1
|
Li Y, Cao T, Guo Y, Grimm B, Li X, Duanmu D, Lin R. Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:887-911. [PMID: 39853950 PMCID: PMC12016751 DOI: 10.1111/jipb.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/08/2024] [Indexed: 01/26/2025]
Abstract
Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins. Given that many tetrapyrrole precursors possess photo-oxidative properties that are deleterious to macromolecules and can lead to cell death, tetrapyrrole biosynthesis (TBS) requires stringent regulation under various developmental and environmental conditions. Thanks to decades of research on model plants and algae, we now have a deeper understanding of the regulatory mechanisms that underlie Chl synthesis, including (i) the many factors that control the activity and stability of TBS enzymes, (ii) the transcriptional and post-translational regulation of the TBS pathway, and (iii) the complex roles of tetrapyrrole-mediated retrograde signaling from chloroplasts to the cytoplasm and the nucleus. Based on these new findings, Chls and their derivatives will find broad applications in synthetic biology and agriculture in the future.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
| | - Tianjun Cao
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Yunling Guo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Bernhard Grimm
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlin10115Germany
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifeng475004China
| | - Xiaobo Li
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
- Institute of Biotechnology, Xianghu LaboratoryHangzhou311231China
| |
Collapse
|
2
|
Krishankumar S, Hunter JJ, Alyafei M, Hamed F, Subramaniam S, Ramlal A, Kurup SS, Amiri KMA. Physiological, biochemical and elemental responses of grafted grapevines under drought stress: insights into tolerance mechanisms. BMC PLANT BIOLOGY 2025; 25:385. [PMID: 40133817 PMCID: PMC11938781 DOI: 10.1186/s12870-025-06374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
The selection of appropriate grapevine grafts and optimizing irrigation practices for enhancing water use efficiency are critical for viticulture production in the arid regions of UAE, apart from mitigating the effects of changing environmental conditions. Extremely high arid temperatures leading to depleted soil moisture status limit grape production in the country. In order to streamline the production, it is imperative to focus on specific objectives of screening drought-tolerant grafts utilizing several laboratory analytical tools and irrigation management. Five grapevine cultivar-rootstock combinations were evaluated in an open field experiment under induced drought conditions by regulating irrigation at 100%, 75% and 50% field capacity (FC) in an arid region. The net photosynthetic rate increased in Flame Seedless [Formula: see text] Ramsey (V1), Thompson Seedless [Formula: see text] Ramsey (V2), and Crimson Seedless [Formula: see text] R110 (V3) at 50% FC. Stomatal conductance was reduced in V1, V3, Crimson Seedless [Formula: see text] Ramsey (V4) and Thompson Seedless x P1103 (V5) at 50% FC. Intercellular CO2 and transpiration rates were significantly reduced at 50% FC. Water use efficiency, calculated as Pn/gs ratio to relate photosynthesis to stomatal closure, was elevated in all the grafts at 75% FC and 50% FC compared to the control (100% FC). The relative water content (RWC) showed a declining trend in all the grafts with reduced water supply. Nevertheless, the V1 and V4 grafts exhibited the highest RWC at an FC of 50%. The V2 graft produced the highest total dry mass and fresh biomass compared to other grafts. The Chl a content decreased, but the Chl b content increased at 50% FC in V2. Lutein significantly decreased for V1, while V3 showed an increase at 50% FC. The N, P and K contents in all the grafts, except V3, showed an increasing trend at 50% FC. The scanning electron microscopy observations point to the strong responses of stomatal behaviour upon changes in irrigation, thus facilitating the drought tolerance of the grafts. The findings emphasize the importance of selecting drought-tolerant grapevine grafts, and our study results could serve as guideposts for developing sustainable viticulture in arid regions, providing valuable insights for future research and practical applications in grape production.
Collapse
Affiliation(s)
- Sonu Krishankumar
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, UAE University (UAEU), Al Ain, UAE
| | - Jacobus J Hunter
- ARC Infruitec-Nietvoorbij, Agricultural Research Council, Stellenbosch, South Africa
| | - Mohammed Alyafei
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, UAE University (UAEU), Al Ain, UAE
| | - Fathalla Hamed
- Department of Physics, College of Science, UAE University (UAEU), Al Ain, UAE
| | - Sreeramanan Subramaniam
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, Penang, 11800, Malaysia
- Centre for Chemical Biology (CCB), Universiti Sains Malaysia (USM), Bayan Lepas, Penang, 11900, Malaysia
| | - Ayyagari Ramlal
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, Penang, 11800, Malaysia
| | - Shyam S Kurup
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, UAE University (UAEU), Al Ain, UAE.
| | - Khaled M A Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, UAE University (UAEU), Al Ain, UAE.
- Department of Biology, College of Science, UAE University (UAEU), Al Ain, UAE.
| |
Collapse
|
3
|
Poirier MC, Fugard K, Cvetkovska M. Light quality affects chlorophyll biosynthesis and photosynthetic performance in Antarctic Chlamydomonas. PHOTOSYNTHESIS RESEARCH 2025; 163:9. [PMID: 39832016 DOI: 10.1007/s11120-024-01127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
The perennially ice-covered Lake Bonney in Antarctica has been deemed a natural laboratory for studying life at the extreme. Photosynthetic algae dominate the lake food webs and are adapted to a multitude of extreme conditions including perpetual shading even at the height of the austral summer. Here we examine how the unique light environment in Lake Bonney influences the physiology of two Chlamydomonas species. Chlamydomonas priscui is found exclusively in the deep photic zone where it receives very low light levels biased in the blue part of the spectrum (400-500 nm). In contrast, Chlamydomonas sp. ICE-MDV is represented at various depths within the water column (including the bright surface waters), and it receives a broad range of light levels and spectral wavelengths. The psychrophilic character of both species makes them an ideal system to study the effects of light quality and quantity on chlorophyll biosynthesis and photosynthetic performance in extreme conditions. We show that the shade-adapted C. priscui exhibits a decreased ability to accumulate chlorophyll and severe photoinhibition when grown under red light compared to blue light. These effects are particularly pronounced under red light of higher intensity, suggesting a loss of capability to acclimate to varied light conditions. In contrast, ICE-MDV has retained the ability to synthesize chlorophyll and maintain photosynthetic efficiency under a broader range of light conditions. Our findings provide insights into the mechanisms of photosynthesis under extreme conditions and have implications on algal survival in changing conditions of Antarctic ice-covered lakes.
Collapse
Affiliation(s)
- Mackenzie C Poirier
- Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada
| | - Kassandra Fugard
- Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada
| | - Marina Cvetkovska
- Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
4
|
Huang B, Huang W, Liu Z, Peng Y, Qu Y, Zhou W, Huang J, Shu H, Wen Q. Cytological, Physiological, and Transcriptome Analysis of Leaf-Yellowing Mutant in Camellia chekiangoleosa. Int J Mol Sci 2024; 26:132. [PMID: 39795989 PMCID: PMC11719897 DOI: 10.3390/ijms26010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Color variation in plant leaves has a significant impact on their photosynthesis and plant growth. Camellia chekiangoleosa yellow-leaf mutants are ideal materials for studying the mechanisms of pigment synthesis and photosynthesis, but their mechanism of leaf variation is not clear. We systematically elucidated the intrinsic causes of leaf yellowing in the new Camellia chekiangoleosa variety 'Diecui Liuji' in terms of changes in its cell structure, pigment content, and transcript levels. This study indicates that the incomplete structure of chloroplast-like vesicles, the decrease in blue-green chlorophyll a, and the increase in yellow-green chlorophyll b in yellowing leaves are the direct causes of yellowing-leaf formation. The high expression of genes that catalyze the degradation of chlorophyll a (PAO and RCCR) and its conversion to chlorophyll b (CAO) in yellowing leaves leads to a decrease in the chlorophyll a content, while the low expression of CLH genes is the main reason for the increase in the chlorophyll b content. We also found transcription factors such as ERF, E2F, WRKY, MYB, TPC, TGA, and NFYC may regulate their expression. RT-qPCR assays of 12 DEGs confirm the RNA-seq results. This study will provide a foundation for investigating the transcriptional and regulatory mechanisms of leaf color changes.
Collapse
Affiliation(s)
- Bin Huang
- Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China; (B.H.); (W.H.); (Y.P.); (Y.Q.); (W.Z.); (J.H.); (H.S.)
| | - Wenyin Huang
- Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China; (B.H.); (W.H.); (Y.P.); (Y.Q.); (W.Z.); (J.H.); (H.S.)
| | - Zhenyu Liu
- College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Yixuan Peng
- Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China; (B.H.); (W.H.); (Y.P.); (Y.Q.); (W.Z.); (J.H.); (H.S.)
| | - Yanshu Qu
- Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China; (B.H.); (W.H.); (Y.P.); (Y.Q.); (W.Z.); (J.H.); (H.S.)
| | - Wencai Zhou
- Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China; (B.H.); (W.H.); (Y.P.); (Y.Q.); (W.Z.); (J.H.); (H.S.)
| | - Jianjian Huang
- Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China; (B.H.); (W.H.); (Y.P.); (Y.Q.); (W.Z.); (J.H.); (H.S.)
| | - Huili Shu
- Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China; (B.H.); (W.H.); (Y.P.); (Y.Q.); (W.Z.); (J.H.); (H.S.)
| | - Qiang Wen
- Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China; (B.H.); (W.H.); (Y.P.); (Y.Q.); (W.Z.); (J.H.); (H.S.)
| |
Collapse
|
5
|
Wang G, Mao J, Ji M, Wang W, Fu J. A comprehensive assessment of photosynthetic acclimation to shade in C4 grass (Cynodon dactylon (L.) Pers.). BMC PLANT BIOLOGY 2024; 24:591. [PMID: 38902617 PMCID: PMC11191358 DOI: 10.1186/s12870-024-05242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Light deficit in shaded environment critically impacts the growth and development of turf plants. Despite this fact, past research has predominantly concentrated on shade avoidance rather than shade tolerance. To address this, our study examined the photosynthetic adjustments of Bermudagrass when exposed to varying intensities of shade to gain an integrative understanding of the shade response of C4 turfgrass. RESULTS We observed alterations in photosynthetic pigment-proteins, electron transport and its associated carbon and nitrogen assimilation, along with ROS-scavenging enzyme activity in shaded conditions. Mild shade enriched Chl b and LHC transcripts, while severe shade promoted Chl a, carotenoids and photosynthetic electron transfer beyond QA- (ET0/RC, φE0, Ψ0). The study also highlighted differential effects of shade on leaf and root components. For example, Soluble sugar content varied between leaves and roots as shade diminished SPS, SUT1 but upregulated BAM. Furthermore, we observed that shading decreased the transcriptional level of genes involving in nitrogen assimilation (e.g. NR) and SOD, POD, CAT enzyme activities in leaves, even though it increased in roots. CONCLUSIONS As shade intensity increased, considerable changes were noted in light energy conversion and photosynthetic metabolism processes along the electron transport chain axis. Our study thus provides valuable theoretical groundwork for understanding how C4 grass acclimates to shade tolerance.
