1
|
Škyvarová D, Brunoni F, Žukauskaitė A, Pěnčík A. Glycosylation pathways in auxin homeostasis. PHYSIOLOGIA PLANTARUM 2025; 177:e70170. [PMID: 40133767 PMCID: PMC11936858 DOI: 10.1111/ppl.70170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/27/2025]
Abstract
Auxin glycosylation plays a fundamental role in the regulation of auxin homeostasis, activity, and transport, contributing to the dynamic control of plant growth and development. Glycosylation enhances auxin stability, solubility, and storage capacity, serving as a key mechanism for both temporary inactivation and long-term storage of auxin molecules. Specific glycosyltransferases are critical for this process, catalyzing glycosylation at either the carboxyl group or the nitrogen atom of the indole ring. The storage roles of glycosylated auxins, such as IAA-N-Glc, have been shown to be essential during embryogenesis and seed germination, while irreversible conjugation into catabolic products helps to maintain auxin homeostasis in vegetative tissues. This review highlights the diversity, enzymatic specificity, and physiological relevance of auxin glycosylation pathways, including a frequently overlooked N-glycosylation, underscoring its importance in the complex network of auxin metabolism.
Collapse
Affiliation(s)
- Daniela Škyvarová
- Department of Chemical Biology, Faculty of SciencePalacký UniversityOlomoucCzech Republic
- Laboratory of Growth Regulators, Faculty of SciencePalacký UniversityOlomoucCzech Republic
| | - Federica Brunoni
- Laboratory of Growth Regulators, Faculty of SciencePalacký UniversityOlomoucCzech Republic
- Laboratory of Growth RegulatorsInstitute of Experimental Botany, The Czech Academy of SciencesOlomoucCzech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of SciencePalacký UniversityOlomoucCzech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of SciencePalacký UniversityOlomoucCzech Republic
- Laboratory of Growth RegulatorsInstitute of Experimental Botany, The Czech Academy of SciencesOlomoucCzech Republic
| |
Collapse
|
2
|
Supikova K, Žukauskaitė A, Kosinova A, Pěnčík A, De Diego N, Spíchal L, Fellner M, Skorepova K, Gruz J. Sulfonation of IAA in Urtica eliminates its DR5 auxin activity. PLANT CELL REPORTS 2024; 44:8. [PMID: 39704813 PMCID: PMC11662057 DOI: 10.1007/s00299-024-03399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
KEY MESSAGE N-Sulfonated IAA was discovered as a novel auxin metabolite in Urtica where it is biosynthesized de novo utilizing inorganic sulfate. It showed no auxin activity in DR5::GUS assay, implying possible inactivation/storage mechanism. A novel auxin derivative, N-sulfoindole-3-acetic acid (IAA-N-SO3H, SIAA), was discovered in stinging nettle (Urtica dioica) among 116 sulfonated metabolites putatively identified by a semi-targeted UHPLC-QqTOF-MS analysis of 23 plant/algae/fungi species. These sulfometabolites were detected based on the presence of a neutral loss of sulfur trioxide, as indicated by the m/z difference of 79.9568 Da in the MS2 spectra. The structure of newly discovered SIAA was confirmed by synthesizing its standard and comparing retention time, m/z and MS2 spectrum with those of SIAA found in Urtica. To study its natural occurrence, 73 species in total were further analyzed by UHPLC-QqTOF-MS or targeted UHPLC-MS/MS method with a limit of detection of 244 fmol/g dry weight. However, SIAA was only detected in Urtica at a concentration of 13.906 ± 9.603 nmol/g dry weight. Its concentration was > 30 times higher than that of indole-3-acetic acid (IAA), and the SIAA/IAA ratio was further increased under different light conditions, especially in continuous blue light. In addition to SIAA, structurally similar metabolites, N-sulfoindole-3-lactic acid, 4-(sulfooxy)phenyllactic acid and 4-(sulfooxy)phenylacetic acid, were detected in Urtica for the first time. SIAA was biosynthesized from inorganic sulfate in seedlings, as confirmed by the incorporation of exogenous 34S-ammonium sulfate (1 mM and 10 mM). SIAA exhibited no auxin activity, as demonstrated by both the Arabidopsis DR5::GUS assay and the Arabidopsis phenotype analysis. Sulfonation of IAA may therefore be a mechanism for IAA deactivation and/or storage in Urtica, similar to sulfonation of the jasmonates in Arabidopsis.
Collapse
Affiliation(s)
- Klara Supikova
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Andrea Kosinova
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Lukáš Spíchal
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Martin Fellner
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Katerina Skorepova
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Jiri Gruz
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Harada M, Kubotsu T, Agui T, Dai X, Zhao Y, Kasahara H, Hayashi KI. Investigation of physiological roles of UDP-glycosyltransferase UGT76F2 in auxin homeostasis through the TAA-YUCCA auxin biosynthesis pathway. Biosci Biotechnol Biochem 2024; 88:1326-1335. [PMID: 39232210 DOI: 10.1093/bbb/zbae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Cellular auxin (indole-3-acetic acid, IAA) levels are coordinately regulated by IAA biosynthesis and inactivation. IAA is synthesized through sequential reactions by two enzymes, TAA1 and YUCCA, in a linear indole-3-pyruvic acid (IPA) pathway. TAA1 converts tryptophan to IPA, and YUCCA catalyzes the oxidative decarboxylation of IPA into IAA. Arabidopsis UDP-glycosyltransferase UGT76F2 (At3g55710) was previously reported to catalyze the glycosylation of IPA and consequently modulate IAA levels. We carefully analyzed the physiological roles of UGT76F2 and its close homolog UGT76F1 (At3g55700) in IAA homeostasis. We generated two independent ugt76f1 ugt76f2 double null Arabidopsis mutants (ugt76f1f2) with a 2.7 kb deletion, along with two independent ugt76f2 single null mutants by CRISPR/Cas9 gene editing technology. Surprisingly, these null mutants exhibited indistinguishable phenotypes from the wild-type seedlings under our laboratory conditions. Our results indicate that UGT76F1 and UGT76F2 do not play important roles in regulating IAA biosynthesis via IPA glycosylation.
Collapse
Affiliation(s)
- Mio Harada
- Department of Bioscience, Okayama University of Science, Okayama, Japan
| | - Tomoaki Kubotsu
- Department of Bioscience, Okayama University of Science, Okayama, Japan
| | - Takemoto Agui
- Department of Bioregulation and Biointeraction, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Xinhua Dai
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yunde Zhao
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Hiroyuki Kasahara
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | | |
Collapse
|
4
|
Cheng L, Zhao S, Li F, Ni X, Yang N, Yu J, Wang X. Overexpression of EgrZFP6 from Eucalyptus grandis increases ROS levels by downregulating photosynthesis in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108972. [PMID: 39067106 DOI: 10.1016/j.plaphy.2024.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
In plants, abiotic stressors are frequently encountered during growth and development. To counteract these challenges, zinc finger proteins play a critical role as transcriptional regulators. The EgrZFP6 gene, which codes for a zinc finger protein of the C2H2 type, was shown to be considerably elevated in the leaves of Eucalyptus grandis seedlings in the current study when they were subjected to a variety of abiotic stimuli, including heat, salinity, cold, and drought. Analysis conducted later showed that in EgrZFP6 transgenic Arabidopsis thaliana, EgrZFP6 was essential for causing hyponastic leaves and controlling the stress response. Furthermore, the transgenic plants showed elevated levels of reactive oxygen species (ROS), such as superoxide and hydrogen peroxide (H2O2). Additionally, in EgrZFP6-overexpressing plants, transcriptome sequencing analysis demonstrated a considerable downregulation of many genes involved in photosynthesis, decreasing electron transport efficiency and perhaps promoting the buildup of ROS. Auxin levels were higher and auxin signal transduction was compromised in the transgenic plants. Stress-related genes were also upregulated in Arabidopsis as a result of EgrZFP6 overexpression. It is hypothesized that EgrZFP6 can downregulate photosynthesis, which would cause the production of ROS in chloroplasts. As a result, this protein may alter plant stress responses and leaf morphology via a retrograde mechanism driven by ROS. These results highlight the significance of zinc finger proteins in this sophisticated process and advance our understanding of the complex link between gene regulation, ROS signaling, and plant stress responses.
Collapse
Affiliation(s)
- Longjun Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| | - Shuang Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Fangyan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiaoxiang Ni
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Ning Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jianfeng Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiaofei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
5
|
Li B, Zhou Q, Cai L, Li L, Xie C, Li D, Zhu F, Li X, Zhao X, Liu X, Shen L, Xu T, He C. TMK4-mediated FIP37 phosphorylation regulates auxin-triggered N 6-methyladenosine modification of auxin biosynthetic genes in Arabidopsis. Cell Rep 2024; 43:114597. [PMID: 39106180 DOI: 10.1016/j.celrep.2024.114597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 08/09/2024] Open
Abstract
The dynamics of N6-methyladenosine (m6A) mRNA modification are tightly controlled by the m6A methyltransferase complex and demethylases. Here, we find that auxin treatment alters m6A modification on auxin-responsive genes. Mechanically, TRANSMEMBRANE KINASE 4 (TMK4), a component of the auxin signaling pathway, interacts with and phosphorylates FKBP12-INTERACTING PROTEIN 37 (FIP37), a core component of the m6A methyltransferase complex, in an auxin-dependent manner. Phosphorylation of FIP37 enhances its interaction with RNA, thereby increasing m6A modification on its target genes, such as NITRILASE 1 (NIT1), a gene involved in indole-3-acetic acid (IAA) biosynthesis. 1-Naphthalacetic acid (NAA) treatment accelerates the mRNA decay of NIT1, in a TMK4- and FIP37-dependent manner, which leads to inhibition of auxin biosynthesis. Our findings identify a regulatory mechanism by which auxin modulates m6A modification through the phosphorylation of FIP37, ultimately affecting mRNA stability and auxin biosynthesis in plants.
Collapse
Affiliation(s)
- Bin Li
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China; State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410082, China
| | - Qiting Zhou
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Linjun Cai
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Lan Li
- School of Pharmacy, Xiangnan University, Chenzhou, Hunan 423000, China
| | - Chong Xie
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Donghao Li
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Fan Zhu
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Xiushan Li
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Xiaoying Zhao
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Xuanming Liu
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Tongda Xu
- FAFU-Joint Center, Horticulture and Metabolic Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chongsheng He
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
6
|
Palayam M, Yan L, Nagalakshmi U, Gilio AK, Cornu D, Boyer FD, Dinesh-Kumar SP, Shabek N. Structural insights into strigolactone catabolism by carboxylesterases reveal a conserved conformational regulation. Nat Commun 2024; 15:6500. [PMID: 39090154 PMCID: PMC11294565 DOI: 10.1038/s41467-024-50928-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Phytohormone levels are regulated through specialized enzymes, participating not only in their biosynthesis but also in post-signaling processes for signal inactivation and cue depletion. Arabidopsis thaliana (At) carboxylesterase 15 (CXE15) and carboxylesterase 20 (CXE20) have been shown to deplete strigolactones (SLs) that coordinate various growth and developmental processes and function as signaling molecules in the rhizosphere. Here, we elucidate the X-ray crystal structures of AtCXE15 (both apo and SL intermediate bound) and AtCXE20, revealing insights into the mechanisms of SL binding and catabolism. The N-terminal regions of CXE15 and CXE20 exhibit distinct secondary structures, with CXE15 characterized by an alpha helix and CXE20 by an alpha/beta fold. These structural differences play pivotal roles in regulating variable SL hydrolysis rates. Our findings, both in vitro and in planta, indicate that a transition of the N-terminal helix domain of CXE15 between open and closed forms facilitates robust SL hydrolysis. The results not only illuminate the distinctive process of phytohormone breakdown but also uncover a molecular architecture and mode of plasticity within a specific class of carboxylesterases.
