1
|
Gao F, Segbo S, Huang X, Zhou P, Ma C, Ma Y, Lin X, Bai Y, Tan W, Coulibaly D, Ouma KO, Iqbal S, Ni Z, Shi T, Gao Z. PmRGL2/PmFRL3-PmSVP Module Regulates Flowering Time in Japanese apricot (Prunus mume Sieb. et Zucc.). PLANT, CELL & ENVIRONMENT 2025; 48:3415-3430. [PMID: 39757689 DOI: 10.1111/pce.15356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Temperate fruit trees rely on environmental and endogenous signals to trigger dormancy release and flowering. However, the knowledge of DELLA protein PmRGL2, a Prunus mume homolog of REPRESSOR OF GA-Like 2 (RGL2), which serves as an important inhibitory factor in gibberellin (gibberellin acid [GA]) signalling, is limited related to on its regulatory effects on dormancy release and flowering. In our study, the protein-protein interaction assays showed an interaction between PmRGL2 and PmFRL3, a Prunus mume homolog of FRIGIDA-LIKE (FRL). The FRL protein regulates flowering induction by binding to chaperone proteins. To understand the transcriptional regulation of PmRGL2 in Prunus mume, in detail's we constructed a ChIP-Seq library at four key stages of flower bud development. Genome-wide analysis screened a MCM1-AGAMOUSDEFICIENS Serum Response Factor box (MADS box) protein for two SHORT VEGETATIVE PHASEs (SVPs). Genetic analysis showed that overexpressing PmSVP in Arabidopsis thaliana reduced the GA content and delayed flowering, whereas PmSVP-like overexpression increased the GA content and promoted flowering. Protein-DNA binding assays revealed that the PmRGL2/PmFRL3 protein complex promoted PmSVP transcription while repressing PmSVP-like transcription, which inhibited the flowering process. As chilling requirements increased, the PmFRL3 protein was degraded. ThePmRGL2/PmFRL3 protein complex is disrupted. With the increase in the GA content within the flower buds, the PmRGL2 protein was degraded in response to GA signalling, and the function of PmSVP-like was released. It dominated flowering, leading to this process in Prunus mume. Therefore, we propose a mechanism by which the PmRGL2/PmFRL3 protein complex responds to GA and low-temperature signalling to regulate PmSVP and PmSVP-like synergistically and thus Prunus mume flowering time.
Collapse
Affiliation(s)
- Feng Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Silas Segbo
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiao Huang
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Pengyu Zhou
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Chengdong Ma
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yufan Ma
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ximeng Lin
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yang Bai
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Laboratory of Forestry Research, Xing'an League Institute of Forestry, Ulanhot, China
| | - Wei Tan
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Daouda Coulibaly
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Agricultural Sciences and Techniques-Horticulture, Rural Polytechnic Institute for Training and Applied Research (IPR/IFRA) of Katibougou, Koulikoro, Mali
| | - Kenneth Omondi Ouma
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Crops, Horticulture and Soils, Faculty of Agriculture, Egerton University, Egerton, Kenya
| | - Shahid Iqbal
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Horticultural Science, North Florida Research and Education Center, University of Florida/IFAS, Quincy, Florida, USA
| | - Zhaojun Ni
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ting Shi
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhihong Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Qi Y, Shao W, Chen H, Ahmed T, Zhao X, Wang Y, Zhu L, Sun S, Kuang H, An G. LsKN1 and LsOFP6 synergistically regulate the bolting time by modulating the gibberellin pathway in lettuce. THE NEW PHYTOLOGIST 2025; 246:1049-1065. [PMID: 39611461 DOI: 10.1111/nph.20307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024]
Abstract
Bolting time is an important agronomic trait in lettuce (Lactuca sativa) production. Premature bolting significantly reduces crop quality and marketability. Here, we report map-based cloning and characterization of a LsKN1 gene that controls bolting in lettuce. A segregating population was developed by crossing a crisphead-type cultivar with a stem-type cultivar to genetically map and clone the LsKN1 gene. In the late-bolting parent (crisphead), the LsKN1 was activated by a CACTA-like transposon which was inserted into the first exon of LsKN1. Complementation test, overexpression, and CRISPR/cas9 knockout showed that the activated LsKN1 allele (LsKN1TP) delays bolting in lettuce. ChIP-seq and phytohormone analysis demonstrated that LsKN1 regulates gibberellin (GA) biosynthesis and response. LsKN1TP binds to the promoter of the LsGA20ox1 and LsRGA1, and down- and upregulates their expression, respectively. Furthermore, LsRGA1 interacts with LsKN1TP to enhance the repression of GA biosynthesis. LsOFP6 acts as a safeguard, interacting with LsKN1TP to prevent excessive inhibition of GA biosynthesis and response during the vegetative-to-reproductive phase transition. The LsKN1-LsOFP6 module orchestrates the GA pathway to regulate bolting time in lettuce, which provides insight into the bolting development in lettuce and offers valuable genetic resources for breeding lettuce varieties resistant to premature bolting.
Collapse
Affiliation(s)
- Yetong Qi
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Wei Shao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haoyu Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Temoor Ahmed
- Xianghu Laboratory, Hangzhou, 311231, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xinhui Zhao
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yong Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lei Zhu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shouru Sun
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hanhui Kuang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanghui An
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
3
|
Carfora A, Lucibelli F, Di Lillo P, Mazzucchiello SM, Saccone G, Salvemini M, Varone M, Volpe G, Aceto S. Genetic responses of plants to urban environmental challenges. PLANTA 2025; 261:102. [PMID: 40183929 PMCID: PMC11971160 DOI: 10.1007/s00425-025-04678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
MAIN CONCLUSION This review aims to describe the main genetic adaptations of plants to abiotic and biotic stressors in urban landscapes through modulation of gene expression and genotypic changes. Urbanization deeply impacts biodiversity through ecosystem alteration and habitat fragmentation, creating novel environmental challenges for plant species. Plants have evolved cellular, molecular, and biochemical strategies to cope with the diverse biotic and abiotic stresses associated with urbanization. However, many of these defense and resistance mechanisms remain poorly understood. Addressing these knowledge gaps is crucial for advancing our understanding of urban biodiversity and elucidating the ecological and evolutionary dynamics of species in urban landscapes. As sessile organisms, plants depend heavily on modifications in gene expression as a rapid and efficient strategy to survive urban stressors. At the same time, the urban environment pressures induced plant species to evolve genotypic adaptations that enhance their survival and growth in these contexts. This review explores the different genetic responses of plants to urbanization. We focus on key abiotic challenges, such as air pollution, elevated CO2 levels, heavy metal contamination, heat and drought stress, salinity, and biotic stresses caused by herbivorous insects. By examining these genetic mechanisms induced by urban stressors, we aim to analyze the molecular pathways and genetic patterns underlying the adaptation of plant species to urban environments. This knowledge is a valuable tool for enhancing the selection and propagation of adaptive traits in plant populations, supporting species conservation efforts, and promoting urban biodiversity.
Collapse
Grants
- Project code CN_00000033 National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- Concession Decree No. 1034 of 17 June 2022 adopted by the Italian Ministry of University National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- Research National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- CUP H43C22000530001 National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- Project title "National Biodiversity Future Center - NBFC" National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union –
- Università degli Studi di Napoli Federico II
Collapse
Affiliation(s)
- Angela Carfora
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy.
| | - Francesca Lucibelli
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy.
| | - Paola Di Lillo
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | | | - Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Marianna Varone
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Gennaro Volpe
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy.
| |
Collapse
|
4
|
Bhupenchandra I, Chongtham SK, Gangarani Devi A, Dutta P, Lamalakshmi E, Mohanty S, Choudhary AK, Das A, Sarika K, Kumar S, Yumnam S, Sagolsem D, Rupert Anand Y, Bhutia DD, Victoria M, Vinodh S, Tania C, Dhanachandra Sharma A, Deb L, Sahoo MR, Seth CS, Swapnil P, Meena M. Harnessing weedy rice as functional food and source of novel traits for crop improvement. PLANT, CELL & ENVIRONMENT 2025; 48:2498-2521. [PMID: 38436101 DOI: 10.1111/pce.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
A relative of cultivated rice (Oryza sativa L.), weedy or red rice (Oryza spp.) is currently recognized as the dominant weed, leading to a drastic loss of yield of cultivated rice due to its highly competitive abilities like producing more tillers, panicles, and biomass with better nutrient uptake. Due to its high nutritional value, antioxidant properties (anthocyanin and proanthocyanin), and nutrient absorption ability, weedy rice is gaining immense research attentions to understand its genetic constitution to augment future breeding strategies and to develop nutrition-rich functional foods. Consequently, this review focuses on the unique gene source of weedy rice to enhance the cultivated rice for its crucial features like water use efficiency, abiotic and biotic stress tolerance, early flowering, and the red pericarp of the seed. It explores the debating issues on the origin and evolution of weedy rice, including its high diversity, signalling aspects, quantitative trait loci (QTL) mapping under stress conditions, the intricacy of the mechanism in the expression of the gene flow, and ecological challenges of nutrient removal by weedy rice. This review may create a foundation for future researchers to understand the gene flow between cultivated crops and weedy traits and support an improved approach for the applicability of several models in predicting multiomics variables.
Collapse
Affiliation(s)
- Ingudam Bhupenchandra
- ICAR-Farm Science Centre Tamenglong, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, Manipur, India
| | - Sunil Kumar Chongtham
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Ayam Gangarani Devi
- ICAR Research Complex for North Eastern Hill Region, Tripura Centre Lembucherra, Tripura, India
| | - Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Elangbam Lamalakshmi
- ICAR Research Complex for North Eastern Hill Region, Sikkim Centre, Tadong, Sikkim, India
| | - Sansuta Mohanty
- Molecular Biology and Biotechnology Department, Faculty of Agricultural Sciences, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
| | - Anil K Choudhary
- Division of Crop Production, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Anup Das
- ICAR Research Complex for North Eastern Hill Region, Lembucherra, Tripura, India
| | - Konsam Sarika
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Department of Plant Pathology, B.M. College of Agriculture, Khandwa, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, Madhya Pradesh, India
| | - Sonika Yumnam
- All India Coordinated Research Project on Chickpea, Central Agricultural University, Imphal, Manipur, India
| | - Diana Sagolsem
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Y Rupert Anand
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Dawa Dolma Bhutia
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - M Victoria
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - S Vinodh
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Chongtham Tania
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Lipa Deb
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Manas Ranjan Sahoo
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Prashant Swapnil
- Department of Botany, School of Basic Science, Central University of Punjab, Bhatinda, Punjab, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
5
|
Zhang S, Wu X, Li Y, Feng X, Wei J, Qie M, Zhang X, Wu Y, Hou Z. The VcGID1-VcDELLA-VcGID2 complex participates in regulating the dormancy release of blueberry flower buds. Int J Biol Macromol 2025; 304:140497. [PMID: 39952510 DOI: 10.1016/j.ijbiomac.2025.140497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/18/2025] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
Bud dormancy is a crucial mechanism that allows perennial woody plants to withstand adverse environmental conditions, and gibberellin (GA) typically promotes the dormancy release of buds. DELLA protein is the core factor in the GA signaling pathway. This study identified 11 VcDELLA genes from the blueberry genome and performed a comprehensive bioinformatics analysis and prediction of the VcDELLA gene family. GA not only inhibits the dormancy entry of blueberry flower buds under low temperature and short-day conditions but also promotes the dormancy release of flower buds. During the dormancy release process, exogenous GA4+7 significantly increased the GA level and VcDELLA2/4/7/10/11 expression, while it significantly decreased VcDELLA3/6/8 expression. It is widely accepted that the GA-GID1-DELLA signaling module plays important roles in regulating the dormancy process of flower buds. In this study, Y2H and BiFC experiments showed that VcDELLA3/6 proteins could interact withVcGID1b/c, VcGID2, and VcSOC1 proteins. Regardless of the presence or absence of GA, VcGID1b/c and VcGID2 proteins could interact with VcDELLA3/6 proteins to form the VcGID1-VcDELLA-VcGID2 complex. In the leaves of VcDELLA3/6-silenced blueberry plants, VcDELLA3/6, VcGA3ox, VcGA20ox, and VcSOC1 expression was significantly decreased. Meanwhile, VcGID1b and VcGID1c expression was significantly increased. The leaf shedding rates of blueberry plants overexpressing VcDELLA3 and VcDELLA6 increased by 25 % and 33.33 %, respectively. In VcDELLA3/6-overexpressing plants, the GA level and VcDELLA3/6, VcGA2ox, VcGA3ox, VcGA20ox, VcGID2, and VcSOC1 expression were significantly increased, whereas VcGID1b/c expression levels were significantly decreased in VcDELLA6-overexpressing plants. Furthermore, exogenous GA effectively alleviated the deciduous phenotype of VcDELLA3/6 overexpressing blueberry plants and downregulated VcGA2ox, VcGA3ox, and VcGA20ox expression. It could be inferred that VcDELLA3/6 could regulate the transition of dormancy states in blueberry flower buds through interactions with GA biosynthesis (VcGA2ox, VcGA3ox, and VcGA20ox), GA signal transduction (VcGID1b/c and VcGID2), and the flowering related protein VcSOC1. Additionally, it is proposed that there might be a pathway with VcDELLA6 as the core to regulate the chilling-mediated dormancy release of blueberry flower buds. The formation of the GA4+7-VcGID1b/c-VcDELLA6-VcGID2 complex could activate VcSOC1 expression, thereby promoting the dormancy release of blueberry flower buds.
