1
|
Li N, Li J, Xie J, Rui W, Pu K, Gao Y, Wang T, Zhang M. Glycine betaine and plant abiotic stresses: Unravelling physiological and molecular responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112479. [PMID: 40132665 DOI: 10.1016/j.plantsci.2025.112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Plants are constantly subjected to various abiotic stresses (drought, salinity, heavy metals and low temperature) throughout their life cycle, which significantly hinder their growth and productivity. Key abiotic stresses include drought, salinity, heavy metals, and extreme temperatures. In response, plants modulate glycine betaine (GB) levels, a vital compatible solute that influences growth and stress tolerance by interacting with phytohormones and cellular signaling pathways. Not all species can synthesize endogenous GB; however, some non-GB accumulating plants have been genetically modified to enhance GB production through the overexpression of synthesis genes such as choline oxidase, choline monooxygenase, and betaine aldehyde dehydrogenase. Exogenous GB treatment can mitigate stress effects by improving nutritional balance, reducing reactive oxygen species (ROS), minimizing membrane damage, and alleviating photoinhibition. Nonetheless, the specificity of GB application, transport, and accumulation across species, as well as its interaction with phytohormones in stress alleviation, remains uncertain. This review focuses on GB's role as an antioxidant, osmo-regulator, and nitrogen source, evaluating the physiological, biochemical, and molecular mechanisms by which GB mitigates abiotic stresses, aiming to develop GB-based strategies for enhancing plant stress resilience.
Collapse
Affiliation(s)
- Nenghui Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China.
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China.
| | - Wenjing Rui
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Kaiguo Pu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Yanqiang Gao
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Tiantian Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Miao Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| |
Collapse
|
2
|
Li J, Zhong T, Xu R, Chang Z, Meng Y, Rong C, Shi X, Ding Y, Ding C. NAM and CUC3 boundary genes maintain shoot apical meristem viability and suppress the development of axillary shoot in rice seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70170. [PMID: 40265975 DOI: 10.1111/tpj.70170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
Cell division and differentiation within the shoot apical meristem (SAM) are essential for the morphogenesis of aboveground plant organs. This study reveals that the boundary genes OsNAM and OsCUC3 collaboratively maintain SAM activity. Loss of function in both OsNAM and OsCUC3 during the fourth leaf stage reduced SAM size, with the osnam oscuc3 mutant exhibiting abnormal leaf number and morphology. Furthermore, OsNAM and OsCUC3 inhibited the growth of axillary shoots. In the osnam oscuc3 mutant, the number of new leaves decreased, while buds in the coleoptile and the axil of the first leaf developed into tillers. Since OsNAM and OsCUC3 are involved in regulating both SAM activity and the growth of lateral shoots, we examined their expression patterns at the base of the main shoot. β-Glucuronidase (GUS) reporter activity and GFP reporter lines demonstrated that OsNAM and OsCUC3 have distinct expression patterns. Specifically, OsNAM was expressed throughout the SAM, whereas OsCUC3 was expressed only at the base of the SAM, with its expression gradually decreasing as seedlings develop. RNA sequencing analysis showed that the expression of genes related to leaf epidermal cell development, cell wall components, and hormonal signal transduction was altered in response to the loss of function of OsNAM and OsCUC3. Therefore, the boundary genes OsNAM and OsCUC3 not only inhibit the growth of axillary shoots but also regulate the development of aboveground organs, including leaf morphology and number, by maintaining the SAM activity in the main shoot.
Collapse
Affiliation(s)
- Jieru Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tianhui Zhong
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ruihan Xu
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhongyuan Chang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yayi Meng
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chenyu Rong
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
| | - Xi'an Shi
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, 210095, People's Republic of China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, 210095, People's Republic of China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, 210095, People's Republic of China
| |
Collapse
|
3
|
Jiang M, Li J, Huang Y, Tao B, Wu L, Chen J, Zhao L, Yi B, Ma C, Tu J, Shen J, Fu T, Wen J. Mapping and molecular marker development for the BnaSBT gene controlling inflorescence and plant architectures in B. napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:45. [PMID: 40247998 PMCID: PMC12000495 DOI: 10.1007/s11032-025-01556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/15/2025] [Indexed: 04/19/2025]
Abstract
Exploring the molecular mechanism underlying plant architecture and breeding new varieties suitable for mechanized harvesting are primary objectives for rapeseed breeders in China. However, few genes controlling plant architecture have been cloned in Brassica napus. In this study, SX3, a scattered-bud B. napus line with a dwarf and compact plant architecture, was characterized. To identify the genes underlying bud arrangement, plant height and branch angle, segregating populations were constructed by crossing SX3 with two clustered-bud lines with a tall and loose plant architecture. Genetic analysis revealed that the scattered-bud trait (SBT) was controlled by a single dominant gene, BnaSBT. BnaSBT is likely a pleiotropic gene that simultaneously controls plant height and branch angle. Using BSA-seq analysis, BnaSBT was mapped to a 4.15 Mb region on ChrA10. Owing to the lack of recombinants within this region, it was infeasible to finely map BnaSBT. RNA-seq analysis of BC2 plants with contrasting inflorescence and plant architectures revealed that the upregulation of genes involved in amino acid and lipid metabolism and genes encoding MADS-box transcription factors is related to the the phenotype of SX3. These findings together with comparative sequencing indicated that BnaA10.SEP1, BnaA10.AGL15, BnaA10.GLN1-4 and BnaA10.AGP15 are candidate genes for BnaSBT. Markers closely linked to the scattered-bud trait were developed for selecting dwarf and compact plants. These findings provide molecular markers and germplasms for breeding new varieties with ideal plant types and lay a theoretical foundation for cloning key genes and elucidating the genetic basis of inflorescence and plant architectures in B. napus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-025-01556-2.
Collapse
Affiliation(s)
- Meng Jiang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jingming Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yingying Huang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Baolong Tao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lumei Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Junlin Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
4
|
Ma X, Wang J, Zhang H, Yao L, Si E, Li B, Meng Y, Wang H. Genetic Basis of Seedling Root Traits in Common Wheat ( Triticum aestivum L.) Identified by Genome-Wide Linkage Mapping. PLANTS (BASEL, SWITZERLAND) 2025; 14:490. [PMID: 39943052 PMCID: PMC11820154 DOI: 10.3390/plants14030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
Common wheat production is significantly influenced by abiotic stresses. Identifying the genetic loci for seedling root traits and developing the available molecular markers are crucial for breeding high yielding and stable varieties. In this study, five wheat seedling root traits, including root length (RL), root surface area (RA), root volume (RV), number of root tips (RT), and root dry weight (RW), were measured in the Wp-072/Wp-119 recombinant inbred line (RIL) population. Genotyping was conducted for the RIL population and their parents using the wheat 90K single-nucleotide polymorphism (SNP) chip. In total, three quantitative trait loci (QTLs) for RL (QRL.gau-1DS, QRL.gau-1DL and QRL.gau-4AL), two QTLs for RA (QRA.gau-1D and QRA.gau-2DL), one locus for RV (QRV.gau-6AS), two loci for RW (QRW.gau-2DL and QRW.gau-2AS), and two loci for RT (QRT.gau-3AS and QRT.gau-6DL) were identified, with each explaining 4.5-8.4% of the phenotypic variances, respectively. Among these, QRT.gau-3AS, QRL.gau-4AL, and QRV.gau-6AS overlapped with the previous reports, whereas the other seven QTLs were novel. The favorable alleles of QRL.gau-1DS, QRL.gau-1DL, QRL.gau-4AL, QRA.gau-1D, QRW.gau-2AS, QRV.gau-6AS, QRT.gau-3AS, and QRT.gau-6DL were contributed by Wp-072, whereas the other two loci originated from Wp-119. Additionally, five kompetitive allele-specific PCR (KASP) markers, KASP-RL-1DL for RL, KASP-RA-1D and KASP-RA-2DL for RA, KASP-RW-2AS and KASP-RW-2DL for RW, were developed and validated successfully in 149 wheat accessions. Furthermore, seven candidate genes mainly for plant hormones were selected and validated by quantitative real-time PCR (qRT-PCR). This study provides new loci, new candidate genes, available KASP markers, and varieties for optimizing wheat root system architecture.
Collapse
Affiliation(s)
- Xiaole Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Juncheng Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Hong Zhang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Lirong Yao
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Erjing Si
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Baochun Li
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Yaxiong Meng
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| | - Huajun Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (J.W.); (H.Z.); (L.Y.); (E.S.); (Y.M.)
- State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China;
| |
Collapse
|
5
|
Nguyen CD, Lu C, Chen Y, Lee H, Lo S, Wei A, Ho TD, Yu S. Mitochondrial AOX1a and an H 2O 2 feed-forward signalling loop regulate flooding tolerance in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:395-411. [PMID: 39533537 PMCID: PMC11772311 DOI: 10.1111/pbi.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/17/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Flooding is a widespread natural disaster that causes tremendous yield losses of global food production. Rice is the only cereal capable of growing in aquatic environments. Direct seeding by which seedlings grow underwater is an important cultivation method for reducing rice production cost. Hypoxic germination tolerance and root growth in waterlogged soil are key traits for rice adaptability to flooded environments. Alternative oxidase (AOX) is a non-ATP-producing terminal oxidase in the plant mitochondrial electron transport chain, but its role in hypoxia tolerance had been unclear. We have discovered that AOX1a is necessary and sufficient to promote germination/coleoptile elongation and root development in rice under flooding/hypoxia. Hypoxia enhances endogenous H2O2 accumulation, and H2O2 in turn activates an ensemble of regulatory genes including AOX1a to facilitate the conversion of deleterious reactive oxygen species to H2O2 in rice under hypoxia. We show that AOX1a and H2O2 act interdependently to coordinate three key downstream events, that is, glycolysis/fermentation for minimal ATP production, root aerenchyma development and lateral root emergence under hypoxia. Moreover, we reveal that ectopic AOX1a expression promotes vigorous root and plant growth, and increases grain yield under regular irrigation conditions. Our discoveries provide new insights into a unique sensor-second messenger pair in which AOX1a acts as the sensor perceiving low oxygen tension, while H2O2 accumulation serves as the second messenger triggering downstream root development in rice against hypoxia stress. This work also reveals AOX1a genetic manipulation and H2O2 pretreatment as potential targets for improving flooding tolerance in rice and other crops.
Collapse
Affiliation(s)
- Cong Danh Nguyen
- Molecular and Cell Biology, Taiwan International Graduate ProgramAcademia Sinica, and Graduate Institute of Life Science, National Defense Medical CenterTaipeiTaiwan, ROC
- Institute of Molecular Biology, Academia Sinica, NankangTaipeiTaiwan, ROC
| | - Chun‐Hsien Lu
- Institute of Molecular Biology, Academia Sinica, NankangTaipeiTaiwan, ROC
- Genome and Systems Biology Degree ProgramNational Taiwan University and Academia SinicaTaipeiTaiwan, ROC
| | - Yi‐Shih Chen
- Institute of Molecular Biology, Academia Sinica, NankangTaipeiTaiwan, ROC
| | - Hsiang‐Ting Lee
- Institute of Molecular Biology, Academia Sinica, NankangTaipeiTaiwan, ROC
| | - Shuen‐Fang Lo
- International Doctoral Program of AgricusinessNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - An‐Chi Wei
- Department of Electrical Engineering and GraduateInstitute of Biomedical Electronics and Bioinformatics, National Taiwan UniversityTaipeiTaiwan, ROC
| | - Tuan‐Hua David Ho
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan, ROC
| | - Su‐May Yu
- Molecular and Cell Biology, Taiwan International Graduate ProgramAcademia Sinica, and Graduate Institute of Life Science, National Defense Medical CenterTaipeiTaiwan, ROC
- Institute of Molecular Biology, Academia Sinica, NankangTaipeiTaiwan, ROC
- Genome and Systems Biology Degree ProgramNational Taiwan University and Academia SinicaTaipeiTaiwan, ROC
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
| |
Collapse
|
6
|
Guo H, Gao S, Li H, Yang J, Li J, Gu Y, Lou Q, Su R, Ye W, Zou A, Wang Y, Sun X, Zhang Z, Zhang H, Zeng Y, Yuan P, Peng Y, Li Z, Li J. Natural variation of CTB5 confers cold adaptation in plateau japonica rice. Nat Commun 2025; 16:1032. [PMID: 39863601 PMCID: PMC11763261 DOI: 10.1038/s41467-025-56174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5KM allele to improve cold tolerance. CTB5 interacts with OsHox12 and targets gibberellin (GA) metabolism genes to promote GAs accumulation in anthers and facilitate tapetum development under cold stress. Moreover, CTB5 directly regulates PYL9 and improves cold tolerance at the seedling stage by reducing reactive oxygen species (ROS) accumulation. The CTB5KM allele is selected during the cold acclimation of japonica rice to plateau habitats in Yunnan Province. Our findings provide insights into the mechanisms underlying cold adaptation in plateau japonica rice and offer potential targets for breeding cold-tolerant rice varieties.