Collapse
Affiliation(s)
- Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
| | - Linyi Yan
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
| | - Ugrappa Nagalakshmi
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
| | - Amelia K Gilio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
| | - David Cornu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
- The Genome Center, University of California-Davis, Davis, CA, USA
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA.
| |
Collapse
|
7
|
Marciniak K, Przedniczek K, Kęsy J, Święcicki W, Kopcewicz J. The development of yellow lupin anthers depends on the relationship between jasmonic acid and indole-3-acetic acid. PHYSIOLOGIA PLANTARUM 2024; 176:e14385. [PMID: 38956782 DOI: 10.1111/ppl.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
The main purpose of this study was to demonstrate that the course of anther development, including post-meiotic maturation, dehiscence and senescence, is ensured by the interdependencies between jasmonic acid (JA) and indole-3-acetic acid (IAA) in yellow lupin (Lupinus luteus L.). The concentration of JA peaked during anther dehiscence when IAA level was low, whereas the inverse relationship was specific to anther senescence. Cellular and tissue localization of JA and IAA, in conjunction with broad expression profile for genes involved in biosynthesis, signalling, response, and homeostasis under different conditions, allowed to complete and define the role of studied phytohormones during late anther development, as well as predict events triggered by them. The development/degeneration of septum and anther wall cells, dehydration of epidermis, and rupture of stomium may involve JA signalling, while the formation of secondary thickening in endothecial cell walls is rather JA independent. The IAA is involved in programmed cell death (PCD)-associated processes during anther senescence but does not exclude its participation in the anther dehiscence processes, mainly related to cell disintegration and degeneration. A detailed understanding of these multistage processes, especially at the level of phytohormonal interplay, can contribute to the effective control of male fertility, potentially revolutionizing the breeding of L. luteus.
Collapse
Affiliation(s)
- Katarzyna Marciniak
- Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Przedniczek
- Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
| | - Jacek Kęsy
- Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
| | | | - Jan Kopcewicz
- Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
8
|
Hurrah IM, Kumar A, Abbas N. Functional characterisation of Artemisia annua jasmonic acid carboxyl methyltransferase: a key enzyme enhancing artemisinin biosynthesis. PLANTA 2024; 259:152. [PMID: 38735012 DOI: 10.1007/s00425-024-04433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
MAIN CONCLUSION Overexpression of Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT) leads to enhanced artemisinin content in Artemisia annua. Artemisinin-based combination therapies remain the sole deterrent against deadly disease malaria and Artemisia annua remains the only natural producer of artemisinin. In this study, the 1101 bp gene S-adenosyl-L-methionine (SAM): Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT), was characterised from A. annua, which converts jasmonic acid (JA) to methyl jasmonate (MeJA). From phylogenetic analysis, we confirmed that AaJMT shares a common ancestor with Arabidopsis thaliana, Eutrema japonica and has a close homology with JMT of Camellia sinensis. Further, the Clustal Omega depicted that the conserved motif I, motif III and motif SSSS (serine) required to bind SAM and JA, respectively, are present in AaJMT. The relative expression of AaJMT was induced by wounding, MeJA and salicylic acid (SA) treatments. Additionally, we found that the recombinant AaJMT protein catalyses the synthesis of MeJA from JA with a Km value of 37.16 µM. Moreover, site-directed mutagenesis of serine-151 in motif SSSS to tyrosine, asparagine-10 to threonine and glutamine-25 to histidine abolished the enzyme activity of AaJMT, thus indicating their determining role in JA substrate binding. The GC-MS analysis validated that mutant proteins of AaJMT were unable to convert JA into MeJA. Finally, the artemisinin biosynthetic and trichome developmental genes were upregulated in AaJMT overexpression transgenic lines, which in turn increased the artemisinin content.
Collapse
Affiliation(s)
- Ishfaq Majid Hurrah
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir, 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Amit Kumar
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Nazia Abbas
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir, 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
9
|
Koeduka T, Nakabo A, Takata A, Ikeda R, Suzuki H, Kitajima S, Ozaki SI. Molecular cloning and biochemical characterization of indole-3-acetic acid methyltransferase from Japanese star anise ( Illicium anisatum). PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:65-70. [PMID: 39464862 PMCID: PMC11500593 DOI: 10.5511/plantbiotechnology.23.1224a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/24/2023] [Indexed: 10/29/2024]
Abstract
SABATH proteins methylate the carboxyl groups or nitrogen atoms of small plant molecules and play important roles in many developmental processes and plant defense responses. Previous studies have shown that indole-3-acetic acid (IAA) carboxyl methyltransferase (IAMT), a member of the SABATH methyltransferase family, converts IAA into its methyl ester (Me-IAA). We used RNA-seq analysis to identify a putative IAMT gene, IaIAMT, in the ancient angiosperm Illicium anisatum. Functional characterization of the recombinant IaIAMT protein expressed in Escherichia coli showed the highest level of activity with IAA, whereas indole-3-propionic acid and indole-3-butyric acid were not used as substrates. The apparent Km value of IaIAMT using IAA as a substrate was determined to be 122 µM. Phylogenetic analysis and structural modeling of IaIAMT suggested that IaIAMT evolved independently from IAMTs isolated from other plant species, whereas strict substrate specificity toward IAA was conserved in Illicium species, as observed in other plants.
Collapse
Affiliation(s)
- Takao Koeduka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Ako Nakabo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Ami Takata
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Ryo Ikeda
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Hideyuki Suzuki
- Department of Research and Development, Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | - Sakihito Kitajima
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Shin-ichi Ozaki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
10
|
Gate T, Hill L, Miller AJ, Sanders D. AtIAR1 is a Zn transporter that regulates auxin metabolism in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1437-1450. [PMID: 37988591 PMCID: PMC10901206 DOI: 10.1093/jxb/erad468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Root growth in Arabidopsis is inhibited by exogenous auxin-amino acid conjugates, and mutants resistant to one such conjugate [indole-3-acetic acid (IAA)-Ala] map to a gene (AtIAR1) that is a member of a metal transporter family. Here, we test the hypothesis that AtIAR1 controls the hydrolysis of stored conjugated auxin to free auxin through zinc transport. AtIAR1 complements a yeast mutant sensitive to zinc, but not manganese- or iron-sensitive mutants, and the transporter is predicted to be localized to the endoplasmic reticulum/Golgi in plants. A previously identified Atiar1 mutant and a non-expressed T-DNA mutant both exhibit altered auxin metabolism, including decreased IAA-glucose conjugate levels in zinc-deficient conditions and insensitivity to the growth effect of exogenous IAA-Ala conjugates. At a high concentration of zinc, wild-type plants show a novel enhanced response to root growth inhibition by exogenous IAA-Ala which is disrupted in both Atiar1 mutants. Furthermore, both Atiar1 mutants show changes in auxin-related phenotypes, including lateral root density and hypocotyl length. The findings therefore suggest a role for AtIAR1 in controlling zinc release from the secretory system, where zinc homeostasis plays a key role in regulation of auxin metabolism and plant growth regulation.
Collapse
Affiliation(s)
- Thomas Gate
- Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK
| | - Lionel Hill
- Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK
| | - Anthony J Miller
- Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK
| | - Dale Sanders
- Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
11
|
Yue Y, Zhang X, Wang L, He J, Yang S, Li X, Yu Y, Yu R, Fan Y. Identification and Characterization of Jasmonic Acid Methyltransferase Involved in the Formation of Floral Methyl Jasmonate in Hedychium coronarium. PLANTS (BASEL, SWITZERLAND) 2023; 13:8. [PMID: 38202316 PMCID: PMC10780636 DOI: 10.3390/plants13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Hedychium coronarium is a popular ornamental flower in tropical and subtropical areas due to its elegant appearance and inviting fragrance. Methyl jasmonate (MeJA) is one of the volatile compounds in the blooming flowers of H. coronarium. However, the molecular mechanism underlying floral MeJA formation is still unclear in H. coronarium. In this study, a total of 12 SABATH family genes were identified in the genome of H. coronarium, and their encoded proteins range from 366 to 387 amino acids. Phylogenetic analysis revealed seven clades in the SABATH family and a JMT ortholog clade, including two HcSABATH members. Combined with expression profiling of HcSABATH members, HcJMT1 was identified as the top candidate gene for floral MeJA biosynthesis. In vitro enzyme assays showed that HcJMT1 can catalyze the production of MeJA from jasmonic acid. Gene expression analysis indicated that HcJMT1 exhibited the highest expression in the labella and lateral petals, the major sites of MeJA emission. During flower development, the two MeJA isomers, major isomers in the products of the HcJMT1 protein, were released after anthesis, in which stage HcJMT1 displayed high expression. Our results indicated that HcJMT1 is involved in the formation of floral MeJA in H. coronarium.
Collapse
Affiliation(s)
- Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Xiaohong Zhang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Lan Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Jieling He
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Shengnan Yang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Yang J, Fan S, Guo M, Xie Z, Cheng Q, Gao P, Cheng C. DNA barcoding and comparative RNA-Seq analysis provide new insights into leaf formation using a novel resource of high-yielding Epimedium koreanum. FRONTIERS IN PLANT SCIENCE 2023; 14:1290836. [PMID: 38170141 PMCID: PMC10760978 DOI: 10.3389/fpls.2023.1290836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Epimedium koreanum Nakai, a well-known traditional Chinese medicinal herb, has been widely used to treat osteoporosis and sexual dysfunction for thousands of years. However, due to the decreasing population of East Asian natural resources, yearly output of Epimedium crude herb has been in low supply year by year. In this study, an unusual variety of E. koreanum was discovered in Dunhua, Jilin Province, the northernmost area where this variety was found containing 6 individuals, with three branches that had 27 leaflets, which is much more than the typical leaflet number of 9. Firstly, the novel E. koreanum varety was identified using DNA barcodes. Then, 1171 differentially expressed genes (DEGs) were discovered through parallel RNA-seq analysis between the newly discovered variety and wild type (WT) E. koreanum plant. Furthermore, the results of bioinformatics investigation revealed that 914 positively and 619 negatively correlated genes associated with the number of leaflets. Additionally, based on RNA-Seq and qRT-PCR analysis, two homologous hub TCP genes, which were commonly implicated in plant leaf development, and shown to be up regulated and down regulated in the discovered newly variety, respectively. Thus, our study discovered a novel wild resource for leaf yield rewarding medicinal Epimedium plant breeding, provided insights into the relationship between plant compound leaf formation and gene expression of TCPs transcription factors and other gene candidates, providing bases for creating high yield cultivated Epimedium variety by using further molecular selection and breeding techniques in the future.