Collapse
Affiliation(s)
- Suilin Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Xinliang Wu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Yang Li
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Xin Feng
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Jiali Wei
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Mengyu Qie
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Xiaohan Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Yan Wu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Zhixia Hou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China.
| |
Collapse
|
6
|
Leydon AR, Flores L, Khakhar A, Nemhauser JL. Reprogramming feedback strength in gibberellin biosynthesis highlights conditional regulation by the circadian clock and carbon dioxide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.644045. [PMID: 40166289 PMCID: PMC11956932 DOI: 10.1101/2025.03.18.644045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The phytohormone gibberellin (GA) is an important regulator of plant morphology and reproduction, and the biosynthesis and distribution of GA in planta is agriculturally relevant to past and current breeding efforts. Tools like biosensors, extensive molecular genetic resources in reference plants and mathematical models have greatly contributed to current understanding of GA homeostasis; however, these tools are difficult to tune or repurpose for engineering crop plants. Previously, we showed that a GA-regulated Hormone Activated CAS9-based Repressor (GAHACR) functions in planta. Here, we use GAHACRs to modulate the strength of feedback on endemic GA regulated genes, and to directly test the importance of transcriptional feedback in GA signaling. We first adapted existing mathematical models to predict the impact of targeting a GAHACR to different nodes in the GA biosynthesis pathway, and then implemented a perturbation predicted by the model to lower GA levels. Specifically, we individually targeted either the biosynthetic gene GA20 oxidase (GA20ox) or the GA receptor GID1, and characterized primary root length, flowering time and the transcriptome of these transgenic lines. Using this approach, we identified a strong connection between GA signaling status and the circadian clock, which can be largely attenuated by elevated carbon dioxide levels. Our results identify a node in the GA signaling pathway that can be engineered to modulate plant size and flowering time. Our results also raise concerns that rising atmospheric CO2 concentration are likely to reverse many of the gains of Green Revolution crops.
Collapse
Affiliation(s)
| | - Leonel Flores
- Department of Biology, University of Washington, USA
| | - Arjun Khakhar
- Department of Biology, Colorado State University, USA
| | | |
Collapse
|
7
|
Sabir IA, Hu X, Khan I, Qin Y. Regulatory Mechanisms of Bud Dormancy: Environmental, Hormonal, and Genetic Perspectives. Int J Mol Sci 2025; 26:2517. [PMID: 40141161 PMCID: PMC11942119 DOI: 10.3390/ijms26062517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Dormancy is a vital adaptive strategy in temperate and boreal plants, particularly fruit trees, enabling them to withstand harsh winter conditions and ensure survival and synchronized growth resumption in spring. This review comprehensively examines dormancy, focusing on its physiological, environmental, and molecular mechanisms. Dormancy is characterized by two distinct phases: endodormancy, which is regulated by internal plant signals and requires cold temperatures for release, and ecodormancy, which is influenced by external environmental factors. These stages are intricately linked to seasonal temperature fluctuations and the plant's ability to synchronize growth cycles, ensuring survival through harsh winters and optimal growth in warmer seasons. The review delves into the role of chilling requirements, temperature thresholds, and hormonal regulation in the dormancy process, highlighting how these factors influence critical growth events such as budbreak, flowering, and fruiting. Plant hormones, including abscisic acid, gibberellins, and cytokinins, regulate dormancy by modulating gene expression and growth activity. Additionally, we explore the historical development of dormancy research, from early observations of chilling requirements to the formulation of the chilling hours model. Considering ongoing climate change, the review examines how rising winter temperatures may disrupt dormancy cycles, potentially affecting the timing of flowering, fruiting, and overall crop productivity. This shift necessitates new strategies for managing dormancy, particularly in regions experiencing inconsistent or insufficient chilling. The review concludes by discussing practical approaches to enhance dormancy release and mitigate the impact of environmental stress on deciduous fruit tree growth, offering insights into improving agricultural practices amidst a changing climate.
Collapse
Affiliation(s)
- Irfan Ali Sabir
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xinglong Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Imran Khan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yonghua Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Song Y, John Martin JJ, Liu X, Li X, Hou M, Zhang R, Xu W, Li W, Cao H. Unraveling the response of secondary metabolites to cold tolerance in oil palm by integration of physiology and metabolomic analyses. BMC PLANT BIOLOGY 2025; 25:279. [PMID: 40033206 DOI: 10.1186/s12870-025-06292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Oil palm (Elaeis guineensis), a tropical crop, is highly sensitive to temperature fluctuations, with low temperatures significantly limiting its growth, development, and geographical distribution. Understanding the adaptive mechanisms of oil palm under low-temperature stress is essential for developing cold-tolerant varieties. This study focused on analyzing the physiological and metabolomic responses of annual thin-shell oil palm seedlings to low-temperature exposure (8 °C) for different time periods: 0 h (CK), 0.5 h (CD05), 1 h (CD1), 2 h (CD2), 4 h (CD4), and 8 h (CD8). RESULTS Physiological analysis showed a significant increase in the activity of antioxidant enzymes, such as superoxide dismutase (SOD) and peroxidase (POD), highlighting the activation of oxidative stress defense mechanisms. Concurrently, elevated relative conductivity, indicated cell membrane damage, a common consequence of cold-induced oxidative stress. Metabolomic profiling using LC-MS/MS revealed significant changes in metabolite composition, with differential metabolites predominately enriched in key metabolic pathways such as arginine and proline metabolism, glycine, serine, and threonine metabolism, plant hormone biosynthesis, and flavonoid biosynthesis pathways. Notable metabolites such as citric acid, L-aspartic acid, L-tryptophan, and vitexin showed significant accumulation, indicating their roles in enhancing cold tolerance through improved antioxidant defenses, promoting osmoregulation, and stabilizing cellular structures. Correlation analysis further emphasized the importance of flavonoids and plant hormones in the cold stress response. In particular, vitexin, isovitexin, and apigenin 6-C-glucoside were significantly enriched, suggesting their contribution to antioxidant and stress signaling networks. Furthermore, metabolites involved in amino acid metabolism, including L-glutamic acid, sarcosine, and proline, were upregulated, supporting enhanced protein synthesis and cellular repair under stress. This metabolic reprogramming correlated with physiological improvements, as evidenced by increased relative conductivity and post cold exposure growth recovery. CONCLUSION This study provides critical insights into the physiological and metabolic adaptations of oil palm to cold stress, emphasizing the significant role of secondary metabolites-such as flavonoids, amino acids, and plant hormones-in enhancing cold tolerance. Theses metabolites contribute to oxidative stress protection, osmotic regulation, and cell wall stabilization enabling the plant to better withstand with low temperature condition. The findings provide a strong foundation for molecular research and breeding initiatives aimed at developing cold tolerant oil palm varieties, a crop of siginificant economic value. By combining metabolomic profiling with physiological analyses, provides a holistic understanding of the adaptive mechanisms in oil palm under cold stress.This integrated approach identifies key metabolic pathways that can be targeted in breeding programs to enhance cold resilience, paving the way for improved crop performance in challenging environments.
Collapse
Affiliation(s)
- Yuqiao Song
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan Province, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
| | - Jerome Jeyakumar John Martin
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
| | - Xiaoyu Liu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
| | - Xinyu Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
| | - Mingming Hou
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan Province, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
| | - Ruimin Zhang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
| | - Wen Xu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
| | - Wenrao Li
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan Province, China.
| | - Hongxing Cao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China.
| |
Collapse
|
9
|
Ohama N, Moo TL, Chung K, Mitsuda N, Boonyaves K, Urano D, Chua NH. MEDIATOR15 destabilizes DELLA protein to promote gibberellin-mediated plant development. THE NEW PHYTOLOGIST 2025; 245:2665-2680. [PMID: 39807571 DOI: 10.1111/nph.20397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Mediator, a transcriptional coactivator, regulates plant growth and development by interacting with various transcriptional regulators. MEDIATOR15 (MED15) is a subunit in the Mediator complex potentially involved in developmental control. To uncover molecular functions of Arabidopsis MED15 in development, we searched for its interactors. MED15 was found to interact with DELLA proteins, which negatively regulate gibberellic acid (GA) signaling and positively regulate GA biosynthesis. Mutants and overexpressors of MED15 exhibited multiple GA-related growth phenotypes, which resembled the phenotypes of the DELLA overexpressor and mutant, respectively. Consistent with this observation, DELLA protein levels were inversely correlated with MED15 protein levels, suggesting that MED15 activates GA signaling through DELLA degradation. MED15 was required not only for DELLA-mediated induction of GA-biosynthesis gene expression but also for GA-mediated degradation of DELLA. Therefore, MED15 facilitates DELLA destruction not only by promoting GA biosynthesis but also by accelerating DELLA turnover. Furthermore, MED15-mediated GA signaling was required for timely developmental responses to dark and warm conditions. Our results provide insight into developmental control by Mediator via precise regulation of DELLA stability. These findings are potentially useful for the generation of new crop cultivars with ideal body architecture.
Collapse
Affiliation(s)
- Naohiko Ohama
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Teck Lim Moo
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - KwiMi Chung
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Nobutaka Mitsuda
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Kulaporn Boonyaves
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| |
Collapse
|
10
|
Ji XL, Zhao LL, Liu B, Yuan YB, Han Y, You CX, An JP. MdZFP7 integrates JA and GA signals via interaction with MdJAZ2 and MdRGL3a in regulating anthocyanin biosynthesis and undergoes degradation by the E3 ubiquitin ligase MdBRG3. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39936840 DOI: 10.1111/jipb.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
Jasmonic acid (JA) and gibberellin (GA) coordinate many aspects of plant growth and development, including anthocyanin biosynthesis. However, the crossover points of JA and GA signals and the pathways through which they interact to regulate anthocyanin biosynthesis are poorly understood. Here, we investigated the molecular mechanism by which the zinc finger protein (ZFP) transcription factor Malus domestica ZFP7 (MdZFP7) regulates anthocyanin biosynthesis by integrating JA and GA signals at the transcriptional and post-translational levels. MdZFP7 is a positive regulator of anthocyanin biosynthesis, which fulfills its role by directly activating the expression of MdMYB1 and enhancing the transcriptional activation of MdWRKY6 on the target genes MdDFR and MdUF3GT. MdZFP7 integrates JA and GA signals by interacting with the JA repressor apple JASMONATE ZIM-DOMAIN2 (MdJAZ2) and the GA repressor apple REPRESSOR-of-ga1-3-like 3a (MdRGL3a). MdJAZ2 weakens the transcriptional activation of MdMYB1 by MdZFP7 and disrupts the MdZFP7-MdWRKY6 interaction, thereby reducing the anthocyanin biosynthesis promoted by MdZFP7. MdRGL3a contributes to the stimulation of anthocyanin biosynthesis by MdZFP7 by sequestering MdJAZ2 from the MdJAZ2-MdZFP7 complex. The E3 ubiquitin ligase apple BOI-related E3 ubiquitin-protein ligase 3 (MdBRG3), which is antagonistically regulated by JA and GA, targets the ubiquitination degradation of MdZFP7. The MdBRG3-MdZFP7 module moves the crosstalk of JA and GA signals from the realm of transcriptional regulation and into the protein post-translational modification. In conclusion, this study not only elucidates the node-role of MdZFP7 in the integration of JA and GA signals, but also describes the transcriptional and post-translational regulatory network of anthocyanin biosynthesis with MdZFP7 as the hub.
Collapse
Affiliation(s)
- Xing-Long Ji
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ling-Ling Zhao
- Yantai Academy of Agricultural Sciences, Yantai, 265599, China
| | - Baoyou Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265599, China
| | - Yong-Bing Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
11
|
Zhang J, Liu L, Dong D, Xu J, Li H, Deng Q, Zhang Y, Huang W, Zhang H, Guo YD. The transcription factor SlLBD40 regulates seed germination by inhibiting cell wall remodeling enzymes during endosperm weakening. PLANT PHYSIOLOGY 2025; 197:kiaf022. [PMID: 39823429 DOI: 10.1093/plphys/kiaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025]
Abstract
Uniform seed germination is crucial for consistent seedling emergence and efficient seedling production. In this study, we identified a seed-expressed protein in tomato (Solanum lycopersicum), lateral organ boundaries domain 40 (SlLBD40), that regulates germination speed. CRISPR/Cas9-generated SlLBD40 knockout mutants exhibited faster germination due to enhanced seed imbibition, independent of the seed coat. The expression of SlLBD40 was induced during the imbibition process, particularly in the micropylar endosperm, suggesting its role in endosperm weakening. Gene ontology analysis of RNA-seq data indicated that differentially expressed genes were enriched in cell wall-related processes. SlLBD40 directly targeted genes encoding cell wall remodeling enzymes implicated in endosperm weakening, including expansin 6 (SlEXP6), xyloglucan endotransglucosylase/hydrolase 23 (SlXTH23), and endo-β-mannanase 1 (SlMAN1). Our findings shed light on the role of endosperm weakening in regulating seed germination and propose potential gene targets for improving germination in species constrained by endosperm strength.