Collapse
Affiliation(s)
- Guangyang Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China
| | - Jinyan Mao
- College of Agriculture, Ludong University, Yantai, 264025, Shandong, China
| | - Mingxia Ji
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China
| | - Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China.
| |
Collapse
|
6
|
Li Y, Zhao T, Qin M, Che X, Zhang A. Toxicity of the sunscreen UV filter benzophenone-3 (OBZ) to the microalga Selenastrum capricornutum: An insight into OBZ's damage to photosynthesis and respiration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116441. [PMID: 38733805 DOI: 10.1016/j.ecoenv.2024.116441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/14/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Oxybenzone (OBZ; benzophenone-3, CAS# 131-57-7), as a new pollutant and ultraviolet absorbent, shows a significant threat to the survival of phytoplankton. This study aims to explore the acute toxic effects of OBZ on the growth of the microalga Selenastrum capricornutum, as well as the mechanisms for its damage to the primary metabolic pathways of photosynthesis and respiration. The results demonstrated that the concentrations for 50 % of maximal effect (EC50) of OBZ for S. capricornutum were 9.07 mg L-1 and 8.54 mg L-1 at 72 h and 96 h, respectively. A dosage of 4.56 mg L-1 OBZ significantly lowered the photosynthetic oxygen evolution rate of S. capricornutum in both light and dark conditions for a duration of 2 h, while it had no effect on the respiratory oxygen consumption rate under darkness. OBZ caused a significant decline in the efficiency of photosynthetic electron transport due to its damage to photosystem II (PSII), thereby decreasing the photosynthetic oxygen evolution rate. Over-accumulated H2O2 was produced under light due to the damage caused by OBZ to the donor and acceptor sides of PSII, resulting in increased peroxidation of cytomembranes and inhibition of algal respiration. OBZ's damage to photosynthesis and respiration will hinder the conversion and reuse of energy in algal cells, which is an important reason that OBZ has toxic effects on S. capricornutum. The present study indicated that OBZ has an acute toxic effect on the microalga S. capricornutum. In the two most important primary metabolic pathways in algae, photosynthesis is more sensitive to the toxicity of OBZ than respiration, especially in the dark.
Collapse
Affiliation(s)
- Yongfu Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, P. R. China
| | - Tianze Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, P. R. China
| | - Meng Qin
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, P. R. China
| | - Xingkai Che
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, P. R. China.
| | - Aihua Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, P. R. China.
| |
Collapse
|
7
|
Xiong J, Wen G, Song J, Liu X, Chen Q, Zhang G, Xiao Y, Liu X, Deng H, Tang W, Wang F, Lu X. Knockout of the Chlorophyll a Oxygenase Gene OsCAO1 Reduces Chilling Tolerance in Rice Seedlings. Genes (Basel) 2024; 15:721. [PMID: 38927664 PMCID: PMC11202714 DOI: 10.3390/genes15060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Chilling stress is one of the main abiotic factors affecting rice growth and yield. In rice, chlorophyllide a oxygenase encoded by OsCAO1 is responsible for converting chlorophyllide a to chlorophyllide b, playing a crucial role in photosynthesis and thus rice growth. However, little is known about the function of OsCAO1 in chilling stress responses. The presence of the cis-acting element involved in low-temperature responsiveness (LTR) in the OsCAO1 promoter implied that OsCAO1 probably is a cold-responsive gene. The gene expression level of OsCAO1 was usually inhibited by low temperatures during the day and promoted by low temperatures at night. The OsCAO1 knockout mutants generated by the CRISPR-Cas9 technology in rice (Oryza sativa L.) exhibited significantly weakened chilling tolerance at the seedling stage. OsCAO1 dysfunction led to the accumulation of reactive oxygen species and malondialdehyde, an increase in relative electrolyte leakage, and a reduction in antioxidant gene expression under chilling stress. In addition, the functional deficiency of OsCAO1 resulted in more severe damage to chloroplast morphology, such as abnormal grana thylakoid stacking, caused by low temperatures. Moreover, the rice yield was reduced in OsCAO1 knockout mutants. Therefore, the elevated expression of OsCAO1 probably has the potential to increase both rice yield and chilling tolerance simultaneously, providing a strategy to cultivate chilling-tolerant rice varieties with high yields.
Collapse
Affiliation(s)
- Jiayi Xiong
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Genping Wen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Jin Song
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Xiaoyi Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Qiuhong Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Guilian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Yunhua Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Xiong Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Huabing Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Wenbang Tang
- Yuelushan Laboratory, Changsha 410128, China;
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Feng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Xuedan Lu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.X.); (G.W.); (J.S.); (X.L.); (Q.C.); (G.Z.); (Y.X.); (X.L.); (H.D.); (F.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| |
Collapse
|
8
|
Li X, Wang Z, Sun S, Dai Z, Zhang J, Wang W, Peng K, Geng W, Xia S, Liu Q, Zhai H, Gao S, Zhao N, Tian F, Zhang H, He S. IbNIEL-mediated degradation of IbNAC087 regulates jasmonic acid-dependent salt and drought tolerance in sweet potato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:176-195. [PMID: 38294064 DOI: 10.1111/jipb.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Sweet potato (Ipomoea batatas [L.] Lam.) is a crucial staple and bioenergy crop. Its abiotic stress tolerance holds significant importance in fully utilizing marginal lands. Transcriptional processes regulate abiotic stress responses, yet the molecular regulatory mechanisms in sweet potato remain unclear. In this study, a NAC (NAM, ATAF1/2, and CUC2) transcription factor, IbNAC087, was identified, which is commonly upregulated in salt- and drought-tolerant germplasms. Overexpression of IbNAC087 increased salt and drought tolerance by increasing jasmonic acid (JA) accumulation and activating reactive oxygen species (ROS) scavenging, whereas silencing this gene resulted in opposite phenotypes. JA-rich IbNAC087-OE (overexpression) plants exhibited more stomatal closure than wild-type (WT) and IbNAC087-Ri plants under NaCl, polyethylene glycol, and methyl jasmonate treatments. IbNAC087 functions as a nuclear transcriptional activator and directly activates the expression of the key JA biosynthesis-related genes lipoxygenase (IbLOX) and allene oxide synthase (IbAOS). Moreover, IbNAC087 physically interacted with a RING-type E3 ubiquitin ligase NAC087-INTERACTING E3 LIGASE (IbNIEL), negatively regulating salt and drought tolerance in sweet potato. IbNIEL ubiquitinated IbNAC087 to promote 26S proteasome degradation, which weakened its activation on IbLOX and IbAOS. The findings provide insights into the mechanism underlying the IbNIEL-IbNAC087 module regulation of JA-dependent salt and drought response in sweet potato and provide candidate genes for improving abiotic stress tolerance in crops.
Collapse
Affiliation(s)
- Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Zhen Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Sifan Sun
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhuoru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Wenbin Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Kui Peng
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wenhao Geng
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Shuanghong Xia
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
9
|
Biswal AK, Pattanayak GK, Ruhil K, Kandoi D, Mohanty SS, Leelavati S, Reddy VS, Govindjee G, Tripathy BC. Reduced expression of chlorophyllide a oxygenase (CAO) decreases the metabolic flux for chlorophyll synthesis and downregulates photosynthesis in tobacco plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1-16. [PMID: 38435853 PMCID: PMC10901765 DOI: 10.1007/s12298-023-01395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 03/05/2024]
Abstract
UNLABELLED Chlorophyll b is synthesized from chlorophyllide a, catalyzed by chlorophyllide a oxygenase (CAO). To examine whether reduced chlorophyll b content regulates chlorophyll (Chl) synthesis and photosynthesis, we raised CAO transgenic tobacco plants with antisense CAO expression, which had lower chlorophyll b content and, thus, higher Chl a/b ratio. Further, these plants had (i) lower chlorophyll b and total Chl content, whether they were grown under low or high light; (ii) decreased steady-state levels of chlorophyll biosynthetic intermediates, due, perhaps, to a feedback-controlled reduction in enzyme expressions/activities; (iii) reduced electron transport rates in their intact leaves, and reduced Photosystem (PS) I, PS II and whole chain electron transport activities in their isolated thylakoids; (iv) decreased carbon assimilation in plants grown under low or high light. We suggest that reduced synthesis of chlorophyll b by antisense expression of CAO, acting at the end of Chl biosynthesis pathway, downregulates the chlorophyll b biosynthesis, resulting in decreased Chl b, total chlorophylls and increased Chl a/b. We have previously shown that the controlled up-regulation of chlorophyll b biosynthesis and decreased Chl a/b ratio by over expression of CAO enhance the rates of electron transport and CO2 assimilation in tobacco. Conversely, our data, presented here, demonstrate that-antisense expression of CAO in tobacco, which decreases Chl b biosynthesis and increases Chl a/b ratio, leads to reduced photosynthetic electron transport and carbon assimilation rates, both under low and high light. We conclude that Chl b modulates photosynthesis; its controlled down regulation/ up regulation decreases/ increases light-harvesting, rates of electron transport, and carbon assimilation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-023-01395-5.
Collapse
Affiliation(s)
- Ajaya K. Biswal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Gopal K. Pattanayak
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Kamal Ruhil
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Deepika Kandoi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Department of Life Sciences, Sharda University, Greater Noida, UP, India
| | - Sushree S. Mohanty
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sadhu Leelavati
- International Center for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Vanga S. Reddy
- International Center for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Govindjee Govindjee
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Baishnab C. Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Department of Biotechnology, Sharda University, Greater Noida, UP 201310 India
| |
Collapse
|
10
|
Xiong B, Li L, Li Q, Mao H, Wang L, Bie Y, Zeng X, Liao L, Wang X, Deng H, Zhang M, Sun G, Wang Z. Identification of Photosynthesis Characteristics and Chlorophyll Metabolism in Leaves of Citrus Cultivar ( Harumi) with Varying Degrees of Chlorosis. Int J Mol Sci 2023; 24:ijms24098394. [PMID: 37176103 PMCID: PMC10179384 DOI: 10.3390/ijms24098394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
In autumn and spring, citrus leaves with a Ponkan (Citrus reticulata Blanco cv. Ponkan) genetic background (Harumi, Daya, etc.) are prone to abnormal physiological chlorosis. The effects of different degrees of chlorosis (normal, mild, moderate and severe) on photosynthesis and the chlorophyll metabolism of leaves of Citrus cultivar (Harumi) were studied via field experiment. Compared with severe chlorotic leaves, the results showed that chlorosis could break leaf metabolism balance, including reduced chlorophyll content, photosynthetic parameters, antioxidant enzyme activity and enzyme activity related to chlorophyll synthesis, increased catalase and decreased enzyme activity. In addition, the content of chlorophyll synthesis precursors showed an overall downward trend expected for uroporphyrinogen III. Furthermore, the relative expression of genes for chlorophyll synthesis (HEMA1, HEME2, HEMG1 and CHLH) was down-regulated to some extent and chlorophyll degradation (CAO, CLH, PPH, PAO and SGR) showed the opposite trend with increased chlorosis. Changes in degradation were more significant. In general, the chlorosis of Harumi leaves might be related to the blocked transformation of uroporphyrinogen III (Urogen III) to coproporphyrinogen III (Coprogen III), the weakening of antioxidant enzyme system activity, the weakening of chlorophyll synthesis and the enhancement in degradation.
Collapse
Affiliation(s)
- Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huiqiong Mao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixinyi Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhui Bie
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zeng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Honghong Deng
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingfei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guochao Sun
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
11
|
Dey D, Tanaka R, Ito H. Structural Characterization of the Chlorophyllide a Oxygenase (CAO) Enzyme Through an In Silico Approach. J Mol Evol 2023; 91:225-235. [PMID: 36869271 DOI: 10.1007/s00239-023-10100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023]
Abstract
Chlorophyllide a oxygenase (CAO) is responsible for converting chlorophyll a to chlorophyll b in a two-step oxygenation reaction. CAO belongs to the family of Rieske-mononuclear iron oxygenases. Although the structure and reaction mechanism of other Rieske monooxygenases have been described, a member of plant Rieske non-heme iron-dependent monooxygenase has not been structurally characterized. The enzymes in this family usually form a trimeric structure and electrons are transferred between the non-heme iron site and the Rieske center of the adjoining subunits. CAO is supposed to form a similar structural arrangement. However, in Mamiellales such as Micromonas and Ostreococcus, CAO is encoded by two genes where non-heme iron site and Rieske cluster localize on the distinct polypeptides. It is not clear if they can form a similar structural organization to achieve the enzymatic activity. In this study, the tertiary structures of CAO from the model plant Arabidopsis thaliana and the Prasinophyte Micromonas pusilla were predicted by deep learning-based methods, followed by energy minimization and subsequent stereochemical quality assessment of the predicted models. Furthermore, the chlorophyll a binding cavity and the interaction of ferredoxin, which is the electron donor, on the surface of Micromonas CAO were predicted. The electron transfer pathway was predicted in Micromonas CAO and the overall structure of the CAO active site was conserved even though it forms a heterodimeric complex. The structures presented in this study will serve as a basis for understanding the reaction mechanism and regulation of the plant monooxygenase family to which CAO belongs.
