1
|
Jin XJ, Yan X, Guo F, Wang L, Lu J, Tang XS, Hao HF, Islam MA, Li N, Yang JW, Cao YP, Jing RL, Sun DZ. Identification of stay-green candidate gene TaTRNH1-3B and development of molecular markers related to chlorophyll content and yield in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109787. [PMID: 40106933 DOI: 10.1016/j.plaphy.2025.109787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Functional stay-green characteristic is closely associated with delayed loss in photosynthetic function and increased crop yield. However, the development and application of functional molecular markers based on stay-green-related genes are limited. This study compared and analyzed the differences of SPAD values, photosynthetic parameters, fluorescence parameters, and antioxidant enzyme activities at 0, 10, 18, 22, 26, 30 and 34 days after anthesis, as well as agronomic traits at mature stage between a stay-green line, Tailv113 (TL113), and a non-stay-green cultivar, Jinmai39 (JM39). The results showed that TL113 had higher photosynthetic capacity, photosynthetic efficiency, antioxidant capacity and yield than JM39. Subsequently, a comparative transcriptome analysis was conducted on TL113 and JM39 at 0, 26, and 30 days after anthesis. Analysis showed that senescence-associated co-expressed genes (SCEGs) and stay-green-associated differentially expressed genes (SDEGs) jointly affected wheat leaf senescence, while SDEGs played an important role in the stay green differences between TL113 and JM39. By analyzing the SNP sites of the SDEGs from transcriptome sequencing, a nsSNP was found in the TaTRNH1-3B sequence between TL113 and JM39. Further analyzing the resequencing data published in the Wheat Union database, four linked SNP sites were identified in TaTRNH1-3B, which formed two haplotypes, TaTRNH1-3B-Hap1 and TaTRNH1-3B-Hap2. Based on the SNP at 373 bp (A/G), a CAPS molecular marker, TaTRNH1-3B-Nla III-CAPS, was developed to distinguish allelic variations (A/G). Association analysis between TaTRNH1-3B allelic variation and agronomic traits found that the accessions possessing TaTRNH1-3B-Hap1 (A) exhibited significantly higher SPAD values than those possessing TaTRNH1-3B-Hap2 (G) in 6 of 10 environments at the jointing stage and in 7 of 10 environments at the grain filling stage in Beijing. Similarly, the accessions possessing TaTRNH1-3B-Hap1 (A) exhibited significantly higher chlorophyll contents and yield than those possessing TaTRNH1-3B-Hap2 (G) in 3 environments in Taigu. Additionally, lines with TaTRNH1-3B-Hap1 (A) displayed higher SPAD values at 0, 15, and 20 days after anthesis in the two BC3F3 populations than those with TaTRNH1-3B-Hap2 (G). These results suggest that TaTRNH1-3B is associated with the stay-green and yield traits in wheat, and TaTRNH1-3B-Hap1 is a favorable stay-green haplotype. The newly developed molecular marker, TaTRNH1-3B-Nla III-CAPS, provide valuable information for wheat genetic improvement of stay-green and high-yield traits, and can be used to marker-assisted selection breeding.
Collapse
Affiliation(s)
- Xiu-Juan Jin
- College of Agriculture, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Xue Yan
- College of Agriculture, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Feng Guo
- College of Agriculture, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Ling Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Juan Lu
- College of Agriculture, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Xiao-Sha Tang
- College of Agriculture, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Hui-Fang Hao
- College of Agriculture, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Md Ashraful Islam
- College of Agriculture, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Ning Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Jin-Wen Yang
- College of Agriculture, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Ya-Ping Cao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, 041000, Shanxi, China
| | - Rui-Lian Jing
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Dai-Zhen Sun
- College of Agriculture, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China.
| |
Collapse
|
2
|
Bewick P, Forstner P, Zhang B, Collakova E. Identification of novel candidate genes for regulating oil composition in soybean seeds under environmental stresses. FRONTIERS IN PLANT SCIENCE 2025; 16:1572319. [PMID: 40313727 PMCID: PMC12044429 DOI: 10.3389/fpls.2025.1572319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/26/2025] [Indexed: 05/03/2025]
Abstract
Introduction A key objective of soybean breeding programs is to enhance nutritional quality for human and animal consumption, with improved fatty acid (FA) composition for health benefits, and expand soybean use for industrial applications. Methods We conducted a metabolite genome-wide association study (mGWAS) to identify genomic regions associated with changes in FA composition and FA ratios in soybean seeds influenced by environmental factors. This mGWAS utilized 218 soybean plant introductions (PIs) grown in two field locations in Virginia over two years. Results The mGWAS revealed that 20 SNPs were significantly associated with 21 FA ratios, while additional suggestive SNPs were found for 36 FA ratios, highlighting potential quantitative trait loci linked to FA composition. Discussion Many of these SNPs are located near or within the genes related to phytohormone-mediated biotic and abiotic stress responses, suggesting the involvement of environmental factors in modulating FA composition in soybean seeds. Our findings provide novel insights into the genetic and environmental factors influencing FA composition in oilseeds. This research also lays the foundation for developing stable markers to develop soybean cultivars with tailored FA profiles for different practical applications under variable growth conditions.