Collapse
Affiliation(s)
- Jialong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
- Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Lun Liu
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Danhui Dong
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiayi Xu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Hongxin Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qilin Deng
- Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yan Zhang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Haijun Zhang
- Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing 100097, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Das S, Chaudhari AK. Efficacy of Pogostemon cablin essential oil loaded chitosan nanoemulsion as novel coating agent for inhibition of potato sprouting and maintenance of storage quality. Food Chem 2025; 463:141400. [PMID: 39342739 DOI: 10.1016/j.foodchem.2024.141400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/08/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
Application of synthetic compounds to inhibit potato sprouting is a major challenge in the storage conditions. The replacement of synthetic compounds by essential oils for inhibition of potato sprouting is of current research hotspot. This is the first time investigation on encapsulation of Pogostemon cablin essential oil into chitosan nanoemulsion (Ne-PCEO) and its application as coating agent for anti-sprouting activity of potato tubers. The Ne-PCEO was characterized through SEM, DLS, FTIR, and XRD assay along with controlled delivery of PCEO. The Ne-PCEO coating inhibited in-vivo potato sprouting and regulated gibberellins (GA3) and aminocyclopropane-1-carboxylate (ACC) content along with impediment of respiration rate over 90 days of storage at 25 ± 2 °C (RH ∼ 70 %). The Ne-PCEO coating also prevented the weight loss, starch degradation, and increased the reducing sugar content of tubers without affecting the sensory qualities (p < 0.05), which strongly recommends its potential application as novel anti-sprouting coating agent for maintenance of potato storage quality.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman 713104, West Bengal, India.
| | - Anand Kumar Chaudhari
- Department of Botany, Government Girl's P.G. College, Ghazipur 233001, Uttar Pradesh, India
| |
Collapse
|
13
|
Luo H, Guan Y, Zhang Z, Zhang Z, Zhang Z, Li H. FveDREB1B improves cold tolerance of woodland strawberry by positively regulating FveSCL23 and FveCHS. PLANT, CELL & ENVIRONMENT 2024; 47:4630-4650. [PMID: 39051467 DOI: 10.1111/pce.15052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Cold stress has seriously inhibited the growth and development of strawberry during production. CBF/DREB1 is a key central transcription factor regulating plant cold tolerance, but its regulatory mechanisms are varied in different plants. Especially in strawberry, the molecular mechanism of CBF/DREB1 regulating cold tolerance is still unclear. In this study, we found that FveDREB1B was most significantly induced by cold stress in CBF/DREB1 family of diploid woodland strawberry. FveDREB1B was localized to the nucleus, and DREB1B sequences were highly conserved in diploid and octoploid strawberry, and even similar in Rosaceae. And FveDREB1B overexpressed strawberry plants showed delayed flowering and increased cold tolerance, while FveDREB1B silenced plants showed early flowering and decreased cold tolerance. Under cold stress, FveDREB1B activated FveSCL23 expression by directly binding to its promoter. Meanwhile, FveDREB1B and FveSCL23 interacted with FveDELLA, respectively. In addition, we also found that FveDREB1B promoted anthocyanin accumulation in strawberry leaves by directly activating FveCHS expression after cold treatment and recovery to 25°C. DREB1B genes were also detected to be highly expressed in cold-tolerant strawberry resources 'Fragaria mandschurica' and 'Fragaria nipponica'. In conclusion, our study reveals the molecular mechanism of FveDREB1B-FveSCL23-FveDELLA module and FveDREB1B-FveCHS module to enhance the cold tolerance of woodland strawberry. It provides a new idea for improving the cold tolerance of cultivated strawberry and evaluating the cold tolerance of strawberry germplasm resources.
Collapse
Affiliation(s)
- He Luo
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yuhan Guan
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhuo Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zihui Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhihong Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - He Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
14
|
Tucci A, Flores-Vergara MA, Franks RG. Machine Learning Inference of Gene Regulatory Networks in Developing Mimulus Seeds. PLANTS (BASEL, SWITZERLAND) 2024; 13:3297. [PMID: 39683091 DOI: 10.3390/plants13233297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
The angiosperm seed represents a critical evolutionary breakthrough that has been shown to propel the reproductive success and radiation of flowering plants. Seeds promote the rapid diversification of angiosperms by establishing postzygotic reproductive barriers, such as hybrid seed inviability. While prezygotic barriers to reproduction tend to be transient, postzygotic barriers are often permanent and therefore can play a pivotal role in facilitating speciation. This property of the angiosperm seed is exemplified in the Mimulus genus. In order to further the understanding of the gene regulatory mechanisms important in the Mimulus seed, we performed gene regulatory network (GRN) inference analysis by using time-series RNA-seq data from developing hybrid seeds from a viable cross between Mimulus guttatus and Mimulus pardalis. GRN inference has the capacity to identify active regulatory mechanisms in a sample and highlight genes of potential biological importance. In our case, GRN inference also provided the opportunity to uncover active regulatory relationships and generate a reference set of putative gene regulations. We deployed two GRN inference algorithms-RTP-STAR and KBoost-on three different subsets of our transcriptomic dataset. While the two algorithms yielded GRNs with different regulations and topologies when working with the same data subset, there was still significant overlap in the specific gene regulations they inferred, and they both identified potential novel regulatory mechanisms that warrant further investigation.
Collapse
Affiliation(s)
- Albert Tucci
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Miguel A Flores-Vergara
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Robert G Franks
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
15
|
Singh D, Zhao H, Gupta SK, Kumar Y, Kim J, Pawar PAM. Characterization of Arabidopsis eskimo1 reveals a metabolic link between xylan O-acetylation and aliphatic glucosinolate metabolism. PHYSIOLOGIA PLANTARUM 2024; 176:e14618. [PMID: 39542838 DOI: 10.1111/ppl.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Glucuronoxylan is present mainly in the dicot of the secondary cell walls, often O-acetylated, which stabilizes cell structure by maintaining interaction with cellulose and other cell wall components. Some members of the Golgi localized Trichome Birefringence-Like (TBL) family function as xylan O-acetyl transferase (XOAT). The primary XOAT in the stem of Arabidopsis is ESKIMO1/TBL29, and its disruption results in decreased xylan acetylation, stunted plant growth, and collapsed xylem vessels. To elucidate the effect on metabolic reprogramming and identify the underlying cause of the stunted growth in eskimo1, we performed transcriptomic, targeted, and untargeted metabolome analysis, mainly in the inflorescence stem tissue. RNA sequencing analysis revealed that the genes involved in the biosynthesis, regulation, and transport of aliphatic glucosinolates (GSLs) were upregulated, whereas those responsible for indolic GSL metabolism were unaffected in the eskimo1 inflorescence stem. Consistently, aliphatic GSLs, such as 4-methylsulfinylbutyl (4MSOB), were increased in stem tissues and seeds. This shift in the profile of aliphatic GSLs in eskimo1 was further supported by the quantification of the soluble acetate, decrease in accumulation of GSL precursor, i.e., methionine, and increase in the level of jasmonic acid.
Collapse
Affiliation(s)
- Deepika Singh
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Haohao Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Sonu Kumar Gupta
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Yashwant Kumar
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Prashant Anupama-Mohan Pawar
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| |
Collapse
|
16
|
Xu Y, Lv Z, Manzoor MA, Song L, Wang M, Wang L, Wang S, Zhang C, Jiu S. VvD14c-VvMAX2-VvLOB/VvLBD19 module is involved in the strigolactone-mediated regulation of grapevine root architecture. MOLECULAR HORTICULTURE 2024; 4:40. [PMID: 39456080 PMCID: PMC11515387 DOI: 10.1186/s43897-024-00117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
The D14 protein, an alpha/beta hydrolase, is a key receptor in the strigolactone (SL) signaling pathway. However, the response of VvD14 to SL signals and its role in grapevine root architecture formation remain unclear. This study demonstrated that VvD14c was highly expressed in grapevine tissues and fruit stages than other VvD14 isoforms. Application of GR24, an SL analog, enhanced the elongation and diameter of adventitious roots but inhibited the elongation and density of lateral roots (LRs) and increased VvD14c expression. Additionally, GR24 is nested within the VvD14c pocket and strongly bound to the VvD14c protein, with an affinity of 5.65 × 10-9 M. Furthermore, VvD14c interacted with grapevine MORE AXILLARY GROWTH 2 (VvMAX2) in a GR24-dependent manner. Overexpression of VvD14c in the d14 mutant and VvMAX2 in the max2 Arabidopsis mutant reversed the increased LR number and density, as well as primary root elongation. Conversely, homologous overexpression of VvD14c and VvMAX2 resulted in reduced LR number and density in grapevines. VvMAX2 directly interacted with LATERAL ORGAN BOUNDARY (VvLOB) and VvLBD19, thereby positively regulating LR density. These findings highlight the role of SLs in regulating grapevine root architecture, potentially via the VvD14c-VvMAX2-VvLOB/VvLBD19 module, providing new insights into the regulation of root growth and development in grapevines.
Collapse
Affiliation(s)
- Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Linhong Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Maosen Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China.
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China.
| |
Collapse
|
17
|
Wu C, Hou B, Wu R, Yang L, Lan G, Xia Z, Cao C, Pan Z, Lv B, Li P. Genome-Wide Analysis Elucidates the Roles of AhLBD Genes in Different Abiotic Stresses and Growth and Development Stages in the Peanut ( Arachis hypogea L.). Int J Mol Sci 2024; 25:10561. [PMID: 39408886 PMCID: PMC11476539 DOI: 10.3390/ijms251910561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The lateral organ boundaries domain (LBD) genes, as the plant-specific transcription factor family, play a crucial role in controlling plant architecture and stress tolerance. However, the functions of AhLBD genes in the peanut plant (Arachis hypogea L.) remain unclear. In this study, 73 AhLBDs were identified in the peanut plant and divided into three groups by phylogenetic tree analysis. Gene structure and conserved protein motif analysis supported the evolutionary conservation of AhLBDs. Tandem and segment duplications contributed to the expansion of AhLBDs. The evolutionary relationship analysis of LBD gene family between A. hypogaea and four other species indicated that the peanut plant had a close relationship with the soybean plant. AhLBDs played a very important role in response to growth and development as well as abiotic stress. Furthermore, gene expression profiling and real-time quantitative qRT-PCR analysis showed that AhLBD16, AhLBD33, AhLBD67, and AhLBD72 were candidate genes for salt stress, while AhLBD24, AhLBD33, AhLBD35, AhLBD52, AhLBD67, and AhLBD71 were candidate genes for drought stress. Our subcellular localization experiment revealed that AhLBD24, AhLBD33, AhLBD67, and AhLBD71 were located in the nucleus. Heterologous overexpression of AhLBD33 and AhLBD67 in Arabidopsis significantly enhanced tolerance to salt stress. Our results provide a theoretical basis and candidate genes for studying the molecular mechanism for abiotic stress in the peanut plant.
Collapse
Affiliation(s)
- Cuicui Wu
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000, China; (B.H.); (R.W.); (L.Y.); (G.L.); (Z.X.); (C.C.); (Z.P.); (B.L.)
| | | | | | | | | | | | | | | | | | - Pengbo Li
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000, China; (B.H.); (R.W.); (L.Y.); (G.L.); (Z.X.); (C.C.); (Z.P.); (B.L.)
| |
Collapse
|
18
|
Huang X, Zentella R, Park J, Reser L, Bai DL, Ross MM, Shabanowitz J, Hunt DF, Sun TP. Phosphorylation activates master growth regulator DELLA by promoting histone H2A binding at chromatin in Arabidopsis. Nat Commun 2024; 15:7694. [PMID: 39227587 PMCID: PMC11372120 DOI: 10.1038/s41467-024-52033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
DELLA proteins are conserved master growth regulators that play a central role in controlling plant development in response to internal and environmental cues. DELLAs function as transcription regulators, which are recruited to target promoters by binding to transcription factors (TFs) and histone H2A via their GRAS domain. Recent studies showed that DELLA stability is regulated post-translationally via two mechanisms, phytohormone gibberellin-induced polyubiquitination for its rapid degradation, and Small Ubiquitin-like Modifier (SUMO)-conjugation to increase its accumulation. Moreover, DELLA activity is dynamically modulated by two distinct glycosylations: DELLA-TF interactions are enhanced by O-fucosylation, but inhibited by O-linked N-acetylglucosamine (O-GlcNAc) modification. However, the role of DELLA phosphorylation remains unclear as previous studies showing conflicting results ranging from findings that suggest phosphorylation promotes or reduces DELLA degradation to others indicating it has no effect on its stability. Here, we identify phosphorylation sites in REPRESSOR OF ga1-3 (RGA, an AtDELLA) purified from Arabidopsis by mass spectrometry analysis, and show that phosphorylation of two RGA peptides in the PolyS and PolyS/T regions enhances RGA activity by promoting H2A binding and RGA association with target promoters. Notably, phosphorylation does not affect RGA-TF interactions or RGA stability. Our study has uncovered a molecular mechanism of phosphorylation-induced DELLA activity.