Collapse
Affiliation(s)
- Haifeng Guo
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shilei Gao
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Huahui Li
- Institute of Food Crop Research, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jiazhen Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jin Li
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yunsong Gu
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qijin Lou
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Runbin Su
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wei Ye
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Andong Zou
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yulong Wang
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xingming Sun
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhanying Zhang
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hongliang Zhang
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yawen Zeng
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Pingrong Yuan
- Institute of Food Crop Research, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Youliang Peng
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zichao Li
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| | - Jinjie Li
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Lorenzo CD. Small but mighty: OsKANADI1 and OsYABBY5 regulate plant stature by tuning GA metabolism in rice. THE PLANT CELL 2024; 37:koae274. [PMID: 39417582 DOI: 10.1093/plcell/koae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Christian Damian Lorenzo
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Center for Plant Systems Biology, VIB, Gent B-9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|
8
|
He Q, Wu H, Zeng L, Yin C, Wang L, Tan Y, Lv W, Liao Z, Zheng X, Zhang S, Han Q, Wang D, Zhang Y, Xiong G, Wang Q. OsKANADI1 and OsYABBY5 regulate rice plant height by targeting GIBERELLIN 2-OXIDASE6. THE PLANT CELL 2024; 37:koae276. [PMID: 39383255 DOI: 10.1093/plcell/koae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Plant height is an important agronomic characteristic of rice (Oryza sativa L.). Map-based cloning analyses of a natural semi-dwarf rice mutant with inwardly curled leaves found in the field revealed that the defects were due to a mutation of a SHAQKYF-class MYB family transcription factor, OsKANADI1 (OsKAN1). OsKAN1 directly bound to the OsYABBY5 (OsYAB5) promoter to repress its expression and interacted with OsYAB5 to form a functional OsKAN1-OsYAB5 complex. GIBERELLIN 2-OXIDASE6 (OsGA2ox6), encoding an enzyme in the gibberellin (GA) catabolic pathway, was activated by OsYAB5. Furthermore, the OsKAN1-OsYAB5 complex suppressed the inhibitory effect of OsKAN1 toward OsYAB5 and inhibited OsYAB5-induced OsGA2ox6 expression. The proOsKAN1:OsYAB5 transgenic plants were taller than wild-type plants, whereas oskan1 proOsKAN1:OsYAB5 plants exhibited a severe dwarf phenotype due to the absence of the OsKAN1-OsYAB5 complex. The OsKAN1-OsYAB5 complex modulated OsGA2ox6 expression, thereby regulating the levels of bioactive gibberellins and, consequently, plant height. This study elucidated the mechanism underlying the effect of the OsKAN1-OsYAB5-OsGA2ox6 regulatory pathway on plant height at different positions in rice stems and provided insights on stem development and candidate genes for the aerial architecture improvement of crop plants.
Collapse
Affiliation(s)
- Qi He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hao Wu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Longjun Zeng
- Institute of Crop Sciences, Yichun Academy of Science, Yichun 336000, China
| | - Caiyun Yin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Li Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yiqing Tan
- Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanqing Lv
- Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiqiang Liao
- Institute of Crop Sciences, Yichun Academy of Science, Yichun 336000, China
| | - Xuelian Zheng
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shuting Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qinqin Han
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Danning Wang
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yong Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guosheng Xiong
- Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Quan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
9
|
He H, Xu J, Cai N, Xu Y. Analysis of the molecular mechanism endogenous hormone regulating axillary bud development in Pinus yunnanensis. BMC PLANT BIOLOGY 2024; 24:1219. [PMID: 39701992 DOI: 10.1186/s12870-024-05819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND P. yunnanensis, a distinctive economic tree species native to Yunnan Province in China, possesses axillary buds that serve as superior material for asexual propagation. However, under natural growth conditions, the differentiation of these axillary buds is notably scarce. In this study, we employed decapitation to stimulate the development of axillary buds in P. yunnanensis. Subsequently, we assessed the phytohormone levels in both axillary and apical buds, and conducted a comprehensive transcriptomic analysis complemented by RT-qPCR validation. RESULTS We found that decapitation could effectively promote the releases of the axillary buds in P. yunnanensis. The levels of cytokinin, auxin, gibberellin and abscisic acid in axillary buds were higher than those in apical buds, and the difference in gibberellin levels was the greatest. The transcriptome sequencing results were highly reproducible, and the relative expression levels of the 13 genes screened were highly consistent with the FPKM value trend of transcriptome sequencing. There were 2877 differentially expressed genes (DEGs) between axillary buds and terminal buds, and 18 candidate genes (CGs) involved in axillary bud release were screened out. A total of 1171 DEGs were identified during the analysis of axillary bud growth, and 14 CGs involved in axillary bud growth and development were screened out. GO and KEGG enrichment analysis were performed on the DEGs. Furthermore, combined with the results and discussion, the functions of the candidate genes were analyzed and a possible regulatory network was constructed. CONCLUSION The findings and discussions indicated that the development of axillary buds in P. yunnanensis is predominantly governed by cytokinin, gibberellin, strigolactone, and auxin, as well as their biosynthesis and regulatory genes, which are crucial to the development of these buds. This study has, to some extent, bridged the research gap concerning the development of axillary buds in P. yunnanensis and has provided foundational data to support further research into the developmental mechanisms of these buds and the establishment of asexual propagation cutting nurseries.
Collapse
Affiliation(s)
- Haihao He
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China
- Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan Province, China
| | - Junfei Xu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China
- Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan Province, China
| | - Nianhui Cai
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China.
- Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan Province, China.
| | - Yulan Xu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China.
- Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan Province, China.
| |
Collapse
|
10
|
Li X, Xie Z, Qin T, Zhan C, Jin L, Huang J. The SLR1-OsMADS23-D14 module mediates the crosstalk between strigolactone and gibberellin signaling to control rice tillering. THE NEW PHYTOLOGIST 2024. [PMID: 39639554 DOI: 10.1111/nph.20331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Strigolactones (SLs) and gibberellins (GAs) have been found to inhibit plant branching or tillering, but molecular mechanisms underlying the interplay between SL and GA signaling to modulate tillering remain elusive. We found that the transcription factor OsMADS23 plays a crucial role in the crosslink between SL and GA signaling in rice tillering. Loss-of-function mutant osmads23 shows normal axillary bud formation but defective bud outgrowth, thus reducing the tiller number in rice, whereas overexpression of OsMADS23 significantly increases tillering by promoting tiller bud outgrowth. OsMADS23 physically interacts with DELLA protein SLENDER RICE1 (SLR1), and the interaction reciprocally stabilizes each other. Genetic evidence showed that SLR1 is required for OsMADS23 to control rice tillering. OsMADS23 acts as an upstream transcriptional repressor to inhibit the expression of SL receptor gene DWARF14 (D14), and addition of SLR1 further enhances OsMADS23-mediated transcriptional repression of D14, indicating that D14 is the downstream target gene of OsMADS23-SLR1 complex. Moreover, application of exogenous SL and GA reduces the protein stability of OsMADS23-SLR1 complex and promotes D14 expression. Our results revealed that SLs and GAs synergistically inhibit rice tillering by destabilizing OsMADS23-SLR1 complex, which provides important insights into the molecular networks of SL-GA synergistic interaction during rice tillering.
Collapse
Affiliation(s)
- Xingxing Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Tian Qin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Chenghang Zhan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
11
|
Cheng J, Jia Y, Hill C, He T, Wang K, Guo G, Shabala S, Zhou M, Han Y, Li C. Diversity of Gibberellin 2-oxidase genes in the barley genome offers opportunities for genetic improvement. J Adv Res 2024; 66:105-118. [PMID: 38199453 PMCID: PMC11674783 DOI: 10.1016/j.jare.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Gibberellin (GA) is a vital phytohormone in regulating plant growth and development. During the "Green Revolution", modification of GA-related genes created semi-dwarfing phenotype in cereal crops but adversely affected grain weight. Gibberellin 2-oxidases (GA2oxs) in barley act as key catabolic enzymes in deactivating GA, but their functions are still less known. OBJECTIVES This study investigates the physiological function of two HvGA2ox genes in barley and identifies novel semi-dwarf alleles with minimum impacts on other agronomic traits. METHODS Virus-induced gene silencing and CRISPR/Cas9 technology were used to manipulate gene expression of HvGA2ox9 and HvGA2ox8a in barley and RNA-seq was conducted to compare the transcriptome between wild type and mutants. Also, field trials in multiple environments were performed to detect the functional haplotypes. RESULTS There were ten GA2oxs that distinctly expressed in shoot, tiller, inflorescence, grain, embryo and root. Knockdown of HvGA2ox9 did not affect plant height, while ga2ox8a mutants generated by CRISPR/Cas9 increased plant height and significantly altered seed width and weight due to the increased bioactive GA4 level. RNA-seq analysis revealed that genes involved in starch and sucrose metabolism were significantly decreased in the inflorescence of ga2ox8a mutants. Furthermore, haplotype analysis revealed one naturally occurring HvGA2ox8a haplotype was associated with decreased plant height, early flowering and wider and heavier seed. CONCLUSION Our results demonstrate the potential of manipulating GA2ox genes to fine tune GA signalling and biofunctions in desired plant tissues and open a promising avenue for minimising the trade-off effects of Green Revolution semi-dwarfing genes on grain size and weight. The knowledge will promote the development of next generation barley cultivars with better adaptation to a changing climate.
Collapse
Affiliation(s)
- Jingye Cheng
- Tasmanian Institute of Agriculture, University of Tasmania, TAS, Australia; Western Crop Genetics Alliance, Food Futures Institute, School of Agriculture, Murdoch University, WA, Australia; Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Jia
- Western Crop Genetics Alliance, Food Futures Institute, School of Agriculture, Murdoch University, WA, Australia; Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Camilla Hill
- Western Crop Genetics Alliance, Food Futures Institute, School of Agriculture, Murdoch University, WA, Australia
| | - Tianhua He
- Western Crop Genetics Alliance, Food Futures Institute, School of Agriculture, Murdoch University, WA, Australia
| | - Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ganggang Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, TAS, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, TAS, Australia.
| | - Yong Han
- Western Crop Genetics Alliance, Food Futures Institute, School of Agriculture, Murdoch University, WA, Australia; Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia.
| | - Chengdao Li
- Western Crop Genetics Alliance, Food Futures Institute, School of Agriculture, Murdoch University, WA, Australia; Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia.
| |
Collapse
|
12
|
Yang T, Ma X, Zhang Q, Li L, Zhu R, Zeng A, Liu W, Liu H, Wang Y, Han S, Khan NU, Li J, Li Z, Zhang Z, Zhang H. Natural variation in the Tn1a promoter regulates tillering in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3345-3360. [PMID: 39189440 PMCID: PMC11606419 DOI: 10.1111/pbi.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/29/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Rice tillering is an important agronomic trait that influences plant architecture and ultimately affects yield. This can be genetically improved by mining favourable variations in genes associated with tillering. Based on a previous study on dynamic tiller number, we cloned the gene Tiller number 1a (Tn1a), which encodes a membrane-localised protein containing the C2 domain that negatively regulates tillering in rice. A 272 bp insertion/deletion at 387 bp upstream of the start codon in the Tn1a promoter confers a differential transcriptional response and results in a change in tiller number. Moreover, the TCP family transcription factors Tb2 and TCP21 repress the Tn1a promoter activity by binding to the TCP recognition site within the 272 bp indel. In addition, we identified that Tn1a may affect the intracellular K+ content by interacting with a cation-chloride cotransporter (OsCCC1), thereby affecting the expression of downstream tillering-related genes. The Tn1a+272 bp allele, associated with high tillering, might have been preferably preserved in rice varieties in potassium-poor regions during domestication. The discovery of Tn1a is of great significance for further elucidating the genetic basis of tillering characteristics in rice and provides a new and favourable allele for promoting the geographic adaptation of rice to soil potassium.