Collapse
Affiliation(s)
- Jiaxin Yang
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Siqing Fan
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Min Guo
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Zhaoqi Xie
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Qiqing Cheng
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Puxin Gao
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Chunsong Cheng
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Emenecker RJ, Cammarata J, Yuan I, Howard C, Ebrahimi Naghani S, Robert HS, Nambara E, Strader LC. Abscisic acid biosynthesis is necessary for full auxin effects on hypocotyl elongation. Development 2023; 150:dev202106. [PMID: 37846593 PMCID: PMC10730017 DOI: 10.1242/dev.202106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
In concert with other phytohormones, auxin regulates plant growth and development. However, how auxin and other phytohormones coordinately regulate distinct processes is not fully understood. In this work, we uncover an auxin-abscisic acid (ABA) interaction module in Arabidopsis that is specific to coordinating activities of these hormones in the hypocotyl. From our forward genetics screen, we determine that ABA biosynthesis is required for the full effects of auxin on hypocotyl elongation. Our data also suggest that ABA biosynthesis is not required for the inhibitory effects of auxin treatment on root elongation. Our transcriptome analysis identified distinct auxin-responsive genes in root and shoot tissues, which is consistent with differential regulation of growth in these tissues. Further, our data suggest that many gene targets repressed upon auxin treatment require an intact ABA pathway for full repression. Our results support a model in which auxin stimulates ABA biosynthesis to fully regulate hypocotyl elongation.
Collapse
Affiliation(s)
- Ryan J. Emenecker
- Department of Biology, Washington University, St. Louis, MO 63130, USA
- Center for Biomolecular Condensates, Washington University, St. Louis, MO 63130, USA
- Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | | | - Irene Yuan
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Caroline Howard
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Shekufeh Ebrahimi Naghani
- Mendel Centre for Genomics and Proteomics of Plant Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czechia
| | - Helene S. Robert
- Mendel Centre for Genomics and Proteomics of Plant Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Eiji Nambara
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Lucia C. Strader
- Center for Biomolecular Condensates, Washington University, St. Louis, MO 63130, USA
- Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
14
|
Jing H, Wilkinson EG, Sageman-Furnas K, Strader LC. Auxin and abiotic stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7000-7014. [PMID: 37591508 PMCID: PMC10690732 DOI: 10.1093/jxb/erad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Plants are exposed to a variety of abiotic stresses; these stresses have profound effects on plant growth, survival, and productivity. Tolerance and adaptation to stress require sophisticated stress sensing, signaling, and various regulatory mechanisms. The plant hormone auxin is a key regulator of plant growth and development, playing pivotal roles in the integration of abiotic stress signals and control of downstream stress responses. In this review, we summarize and discuss recent advances in understanding the intersection of auxin and abiotic stress in plants, with a focus on temperature, salt, and drought stresses. We also explore the roles of auxin in stress tolerance and opportunities arising for agricultural applications.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC 27008, USA
| | | | | | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
15
|
Solanki M, Shukla LI. Recent advances in auxin biosynthesis and homeostasis. 3 Biotech 2023; 13:290. [PMID: 37547917 PMCID: PMC10400529 DOI: 10.1007/s13205-023-03709-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
UNLABELLED The plant proliferation is linked with auxins which in turn play a pivotal role in the rate of growth. Also, auxin concentrations could provide insights into the age, stress, and events leading to flowering and fruiting in the sessile plant kingdom. The role in rejuvenation and plasticity is now evidenced. Interest in plant auxins spans many decades, information from different plant families for auxin concentrations, transcriptional, and epigenetic evidences for gene regulation is evaluated here, for getting an insight into pattern of auxin biosynthesis. This biosynthesis takes place via an tryptophan-independent and tryptophan-dependent pathway. The independent pathway initiated before the tryptophan (trp) production involves indole as the primary substrate. On the other hand, the trp-dependent IAA pathway passes through the indole pyruvic acid (IPyA), indole-3-acetaldoxime (IAOx), and indole acetamide (IAM) pathways. Investigations on trp-dependent pathways involved mutants, namely yucca (1-11), taa1, nit1, cyp79b and cyp79b2, vt2 and crd, and independent mutants of tryptophan, ins are compiled here. The auxin conjugates of the IAA amide and ester-linked mutant gh3, iar, ilr, ill, iamt1, ugt, and dao are remarkable and could facilitate the assimilation of auxins. Efforts are made herein to provide an up-to-date detailed information about biosynthesis leading to plant sustenance. The vast information about auxin biosynthesis and homeostasis is consolidated in this review with a simplified model of auxin biosynthesis with keys and clues for important missing links since auxins can enable the plants to proliferate and override the environmental influence and needs to be probed for applications in sustainable agriculture. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-023-03709-6.
Collapse
Affiliation(s)
- Manish Solanki
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
- Puducherry, India
| | - Lata Israni Shukla
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
| |
Collapse
|
16
|
Pintado A, Domínguez-Cerván H, Pastor V, Vincent M, Lee SG, Flors V, Ramos C. Allelic variation in the indoleacetic acid-lysine synthase gene of the bacterial pathogen Pseudomonas savastanoi and its role in auxin production. FRONTIERS IN PLANT SCIENCE 2023; 14:1176705. [PMID: 37346122 PMCID: PMC10280071 DOI: 10.3389/fpls.2023.1176705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Indole-3-acetic acid (IAA) production is a pathogenicity/virulence factor in the Pseudomonas syringae complex, including Pseudomonas savastanoi. P. savastanoi pathovars (pvs.) genomes contain the iaaL gene, encoding an enzyme that catalyzes the biosynthesis of the less biologically active compound 3-indole-acetyl-ϵ-L-lysine (IAA-Lys). Previous studies have reported the identification of IAA-Lys in culture filtrates of P. savastanoi strains isolated from oleander (pv. nerii), but the conversion of IAA into a conjugate was not detectable in olive strains (pv. savastanoi). In this paper, we show the distribution of iaaL alleles in all available P. savastanoi genomes of strains isolated from woody hosts. Most strains encode two different paralogs, except for those isolated from broom (pv. retacarpa), which contain a single allele. In addition to the three previously reported iaaL alleles (iaaL Psv, iaaL Psn and iaaL Pto), we identified iaaL Psf, an exclusive allele of strains isolated from ash (pv. fraxini). We also found that the production of IAA-Lys in P. savastanoi pv. savastanoi and pv. nerii depends on a functional iaaL Psn allele, whereas in pv. fraxini depends on iaaL Psf. The production of IAA-Lys was detected in cultures of an olive strain heterologously expressing IaaLPsn-1, IaaLPsf-1 and IaaLPsf-3, but not when expressing IaaLPsv-1. In addition, Arabidopsis seedlings treated with the strains overproducing the conjugate, and thus reducing the free IAA content, alleviated the root elongation inhibitory effect of IAA. IAA-Lys synthase activity assays with purified allozymes confirmed the functionality and specificity of lysine as a substrate of IaaLPsn-1 and IaaLPsf-3, with IaaLPsf-3 showing the highest catalytic efficiency for both substrates. The IAA-Lys synthase activity of IaaLPsn-1 was abolished by the insertion of two additional tyrosine residues encoded in the inactive allozyme IaaLPsv-1. These results highlight the relevance of allelic variation in a phytohormone-related gene for the modulation of auxin production in a bacterial phytopathogen.
Collapse
Affiliation(s)
- Adrián Pintado
- Área de Genética, Facultad de Ciencias, Universidad de Málaga (UMA), Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Hilario Domínguez-Cerván
- Área de Genética, Facultad de Ciencias, Universidad de Málaga (UMA), Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Victoria Pastor
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I (UJI), Castelló de la Plana, Spain
| | - Marissa Vincent
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Soon Goo Lee
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States
| | - Víctor Flors
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I (UJI), Castelló de la Plana, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Universidad de Málaga (UMA), Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
17
|
Ren R, Zhang S, Guo T, Long J, Peng C. Genome-wide identification and expression pattern analysis of the SABATH gene family in Neolamarckia cadamba. FORESTRY RESEARCH 2023; 3:13. [PMID: 39526264 PMCID: PMC11524262 DOI: 10.48130/fr-2023-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/05/2023] [Indexed: 11/16/2024]
Abstract
Plant SABATH methyltransferases are a class of enzymes that catalyze the transfer of the methyl group from S-adenosyl-L-methionine (SAM) to the carboxyl group or the nitrogen group of the substrate to form small molecule methyl esters or N-methylated compounds, which are involved in various secondary metabolite biosynthesis and have important impacts on plant growth, development, and defense reactions. We previously reported the monoterpenoid indole alkaloids (MIAs) cadambine biosynthetic pathway in Neolamarckia cadamba, a woody tree species that provides an important traditional medicine widely used to treat diseases such as diabetes, leprosy, and cancer in Southeast Asia. However, the functions of NcSABATHs in cadambine biosynthesis remain unclear. In this study, 23 NcSABATHs were identified and found to be distributed on 12 of the total 22 chromosomes. Gene structure, conserved motifs, and phylogenetic analysis showed that NcSABATHs could be divided into three groups. According to cis-element analysis, the NcSABATH promoters contained a large number of elements involved in light, plant hormone, and environmental stress responses, as well as binding sites for the BBR-BPC, DOF, and MYB transcription factor families. Based on RNA-seq data and qRT-PCR analysis, the NcSABATH genes exhibited diverse tissue expression patterns. Furthermore, NcSABATH7/22, which clustered with LAMT in the same clade, were both up-regulated under MeJA treatment. The correlation analysis between gene expression and cadambine content showed that NcSABATH7 potentially participated in cadambine biosynthesis. Taken together, our study not only enhanced our understanding of SABATH in N. cadamba but also identified potential candidate genes involved in cadambine biosynthesis.
Collapse
Affiliation(s)
- Rongrong Ren
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Suxia Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ting Guo
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianmei Long
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Changcao Peng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
18
|
Pichersky E. Biochemistry and genetics of floral scent: a historical perspective. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36995899 DOI: 10.1111/tpj.16220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Floral scent plays a crucial role in the reproductive process of many plants. Humans have been fascinated by floral scents throughout history, and have transported and traded floral scent products for which they have found multiple uses, such as in food additives, hygiene and perfume products, and medicines. Yet the scientific study of how plants synthesize floral scent compounds began later than studies on most other major plant metabolites, and the first report of the characterization of an enzyme responsible for the synthesis of a floral scent compound, namely linalool in Clarkia breweri, a California annual, appeared in 1994. In the almost 30 years since, enzymes and genes involved in the synthesis of hundreds of scent compounds from multiple plant species have been described. This review recapitulates this history and describes the major findings relating to the various aspects of floral scent biosynthesis and emission, including genes and enzymes and their evolution, storage and emission of scent volatiles, and the regulation of the biochemical processes.
Collapse
Affiliation(s)
- Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Li L, Chen X. Auxin regulation on crop: from mechanisms to opportunities in soybean breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:16. [PMID: 37313296 PMCID: PMC10248601 DOI: 10.1007/s11032-023-01361-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 06/15/2023]
Abstract
Breeding crop varieties with high yield and ideal plant architecture is a desirable goal of agricultural science. The success of "Green Revolution" in cereal crops provides opportunities to incorporate phytohormones in crop breeding. Auxin is a critical phytohormone to determine nearly all the aspects of plant development. Despite the current knowledge regarding auxin biosynthesis, auxin transport and auxin signaling have been well characterized in model Arabidopsis (Arabidopsis thaliana) plants, how auxin regulates crop architecture is far from being understood, and the introduction of auxin biology in crop breeding stays in the theoretical stage. Here, we give an overview on molecular mechanisms of auxin biology in Arabidopsis, and mainly summarize auxin contributions for crop plant development. Furthermore, we propose potential opportunities to integrate auxin biology in soybean (Glycine max) breeding.