Collapse
Affiliation(s)
- Xu Huang
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Rodolfo Zentella
- Department of Biology, Duke University, Durham, NC, 27708, USA
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, NC, 27607, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jeongmoo Park
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Syngenta, Research Triangle Park, NC, 27709, USA
| | - Larry Reser
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Dina L Bai
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Mark M Ross
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
19
|
Ma Y, Ma C, Zhou P, Gao F, Tan W, Huang X, Bai Y, Li M, Wang Z, Hayat F, Shi T, Ni Z, Gao Z. PmLBD3 links auxin and brassinosteroid signalling pathways on dwarfism in Prunus mume. BMC Biol 2024; 22:184. [PMID: 39183294 PMCID: PMC11346286 DOI: 10.1186/s12915-024-01985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Grafting with dwarf rootstock is an efficient method to control plant height in fruit production. However, the molecular mechanism remains unclear. Our previous study showed that plants with Prunus mume (mume) rootstock exhibited a considerable reduction in plant height, internode length, and number of nodes compared with Prunus persica (peach) rootstock. The present study aimed to investigate the mechanism behind the regulation of plant height by mume rootstocks through transcriptomic and metabolomic analyses with two grafting combinations, 'Longyan/Mume' and 'Longyan/Peach'. RESULTS There was a significant decrease in brassinolide levels in plants that were grafted onto mume rootstocks. Plant hormone signal transduction and brassinolide production metabolism gene expression also changed significantly. Flavonoid levels, amino acid and fatty acid metabolites, and energy metabolism in dwarf plants decreased. There was a notable upregulation of PmLBD3 gene expression in plant specimens that were subjected to grafting onto mume rootstocks. Auxin signalling cues promoted PmARF3 transcription, which directly controlled this upregulation. Through its binding to PmBAS1 and PmSAUR36a gene promoters, PmLBD3 promoted endogenous brassinolide inactivation and inhibited cell proliferation. CONCLUSIONS Auxin signalling and brassinolide levels are linked by PmLBD3. Our findings showed that PmLBD3 is a key transcription factor that regulates the balance of hormones through the auxin and brassinolide signalling pathways and causes dwarf plants in stone fruits.
Collapse
Affiliation(s)
- Yufan Ma
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chengdong Ma
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pengyu Zhou
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Feng Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Tan
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiao Huang
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yang Bai
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minglu Li
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ziqi Wang
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Faisal Hayat
- College of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Ting Shi
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhaojun Ni
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhihong Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
20
|
Lou H, Zheng S, Chen W, Yu W, Jiang H, Farag MA, Xiao J, Wu J, Song L. Transcriptome-referenced association study provides insights into the regulation of oil and fatty acid biosynthesis in Torreya grandis kernel. J Adv Res 2024; 62:1-14. [PMID: 36639025 PMCID: PMC11331172 DOI: 10.1016/j.jare.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/21/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Torreya grandis is a gymnosperm belonging to Taxodiaceae. As an economically important tree, its kernels are edible and rich in oil with high unsaturated fatty acids, such as sciadonic acid. However, the kernels from different T. grandis landraces exhibit fatty acid and oil content variations. OBJECTIVES As a gymnosperm, does T. grandis have special regulation mechanisms for oil biosynthesis? The aim of this study was to dissect the genetic architecture of fatty acid and oil content and the underlying mechanism in T. grandis. METHODS We constructed a high integrity reference sequence of expressed regions of the genome in T. grandis and performed transcriptome-referenced association study (TRAS) for 10 fatty acid and oil traits of kernels in the 170 diverse T. grandis landraces. To confirm the TRAS result, we performed functional validation and molecular biology experiments for oil significantly associated genes. RESULTS We identified 41 SNPs from 34 transcripts significantly associated with 7 traits by TRAS (-log10 (P) greater than 6.0). Results showed that LOB domain-containing protein 40 (LBD40) and surfeit locus protein 1 (SURF1) may be indirectly involved in the regulation of oil and sciadonic acid biosynthesis, respectively. Moreover, overexpression of TgLBD40 significantly increased seed oil content. The nonsynonymous variant in the TgLBD40 coding region discovered by TRAS could alter the oil content in plants. Pearson's correlation analysis and dual-luciferase assay indicated that TgLBD40 positively enhanced oil accumulation by affecting oil biosynthesis pathway genes, such as TgDGAT1. CONCLUSION Our study provides new insights into the genetic basis of oil biosynthesis in T. grandis and demonstrates that integrating RNA sequencing and TRAS is a powerful strategy to perform association study independent of a reference genome for dissecting important traits in T. grandis.
Collapse
Affiliation(s)
- Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou 311300, China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., Cairo P.B. 11562, Egypt
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou 311300, China.
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
21
|
Zhu Y, Zeng X, Zhu T, Jiang H, Lei P, Zhang H, Chen H. Plant Hormone Pathway Is Involved in Regulating the Embryo Development Mechanism of the Hydrangea macrophylla Hybrid. Int J Mol Sci 2024; 25:7812. [PMID: 39063054 PMCID: PMC11276702 DOI: 10.3390/ijms25147812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The research is aimed to elucidate the role of plant hormones in regulating the development of hybrid embryos in Hydrangea macrophylla. Fruits from the intraspecific cross of H. macrophylla 'Otaksa' × 'Coerulea' were selected at the globular, heart, and torpedo stages of embryo development. Transcriptome sequencing and differential gene expression analysis were conducted. The results showed that fruit growth followed a single "S-shaped growth curve, with globular, heart, and torpedo embryos appearing at 30, 40, and 50 d post-pollination, respectively, and the embryo maintaining the torpedo shape from 60 to 90 d. A total of 12,933 genes was quantified across the three developmental stages, with 3359, 3803, and 3106 DEGs in the S1_vs_S2, S1_vs_S3, and S2_vs_S3 comparisons, respectively. Among these, 133 genes related to plant hormone biosynthesis and metabolism were differentially expressed, regulating the synthesis and metabolism of eight types of plant hormones, including cytokinin, auxin, gibberellin, abscisic acid, and jasmonic acid. The pathways with the most differentially expressed genes were cytokinin, auxin, and gibberellin, suggesting these hormones may play crucial roles in embryo development. In the cytokinin pathway, CKX (Hma1.2p1_0579F.1_g182670.gene, Hma1.2p1_1194F.1_g265700.gene, and NewGene_12164) genes were highly expressed during the globular embryo stage, promoting rapid cell division in the embryo. In the auxin pathway, YUC (Hma1.2p1_0271F.1_g109005.gene and Hma1.2p1_0271F.1_g109020.gene) genes were progressively up-regulated during embryo growth; the early response factor AUX/IAA (Hma1.2p1_0760F.1_g214260.gene) was down-regulated, while the later transcriptional activator ARF (NewGene_21460, NewGene_21461, and Hma1.2p1_0209F.1_g089090.gene) was up-regulated, sustaining auxin synthesis and possibly preventing the embryo from transitioning to maturity. In the gibberellin pathway, GA3ox (Hma1.2p1_0129F.1_g060100.gene) expression peaked during the heart embryo stage and then declined, while the negative regulator GA2ox (Hma1.2p1_0020F.1_g013915.gene) showed the opposite trend; and the gibberellin signaling repressor DELLA (Hma1.2p1_1054F.1_g252590.gene) increased over time, potentially inhibiting embryo development and maintaining the torpedo shape until fruit maturity. These findings preliminarily uncover the factors affecting the development of hybrid H. macrophylla embryos, laying a foundation for further research into the regulatory mechanisms of H. macrophylla hybrid embryo development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haixia Chen
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (X.Z.); (T.Z.); (H.J.); (P.L.); (H.Z.)
| |
Collapse
|
22
|
Balouri C, Poulios S, Tsompani D, Spyropoulou Z, Ketikoglou MC, Kaldis A, Doonan JH, Vlachonasios KE. Gibberellin Signaling through RGA Suppresses GCN5 Effects on Arabidopsis Developmental Stages. Int J Mol Sci 2024; 25:6757. [PMID: 38928464 PMCID: PMC11203840 DOI: 10.3390/ijms25126757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Histone acetyltransferases (HATs) modify the amino-terminal tails of the core histone proteins via acetylation, regulating chromatin structure and transcription. GENERAL CONTROL NON-DEREPRESSIBLE 5 (GCN5) is a HAT that specifically acetylates H3K14 residues. GCN5 has been associated with cell division and differentiation, meristem function, root, stem, foliar, and floral development, and plant environmental response. The flowers of gcn5 plants display a reduced stamen length and exhibit male sterility relative to the wild-type plants. We show that these effects may arise from gibberellin (GA)-signaling defects. The signaling pathway of bioactive GAs depends on the proteolysis of their repressors, DELLA proteins. The repressor GA (RGA) DELLA protein represses plant growth, inflorescence, and flower and seed development. Our molecular data indicate that GCN5 is required for the activation and H3K14 acetylation of genes involved in the late stages of GA biosynthesis and catabolism. We studied the genetic interaction of the RGA and GCN5; the RGA can partially suppress GCN5 action during the whole plant life cycle. The reduced elongation of the stamen filament of gcn5-6 mutants is reversed in the rga-t2;gcn5-6 double mutants. RGAs suppress the GCN5 effect on the gene expression and histone acetylation of GA catabolism and GA signaling. Interestingly, the RGA and RGL2 do not suppress ADA2b function, suggesting that ADA2b acts downstream of GA signaling and is distinct from GCN5 activity. In conclusion, we propose that the action of GCN5 on stamen elongation is partially mediated by RGA and GA signaling.
Collapse
Affiliation(s)
- Christina Balouri
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Stylianos Poulios
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Dimitra Tsompani
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Zoe Spyropoulou
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Maria-Christina Ketikoglou
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Athanasios Kaldis
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - John H. Doonan
- National Plant Phenomics Centre, Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth SY23 3EE, UK;
| | - Konstantinos E. Vlachonasios
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
- Natural Products Research Centre of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), 54124 Thessaloniki, Greece
| |
Collapse
|
23
|
Shani E, Hedden P, Sun TP. Highlights in gibberellin research: A tale of the dwarf and the slender. PLANT PHYSIOLOGY 2024; 195:111-134. [PMID: 38290048 PMCID: PMC11060689 DOI: 10.1093/plphys/kiae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 02/01/2024]
Abstract
It has been almost a century since biologically active gibberellin (GA) was isolated. Here, we give a historical overview of the early efforts in establishing the GA biosynthesis and catabolism pathway, characterizing the enzymes for GA metabolism, and elucidating their corresponding genes. We then highlight more recent studies that have identified the GA receptors and early GA signaling components (DELLA repressors and F-box activators), determined the molecular mechanism of DELLA-mediated transcription reprograming, and revealed how DELLAs integrate multiple signaling pathways to regulate plant vegetative and reproductive development in response to internal and external cues. Finally, we discuss the GA transporters and their roles in GA-mediated plant development.
Collapse
Affiliation(s)
- Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Peter Hedden
- Laboratory of Growth Regulators, Institute of Experimental Botany and Palacky University, 78371 Olomouc, Czech Republic
- Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Tai-ping Sun
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
24
|
Xu Q, Yang Z, Jia Y, Wang R, Zhang Q, Gai R, Wu Y, Yang Q, He G, Wu JH, Ming F. PeNAC67-PeKAN2-PeSCL23 and B-class MADS-box transcription factors synergistically regulate the specialization process from petal to lip in Phalaenopsis equestris. MOLECULAR HORTICULTURE 2024; 4:15. [PMID: 38649966 PMCID: PMC11036780 DOI: 10.1186/s43897-023-00079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/26/2023] [Indexed: 04/25/2024]
Abstract
The molecular basis of orchid flower development involves a specific regulatory program in which MADS-box transcription factors play a central role. The recent 'perianth code' model hypothesizes that two types of higher-order heterotetrameric complexes, namely SP complex and L complex, play pivotal roles in the orchid perianth organ formation. Therefore, we explored their roles and searched for other components of the regulatory network.Through the combined analysis for transposase-accessible chromatin with high-throughput sequencing and RNA sequencing of the lip-like petal and lip from Phalaenopsis equestris var.trilip, transcription factor-(TF) genes involved in lip development were revealed. PeNAC67 encoding a NAC-type TF and PeSCL23 encoding a GRAS-type TF were differentially expressed between the lip-like petal and the lip. PeNAC67 interacted with and stabilized PeMADS3, which positively regulated the development of lip-like petal to lip. PeSCL23 and PeNAC67 competitively bound with PeKAN2 and positively regulated the development of lip-like petal to petal by affecting the level of PeMADS3. PeKAN2 as an important TF that interacts with PeMADS3 and PeMADS9 can promote lip development. These results extend the 'perianth code' model and shed light on the complex regulation of orchid flower development.
