
45
|
Liu LM, Zhang HQ, Cheng K, Zhang YM. Integrated Bioinformatics Analyses of PIN1, CKX, and Yield-Related Genes Reveals the Molecular Mechanisms for the Difference of Seed Number Per Pod Between Soybean and Cowpea. FRONTIERS IN PLANT SCIENCE 2021; 12:749902. [PMID: 34912354 PMCID: PMC8667476 DOI: 10.3389/fpls.2021.749902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
There is limited advancement on seed number per pod (SNPP) in soybean breeding, resulting in low yield in China. To address this issue, we identified PIN1 and CKX gene families that regulate SNPP in Arabidopsis, analyzed the differences of auxin and cytokinin pathways, and constructed interaction networks on PIN1, CKX, and yield-related genes in soybean and cowpea. First, the relative expression level (REL) of PIN1 and the plasma membrane localization and phosphorylation levels of PIN1 protein were less in soybean than in cowpea, which make auxin transport efficiency lower in soybean, and its two interacted proteins might be involved in serine hydrolysis, so soybean has lower SNPP than cowpea. Then, the CKX gene family, along with its positive regulatory factor ROCK1, had higher REL and less miRNA regulation in soybean flowers than in cowpea ones. These lead to higher cytokinin degradation level, which further reduces the REL of PIN1 and decreases soybean SNPP. We found that VuACX4 had much higher REL than GmACX4, although the two genes essential in embryo development interact with the CKX gene family. Next, a tandem duplication experienced by legumes led to the differentiation of CKX3 into CKX3a and CKX3b, in which CKX3a is a key gene affecting ovule number. Finally, in the yield-related gene networks, three cowpea CBP genes had higher RELs than two soybean CBP genes, low RELs of three soybean-specific IPT genes might lead to a decrease in cytokinin synthesis, and some negative and positive SNPP regulation were found, respectively, in soybean and cowpea. These networks may explain the SNPP difference in the two crops. We deduced that ckx3a or ckx3a ckx6 ckx7 mutants, interfering CYP88A, and over-expressed DELLA increase SNPP in soybean. This study reveals the molecular mechanism for the SNPP difference in the two crops, and provides an important idea for increasing soybean yield.
Collapse
|
46
|
Dahro B, Wang Y, Alhag A, Li C, Guo D, Liu JH. Genome-wide identification and expression profiling of invertase gene family for abiotic stresses tolerance in Poncirus trifoliata. BMC PLANT BIOLOGY 2021; 21:559. [PMID: 34823468 PMCID: PMC8614057 DOI: 10.1186/s12870-021-03337-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/08/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Sucrose (Suc) hydrolysis is directly associated with plants tolerance to multiple abiotic stresses. Invertase (INV) enzymes irreversibly catalyze Suc degradation to produce glucose (Glc) and fructose (Frc). However, genome-wide identification and function of individual members of the INV gene family in Poncirus trifoliata or its Citrus relatives in response to abiotic stresses are not fully understood. RESULTS In this report, fourteen non-redundant PtrINV family members were identified in P. trifoliata including seven alkaline/neutral INV genes (PtrA/NINV1-7), two vacuolar INV genes (PtrVINV1-2), and five cell wall INV isoforms (PtrCWINV1-5). A comprehensive analysis based on the biochemical characteristics, the chromosomal location, the exon-intron structures and the evolutionary relationships demonstrated the conservation and the divergence of PtrINVs. In addition, expression analysis of INV genes during several abiotic stresses in various tissues indicated the central role of A/NINV7 among INV family members in response to abiotic stresses. Furthermore, our data demonstrated that high accumulation of Suc, Glc, Frc and total sugar contents were directly correlated with the elevated activities of soluble INV enzymes in the cold-tolerant P. trifoliata, C. ichangensis and C. sinensis, demonstrating the potential role of soluble INV enzymes for the cold tolerance of Citrus. CONCLUSIONS This work offered a framework for understanding the physiological role of INV genes and laid a foundation for future functional studies of these genes in response to abiotic stresses.