Collapse
Affiliation(s)
- Tao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Xiaoqian Ma
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
- College of Agriculture, Henan University of Science and TechnologyLuoyangChina
| | - Quan Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Lin Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Rui Zhu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - An Zeng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Wanying Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Haixia Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Yulong Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Shichen Han
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Najeeb Ullah Khan
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Jinjie Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Zichao Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Zhanying Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Hongliang Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
- Sanya Nanfan Research Institute of Hainan UniversitySanyaChina
| |
Collapse
|
13
|
Deng Y, Wang P, Bai W, Chen Z, Cheng Z, Su L, Chen X, Bi Y, Feng R, Liu Z. Fine mapping and functional validation of the candidate gene BhGA2ox3 for fruit pedicel length in wax gourd (Benincasa hispida). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:272. [PMID: 39557649 DOI: 10.1007/s00122-024-04781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024]
Abstract
KEY MESSAGE The gene regulating fruit pedicel length in wax gourd was finely mapped to a 211 kb region on chromosome 8. The major gene, Bch08G017310 (BhGA2ox3), was identified through forward genetics. Fruit pedicel length (FPL) is a crucial trait in wax gourd (Benincasa hispida) that affects fruit development and cultivation management. However, the key regulatory genes and mechanisms of FPL in wax gourds remain poorly understood. In this study, we constructed an F2 population using wax gourd plants with long fruit pedicels (GF-7-1-1) and short fruit pedicels (YSB-1-1-2) as parents. Through BSA-seq, we initially localised the FPL candidate gene to an 8.4 Mb region on chromosome 8, which was further narrowed down to a 1.1 Mb region via linkage analysis. A large F2 population of 2163 individuals was used to screen for recombinants, and the locus was ultimately narrowed to within a 211 kb (62,299,856-62,511,174 bp) region. Sequence and expression analyses showed that Bch08G017310 (named BhGA2ox3) is a strong candidate gene for FPL in wax gourds. It encodes gibberellin (GA) 2-beta-dioxygenase, a member of the GA 2-oxidase (GA2ox) family. Cytology showed that GA treatment significantly elongated the fruit pedicels and enlarged the cells in the plants with short fruit pedicels. Ectopic expression of BhGA2ox3 showed that BhGA2ox3 overexpression in Arabidopsis thaliana resulted in significantly shorter fruit pedicels. This study lays a theoretical foundation for the regulatory mechanism of FPL in wax gourds and molecular breeding.
Collapse
Affiliation(s)
- Yan Deng
- College of Agricultural, Guangxi University, Nanning, 530004, Guangxi, China
| | - Peng Wang
- College of Agricultural, Guangxi University, Nanning, 530004, Guangxi, China
| | - Wenhui Bai
- College of Agricultural, Guangxi University, Nanning, 530004, Guangxi, China
| | - Zhihao Chen
- College of Agricultural, Guangxi University, Nanning, 530004, Guangxi, China
| | - Zhikui Cheng
- College of Agricultural, Guangxi University, Nanning, 530004, Guangxi, China
| | - Liwen Su
- College of Agricultural, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xianglei Chen
- College of Agricultural, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yeshun Bi
- College of Agricultural, Guangxi University, Nanning, 530004, Guangxi, China
| | - Rongjin Feng
- College of Agricultural, Guangxi University, Nanning, 530004, Guangxi, China
| | - Zhengguo Liu
- College of Agricultural, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
14
|
Du X, Zhang Y, Zhang M, Sun Y. Variations in DNA methylation and the role of regulatory factors in rice ( Oryza sativa) response to lunar orbit stressors. FRONTIERS IN PLANT SCIENCE 2024; 15:1427578. [PMID: 39610890 PMCID: PMC11603183 DOI: 10.3389/fpls.2024.1427578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Deep space flight imposes higher levels of damage on biological organisms; however, its specific effects on rice remain unclear. To investigate the variations in DNA methylation under deep space flight conditions, this study examined rice seeds carried by Chang'e-5. After 23 days of lunar orbital flight, the samples were planted in an artificial climate chamber and subjected to transcriptome and DNA methylation sequencing during the tillering and heading stages. The methylation patterns in the rice genome exhibited variability in response to lunar orbital stressors. DNA methylation alters the expression and interaction patterns of functional genes, involving biological processes such as metabolism and defense. Furthermore, we employed single-sample analysis methods to assess the gene expression and interaction patterns of different rice individuals. The genes exhibiting changes at the transcriptional and methylation levels varied among the different plants; however, these genes regulate consistent biological functions, primarily emphasizing metabolic processes. Finally, through single-sample analysis, we identified a set of miRNAs induced by lunar orbital stressors that potentially target DNA methylation regulatory factors. The findings of this study broaden the understanding of space biological effects and lay a foundation for further exploration of the mechanisms by which deep space flight impacts plants.
Collapse
Affiliation(s)
| | | | | | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and
Engineering, Dalian Maritime University, Dalian, China
| |
Collapse
|
15
|
Zhang Y, Zhang J, Huang G, Tan Y, Ning L, Li M, Mo Y. Over Expression of Mango MiGA2ox12 in Tobacco Reduced Plant Height by Reducing GA 1 and GA 4 Content. Int J Mol Sci 2024; 25:12109. [PMID: 39596175 PMCID: PMC11594832 DOI: 10.3390/ijms252212109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The regulation of gibberellic acid 2-oxidase (GA2ox) gene expression represents a critical mechanism in the modulation of endogenous gibberellic acids (GAs) levels, thereby exerting an influence on plant height. In this context, we conducted a comprehensive genome-wide analysis of the GA2ox gene family in mango (Mangifera indica L.), a species of significant economic importance, with the aim of identifying potential candidate genes for mango dwarf breeding. Our findings delineated the presence of at least 14 members within the MiGA2ox gene family in the mango genome, which were further categorized into three subfamilies: C19-GA2ox-I, C19-GA2ox-II, and C20-GA2ox-I. Notably, MiGA2ox12, a member of the C19-GA2ox-II subfamily, exhibited substantial expression across various tissues, including roots, bark, leaves, and flowers. Through overexpression of the MiGA2ox12 gene in tobacco, a distinct dwarf phenotype was observed alongside reduced levels of GA1 and GA4, while the knockout line exhibited contrasting traits. This provides evidence suggesting that MiGA2ox12 may exert control over plant height by modulating GA content. Consequently, the MiGA2ox12 gene emerges as a promising candidate for facilitating advancements in mango dwarfing techniques.
Collapse
Affiliation(s)
- Yu Zhang
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| | - Ji Zhang
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| | - Guodi Huang
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| | - Yiwei Tan
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| | - Lei Ning
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| | - Mu Li
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| | - Yonglong Mo
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China; (G.H.); (Y.T.); (L.N.); (M.L.); (Y.M.)
- Guangxi Zhuang Autonomous Region Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001, China
| |
Collapse
|
16
|
Yan Y, Zhu X, Qi H, Wang Y, Zhang H, He J. Rice seed storability: From molecular mechanisms to agricultural practices. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112215. [PMID: 39151802 DOI: 10.1016/j.plantsci.2024.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The storability of rice seeds is crucial for ensuring flexible planting options, agricultural seed security, and global food safety. With the intensification of global climate change and the constant fluctuations in agricultural production conditions, enhancing the storability of rice seeds has become particularly important. Seed storability is a complex quantitative trait regulated by both genetic and environmental factors. This article reviews the main regulatory mechanisms of rice seed storability, including the accumulation of seed storage proteins, late embryogenesis abundant (LEA) proteins, heat shock proteins, sugar signaling, hormonal regulation by gibberellins and abscisic acid, and the role of the ubiquitination pathway. Additionally, this article explores the improvement of storability using wild rice genes, molecular marker-assisted selection, and gene editing techniques such as CRISPR/Cas9 in rice breeding. By providing a comprehensive scientific foundation and practical guidance, this review aims to promote the development of rice varieties with enhanced storability to meet evolving agricultural demands.
Collapse
Affiliation(s)
- Yuntao Yan
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Xiaoya Zhu
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Hui Qi
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China; Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yan Wang
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Haiqing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Jiwai He
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China.
| |
Collapse
|
17
|
Zhang J, Zhang Y, Chen J, Xu M, Guan X, Wu C, Zhang S, Qu H, Chu J, Xu Y, Gu M, Liu Y, Xu G. Sugar transporter modulates nitrogen-determined tillering and yield formation in rice. Nat Commun 2024; 15:9233. [PMID: 39455567 PMCID: PMC11512014 DOI: 10.1038/s41467-024-53651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Nitrogen (N) fertilizer application ensures crop production and food security worldwide. N-controlled boosting of shoot branching that is also referred as tillering can improve planting density for increasing grain yield of cereals. Here, we report that Sugar Transporter Protein 28 (OsSTP28) as a key regulator of N-responsive tillering and yield formation in rice. N supply inhibits the expression of OsSTP28, resulting in glucose accumulation in the apoplast of tiller buds, which in turn suppresses the expression of a transcriptional inhibitor ORYZA SATIVA HOMEOBOX 15 (OSH15) via an epigenetic mechanism to activate gibberellin 2-oxidases (GA2oxs)-facilitated gibberellin catabolism in shoot base. Thereby, OsSTP28-OSH15-GA2oxs module reduces the level of bioactive gibberellin in shoot base upon increased N supply, and consequently promotes tillering and grain yield. Moreover, we identify an elite allele of OsSTP28 that can effectively promote N-responsive tillering and yield formation, thus representing a valuable breeding target of N use efficiency improvement for agricultural sustainability.
Collapse
Affiliation(s)
- Jinfei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyi Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingguang Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Mengfan Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cui Wu
- College of Life Sciences, Nanjing Agriculture University, Nanjing, 210095, China
| | - Shunan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifeng Xu
- College of Life Sciences, Nanjing Agriculture University, Nanjing, 210095, China
| | - Mian Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Guohua Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
Du S, Wang M, Liang J, Pan W, Sang Q, Ma Y, Jin M, Zhang M, Zhang X, Du Y. Histological, Transcriptomic, and Functional Analyses Reveal the Role of Gibberellin in Bulbil Development in Lilium lancifolium. PLANTS (BASEL, SWITZERLAND) 2024; 13:2965. [PMID: 39519884 PMCID: PMC11547782 DOI: 10.3390/plants13212965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Lily bulbils, advantageous axillary organs used for asexual reproduction, have an underexplored developmental mechanism. Gibberellins are known to participate in bulbil development, but the regulatory mechanisms remain unclear. In this study, exogenous gibberellin (GA3) significantly increased the bulbil length, width, and weight by raising the endogenous gibberellin levels and elongating the scale cells. Transcriptomic analysis identified LlGA20ox2, a key gibberellin biosynthesis gene, which was upregulated during bulbil development and significantly responsive to GA3 treatment. Given the similarities in bulbil and bulblet development, we determined the roles of LlGA20ox2 using a bulblet system. Silencing LlGA20ox2 in bulblets inhibited development by reducing the cell length, while overexpression increased the bulblet length and width. In the gibberellin signaling pathway, we identified two key genes, LlGID1C and LlCIGR2. Silencing these genes resulted in phenotypes similar to LlGA20ox2, inhibiting bulblet development. Further transcriptomic analysis revealed that gibberellin-responsive genes were enriched in the glucuronate pathway, pentose phosphate pathway and galactose metabolism pathways. Most of these differentially expressed genes responded to gibberellin and were highly expressed in later stages of bulbil development, suggesting their involvement in gibberellin-regulated bulbil growth. In conclusion, we preliminarily explored the mechanisms of gibberellin regulation in bulbil development, offering significant commercial potential for new lily reproductive organs.
Collapse
Affiliation(s)
- Shanshan Du
- School of Life Sciences, Jilin University, Changchun 130118, China;
| | - Mengdi Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Jiahui Liang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Wenqiang Pan
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Qianzi Sang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
- Agriculture College, Yanbian University, Yanji 133002, China
| | - Yanfang Ma
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Mengzhu Jin
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Mingfang Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Xiuhai Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Yunpeng Du
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| |
Collapse
|
19
|
Tian Z, Chen B, Li H, Pei X, Sun Y, Sun G, Pan Z, Dai P, Gao X, Geng X, Peng Z, Jia Y, Hu D, Wang L, Pang B, Zhang A, Du X, He S. Strigolactone-gibberellin crosstalk mediated by a distant silencer fine-tunes plant height in upland cotton. MOLECULAR PLANT 2024; 17:1539-1557. [PMID: 39169630 DOI: 10.1016/j.molp.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Optimal plant height is crucial in modern agriculture, influencing lodging resistance and facilitating mechanized crop production. Upland cotton (Gossypium hirsutum) is the most important fiber crop globally; however, the genetic basis underlying plant height remains largely unexplored. In this study, we conducted a genome-wide association study to identify a major locus controlling plant height (PH1) in upland cotton. This locus encodes gibberellin 2-oxidase 1A (GhPH1) and features a 1133-bp structural variation (PAVPH1) located approximately 16 kb upstream. The presence or absence of PAVPH1 influences the expression of GhPH1, thereby affecting plant height. Further analysis revealed that a gibberellin-regulating transcription factor (GhGARF) recognizes and binds to a specific CATTTG motif in both the GhPH1 promoter and PAVPH1. This interaction downregulates GhPH1, indicating that PAVPH1 functions as a distant upstream silencer. Intriguingly, we found that DWARF53 (D53), a key repressor of the strigolactone (SL) signaling pathway, directly interacts with GhGARF to inhibit its binding to targets. Moreover, we identified a previously unrecognized gibberellin-SL crosstalk mechanism mediated by the GhD53-GhGARF-GhPH1/PAVPH1 module, which is crucial for regulating plant height in upland cotton. These findings shed light on the genetic basis and gene interaction network underlying plant height, providing valuable insights for the development of semi-dwarf cotton varieties through precise modulation of GhPH1 expression.