Collapse
Affiliation(s)
- Qingyu Xu
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhenyu Yang
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yupeng Jia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Rui Wang
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiyu Zhang
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ruonan Gai
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yiding Wu
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qingyong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Guoren He
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ju Hua Wu
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Feng Ming
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
25
|
Abley K, Goswami R, Locke JCW. Bet-hedging and variability in plant development: seed germination and beyond. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230048. [PMID: 38432313 PMCID: PMC10909506 DOI: 10.1098/rstb.2023.0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/28/2023] [Indexed: 03/05/2024] Open
Abstract
When future conditions are unpredictable, bet-hedging strategies can be advantageous. This can involve isogenic individuals producing different phenotypes, under the same environmental conditions. Ecological studies provide evidence that variability in seed germination time has been selected for as a bet-hedging strategy. We demonstrate how variability in germination time found in Arabidopsis could function as a bet-hedging strategy in the face of unpredictable lethal stresses. Despite a body of knowledge on how the degree of seed dormancy versus germination is controlled, relatively little is known about how differences between isogenic seeds in a batch are generated. We review proposed mechanisms for generating variability in germination time and the current limitations and new possibilities for testing the model predictions. We then look beyond germination to the role of variability in seedling and adult plant growth and review new technologies for quantification of noisy gene expression dynamics. We discuss evidence for phenotypic variability in plant traits beyond germination being under genetic control and propose that variability in stress response gene expression could function as a bet-hedging strategy. We discuss open questions about how noisy gene expression could lead to between-plant heterogeneity in gene expression and phenotypes. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Katie Abley
- The Sainsbury Laboratory, University of Cambridge, Cambridge, Cambridgeshire CB2 1LR, UK
| | - Rituparna Goswami
- The Sainsbury Laboratory, University of Cambridge, Cambridge, Cambridgeshire CB2 1LR, UK
| | - James C. W. Locke
- The Sainsbury Laboratory, University of Cambridge, Cambridge, Cambridgeshire CB2 1LR, UK
| |
Collapse
|
26
|
Ai J, Wang W, Hu T, Hu H, Wang J, Yan Y, Pang H, Wang Y, Bao C, Wei Q. Identification of Quantitative Trait Loci and Candidate Genes Controlling Seed Dormancy in Eggplant ( Solanum melongena L.). Genes (Basel) 2024; 15:415. [PMID: 38674350 PMCID: PMC11049636 DOI: 10.3390/genes15040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Seed dormancy is a life adaptation trait exhibited by plants in response to environmental changes during their growth and development. The dormancy of commercial seeds is the key factor affecting seed quality. Eggplant seed dormancy is controlled by quantitative trait loci (QTLs), but reliable QTLs related to eggplant dormancy are still lacking. In this study, F2 populations obtained through the hybridization of paternally inbred lines with significant differences in dormancy were used to detect regulatory sites of dormancy in eggplant seeds. Three QTLs (dr1.1, dr2.1, and dr6.1) related to seed dormancy were detected on three chromosomes of eggplant using the QTL-Seq technique. By combining nonsynonymous sites within the candidate regions and gene functional annotation analysis, nine candidate genes were selected from three QTL candidate regions. According to the germination results on the eighth day, the male parent was not dormant, but the female parent was dormant. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of nine candidate genes, and the Smechr0201082 gene showed roughly the same trend as that in the phenotypic data. We proposed Smechr0201082 as the potential key gene involved in regulating the dormancy of eggplant seeds. The results of seed experiments with different concentrations of gibberellin A3 (GA3) showed that, within a certain range, the higher the gibberellin concentration, the earlier the emergence and the higher the germination rate. However, higher concentrations of GA3 may have potential effects on eggplant seedlings. We suggest the use of GA3 at a concentration of 200-250 mg·L-1 to treat dormant seeds. This study provides a foundation for the further exploration of genes related to the regulation of seed dormancy and the elucidation of the molecular mechanism of eggplant seed dormancy and germination.
Collapse
Affiliation(s)
- Jiaqi Ai
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.A.); (W.W.); (T.H.); (H.H.); (J.W.); (Y.Y.); (H.P.); (C.B.)
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 310021, China
| | - Wuhong Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.A.); (W.W.); (T.H.); (H.H.); (J.W.); (Y.Y.); (H.P.); (C.B.)
| | - Tianhua Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.A.); (W.W.); (T.H.); (H.H.); (J.W.); (Y.Y.); (H.P.); (C.B.)
| | - Haijiao Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.A.); (W.W.); (T.H.); (H.H.); (J.W.); (Y.Y.); (H.P.); (C.B.)
| | - Jinglei Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.A.); (W.W.); (T.H.); (H.H.); (J.W.); (Y.Y.); (H.P.); (C.B.)
| | - Yaqin Yan
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.A.); (W.W.); (T.H.); (H.H.); (J.W.); (Y.Y.); (H.P.); (C.B.)
| | - Hongtao Pang
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.A.); (W.W.); (T.H.); (H.H.); (J.W.); (Y.Y.); (H.P.); (C.B.)
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 310021, China
| | - Yong Wang
- Zhumadian Academy of Agricultural Sciences, Zhumadian 463000, China;
| | - Chonglai Bao
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.A.); (W.W.); (T.H.); (H.H.); (J.W.); (Y.Y.); (H.P.); (C.B.)
| | - Qingzhen Wei
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.A.); (W.W.); (T.H.); (H.H.); (J.W.); (Y.Y.); (H.P.); (C.B.)
| |
Collapse
|
27
|
Xie Z, Jin L, Sun Y, Zhan C, Tang S, Qin T, Liu N, Huang J. OsNAC120 balances plant growth and drought tolerance by integrating GA and ABA signaling in rice. PLANT COMMUNICATIONS 2024; 5:100782. [PMID: 38148603 PMCID: PMC10943586 DOI: 10.1016/j.xplc.2023.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The crosstalk between gibberellin (GA) and abscisic acid (ABA) signaling is crucial for balancing plant growth and adaption to environmental stress. Nevertheless, the molecular mechanism of their mutual antagonism still remains to be fully clarified. In this study, we found that knockout of the rice NAC (NAM, ATAF1/2, CUC2) transcription factor gene OsNAC120 inhibits plant growth but enhances drought tolerance, whereas OsNAC120 overexpression produces the opposite results. Exogenous GA can rescue the semi-dwarf phenotype of osnac120 mutants, and further study showed that OsNAC120 promotes GA biosynthesis by transcriptionally activating the GA biosynthetic genes OsGA20ox1 and OsGA20ox3. The DELLA protein SLENDER RICE1 (SLR1) interacts with OsNAC120 and impedes its transactivation ability, and GA treatment can remove the inhibition of transactivation activity caused by SLR1. On the other hand, OsNAC120 negatively regulates rice drought tolerance by repressing ABA-induced stomatal closure. Mechanistic investigation revealed that OsNAC120 inhibits ABA biosynthesis via transcriptional repression of the ABA biosynthetic genes OsNCED3 and OsNCED4. Rice OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 9 (OsSAPK9) physically interacts with OsNAC120 and mediates its phosphorylation, which results in OsNAC120 degradation. ABA treatment accelerates OsNAC120 degradation and reduces its transactivation activity. Together, our findings provide evidence that OsNAC120 plays critical roles in balancing GA-mediated growth and ABA-induced drought tolerance in rice. This research will help us to understand the mechanisms underlying the trade-off between plant growth and stress tolerance and to engineer stress-resistant, high-yielding crops.
Collapse
Affiliation(s)
- Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Chenghang Zhan
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Siqi Tang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Tian Qin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Nian Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
28
|
Yao Q, Feng Y, Wang J, Zhang Y, Yi F, Li Z, Zhang M. Integrated Metabolome and Transcriptome Analysis of Gibberellins Mediated the Circadian Rhythm of Leaf Elongation by Regulating Lignin Synthesis in Maize. Int J Mol Sci 2024; 25:2705. [PMID: 38473951 DOI: 10.3390/ijms25052705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/08/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Plant growth exhibits rhythmic characteristics, and gibberellins (GAs) are involved in regulating cell growth, but it is still unclear how GAs crosstalk with circadian rhythm to regulate cell elongation. The study analyzed growth characteristics of wild-type (WT), zmga3ox and zmga3ox with GA3 seedlings. We integrated metabolomes and transcriptomes to study the interaction between GAs and circadian rhythm in mediating leaf elongation. The rates of leaf growth were higher in WT than zmga3ox, and zmga3ox cell length was shorter when proliferated in darkness than light, and GA3 restored zmga3ox leaf growth. The differentially expressed genes (DEGs) between WT and zmga3ox were mainly enriched in hormone signaling and cell wall synthesis, while DEGs in zmga3ox were restored to WT by GA3. Moreover, the number of circadian DEGs that reached the peak expression in darkness was more than light, and the upregulated circadian DEGs were mainly enriched in cell wall synthesis. The differentially accumulated metabolites (DAMs) were mainly attributed to flavonoids and phenolic acid. Twenty-two DAMs showed rhythmic accumulation, especially enriched in lignin synthesis. The circadian DEGs ZmMYBr41/87 and ZmHB34/70 were identified as regulators of ZmHCT8 and ZmBM1, which were enzymes in lignin synthesis. Furthermore, GAs regulated ZmMYBr41/87 and ZmHB34/70 to modulate lignin biosynthesis for mediating leaf rhythmic growth.
Collapse
Affiliation(s)
- Qingqing Yao
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Ying Feng
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Jiajie Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yushi Zhang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Fei Yi
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
29
|
Min WK, Kwon DH, Song JT, Seo HS. Arabidopsis retromer subunit AtVPS29 is involved in SLY1-mediated gibberellin signaling. PLANT CELL REPORTS 2024; 43:53. [PMID: 38315261 PMCID: PMC10844355 DOI: 10.1007/s00299-024-03144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/31/2023] [Indexed: 02/07/2024]
Abstract
KEY MESSAGE Retromer protein AtVPS29 upregulates the SLY1 protein and downregulates the RGA protein, positively stimulating the development of the root meristematic zone, which indicates an important role of AtVPS29 in gibberellin signaling. In plants, the large retromer complex is known to play roles in multiple development processes, including cell polarity, programmed cell death, and root hair growth in Arabidopsis. However, many of its roles in plant development remain unknown. Here, we show that Arabidopsis trimeric retromer protein AtVPS29 (vacuolar protein sorting 29) modulates gibberellin signaling. The SLEEPY1 (SLY1) protein, known as a positive regulator of gibberellic acid (GA) signaling, exhibited lower abundance in vps29-3 mutants compared to wild-type (WT) plants. Conversely, the DELLA repressor protein, targeted by the E3 ubiquitin ligase SCF (Skp, Cullin, F-box) complex and acting as a negative regulator of GA signaling, showed increased abundance in vps29-3 mutants compared to WT. The vps29-3 mutants exhibited decreased sensitivity to exogenous GA supply in contrast to WT, despite an upregulation in the expression of GA receptor genes within the vps29-3 mutants. In addition, the expression of the GA synthesis genes was downregulated in vps29-3 mutants, implying that the loss of AtVPS29 causes the downregulation of GA synthesis and signaling. Furthermore, vps29-3 mutants exhibited a reduced meristematic zone accompanied by a decreased cell number. Together, these data indicate that AtVPS29 positively regulates SLY1-mediated GA signaling and plant growth.
Collapse
Affiliation(s)
- Wang Ki Min
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Gwanakro 200, Gwanak-Gu, Seoul, 08826, Korea
| | - Dae Hwan Kwon
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Gwanakro 200, Gwanak-Gu, Seoul, 08826, Korea
| | - Jong Tae Song
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Gwanakro 200, Gwanak-Gu, Seoul, 08826, Korea.
| |
Collapse
|
30
|
Mohamed D, Vonapartis E, Corcega DY, Gazzarrini S. ABA guides stomatal proliferation and patterning through the EPF-SPCH signaling pathway in Arabidopsis thaliana. Development 2023; 150:dev201258. [PMID: 37997741 DOI: 10.1242/dev.201258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Adaptation to dehydration stress requires plants to coordinate environmental and endogenous signals to inhibit stomatal proliferation and modulate their patterning. The stress hormone abscisic acid (ABA) induces stomatal closure and restricts stomatal lineage to promote stress tolerance. Here, we report that mutants with reduced ABA levels, xer-1, xer-2 and aba2-2, developed stomatal clusters. Similarly, the ABA signaling mutant snrk2.2/2.3/2.6, which lacks core ABA signaling kinases, also displayed stomatal clusters. Exposure to ABA or inhibition of ABA catabolism rescued the increased stomatal density and spacing defects observed in xer and aba2-2, suggesting that basal ABA is required for correct stomatal density and spacing. xer-1 and aba2-2 displayed reduced expression of EPF1 and EPF2, and enhanced expression of SPCH and MUTE. Furthermore, ABA suppressed elevated SPCH and MUTE expression in epf2-1 and epf1-1, and partially rescued epf2-1 stomatal index and epf1-1 clustering defects. Genetic analysis demonstrated that XER acts upstream of the EPF2-SPCH pathway to suppress stomatal proliferation, and in parallel with EPF1 to ensure correct stomatal spacing. These results show that basal ABA and functional ABA signaling are required to fine-tune stomatal density and patterning.
Collapse
Affiliation(s)
- Deka Mohamed
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Eliana Vonapartis
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Dennedy Yrvin Corcega
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
31
|
Liu B, Woods DP, Li W, Amasino RM. INDETERMINATE1-mediated expression of FT family genes is required for proper timing of flowering in Brachypodium distachyon. Proc Natl Acad Sci U S A 2023; 120:e2312052120. [PMID: 37934817 PMCID: PMC10655584 DOI: 10.1073/pnas.2312052120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023] Open
Abstract
The transition to flowering is a major developmental switch in plants. In many temperate grasses, perception of indicators of seasonal change, such as changing day-length and temperature, leads to expression of FLOWERING LOCUS T1 (FT1) and FT-Like (FTL) genes that are essential for promoting the transition to flowering. However, little is known about the upstream regulators of FT1 and FTL genes in temperate grasses. Here, we characterize the monocot-specific gene INDETERMINATE1 (BdID1) in Brachypodium distachyon and demonstrate that BdID1 is a regulator of FT family genes. Mutations in ID1 impact the ability of the short-day (SD) vernalization, cold vernalization, and long-day (LD) photoperiod pathways to induce certain FTL genes. BdID1 is required for upregulation of FTL9 (FT-LIKE9) expression by the SD vernalization pathway, and overexpression of FTL9 in an id1 background can partially restore the delayed flowering phenotype of id1. We show that BdID1 binds in vitro to the promoter region of FTL genes suggesting that ID1 directly activates FTL expression. Transcriptome analysis shows that BdID1 is required for FT1, FT2, FTL12, and FTL13 expression under inductive LD photoperiods, indicating that BdID1 is a regulator of the FT gene family. Moreover, overexpression of FT1 in the id1 background results in rapid flowering similar to overexpressing FT1 in the wild type, demonstrating that BdID1 is upstream of FT family genes. Interestingly, ID1 negatively regulates a previously uncharacterized FTL gene, FTL4, and we show that FTL4 is a repressor of flowering. Thus, BdID1 is critical for proper timing of flowering in temperate grasses.