Collapse
Affiliation(s)
- Linfang Li
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| |
Collapse
|
20
|
Lei L, Zhang JY, Pu D, Liu BZ, Meng XM, Shang QM, Duan YD, Zhang F, Zhang MX, Dong CJ. ABA-responsive AREB1/ABI3-1/ABI5 cascade regulates IAA oxidase gene SlDAO2 to inhibit hypocotyl elongation in tomato. PLANT, CELL & ENVIRONMENT 2023; 46:498-517. [PMID: 36369997 DOI: 10.1111/pce.14491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Hypocotyl elongation is dramatically influenced by environmental factors and phytohormones. Indole-3-acetic acid (IAA) plays a prominent role in hypocotyl elongation, whereas abscisic acid (ABA) is regarded as an inhibitor through repressing IAA synthesis and signalling. However, the regulatory role of ABA in local IAA deactivation remains largely uncharacterized. In this study, we confirmed the antagonistic interplay of ABA and IAA during the hypocotyl elongation of tomato (Solanum lycopersicum) seedlings. We identified an IAA oxidase enzyme DIOXYGENASE FOR AUXIN OXIDATION2 (SlDAO2), and its expression was induced by both external and internal ABA signals in tomato hypocotyls. Moreover, the overexpression of SlDAO2 led to a reduced sensitivity to IAA, and the knockout of SlDAO2 alleviated the inhibitory effect of ABA on hypocotyl elongation. Furthermore, an ABA-responsive regulatory SlAREB1/SlABI3-1/SlABI5 cascade was identified to act upstream of SlDAO2 and to precisely control its expression. SlAREB1 directly bound to the ABRE present in the SlDAO2 promoter to activate SlDAO2 expression, and SlABI3-1 enhanced while SlABI5 inhibited the activation ability of SlAREB1 by directly interacting with SlAREB1. Our findings revealed that ABA might induce local IAA oxidation and deactivation via SlDAO2 to modulate IAA homoeostasis and thereby repress hypocotyl elongation in tomato.
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jing-Ya Zhang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Dan Pu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Bing-Zhu Liu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Xian-Min Meng
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Qing-Mao Shang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Yun-Dan Duan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Meng-Xia Zhang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Chun-Juan Dong
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| |
Collapse
|
21
|
Zhuge XL, Du X, Xiu ZJ, He CC, Wang YM, Yang HL, Han XM. Discovery of specific catalytic activity toward IAA/FA by LaSABATHs based on genome-wide phylogenetic and enzymatic analysis of SABATH gene family from Larix kaempferi. Int J Biol Macromol 2023; 225:1562-1574. [PMID: 36442561 DOI: 10.1016/j.ijbiomac.2022.11.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The SABATH methyltransferases catalyze methylation of small-molecule metabolites, which participate in plant growth, development and defense response. Given lack of genome-wide studies on gymnosperms SABATH family, the formation and functional differentiation mechanism of the Larix kaempferi SABATH gene family was systematically and exhaustively explored by analyzing gene sequence characteristics, phylogenetic relationship, expression pattern, and enzyme activities. Phylogenetic analysis showed that 247 SABATH genes from 14 land plants were divided into 4 clades, and lineage-specific gene duplication events were important factors that contributed to the evolution of the SABATH gene family in gymnosperms and angiosperms. Substrate specificity analysis of 18 Larix SABATH proteins showed that LaSABATHs could catalyze O-methylation of indole-3-acetic acid (IAA) and farnesic acid (FA), N-methylation of theobromine, and S-methylation of thiobenzoic acid. Furthermore, only LaSABATH2 and LaSABATH29 could catalyze O-methylation of FA, and only LaSABATH30 could catalyze O-methylation of IAA. Homology modeling and molecular docking studies showed the hydrogen bond formed between the His188 of LaSABATH30 and IAA and the noticeable hydrophobic IAA-binding pocket may be helpful for IAA methylation. In this study, identification of proteins with significant specific catalytic activity toward FA and IAA provided high-quality candidate genes for forest genetics and breeding.
Collapse
Affiliation(s)
- Xiang-Lin Zhuge
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xin Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Zhi-Jing Xiu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Cheng-Cheng He
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yi-Ming Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hai-Ling Yang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xue-Min Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
22
|
Dong H, Zhang W, Li Y, Feng Y, Wang X, Liu Z, Li D, Wen X, Ma S, Zhang X. Overexpression of salicylic acid methyltransferase reduces salicylic acid-mediated pathogen resistance in poplar. FRONTIERS IN PLANT SCIENCE 2022; 13:973305. [PMID: 36388494 PMCID: PMC9660245 DOI: 10.3389/fpls.2022.973305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Salicylic acid (SA) is generally considered to be a critical signal transduction factor in plant defenses against pathogens. It could be converted to methyl salicylate (MeSA) for remote signals by salicylic acid methyltransferase (SAMT) and converted back to SA by SA-binding protein 2 (SABP2). In order to verify the function of SAMT in poplar plants, we isolated the full-length cDNA sequence of PagSAMT from 84K poplar and cultivated PagSAMT overexpression lines (OE-2 isolate) to test its role in SA-mediated defenses against the virulent fungal pathogen Botryosphaeria dothidea. Our results showed that after inoculation with B. dothidea, OE-2 significantly increased MeSA content and reduced SA content which is associated with increased expression of SAMT in both infected and uninfected leaves, when compared against the wild type (WT). Additionally, SAMT overexpression plant lines (OE-2) exhibited higher expression of pathogenesis-related genes PR-1 and PR-5, but were still susceptible to B. dothidea suggesting that in poplar SA might be responsible for resistance against this pathogen. This study expands the current understanding of joint regulation of SAMT and SABP2 and the balance between SA and MeSA in poplar responses to pathogen invasion.
Collapse
Affiliation(s)
- Huixia Dong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Wei Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yuqian Feng
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xuan Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Shuai Ma
- Resources Management, Chinese Academy of Forestry, Beijing, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
23
|
Jun SE, Cho KH, Manzoor MA, Hwang TY, Kim YS, Schaffrath R, Kim GT. AtELP4 a subunit of the Elongator complex in Arabidopsis, mediates cell proliferation and dorsoventral polarity during leaf morphogenesis. FRONTIERS IN PLANT SCIENCE 2022; 13:1033358. [PMID: 36340367 PMCID: PMC9634574 DOI: 10.3389/fpls.2022.1033358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The Elongator complex in eukaryotes has conserved tRNA modification functions and contributes to various physiological processes such as transcriptional control, DNA replication and repair, and chromatin accessibility. ARABIDOPSIS ELONGATOR PROTEIN 4 (AtELP4) is one of the six subunits (AtELP1-AtELP6) in Arabidopsis Elongator. In addition, there is an Elongator-associated protein, DEFORMED ROOTS AND LEAVES 1 (DRL1), whose homolog in yeast (Kti12) binds tRNAs. In this study, we explored the functions of AtELP4 in plant-specific aspects such as leaf morphogenesis and evolutionarily conserved ones between yeast and Arabidopsis. ELP4 comparison between yeast and Arabidopsis revealed that plant ELP4 possesses not only a highly conserved P-loop ATPase domain but also unknown plant-specific motifs. ELP4 function is partially conserved between Arabidopsis and yeast in the growth sensitivity toward caffeine and elevated cultivation temperature. Either single Atelp4 or drl1-102 mutants and double Atelp4 drl1-102 mutants exhibited a reduction in cell proliferation and changed the adaxial-abaxial polarity of leaves. In addition, the single Atelp4 and double Atelp4 drl1-102 mutants showed remarkable downward curling at the whole part of leaf blades in contrast to wild-type leaf blades. Furthermore, our genetic study revealed that AtELP4 might epistatically act on DRL1 in the regulation of cell proliferation and dorsoventral polarity in leaves. Taken together, we suggest that AtELP4 as part of the plant Elongator complex may act upstream of a regulatory pathway for adaxial-abaxial polarity and cell proliferation during leaf development.
Collapse
Affiliation(s)
- Sang Eun Jun
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
| | - Kiu-Hyung Cho
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
| | | | - Tae Young Hwang
- Graduate School of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Youn Soo Kim
- Graduate School of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Gyung-Tae Kim
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
- Graduate School of Applied Bioscience, Dong-A University, Busan, South Korea
| |
Collapse
|
24
|
Exogenous Betaine Enhances the Protrusion Vigor of Rice Seeds under Heat Stress by Regulating Plant Hormone Signal Transduction and Its Interaction Network. Antioxidants (Basel) 2022; 11:antiox11091792. [PMID: 36139866 PMCID: PMC9496009 DOI: 10.3390/antiox11091792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Rice is an important food crop. Rice seedlings are mainly composed of root, coleoptile, mesocotyl and euphylla. The elongation of coleoptile and mesocotyl promotes the emergence of rice seedlings. Therefore, analyzing the mechanism of coleoptile and mesocotyl elongation is important for the cultivation of rice varieties. Due to global warming, heat stress is threatening rice yields. Betaine plays an important role in plant resistance to heat stress; however, we lack research on its regulation mechanism of rice seed germination under heat stress. Therefore, we explored the effects of soaking seeds with betaine at different concentrations on rice seed germination under heat stress. According to the results, soaking seeds with 10 mM of betaine could effectively improve the seeds’ germination potential and rate under heat stress to promote the germination of rice seeds. To clarify the mitigation mechanism of betaine in heat stress, we measured the antioxidant enzyme activity, malondialdehyde content, soluble protein content and endogenous hormone content of seed protrusion under heat stress. We constructed the cDNA library for transcriptome sequencing. According to the results, 10 mM of betaine improved the activities of the superoxide dismutase, peroxidase and catalase of seed protrusion under heat stress to reduce the malondialdehyde content and increase the soluble protein content to alleviate the effect of heat stress on rice seed germination. The detection of the endogenous hormone content showed that soaking seeds with 10 mM of betaine increased the content of gibberellin and decreased the contents of auxin and abscisic acid of seed protrusion under heat stress. According to the transcriptome analysis, betaine can induce the expressions of key genes in the biosynthesis and metabolism of auxin, abscisic acid and gibberellins in the seed coleoptile and mesocotyl elongation stage, regulate the signal transduction of three hormones and promote the germination of rice seeds under heat stress. This study revealed, for the first time, the physiological and molecular regulation mechanism of betaine promotion of seed germination under heat stress.