Collapse
Affiliation(s)
- Zailong Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Baojun Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongge Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinxin Pei
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yaru Sun
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Gaofei Sun
- School of Computer Science & Information Engineering, Anyang Institute of Technology, Anyang, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Panhong Dai
- School of Computer Science & Information Engineering, Anyang Institute of Technology, Anyang, China
| | - Xu Gao
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou, China
| | - Xiaoli Geng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhen Peng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Daowu Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Liru Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Baoyin Pang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ai Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China.
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
20
|
Deng J, Deng X, Yao H, Ji S, Dong L. Gibberellins Play an Essential Role in the Bud Growth of Petunia hybrida. Curr Issues Mol Biol 2024; 46:9906-9915. [PMID: 39329942 PMCID: PMC11430761 DOI: 10.3390/cimb46090590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
This study delves into the role of gibberellin (GA) in governing plant branch development, a process that remains incompletely understood. Through a combination of exogenous hormone treatment, gene expression analysis, and transgenic phenotype investigations, the impact of GA on petunia's branch development was explored. The results showed that GA3 alone did not directly induce axillary bud germination. However, paclobutrazol (PAC), an inhibitor of GA synthesis, effectively inhibited bud growth. Interestingly, the simultaneous application of GA3 and 6-BA significantly promoted bud growth in both intact and decapitated plants compared to using 6-BA alone. Moreover, this study observed a significant downregulation of GA synthesis genes, including GA20ox1, GA20ox2, GA20ox3, GA3ox1, and CPS1, alongside an upregulation of GA degradation genes such as GA2ox2, GA2ox4, and GA2ox8. The expression of GA signal transduction gene GID1 and GA response factor RGA was found to be upregulated. Notably, the PhGID1 gene, spanning 1029 bp and encoding 342 amino acids, exhibited higher expression in buds and the lowest expression in leaves. The overexpression of PhGID1 in Arabidopsis resulted in a noteworthy rise in the number of branches. This study highlights the crucial role of GA in bud germination and growth and the positive regulatory function of GA signaling in shoot branching processes.
Collapse
Affiliation(s)
| | | | | | | | - Lili Dong
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.D.); (X.D.); (H.Y.); (S.J.)
| |
Collapse
|
21
|
Wu M, Wang Y, Zhang S, Xiang Y. A LBD transcription factor from moso bamboo, PheLBD12, regulates plant height in transgenic rice. PLANT MOLECULAR BIOLOGY 2024; 114:95. [PMID: 39223419 DOI: 10.1007/s11103-024-01487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
The regulation mechanism of bamboo height growth has always been one of the hotspots in developmental biology. In the preliminary work of this project, the function of LBD transcription factor regulating height growth was firstly studied. Here, a gene PheLBD12 regulating height growth was screened. PheLBD12-overexpressing transgenic rice had shorter internodes, less bioactive gibberellic acid (GA3), and were more sensitive to GA3 than wild-type (WT) plants, which implied that PheLBD12 involve in gibberellin (GA) pathway. The transcript levels of OsGA2ox3, that encoding GAs deactivated enzyme, was significantly enhanced in PheLBD12-overexpressing transgenic rice. The transcript levels of OsAP2-39, that directly regulating the expression of EUI1 to reduce GA levels, was also significantly enhanced in PheLBD12-overexpressing transgenic rice. Expectedly, yeast one-hybrid assays, Dual-luciferase reporter assay and EMSAs suggested that PheLBD12 directly interacted with the promoter of OsGA2ox3 and OsAP2-39. Together, our results reveal that PheLBD12 regulates plant height growth by modulating GA catabolism. Through the research of this topic, it enriches the research content of LBD transcription factors and it will theoretically enrich the research content of height growth regulation.
Collapse
Affiliation(s)
- Min Wu
- Anhui Province Key Laboratory of Forest Resource and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Yufang Wang
- Anhui Province Key Laboratory of Forest Resource and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Shunran Zhang
- Anhui Province Key Laboratory of Forest Resource and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Anhui Province Key Laboratory of Forest Resource and Silviculture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
22
|
Yang H, Zhou K, Wu Q, Jia X, Wang H, Yang W, Lin L, Hu X, Pan B, Li P, Huang T, Xu X, Li J, Jiang J, Du M. The tomato WRKY-B transcription factor modulates lateral branching by targeting BLIND, PIN4, and IAA15. HORTICULTURE RESEARCH 2024; 11:uhae193. [PMID: 39257542 PMCID: PMC11384121 DOI: 10.1093/hr/uhae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024]
Abstract
Lateral branching is a crucial agronomic trait that impacts crop yield. In tomato ( Solanum lycopersicum ), excessive lateral branching is unfavorable and results in substantial labor and management costs. Therefore, optimizing lateral branching is a primary objective in tomato breeding. Although many genes related to lateral branching have been reported in tomato, the molecular mechanism underlying their network remains elusive. In this study, we found that the expression profile of a WRKY gene, WRKY-B (for WRKY-BRANCING), was associated with the auxin-dependent axillary bud development process. Wrky-b mutants generated by the CRISPR/Cas9 editing system presented fewer lateral branches, while WRKY-B overexpression lines presented more lateral branches than did wild-type plants. Furthermore, WRKY-B can directly target the well-known branching gene BLIND (BL) and the auxin efflux carrier gene PIN4 to activate their expression. Both the bl and pin4 mutants exhibited reduced lateral branching, similar to the wrky-b mutant. The IAA contents in the axillary buds of the wrky-b, bl, and pin4 mutant plants were significantly higher than those in the wild-type plants. In addition, WRKY-B can also directly target the AUX/IAA gene IAA15 and repress its expression. In summary, WRKY-B works upstream of BL, PIN4, and IAA15 to regulate the development of lateral branches in tomato.
Collapse
Affiliation(s)
- Huanhuan Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Ke Zhou
- College of Horticulture, China Agricultural University, Beijing 100083, China
| | - Qingfei Wu
- College of Life Sciences, Yan'an University, Yan'an 716000, China
| | - Xinyi Jia
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Hexuan Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenhui Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Lihao Lin
- College of Agriculture, Ningxia Universisty, Yinchuan 750002, China
| | - Xiaomeng Hu
- College of Horticulture, China Agricultural University, Beijing 100083, China
| | - Bingqing Pan
- College of Horticulture, China Agricultural University, Beijing 100083, China
| | - Ping Li
- Qingdao Academy of Agricultural Sciences, Qingdao City 266000, China
| | - Tingting Huang
- Qingdao Academy of Agricultural Sciences, Qingdao City 266000, China
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Jingfu Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Jingbin Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Minmin Du
- College of Horticulture, China Agricultural University, Beijing 100083, China
| |
Collapse
|
23
|
Li L, Wonder J, Helming T, van Asselt G, Pantazopoulou CK, van de Kaa Y, Kohlen W, Pierik R, Kajala K. Evaluation of the roles of brassinosteroid, gibberellin and auxin for tomato internode elongation in response to low red:far-red light. PHYSIOLOGIA PLANTARUM 2024; 176:e14558. [PMID: 39360434 DOI: 10.1111/ppl.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
In this study, we explore the interplay between the plant hormones gibberellins (GA), brassinosteroids (BR), and Indole-3-Acetic Acid (IAA) in their collective impact on plant shade avoidance elongation under varying light conditions. We focus particularly on low Red:Far-red (R:FR) light conditions achieved by supplementing the background light with FR. We characterized the tomato internode response to low R:FR and, with RNA-seq analysis, we were able to identify some of the potential regulatory hormonal pathways. Through a series of exogenous pharmacological modulations of GA, IAA, and BR, we demonstrate that GA and BR are sufficient but also necessary for inducing stem elongation under low R:FR light conditions. Intriguingly, while IAA alone shows limited effects, its combination with GA yields significant elongation, suggesting a nuanced hormonal balance. Furthermore, we unveil the complex interplay of these hormones under light with low R:FR, where the suppression of one hormone's effect can be compensated by the others. This study provides insights into the hormonal mechanisms governing plant adaptation to light, highlighting the intricate and adaptable nature of plant growth responses. Our findings have far-reaching implications for agricultural practices, offering potential strategies for optimizing plant growth and productivity in various lighting environments.
Collapse
Affiliation(s)
- Linge Li
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Jesse Wonder
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ticho Helming
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Gijs van Asselt
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Chrysoula K Pantazopoulou
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Yorrit van de Kaa
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Wouter Kohlen
- Laboratory of Cell and Developmental Biology, Cluster Plant Developmental Biology, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Ronald Pierik
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Kaisa Kajala
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
24
|
Cao C, Guo S, Deng P, Yang S, Xu J, Hu T, Hu Z, Chen D, Zhang H, Navea IP, Chin JH, Zhang W, Jing W. The BEL1-like homeodomain protein OsBLH4 regulates rice plant height, grain number, and heading date by repressing the expression of OsGA2ox1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1369-1385. [PMID: 38824648 DOI: 10.1111/tpj.16857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024]
Abstract
Gibberellins (GAs) play crucial roles in regulating plant architecture and grain yield of crops. In rice, the inactivation of endogenous bioactive GAs and their precursors by GA 2-oxidases (GA2oxs) regulates stem elongation and reproductive development. However, the regulatory mechanisms of GA2ox gene expression, especially in rice reproductive organs, are unknown. The BEL1-like homeodomain protein OsBLH4, a negative regulatory factor for the rice OsGA2ox1 gene, was identified in this study. Loss of OsBLH4 function results in decreased bioactive GA levels and pleiotropic phenotypes, including reduced plant height, decreased grain number per panicle, and delayed heading date, as also observed in OsGA2ox1-overexpressing plants. Consistent with the mutant phenotype, OsBLH4 was predominantly expressed in shoots and young spikelets; its encoded protein was exclusively localized in the nucleus. Molecular analysis demonstrated that OsBLH4 directly bound to the promoter region of OsGA2ox1 to repress its expression. Genetic assays revealed that OsBLH4 acts upstream of OsGA2ox1 to control rice plant height, grain number, and heading date. Taken together, these results indicate a crucial role for OsBLH4 in regulating rice plant architecture and yield potential via regulation of bioactive GA levels, and provide a potential strategy for genetic improvements of rice.