Collapse
Affiliation(s)
- Debayan Dey
- Graduate School of Life Science, Hokkaido University, N10 W8, Sapporo, 060-0810, Japan
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan.
| |
Collapse
|
12
|
Effect of the Enhanced Production of Chlorophyll b on the Light Acclimation of Tomato. Int J Mol Sci 2023; 24:ijms24043377. [PMID: 36834789 PMCID: PMC9961381 DOI: 10.3390/ijms24043377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Tomato (Solanum lycopersicum Mill.) is one of the widely cultured vegetables under protected cultivation, in which insufficient light is one of the major factors that limit its growth, yield, and quality. Chlorophyll b (Chl b) is exclusively present in the light-harvesting complex (LHC) of photosystems, while its synthesis is strictly regulated in response to light conditions in order to control the antenna size. Chlorophyllide a oxygenase (CAO) is the sole enzyme that converts Chl a to Chl b for Chl b biosynthesis. Previous studies have shown that overexpressing CAO without the regulating domain (A domain) in Arabidopsis overproduced Chl b. However, the growth characteristics of the Chl b overproduced plants under different light environmental conditions are not well studied. Considering tomatoes are light-loving plants and sensitive to low light stress, this study aimed to uncover the growth character of tomatoes with enhanced production of Chl b. The A domain deleted Arabidopsis CAO fused with the FLAG tag (BCF) was overexpressed in tomatoes. The BCF overexpressed plants accumulated a significantly higher Chl b content, resulting in a significantly lower Chl a/b ratio than WT. Additionally, BCF plants possessed a lower maximal photochemical efficiency of photosystem II (Fv/Fm) and anthocyanin content than WT plants. The growth rate of BCF plants was significantly faster than WT plants under low-light (LL) conditions with light intensity at 50-70 µmol photons m-2 s-1, while BCF plants grew slower than WT plants under high-light (HL) conditions. Our results revealed that Chl b overproduced tomato plants could better adapt to LL conditions by absorbing more light for photosynthesis but adapt poorly to excess light conditions by accumulating more ROS and fewer anthocyanins. Enhanced production of Chl b is able to improve the growth rate of tomatoes that are grown under LL conditions, indicating the prospect of employing Chl b overproduced light-loving crops and ornamental plants for protected or indoor cultivation.
Collapse
|
13
|
Meng F, Zhang T, Yin D. The effects of soil drought stress on growth characteristics, root system, and tissue anatomy of Pinus sylvestris var. mongolica. PeerJ 2023; 11:e14578. [PMID: 36643639 PMCID: PMC9835711 DOI: 10.7717/peerj.14578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/28/2022] [Indexed: 01/11/2023] Open
Abstract
The main purpose of this study was to study the changes in growth, root system, and tissue anatomical structure of Pinus sylvestris var. mongolica under soil drought conditions. In this study, the growth indexes and photosynthesis of P. sylvestris var. mongolica seedlings under soil drought stress were studied by pot cultivation. Continuous pot water control experiment of the indoor culture of P. sylvestris var. mongolica was carried out, ensuring that the soil water content of each treatment reached 80%, 40%, and 20% of the field moisture capacity as control, moderate drought and severe drought, respectively. The submicroscopic structures of the needles and roots were observed using a scanning electron microscope and a transmission electron microscope. The response of soil roots to drought stress was studied by root scanning. Moderate drought stress increased needle stomatal density, while under severe drought stress, stomatal density decreased. At the same time, the total number of root tips, total root length, root surface area, and root volume of seedlings decreased with the deepening of the drought. Furthermore, moderate drought and severe drought stress significantly reduced the chlorophyll a and chlorophyll b content in P. sylvestris var. mongolica seedlings compared to the control group. The needle cells were deformed and damaged, and chloroplasts and mitochondria were damaged, gradually disintegrated, and the number of osmiophiles increased. There was also an increase in nuclear vacuolation.
Collapse
|
14
|
λ-Carrageenan promotes plant growth in banana via enhancement of cellular metabolism, nutrient uptake, and cellular homeostasis. Sci Rep 2022; 12:19639. [PMID: 36385165 PMCID: PMC9669011 DOI: 10.1038/s41598-022-21909-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Banana (Musa acuminata) is an important fruit crop and source of income for various countries, including Malaysia. To date, current agrochemical practice has become a disputable issue due to its detrimental effect on the environment. λ-carrageenan, a natural polysaccharide extracted from edible red seaweed, has been claimed to be a potential plant growth stimulator. Hence, the present study investigates the effects of λ-carrageenan on plant growth using Musa acuminata cv. Berangan (AAA). Vegetative growth such as plant height, root length, pseudostem diameter, and fresh weight was improved significantly in λ-carrageenan-treated banana plants at an optimum concentration of 750 ppm. Enhancement of root structure was also observed in optimum λ-carrageenan treatment, facilitating nutrients uptake in banana plants. Further biochemical assays and gene expression analysis revealed that the increment in growth performance was consistent with the increase of chlorophyll content, protein content, and phenolic content, suggesting that λ-carrageenan increases photosynthesis rate, protein biosynthesis, and secondary metabolites biosynthesis which eventually stimulate growth. Besides, λ-carrageenan at optimum concentration also increased catalase and peroxidase activities, which led to a significant reduction in hydrogen peroxide and malondialdehyde, maintaining cellular homeostasis in banana plants. Altogether, λ-carrageenan at optimum concentration improves the growth of banana plants via inducing metabolic processes, enhancing nutrient uptake, and regulation of cell homeostasis. Further investigations are needed to evaluate the effectiveness of λ-carrageenan on banana plants under field conditions.
Collapse
|
15
|
Liu J, Knapp M, Jo M, Dill Z, Bridwell-Rabb J. Rieske Oxygenase Catalyzed C-H Bond Functionalization Reactions in Chlorophyll b Biosynthesis. ACS CENTRAL SCIENCE 2022; 8:1393-1403. [PMID: 36313167 PMCID: PMC9615114 DOI: 10.1021/acscentsci.2c00058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 05/03/2023]
Abstract
Rieske oxygenases perform precise C-H bond functionalization reactions in anabolic and catabolic pathways. These reactions are typically characterized as monooxygenation or dioxygenation reactions, but other divergent reactions are also catalyzed by Rieske oxygenases. Chlorophyll(ide) a oxygenase (CAO), for example is proposed to catalyze two monooxygenation reactions to transform a methyl-group into the formyl-group of Chlorophyll b. This formyl group, like the formyl groups found in other chlorophyll pigments, tunes the absorption spectra of chlorophyllb and supports the ability of several photosynthetic organisms to adapt to environmental light. Despite the importance of this reaction, CAO has never been studied in vitro with purified protein, leaving many open questions regarding whether CAO can facilitate both oxygenation reactions using just the Rieske oxygenase machinery. In this study, we demonstrated that four CAO homologues in partnership with a non-native reductase convert a Chlorophyll a precursor, chlorophyllidea, into chlorophyllideb in vitro. Analysis of this reaction confirmed the existence of the proposed intermediate, highlighted the stereospecificity of the reaction, and revealed the potential of CAO as a tool for synthesizing custom-tuned natural and unnatural chlorophyll pigments. This work thus adds to our fundamental understanding of chlorophyll biosynthesis and Rieske oxygenase chemistry.
Collapse
|
16
|
Shao Y, Fu Y, Chen Y, Abomohra A, He Q, Jin W, Liu J, Tan Z, Li X. Enhancement of black and odorous water treatment coupled with accelerated lipid production by microalgae exposed to 12C 6+ heavy-ion beam irradiation. CHEMOSPHERE 2022; 305:135452. [PMID: 35752308 DOI: 10.1016/j.chemosphere.2022.135452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/29/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
In this study, Auxenochlorella protothecoides (AP-CK) was selected due to its reported high growth potential in sterilized black and odorous water (SBOW). In order to improve the resource utilization level of microalgae for wastewater treatment, AP-CK was mutated using 12C6+ heavy-ion beam irradiation, and a high lipid-containing mutant (AP-34#) was isolated and further evaluated to treat original black and odorous water (OBOW). Compared with the wild type, the maximum removal rates of COD, NH4+-N and TP of the mutant increased by 8.12 ± 0.33%, 10.43 ± 0.54% and 11.97 ± 0.16%, respectively, while maximum dissolved oxygen content increased from 0 to 4.36 ± 0.25 mg/L. Besides, the mutant lipid yield increased by 115.87 ± 3.22% over the wild type in OBOW. The fatty acid profile of AP-34# grown in SBOW and OBOW showed higher proportion of saturated fatty acids (C16:0 and C18:0) and valuable polyunsaturated fatty acids (mainly C20:5n3 and C22:6n3) which are more suitable for biodiesel production and value-added products, respectively. This work provides a new perspective on improving the characteristics of microalgae and an innovative approach for resource-based microalgae wastewater treatment through bioremediation of black and odorous water.
Collapse
Affiliation(s)
- Yitong Shao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yongsheng Fu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yangwu Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Abdelfatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Qi He
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Wenjie Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jian Liu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhouliang Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Xin Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
17
|
Identification of a biomass unaffected pale green mutant gene in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Sci Rep 2022; 12:7731. [PMID: 35546169 PMCID: PMC9095832 DOI: 10.1038/s41598-022-11825-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Chlorophyll (Chl) is an essential component of the photosynthetic apparatus and pigments in plant greening. Leaf color is an important agronomic and commercial trait of Chinese cabbage. In this study, we identified a pale green mutant pgm created by ethyl methane sulfonate (EMS) mutagenesis in Chinese cabbage. Compared with wild-type (FT), pgm had a lower Chl content with a higher Chl a/b ratio, imperfect chloroplast structure, and lower non-photochemical quenching. However, its net photosynthetic rate and biomass showed no significant differences. Genetic analysis revealed that the pale green phenotype of pgm was controlled by a recessive nuclear gene, designated as Brpgm. We applied BSR-Seq, linkage analysis, and whole-genome resequencing to map Brpgm and predicted that the target gene was BraA10g007770.3C (BrCAO), which encodes chlorophyllide a oxygenase (CAO). Brcao sequencing results showed that the last nucleotide of its first intron changed from G to A, causing the deletion of the first nucleotide in its second CDS and termination of the protein translation. The expression of BrCAO in pgm was upregulated, and the enzyme activity of CAO in pgm was significantly decreased. These results provide an approach to explore the function of BrCAO and create a pale green variation in Chinese cabbage.
Collapse
|
18
|
Chen Q, Wang Y, Zhang Z, Liu X, Li C, Ma F. Arginine Increases Tolerance to Nitrogen Deficiency in Malus hupehensis via Alterations in Photosynthetic Capacity and Amino Acids Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 12:772086. [PMID: 35095951 PMCID: PMC8795616 DOI: 10.3389/fpls.2021.772086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/20/2021] [Indexed: 05/03/2023]
Abstract
Arginine plays an important role in the nitrogen (N) cycle because it has the highest ratio of N to carbon among amino acids. In recent years, there has been increased research interest in improving the N use of plants, reducing the use of N fertilizer, and enhancing the tolerance of plants to N deficiency. Here, the function of arginine in the growth of apple (Malus hupehensis) under N deficiency was explored. The application of 100 μmol L-1 arginine was effective for alleviating N-deficiency stress. Exogenous arginine promoted the absorption and use of N, phosphorus (P), and potassium (K) under low N stress. The net photosynthetic rate, maximal photochemical efficiency of photosystem II, and chlorophyll content were higher in treated plants than in control plants. Exogenous arginine affected the content of many metabolites, and the content of many amino acids with important functions was significantly increased, such as glutamate and ornithine, which play an important role in the urea cycle. Half of the metabolites were annotated to specialized metabolic pathways, including the synthesis of phenolic substances, flavonoids, and other substances with antioxidant activity. Our results indicate that arginine promotes the plant photosynthetic capacity and alters amino acid metabolism and some antioxidants including phenolic substances and flavonoids to improve the tolerance of apple to N deficiency, possibly through the improvement of arginine content, and the absorption of mineral.