Collapse
|
25
|
Chemical inhibition of the auxin inactivation pathway uncovers the roles of metabolic turnover in auxin homeostasis. Proc Natl Acad Sci U S A 2022; 119:e2206869119. [PMID: 35914172 PMCID: PMC9371723 DOI: 10.1073/pnas.2206869119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The phytohormone auxin, indole-3-acetic acid (IAA), plays a prominent role in plant development. Auxin homeostasis is coordinately regulated by auxin synthesis, transport, and inactivation; however, the physiological contribution of auxin inactivation to auxin homeostasis has not been determined. The GH3 IAA-amino acid conjugating enzymes play a central role in auxin inactivation. Chemical inhibition of GH3 proteins in planta is challenging because the inhibition of these enzymes leads to IAA overaccumulation that rapidly induces GH3 expression. Here, we report the characterization of a potent GH3 inhibitor, kakeimide, that selectively targets IAA-conjugating GH3 proteins. Chemical knockdown of the auxin inactivation pathway demonstrates that auxin turnover is very rapid (about 10 min) and indicates that both auxin biosynthesis and inactivation dynamically regulate auxin homeostasis.
Collapse
|
26
|
Boonrod K, Strohmayer A, Schwarz T, Braun M, Tropf T, Krczal G. Beyond Destabilizing Activity of SAP11-like Effector of Candidatus Phytoplasma mali Strain PM19. Microorganisms 2022; 10:microorganisms10071406. [PMID: 35889125 PMCID: PMC9317525 DOI: 10.3390/microorganisms10071406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
It was shown that the SAP11 effector of different Candidatus Phytoplasma can destabilize some TEOSINE BRANCHES/CYCLOIDEA/PROLIFERATING CELL FACTORs (TCPs), resulting in plant phenotypes such as witches’ broom and crinkled leaves. Some SAP11 exclusively localize in the nucleus, while the others localize in the cytoplasm and the nucleus. The SAP11-like effector of Candidatus Phytoplasma mali strain PM19 (SAP11PM19) localizes in both compartments of plant cells. We show here that SAP11PM19 can destabilize TCPs in both the nucleus and the cytoplasm. However, expression of SAP11PM19 exclusively in the nucleus resulted in the disappearance of leaf phenotypes while still showing the witches’ broom phenotype. Moreover, we show that SAP11PM19 can not only destabilize TCPs but also relocalizes these proteins in the nucleus. Interestingly, three different transgenic Nicotiana species expressing SAP11PM19 show all the same witches’ broom phenotype but different leaf phenotypes. A possible mechanism of SAP11-TCP interaction is discussed.
Collapse
Affiliation(s)
- Kajohn Boonrod
- Correspondence: ; Tel.: +49-6321-671-1333; Fax: +49-6321-671-1313
| | | | | | | | | | | |
Collapse
|
27
|
Zheng X, Lan J, Yu H, Zhang J, Zhang Y, Qin Y, Su XD, Qin G. Arabidopsis transcription factor TCP4 represses chlorophyll biosynthesis to prevent petal greening. PLANT COMMUNICATIONS 2022; 3:100309. [PMID: 35605201 PMCID: PMC9284284 DOI: 10.1016/j.xplc.2022.100309] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/16/2022] [Accepted: 03/01/2022] [Indexed: 05/06/2023]
Abstract
Green petals pose a challenge for pollinators to distinguish flowers from leaves, but they are valuable as a specialty flower trait. However, little is understood about the molecular mechanisms that underlie the development of green petals. Here, we report that CINCINNATA (CIN)-like TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) proteins play key roles in the control of petal color. The septuple tcp2/3/4/5/10/13/17 mutant produced flowers with green petals due to chlorophyll accumulation. Expression of TCP4 complemented the petal phenotype of tcp2/3/4/5/10/13/17. We found that chloroplasts were converted into leucoplasts in the distal parts of wild-type petals but not in the proximal parts during flower development, whereas plastid conversion was compromised in the distal parts of tcp2/3/4/5/10/13/17 petals. TCP4 and most CIN-like TCPs were predominantly expressed in distal petal regions, consistent with the green-white pattern in wild-type petals and the petal greening observed in the distal parts of tcp2/3/4/5/10/13/17 petals. RNA-sequencing data revealed that most chlorophyll biosynthesis genes were downregulated in the white distal parts of wild-type petals, but these genes had elevated expression in the distal green parts of tcp2/3/4/5/10/13/17 petals and the green proximal parts of wild-type petals. We revealed that TCP4 repressed chlorophyll biosynthesis by directly binding to the promoters of PROTOCHLOROPHYLLIDE REDUCTASE (PORB), DIVINYL REDUCTASE (DVR), and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), which are known to promote petal greening. We found that the conversion of chloroplasts to leucoplasts and the green coloration in the proximal parts of petals appeared to be conserved among plant species. Our findings uncover a major molecular mechanism that underpins the formation of petal color patterns and provide a foundation for the breeding of plants with green flowers.
Collapse
Affiliation(s)
- Xinhui Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jingzhe Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yi Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yongmei Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xiao-Dong Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
28
|
Zhang F, Li C, Qu X, Liu J, Yu Z, Wang J, Zhu J, Yu Y, Ding Z. A feedback regulation between ARF7-mediated auxin signaling and auxin homeostasis involving MES17 affects plant gravitropism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1339-1351. [PMID: 35475598 DOI: 10.1111/jipb.13268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Gravitropism is an essential adaptive response of land plants. Asymmetric auxin gradients across plant organs, interpreted by multiple auxin signaling components including AUXIN RESPONSE FACTOR7 (ARF7), trigger differential growth and bending response. However, how this fundamental process is strictly maintained in nature remains unclear. Here, we report that gravity stimulates the transcription of METHYL ESTERASE17 (MES17) along the lower side of the hypocotyl via ARF7-dependent auxin signaling. The asymmetric distribution of MES17, a methyltransferase that converts auxin from its inactive form methyl indole-3-acetic acid ester (MeIAA) to its biologically active form free-IAA, enhanced the gradient of active auxin across the hypocotyl, which in turn reversely amplified the asymmetric auxin responses and differential growth that shape gravitropic bending. Taken together, our findings reveal the novel role of MES17-mediated auxin homeostasis in gravitropic responses and identify an ARF7-triggered feedback mechanism that reinforces the asymmetric distribution of active auxin and strictly controls gravitropism in plants.
Collapse
Affiliation(s)
- Feng Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Cuiling Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xingzhen Qu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jiajia Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jiayong Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yongqiang Yu
- Horticulture Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
29
|
Abstract
The study of fruit development in zucchini via gene expression has proven to be applicable in breeding programs. Phenotypic and transcriptomic studies of fruit set and parthenocarpy have been previously developed and some relevant genes have been reported. From these studies, three genotypes (MUCU-16, Whitaker, and Cavili) and six genes (CpAUX22, CpIAA4, CpIAMT-1, CpPIN5, CpCYCD6-1, and CpEXPLB1) were selected. The expression of these genes was analyzed in each genotype under three different treatments (pollination, auxin-treatment and non-treatment) during one week post anthesis. Also, a phenotyping analysis was conducted. The different nature of the samples and the genes selected allowed associations between different fruit traits and fruit development stages. There was a rapid response of CpAUX22 and CpIAA4 to the auxin treatment. Also, these genes and the CpIAMT-1 became more overexpressed in pollinated samples over time. The CpPIN5 gene increased its expression over time in all genotypes while CpCYCD6-1 was overexpressed in the early stages of fruit development in all samples. The CpEXPLB1 was highly up-regulated in non-treated samples, suggesting a relationship with fruit abortion. The overexpression of CpAUX22 and the non-overexpression of CpEXPLB1 in early stages may be associated with fruit growth in zucchini.
Collapse
|
30
|
Teboul N, Magder A, Zilberberg M, Peleg Z. Elucidating the pleiotropic effects of sesame KANADI1 locus on leaf and capsule development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:88-102. [PMID: 34964536 DOI: 10.1111/tpj.15655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Autonomous seed dispersal is a critical trait for wild plants in natural ecosystems; however, for domesticated crop-plants it can lead to significant yield losses. While seed shattering was a major selection target during the initial domestication of many crops, this trait is still targeted in breeding programs, especially in 'orphan crops' such as sesame, whose capsules dehisce upon ripening. Here we used a mapping population derived from a cross between wild-type (dehiscent) × indehiscent lines to test the hypothesis that the selection against indehiscent alleles in sesame is a consequence of complex genetic interactions associated with yield reduction. We identified a major pleiotropic locus, SiKANADI1, associated with abnormal hyponastic leaf and indehiscent capsule, and genetically dissected its underlying mechanism using a set of near-isogenic lines. Transcriptional, anatomical and physiological information shed light, for the first time, on the polar regulatory gene network in sesame. The pleiotropic effect of SiKANADI1 on leaf and capsule structure and its influence on photosynthetic capacity and final yield are thoroughly characterized. Overall, our results provide new insights on the genetic and morphological mechanisms regulating capsule indehiscence in sesame, and discuss their evolutionary consequences and potential for future sesame breeding.
Collapse
Affiliation(s)
- Naama Teboul
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Asher Magder
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Michael Zilberberg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| |
Collapse
|
31
|
Auxin methylation by IAMT1, duplicated in the legume lineage, promotes root nodule development in Lotus japonicus. Proc Natl Acad Sci U S A 2022; 119:e2116549119. [PMID: 35235457 PMCID: PMC8915983 DOI: 10.1073/pnas.2116549119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significance IAA carboxyl methyltransferase 1 (IAMT1) converts auxin (IAA) into its methyl ester (MeIAA). IAMT1 is reportedly critical for shoot development of the nonsymbiotic plant Arabidopsis. On the other hand, the function of IAMT1 in roots is unknown. Here, we found that IAMT1 is duplicated in the legume lineage, which evolved root nodule symbiosis. In the model legume Lotus japonicus, one of two paralogs (named IAMT1a) was mainly expressed in root epidermis, but its function is required in the adjacent cell layer, root cortex, where it promotes nodule development. Application of MeIAA, but not IAA, significantly induced NIN, a master regulator of nodule development, without rhizobia. These findings illuminate our understanding of intertissue communication acquired during evolution of root nodule symbiosis.
Collapse
|
32
|
Tang Y, Li H, Liu C, He Y, Wang H, Zhao T, Xu X, Li J, Yang H, Jiang J. CRISPR-Cas9-mediated mutagenesis of the SlSRM1-like gene leads to abnormal leaf development in tomatoes. BMC PLANT BIOLOGY 2022; 22:13. [PMID: 34979927 PMCID: PMC8722279 DOI: 10.1186/s12870-021-03397-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Leaves, which are the most important organs of plants, can not only fix carbon sources through photosynthesis, but also absorb nutrients through transpiration. Leaf development directly determines the growth, flowering and fruiting of plants. There are many factors that affect leaf development, such as the growth environment, gene expression, and hormone synthesis. In this study, tomatoes were used to study the role of the transcription factor Solanum lycopersicum salt-related MYB1-like (SlSRM1-like) in the development of tomato leaves. RESULTS Loss-of-function of the SlSRM1-like gene mediated by clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) resulted in abnormal tomato leaf morphology, including thinner leaves, wrinkled edges, raised veins, disordered edge veins, and left and right asymmetry. An analysis of the transcription levels of genes related to leaf development revealed that the expression of these genes was significantly altered in the SlSRM1-like mutants (SlSRM1-like-Ms). Moreover, the SlSRM1-like gene was expressed at higher transcription levels in young tissues than in old tissues, and its expression was also induced in response to auxin. In addition, the transcription levels of genes related to the auxin pathway, which regulates tomato growth and development, were severely affected in the SlSRM1-like-Ms. Therefore, it is hypothesized that the SlSRM1-like gene functions in the regulation of tomato leaf development through the auxin-related pathway. CONCLUSIONS In this study, we successfully knocked out the SlSRM1-like gene in the tomato variety Ailsa Craig using CRISPR technology and found that knockout of the SlSRM1-like gene resulted in abnormal development of tomato leaves. Further research indicated that SlSRM1-like regulated tomato leaf development through auxin-related pathways. The results provide an important reference for the functional study of other SRM1-like genes in plants and provide new insights into the regulation of leaf development in tomato and other plants.