Collapse
Affiliation(s)
- Chengjuan Cao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuaiqiang Guo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ping Deng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Xianghu Laboratory, Hangzhou, China
| | - Shiyi Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jing Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tengfei Hu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhijuan Hu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Di Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hongsheng Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ian Paul Navea
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, Korea
| | - Joong Hyoun Chin
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, Korea
| | - Wenhua Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wen Jing
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
25
|
Wei H, Chen J, Lu Z, Zhang X, Liu G, Lian B, Chen Y, Zhong F, Yu C, Zhang J. Crape myrtle LiGAoxs displaying activities of gibberellin oxidases respond to branching architecture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108738. [PMID: 38761544 DOI: 10.1016/j.plaphy.2024.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
In the realm of ornamental horticulture, crape myrtle (Lagerstroemia indica) stands out for its aesthetic appeal, attributed largely to its vibrant flowers and distinctive branching architecture. This study embarked on a comprehensive exploration of the gibberellin oxidase (GAox) gene family in crape myrtle, illuminating its pivotal role in regulating GA levels, a key determinant of plant developmental processes. We identified and characterized 36 LiGAox genes, subdivided into GA2ox, GA3ox, GA20ox, and GAox-like subgroups, through genomic analyses. These genes' evolutionary trajectories were delineated, revealing significant gene expansions attributed to segmental duplication events. Functional analyses highlighted the divergent expression patterns of LiGAox genes across different crape myrtle varieties, associating them with variations in flower color and branching architecture. Enzymatic activity assays on selected LiGA2ox enzymes exhibited pronounced GA2 oxidase activity, suggesting a potential regulatory role in GA biosynthesis. Our findings offered a novel insight into the molecular underpinnings of GA-mediated growth and development in L. indica, providing a foundational framework for future genetic enhancements aimed at optimizing ornamental traits.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Jinxin Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Zixuan Lu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Xingyue Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Bolin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| |
Collapse
|
26
|
Bao R, Zeng C, Li K, Li M, Li Y, Zhou X, Wang H, Wang Y, Huang D, Wang W, Chen X. MeGT2.6 increases cellulose synthesis and active gibberellin content to promote cell enlargement in cassava. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1014-1029. [PMID: 38805573 DOI: 10.1111/tpj.16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
Cassava, a pivotal tropical crop, exhibits rapid growth and possesses a substantial biomass. Its stem is rich in cellulose and serves as a crucial carbohydrate storage organ. The height and strength of stems restrict the mechanised operation and propagation of cassava. In this study, the triple helix transcription factor MeGT2.6 was identified through yeast one-hybrid assay using MeCesA1pro as bait, which is critical for cellulose synthesis. Over-expression and loss-of-function lines were generated, and results revealed that MeGT2.6 could promote a significant increase in the plant height, stem diameter, cell size and thickness of SCW of cassava plant. Specifically, MeGT2.6 upregulated the transcription activity of MeGA20ox1 and downregulated the expression level of MeGA2ox1, thereby enhancing the content of active GA3, resulting in a large cell size, high plant height and long stem diameter in cassava. Moreover, MeGT2.6 upregulated the transcription activity of MeCesA1, which promoted the synthesis of cellulose and hemicellulose and produced a thick secondary cell wall. Finally, MeGT2.6 could help supply additional substrates for the synthesis of cellulose and hemicellulose by upregulating the invertase genes (MeNINV1/6). Thus, MeGT2.6 was found to be a multiple regulator; it was involved in GA metabolism and sucrose decomposition and the synthesis of cellulose and hemicellulose.
Collapse
Affiliation(s)
- Ruxue Bao
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
| | - Changying Zeng
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
| | - Ke Li
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
| | - Mengtao Li
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
| | - Yajun Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, Hainan, China
| | - Xincheng Zhou
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, Hainan, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, Hainan, China
| | - Haiyan Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, Hainan, China
| | - Yajie Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, Hainan, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, Hainan, China
| | - Dongyi Huang
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
| | - Wenquan Wang
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
| | - Xin Chen
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, Hainan, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, Hainan, China
| |
Collapse
|
27
|
Yan R, Zhang T, Wang Y, Wang W, Sharif R, Liu J, Dong Q, Luan H, Zhang X, Li H, Guo S, Qi G, Jia P. The apple MdGA2ox7 modulates the balance between growth and stress tolerance in an anthocyanin-dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108707. [PMID: 38763002 DOI: 10.1016/j.plaphy.2024.108707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
Apple (Malus domestica Borkh.) is a widely cultivated fruit crop worldwide but often suffers from abiotic stresses such as salt and cold. Gibberellic acid (GA) plays a pivotal in controlling plant development, environmental adaptability, and secondary metabolism. The GA2-oxidase (GA2ox) is responsible for the deactivation of bioactive GA. In this study, seventeen GA2-oxidase genes were identified in the apple genome, and these members could be clustered into four clades based on phylogenetic relationships and conserved domain structures. MdGA2ox7 exhibited robust expression across various tissues, responded to cold and salt treatments, and was triggered in apple fruit peels via light-induced anthocyanin accumulation. Subcellular localization prediction and experiments confirmed that MdGA2ox7 was located in the cytoplasm. Overexpression of MdGA2ox7 in Arabidopsis caused a lower level of active GA and led to GA-deficient phenotypes, such as dwarfism and delayed flowering. MdGA2ox7 alleviated cold and salt stress damage in both Arabidopsis and apple in concert with melatonin (MT). Additionally, MdGA2ox7 enhanced anthocyanin biosynthesis in apple calli and activated genes involved in anthocyanin synthesis. These findings provide new insights into the functions of apple GA2ox in regulating development, stress tolerance, and secondary metabolism.
Collapse
Affiliation(s)
- Rui Yan
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Tianle Zhang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Yuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071000, China
| | - Wenxiu Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Jiale Liu
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Qinglong Dong
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Haoan Luan
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Xuemei Zhang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Han Li
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Suping Guo
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Guohui Qi
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China.
| | - Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
28
|
Nguyen DT, Zavadil Kokáš F, Gonin M, Lavarenne J, Colin M, Gantet P, Bergougnoux V. Transcriptional changes during crown-root development and emergence in barley (Hordeum vulgare L.). BMC PLANT BIOLOGY 2024; 24:438. [PMID: 38778283 PMCID: PMC11110440 DOI: 10.1186/s12870-024-05160-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Roots play an important role during plant growth and development, ensuring water and nutrient uptake. Understanding the mechanisms regulating their initiation and development opens doors towards root system architecture engineering. RESULTS Here, we investigated by RNA-seq analysis the changes in gene expression in the barley stem base of 1 day-after-germination (DAG) and 10DAG seedlings when crown roots are formed. We identified 2,333 genes whose expression was lower in the stem base of 10DAG seedlings compared to 1DAG seedlings. Those genes were mostly related to basal cellular activity such as cell cycle organization, protein biosynthesis, chromatin organization, cytoskeleton organization or nucleotide metabolism. In opposite, 2,932 genes showed up-regulation in the stem base of 10DAG seedlings compared to 1DAG seedlings, and their function was related to phytohormone action, solute transport, redox homeostasis, protein modification, secondary metabolism. Our results highlighted genes that are likely involved in the different steps of crown root formation from initiation to primordia differentiation and emergence, and revealed the activation of different hormonal pathways during this process. CONCLUSIONS This whole transcriptomic study is the first study aiming at understanding the molecular mechanisms controlling crown root development in barley. The results shed light on crown root emergence that is likely associated with a strong cell wall modification, death of the cells covering the crown root primordium, and the production of defense molecules that might prevent pathogen infection at the site of root emergence.
Collapse
Affiliation(s)
- Dieu Thu Nguyen
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czechia
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Filip Zavadil Kokáš
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czechia
- Present address: Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Mathieu Gonin
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Jérémy Lavarenne
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Myriam Colin
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Pascal Gantet
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czechia
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Véronique Bergougnoux
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czechia.
| |
Collapse
|
29
|
Ahmad S, Lu C, Gao J, Wei Y, Xie Q, Jin J, Zhu G, Yang F. Integrated proteomic, transcriptomic, and metabolomic profiling reveals that the gibberellin-abscisic acid hub runs flower development in the Chinese orchid Cymbidium sinense. HORTICULTURE RESEARCH 2024; 11:uhae073. [PMID: 38738212 PMCID: PMC11088716 DOI: 10.1093/hr/uhae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/01/2024] [Indexed: 05/14/2024]
Abstract
The seasonal flowering Chinese Cymbidium produce an axillary floral meristem and require a dormancy period during cold conditions for flower development. However, the bud activation mechanism remains elusive. This study evaluates the multi-omics across six stages of flower development, along with functional analysis of core genes to decipher the innate mechanism of floral bud initiation and outgrowth in the Chinese orchid Cymbidium sinense. Transcriptome and proteome analyses identified 10 modules with essential roles in floral bud dormancy and activation. Gene clusters in the early stages of flower development were mainly related to flowering time regulation and meristem determination, while the late stages were correlated with hormone signaling pathways. The metabolome identified 69 potential hormones in which gibberellin (GA) and abscisic acid (ABA) were the main regulatory hubs, and GA4 and GA53 exhibited a reciprocal loop. Extraneous GA application caused rapid elongation of flower buds and promoted the expression of flower development genes. Contrarily, exogenous ABA application extended the dormancy process and ABA inhibitors induced dormancy release. Moreover, CsAPETALA1 (CsAP1) was identified as the potential target of ABA for floral bud activation. Transformation of CsAP1 in Arabidopsis and its transient overexpression in C. sinense protoplasts not only affected flowering time and floral organ morphogenesis in Arabidopsis but also orchestrated the expression of flowering and hormone regulatory genes. The presence of ABA response elements in the CsAP1 promoter, rapid downregulation of CsAP1 after exogenous ABA application, and the activation of the floral bud after ABA inhibitor treatment suggest that ABA can control bud outgrowth through CsAP1.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qi Xie
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianpeng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| |
Collapse
|
30
|
Zhang Y, Wang Z, Zhang F, Wang X, Li Y, Long R, Li M, Li X, Wang Q, Yang Q, Kang J. Overexpression of MsDREB1C Modulates Growth and Improves Forage Quality in Tetraploid Alfalfa ( Medicago sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1237. [PMID: 38732451 PMCID: PMC11085332 DOI: 10.3390/plants13091237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
DREB has been reported to be involved in plant growth and response to environmental factors. However, the function of DREB in growth and development has not been elucidated in alfalfa (Medicago sativa L.), a perennial tetraploid forage cultivated worldwide. In this study, an ortholog of MtDREB1C was characterized from alfalfa and named MsDREB1C accordingly. MsDREB1C was significantly induced by abiotic stress. The transcription factor MsDREB1C resided in the nucleus and had self-transactivation activity. The MsDREB1C overexpression (OE) alfalfa displayed growth retardation under both long-day and short-day conditions, which was supported by decreased MsGA20ox and upregulated MsGA2ox in the OE lines. Consistently, a decrease in active gibberellin (GA) was detected, suggesting a negative effect of MsDREB1C on GA accumulation in alfalfa. Interestingly, the forage quality of the OE lines was better than that of WT lines, with higher crude protein and lower lignin content, which was supported by an increase in the leaf-stem ratio (LSR) and repression of several lignin-synthesis genes (MsNST, MsPAL1, MsC4H, and Ms4CL). Therefore, this study revealed the effects of MsDREB1C overexpression on growth and forage quality via modifying GA accumulation and lignin synthesis, respectively. Our findings provide a valuable candidate for improving the critical agronomic traits of alfalfa, such as overwintering and feeding value of the forage.
Collapse
Affiliation(s)
- Yangyang Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (F.Z.); (X.W.); (Y.L.); (R.L.); (M.L.); (X.L.)
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Zhen Wang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Fan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (F.Z.); (X.W.); (Y.L.); (R.L.); (M.L.); (X.L.)
| | - Xue Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (F.Z.); (X.W.); (Y.L.); (R.L.); (M.L.); (X.L.)
| | - Yajing Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (F.Z.); (X.W.); (Y.L.); (R.L.); (M.L.); (X.L.)
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (F.Z.); (X.W.); (Y.L.); (R.L.); (M.L.); (X.L.)
| | - Mingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (F.Z.); (X.W.); (Y.L.); (R.L.); (M.L.); (X.L.)
| | - Xianyang Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (F.Z.); (X.W.); (Y.L.); (R.L.); (M.L.); (X.L.)
| | - Quanzhen Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (F.Z.); (X.W.); (Y.L.); (R.L.); (M.L.); (X.L.)
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (F.Z.); (X.W.); (Y.L.); (R.L.); (M.L.); (X.L.)
| |
Collapse
|
31
|
Xie C, Chen R, Sun Q, Hao D, Zong J, Guo H, Liu J, Li L. Physiological and Proteomic Analyses of mtn1 Mutant Reveal Key Players in Centipedegrass Tiller Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:1028. [PMID: 38611557 PMCID: PMC11013472 DOI: 10.3390/plants13071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Tillering directly determines the seed production and propagation capacity of clonal plants. However, the molecular mechanisms involved in the tiller development of clonal plants are still not fully understood. In this study, we conducted a proteome comparison between the tiller buds and stem node of a multiple-tiller mutant mtn1 (more tillering number 1) and a wild type of centipedegrass. The results showed significant increases of 29.03% and 27.89% in the first and secondary tiller numbers, respectively, in the mtn1 mutant compared to the wild type. The photosynthetic rate increased by 31.44%, while the starch, soluble sugar, and sucrose contents in the tiller buds and stem node showed increases of 13.79%, 39.10%, 97.64%, 37.97%, 55.64%, and 7.68%, respectively, compared to the wild type. Two groups comprising 438 and 589 protein species, respectively, were differentially accumulated in the tiller buds and stem node in the mtn1 mutant. Consistent with the physiological characteristics, sucrose and starch metabolism as well as plant hormone signaling were found to be enriched with differentially abundant proteins (DAPs) in the mtn1 mutant. These results revealed that sugars and plant hormones may play important regulatory roles in the tiller development in centipedegrass. These results expanded our understanding of tiller development in clonal plants.