Collapse
Affiliation(s)
- Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Horticulture, Faculty of Agriculture, Tishreen University, Lattakia, Syria
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmed Alhag
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dayong Guo
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
47
|
Ren Z, Xu Y, Lvy X, Zhang D, Gao C, Lin Y, Liu Y, Wu Y, Xia Y. Early Sucrose Degradation and the Dominant Sucrose Cleavage Pattern Influence Lycoris sprengeri Bulblet Regeneration In Vitro. Int J Mol Sci 2021; 22:ijms222111890. [PMID: 34769318 PMCID: PMC8585118 DOI: 10.3390/ijms222111890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022] Open
Abstract
Bulblet formation and development determine the quantitative and qualitative traits, respectively, of bulb yield for most flowering bulbs. For Lycoris species, however, the underlying molecular mechanism remains elusive. Here, clonal bulblets of Lycoris sprengeri (Ls) derived from the same probulb were used as explants to establish efficient and inefficient in vitro regeneration systems by adjusting the 6-benzyladenine (BA) concentrations in media. BA application did not change the biological processes among groups but led to earlier decreases in sucrose and total soluble sugar (TSS) contents. Correlation analyses showed that the BA treatments changed the interaction between carbohydrate and endogenous hormone contents during bulblet regeneration. We found that two sucrose degradation enzyme-related genes, cell wall invertase (CWIN) and sucrose synthase, exhibited exactly opposite expression patterns during the competence stage. In addition, the regeneration system that obtained more bulblets showed significantly higher expression of LsCWIN2 than those that obtained fewer bulblets. Our data demonstrate the essential role of BA in accelerating sucrose degradation and the selection of a dominant sucrose cleavage pattern at the competence stage of in vitro bulblet regeneration. We propose that a relatively active CWIN-catalyzed pathway at the competence stage might promote bulblet regeneration, thus influencing bulb yield.
Collapse
Affiliation(s)
- Ziming Ren
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.R.); (Y.X.); (X.L.); (D.Z.); (C.G.); (Y.L.); (Y.L.)
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yunchen Xu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.R.); (Y.X.); (X.L.); (D.Z.); (C.G.); (Y.L.); (Y.L.)
| | - Xuesi Lvy
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.R.); (Y.X.); (X.L.); (D.Z.); (C.G.); (Y.L.); (Y.L.)
| | - Dong Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.R.); (Y.X.); (X.L.); (D.Z.); (C.G.); (Y.L.); (Y.L.)
| | - Cong Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.R.); (Y.X.); (X.L.); (D.Z.); (C.G.); (Y.L.); (Y.L.)
| | - Yefan Lin
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.R.); (Y.X.); (X.L.); (D.Z.); (C.G.); (Y.L.); (Y.L.)
| | - Yue Liu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.R.); (Y.X.); (X.L.); (D.Z.); (C.G.); (Y.L.); (Y.L.)
| | - Yun Wu
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Correspondence: (Y.W.); (Y.X.)
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.R.); (Y.X.); (X.L.); (D.Z.); (C.G.); (Y.L.); (Y.L.)
- Correspondence: (Y.W.); (Y.X.)
| |
Collapse
|
48
|
Jiang Z, Chen Q, Chen L, Yang H, Zhu M, Ding Y, Li W, Liu Z, Jiang Y, Li G. Efficiency of Sucrose to Starch Metabolism Is Related to the Initiation of Inferior Grain Filling in Large Panicle Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:732867. [PMID: 34589107 PMCID: PMC8473919 DOI: 10.3389/fpls.2021.732867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The poor grain-filling initiation often causes the poor development of inferior spikelets (IS) which limits the yield potential of large panicle rice (Oryza sativa L.). However, it remains unclear why IS often has poor grain-filling initiation. In addressing this problem, this study conducted a field experiment involving two large panicle rice varieties, namely CJ03 and W1844, in way of removing the superior spikelets (SS) during flowering to force enough photosynthate transport to the IS. The results of this study showed that the grain-filling initiation of SS was much earlier than the IS in CJ03 and W1844, whereas the grain-filling initiation of IS in W1844 was evidently more promoted compared with the IS of CJ03 by removing spikelets. The poor sucrose-unloading ability, i.e., carbohydrates contents, the expression patterns of OsSUTs, and activity of CWI, were highly improved in IS of CJ03 and W1844 by removing spikelets. However, there was a significantly higher rise in the efficiency of sucrose to starch metabolism, i.e., the expression patterns of OsSUS4 and OsAGPL1 and activities of SuSase and AGPase, for IS of W1844 than that of CJ03. Removing spikelets also led to the changes in sugar signaling of T6P and SnRK1 level. These changes might be related to the regulation of sucrose to starch metabolism. The findings of this study suggested that poor sucrose-unloading ability delays the grain-filling initiation of IS. Nonetheless, the efficiency of sucrose to starch metabolism is also strongly linked with the grain-filling initiation of IS.