Collapse
Affiliation(s)
| | | | | | | | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| |
Collapse
|
19
|
Research Progress in the Interconversion, Turnover and Degradation of Chlorophyll. Cells 2021; 10:cells10113134. [PMID: 34831365 PMCID: PMC8621299 DOI: 10.3390/cells10113134] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Chlorophylls (Chls, Chl a and Chl b) are tetrapyrrole molecules essential for photosynthetic light harvesting and energy transduction in plants. Once formed, Chls are noncovalently bound to photosynthetic proteins on the thylakoid membrane. In contrast, they are dismantled from photosystems in response to environmental changes or developmental processes; thus, they undergo interconversion, turnover, and degradation. In the last twenty years, fruitful research progress has been achieved on these Chl metabolic processes. The discovery of new metabolic pathways has been accompanied by the identification of enzymes associated with biochemical steps. This article reviews recent progress in the analysis of the Chl cycle, turnover and degradation pathways and the involved enzymes. In addition, open questions regarding these pathways that require further investigation are also suggested.
Collapse
|
20
|
Fatma M, Iqbal N, Sehar Z, Alyemeni MN, Kaushik P, Khan NA, Ahmad P. Methyl Jasmonate Protects the PS II System by Maintaining the Stability of Chloroplast D1 Protein and Accelerating Enzymatic Antioxidants in Heat-Stressed Wheat Plants. Antioxidants (Basel) 2021; 10:antiox10081216. [PMID: 34439464 PMCID: PMC8388886 DOI: 10.3390/antiox10081216] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/24/2023] Open
Abstract
The application of 10 µM methyl jasmonate (MeJA) for the protection of wheat (Triticum aestivum L.) photosystem II (PS II) against heat stress (HS) was studied. Heat stress was induced at 42 °C to established plants, which were then recovered at 25 °C and monitored during their growth for the study duration. Application of MeJA resulted in increased enzymatic antioxidant activity that reduced the content of hydrogen peroxide (H2O2) and thiobarbituric acid reactive substances (TBARS) and enhanced the photosynthetic efficiency. Exogenous MeJA had a beneficial effect on chlorophyll fluorescence under HS and enhanced the pigment system (PS) II system, as observed in a JIP-test, a new tool for chlorophyll fluorescence induction curve. Exogenous MeJA improved the quantum yield of electron transport (ETo/CS) as well as electron transport flux for each reaction center (ET0/RC). However, the specific energy fluxes per reaction center (RC), i.e., TR0/RC (trapping) and DI0/RC (dissipation), were reduced by MeJA. These results indicate that MeJA affects the efficiency of PS II by stabilizing the D1 protein, increasing its abundance, and enhancing the expression of the psbA and psbB genes under HS, which encode proteins of the PS II core RC complex. Thus, MeJA is a potential tool to protect PS II and D1 protein in wheat plants under HS and to accelerate the recovery of the photosynthetic capacity.
Collapse
Affiliation(s)
- Mehar Fatma
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (M.F.); (Z.S.)
| | - Noushina Iqbal
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Zebus Sehar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (M.F.); (Z.S.)
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Prashant Kaushik
- Kikugawa Research Station, Yokohama Ueki, 2265, Kamo, Kikugawa City, Shizuoka 439-0031, Japan;
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (M.F.); (Z.S.)
- Correspondence: or (N.A.K.); or (P.A.)
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: or (N.A.K.); or (P.A.)
| |
Collapse
|
21
|
Zhang J, Sui C, Liu H, Chen J, Han Z, Yan Q, Liu S, Liu H. Effect of chlorophyll biosynthesis-related genes on the leaf color in Hosta (Hosta plantaginea Aschers) and tobacco (Nicotiana tabacum L.). BMC PLANT BIOLOGY 2021; 21:45. [PMID: 33451287 PMCID: PMC7811250 DOI: 10.1186/s12870-020-02805-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 12/20/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND 'Regal Splendour' (Hosta variety) is famous for its multi-color leaves, which are useful resources for exploring chloroplast development and color changes. The expressions of chlorophyll biosynthesis-related genes (HrHEMA, HrPOR and HrCAO) in Hosta have been demonstrated to be associated with leaf color. Herein, we isolated, sequenced, and analyzed HrHEMA, HrPOR and HrCAO genes. Subcellular localization was also performed to determine the location of the corresponding enzymes. After plasmid construction, virus-induced gene silencing (VIGS) was carried out to reduce the expressions of those genes. In addition, HrHEMA-, HrPOR- and HrCAO-overexpressing tobacco plants were made to verify the genes function. Changes of transgenic tobacco were recorded under 2000 lx, 6000 lx and 10,000 lx light intensity. Additionally, the contents of enzyme 5-aminolevulinic acid (5-ALA), porphobilinogen (PBG), chlorophyll a and b (Chla and Chlb), carotenoid (Cxc), superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), proline (Pro) and catalase (CAT) under different light intensities were evaluated. RESULTS The silencing of HrHEMA, HrPOR and HrCAO genes can induce leaf yellowing and chloroplast structure changes in Hosta. Specifically, leaves of Hosta with HrCAO silencing were the most affected, while those with HrPOR silencing were the least affected. Moreover, all three genes in tobacco were highly expressed, whereas no expression was detected in wild-type (WT). However, the sensitivities of the three genes to different light intensities were different. The highest expression level of HrHEMA and HrPOR was detected under 10,000 lx of illumination, while HrCAO showed the highest expression level under 6000 lx. Lastly, the 5-ALA, Chla, Cxc, SOD, POD, MDA, Pro and CAT contents in different transgenic tobaccos changed significantly under different light intensities. CONCLUSION The overexpression of these three genes in tobacco enhanced photosynthesis by accumulating chlorophyll content, but the influential level varied under different light intensities. Furthermore, HrHEMA-, HrPOR- and HrCAO- overexpressing in tobacco can enhance the antioxidant capacity of plants to cope with stress under higher light intensity. However, under lower light intensity, the antioxidant capacity was declined in HrHEMA-, HrPOR- and HrCAO- overexpressing tobaccos.
Collapse
Affiliation(s)
- Jingying Zhang
- College of Life sciences, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, 130000, People's Republic of China
| | - Changhai Sui
- College of Life sciences, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, 130000, People's Republic of China
- Jilin Engineering Vocational College, Siping City, Jilin, 136000, People's Republic of China
| | - Huimin Liu
- College of Life sciences, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, 130000, People's Republic of China
| | - Jinjiao Chen
- College of Life sciences, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, 130000, People's Republic of China
| | - Zhilin Han
- College of Life sciences, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, 130000, People's Republic of China
| | - Qian Yan
- College of Life sciences, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, 130000, People's Republic of China
| | - Shuying Liu
- College of Life sciences, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, 130000, People's Republic of China.
| | - Hongzhang Liu
- College of Life sciences, Jilin Agricultural University, 2888 Xincheng Street, Changchun City, 130000, People's Republic of China.
| |
Collapse
|
22
|
Compensation Mechanism of the Photosynthetic Apparatus in Arabidopsis thaliana ch1 Mutants. Int J Mol Sci 2020; 22:ijms22010221. [PMID: 33379339 PMCID: PMC7794896 DOI: 10.3390/ijms22010221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022] Open
Abstract
The origin of chlorophyll b deficiency is a mutation (ch1) in chlorophyllide a oxygenase (CAO), the enzyme responsible for Chl b synthesis. Regulation of Chl b synthesis is essential for understanding the mechanism of plant acclimation to various conditions. Therefore, the main aim of this study was to find the strategy in plants for compensation of low chlorophyll content by characterizing and comparing the performance and spectral properties of the photosynthetic apparatus related to the lipid and protein composition in four selected Arabidopsis ch1 mutants and two Arabidopsis ecotypes. Mutation in different loci of the CAO gene, viz., NW41, ch1.1, ch1.2 and ch1.3, manifested itself in a distinct chlorina phenotype, pigment and photosynthetic protein composition. Changes in the CAO mRNA levels and chlorophyllide a (Chlide a) content in ecotypes and ch1 mutants indicated their significant role in the adjustment mechanism of the photosynthetic apparatus to low-light conditions. Exposure of mutants with a lower chlorophyll b content to short-term (1LL) and long-term low-light stress (10LL) enabled showing a shift in the structure of the PSI and PSII complexes via spectral analysis and the thylakoid composition studies. We demonstrated that both ecotypes, Col-1 and Ler-0, reacted to high-light (HL) conditions in a way remarkably resembling the response of ch1 mutants to normal (NL) conditions. We also presented possible ways of regulating the conversion of chlorophyll a to b depending on the type of light stress conditions.
Collapse
|
23
|
Zhao X, Jia T, Hu X. HCAR Is a Limitation Factor for Chlorophyll Cycle and Chlorophyll b Degradation in Chlorophyll- b-Overproducing Plants. Biomolecules 2020; 10:E1639. [PMID: 33291365 PMCID: PMC7762049 DOI: 10.3390/biom10121639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 11/17/2022] Open
Abstract
The chlorophyll (Chl) cycle is the metabolic pathway for Chl a and Chl b inter-conversion. In this pathway, Chl b is synthesized from Chl a by the catalyzing action of chlorophyllide a oxygenase (CAO). In contrast, Chl b is firstly reduced to produce 7-hydroxymethyl Chl (HMChl) a, which is catalyzed by two isozymes of Chl b reductase (CBR), non-yellow coloring 1 (NYC1) and NYC1-like (NOL). Subsequently, HMChl a is reduced to Chl a by HMChl a reductase (HCAR). CAO plays a pivotal role in Chl a/b ratio regulation and plants over-accumulate Chl b in CAO-overexpressing plants. NYC1 is more accumulated in Chl-b-overproducing plants, while HCAR is not changed. To investigate the role of HCAR in Chl cycle regulation, the Chl metabolites of Chl-b-overproducing plants were analyzed. The results showed that HMChl a accumulated in these plants, and it decreased and the Chl a/b ratio increased by overexpressing HCAR, implying HCAR is insufficient for Chl cycle in Chl-b-overproducing plants. Furthermore, during dark-induced senescence, the non-programmed cell death symptoms (leaves dehydrated with green color retained) of Chl-b-overproducing plants were obviously alleviated, and the content of HM pheophorbide (HMPheide) a and Pheide b were sharply decreased by overexpressing HCAR. These results imply that HCAR is also insufficient for Chl degradation in Chl-b-overproducing plants during senescence, thus causing the accumulation of Chl metabolites and non-programmed cell death of leaves. With these results taken together, we conclude that HCAR is not well regulated and it is a limiting factor for Chl cycle and Chl b degradation in Chl-b-overproducing plants.
Collapse
Affiliation(s)
- Xuan Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (X.Z.); (T.J.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Ting Jia
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (X.Z.); (T.J.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueyun Hu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (X.Z.); (T.J.)
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
24
|
Bru P, Nanda S, Malnoë A. A Genetic Screen to Identify New Molecular Players Involved in Photoprotection qH in Arabidopsis thaliana. PLANTS 2020; 9:plants9111565. [PMID: 33202829 PMCID: PMC7696684 DOI: 10.3390/plants9111565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022]
Abstract
Photosynthesis is a biological process which converts light energy into chemical energy that is used in the Calvin-Benson cycle to produce organic compounds. An excess of light can induce damage to the photosynthetic machinery. Therefore, plants have evolved photoprotective mechanisms such as non-photochemical quenching (NPQ). To focus molecular insights on slowly relaxing NPQ processes in Arabidopsis thaliana, previously, a qE-deficient line-the PsbS mutant-was mutagenized and a mutant with high and slowly relaxing NPQ was isolated. The mutated gene was named suppressor of quenching 1, or SOQ1, to describe its function. Indeed, when present, SOQ1 negatively regulates or suppresses a form of antenna NPQ that is slow to relax and is photoprotective. We have now termed this component qH and identified the plastid lipocalin, LCNP, as the effector for this energy dissipation mode to occur. Recently, we found that the relaxation of qH1, ROQH1, protein is required to turn off qH. The aim of this study is to identify new molecular players involved in photoprotection qH by a whole genome sequencing approach of chemically mutagenized Arabidopsis thaliana. We conducted an EMS-mutagenesis on the soq1 npq4 double mutant and used chlorophyll fluorescence imaging to screen for suppressors and enhancers of qH. Out of 22,000 mutagenized plants screened, the molecular players cited above were found using a mapping-by-sequencing approach. Here, we describe the phenotypic characterization of the other mutants isolated from this genetic screen and an additional 8000 plants screened. We have classified them in several classes based on their fluorescence parameters, NPQ kinetics, and pigment content. A high-throughput whole genome sequencing approach on 65 mutants will identify the causal mutations thanks to allelic mutations from having reached saturation of the genetic screen. The candidate genes could be involved in the formation or maintenance of quenching sites for qH, in the regulation of qH at the transcriptional level, or be part of the quenching site itself.