Collapse
Affiliation(s)
- Chenming Xie
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| | - Rongrong Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| | - Qixue Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Dongli Hao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| | - Junqin Zong
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| | - Hailin Guo
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| | - Jianxiu Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| | - Ling Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| |
Collapse
|
32
|
Kaur Y, Das N. Gibberellin 2-Oxidases in Potato (Solanum tuberosum L.): Cloning, Characterization, In Silico Analysis and Molecular Docking. Mol Biotechnol 2024; 66:902-917. [PMID: 37061992 DOI: 10.1007/s12033-023-00745-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/02/2023] [Indexed: 04/17/2023]
Abstract
Gibberellins (GAs; tetracyclic di-terpenoid carboxylic acids) are endogenous plant growth regulators responsible for stimulating plant growth and development from seed germination to plant maturity. In potato (Solanum tuberosum L.), GA levels are known to be crucial in the complex process of tuberization. Gibberellin 2-oxidases (GA2oxs) inactivate bioactive GAs during stolon swelling and early stages of tuberization as evident from the predominant expression of a member of this gene family namely GA2ox1. We isolated and characterized a 1105-bp cDNA clone encoding a 340-aa GA2ox1 form, designated St-GA2ox1, using total RNA from growing tuber of a potato (Solanum tuberosum L.) cultivar, Kufri Chipsona-1 (KC-1) based on RT-PCR approach. A total of 26 GA2ox sequences were also retrieved from potato genome database and analysed. Multiple sequence alignment revealed sequence relatedness between the GA2oxs. Crucial protein motifs were identified. Phylogenetic analysis revealed the evolutionary relationships between the GA2oxs. Three-dimensional structure of St-GA2ox1 was predicted by using AlphaFold tool, validated by the predicted local-distance difference test and Ramachandran Plot. Structural analysis and molecular docking were carried out to identify domains, binding sites and affinity for the ligand. The STRING database and hydropathy analysis revealed the presence of a putative interaction site for other enzymes. Expression Atlas database and semi-quantitative RT-PCR revealed the expression patterns of various GA2ox forms in different potato organs. This comprehensive report would be useful in providing new insights into possible underlying mechanisms involved in tuber development, and could facilitate the targeted alteration of genes responsible to combat the stress and enhance tuber production.
Collapse
Affiliation(s)
- Yadveer Kaur
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, 147004, India
| | - Niranjan Das
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
33
|
Ianiri G, Barone G, Palmieri D, Quiquero M, Gaeta I, De Curtis F, Castoria R. Transcriptomic investigation of the interaction between a biocontrol yeast, Papiliotrema terrestris strain PT22AV, and the postharvest fungal pathogen Penicillium expansum on apple. Commun Biol 2024; 7:359. [PMID: 38519651 PMCID: PMC10960036 DOI: 10.1038/s42003-024-06031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Biocontrol strategies offer a promising alternative to control plant pathogens achieving food safety and security. In this study we apply a RNAseq analysis during interaction between the biocontrol agent (BCA) Papiliotrema terrestris, the pathogen Penicillium expansum, and the host Malus domestica. Analysis of the BCA finds overall 802 upregulated DEGs (differentially expressed genes) when grown in apple tissue, with the majority being involved in nutrients uptake and oxidative stress response. This suggests that these processes are crucial for the BCA to colonize the fruit wounds and outcompete the pathogen. As to P. expansum analysis, 1017 DEGs are upregulated when grown in apple tissue, with the most represented GO categories being transcription, oxidation reduction process, and transmembrane transport. Analysis of the host M. domestica finds a higher number of DEGs in response to the pathogen compared to the BCA, with overexpression of genes involved in host defense signaling pathways in the presence of both of them, and a prevalence of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) only during interaction with P. expansum. This analysis contributes to advance the knowledge on the molecular mechanisms that underlie biocontrol activity and the tritrophic interaction of the BCA with the pathogen and the host.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy.
| | - Giuseppe Barone
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Davide Palmieri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Michela Quiquero
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Ilenia Gaeta
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Filippo De Curtis
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Raffaello Castoria
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy.
| |
Collapse
|
34
|
Gong X, Chen J, Chen Y, He Y, Jiang D. Advancements in Rice Leaf Development Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:904. [PMID: 38592944 PMCID: PMC10976080 DOI: 10.3390/plants13060904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Rice leaf morphology is a pivotal component of the ideal plant architecture, significantly impacting rice yield. The process of leaf development unfolds through three distinct stages: the initiation of leaf primordia, the establishment and maintenance of polarity, and leaf expansion. Genes regulating leaf morphology encompass transcription factors, hormones, and miRNAs. An in-depth synthesis and categorization of genes associated with leaf development, particularly those successfully cloned, hold paramount importance in unraveling the complexity of rice leaf development. Furthermore, it provides valuable insights into the potential for molecular-level manipulation of rice leaf types. This comprehensive review consolidates the stages of rice leaf development, the genes involved, molecular regulatory pathways, and the influence of plant hormones. Its objective is to establish a foundational understanding of the creation of ideal rice leaf forms and their practical application in molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | - Dagang Jiang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (X.G.); (J.C.); (Y.C.); (Y.H.)
| |
Collapse
|
35
|
Wang J, Long W, Pan J, Zhang X, Luo L, Qian M, Chen W, Luo L, Xu W, Li Y, Cai Y, Xie H. DNAL7, a new allele of NAL11, has major pleiotropic effects on rice architecture. PLANTA 2024; 259:93. [PMID: 38509429 DOI: 10.1007/s00425-024-04376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
MAIN CONCLUSION dnal7, a novel allelic variant of the OsHSP40, affects rice plant architecture and grain yield by coordinating auxins, cytokinins, and gibberellic acids. Plant height and leaf morphology are the most important traits of the ideal plant architecture (IPA), and discovering related genes is critical for breeding high-yield rice. Here, a dwarf and narrow leaf 7 (dnal7) mutant was identified from a γ-ray treated mutant population, which exhibits pleiotropic effects, including dwarfing, narrow leaves, small seeds, and low grain yield per plant compared to the wild type (WT). Histological analysis showed that the number of veins and the distance between adjacent small veins (SVs) were significantly reduced compared to the WT, indicating that DNAL7 controls leaf size by regulating the formation of veins. Map-based cloning and transgenic complementation revealed that DNAL7 is allelic to NAL11, which encodes OsHSP40, and the deletion of 2 codons in dnal7 destroyed the His-Pro-Asp (HPD) motif of OsHSP40. In addition, expression of DNAL7 in both WT and dnal7 gradually increased with the increase of temperature in the range of 27-31 °C. Heat stress significantly affected the seedling height and leaf width of the dnal7 mutant. A comparative transcriptome analysis of WT and dnal7 revealed that DNAL7 influenced multiple metabolic pathways, including plant hormone signal transduction, carbon metabolism, and biosynthesis of amino acids. Furthermore, the contents of the cytokinins in leaf blades were much higher in dnal7 than in the WT, whereas the contents of auxins were lower in dnal7. The contents of bioactive gibberellic acids (GAs) including GA1, GA3, and GA4 in shoots were decreased in dnal7. Thus, DNAL7 regulates rice plant architecture by coordinating the balance of auxins, cytokinins, and GAs. These results indicate that OsHSP40 is a pleiotropic gene, which plays an important role in improving rice yield and plant architecture.
Collapse
Affiliation(s)
- Jie Wang
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
- Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, 430415, Hubei, China
| | - Weixiong Long
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Jintao Pan
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Xiaolin Zhang
- Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, 430415, Hubei, China
| | - Lihua Luo
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Mingjuan Qian
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Wei Chen
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Laiyang Luo
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Weibiao Xu
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Yonghui Li
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Yaohui Cai
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Hongwei Xie
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China.
| |
Collapse
|
36
|
Zhang H, Zhang J, Xu P, Li M, Li Y. Insertion of a miniature inverted-repeat transposable element into the promoter of OsTCP4 results in more tillers and a lower grain size in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1421-1436. [PMID: 37988625 DOI: 10.1093/jxb/erad467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
A class I PCF type protein, TCP4, was identified as a transcription factor associated with both grain size and tillering through a DNA pull-down-MS assay combined with a genome-wide association study. This transcription factor was found to have a significant role in the variations among the 533 rice accessions, dividing them into two main subspecies. A Tourist-like miniature inverted-repeat transposable element (MITE) was discovered in the promoter of TCP4 in japonica/geng accessions (TCP4M+), which was found to suppress the expression of TCP4 at the transcriptional level. The MITE-deleted haplotype (TCP4M-) was mainly found in indica/xian accessions. ChIP-qPCR and EMSA demonstrated the binding of TCP4 to promoters of grain reservoir genes such as SSIIa and Amy3D in vivo and in vitro, respectively. The introduction of the genomic sequence of TCP4M+ into different TCP4M- cultivars was found to affect the expression of TCP4 in the transgenic rice, resulting in decreased expression of its downstream target gene SSIIa, increased tiller number, and decreased seed length. This study revealed that a Tourist-like MITE contributes to subspecies divergence by regulating the expression of TCP4 in response to environmental pressure, thus influencing source-sink balance by regulating starch biosynthesis in rice.
Collapse
Affiliation(s)
- Hui Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Juncheng Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Pengkun Xu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430026, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| |
Collapse
|
37
|
Gao Y, Zhou Q, Luo J, Xia C, Zhang Y, Yue Z. Crop-GPA: an integrated platform of crop gene-phenotype associations. NPJ Syst Biol Appl 2024; 10:15. [PMID: 38346982 PMCID: PMC10861494 DOI: 10.1038/s41540-024-00343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
With the increasing availability of large-scale biology data in crop plants, there is an urgent demand for a versatile platform that fully mines and utilizes the data for modern molecular breeding. We present Crop-GPA ( https://crop-gpa.aielab.net ), a comprehensive and functional open-source platform for crop gene-phenotype association data. The current Crop-GPA provides well-curated information on genes, phenotypes, and their associations (GPAs) to researchers through an intuitive interface, dynamic graphical visualizations, and efficient online tools. Two computational tools, GPA-BERT and GPA-GCN, are specifically developed and integrated into Crop-GPA, facilitating the automatic extraction of gene-phenotype associations from bio-crop literature and predicting unknown relations based on known associations. Through usage examples, we demonstrate how our platform enables the exploration of complex correlations between genes and phenotypes in crop plants. In summary, Crop-GPA serves as a valuable multi-functional resource, empowering the crop research community to gain deeper insights into the biological mechanisms of interest.
Collapse
Affiliation(s)
- Yujia Gao
- School of Information and Artificial Intelligence, Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Qian Zhou
- School of Information and Artificial Intelligence, Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jiaxin Luo
- School of Information and Artificial Intelligence, Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Chuan Xia
- School of Information and Artificial Intelligence, Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Youhua Zhang
- School of Information and Artificial Intelligence, Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| | - Zhenyu Yue
- School of Information and Artificial Intelligence, Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| |
Collapse
|
38
|
Yang J, Song J, Jeong BR. Flowering and Runnering of Seasonal Strawberry under Different Photoperiods Are Affected by Intensity of Supplemental or Night-Interrupting Blue Light. PLANTS (BASEL, SWITZERLAND) 2024; 13:375. [PMID: 38337908 PMCID: PMC10857185 DOI: 10.3390/plants13030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The strawberry (Fragaria × ananassa Duch.) "Sulhyang" is a typical seasonal flowering (SF) strawberry that produces flower buds in day lengths shorter than a critical limit (variable, but often defined as <12 h). There is a trade-off between photoperiod-controlled flowering and gibberellin (GA) signaling pathway-mediated runnering. Some related genes (such as CO, FT1, SOC1, and TFL1) participating in light signaling and circadian rhythm in plants are altered under blue light (BL). Sugars for flowering and runnering are mainly produced by photosynthetic carbon assimilation. The intensity of light could affect photosynthesis, thereby regulating flowering and runnering. Here, we investigated the effect of the intensity of supplemental blue light (S-BL) or night-interrupting blue light (NI-BL) in photoperiodic flowering and runnering regulation by applying 4 h of S-BL or NI-BL with either 0, 10, 20, 30, or 40 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) in a 10 h short-day (SD10) (SD10 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)) or 14 h long-day (LD14) conditions (LD14 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)). Approximately 45 days after the photoperiodic light treatment, generally, whether S-BL or NI-BL, BL (20) was the most promotive in runnering, leading to more runners in both the LD and SD conditions. For flowering, except the treatment LD14 + S-BL, BL (20) was still the key light, either from BL (20) or BL (40), promoting flowering, especially when BL acted as the night-interrupting light, regardless of the photoperiod. At the harvest stage, larger numbers of inflorescences and runners were observed in the LD14 + NI-BL4 treatment, and the most were observed in the LD14 + NI-BL (20). Moreover, the SD10 + NI-BL4 was slightly inferior to the LD14 + NI-BL4 in increasing the numbers of inflorescences and runners, but it caused earlier flowering. Additionally, the circadian rhythm expression of flowering-related genes was affected differently by the S-BL and NI-BL. After the application of BL in LD conditions, the expression of an LD-specific floral activator FaFT1 was stimulated, while that of a flowering suppressor FaTFL1 was inhibited, resetting the balance of expression between these two opposite flowering regulators. The SD runnering was caused by BL in non-runnering SD conditions associated with the stimulation of two key genes that regulate runner formation in the GA pathway, FaGRAS32 and FaGA20ox4. In addition, the positive effects of BL on enhancing photosynthesis and carbohydrate production also provided an abundant energy supply for the flowering and runnering processes.