Collapse
Affiliation(s)
- Bing Liu
- Department of Biochemistry, University of Wisconsin, Madison, WI53706
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI53706
| | - Daniel P. Woods
- Department of Biochemistry, University of Wisconsin, Madison, WI53706
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI53706
- Laboratory of Genetics, University of Wisconsin, Madison, WI53706
| | - Weiya Li
- Department of Biochemistry, University of Wisconsin, Madison, WI53706
| | - Richard M. Amasino
- Department of Biochemistry, University of Wisconsin, Madison, WI53706
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI53706
| |
Collapse
|
32
|
Li J, Li Q, Wang W, Zhang X, Chu C, Tang X, Zhu B, Xiong L, Zhao Y, Zhou D. DELLA-mediated gene repression is maintained by chromatin modification in rice. EMBO J 2023; 42:e114220. [PMID: 37691541 PMCID: PMC10620761 DOI: 10.15252/embj.2023114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
DELLA proteins are master regulators of gibberellic acid (GA) signaling through their effects on gene expression. Enhanced DELLA accumulation in rice and wheat varieties has greatly contributed to grain yield increases during the green revolution. However, the molecular basis of DELLA-mediated gene repression remains elusive. In this work, we show that the rice DELLA protein SLENDER RICE1 (SLR1) forms a tripartite complex with Polycomb-repressive complex 2 (PRC2) and the histone deacetylase HDA702 to repress downstream genes by establishing a silent chromatin state. The slr1 mutation and GA signaling resulted in dissociation of PRC2 and HDA702 from GA-inducible genes. Loss-of-function or downregulation of the chromatin regulators impaired SLR1-dependent histone modification and gene repression. Time-resolved analysis of GA signaling revealed that GA-induced transcriptional activation was associated with a rapid increase of H3K9ac followed by H3K27me3 removal. Collectively, these results establish a general epigenetic mechanism for DELLA-mediated gene repression and reveal details of the chromatin dynamics during transcriptional activation stimulated by GA signaling.
Collapse
Affiliation(s)
- Junjie Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Qi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Wentao Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Xinran Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Chen Chu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Xintian Tang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Bo Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Dao‐Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Institute of Plant Science Paris‐Saclay (IPS2), CNRS, INRAEUniversity Paris‐SaclayOrsayFrance
| |
Collapse
|
33
|
Perotti MF, Posé D, Martín-Pizarro C. Non-climacteric fruit development and ripening regulation: 'the phytohormones show'. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6237-6253. [PMID: 37449770 PMCID: PMC10627154 DOI: 10.1093/jxb/erad271] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Fruit ripening involves numerous physiological, structural, and metabolic changes that result in the formation of edible fruits. This process is controlled at different molecular levels, with essential roles for phytohormones, transcription factors, and epigenetic modifications. Fleshy fruits are classified as either climacteric or non-climacteric species. Climacteric fruits are characterized by a burst in respiration and ethylene production at the onset of ripening, while regulation of non-climacteric fruit ripening has been commonly attributed to abscisic acid (ABA). However, there is controversy as to whether mechanisms regulating fruit ripening are shared between non-climacteric species, and to what extent other hormones contribute alongside ABA. In this review, we summarize classic and recent studies on the accumulation profile and role of ABA and other important hormones in the regulation of non-climacteric fruit development and ripening, as well as their crosstalk, paying special attention to the two main non-climacteric plant models, strawberry and grape. We highlight both the common and different roles of these regulators in these two crops, and discuss the importance of the transcriptional and environmental regulation of fruit ripening, as well as the need to optimize genetic transformation methodologies to facilitate gene functional analyses.
Collapse
Affiliation(s)
- María Florencia Perotti
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - David Posé
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Carmen Martín-Pizarro
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| |
Collapse
|
34
|
Li H, Xie J, Gao Y, Wang X, Qin L, Ju W, Roberts JA, Cheng B, Zhang X, Lu X. IQ domain-containing protein ZmIQD27 modulates water transport in maize. PLANT PHYSIOLOGY 2023; 193:1834-1848. [PMID: 37403650 DOI: 10.1093/plphys/kiad390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023]
Abstract
Plant metaxylem vessels provide physical support to promote upright growth and the transport of water and nutrients. A detailed characterization of the molecular network controlling metaxylem development is lacking. However, knowledge of the events that regulate metaxylem development could contribute to the development of germplasm with improved yield. In this paper, we screened an EMS-induced B73 mutant library, which covers 92% of maize (Zea mays) genes, to identify drought-sensitive phenotypes. Three mutants were identified, named iqd27-1, iqd27-2, and iqd27-3, and genetic crosses showed that they were allelic to each other. The causal gene in these 3 mutants encodes the IQ domain-containing protein ZmIQD27. Our study showed that defective metaxylem vessel development likely causes the drought sensitivity and abnormal water transport phenotypes in the iqd27 mutants. ZmIQD27 was expressed in the root meristematic zone where secondary cell wall deposition is initiated, and loss-of-function iqd27 mutants exhibited a microtubular arrangement disorder. We propose that association of functional ZmIQD27 with microtubules is essential for correct targeted deposition of the building blocks for secondary cell wall development in maize.
Collapse
Affiliation(s)
- Haiyan Li
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Jun Xie
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Yongmeng Gao
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Xuemei Wang
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Li Qin
- Institute of Advanced Agricultural Technology, Qilu Normal University, Jinan 250200, China
| | - Wei Ju
- Nanbei Agriculture Technology Co., Ltd., Harbin 150000, China
| | - Jeremy A Roberts
- Faculty of Science and Engineering, School of Biological & Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiaoduo Lu
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei 230036, China
- Institute of Advanced Agricultural Technology, Qilu Normal University, Jinan 250200, China
- Lab of Molecular Breeding by Design in Maize Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| |
Collapse
|
35
|
Li S, Cao Y, Wang C, Yan C, Sun X, Zhang L, Wang W, Song S. Genome-wide association mapping for yield-related traits in soybean (Glycine max) under well-watered and drought-stressed conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1265574. [PMID: 37877078 PMCID: PMC10593458 DOI: 10.3389/fpls.2023.1265574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023]
Abstract
Soybean (Glycine max) productivity is significantly reduced by drought stress. Breeders are aiming to improve soybean grain yields both under well-watered (WW) and drought-stressed (DS) conditions, however, little is known about the genetic architecture of yield-related traits. Here, a panel of 188 soybean germplasm was used in a genome wide association study (GWAS) to identify single nucleotide polymorphism (SNP) markers linked to yield-related traits including pod number per plant (PN), biomass per plant (BM) and seed weight per plant (SW). The SLAF-seq genotyping was conducted on the population and three phenotype traits were examined in WW and DS conditions in four environments. Based on best linear unbiased prediction (BLUP) data and individual environmental analyses, 39 SNPs were significantly associated with three soybean traits under two conditions, which were tagged to 26 genomic regions by linkage disequilibrium (LD) analysis. Of these, six QTLs qPN-WW19.1, qPN-DS8.8, qBM-WW1, qBM-DS17.4, qSW-WW4 and qSW-DS8 were identified controlling PN, BM and SW of soybean. There were larger proportions of favorable haplotypes for locus qPN-WW19.1 and qSW-WW4 rather than qBM-WW1, qBM-DS17.4, qPN-DS8.8 and qSW-DS8 in both landraces and improved cultivars. In addition, several putative candidate genes such as Glyma.19G211300, Glyma.17G057100 and Glyma.04G124800, encoding E3 ubiquitin-protein ligase BAH1, WRKY transcription factor 11 and protein zinc induced facilitator-like 1, respectively, were predicted. We propose that the further exploration of these locus will facilitate accelerating breeding for high-yield soybean cultivars.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenbin Wang
- Institute of Crop Research, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Shuhong Song
- Institute of Crop Research, Liaoning Academy of Agricultural Sciences, Shenyang, China
| |
Collapse
|
36
|
Oh J, Choi JW, Jang S, Kim SW, Heo JO, Yoon EK, Kim SH, Lim J. Transcriptional control of hydrogen peroxide homeostasis regulates ground tissue patterning in the Arabidopsis root. FRONTIERS IN PLANT SCIENCE 2023; 14:1242211. [PMID: 37670865 PMCID: PMC10475948 DOI: 10.3389/fpls.2023.1242211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023]
Abstract
In multicellular organisms, including higher plants, asymmetric cell divisions (ACDs) play a crucial role in generating distinct cell types. The Arabidopsis root ground tissue initially has two layers: endodermis (inside) and cortex (outside). In the mature root, the endodermis undergoes additional ACDs to produce the endodermis itself and the middle cortex (MC), located between the endodermis and the pre-existing cortex. In the Arabidopsis root, gibberellic acid (GA) deficiency and hydrogen peroxide (H2O2) precociously induced more frequent ACDs in the endodermis for MC formation. Thus, these findings suggest that GA and H2O2 play roles in regulating the timing and extent of MC formation. However, details of the molecular interaction between GA signaling and H2O2 homeostasis remain elusive. In this study, we identified the PEROXIDASE 34 (PRX34) gene, which encodes a class III peroxidase, as a molecular link to elucidate the interconnected regulatory network involved in H2O2- and GA-mediated MC formation. Under normal conditions, prx34 showed a reduced frequency of MC formation, whereas the occurrence of MC in prx34 was restored to nearly WT levels in the presence of H2O2. Our results suggest that PRX34 plays a role in H2O2-mediated MC production. Furthermore, we provide evidence that SCARECROW-LIKE 3 (SCL3) regulates H2O2 homeostasis by controlling transcription of PRX34 during root ground tissue maturation. Taken together, our findings provide new insights into how H2O2 homeostasis is achieved by SCL3 to ensure correct radial tissue patterning in the Arabidopsis root.
Collapse
Affiliation(s)
- Jiyeong Oh
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Ji Won Choi
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Sejeong Jang
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Seung Woo Kim
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jung-Ok Heo
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Eun Kyung Yoon
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Soo-Hwan Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Jun Lim
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Huang X, Tian H, Park J, Oh DH, Hu J, Zentella R, Qiao H, Dassanayake M, Sun TP. The master growth regulator DELLA binding to histone H2A is essential for DELLA-mediated global transcription regulation. NATURE PLANTS 2023; 9:1291-1305. [PMID: 37537399 PMCID: PMC10681320 DOI: 10.1038/s41477-023-01477-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
The DELLA genes, also known as 'Green Revolution' genes, encode conserved master growth regulators that control plant development in response to internal and environmental cues. Functioning as nuclear-localized transcription regulators, DELLAs modulate expression of target genes via direct protein-protein interaction of their carboxy-terminal GRAS domain with hundreds of transcription factors (TFs) and epigenetic regulators. However, the molecular mechanism of DELLA-mediated transcription reprogramming remains unclear. Here by characterizing new missense alleles of an Arabidopsis DELLA, repressor of ga1-3 (RGA), and co-immunoprecipitation assays, we show that RGA binds histone H2A via the PFYRE subdomain within its GRAS domain to form a TF-RGA-H2A complex at the target chromatin. Chromatin immunoprecipitation followed by sequencing analysis further shows that this activity is essential for RGA association with its target chromatin globally. Our results indicate that, although DELLAs are recruited to target promoters by binding to TFs via the LHR1 subdomain, DELLA-H2A interaction via the PFYRE subdomain is necessary to stabilize the TF-DELLA-H2A complex at the target chromatin. This study provides insights into the two distinct key modular functions in DELLA for its genome-wide transcription regulation in plants.
Collapse
Affiliation(s)
- Xu Huang
- Department of Biology, Duke University, Durham, NC, USA
| | - Hao Tian
- Department of Biology, Duke University, Durham, NC, USA
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Jeongmoo Park
- Department of Biology, Duke University, Durham, NC, USA
- Syngenta, Research Triangle Park, Raleigh, NC, USA
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Jianhong Hu
- Department of Biology, Duke University, Durham, NC, USA
| | - Rodolfo Zentella
- Department of Biology, Duke University, Durham, NC, USA
- Agricultural Research Service, Plant Science Research Unit, US Department of Agriculture, Raleigh, NC, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - Hong Qiao
- Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
38
|
Nelson SK, Kanno Y, Seo M, Steber CM. Seed dormancy loss from dry after-ripening is associated with increasing gibberellin hormone levels in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1145414. [PMID: 37275251 PMCID: PMC10232786 DOI: 10.3389/fpls.2023.1145414] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023]
Abstract
Introduction The seeds of many plants are dormant and unable to germinate at maturity, but gain the ability to germinate through after-ripening during dry storage. The hormone abscisic acid (ABA) stimulates seed dormancy, whereas gibberellin A (GA) stimulates dormancy loss and germination. Methods To determine whether dry after-ripening alters the potential to accumulate ABA and GA, hormone levels were measured during an after-ripening time course in dry and imbibing ungerminated seeds of wildtype Landsberg erecta (Ler) and of the highly dormant GA-insensitive mutant sleepy1-2 (sly1-2). Results The elevated sly1-2 dormancy was associated with lower rather than higher ABA levels. Ler germination increased with 2-4 weeks of after-ripening whereas sly1-2 required 21 months to after-ripen. Increasing germination capacity with after-ripening was associated with increasing GA4 levels in imbibing sly1-2 and wild-type Ler seeds. During the same 12 hr imbibition period, after-ripening also resulted in increased ABA levels. Discussion The decreased ABA levels with after-ripening in other studies occurred later in imbibition, just before germination. This suggests a model where GA acts first, stimulating germination before ABA levels decline, and ABA acts as the final checkpoint preventing germination until processes essential to survival, like DNA repair and activation of respiration, are completed. Overexpression of the GA receptor GID1b (GA INSENSITIVE DWARF1b) was associated with increased germination of sly1-2 but decreased germination of wildtype Ler. This reduction of Ler germination was not associated with increased ABA levels. Apparently, GID1b is a positive regulator of germination in one context, but a negative regulator in the other.