Collapse
|
25
|
Alkimin GDD, Santos J, Soares AMVM, Nunes B. Ecotoxicological effects of the azole antifungal agent clotrimazole on the macrophyte species Lemna minor and Lemna gibba. Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108835. [PMID: 32585366 DOI: 10.1016/j.cbpc.2020.108835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
Pharmaceuticals are a large and diverse group of compounds used to treat, prevent and diagnose disease. Among these, a group that has been recently detected in the aquatic environment is that of the azole compounds, commonly used as antifungals. Clotrimazole (CLO) is a nonbiodegradable persistent azole compound, with broad-spectrum antifungal activity for which virtually no toxicological data are available, especially towards aquatic plants. The few existent data point to a documented interference with cytochrome P450 system of exposed organisms. Therefore, the aim of this paper was to evaluate the ecotoxicological effects of the fungicide CLO on two aquatic macrophyte species, namely, Lemna minor and Lemna gibba. To attain this purpose, an acute assay (96 h) was performed with both species being exposed to CLO, in a concentration range of 0 to 5 μg L-1. The analyzed endpoints were levels of chlorophyll a and b, total, carotenoids, catalase (CAT) and glutathione -s-transferases activities (GSTs). In general, CLO exposure caused some minor alterations in L. minor and L. gibba pigment contents. Antioxidant enzymes exhibited a different pattern in both species, since the highest concentrations of CLO caused an increase on CAT activity, and a decrease on GSTs activity in L. minor, and the opposite in L. gibba, reflected by a decrease on CAT activity and an increase on GSTs activity in all tested concentrations. These results demonstrate that CLO exposure resulted in potential deleterious effects on macrophytes, namely with the involvement of the antioxidant defense mechanisms that were likely deployed to cope with pro-oxidative conditions established by CLO.
Collapse
Affiliation(s)
- Gilberto Dias de Alkimin
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - João Santos
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
26
|
Lim H, Tanaka A, Tanaka R, Ito H. In Vitro Enzymatic Activity Assays Implicate the Existence of the Chlorophyll Cycle in Chlorophyll b-Containing Cyanobacteria. PLANT & CELL PHYSIOLOGY 2019; 60:2672-2683. [PMID: 31392311 DOI: 10.1093/pcp/pcz157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
In plants, chlorophyll (Chl) a and b are interconvertible by the action of three enzymes-chlorophyllide a oxygenase, Chl b reductase (CBR) and 7-hydroxymethyl chlorophyll a reductase (HCAR). These reactions are collectively referred to as the Chl cycle. In plants, this cyclic pathway ubiquitously exists and plays essential roles in acclimation to different light conditions at various developmental stages. By contrast, only a limited number of cyanobacteria species produce Chl b, and these include Prochlorococcus, Prochloron, Prochlorothrix and Acaryochloris. In this study, we investigated a possible existence of the Chl cycle in Chl b synthesizing cyanobacteria by testing in vitro enzymatic activities of CBR and HCAR homologs from Prochlorothrix hollandica and Acaryochloris RCC1774. All of these proteins show respective CBR and HCAR activity in vitro, indicating that both cyanobacteria possess the potential to complete the Chl cycle. It is also found that CBR and HCAR orthologs are distributed only in the Chl b-containing cyanobacteria that habitat shallow seas or freshwater, where light conditions change dynamically, whereas they are not found in Prochlorococcus species that usually habitat environments with fixed lighting. Taken together, our results implicate a possibility that the Chl cycle functions for light acclimation in Chl b-containing cyanobacteria.
Collapse
Affiliation(s)
- HyunSeok Lim
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819 Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819 Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819 Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819 Japan
| |
Collapse
|
27
|
Rodriguez-Concepcion M, D'Andrea L, Pulido P. Control of plastidial metabolism by the Clp protease complex. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2049-2058. [PMID: 30576524 DOI: 10.1093/jxb/ery441] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/29/2018] [Indexed: 05/23/2023]
Abstract
Plant metabolism is strongly dependent on plastids. Besides hosting the photosynthetic machinery, these endosymbiotic organelles synthesize starch, fatty acids, amino acids, nucleotides, tetrapyrroles, and isoprenoids. Virtually all enzymes involved in plastid-localized metabolic pathways are encoded by the nuclear genome and imported into plastids. Once there, protein quality control systems ensure proper folding of the mature forms and remove irreversibly damaged proteins. The Clp protease is the main machinery for protein degradation in the plastid stroma. Recent work has unveiled an increasing number of client proteins of this proteolytic complex in plants. Notably, a substantial proportion of these substrates are required for normal chloroplast metabolism, including enzymes involved in the production of essential tetrapyrroles and isoprenoids such as chlorophylls and carotenoids. The Clp protease complex acts in coordination with nuclear-encoded plastidial chaperones for the control of both enzyme levels and proper folding (i.e. activity). This communication involves a retrograde signaling pathway, similarly to the unfolded protein response previously characterized in mitochondria and endoplasmic reticulum. Coordinated Clp protease and chaperone activities appear to further influence other plastid processes, such as the differentiation of chloroplasts into carotenoid-accumulating chromoplasts during fruit ripening.
Collapse
Affiliation(s)
| | - Lucio D'Andrea
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Pablo Pulido
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| |
Collapse
|
28
|
Fast mapping of a chlorophyll b synthesis-deficiency gene in barley (Hordeum vulgare L.) via bulked-segregant analysis with reduced-representation sequencing. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Kume A, Akitsu T, Nasahara KN. Why is chlorophyll b only used in light-harvesting systems? JOURNAL OF PLANT RESEARCH 2018; 131:961-972. [PMID: 29992395 PMCID: PMC6459968 DOI: 10.1007/s10265-018-1052-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/13/2018] [Indexed: 05/09/2023]
Abstract
Chlorophylls (Chl) are important pigments in plants that are used to absorb photons and release electrons. There are several types of Chls but terrestrial plants only possess two of these: Chls a and b. The two pigments form light-harvesting Chl a/b-binding protein complexes (LHC), which absorb most of the light. The peak wavelengths of the absorption spectra of Chls a and b differ by c. 20 nm, and the ratio between them (the a/b ratio) is an important determinant of the light absorption efficiency of photosynthesis (i.e., the antenna size). Here, we investigated why Chl b is used in LHCs rather than other light-absorbing pigments that can be used for photosynthesis by considering the solar radiation spectrum under field conditions. We found that direct and diffuse solar radiation (PARdir and PARdiff, respectively) have different spectral distributions, showing maximum spectral photon flux densities (SPFD) at c. 680 and 460 nm, respectively, during the daytime. The spectral absorbance spectra of Chls a and b functioned complementary to each other, and the absorbance peaks of Chl b were nested within those of Chl a. The absorption peak in the short wavelength region of Chl b in the proteinaceous environment occurred at c. 460 nm, making it suitable for absorbing the PARdiff, but not suitable for avoiding the high spectral irradiance (SIR) waveband of PARdir. In contrast, Chl a effectively avoided the high SPFD and/or high SIR waveband. The absorption spectra of photosynthetic complexes were negatively correlated with SPFD spectra, but LHCs with low a/b ratios were more positively correlated with SIR spectra. These findings indicate that the spectra of the photosynthetic pigments and constructed photosystems and antenna proteins significantly align with the terrestrial solar spectra to allow the safe and efficient use of solar radiation.
Collapse
Affiliation(s)
- Atsushi Kume
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan.
| | - Tomoko Akitsu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
| | - Kenlo Nishida Nasahara
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
| |
Collapse
|
30
|
Li L, Gu W, Li J, Li C, Xie T, Qu D, Meng Y, Li C, Wei S. Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:35-55. [PMID: 29793181 DOI: 10.1016/j.plaphy.2018.05.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 05/21/2023]
Abstract
Drought stress (DS) is a major environmental factor limiting plant growth and crop productivity worldwide. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to DS. The effects of exogenous Spd on plant growth, photosynthetic performance, and chloroplast ultrastructure as well as changes in endogenous polyamines (PAs) and phytohormones were investigate in DS-resistant (Xianyu 335) and DS-sensitive (Fenghe 1) maize seedlings under well-watered and DS treatments. Exogenous Spd alleviated the stress-induced reduction in growth, photosynthetic pigment content, photosynthesis rate (Pn) and photochemical quenching (qP) parameters, including the maximum photochemistry efficiency of photosystem II (PSII) (Fv/Fm), PSII operating efficiency (ФPSII), and qP coefficient. Exogenous Spd further enhanced stress-induced elevation in non-photochemical quenching (NPQ) and the de-epoxidation state of the xanthophyll cycle (DEPS). Microscopic analysis revealed that seedlings displayed a more ordered arrangement of chloroplast ultrastructure upon Spd application during DS. Exogenous Spd increased the endogenous PA concentrations in the stressed plants. Additionally, exogenous Spd increased indoleacetic acid (IAA), zeatin riboside (ZR) and gibberellin A3 (GA3) and decreased salicylic acid (SA) and jasmonate (JA) concentrations under DS. These results indicate that exogenous Spd can alleviate the growth inhibition and damage to the structure and function of the photosynthetic apparatus caused by DS and that this alleviation may be associated with changes in endogenous PAs and phytohormones. This study contributes to advances in the knowledge of Spd-induced drought tolerance.
Collapse
Affiliation(s)
- Lijie Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Wanrong Gu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Jing Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Congfeng Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10081, China
| | - Tenglong Xie
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Danyang Qu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yao Meng
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150038, Heilongjiang, China
| | - Caifeng Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Shi Wei
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| |
Collapse
|
31
|
Night Light-Adaptation Strategies for Photosynthetic Apparatus in Yellow-Poplar (Liriodendron tulipifera L.) Exposed to Artificial Night Lighting. FORESTS 2018. [DOI: 10.3390/f9020074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Zhang L, Hu T, Amombo E, Wang G, Xie Y, Fu J. The Alleviation of Heat Damage to Photosystem II and Enzymatic Antioxidants by Exogenous Spermidine in Tall Fescue. FRONTIERS IN PLANT SCIENCE 2017; 8:1747. [PMID: 29075277 PMCID: PMC5644155 DOI: 10.3389/fpls.2017.01747] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/25/2017] [Indexed: 05/23/2023]
Abstract
Tall fescue (Festuca arundinacea Schreb) is a typical cool-season grass that is widely used in turf and pasture. However, high temperature as an abiotic stress seriously affects its utilization. The objective of this study was to explore the effect of spermidine (Spd) on heat stress response of tall fescue. The samples were exposed to 22°C (normal condition) or 44°C (heat stress) for 4 h. The results showed that exogenous Spd partially improved the quality of tall fescue leaves under normal temperature conditions. Nevertheless, after heat stress treatment, exogenous Spd significantly decreased the electrolyte leakage of tall fescue leaves. Spd also profoundly reduced the H2O2 and O2⋅- content and increased antioxidant enzymes activities. In addition, PAs can also regulate antioxidant enzymes activities including SOD, POD, and APX which could help to scavenge ROS. Moreover, application of Spd could also remarkably increase the chlorophyll content and had a positive effect on the chlorophyll α fluorescence transients under high temperature. The Spd reagent enhanced the performance of photosystem II (PSII) as observed by the JIP-test. Under heat stress, the Spd profoundly improved the partial potentials at the steps of energy bifurcations (PIABS and PItotal) and the quantum yields and efficiencies (φP0, δR0, φR0, and γRC). Exogenous Spd could also reduce the specific energy fluxes per QA- reducing PSII reaction center (RC) (TP0/RC and ET0/RC). Additionally, exogenous Spd improved the expression level of psbA and psbB, which encoded the proteins of PSII core reaction center complex. We infer that PAs can stabilize the structure of nucleic acids and protect RNA from the degradation of ribonuclease. In brief, our study indicates that exogenous Spd enhances the heat tolerance of tall fescue by maintaining cell membrane stability, increasing antioxidant enzymes activities, improving PSII, and relevant gene expression.