Collapse
Affiliation(s)
- Yao Tang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Huijia Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Chunxin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Yuqing He
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Hexuan Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Tingting Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Jingfu Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Huanhuan Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Jingbin Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| |
Collapse
|
33
|
Hayashi KI, Arai K, Aoi Y, Tanaka Y, Hira H, Guo R, Hu Y, Ge C, Zhao Y, Kasahara H, Fukui K. The main oxidative inactivation pathway of the plant hormone auxin. Nat Commun 2021; 12:6752. [PMID: 34811366 PMCID: PMC8608799 DOI: 10.1038/s41467-021-27020-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/31/2021] [Indexed: 11/20/2022] Open
Abstract
Inactivation of the phytohormone auxin plays important roles in plant development, and several enzymes have been implicated in auxin inactivation. In this study, we show that the predominant natural auxin, indole-3-acetic acid (IAA), is mainly inactivated via the GH3-ILR1-DAO pathway. IAA is first converted to IAA-amino acid conjugates by GH3 IAA-amidosynthetases. The IAA-amino acid conjugates IAA-aspartate (IAA-Asp) and IAA-glutamate (IAA-Glu) are storage forms of IAA and can be converted back to IAA by ILR1/ILL amidohydrolases. We further show that DAO1 dioxygenase irreversibly oxidizes IAA-Asp and IAA-Glu into 2-oxindole-3-acetic acid-aspartate (oxIAA-Asp) and oxIAA-Glu, which are subsequently hydrolyzed by ILR1 to release inactive oxIAA. This work established a complete pathway for the oxidative inactivation of auxin and defines the roles played by auxin homeostasis in plant development.
Collapse
Affiliation(s)
- Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan.
| | - Kazushi Arai
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan
| | - Yuki Aoi
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Yuka Tanaka
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan
| | - Hayao Hira
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Ruipan Guo
- Section of Cell and Developmental Biology, University of California San Diego, Gilman Dr. La Jolla, San Diego, CA, 92093-0116, USA
| | - Yun Hu
- Section of Cell and Developmental Biology, University of California San Diego, Gilman Dr. La Jolla, San Diego, CA, 92093-0116, USA
| | - Chennan Ge
- Section of Cell and Developmental Biology, University of California San Diego, Gilman Dr. La Jolla, San Diego, CA, 92093-0116, USA
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, Gilman Dr. La Jolla, San Diego, CA, 92093-0116, USA
| | - Hiroyuki Kasahara
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Kosuke Fukui
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan
| |
Collapse
|
34
|
Jiang Y, Liu G, Zhang W, Zhang C, Chen X, Chen Y, Yu C, Yu D, Fu J, Chen F. Biosynthesis and emission of methyl hexanoate, the major constituent of floral scent of a night-blooming water lily Victoriacruziana. PHYTOCHEMISTRY 2021; 191:112899. [PMID: 34481346 DOI: 10.1016/j.phytochem.2021.112899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Among the factors that have made flowering plants the most species-rich lineage of land plants is the interaction between flower and insect pollinators, for which floral scent plays a pivotal role. Water lilies belong to the ANA (Amborellales, Nymphaeales, and Austrobaileyales) grade of basal flowering plants. In this study, Victoria cruziana was investigated as a model night-blooming water lily for floral scent biosynthesis. Four volatile compounds, including three benzenoids and one fatty acid methyl ester methyl hexanoate, were detected from the flowers of V. cruziana during their first bloom, with methyl hexanoate accounting for 45 % of total floral volatile emission. Emission rates were largely constant before significant drop starting at the end of second bloom. To understand the molecular basis of floral scent biosynthesis in V. cruziana, particularly methyl hexanoate, a transcriptome from the whole flowers at the full-bloom stage was created and analyzed. Methyl hexanoate was hypothesized to be biosynthesized by SABATH methyltransferases. From the transcriptome, three full-length SABATH genes designated VcSABATH1-3 were identified. A full-length cDNA for each of the three VcSABATH genes was expressed in Escherichia coli to produce recombinant proteins. When tested in in vitro methyltransferase enzyme assays with different fatty acids, both VcSABATH1 and VcSABATH3 exhibited highest levels of activity with hexanoic acid to produce methyl hexanoate, with the specific activity of VcSABATH1 being about 15 % of that for VcSABATH3. VcSABATH1 and VcSABATH3 showed the highest levels of expression in stamen and pistil, respectively. In phylogenetic analysis, three VcSABATH genes clustered with other water lily SABATH methyltransferase genes including the one known for making other fatty acid methyl esters, implying both a common evolutionary origin and functional divergence. Fatty acid methyl esters are not frequent constituents of floral scents of mesangiosperms, pointing to the importance for the evolution of novel fatty acid methyltransferase for making fatty acid methyl esters in the pollination biology of water lilies.
Collapse
Affiliation(s)
- Yifan Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanhua Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanbo Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chi Zhang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Yuchu Chen
- Hangzhou Tianjing Aquatic Botanical Garden, Zhejiang Humanities Landscape Co., Ltd., Hangzhou 310000, China
| | - Cuiwei Yu
- Hangzhou Tianjing Aquatic Botanical Garden, Zhejiang Humanities Landscape Co., Ltd., Hangzhou 310000, China
| | - Dongbei Yu
- Hangzhou Tianjing Aquatic Botanical Garden, Zhejiang Humanities Landscape Co., Ltd., Hangzhou 310000, China
| | - Jianyu Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
35
|
Zhang Y, Gao Y, Wang HL, Kan C, Li Z, Yang X, Yin W, Xia X, Nam HG, Li Z, Guo H. Verticillium dahliae secretory effector PevD1 induces leaf senescence by promoting ORE1-mediated ethylene biosynthesis. MOLECULAR PLANT 2021; 14:1901-1917. [PMID: 34303024 DOI: 10.1016/j.molp.2021.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/01/2021] [Accepted: 07/20/2021] [Indexed: 05/16/2023]
Abstract
Leaf senescence, the final stage of leaf development, is influenced by numerous internal and environmental signals. However, how biotic stresses such as pathogen infection regulate leaf senescence remains largely unclear. In this study, we found that the premature leaf senescence in Arabidopsis caused by the soil-borne vascular fungus Verticillium dahliae was impaired by disruption of a protein elicitor from V. dahliae 1 named PevD1. Constitutive or inducible overexpression of PevD1 accelerated Arabidopsis leaf senescence. Interestingly, a senescence-associated NAC transcription factor, ORE1, was targeted by PevD1. PevD1 could interact with and stabilize ORE1 protein by disrupting its interaction with the RING-type ubiquitin E3 ligase NLA. Mutation of ORE1 suppressed the premature senescence caused by overexpressing PevD1, whereas overexpression of ORE1 or PevD1 led to enhanced ethylene production and thereby leaf senescence. We showed that ORE1 directly binds the promoter of ACS6 and promotes its expression for mediating PevD1-induced ethylene biosynthesis. Loss-of-function of ACSs could suppress V. dahliae-induced leaf senescence in ORE1-overexpressing plants. Furthermore, we found thatPevD1 also interacts with Gossypium hirsutum ORE1 (GhORE1) and that virus-induced gene silencing of GhORE1 delays V. dahliae-triggered leaf senescence in cotton, indicating a possibly conserved mechanism in plants. Taken together, these results suggest that V. dahliae induces leaf senescence by secreting the effector PevD1 to manipulate the ORE1-ACS6 cascade, providing new insights into biotic stress-induced senescence in plants.
Collapse
Affiliation(s)
- Yi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuhan Gao
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hou-Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chengcheng Kan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ze Li
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea; New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Hongwei Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
36
|
Larriba E, Sánchez-García AB, Justamante MS, Martínez-Andújar C, Albacete A, Pérez-Pérez JM. Dynamic Hormone Gradients Regulate Wound-Induced de novo Organ Formation in Tomato Hypocotyl Explants. Int J Mol Sci 2021; 22:11843. [PMID: 34769274 PMCID: PMC8584571 DOI: 10.3390/ijms222111843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 01/24/2023] Open
Abstract
Plants have a remarkable regenerative capacity, which allows them to survive tissue damage after biotic and abiotic stresses. In this study, we use Solanum lycopersicum 'Micro-Tom' explants as a model to investigate wound-induced de novo organ formation, as these explants can regenerate the missing structures without the exogenous application of plant hormones. Here, we performed simultaneous targeted profiling of 22 phytohormone-related metabolites during de novo organ formation and found that endogenous hormone levels dynamically changed after root and shoot excision, according to region-specific patterns. Our results indicate that a defined temporal window of high auxin-to-cytokinin accumulation in the basal region of the explants was required for adventitious root formation and that was dependent on a concerted regulation of polar auxin transport through the hypocotyl, of local induction of auxin biosynthesis, and of local inhibition of auxin degradation. In the apical region, though, a minimum of auxin-to-cytokinin ratio is established shortly after wounding both by decreasing active auxin levels and by draining auxin via its basipetal transport and internalization. Cross-validation with transcriptomic data highlighted the main hormonal gradients involved in wound-induced de novo organ formation in tomato hypocotyl explants.
Collapse
Affiliation(s)
- Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (E.L.); (A.B.S.-G.); (M.S.J.)
| | - Ana Belén Sánchez-García
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (E.L.); (A.B.S.-G.); (M.S.J.)
| | - María Salud Justamante
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (E.L.); (A.B.S.-G.); (M.S.J.)
| | - Cristina Martínez-Andújar
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, 30100 Murcia, Spain; (C.M.-A.); (A.A.)
| | - Alfonso Albacete
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, 30100 Murcia, Spain; (C.M.-A.); (A.A.)
| | - José Manuel Pérez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (E.L.); (A.B.S.-G.); (M.S.J.)
| |
Collapse
|
37
|
Systematic Characterization of TCP Gene Family in Four Cotton Species Revealed That GhTCP62 Regulates Branching in Arabidopsis. BIOLOGY 2021; 10:biology10111104. [PMID: 34827097 PMCID: PMC8614845 DOI: 10.3390/biology10111104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 01/14/2023]
Abstract
TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play an essential role in regulating various physiological and biochemical functions during plant growth. However, the function of TCP transcription factors in G. hirsutum has not yet been studied. In this study, we performed genome-wide identification and correlation analysis of the TCP transcription factor family in G. hirsutum. We identified 72 non-redundant GhTCP genes and divided them into seven subfamilies, based on phylogenetic analysis. Most GhTCP genes in the same subfamily displayed similar exon and intron structures and featured highly conserved motif structures in their subfamily. Additionally, the pattern of chromosomal distribution demonstrated that GhTCP genes were unevenly distributed on 24 out of 26 chromosomes, and that fragment replication was the main replication event of GhTCP genes. In TB1 sub-family genes, GhTCP62 was highly expressed in the axillary buds, suggesting that GhTCP62 significantly affected cotton branching. Additionally, subcellular localization results indicated that GhTCP62 is located in the nucleus and possesses typical transcription factor characteristics. The overexpression of GhTCP62 in Arabidopsis resulted in fewer rosette-leaf branches and cauline-leaf branches. Furthermore, the increased expression of HB21 and HB40 genes in Arabidopsis plants overexpressing GhTCP62 suggests that GhTCP62 may regulate branching by positively regulating HB21 and HB40.