Collapse
Affiliation(s)
- Jingli Yang
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jinnan Song
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
39
|
Li Y, Zhao L, Guo C, Tang M, Lian W, Chen S, Pan Y, Xu X, Luo C, Yi Y, Cui Y, Chen L. OsNAC103, an NAC transcription factor negatively regulates plant height in rice. PLANTA 2024; 259:35. [PMID: 38193994 PMCID: PMC10776745 DOI: 10.1007/s00425-023-04309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
MAIN CONCLUSION OsNAC103 negatively regulates rice plant height by influencing the cell cycle and crosstalk of phytohormones. Plant height is an important characteristic of rice farming and is directly related to agricultural yield. Although there has been great progress in research on plant growth regulation, numerous genes remain to be elucidated. NAC transcription factors are widespread in plants and have a vital function in plant growth. Here, we observed that the overexpression of OsNAC103 resulted in a dwarf phenotype, whereas RNA interference (RNAi) plants and osnac103 mutants showed no significant difference. Further investigation revealed that the cell length did not change, indicating that the dwarfing of plants was caused by a decrease in cell number due to cell cycle arrest. The content of the bioactive cytokinin N6-Δ2-isopentenyladenine (iP) decreased as a result of the cytokinin synthesis gene being downregulated and the enhanced degradation of cytokinin oxidase. OsNAC103 overexpression also inhibited cell cycle progression and regulated the activity of the cell cyclin OsCYCP2;1 to arrest the cell cycle. We propose that OsNAC103 may further influence rice development and gibberellin-cytokinin crosstalk by regulating the Oryza sativa homeobox 71 (OSH71). Collectively, these results offer novel perspectives on the role of OsNAC103 in controlling plant architecture.
Collapse
Affiliation(s)
- Yan Li
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Liming Zhao
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Chiming Guo
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361006, China
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern, School of Life Science, Guizhou Normal University, Guiyang, 550025, China
| | - Wenli Lian
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Siyu Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yuehan Pan
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiaorong Xu
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern, School of Life Science, Guizhou Normal University, Guiyang, 550025, China
| | - Chengke Luo
- Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern, School of Life Science, Guizhou Normal University, Guiyang, 550025, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
40
|
Chen Y, Ling Q, Li X, Ma Q, Tang S, Yuanzhi P, Liu QL, Jia Y, Yong X, Jiang B. Transcriptome analysis during axillary bud growth in chrysanthemum ( chrysanthemum× morifolium). PeerJ 2023; 11:e16436. [PMID: 38111658 PMCID: PMC10726743 DOI: 10.7717/peerj.16436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/19/2023] [Indexed: 12/20/2023] Open
Abstract
The chrysanthemum DgLsL gene, homologous with tomato Ls, is one of the earliest expressed genes controlling axillary meristem initiation. In this study, the wild-type chrysanthemum (CW) and DgLsL-overexpressed line 15 (C15) were used to investigate the regulatory mechanism of axillary bud development in chrysanthemum. Transcriptome sequencing was carried out to detect the differentially expressed genes of the axillary buds 0 h, 24 h and 48 h after decapitation. The phenotypic results showed that the number of axillary buds of C15 was significantly higher than CW. A total of 9,224 DEGs were identified in C15-0 vs. CW-0, 10,622 DEGs in C15-24 vs. CW-24, and 8,929 DEGs in C15-48 vs. CW-48.GO and KEGG pathway enrichment analyses showed that the genes of the flavonoid, phenylpropanoids and plant hormone pathways appeared to be differentially expressed, indicating their important roles in axillary bud germination. DgLsL reduces GA content in axillary buds by promoting GA2ox expression.These results confirmed previous studies on axillary bud germination and growth, and revealed the important roles of genes involved in plant hormone biosynthesis and signal transduction, aiding in the study of the gene patterns involved in axillary bud germination and growth.
Collapse
Affiliation(s)
- Yijun Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Qin Ling
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Xin Li
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Qiqi Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - ShaoKang Tang
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Pan Yuanzhi
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Qing-lin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Xue Yong
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| |
Collapse
|
41
|
Xing M, Chen S, Zhang X, Xue H. Rice OsGA2ox9 regulates seed GA metabolism and dormancy. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2411-2413. [PMID: 37221989 PMCID: PMC10651142 DOI: 10.1111/pbi.14067] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 05/25/2023]
Affiliation(s)
- Mei‐Qing Xing
- Shanghai Collaborative Innovation Center of Agri‐Seeds, Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Su‐Hui Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Xiao‐Fan Zhang
- Shanghai Collaborative Innovation Center of Agri‐Seeds, Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hong‐Wei Xue
- Shanghai Collaborative Innovation Center of Agri‐Seeds, Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
42
|
Feng G, Xu X, Liu W, Hao F, Yang Z, Nie G, Huang L, Peng Y, Bushman S, He W, Zhang X. Transcriptome Profiling Provides Insights into the Early Development of Tiller Buds in High- and Low-Tillering Orchardgrass Genotypes. Int J Mol Sci 2023; 24:16370. [PMID: 38003564 PMCID: PMC10671593 DOI: 10.3390/ijms242216370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Orchardgrass (Dactylis glomerata L.) is among the most economically important perennial cool-season grasses, and is considered an excellent hay, pasture, and silage crop in temperate regions worldwide. Tillering is a vital feature that dominates orchardgrass regeneration and biomass yield. However, transcriptional dynamics underlying early-stage bud development in high- and low-tillering orchardgrass genotypes are unclear. Thus, this study assessed the photosynthetic parameters, the partially essential intermediate biomolecular substances, and the transcriptome to elaborate the early-stage profiles of tiller development. Photosynthetic efficiency and morphological development significantly differed between high- (AKZ-NRGR667) and low-tillering genotypes (D20170203) at the early stage after tiller formation. The 206.41 Gb of high-quality reads revealed stage-specific differentially expressed genes (DEGs), demonstrating that signal transduction and energy-related metabolism pathways, especially photosynthetic-related processes, influence tiller induction and development. Moreover, weighted correlation network analysis (WGCNA) and functional enrichment identified distinctively co-expressed gene clusters and four main regulatory pathways, including chlorophyll, lutein, nitrogen, and gibberellic acid (GA) metabolism pathways. Therefore, photosynthesis, carbohydrate synthesis, nitrogen efficient utilization, and phytohormone signaling pathways are closely and intrinsically linked at the transcriptional level. These findings enhance our understanding of tillering in orchardgrass and perennial grasses, providing a new breeding strategy for improving forage biomass yield.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Feigxiang Hao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaun Bushman
- Forage and Range Research Laboratory, United States Department of Agriculture, 695 North 1100 East, Logan, UT 84322-6300, USA
| | - Wei He
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
43
|
Li J, Li Q, Wang W, Zhang X, Chu C, Tang X, Zhu B, Xiong L, Zhao Y, Zhou D. DELLA-mediated gene repression is maintained by chromatin modification in rice. EMBO J 2023; 42:e114220. [PMID: 37691541 PMCID: PMC10620761 DOI: 10.15252/embj.2023114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
DELLA proteins are master regulators of gibberellic acid (GA) signaling through their effects on gene expression. Enhanced DELLA accumulation in rice and wheat varieties has greatly contributed to grain yield increases during the green revolution. However, the molecular basis of DELLA-mediated gene repression remains elusive. In this work, we show that the rice DELLA protein SLENDER RICE1 (SLR1) forms a tripartite complex with Polycomb-repressive complex 2 (PRC2) and the histone deacetylase HDA702 to repress downstream genes by establishing a silent chromatin state. The slr1 mutation and GA signaling resulted in dissociation of PRC2 and HDA702 from GA-inducible genes. Loss-of-function or downregulation of the chromatin regulators impaired SLR1-dependent histone modification and gene repression. Time-resolved analysis of GA signaling revealed that GA-induced transcriptional activation was associated with a rapid increase of H3K9ac followed by H3K27me3 removal. Collectively, these results establish a general epigenetic mechanism for DELLA-mediated gene repression and reveal details of the chromatin dynamics during transcriptional activation stimulated by GA signaling.
Collapse
Affiliation(s)
- Junjie Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Qi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Wentao Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Xinran Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Chen Chu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Xintian Tang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Bo Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Dao‐Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Institute of Plant Science Paris‐Saclay (IPS2), CNRS, INRAEUniversity Paris‐SaclayOrsayFrance
| |
Collapse
|
44
|
Yuan Y, Khourchi S, Li S, Du Y, Delaplace P. Unlocking the Multifaceted Mechanisms of Bud Outgrowth: Advances in Understanding Shoot Branching. PLANTS (BASEL, SWITZERLAND) 2023; 12:3628. [PMID: 37896091 PMCID: PMC10610460 DOI: 10.3390/plants12203628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Shoot branching is a complex and tightly regulated developmental process that is essential for determining plant architecture and crop yields. The outgrowth of tiller buds is a crucial step in shoot branching, and it is influenced by a variety of internal and external cues. This review provides an extensive overview of the genetic, plant hormonal, and environmental factors that regulate shoot branching in several plant species, including rice, Arabidopsis, tomato, and wheat. We especially highlight the central role of TEOSINTE BRANCHED 1 (TB1), a key gene in orchestrating bud outgrowth. In addition, we discuss how the phytohormones cytokinins, strigolactones, and auxin interact to regulate tillering/branching. We also shed light on the involvement of sugar, an integral component of plant development, which can impact bud outgrowth in both trophic and signaling ways. Finally, we emphasize the substantial influence of environmental factors, such as light, temperature, water availability, biotic stresses, and nutrients, on shoot branching. In summary, this review offers a comprehensive evaluation of the multifaced regulatory mechanisms that underpin shoot branching and highlights the adaptable nature of plants to survive and persist in fluctuating environmental conditions.
Collapse
Affiliation(s)
- Yundong Yuan
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Said Khourchi
- Plant Sciences, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Shujia Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfang Du
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Pierre Delaplace
- Plant Sciences, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
45
|
Shi Y, Feng J, Wang L, Liu Y, He D, Sun Y, Luo Y, Jin C, Zhang Y. OsMDH12: A Peroxisomal Malate Dehydrogenase Regulating Tiller Number and Salt Tolerance in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3558. [PMID: 37896021 PMCID: PMC10610416 DOI: 10.3390/plants12203558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
Salinity is an important environmental factor influencing crop growth and yield. Malate dehydrogenase (MDH) catalyses the reversible conversion of oxaloacetate (OAA) to malate. While many MDHs have been identified in various plants, the biochemical function of MDH in rice remains uncharacterised, and its role in growth and salt stress response is largely unexplored. In this study, the biochemical function of OsMDH12 was determined, revealing its involvement in regulating tiller number and salt tolerance in rice. OsMDH12 localises in the peroxisome and is expressed across various organs. In vitro analysis confirmed that OsMDH12 converts OAA to malate. Seedlings of OsMDH12-overexpressing (OE) plants had shorter shoot lengths and lower fresh weights than wild-type (WT) plants, while osmdh12 mutants displayed the opposite. At maturity, OsMDH12-OE plants had fewer tillers than WT, whereas osmdh12 mutants had more, suggesting OsMDH12's role in tiller number regulation. Moreover, OsMDH12-OE plants were sensitive to salt stress, but osmdh12 mutants showed enhanced salt tolerance. The Na+/K+ content ratio increased in OsMDH12-OE plants and decreased in osmdh12 mutants, suggesting that OsMDH12 might negatively affect salt tolerance through influencing the Na+/K+ balance. These findings hint at OsMDH12's potential as a genetic tool to enhance rice growth and salt tolerance.