Collapse
Affiliation(s)
- Liang Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Guangyang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Yan Xie
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| |
Collapse
|
33
|
Piao W, Han SH, Sakuraba Y, Paek NC. Rice 7-Hydroxymethyl Chlorophyll a Reductase Is Involved in the Promotion of Chlorophyll Degradation and Modulates Cell Death Signaling. Mol Cells 2017; 40:773-786. [PMID: 29047257 PMCID: PMC5682254 DOI: 10.14348/molcells.2017.0127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 11/30/2022] Open
Abstract
The loss of green coloration via chlorophyll (Chl) degradation typically occurs during leaf senescence. To date, many Chl catabolic enzymes have been identified and shown to interact with light harvesting complex II to form a Chl degradation complex in senescing chloroplasts; this complex might metabolically channel phototoxic Chl catabolic intermediates to prevent oxidative damage to cells. The Chl catabolic enzyme 7-hydroxymethyl Chl a reductase (HCAR) converts 7-hydroxymethyl Chl a (7-HMC a) to Chl a. The rice (Oryza sativa) genome contains a single HCAR homolog (OsHCAR), but its exact role remains unknown. Here, we show that an oshcar knockout mutant exhibits persistent green leaves during both dark-induced and natural senescence, and accumulates 7-HMC a and pheophorbide a (Pheo a) in green leaf blades. Interestingly, both rice and Arabidopsis hcar mutants exhibit severe cell death at the vegetative stage; this cell death largely occurs in a light intensity-dependent manner. In addition, 7-HMC a treatment led to the generation of singlet oxygen (1O2) in Arabidopsis and rice protoplasts in the light. Under herbicide-induced oxidative stress conditions, leaf necrosis was more severe in hcar plants than in wild type, and HCAR-overexpressing plants were more tolerant to reactive oxygen species than wild type. Therefore, in addition to functioning in the conversion of 7-HMC a to Chl a in senescent leaves, HCAR may play a critical role in protecting plants from high light-induced damage by preventing the accumulation of 7-HMC a and Pheo a in developing and mature leaves at the vegetative stage.
Collapse
Affiliation(s)
- Weilan Piao
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Su-Hyun Han
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
34
|
Xue X, Wang Q, Qu Y, Wu H, Dong F, Cao H, Wang HL, Xiao J, Shen Y, Wan Y. Development of the photosynthetic apparatus of Cunninghamia lanceolata in light and darkness. THE NEW PHYTOLOGIST 2017; 213:300-313. [PMID: 27401059 DOI: 10.1111/nph.14096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/05/2016] [Indexed: 05/27/2023]
Abstract
Here, we compared the development of dark- and light-grown Chinese fir (Cunninghamia lanceolata) cotyledons, which synthesize chlorophyll in the dark, representing a different phenomenon from angiosperm model plants. We determined that the grana lamellar membranes were well developed in both chloroplasts and etiochloroplasts. The accumulation of thylakoid membrane protein complexes was similar between chloroplasts and etiochloroplasts. Measurement of chlorophyll fluorescence parameters indicated that photosystem II (PSII) had low photosynthetic activities, whereas the photosystem I (PSI)-driven cyclic electron flow (CEF) rate exceeded the rate of PSII-mediated photon harvesting in etiochloroplasts. Analysis of the protein contents in etiochloroplasts indicated that the light-harvesting complex II remained mostly in its monomeric conformation. The ferredoxin NADP+ oxidoreductase and NADH dehydrogenase-like complexes were relatively abundantly expressed in etiochloroplasts for Chinese fir. Our transcriptome analysis contributes a global expression database for Chinese fir cotyledons, providing background information on the regulatory mechanisms of different genes involved in the development of dark- and light-grown cotyledons. In conclusion, we provide a novel description of the early developmental status of the light-dependent and light-independent photosynthetic apparatuses in gymnosperms.
Collapse
Affiliation(s)
- Xian Xue
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471003, China
| | - Qi Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanli Qu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Hongyang Wu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Fengqin Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Haoyan Cao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jianwei Xiao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yingbai Shen
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yinglang Wan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
35
|
Jia T, Ito H, Tanaka A. Simultaneous regulation of antenna size and photosystem I/II stoichiometry in Arabidopsis thaliana. PLANTA 2016; 244:1041-1053. [PMID: 27394155 DOI: 10.1007/s00425-016-2568-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/06/2016] [Indexed: 05/10/2023]
Abstract
The photosystem I/II ratio increased when antenna size was enlarged by transient induction of CAO in chlorophyll b -less mutants, thus indicating simultaneous regulation of antenna size and photosystem I/II stoichiometry. Regulation of antenna size and photosystem I/II stoichiometry is an indispensable strategy for plants to acclimate to changes to light environments. When plants grown in high-light conditions are transferred to low-light conditions, the peripheral antennae of photosystems are enlarged. A change in the photosystem I/II ratio is also observed under the same light conditions. However, our knowledge of the correlation between antenna size modulation and variation in photosystem I/II stoichiometry remains limited. In this study, chlorophyll a oxygenase was transiently induced in Arabidopsis thaliana chlorophyll b-less mutants, ch1-1, to alter the antenna size without changing environmental conditions. In addition to the accumulation of chlorophyll b, the levels of the peripheral antenna complexes of both photosystems gradually increased, and these were assembled to the core antenna of both photosystems. However, the antenna size of photosystem II was greater than that of photosystem I. Immunoblot analysis of core antenna proteins showed that the number of photosystem I increased, but not that of photosystem II, resulting in an increase in the photosystem I/II ratio. These results clearly indicate that antenna size adjustment was coupled with changes in photosystem I/II stoichiometry. Based on these results, the physiological importance of simultaneous regulation of antenna size and photosystem I/II stoichiometry is discussed in relation to acclimation to light conditions.
Collapse
Affiliation(s)
- Ting Jia
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo, 060-0819, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo, 060-0819, Japan.
- CREST, Japan Science and Technology Agency, N19 W8, Kita-ku, Sapporo, 060-0819, Japan.
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo, 060-0819, Japan
- CREST, Japan Science and Technology Agency, N19 W8, Kita-ku, Sapporo, 060-0819, Japan
| |
Collapse
|
36
|
Shimoda Y, Ito H, Tanaka A. Arabidopsis STAY-GREEN, Mendel's Green Cotyledon Gene, Encodes Magnesium-Dechelatase. THE PLANT CELL 2016; 28:2147-2160. [PMID: 27604697 PMCID: PMC5059807 DOI: 10.1105/tpc.16.00428] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/22/2016] [Accepted: 09/06/2016] [Indexed: 05/18/2023]
Abstract
Pheophytin a is an essential component of oxygenic photosynthetic organisms because the primary charge separation between chlorophyll a and pheophytin a is the first step in the conversion of light energy. In addition, conversion of chlorophyll a to pheophytin a is the first step of chlorophyll degradation. Pheophytin is synthesized by extracting magnesium (Mg) from chlorophyll; the enzyme Mg-dechelatase catalyzes this reaction. In this study, we report that Mendel's green cotyledon gene, STAY-GREEN (SGR), encodes Mg-dechelatase. The Arabidopsis thaliana genome has three SGR genes, SGR1, SGR2, and STAY-GREEN LIKE (SGRL). Recombinant SGR1/2 extracted Mg from chlorophyll a but had very low or no activity against chlorophyllide a; by contrast, SGRL had higher dechelating activity against chlorophyllide a compared with chlorophyll a All SGRs could not extract Mg from chlorophyll b Enzymatic experiments using the photosystem and light-harvesting complexes showed that SGR extracts Mg not only from free chlorophyll but also from chlorophyll in the chlorophyll-protein complexes. Furthermore, most of the chlorophyll and chlorophyll binding proteins disappeared when SGR was transiently expressed by a chemical induction system. Thus, SGR is not only involved in chlorophyll degradation but also contributes to photosystem degradation.
Collapse
Affiliation(s)
- Yousuke Shimoda
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo 060-0819, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo 060-0819, Japan
- CREST, Japan Science and Technology Agency, Kita-ku, Sapporo 060-0819, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo 060-0819, Japan
- CREST, Japan Science and Technology Agency, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
37
|
Nishimura K, Kato Y, Sakamoto W. Chloroplast Proteases: Updates on Proteolysis within and across Suborganellar Compartments. PLANT PHYSIOLOGY 2016; 171:2280-93. [PMID: 27288365 PMCID: PMC4972267 DOI: 10.1104/pp.16.00330] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 05/08/2023]
Abstract
Chloroplasts originated from the endosymbiosis of ancestral cyanobacteria and maintain transcription and translation machineries for around 100 proteins. Most endosymbiont genes, however, have been transferred to the host nucleus, and the majority of the chloroplast proteome is composed of nucleus-encoded proteins that are biosynthesized in the cytosol and then imported into chloroplasts. How chloroplasts and the nucleus communicate to control the plastid proteome remains an important question. Protein-degrading machineries play key roles in chloroplast proteome biogenesis, remodeling, and maintenance. Research in the past few decades has revealed more than 20 chloroplast proteases, which are localized to specific suborganellar locations. In particular, two energy-dependent processive proteases of bacterial origin, Clp and FtsH, are central to protein homeostasis. Processing endopeptidases such as stromal processing peptidase and thylakoidal processing peptidase are involved in the maturation of precursor proteins imported into chloroplasts by cleaving off the amino-terminal transit peptides. Presequence peptidases and organellar oligopeptidase subsequently degrade the cleaved targeting peptides. Recent findings have indicated that not only intraplastidic but also extraplastidic processive protein-degrading systems participate in the regulation and quality control of protein translocation across the envelopes. In this review, we summarize current knowledge of the major chloroplast proteases in terms of type, suborganellar localization, and diversification. We present details of these degradation processes as case studies according to suborganellar compartment (envelope, stroma, and thylakoids). Key questions and future directions in this field are discussed.
Collapse
Affiliation(s)
- Kenji Nishimura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Yusuke Kato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
38
|
Rosianskey Y, Dahan Y, Yadav S, Freiman ZE, Milo-Cochavi S, Kerem Z, Eyal Y, Flaishman MA. Chlorophyll metabolism in pollinated vs. parthenocarpic fig fruits throughout development and ripening. PLANTA 2016; 244:491-504. [PMID: 27097639 DOI: 10.1007/s00425-016-2522-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/06/2016] [Indexed: 05/14/2023]
Abstract
Expression of 13 genes encoding chlorophyll biosynthesis and degradation was evaluated. Chlorophyll degradation was differentially regulated in pollinated and parthenocarpic fig fruits, leading to earlier chlorophyll degradation in parthenocarpic fruits. Varieties of the common fig typically yield a commercial summer crop that requires no pollination, although it can be pollinated. Fig fruit pollination results in larger fruit size, greener skin and darker interior inflorescence color, and slows the ripening process compared to non-pollinated fruits. We evaluated the effect of pollination on chlorophyll content and levels of transcripts encoding enzymes of the chlorophyll metabolism in fruits of the common fig 'Brown Turkey'. We cloned and evaluated the expression of 13 different genes. All 13 genes showed high expression in the fruit skin, inflorescences and leaves, but extremely low expression in roots. Pollination delayed chlorophyll breakdown in the ripening fruit skin and inflorescences. This was correlated with the expression of genes encoding enzymes in the chlorophyll biosynthesis and degradation pathways. Expression of pheophorbide a oxygenase (PAO) was strongly negatively correlated with chlorophyll levels during ripening in pollinated fruits; along with its high expression levels in yellow leaves, this supports a pivotal role for PAO in chlorophyll degradation in figs. Normalizing expression levels of all chlorophyll metabolism genes in the pollinated and parthenocarpic fruit skin and inflorescences showed three synthesis (FcGluTR1, FcGluTR2 and FcCLS1) and three degradation (FcCLH1, FcCLH2 and FcRCCR1) genes with different temporal expression in the pollinated vs. parthenocarpic fruit skin and inflorescences. FcCAO also showed different expressions in the parthenocarpic fruit skin. Thus, chlorophyll degradation is differentially regulated in the pollinated and parthenocarpic fruit skin and inflorescences, leading to earlier and more sustained chlorophyll degradation in the parthenocarpic fruit.