Collapse
|
38
|
Mateo-Bonmatí E, Casanova-Sáez R, Šimura J, Ljung K. Broadening the roles of UDP-glycosyltransferases in auxin homeostasis and plant development. THE NEW PHYTOLOGIST 2021; 232:642-654. [PMID: 34289137 DOI: 10.1111/nph.17633] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/03/2021] [Indexed: 05/02/2023]
Abstract
The levels of the important plant growth regulator indole-3-acetic acid (IAA) are tightly controlled within plant tissues to spatiotemporally orchestrate concentration gradients that drive plant growth and development. Metabolic inactivation of bioactive IAA is known to participate in the modulation of IAA maxima and minima. IAA can be irreversibly inactivated by oxidation and conjugation to aspartate and glutamate. Usually overlooked because of its reversible nature, the most abundant inactive IAA form is the IAA-glucose (IAA-glc) conjugate. Glycosylation of IAA in Arabidopsis thaliana is reported to be carried out by UDP-glycosyltransferase 84B1 (UGT84B1), while UGT74D1 has been implicated in the glycosylation of the irreversibly formed IAA catabolite oxIAA. Here we demonstrated that both UGT84B1 and UGT74D1 modulate IAA levels throughout plant development by dual IAA and oxIAA glycosylation. Moreover, we identified a novel UGT subfamily whose members redundantly mediate the glycosylation of oxIAA and modulate skotomorphogenic growth.
Collapse
Affiliation(s)
- Eduardo Mateo-Bonmatí
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Rubén Casanova-Sáez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Jan Šimura
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| |
Collapse
|
39
|
The Effect of the Anticipated Nuclear Localization Sequence of ' Candidatus Phytoplasma mali' SAP11-like Protein on Localization of the Protein and Destabilization of TCP Transcription Factor. Microorganisms 2021; 9:microorganisms9081756. [PMID: 34442835 PMCID: PMC8401217 DOI: 10.3390/microorganisms9081756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/19/2022] Open
Abstract
SAP11 is an effector protein that has been identified in various phytoplasma species. It localizes in the plant nucleus and can bind and destabilize TEOSINE BRANCHES/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors. Although SAP11 of different phytoplasma species share similar activities, their protein sequences differ greatly. Here, we demonstrate that the SAP11-like protein of ‘Candidatus Phytoplasma mali’ (‘Ca. P. mali’) strain PM19 localizes into the plant nucleus without requiring the anticipated nuclear localization sequence (NLS). We show that the protein induces crinkled leaves and siliques, and witches’ broom symptoms, in transgenic Arabidopsis thaliana (A. thaliana) plants and binds to six members of class I and all members of class II TCP transcription factors of A. thaliana in yeast two-hybrid assays. We also identified a 17 amino acid stretch previously predicted to be a nuclear localization sequence that is important for the binding of some of the TCPs, which results in a crinkled leaf and silique phenotype in transgenic A. thaliana. Moreover, we provide evidence that the SAP11-like protein has a destabilizing effect on some TCPs in vivo.
Collapse
|
40
|
Bowman JL, Flores Sandoval E, Kato H. On the Evolutionary Origins of Land Plant Auxin Biology. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a040048. [PMID: 33558368 DOI: 10.1101/cshperspect.a040048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Indole-3-acetic acid, that is, auxin, is a molecule found in a broad phylogenetic distribution of organisms, from bacteria to eukaryotes. In the ancestral land plant auxin was co-opted to be the paramount phytohormone mediating tropic responses and acting as a facilitator of developmental decisions throughout the life cycle. The evolutionary origins of land plant auxin biology genes can now be traced with reasonable clarity. Genes encoding the two enzymes of the land plant auxin biosynthetic pathway arose in the ancestral land plant by a combination of horizontal gene transfer from bacteria and possible neofunctionalization following gene duplication. Components of the auxin transcriptional signaling network have their origins in ancestral alga genes, with gene duplication and neofunctionalization of key domains allowing integration of a portion of the preexisting transcriptional network with auxin. Knowledge of the roles of orthologous genes in extant charophycean algae is lacking, but could illuminate the ancestral functions of both auxin and the co-opted transcriptional network.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Science, Monash University, Melbourne, Victoria 3800, Australia
| | | | - Hirotaka Kato
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
41
|
Wu B, Sun M, Zhang H, Yang D, Lin C, Khan I, Wang X, Zhang X, Nie G, Feng G, Yan Y, Li Z, Peng Y, Huang L. Transcriptome analysis revealed the regulation of gibberellin and the establishment of photosynthetic system promote rapid seed germination and early growth of seedling in pearl millet. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:94. [PMID: 33840392 PMCID: PMC8040237 DOI: 10.1186/s13068-021-01946-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Seed germination is the most important stage for the formation of a new plant. This process starts when the dry seed begins to absorb water and ends when the radicle protrudes. The germination rate of seed from different species varies. The rapid germination of seed from species that grow on marginal land allows seedlings to compete with surrounding species, which is also the guarantee of normal plant development and high yield. Pearl millet is an important cereal crop that is used worldwide, and it can also be used to extract bioethanol. Previous germination experiments have shown that pearl millet has a fast seed germination rate, but the molecular mechanisms behind pearl millet are unclear. Therefore, this study explored the expression patterns of genes involved in pearl millet growth from the germination of dry seed to the early growth stages. RESULTS Through the germination test and the measurement of the seedling radicle length, we found that pearl millet seed germinated after 24 h of swelling of the dry seed. Using transcriptome sequencing, we characterized the gene expression patterns of dry seed, water imbibed seed, germ and radicle, and found more differentially expressed genes (DEGs) in radicle than germ. Further analysis showed that different genome clusters function specifically at different tissues and time periods. Weighted gene co-expression network analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that many genes that positively regulate plant growth and development are highly enriched and expressed, especially the gibberellin signaling pathway, which can promote seed germination. We speculated that the activation of these key genes promotes the germination of pearl millet seed and the growth of seedlings. To verify this, we measured the content of gibberellin and found that the gibberellin content after seed imbibition rose sharply and remained at a high level. CONCLUSIONS In this study, we identified the key genes that participated in the regulation of seed germination and seedling growth. The activation of key genes in these pathways may contribute to the rapid germination and growth of seed and seedlings in pearl millet. These results provided new insight into accelerating the germination rate and seedling growth of species with slow germination.
Collapse
Affiliation(s)
- Bingchao Wu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Min Sun
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Huan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Dan Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Chuang Lin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Imran Khan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Yanhong Yan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 6111130, China.
| |
Collapse
|
42
|
Hetherington FM, Kakkar M, Topping JF, Lindsey K. Gibberellin signaling mediates lateral root inhibition in response to K+-deprivation. PLANT PHYSIOLOGY 2021; 185:1198-1215. [PMID: 33793923 PMCID: PMC8133588 DOI: 10.1093/plphys/kiaa093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/10/2020] [Indexed: 05/16/2023]
Abstract
The potassium ion (K+) is vital for plant growth and development, and K+-deprivation leads to reduced crop yields. Here we describe phenotypic, transcriptomic, and mutant analyses to investigate the signaling mechanisms mediating root architectural changes in Arabidopsis (Arabidopsis thaliana) Columbia. We showed effects on root architecture are mediated through a reduction in cell division in the lateral root (LR) meristems, the rate of LR initiation is reduced but LR density is unaffected, and primary root growth is reduced only slightly. This was primarily regulated through gibberellic acid (GA) signaling, which leads to the accumulation of growth-inhibitory DELLA proteins. The short LR phenotype was rescued by exogenous application of GA but not of auxin or by the inhibition of ethylene signaling. RNA-seq analysis showed upregulation by K+-deprivation of the transcription factors JUNGBRUNNEN1 (JUB1) and the C-repeat-binding factor (CBF)/dehydration-responsive element-binding factor 1 regulon, which are known to regulate GA signaling and levels that regulate DELLAs. Transgenic overexpression of JUB1 and CBF1 enhanced responses to K+ stress. Attenuation of the reduced LR growth response occurred in mutants of the CBF1 target gene SFR6, implicating a role for JUB1, CBF1, and SFR6 in the regulation of LR growth in response to K+-deprivation via DELLAs. We propose this represents a mechanism to limit horizontal root growth in conditions where K+ is available deeper in the soil.
Collapse
Affiliation(s)
| | - Medhavi Kakkar
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | - Keith Lindsey
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
- Author for communication:
| |
Collapse
|
43
|
Zou X, Zhao K, Liu Y, Du M, Zheng L, Wang S, Xu L, Peng A, He Y, Long Q, Chen S. Overexpression of Salicylic Acid Carboxyl Methyltransferase ( CsSAMT1) Enhances Tolerance to Huanglongbing Disease in Wanjincheng Orange ( Citrus sinensis (L.) Osbeck). Int J Mol Sci 2021; 22:ijms22062803. [PMID: 33802058 PMCID: PMC7999837 DOI: 10.3390/ijms22062803] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Citrus Huanglongbing (HLB) disease or citrus greening is caused by Candidatus Liberibacter asiaticus (Las) and is the most devastating disease in the global citrus industry. Salicylic acid (SA) plays a central role in regulating plant defenses against pathogenic attack. SA methyltransferase (SAMT) modulates SA homeostasis by converting SA to methyl salicylate (MeSA). Here, we report on the functions of the citrus SAMT (CsSAMT1) gene from HLB-susceptible Wanjincheng orange (Citrus sinensis (L.) Osbeck) in plant defenses against Las infection. The CsSAMT1 cDNA was expressed in yeast. Using in vitro enzyme assays, yeast expressing CsSAMT1 was confirmed to specifically catalyze the formation of MeSA using SA as a substrate. Transgenic Wanjincheng orange plants overexpressing CsSAMT1 had significantly increased levels of SA and MeSA compared to wild-type controls. HLB resistance was evaluated for two years and showed that transgenic plants displayed significantly alleviated symptoms including a lack of chlorosis, low bacterial counts, reduced hyperplasia of the phloem cells, and lower levels of starch and callose compared to wild-type plants. These data confirmed that CsSAMT1 overexpression confers an enhanced tolerance to Las in citrus fruits. RNA-seq analysis revealed that CsSAMT1 overexpression significantly upregulated the citrus defense response by enhancing the transcription of disease resistance genes. This study provides insight for improving host resistance to HLB by manipulation of SA signaling in citrus fruits.