Collapse
Affiliation(s)
- Patrick Bewick
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Peter Forstner
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Eva Collakova
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
3
|
Ľuptáková E, Vigouroux A, Končitíková R, Kopečná M, Zalabák D, Novák O, Salcedo Sarmiento S, Ćavar Zeljković S, Kopečný DJ, von Schwartzenberg K, Strnad M, Spíchal L, De Diego N, Kopečný D, Moréra S. Plant nucleoside N-ribohydrolases: riboside binding and role in nitrogen storage mobilization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1432-1452. [PMID: 38044809 DOI: 10.1111/tpj.16572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Cells save their energy during nitrogen starvation by selective autophagy of ribosomes and degradation of RNA to ribonucleotides and nucleosides. Nucleosides are hydrolyzed by nucleoside N-ribohydrolases (nucleosidases, NRHs). Subclass I of NRHs preferentially hydrolyzes the purine ribosides while subclass II is more active towards uridine and xanthosine. Here, we performed a crystallographic and kinetic study to shed light on nucleoside preferences among plant NRHs followed by in vivo metabolomic and phenotyping analyses to reveal the consequences of enhanced nucleoside breakdown. We report the crystal structure of Zea mays NRH2b (subclass II) and NRH3 (subclass I) in complexes with the substrate analog forodesine. Purine and pyrimidine catabolism are inseparable because nucleobase binding in the active site of ZmNRH is mediated via a water network and is thus unspecific. Dexamethasone-inducible ZmNRH overexpressor lines of Arabidopsis thaliana, as well as double nrh knockout lines of moss Physcomitrium patents, reveal a fine control of adenosine in contrast to other ribosides. ZmNRH overexpressor lines display an accelerated early vegetative phase including faster root and rosette growth upon nitrogen starvation or osmotic stress. Moreover, the lines enter the bolting and flowering phase much earlier. We observe changes in the pathways related to nitrogen-containing compounds such as β-alanine and several polyamines, which allow plants to reprogram their metabolism to escape stress. Taken together, crop plant breeding targeting enhanced NRH-mediated nitrogen recycling could therefore be a strategy to enhance plant growth tolerance and productivity under adverse growth conditions.
Collapse
Affiliation(s)
- Eva Ľuptáková
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Armelle Vigouroux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, F-91198, France
| | - Radka Končitíková
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Martina Kopečná
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - David Zalabák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 11, Olomouc, CZ-78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 11, Olomouc, CZ-78371, Czech Republic
| | - Sara Salcedo Sarmiento
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371, Olomouc, Czech Republic
| | - David Jaroslav Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Klaus von Schwartzenberg
- Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 11, Olomouc, CZ-78371, Czech Republic
| | - Lukáš Spíchal
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - David Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Solange Moréra
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, F-91198, France
| |
Collapse
|
4
|
Slocum RD, Mejia Peña C, Liu Z. Transcriptional reprogramming of nucleotide metabolism in response to altered pyrimidine availability in Arabidopsis seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1273235. [PMID: 38023851 PMCID: PMC10652772 DOI: 10.3389/fpls.2023.1273235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
In Arabidopsis seedlings, inhibition of aspartate transcarbamoylase (ATC) and de novo pyrimidine synthesis resulted in pyrimidine starvation and developmental arrest a few days after germination. Synthesis of pyrimidine nucleotides by salvaging of exogenous uridine (Urd) restored normal seedling growth and development. We used this experimental system and transcriptional profiling to investigate genome-wide responses to changes in pyrimidine availability. Gene expression changes at different times after Urd supplementation of pyrimidine-starved seedlings were mapped to major pathways of nucleotide metabolism, in order to better understand potential coordination of pathway activities, at the level of transcription. Repression of de novo synthesis genes and induction of intracellular and extracellular salvaging genes were early and sustained responses to pyrimidine limitation. Since de novo synthesis is energetically more costly than salvaging, this may reflect a reduced energy status of the seedlings, as has been shown in recent studies for seedlings growing under pyrimidine limitation. The unexpected induction of pyrimidine catabolism genes under pyrimidine starvation may result from induction of nucleoside hydrolase NSH1 and repression of genes in the plastid salvaging pathway, diverting uracil (Ura) to catabolism. Identification of pyrimidine-responsive transcription factors with enriched binding sites in highly coexpressed genes of nucleotide metabolism and modeling of potential transcription regulatory networks provided new insights into possible transcriptional control of key enzymes and transporters that regulate nucleotide homeostasis in plants.