Collapse
Affiliation(s)
- Yogev Rosianskey
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan, 50250, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel
| | - Yardena Dahan
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan, 50250, Israel
| | - Sharawan Yadav
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan, 50250, Israel
| | - Zohar E Freiman
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan, 50250, Israel
| | - Shira Milo-Cochavi
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan, 50250, Israel
| | - Zohar Kerem
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel
| | - Yoram Eyal
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan, 50250, Israel
| | - Moshe A Flaishman
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan, 50250, Israel.
| |
Collapse
|
39
|
Kunugi M, Satoh S, Ihara K, Shibata K, Yamagishi Y, Kogame K, Obokata J, Takabayashi A, Tanaka A. Evolution of Green Plants Accompanied Changes in Light-Harvesting Systems. PLANT & CELL PHYSIOLOGY 2016; 57:1231-43. [PMID: 27057002 DOI: 10.1093/pcp/pcw071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 03/31/2016] [Indexed: 05/10/2023]
Abstract
Photosynthetic organisms have various pigments enabling them to adapt to various light environments. Green plants are divided into two groups: streptophytes and chlorophytes. Streptophytes include some freshwater green algae and land plants, while chlorophytes comprise the other freshwater green algae and seawater green algae. The environmental conditions driving the divergence of green plants into these two groups and the changes in photosynthetic properties accompanying their evolution remain unknown. Here, we separated the core antennae of PSI and the peripheral antennae [light-harvesting complexes (LHCs)] in green plants by green-native gel electrophoresis and determined their pigment compositions. Freshwater green algae and land plants have high Chl a/b ratios, with most Chl b existing in LHCs. In contrast, seawater green algae have low Chl a/b ratios. In addition, Chl b exists not only in LHCs but also in PSI core antennae in these organisms, a situation beneficial for survival in deep seawater, where blue-green light is the dominant light source. Finally, low-energy Chl (red Chl) of PSI was detected in freshwater green algae and land plants, but not in seawater green algae. We thus conclude that the different level of Chl b accumulation in core antennae and differences in PSI red Chl between freshwater and seawater green algae are evolutionary adaptations of these algae to their habitats, especially to high- or low-light environments.
Collapse
Affiliation(s)
- Motoshi Kunugi
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Soichirou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefecture University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| | - Kensuke Shibata
- AIMEN Co., Ltd, 81-1 Takaoka-cho, Matsuyama, Ehime, 791-8036 Japan
| | - Yukimasa Yamagishi
- Faculty of Life Science and Biotechnology, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama, Hiroshima, 729-0292 Japan
| | - Kazuhiro Kogame
- Faculty of Science, Hokkaido University, N10 W8 Kita-ku, Sapporo, 060-0810 Japan
| | - Junichi Obokata
- Graduate School of Life and Environmental Sciences, Kyoto Prefecture University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan CREST, JST, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan CREST, JST, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| |
Collapse
|
40
|
Jahan MS, Nozulaidi M, Khairi M, Mat N. Light-harvesting complexes in photosystem II regulate glutathione-induced sensitivity of Arabidopsis guard cells to abscisic acid. JOURNAL OF PLANT PHYSIOLOGY 2016; 195:1-8. [PMID: 26970687 DOI: 10.1016/j.jplph.2016.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
Light-harvesting complexes (LHCs) in photosystem II (PSII) regulate glutathione (GSH) functions in plants. To investigate whether LHCs control GSH biosynthesis that modifies guard cell abscisic acid (ABA) sensitivity, we evaluated GSH content, stomatal aperture, reactive oxygen species (ROS), weight loss and plant growth using a ch1-1 mutant that was defective of LHCs and compared this with wild-type (WT) Arabidopsis thaliana plants. Glutathione monoethyl ester (GSHmee) increased but 1-chloro-2,4 dinitrobenzene (CDNB) decreased the GSH content in the guard cells. The guard cells of the ch1-1 mutants accumulated significantly less GSH than the WT plants. The guard cells of the ch1-1 mutants also showed higher sensitivity to ABA than the WT plants. The CDNB treatment increased but the GSHmee treatment decreased the ABA sensitivity of the guard cells without affecting ABA-induced ROS production. Dark and light treatments altered the GSH content and stomatal aperture of the guard cells of ch1-1 and WT plants, irrespective of CDNB and GSHmee. The ch1-1 mutant contained fewer guard cells and displayed poor growth, late flowering and stumpy weight loss compared with the WT plants. This study suggests that defective LHCs reduced the GSH content in the guard cells and increased sensitivity to ABA, resulting in stomatal closure.
Collapse
Affiliation(s)
- Md Sarwar Jahan
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia.
| | - Mohd Nozulaidi
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia
| | - Mohd Khairi
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia
| | - Nashriyah Mat
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia
| |
Collapse
|
41
|
Wang J, Yu Q, Xiong H, Wang J, Chen S, Yang Z, Dai S. Proteomic Insight into the Response of Arabidopsis Chloroplasts to Darkness. PLoS One 2016; 11:e0154235. [PMID: 27137770 PMCID: PMC4854468 DOI: 10.1371/journal.pone.0154235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/11/2016] [Indexed: 11/23/2022] Open
Abstract
Chloroplast function in photosynthesis is essential for plant growth and development. It is well-known that chloroplasts respond to various light conditions. However, it remains poorly understood about how chloroplasts respond to darkness. In this study, we found 81 darkness-responsive proteins in Arabidopsis chloroplasts under 8 h darkness treatment. Most of the proteins are nucleus-encoded, indicating that chloroplast darkness response is closely regulated by the nucleus. Among them, 17 ribosome proteins were obviously reduced after darkness treatment. The protein expressional patterns and physiological changes revealed the mechanisms in chloroplasts in response to darkness, e.g., (1) inhibition of photosystem II resulted in preferential cyclic electron flow around PSI; (2) promotion of starch degradation; (3) inhibition of chloroplastic translation; and (4) regulation by redox and jasmonate signaling. The results have improved our understanding of molecular regulatory mechanisms in chloroplasts under darkness.
Collapse
Affiliation(s)
- Jing Wang
- Department of Mathematics, College of Mathematics and Science, Shanghai Normal University, Shanghai, P.R. China
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
| | - Qingbo Yu
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Haibo Xiong
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Jun Wang
- Department of Mathematics, College of Mathematics and Science, Shanghai Normal University, Shanghai, P.R. China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, United States of America
| | - Zhongnan Yang
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Shaojun Dai
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| |
Collapse
|
42
|
Yu J, Zhang J, Zhao Q, Liu Y, Chen S, Guo H, Shi L, Dai S. Proteomic Analysis Reveals the Leaf Color Regulation Mechanism in Chimera Hosta "Gold Standard" Leaves. Int J Mol Sci 2016; 17:346. [PMID: 27005614 PMCID: PMC4813207 DOI: 10.3390/ijms17030346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/09/2016] [Accepted: 03/01/2016] [Indexed: 11/28/2022] Open
Abstract
Leaf color change of variegated leaves from chimera species is regulated by fine-tuned molecular mechanisms. Hosta "Gold Standard" is a typical chimera Hosta species with golden-green variegated leaves, which is an ideal material to investigate the molecular mechanisms of leaf variegation. In this study, the margin and center regions of young and mature leaves from Hosta "Gold Standard", as well as the leaves from plants after excess nitrogen fertilization were studied using physiological and comparative proteomic approaches. We identified 31 differentially expressed proteins in various regions and development stages of variegated leaves. Some of them may be related to the leaf color regulation in Hosta "Gold Standard". For example, cytosolic glutamine synthetase (GS1), heat shock protein 70 (Hsp70), and chloroplastic elongation factor G (cpEF-G) were involved in pigment-related nitrogen synthesis as well as protein synthesis and processing. By integrating the proteomics data with physiological results, we revealed the metabolic patterns of nitrogen metabolism, photosynthesis, energy supply, as well as chloroplast protein synthesis, import and processing in various leaf regions at different development stages. Additionally, chloroplast-localized proteoforms involved in nitrogen metabolism, photosynthesis and protein processing implied that post-translational modifications were crucial for leaf color regulation. These results provide new clues toward understanding the mechanisms of leaf color regulation in variegated leaves.
Collapse
Affiliation(s)
- Juanjuan Yu
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China.
| | - Jinzheng Zhang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Qi Zhao
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Yuelu Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA.
| | - Hongliang Guo
- Food Engineering College, Harbin University of Commerce, Harbin 150028, China.
| | - Lei Shi
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
43
|
Talla SK, Panigrahy M, Kappara S, Nirosha P, Neelamraju S, Ramanan R. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1839-51. [PMID: 26826216 PMCID: PMC4783366 DOI: 10.1093/jxb/erv575] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The phytohormone cytokinin (CK) is known to delay senescence in plants. We studied the effect of a CK analog, 6-benzyl adenine (BA), on rice leaves to understand the possible mechanism by which CK delays senescence in a drought- and heat-tolerant rice cultivar Nagina22 (N22) using dark-induced senescence (DIS) as a surrogate for natural senescence of leaves. Leaves of N22-H-dgl162, a stay-green mutant of N22, and BA-treated N22 showed retention of chlorophyll (Chl) pigments, maintenance of the Chl a/b ratio, and delay in reduction of both photochemical efficiency and rate of oxygen evolution during DIS. HPLC analysis showed accumulation of 7-hydroxymethyl chlorophyll (HmChl) during DIS, and the kinetics of its accumulation correlated with progression of senescence. Transcriptome analysis revealed that several plastid-localized genes, specifically those associated with photosystem II (PSII), showed higher transcript levels in BA-treated N22 and the stay-green mutant leaves compared with naturally senescing N22 leaves. Real-time PCR analyses showed that genes coding for enzymes associated with Chl a/b interconversion and proteins associated with light-harvesting complexes maintained higher transcript levels up to 72h of DIS following BA treatment. The pigment-protein complexes analyzed by green gel remained intact in both N22-H-dgl162 and BA-treated N22 leaves even after 96h of DIS. Thus, CK delays senescence by accumulation of HmChl and up-regulating genes in the Chl cycle, thereby maintaining the Chl a/b ratio. Also, CK treatment retains higher transcript levels of PSII-related genes, resulting in the stability of photosynthetic pigment complexes and functional stay-greenness in rice.
Collapse
Affiliation(s)
| | | | | | - P Nirosha
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
44
|
Yang Y, Xu J, Huang L, Leng Y, Dai L, Rao Y, Chen L, Wang Y, Tu Z, Hu J, Ren D, Zhang G, Zhu L, Guo L, Qian Q, Zeng D. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1297-310. [PMID: 26709310 PMCID: PMC4762379 DOI: 10.1093/jxb/erv529] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chlorophyll (Chl) b is a ubiquitous accessory pigment in land plants, green algae, and prochlorophytes. This pigment is synthesized from Chl a by chlorophyllide a oxygenase and plays a key role in adaptation to various environments. This study characterizes a rice mutant, pale green leaf (pgl), and isolates the gene PGL by using a map-based cloning approach. PGL, encoding chlorophyllide a oxygenase 1, is mainly expressed in the chlorenchyma and activated in the light-dependent Chl synthesis process. Compared with wild-type plants, pgl exhibits a lower Chl content with a reduced and disorderly thylakoid ultrastructure, which decreases the photosynthesis rate and results in reduced grain yield and quality. In addition, pgl exhibits premature senescence in both natural and dark-induced conditions and more severe Chl degradation and reactive oxygen species accumulation than does the wild-type. Moreover, pgl is sensitive to heat stress.