Collapse
|
44
|
Casanova-Sáez R, Mateo-Bonmatí E, Ljung K. Auxin Metabolism in Plants. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a039867. [PMID: 33431579 PMCID: PMC7919392 DOI: 10.1101/cshperspect.a039867] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The major natural auxin in plants, indole-3-acetic acid (IAA), orchestrates a plethora of developmental responses that largely depend on the formation of auxin concentration gradients within plant tissues. Together with inter- and intracellular transport, IAA metabolism-which comprises biosynthesis, conjugation, and degradation-modulates auxin gradients and is therefore critical for plant growth. It is now very well established that IAA is mainly produced from Trp and that the IPyA pathway is a major and universally conserved biosynthetic route in plants, while other redundant pathways operate in parallel. Recent findings have shown that metabolic inactivation of IAA is also redundantly performed by oxidation and conjugation processes. An exquisite spatiotemporal expression of the genes for auxin synthesis and inactivation have been shown to drive several plant developmental processes. Moreover, a group of transcription factors and epigenetic regulators controlling the expression of auxin metabolic genes have been identified in past years, which are illuminating the road to understanding the molecular mechanisms behind the coordinated responses of local auxin metabolism to specific cues. Besides transcriptional regulation, subcellular compartmentalization of the IAA metabolism and posttranslational modifications of the metabolic enzymes are emerging as important contributors to IAA homeostasis. In this review, we summarize the current knowledge on (1) the pathways for IAA biosynthesis and inactivation in plants, (2) the influence of spatiotemporally regulated IAA metabolism on auxin-mediated responses, and (3) the regulatory mechanisms that modulate IAA levels in response to external and internal cues during plant development.
Collapse
Affiliation(s)
| | | | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| |
Collapse
|
45
|
Accumulation of the Auxin Precursor Indole-3-Acetamide Curtails Growth through the Repression of Ribosome-Biogenesis and Development-Related Transcriptional Networks. Int J Mol Sci 2021; 22:ijms22042040. [PMID: 33670805 PMCID: PMC7923163 DOI: 10.3390/ijms22042040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The major auxin, indole-3-acetic acid (IAA), is associated with a plethora of growth and developmental processes including embryo development, expansion growth, cambial activity, and the induction of lateral root growth. Accumulation of the auxin precursor indole-3-acetamide (IAM) induces stress related processes by stimulating abscisic acid (ABA) biosynthesis. How IAM signaling is controlled is, at present, unclear. Here, we characterize the ami1rooty double mutant, that we initially generated to study the metabolic and phenotypic consequences of a simultaneous genetic blockade of the indole glucosinolate and IAM pathways in Arabidopsisthaliana. Our mass spectrometric analyses of the mutant revealed that the combination of the two mutations is not sufficient to fully prevent the conversion of IAM to IAA. The detected strong accumulation of IAM was, however, recognized to substantially impair seed development. We further show by genome-wide expression studies that the double mutant is broadly affected in its translational capacity, and that a small number of plant growth regulating transcriptional circuits are repressed by the high IAM content in the seed. In accordance with the previously described growth reduction in response to elevated IAM levels, our data support the hypothesis that IAM is a growth repressing counterpart to IAA.
Collapse
|
46
|
The ectopic expression of Arabidopsis glucosyltransferase UGT74D1 affects leaf positioning through modulating indole-3-acetic acid homeostasis. Sci Rep 2021; 11:1154. [PMID: 33441983 PMCID: PMC7806859 DOI: 10.1038/s41598-021-81016-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022] Open
Abstract
Leaf angle is an important agronomic trait affecting photosynthesis efficiency and crop yield. Although the mechanisms involved in the leaf angle control are intensively studied in monocots, factors contribute to the leaf angle in dicots are largely unknown. In this article, we explored the physiological roles of an Arabidopsis glucosyltransferase, UGT74D1, which have been proved to be indole-3-acetic acid (IAA) glucosyltransferase in vitro. We found that UGT74D1 possessed the enzymatic activity toward IAA glucosylation in vivo and its expression was induced by auxins. The ectopically expressed UGT74D1 obviously reduced the leaf angle with an altered IAA level, auxin distribution and cell size in leaf tissues. The expression of several key genes involved in the leaf shaping and leaf positioning, including PHYTOCHROME KINASE SUBSTRATE (PKS) genes and TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) genes, were dramatically changed by ectopic expression of UGT74D1. In addition, clear transcription changes of YUCCA genes and other auxin related genes can be observed in overexpression lines. Taken together, our data indicate that glucosyltransferase UGT74D1 could affect leaf positioning through modulating auxin homeostasis and regulating transcription of PKS and TCP genes, suggesting a potential new role of UGT74D1 in regulation of leaf angle in dicot Arabidopsis.
Collapse
|
47
|
Zhang C, Chaiprasongsuk M, Chanderbali AS, Chen X, Fu J, Soltis DE, Chen F. Origin and evolution of a gibberellin-deactivating enzyme GAMT. PLANT DIRECT 2020; 4:e00287. [PMID: 33376939 PMCID: PMC7762392 DOI: 10.1002/pld3.287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/25/2020] [Accepted: 10/23/2020] [Indexed: 05/11/2023]
Abstract
Gibberellins (GAs) are a major class of plant hormones that regulates diverse developmental programs. Both acquiring abilities to synthesize GAs and evolving divergent GA receptors have been demonstrated to play critical roles in the evolution of land plants. In contrast, little is understood regarding the role of GA-inactivating mechanisms in plant evolution. Here we report on the origin and evolution of GA methyltransferases (GAMTs), enzymes that deactivate GAs by converting bioactive GAs to inactive GA methylesters. Prior to this study, GAMT genes, which belong to the SABATH family, were known only from Arabidopsis. Through systematic searches for SABATH genes in the genomes of 260 sequenced land plants and phylogenetic analyses, we have identified a putative GAMT clade specific to seed plants. We have further demonstrated that both gymnosperm and angiosperm representatives of this clade encode active methyltransferases for GA methylation, indicating that they are functional orthologs of GAMT. In seven selected seed plants, GAMT genes were mainly expressed in flowers and/or seeds, indicating a conserved biological role in reproduction. GAMT genes are represented by a single copy in most species, if present, but multiple copies mainly produced by whole genome duplications have been retained in Brassicaceae. Surprisingly, more than 2/3 of the 248 flowering plants examined here lack GAMT genes, including all species of Poales (e.g., grasses), Fabales (legumes), and the large Superasterid clade of eudicots. With these observations, we discuss the significance of GAMT origination, functional conservation and diversification, and frequent loss during the evolution of flowering plants.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Minta Chaiprasongsuk
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
- Department of BotanyFaculty of ScienceKasetsart UniversityBangkokThailand
| | - Andre S. Chanderbali
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| | - Xinlu Chen
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Jianyu Fu
- Key Laboratory of Tea Quality and Safety ControlMinistry of Agriculture and Rural AffairsTea Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Douglas E. Soltis
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| | - Feng Chen
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
48
|
Aoi Y, Hira H, Hayakawa Y, Liu H, Fukui K, Dai X, Tanaka K, Hayashi KI, Zhao Y, Kasahara H. UDP-glucosyltransferase UGT84B1 regulates the levels of indole-3-acetic acid and phenylacetic acid in Arabidopsis. Biochem Biophys Res Commun 2020; 532:244-250. [PMID: 32868079 PMCID: PMC7641881 DOI: 10.1016/j.bbrc.2020.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 01/05/2023]
Abstract
Auxin is a key plant growth regulator for diverse developmental processes in plants. Indole-3-acetic acid (IAA) is a primary plant auxin that regulates the formation of various organs. Plants also produce phenylacetic acid (PAA), another natural auxin, which occurs more abundantly than IAA in various plant species. Although it has been demonstrated that the two auxins have distinct transport characteristics, the metabolic pathways and physiological roles of PAA in plants remain unsolved. In this study, we investigated the role of Arabidopsis UDP-glucosyltransferase UGT84B1 in IAA and PAA metabolism. We demonstrated that UGT84B1, which converts IAA to IAA-glucoside (IAA-Glc), can also catalyze the conversion of PAA to PAA-glucoside (PAA-Glc), with a higher catalytic activity in vitro. Furthermore, we showed a significant increase in both the IAA and PAA levels in the ugt84b1 null mutants. However, no obvious developmental phenotypes were observed in the ugt84b1 mutants under laboratory growth conditions. Moreover, the overexpression of UGT84B1 resulted in auxin-deficient root phenotypes and changes in the IAA and PAA levels. Our results indicate that UGT84B1 plays an important role in IAA and PAA homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Yuki Aoi
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Hayao Hira
- Department of Bioregulation and Biointeraction, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Yuya Hayakawa
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Hongquan Liu
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0116, USA
| | - Kosuke Fukui
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan
| | - Xinhua Dai
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0116, USA
| | - Keita Tanaka
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0116, USA
| | - Hiroyuki Kasahara
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan; RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
49
|
Ward LC, McCue HV, Carnell AJ. Carboxyl Methyltransferases: Natural Functions and Potential Applications in Industrial Biotechnology. ChemCatChem 2020. [DOI: 10.1002/cctc.202001316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lucy C. Ward
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD United Kingdom
| | - Hannah V. McCue
- GeneMill, Institute of Integrative Biology University of Liverpool Crown Street Liverpool L69 7ZB United Kingdom
| | - Andrew J. Carnell
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD United Kingdom
| |
Collapse
|
50
|
Kaneko S, Cook SD, Aoi Y, Watanabe A, Hayashi KI, Kasahara H. An Evolutionarily Primitive and Distinct Auxin Metabolism in the Lycophyte Selaginella moellendorffii. PLANT & CELL PHYSIOLOGY 2020; 61:1724-1732. [PMID: 32697828 DOI: 10.1093/pcp/pcaa098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Auxin is a key regulator of plant growth and development. Indole-3-acetic acid (IAA), a plant auxin, is mainly produced from tryptophan via indole-3-pyruvate (IPA) in both bryophytes and angiosperms. Angiosperms have multiple, well-documented IAA inactivation pathways, involving conjugation to IAA-aspartate (IAA-Asp)/glutamate by the GH3 auxin-amido synthetases, and oxidation to 2-oxindole-3-acetic acid (oxIAA) by the DAO proteins. However, IAA biosynthesis and inactivation processes remain elusive in lycophytes, an early lineage of spore-producing vascular plants. In this article, we studied IAA biosynthesis and inactivation in the lycophyte Selaginella moellendorffii. We demonstrate that S. moellendorffii mainly produces IAA from the IPA pathway for the regulation of root growth and response to high temperature, similar to the angiosperm Arabidopsis. However, S. moellendorffii exhibits a unique IAA metabolite profile with high IAA-Asp and low oxIAA levels, distinct from Arabidopsis and the bryophyte Marchantia polymorpha, suggesting that the GH3 family is integral for IAA homeostasis in the lycophytes. The DAO homologs in S. moellendorffii share only limited similarity to the well-characterized rice and Arabidopsis DAO proteins. We therefore suggest that these enzymes may have a limited role in IAA homeostasis in S. moellendorffii compared to angiosperms. We provide new insights into the functional diversification of auxin metabolic genes in the evolution of land plants.
Collapse
Affiliation(s)
- Shutaro Kaneko
- Department of Bioregulation and Biointeraction, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509 Japan
| | - Sam David Cook
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509 Japan
- JSPS International Research Fellow, The Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Japan
| | - Yuki Aoi
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, 183-8509 Japan
| | - Akie Watanabe
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509 Japan
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005 Japan
| | - Hiroyuki Kasahara
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, 183-8509 Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|