Collapse
Affiliation(s)
- Zhengrong Jiang
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Qiuli Chen
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Lin Chen
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
- National Engineering and Technology Center for Information Agriculture, Nanjing, China
| | - Hongyi Yang
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Meichen Zhu
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
- National Engineering and Technology Center for Information Agriculture, Nanjing, China
| | - Weiwei Li
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
- National Engineering and Technology Center for Information Agriculture, Nanjing, China
| | - Zhenghui Liu
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
- National Engineering and Technology Center for Information Agriculture, Nanjing, China
| | - Yu Jiang
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
- National Engineering and Technology Center for Information Agriculture, Nanjing, China
| | - Ganghua Li
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
- National Engineering and Technology Center for Information Agriculture, Nanjing, China
| |
Collapse
|
49
|
Zhang X, Huang Q, Wang P, Liu F, Luo M, Li X, Wang Z, Wan L, Yang G, Hong D. A 24,482-bp deletion is associated with increased seed weight in Brassica napus L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2653-2669. [PMID: 34002254 DOI: 10.1007/s00122-021-03850-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
A major QTL for seed weight was fine-mapped in rapeseed, and a 24,482-bp deletion likely mediates the effect through multiple pathways. Exploration of the genes controlling seed weight is critical to the improvement of crop yield and elucidation of the mechanisms underlying seed formation in rapeseed (Brassica napus L.). We previously identified the quantitative trait locus (QTL) qSW.C9 for the thousand-seed weight (TSW) in a double haploid population constructed from F1 hybrids between the parental accessions HZ396 and Y106. Here, we confirmed the phenotypic effects associated with qSW.C9 in BC3F2 populations and fine-mapped the candidate causal locus to a 266-kb interval. Sequence and expression analyses revealed that a 24,482-bp deletion in HZ396 containing six predicted genes most likely underlies qSW.C9. Differential gene expression analysis and cytological observations suggested that qSW.C9 affects both cell proliferation and cell expansion through multiple signaling pathways. After genotyping of a rapeseed diversity panel to define the haplotype structure, it could be concluded that the selection of germplasm with two specific markers may be effective in improving the seed weight of rapeseed. This study provides a solid foundation for the identification of the causal gene of qSW.C9 and offers a promising target for the breeding of higher-yielding rapeseed.
Collapse
Affiliation(s)
- Xiaohui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiyang Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Feiyang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mudan Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhuanrong Wang
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Lili Wan
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
50
|
Cisneros-Hernández I, Vargas-Ortiz E, Sánchez-Martínez ES, Martínez-Gallardo N, Soto González D, Délano-Frier JP. Highest Defoliation Tolerance in Amaranthus cruentus Plants at Panicle Development Is Associated With Sugar Starvation Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:658977. [PMID: 34163500 PMCID: PMC8215675 DOI: 10.3389/fpls.2021.658977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 05/15/2023]
Abstract
Defoliation tolerance (DT) in Amaranthus cruentus is known to reach its apex at the panicle emergence (PE) phase and to decline to minimal levels at flowering (FL). In this study, defoliation-induced changes were recorded in the content of non-structural carbohydrates and raffinose family oligosaccharides (RFOs), and in the expression and/or activity of sugar starvation response-associated genes in plants defoliated at different vegetative and reproductive stages. This strategy identified sugar-starvation-related factors that explained the opposite DT observed at these key developmental stages. Peak DT at PE was associated with increased cytosolic invertase (CI) activity in all organs and with the extensive induction of various class II trehalose-phosphate synthase (TPS) genes. Contrariwise, least DT at FL coincided with a sharp depletion of starch reserves and with sucrose (Suc) accumulation, in leaves and stems, the latter of which was consistent with very low levels of CI and vacuolar invertase activities that were not further modified by defoliation. Increased Suc suggested growth-inhibiting conditions associated with altered cytosolic Suc-to-hexose ratios in plants defoliated at FL. Augmented cell wall invertase activity in leaves and roots, probably acting in a regulatory rather than hydrolytic role, was also associated with minimal DT observed at FL. The widespread contrast in gene expression patterns in panicles also matched the opposite DT observed at PE and FL. These results reinforce the concept that a localized sugar starvation response caused by C partitioning is crucial for DT in grain amaranth.
Collapse
Affiliation(s)
| | - Erandi Vargas-Ortiz
- Facultad de Agrobiología, Universidad Michoacana de San Nicolás de Hidalgo, Uruapan, Mexico
| | | | | | | | - John Paul Délano-Frier
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|