Collapse
Affiliation(s)
- Yaolong Yang
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Jie Xu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Lichao Huang
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
| | - Yujia Leng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
| | - Liping Dai
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
| | - Yuchun Rao
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
| | - Long Chen
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
| | - Yuqiong Wang
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
| | - Zhengjun Tu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
| | - Jiang Hu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
| | - Deyong Ren
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
| | - Guangheng Zhang
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
| | - Li Zhu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
| | - Longbiao Guo
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
| |
Collapse
|
45
|
Sato R, Ito H, Tanaka A. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions. PHOTOSYNTHESIS RESEARCH 2015; 126:249-59. [PMID: 25896488 DOI: 10.1007/s11120-015-0145-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/09/2015] [Indexed: 05/03/2023]
Abstract
The light-harvesting chlorophyll a/b binding protein complex of photosystem II (LHCII) is the main antenna complex of photosystem II (PSII). Plants change their LHCII content depending on the light environment. Under high-light conditions, the content of LHCII should decrease because over-excitation damages the photosystem. Chlorophyll b is indispensable for accumulating LHCII, and chlorophyll b degradation induces LHCII degradation. Chlorophyll b degradation is initiated by chlorophyll b reductase (CBR). In land plants, NON-YELLOW COLORING 1 (NYC1) and NYC1-Like (NOL) are isozymes of CBR. We analyzed these mutants to determine their functions under high-light conditions. During high-light treatment, the chlorophyll a/b ratio was stable in the wild-type (WT) and nol plants, and the LHCII content decreased in WT plants. The chlorophyll a/b ratio decreased in the nyc1 and nyc1/nol plants, and a substantial degree of LHCII was retained in nyc1/nol plants after the high-light treatment. These results demonstrate that NYC1 degrades the chlorophyll b on LHCII under high-light conditions, thus decreasing the LHCII content. After the high-light treatment, the maximum quantum efficiency of the PSII photochemistry was lower in nyc1 and nyc1/nol plants than in WT and nol plants. A larger light-harvesting system would damage PSII in nyc1 and nyc1/nol plants. The fluorescence spectroscopy of the leaves indicated that photosystem I was also damaged by the excess LHCII in nyc1/nol plants. These observations suggest that chlorophyll b degradation by NYC1 is the initial reaction for the optimization of the light-harvesting capacity under high-light conditions.
Collapse
Affiliation(s)
- Rei Sato
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo, 060-0819, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo, 060-0819, Japan.
- CREST, Japan Science and Technology Agency, N19 W8, Kita-ku, Sapporo, 060-0819, Japan.
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo, 060-0819, Japan
- CREST, Japan Science and Technology Agency, N19 W8, Kita-ku, Sapporo, 060-0819, Japan
| |
Collapse
|
46
|
Voitsekhovskaja OV, Tyutereva EV. Chlorophyll b in angiosperms: Functions in photosynthesis, signaling and ontogenetic regulation. JOURNAL OF PLANT PHYSIOLOGY 2015; 189:51-64. [PMID: 26513460 DOI: 10.1016/j.jplph.2015.09.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 05/22/2023]
Abstract
Chlorophyll b (Chlb) is an antenna chlorophyll. The binding of Chlb by antenna proteins is crucial for the correct assembly of the antenna complexes in thylakoid membranes. Since the levels of the proteins of major and minor antenna are affected to different extents by Chlb binding, the availability of Chlb influences the composition and the size of antenna complexes which in turn determine the supramolecular organization of the thylakoid membranes in grana. Therefore, Chlb synthesis levels have a major impact on lateral mobility and diffusion of membrane molecules, and thus affect not only light harvesting and thermal energy dissipation processes, but also linear electron transport and repair processes in grana. Furthermore, in angiosperms Chlb synthesis affects plant functions beyond chloroplasts. First, the stability of pigment-protein complexes in the antennae, which depends on Chlb, is an important factor in the regulation of plant ontogenesis, and Chlb levels were recently shown to influence plant ontogenetic signaling. Second, the amounts of minor antenna proteins in chloroplasts, which depend on the availability of Chlb, were recently shown to affect ABA levels and signaling in plants. These mechanisms can be examined in mutants where Chlb synthesis is reduced or abolished. The dramatic effects caused by the lack of Chlb on plant productivity are interpreted in this review in light of the pleiotropic effects on photosynthesis and signaling, and the potential to manipulate Chlb biosynthesis for the improvement of crop production is discussed.
Collapse
Affiliation(s)
- O V Voitsekhovskaja
- Komarov Botanical Institute, Russian Academy of Sciences, Plant Ecological Physiology, ul. Professora Popova, 2, 197376 St. Petersburg, Russia.
| | - E V Tyutereva
- Komarov Botanical Institute, Russian Academy of Sciences, Plant Ecological Physiology, ul. Professora Popova, 2, 197376 St. Petersburg, Russia
| |
Collapse
|
47
|
Jia T, Ito H, Hu X, Tanaka A. Accumulation of the NON-YELLOW COLORING 1 protein of the chlorophyll cycle requires chlorophyll b in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:586-596. [PMID: 25557327 DOI: 10.1111/tpj.12753] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/14/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
Chlorophyll a and chlorophyll b are interconverted in the chlorophyll cycle. The initial step in the conversion of chlorophyll b to chlorophyll a is catalyzed by the chlorophyll b reductases NON-YELLOW COLORING 1 (NYC1) and NYC1-like (NOL), which convert chlorophyll b to 7-hydroxymethyl chlorophyll a. This step is also the first stage in the degradation of the light-harvesting chlorophyll a/b protein complex (LHC). In this study, we examined the effect of chlorophyll b on the level of NYC1. NYC1 mRNA and NYC1 protein were in low abundance in green leaves, but their levels increased in response to dark-induced senescence. When the level of chlorophyll b was enhanced by the introduction of a truncated chlorophyllide a oxygenase gene and the leaves were incubated in the dark, the amount of NYC1 was greatly increased compared with that of the wild type; however, the amount of NYC1 mRNA was the same as in the wild type. In contrast, NYC1 did not accumulate in the mutant without chlorophyll b, even though the NYC1 mRNA level was high after incubation in the dark. Quantification of the LHC protein showed no strong correlation between the levels of NYC1 and LHC proteins. However, the level of chlorophyll fluorescence of the dark adapted plant (Fo ) was closely related to the accumulation of NYC1, suggesting that the NYC1 level is related to the energetically uncoupled LHC. These results and previous reports on the degradation of chlorophyllide a oxygenase suggest that the a feedforward and feedback network is included in chlorophyll cycle.
Collapse
Affiliation(s)
- Ting Jia
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo, 060-0819, Japan
| | | | | | | |
Collapse
|
48
|
Organization, function and substrates of the essential Clp protease system in plastids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:915-30. [PMID: 25482260 DOI: 10.1016/j.bbabio.2014.11.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/20/2014] [Indexed: 01/21/2023]
Abstract
Intra-plastid proteolysis is essential in plastid biogenesis, differentiation and plastid protein homeostasis (proteostasis). We provide a comprehensive review of the Clp protease system present in all plastid types and we draw lessons from structural and functional information of bacterial Clp systems. The Clp system plays a central role in plastid development and function, through selective removal of miss-folded, aggregated, or otherwise unwanted proteins. The Clp system consists of a tetradecameric proteolytic core with catalytically active ClpP and inactive ClpR subunits, hexameric ATP-dependent chaperones (ClpC,D) and adaptor protein(s) (ClpS1) enhancing delivery of subsets of substrates. Many structural and functional features of the plastid Clp system are now understood though extensive reverse genetics analysis combined with biochemical analysis, as well as large scale quantitative proteomics for loss-of-function mutants of Clp core, chaperone and ClpS1 subunits. Evolutionary diversification of Clp system across non-photosynthetic and photosynthetic prokaryotes and organelles is illustrated. Multiple substrates have been suggested based on their direct interaction with the ClpS1 adaptor or screening of different loss-of-function protease mutants. The main challenge is now to determine degradation signals (degrons) in Clp substrates and substrate delivery mechanisms, as well as functional interactions of Clp with other plastid proteases. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
49
|
Chen J, Hu WJ, Wang C, Liu TW, Chalifour A, Chen J, Shen ZJ, Liu X, Wang WH, Zheng HL. Proteomic analysis reveals differences in tolerance to acid rain in two broad-leaf tree species, Liquidambar formosana and Schima superba. PLoS One 2014; 9:e102532. [PMID: 25025692 PMCID: PMC4099204 DOI: 10.1371/journal.pone.0102532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/18/2014] [Indexed: 11/19/2022] Open
Abstract
Acid rain (AR) is a serious environmental issue inducing harmful impacts on plant growth and development. It has been reported that Liquidambar formosana, considered as an AR-sensitive tree species, was largely injured by AR, compared with Schima superba, an AR-tolerant tree species. To clarify the different responses of these two species to AR, a comparative proteomic analysis was conducted in this study. More than 1000 protein spots were reproducibly detected on two-dimensional electrophoresis gels. Among them, 74 protein spots from L. formosana gels and 34 protein spots from S. superba gels showed significant changes in their abundances under AR stress. In both L. formosana and S. superba, the majority proteins with more than 2 fold changes were involved in photosynthesis and energy production, followed by material metabolism, stress and defense, transcription, post-translational and modification, and signal transduction. In contrast with L. formosana, no hormone response-related protein was found in S. superba. Moreover, the changes of proteins involved in photosynthesis, starch synthesis, and translation were distinctly different between L. formosana and S. superba. Protein expression analysis of three proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit, ascorbate peroxidase and glutathione-S-transferase) by Western blot was well correlated with the results of proteomics. In conclusion, our study provides new insights into AR stress responses in woody plants and clarifies the differences in strategies to cope with AR between L. formosana and S. superba.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Wen-Jun Hu
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Chao Wang
- Institute of Urban and Environment, Chinese Academy of Sciences, Xiamen, P.R. China
| | - Ting-Wu Liu
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
- Department of Biology, Huaiyin Normal University, Huaian, Jiangsu, P.R. China
| | - Annie Chalifour
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR, China
| | - Juan Chen
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Zhi-Jun Shen
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Xiang Liu
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Wen-Hua Wang
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Hai-Lei Zheng
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
50
|
Li Y, Xu J, Haq NU, Zhang H, Zhu XG. Was low CO2 a driving force of C4 evolution: Arabidopsis responses to long-term low CO2 stress. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3657-67. [PMID: 24855683 PMCID: PMC4085967 DOI: 10.1093/jxb/eru193] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The responses of long-term growth of plants under elevated CO2 have been studied extensively. Comparatively, the responses of plants to subambient CO2 concentrations have not been well studied. This study aims to investigate the responses of the model C3 plant, Arabidopsis thaliana, to low CO2 at the molecular level. Results showed that low CO2 dramatically decreased biomass productivity, together with delayed flowering and increased stomatal density. Furthermore, alteration of thylakoid stacking in both bundle sheath and mesophyll cells, upregulation of PEPC and PEPC-K together with altered expression of a number of regulators known involved in photosynthesis development were observed. These responses to low CO2 are discussed with regard to the fitness of C3 plants under low CO2. This work also briefly discusses the relevance of the data to C4 photosynthesis evolution.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Hybrid Rice Research, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajia Xu
- State Key Laboratory of Hybrid Rice Research, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Noor Ul Haq
- Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Zhang
- Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai 200031, China Shandong Normal University, Jinan, Shandong 250014, China
| | - Xin-Guang Zhu
- State Key Laboratory of Hybrid Rice Research, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|