Collapse
Affiliation(s)
- Yuheng Shi
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.S.); (J.F.); (L.W.); (Y.L.); (D.H.); (Y.S.); (C.J.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Jiahui Feng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.S.); (J.F.); (L.W.); (Y.L.); (D.H.); (Y.S.); (C.J.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Liping Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.S.); (J.F.); (L.W.); (Y.L.); (D.H.); (Y.S.); (C.J.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Yanchen Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.S.); (J.F.); (L.W.); (Y.L.); (D.H.); (Y.S.); (C.J.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Dujun He
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.S.); (J.F.); (L.W.); (Y.L.); (D.H.); (Y.S.); (C.J.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Yangyang Sun
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.S.); (J.F.); (L.W.); (Y.L.); (D.H.); (Y.S.); (C.J.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Yuehua Luo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Cheng Jin
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.S.); (J.F.); (L.W.); (Y.L.); (D.H.); (Y.S.); (C.J.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Yuanyuan Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.S.); (J.F.); (L.W.); (Y.L.); (D.H.); (Y.S.); (C.J.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| |
Collapse
|
46
|
Zhao Y, Tu J, Wang H, Xu Y, Wu F. Transcriptomic and targeted metabolomic unravelling the molecular mechanism of sugar metabolism regulating heteroblastic changes in Pinus massoniana seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108029. [PMID: 37722284 DOI: 10.1016/j.plaphy.2023.108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Pine seedling leaf characteristics show a distinct transition from primary to secondary needles, known as heteroblastic change. However, the underlying regulatory mechanism is poorly understood. The molecular mechanism of sugar metabolism involved in regulating heteroblastic changes in Pinus massoniana seedlings was investigated via transcriptomics and targeted metabolomics. The results identified 12 kinds of sugar metabolites in the foliage. Three types of sugar accumulated at the highest levels: sucrose, glucose and fructose. Compared to seedlings with only primary needles (PN), the contents of these soluble sugars were lower in seedlings with developing secondary needle buds (SNB). RNA-seq analysis highlighted 1086 DEGs between PN and SNB seedlings, revealing significant enrichment in KEGG pathways including starch and sucrose metabolism, plant hormone signal transduction and amino sugar and nucleic acid sugar metabolism. Combined transcriptomic and metabolomic analysis revealed that HK, MDH, and ATPase could potentially enhance sugar availability by stimulating the glycolytic/TCA cycle and oxidative phosphorylation. These processes may lead to a reduced sugar content in the foliage of SNB seedlings. We also identified 72 transcription factors, among which the expression levels of MYB, WRKY, NAC and C2H2 family genes were closely related to those of DEGs in the sugar metabolism pathway. In addition, we identified alternative splicing (AS) events in one NAC gene leading to two isoforms, PmNAC5L and PmNAC5S. PmNAC5L was significantly upregulated, while PmNAC5S was significantly downregulated in SNB seedlings. Overall, our results provide new insights into how sugar metabolism is involved in regulating heteroblastic changes in pine seedlings.
Collapse
Affiliation(s)
- Yuanxiang Zhao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Jingjing Tu
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Haoyun Wang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Yingying Xu
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Feng Wu
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
47
|
Jin G, Qi J, Zu H, Liu S, Gershenzon J, Lou Y, Baldwin IT, Li R. Jasmonate-mediated gibberellin catabolism constrains growth during herbivore attack in rice. THE PLANT CELL 2023; 35:3828-3844. [PMID: 37392473 PMCID: PMC10533328 DOI: 10.1093/plcell/koad191] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Plant defense against herbivores is costly and often associated with growth repression. The phytohormone jasmonate (JA) plays a central role in prioritizing defense over growth during herbivore attack, but the underlying mechanisms remain unclear. When brown planthoppers (BPH, Nilaparvata lugens) attack rice (Oryza sativa), growth is dramatically suppressed. BPH infestation also increases inactive gibberellin (GA) levels and transcripts of GA 2-oxidase (GA2ox) genes, 2 (GA2ox3 and GA2ox7) of which encode enzymes that catalyze the conversion of bioactive GAs to inactive GAs in vitro and in vivo. Mutation of these GA2oxs diminishes BPH-elicited growth restriction without affecting BPH resistance. Phytohormone profiling and transcriptome analyses revealed that GA2ox-mediated GA catabolism was enhanced by JA signaling. The transcript levels of GA2ox3 and GA2ox7 were significantly attenuated under BPH attack in JA biosynthesis (allene oxide cyclase [aoc]) or signaling-deficient (myc2) mutants. In contrast, GA2ox3 and GA2ox7 expression was increased in MYC2 overexpression lines. MYC2 directly binds to the G-boxes in the promoters of both GA2ox genes to regulate their expression. We conclude that JA signaling simultaneously activates defense responses and GA catabolism to rapidly optimize resource allocation in attacked plants and provides a mechanism for phytohormone crosstalk.
Collapse
Affiliation(s)
- Gaochen Jin
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hongyue Zu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuting Liu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Ran Li
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
48
|
Liu X, Wickland DP, Lin Z, Liu Q, Dos Santos LB, Hudson KA, Hudson ME. Promoter deletion in the soybean Compact mutant leads to overexpression of a gene with homology to the C20-gibberellin 2-oxidase family. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5153-5165. [PMID: 37551820 DOI: 10.1093/jxb/erad267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Height is a critical component of plant architecture, significantly affecting crop yield. The genetic basis of this trait in soybean remains unclear. In this study, we report the characterization of the Compact mutant of soybean, which has short internodes. The candidate gene was mapped to chromosome 17, and the interval containing the causative mutation was further delineated using biparental mapping. Whole-genome sequencing of the mutant revealed an 8.7 kb deletion in the promoter of the Glyma.17g145200 gene, which encodes a member of the class III gibberellin (GA) 2-oxidases. The mutation has a dominant effect, likely via increased expression of the GA 2-oxidase transcript observed in green tissue, as a result of the deletion in the promoter of Glyma.17g145200. We further demonstrate that levels of GA precursors are altered in the Compact mutant, supporting a role in GA metabolism, and that the mutant phenotype can be rescued with exogenous GA3. We also determined that overexpression of Glyma.17g145200 in Arabidopsis results in dwarfed plants. Thus, gain of promoter activity in the Compact mutant leads to a short internode phenotype in soybean through altered metabolism of gibberellin precursors. These results provide an example of how structural variation can control an important crop trait and a role for Glyma.17g145200 in soybean architecture, with potential implications for increasing crop yield.
Collapse
Affiliation(s)
- Xing Liu
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
- Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Daniel P Wickland
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Zhicong Lin
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
- Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Quilin Liu
- Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Karen A Hudson
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, USA
| | - Matthew E Hudson
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois, Urbana, IL, USA
| |
Collapse
|
49
|
Chelliah A, Arumugam C, Punchakkara PM, Suthanthiram B, Raman T, Subbaraya U. Genome-wide characterization of 2OGD superfamily for mining of susceptibility factors responding to various biotic stresses in Musa spp. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1319-1338. [PMID: 38024958 PMCID: PMC10678914 DOI: 10.1007/s12298-023-01380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Bananas are an important staple food and cash crop, but they are vulnerable to a variety of pests and diseases that substantially reduce yield and quality. Banana diseases are challenging to control and necessitate an integrated strategy, and development of resistant cultivars is one of the effective ways of managing diseases. Lasting disease resistance is the main goal in crop improvement and resistance mediated by a single resistant (R) gene mostly lack durability. However, long-term resistance can be obtained by inactivating susceptibility factors (S), which facilitate pathogen infection and proliferation. Identification and inactivation of susceptibility factors against the major pathogens like Fusarium oxysporum f. sp. cubense (Foc), Pseudocercospora eumusae and Pratylenchus coffeae in banana will be an effective way in developing banana varieties with more durable resistance. Downy mildew resistance 6 (DMR6) and DMR-like oxygenases (DLO1) are one such susceptibility factors and they belong to 2-oxoglutarate Fe(II) dependent oxygenases (2OGD) superfamily. 2OGDs are known to catalyze a plethora of reactions and also confer resistance to different pathogens in various crops, but not much is known about the 2OGD in Musa species. Through a comprehensive genome-wide analysis, 133 and 122 potential 2OGDs were systematically identified and categorized from the A and B genomes of banana, respectively. Real time expression of dmr6 and dlo1 genes showed positive correlation with transcriptome data upon Foc race1 and TR4 infection and examination of expression pattern of Macma4_04_g22670 (Ma04_g20880) and Macma4_02_g13590 (Ma02_g12040) genes revealed their involvement in Foc race1 and TR4 infections, respectively. Further the expression profile of 2OGDs, specifically Macma4_04_g25310 (Ma04_g23390), Macma4_08_g11980 (Ma08_g12090) and Macma4_04_g38910 (Ma04_g36640) shows that they may play a significant role as a susceptibility factor, particularly against P. eumusae and P. coffeae, implying that they can be exploited as a candidate gene for editing in developing resistant cultivars against these diseases. In summary, our findings contribute to a deeper comprehension of the evolutionary and functional aspects of 2OGDs in Musa spp. Furthermore, they highlight the substantial functions of these family constituents in the progression of diseases. These insights hold significance in the context of enhancing the genetic makeup of bananas to attain extended and more durable resistance against pathogens. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01380-y.
Collapse
Affiliation(s)
- Anuradha Chelliah
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Chandrasekar Arumugam
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Prashina Mol Punchakkara
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Backiyarani Suthanthiram
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Thangavelu Raman
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Uma Subbaraya
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| |
Collapse
|
50
|
Wang T, Li J, Jiang Y, Zhang J, Ni Y, Zhang P, Yao Z, Jiao Z, Li H, Li L, Niu Y, Li Q, Yin G, Niu J. Wheat gibberellin oxidase genes and their functions in regulating tillering. PeerJ 2023; 11:e15924. [PMID: 37671358 PMCID: PMC10476609 DOI: 10.7717/peerj.15924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/30/2023] [Indexed: 09/07/2023] Open
Abstract
Multiple genetic factors control tillering, a key agronomy trait for wheat (Triticum aestivum L.) yield. Previously, we reported a dwarf-monoculm mutant (dmc) derived from wheat cultivar Guomai 301, and found that the contents of gibberellic acid 3 (GA3) in the tiller primordia of dmc were significantly higher. Transcriptome analysis indicated that some wheat gibberellin oxidase (TaGAox) genes TaGA20ox-A2, TaGA20ox-B2, TaGA3ox-A2, TaGA20ox-A4, TaGA2ox-A10 and TaGA2ox-B10 were differentially expressed in dmc. Therefore, this study systematically analyzed the roles of gibberellin oxidase genes during wheat tillering. A total of 63 TaGAox genes were identified by whole genome analysis. The TaGAoxs were clustered to four subfamilies, GA20oxs, GA2oxs, GA3oxs and GA7oxs, including seven subgroups based on their protein structures. The promoter regions of TaGAox genes contain a large number of cis-acting elements closely related to hormone, plant growth and development, light, and abiotic stress responses. Segmental duplication events played a major role in TaGAoxs expansion. Compared to Arabidopsis, the gene collinearity degrees of the GAoxs were significantly higher among wheat, rice and maize. TaGAox genes showed tissue-specific expression patterns. The expressions of TaGAox genes (TaGA20ox-B2, TaGA7ox-A1, TaGA2ox10 and TaGA3ox-A2) were significantly affected by exogenous GA3 applications, which also significantly promoted tillering of Guomai 301, but didn't promote dmc. TaGA7ox-A1 overexpression transgenic wheat lines were obtained by Agrobacterium mediated transformation. Genomic PCR and first-generation sequencing demonstrated that the gene was integrated into the wheat genome. Association analysis of TaGA7ox-A1 expression level and tiller number per plant demonstrated that the tillering capacities of some TaGA7ox-A1 transgenic lines were increased. These data demonstrated that some TaGAoxs as well as GA signaling were involved in regulating wheat tillering, but the GA signaling pathway was disturbed in dmc. This study provided valuable clues for functional characterization of GAox genes in wheat.
Collapse
Affiliation(s)
- Ting Wang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Junchang Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yumei Jiang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jing Zhang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yongjing Ni
- Henan Engineering Research Center of Wheat Spring Freeze Injury Identification, Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, Henan, China, Shangqiu, China
| | - Peipei Zhang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ziping Yao
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhixin Jiao
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huijuan Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lei Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yufan Niu
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qiaoyun Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guihong Yin
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jishan Niu
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|