Collapse
Affiliation(s)
- Sven K. Nelson
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Plant and Data Science, Heliponix, LLC, Evansville, IN, United States
| | - Yuri Kanno
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Camille M. Steber
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, Pullman, WA, United States
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
| |
Collapse
|
39
|
Lei L, Pan H, Hu HY, Fan XW, Wu ZB, Li YZ. Characterization of ZmPMP3g function in drought tolerance of maize. Sci Rep 2023; 13:7375. [PMID: 37147346 PMCID: PMC10163268 DOI: 10.1038/s41598-023-32989-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/05/2023] [Indexed: 05/07/2023] Open
Abstract
The genes enconding proteins containing plasma membrane proteolipid 3 (PMP3) domain are responsive to abiotic stresses, but their functions in maize drought tolerance remain largely unknown. In this study, the transgenic maize lines overexpressing maize ZmPMP3g gene were featured by enhanced drought tolerance; increases in total root length, activities of superoxide dismutase and catalase, and leaf water content; and decreases in leaf water potential, levels of O2-·and H2O2, and malondialdehyde content under drought. Under treatments with foliar spraying with abscisic acid (ABA), drought tolerance of both transgenic line Y7-1 overexpressing ZmPMP3g and wild type Ye478 was enhanced, of which Y7-1 showed an increased endogenous ABA and decreased endogenous gibberellin (GA) 1 (significantly) and GA3 (very slightly but not significantly) and Ye478 had a relatively lower ABA and no changes in GA1 and GA3. ZmPMP3g overexpression in Y7-1 affected the expression of multiple key transcription factor genes in ABA-dependent and -independent drought signaling pathways. These results indicate that ZmPMP3g overexpression plays a role in maize drought tolerance by harmonizing ABA-GA1-GA3 homeostasis/balance, improving root growth, enhancing antioxidant capacity, maintaining membrane lipid integrity, and regulating intracellular osmotic pressure. A working model on ABA-GA-ZmPMP3g was proposed and discussed.
Collapse
Affiliation(s)
- Ling Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Hong Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Hai-Yang Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Zhen-Bo Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|
40
|
Fan X, Zou X, Fu L, Yang Y, Li M, Wang C, Sun H. The RING-H2 gene LdXERICO plays a negative role in dormancy release regulated by low temperature in Lilium davidii var. unicolor. HORTICULTURE RESEARCH 2023; 10:uhad030. [PMID: 37799625 PMCID: PMC10548414 DOI: 10.1093/hr/uhad030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/14/2023] [Indexed: 10/07/2023]
Abstract
Dormancy regulation is the basis of the sustainable development of the lily industry. Therefore, basic research on lily dormancy is crucial for innovation in lily cultivation and breeding. Previous studies revealed that dormancy release largely depends on abscisic acid (ABA) degradation. However, the key genes and potential regulatory network remain unclear. We used exogenous ABA and ABA inhibitors to elucidate the effect of ABA on lily dormancy. Based on the results of weighted gene coexpression network analysis (WGCNA), the hub gene LdXERICO was identified in modules highly related to endogenous ABA, and a large number of coexpressed genes were identified. LdXERICO was induced by exogenous ABA and expressed at higher levels in tissues with vigorous physiological activity. Silencing LdXERICO increased the low-temperature sensitivity of bulblets and accelerated bulblet sprouting. LdXERICO rescued the ABA insensitivity of xerico mutants during seed germination in Arabidopsis, suggesting that it promotes seed dormancy and supporting overexpression studies on lily bulblets. The significant increase in ABA levels in transgenic Arabidopsis expressing LdXERICO indicated that LdXERICO played a role by promoting ABA synthesis. We generated three transgenic lines by overexpressing LdICE1 in Arabidopsis thaliana and showed that, in contrast to LdXERICO, LdICE1 positively regulated dormancy release. Finally, qRT-PCR confirmed that LdXERICO was epistatic to LdICE1 for dormancy release. We propose that LdXERICO, an essential gene in dormancy regulation through the ABA-related pathway, has a complex regulatory network involving temperature signals. This study provides a theoretical basis for further exploring the mechanism of bulb dormancy release.
Collapse
Affiliation(s)
- Xinyue Fan
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoman Zou
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Linlan Fu
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Yang
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Min Li
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Chunxia Wang
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, China
| |
Collapse
|
41
|
Han J, Wang X, Niu S. Genome-Wide Identification of 2-Oxoglutarate and Fe (II)-Dependent Dioxygenase (2ODD-C) Family Genes and Expression Profiles under Different Abiotic Stresses in Camellia sinensis (L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1302. [PMID: 36986990 PMCID: PMC10051519 DOI: 10.3390/plants12061302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 06/19/2023]
Abstract
The 2-oxoglutarate and Fe (II)-dependent dioxygenase (2ODD-C) family of 2-oxoglutarate-dependent dioxygenases potentially participates in the biosynthesis of various metabolites under various abiotic stresses. However, there is scarce information on the expression profiles and roles of 2ODD-C genes in Camellia sinensis. We identified 153 Cs2ODD-C genes from C. sinensis, and they were distributed unevenly on 15 chromosomes. According to the phylogenetic tree topology, these genes were divided into 21 groups distinguished by conserved motifs and an intron/exon structure. Gene-duplication analyses revealed that 75 Cs2ODD-C genes were expanded and retained after WGD/segmental and tandem duplications. The expression profiles of Cs2ODD-C genes were explored under methyl jasmonate (MeJA), polyethylene glycol (PEG), and salt (NaCl) stress treatments. The expression analysis showed that 14, 13, and 49 Cs2ODD-C genes displayed the same expression pattern under MeJA and PEG treatments, MeJA and NaCl treatments, and PEG and NaCl treatments, respectively. A further analysis showed that two genes, Cs2ODD-C36 and Cs2ODD-C21, were significantly upregulated and downregulated after MeJA, PEG, and NaCl treatments, indicating that these two genes played positive and negative roles in enhancing the multi-stress tolerance. These results provide candidate genes for the use of genetic engineering technology to modify plants by enhancing multi-stress tolerance to promote phytoremediation efficiency.
Collapse
|
42
|
Fu J, Li L, Wang S, Yu N, Shan H, Shi Z, Li F, Zhong X. Effect of gibberellic acid on photosynthesis and oxidative stress response in maize under weak light conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1128780. [PMID: 36875610 PMCID: PMC9978513 DOI: 10.3389/fpls.2023.1128780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Gibberellin (GA) is an important endogenous hormone involved in plant responses to abiotic stresses. Experiments were conducted at the Research and Education Center of Agronomy, Shenyang Agricultural University (Shenyang, China) in 2021.We used a pair of near-isogenic inbred maize lines comprising, SN98A (light-sensitive inbred line) and SN98B (light-insensitive inbred line) to study the effects of exogenous gibberellin A3 (GA3) application on different light-sensitive inbred lines under weak light conditions. The concentration of GA3 was selected as 20, 40 and 60 mg L-1. After shade treatment, the photosynthetic physiological indexes of SN98A were always lower than SN98B, and the net photosynthetic rate of SN98A was 10.12% lower than SN98B on the 20th day after shade treatment. GA3 treatments significantly reduced the barren stalk ratios in SN98A and improved its seed setting rates by increasing the net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), photosynthetic pigment contents, photochemical efficiency of photosystem II (PS II) (Fv/Fm), photochemical quenching coefficient (qP), effective quantum yield of PSII photochemistry (ΦPSII), and antioxidant enzyme activities, where the most effective treatment was 60 mg L-1GA3. Compared with CK group, the seed setting rate increased by 33.87%. GA3 treatment also regulated the metabolism of reactive oxygen species (ROS) and reduced the superoxide anion ( O 2 - ) production rate, H2O2 content, and malondialdehyde content. The superoxide anion ( O 2 - ) production rate, H2O2 content and malondialdehyde content of SN98A sprayed with 60 mg L-1 GA3 decreased by 17.32%,10.44% and 50.33% compared with CK group, respectively. Compared with the control, GA3 treatment significantly (P < 0.05) increased the expression levels of APX and GR in SN98A, and APX, Fe-SOD, and GR in SN98B. Weak light stress decreased the expression of GA20ox2, which was related to gibberellin synthesis, and the endogenous gibberellin synthesis of SN98A. Weak light stress accelerated leaf senescence, and exogenous GA3 application inhibited the ROS levels in the leaves and maintained normal physiological functions in the leaves. These results indicate that exogenous GA3 enhances the adaptability of plants to low light stress by regulating photosynthesis, ROS metabolism and protection mechanisms, as well as the expression of key genes, which may be an economical and environmentally friendly method to solve the low light stress problem in maize production.
Collapse
Affiliation(s)
- Jianjun Fu
- Special Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Linlin Li
- Special Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Shuang Wang
- Special Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Na Yu
- Special Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Hong Shan
- Liaoning Dongya Seed Co., Ltd., Shenyang, China
| | - Zhensheng Shi
- Special Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Fenghai Li
- Special Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Xuemei Zhong
- Special Corn Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
43
|
Valero-Rubira I, Castillo AM, Burrell MÁ, Vallés MP. Microspore embryogenesis induction by mannitol and TSA results in a complex regulation of epigenetic dynamics and gene expression in bread wheat. FRONTIERS IN PLANT SCIENCE 2023; 13:1058421. [PMID: 36699843 PMCID: PMC9868772 DOI: 10.3389/fpls.2022.1058421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Reprogramming of microspores development towards embryogenesis mediated by stress treatment constitutes the basis of doubled haploid production. Recently, compounds that alter histone post-translational modifications (PTMs) have been reported to enhance microspore embryogenesis (ME), by altering histones acetylation or methylation. However, epigenetic mechanisms underlying ME induction efficiency are poorly understood. In this study, the epigenetic dynamics and the expression of genes associated with histone PTMs and ME induction were studied in two bread wheat cultivars with different ME response. Microspores isolated at 0, 3 and 5 days, treated with 0.7M mannitol (MAN) and 0.7M mannitol plus 0.4µM trichostatin A (TSA), which induced ME more efficiently, were analyzed. An additional control of gametophytic development was included. Microspores epigenetic state at the onset of ME induction was distinctive between cultivars by the ratio of H3 variants and their acetylated forms, the localization and percentage of labeled microspores with H3K9ac, H4K5ac, H4K16ac, H3K9me2 and H3K27me3, and the expression of genes related to pollen development. These results indicated that microspores of the high responding cultivar could be at a less advanced stage in pollen development. MAN and TSA resulted in a hyperacetylation of H3.2, with a greater effect of TSA. Histone PTMs were differentially affected by both treatments, with acetylation being most concerned. The effect of TSA was observed in the H4K5ac localization pattern at 3dT in the mid-low responding cultivar. Three gene networks linked to ME response were identified. TaHDT1, TaHAG2, TaYAO, TaNFD6-A, TabZIPF1 and TaAGO802-B, associated with pollen development, were down-regulated. TaHDA15, TaHAG3, TaHAM, TaYUC11D, Ta-2B-LBD16 TaMS1 and TaDRM3 constituted a network implicated in morphological changes by auxin signaling and cell wall modification up-regulated at 3dT. The last network included TaHDA18, TaHAC1, TaHAC4, TaABI5, TaATG18fD, TaSDG1a-7A and was related to ABA and ethylene hormone signaling pathways, DNA methylation and autophagy processes, reaching the highest expression at 5dT. The results indicated that TSA mainly modified the regulation of genes related to pollen and auxin signaling. This study represents a breakthrough in identifying the epigenetic dynamics and the molecular mechanisms governing ME induction efficiency, with relevance to recalcitrant wheat genotypes and other crops.
Collapse
Affiliation(s)
- Isabel Valero-Rubira
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| | - Ana María Castillo
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| | - María Ángela Burrell
- Departamento de Patología, Anatomía y Fisiología, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | - Maria Pilar Vallés
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| |
Collapse
|
44
|
Li J, Bai Y, Xie Y, Gao J. Ultrastructure change and transcriptome analysis of GA3 treatment on seed germination of moso bamboo( Phyllostachys edulis). PLANT SIGNALING & BEHAVIOR 2022; 17:2091305. [PMID: 35796326 PMCID: PMC9272834 DOI: 10.1080/15592324.2022.2091305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Exploring the mechanism of Gibberellic acid (GA3) treatment on seed germination of moso bamboo can lay a foundation for its future breeding and research. In this study, the germination-related indicators (germination rate, germination potential, vigor index, respiration rate) with different content of GA3 treatment were measured, and the ultrastructure of moso bamboo seeds treated with low and high GA3 concentrations was observed during the germination process. In addition, the transcriptome data of the germination seeds, with and without GA3 treatment were analyzed. The results showed that the low GA3 concentration (10 mol/L) increased the germination rate, germination potential, vigor index and respiration rate, thus promoting the germination of moso bamboo seeds, but a high concentration of GA3 (50 mol/L) inhibited the seed germination. The low GA3 concentration accelerated the decomposition of starch and fat and promoted the vacuole formation of cells, but the high GA3 concentration damaged organelles and increased the endocytosis of cells. Compared with untreated moso bamboo seeds, the seeds had fewer genes expressed after GA3 treatment. Starch and carbon metabolism play a very important role in seed development and embryo viability, whether the seed is treated with GA3 or not. After hormone treatment, GID1 and DELLA-related genes homologous to rice genes is not expressed, but the expression of PIF4, PIF5, GA3ox2, GA2oxs, etc., were up-regulated.
Collapse
Affiliation(s)
- Juan Li
- Gene Science and Gene Industrialization Institution, International center for Bamboo and Rattan, Beijing, China
| | - Yucong Bai
- Gene Science and Gene Industrialization Institution, International center for Bamboo and Rattan, Beijing, China
| | - Yali Xie
- Gene Science and Gene Industrialization Institution, International center for Bamboo and Rattan, Beijing, China
| | - Jian Gao
- Gene Science and Gene Industrialization Institution, International center for Bamboo and Rattan, Beijing, China
| |
Collapse
|
45
|
Tian S, Wan Y, Jiang D, Gong M, Lin J, Xia M, Shi C, Xing H, Li HL. Genome-Wide Identification, Characterization, and Expression Analysis of GRAS Gene Family in Ginger ( Zingiber officinale Roscoe). Genes (Basel) 2022; 14:96. [PMID: 36672837 PMCID: PMC9859583 DOI: 10.3390/genes14010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
GRAS family proteins are one of the most abundant transcription factors in plants; they play crucial roles in plant development, metabolism, and biotic- and abiotic-stress responses. The GRAS family has been identified and functionally characterized in some plant species. However, this family in ginger (Zingiber officinale Roscoe), a medicinal crop and non-prescription drug, remains unknown to date. In the present study, 66 GRAS genes were identified by searching the complete genome sequence of ginger. The GRAS family is divided into nine subfamilies based on the phylogenetic analyses. The GRAS genes are distributed unevenly across 11 chromosomes. By analyzing the gene structure and motif distribution of GRAS members in ginger, we found that the GRAS genes have more than one cis-acting element. Chromosomal location and duplication analysis indicated that whole-genome duplication, tandem duplication, and segmental duplication may be responsible for the expansion of the GRAS family in ginger. The expression levels of GRAS family genes are different in ginger roots and stems, indicating that these genes may have an impact on ginger development. In addition, the GRAS genes in ginger showed extensive expression patterns under different abiotic stresses, suggesting that they may play important roles in the stress response. Our study provides a comprehensive analysis of GRAS members in ginger for the first time, which will help to better explore the function of GRAS genes in the regulation of tissue development and response to stress in ginger.
Collapse
Affiliation(s)
- Shuming Tian
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing 402168, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China
| | - Yuepeng Wan
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing 402168, China
| | - Dongzhu Jiang
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing 402168, China
| | - Min Gong
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing 402168, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China
| | - Junyao Lin
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing 402168, China
| | - Maoqin Xia
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing 402168, China
| | - Cuiping Shi
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing 402168, China
| | - Haitao Xing
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Hong-Lei Li
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing 402168, China
| |
Collapse
|
46
|
Liu C, Bai L, Cao P, Li S, Huang SX, Wang J, Li L, Zhang J, Zhao J, Song J, Sun P, Zhang Y, Zhang H, Guo X, Yang X, Tan X, Liu W, Wang X, Xiang W. Novel Plant Growth Regulator Guvermectin from Plant Growth-Promoting Rhizobacteria Boosts Biomass and Grain Yield in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16229-16240. [PMID: 36515163 DOI: 10.1021/acs.jafc.2c07072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Food is a fundamental human right, and global food security is threatened by crop production. Plant growth regulators (PGRs) play an essential role in improving crop yield and quality, and this study reports on a novel PGR, termed guvermectin (GV), isolated from plant growth-promoting rhizobacteria, which can promote root and coleoptile growth, tillering, and early maturing in rice. GV is a nucleoside analogue like cytokinin (CK), but it was found that GV significantly promoted root and hypocotyl growth, which is different from the function of CK in Arabidopsis. The Arabidopsis CK receptor triple mutant ahk2-2 ahk3-3 cre1-12 still showed a GV response. Moreover, GV led different growth-promoting traits from auxin, gibberellin (GA), and brassinosteroid (BR) in Arabidopsis and rice. The results from a four-year field trial involving 28 rice varieties showed that seed-soaking treatment with GV increased the yields by 6.2 to 19.6%, outperforming the 4.0 to 10.8% for CK, 1.6 to 16.9% for BR, and 2.2 to 7.1% for GA-auxin-BR mixture. Transcriptome analysis demonstrated that GV induced different transcriptome patterns from CK, auxin, BR, and GA, and SAUR genes may regulate GV-mediated plant growth and development. This study suggests that GV represents a novel PGR with a unique signal perception and transduction pathway in plants.
Collapse
Affiliation(s)
- Chongxi Liu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Lu Bai
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Peng Cao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jidong Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Lei Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ji Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Jia Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Peng Sun
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiaowei Guo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xilang Yang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xinqiu Tan
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
47
|
Plitsi PK, Samakovli D, Roka L, Rampou A, Panagiotopoulos K, Koudounas K, Isaioglou I, Haralampidis K, Rigas S, Hatzopoulos P, Milioni D. GA-Mediated Disruption of RGA/BZR1 Complex Requires HSP90 to Promote Hypocotyl Elongation. Int J Mol Sci 2022; 24:ijms24010088. [PMID: 36613530 PMCID: PMC9820706 DOI: 10.3390/ijms24010088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Circuitries of signaling pathways integrate distinct hormonal and environmental signals, and influence development in plants. While a crosstalk between brassinosteroid (BR) and gibberellin (GA) signaling pathways has recently been established, little is known about other components engaged in the integration of the two pathways. Here, we provide supporting evidence for the role of HSP90 (HEAT SHOCK PROTEIN 90) in regulating the interplay of the GA and BR signaling pathways to control hypocotyl elongation of etiolated seedlings in Arabidopsis. Both pharmacological and genetic depletion of HSP90 alter the expression of GA biosynthesis and catabolism genes. Major components of the GA pathway, like RGA (REPRESSOR of ga1-3) and GAI (GA-INSENSITIVE) DELLA proteins, have been identified as physically interacting with HSP90. Interestingly, GA-promoted DELLA degradation depends on the ATPase activity of HSP90, and inhibition of HSP90 function stabilizes the DELLA/BZR1 (BRASSINAZOLE-RESISTANT 1) complex, modifying the expression of downstream transcriptional targets. Our results collectively reveal that HSP90, through physical interactions with DELLA proteins and BZR1, modulates DELLA abundance and regulates the expression of BZR1-dependent transcriptional targets to promote plant growth.
Collapse
Affiliation(s)
| | - Despina Samakovli
- Biotechnology Department, Agricultural University of Athens, 11855 Athens, Greece
| | - Loukia Roka
- Biotechnology Department, Agricultural University of Athens, 11855 Athens, Greece
| | - Aggeliki Rampou
- Biotechnology Department, Agricultural University of Athens, 11855 Athens, Greece
- Laboratory of Virology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 14561 Athens, Greece
| | | | | | - Ioannis Isaioglou
- Biology Department, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Kosmas Haralampidis
- Biology Department, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Stamatis Rigas
- Biotechnology Department, Agricultural University of Athens, 11855 Athens, Greece
| | - Polydefkis Hatzopoulos
- Biotechnology Department, Agricultural University of Athens, 11855 Athens, Greece
- Correspondence: (P.H.); (D.M.); Tel.: +30-210-5294321 (P.H.); +30-210-5294348 (D.M.)
| | - Dimitra Milioni
- Biotechnology Department, Agricultural University of Athens, 11855 Athens, Greece
- Correspondence: (P.H.); (D.M.); Tel.: +30-210-5294321 (P.H.); +30-210-5294348 (D.M.)
| |
Collapse
|
48
|
Ma M, Liu S, Wang Z, Shao R, Ye J, Yan W, Lv H, Hasi A, Che G. Genome-Wide Identification of the SUN Gene Family in Melon ( Cucumis melo) and Functional Characterization of Two CmSUN Genes in Regulating Fruit Shape Variation. Int J Mol Sci 2022; 23:16047. [PMID: 36555689 PMCID: PMC9785357 DOI: 10.3390/ijms232416047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Melon (Cucumis melo) is an important economic crop cultivated worldwide. A unique SUN gene family plays a crucial role in regulating plant growth and fruit development, but many SUN family genes and their function have not been well-characterized in melon. In the present study, we performed genome-wide identification and bioinformatics analysis and identified 24 CmSUN family genes that contain integrated and conserved IQ67 domain in the melon genome. Transcriptome data analysis and qRT-PCR results showed that most CmSUNs are specifically enriched in melon reproductive organs, such as young flowers and ovaries. Through genetic transformation in melons, we found that overexpression of CmSUN23-24 and CmSUN25-26-27c led to an increased fruit shape index, suggesting that they act as essential regulators in melon fruit shape variation. Subcellular localization revealed that the CmSUN23-24 protein is located in the cytoplasmic membrane. A direct interaction between CmSUN23-24 and a Calmodulin protein CmCaM5 was found by yeast two-hybrid assay, which indicated their participation in the calcium signal transduction pathway in regulating plant growth. These findings revealed the molecular characteristics, expression profile, and functional pattern of the CmSUN genes, and may provide the theoretical basis for the genetic improvement of melon fruit breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Agula Hasi
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Gen Che
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
49
|
Hauvermale AL, Cárdenas JJ, Bednarek SY, Steber CM. GA signaling expands: The plant UBX domain-containing protein 1 is a binding partner for the GA receptor. PLANT PHYSIOLOGY 2022; 190:2651-2670. [PMID: 36149293 PMCID: PMC9706445 DOI: 10.1093/plphys/kiac406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/19/2022] [Indexed: 06/07/2023]
Abstract
The plant Ubiquitin Regulatory X (UBX) domain-containing protein 1 (PUX1) functions as a negative regulator of gibberellin (GA) signaling. GAs are plant hormones that stimulate seed germination, the transition to flowering, and cell elongation and division. Loss of Arabidopsis (Arabidopsis thaliana) PUX1 resulted in a "GA-overdose" phenotype including early flowering, increased stem and root elongation, and partial resistance to the GA-biosynthesis inhibitor paclobutrazol during seed germination and root elongation. Furthermore, GA application failed to stimulate further stem elongation or flowering onset suggesting that elongation and flowering response to GA had reached its maximum. GA hormone partially repressed PUX1 protein accumulation, and PUX1 showed a GA-independent interaction with the GA receptor GA-INSENSITIVE DWARF-1 (GID1). This suggests that PUX1 is GA regulated and/or regulates elements of the GA signaling pathway. Consistent with PUX1 function as a negative regulator of GA signaling, the pux1 mutant caused increased GID1 expression and decreased accumulation of the DELLA REPRESSOR OF GA1-3, RGA. PUX1 is a negative regulator of the hexameric AAA+ ATPase CDC48, a protein that functions in diverse cellular processes including unfolding proteins in preparation for proteasomal degradation, cell division, and expansion. PUX1 binding to GID1 required the UBX domain, a binding motif necessary for CDC48 interaction. Moreover, PUX1 overexpression in cell culture not only stimulated the disassembly of CDC48 hexamer but also resulted in co-fractionation of GID1, PUX1, and CDC48 subunits in velocity sedimentation assays. Based on our results, we propose that PUX1 and CDC48 are additional factors that need to be incorporated into our understanding of GA signaling.
Collapse
Affiliation(s)
- Amber L Hauvermale
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
- Molecular Plant Sciences, Washington State University, Pullman, Washington, USA
| | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
50
|
Guo X, Zhou M, Chen J, Shao M, Zou L, Ying Y, Liu S. Genome-Wide Identification of the Highly Conserved INDETERMINATE DOMAIN ( IDD) Zinc Finger Gene Family in Moso Bamboo ( Phyllostachys edulis). Int J Mol Sci 2022; 23:ijms232213952. [PMID: 36430436 PMCID: PMC9695771 DOI: 10.3390/ijms232213952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
INDETERMINATE DOMAIN (IDD) proteins, a family of transcription factors unique to plants, function in multiple developmental processes. Although the IDD gene family has been identified in many plants, little is known about it in moso bamboo. In this present study, we identified 32 PheIDD family genes in moso bamboo and randomly sequenced the full-length open reading frames (ORFs) of ten PheIDDs. All PheIDDs shared a highly conserved IDD domain that contained two canonical C2H2-ZFs, two C2HC-ZFs, and a nuclear localization signal. Collinearity analysis showed that segmental duplication events played an important role in expansion of the PheIDD gene family. Synteny analysis indicated that 30 PheIDD genes were orthologous to those of rice (Oryza sativa). Thirty PheIDDs were expressed at low levels, and most PheIDDs exhibited characteristic organ-specific expression patterns. Despite their diverse expression patterns in response to exogenous plant hormones, 8 and 22 PheIDDs responded rapidly to IAA and 6-BA treatments, respectively. The expression levels of 23 PheIDDs were closely related to the outgrowth of aboveground branches and 20 PheIDDs were closely related to the awakening of underground dormant buds. In addition, we found that the PheIDD21 gene generated two products by alternative splicing. Both isoforms interacted with PheDELLA and PheSCL3. Furthermore, both isoforms could bind to the cis-elements of three genes (PH02Gene17121, PH02Gene35441, PH02Gene11386). Taken together, our work provides valuable information for studying the molecular breeding mechanism of lateral organ development in moso bamboo.
Collapse
|