Collapse
Affiliation(s)
- Robert D. Slocum
- Department of Biological Sciences, Goucher College, Towson, MD, United States
| | - Carolina Mejia Peña
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
5
|
Kojima M, Makita N, Miyata K, Yoshino M, Iwase A, Ohashi M, Surjana A, Kudo T, Takeda-Kamiya N, Toyooka K, Miyao A, Hirochika H, Ando T, Shomura A, Yano M, Yamamoto T, Hobo T, Sakakibara H. A cell wall-localized cytokinin/purine riboside nucleosidase is involved in apoplastic cytokinin metabolism in Oryza sativa. Proc Natl Acad Sci U S A 2023; 120:e2217708120. [PMID: 37639600 PMCID: PMC10483608 DOI: 10.1073/pnas.2217708120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/18/2023] [Indexed: 08/31/2023] Open
Abstract
In the final step of cytokinin biosynthesis, the main pathway is the elimination of a ribose-phosphate moiety from the cytokinin nucleotide precursor by phosphoribohydrolase, an enzyme encoded by a gene named LONELY GUY (LOG). This reaction accounts for most of the cytokinin supply needed for regulating plant growth and development. In contrast, the LOG-independent pathway, in which dephosphorylation and deribosylation sequentially occur, is also thought to play a role in cytokinin biosynthesis, but the gene entity and physiological contribution have been elusive. In this study, we profiled the phytohormone content of chromosome segment substitution lines of Oryza sativa and searched for genes affecting the endogenous levels of cytokinin ribosides by quantitative trait loci analysis. Our approach identified a gene encoding an enzyme that catalyzes the deribosylation of cytokinin nucleoside precursors and other purine nucleosides. The cytokinin/purine riboside nucleosidase 1 (CPN1) we identified is a cell wall-localized protein. Loss-of-function mutations (cpn1) were created by inserting a Tos17-retrotransposon that altered the cytokinin composition in seedling shoots and leaf apoplastic fluid. The cpn1 mutation also abolished cytokinin riboside nucleosidase activity in leaf extracts and attenuated the trans-zeatin riboside-responsive expression of cytokinin marker genes. Grain yield of the mutants declined due to altered panicle morphology under field-grown conditions. These results suggest that the cell wall-localized LOG-independent cytokinin activating pathway catalyzed by CPN1 plays a role in cytokinin control of rice growth. Our finding broadens our spatial perspective of the cytokinin metabolic system.
Collapse
Affiliation(s)
- Mikiko Kojima
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama230-0045, Japan
| | - Nobue Makita
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama230-0045, Japan
| | - Kazuki Miyata
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya464-8601, Japan
| | - Mika Yoshino
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya464-8601, Japan
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama230-0045, Japan
| | - Miwa Ohashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya464-8601, Japan
| | - Alicia Surjana
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya464-8601, Japan
| | - Toru Kudo
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama230-0045, Japan
| | | | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama230-0045, Japan
| | - Akio Miyao
- National Institute of Agrobiological Sciences, Tsukuba305-8602, Japan
- Institute of Crop Science, National Agricultural and Food Research Organization, Tsukuba305-8518, Japan
| | | | - Tsuyu Ando
- National Institute of Agrobiological Sciences, Tsukuba305-8602, Japan
- Institute of Crop Science, National Agricultural and Food Research Organization, Tsukuba305-8518, Japan
- Institute of Society for Techno-innovation of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki305-0854, Japan
| | - Ayahiko Shomura
- National Institute of Agrobiological Sciences, Tsukuba305-8602, Japan
- Institute of Crop Science, National Agricultural and Food Research Organization, Tsukuba305-8518, Japan
- Institute of Society for Techno-innovation of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki305-0854, Japan
| | - Masahiro Yano
- National Institute of Agrobiological Sciences, Tsukuba305-8602, Japan
- Institute of Crop Science, National Agricultural and Food Research Organization, Tsukuba305-8518, Japan
| | - Toshio Yamamoto
- National Institute of Agrobiological Sciences, Tsukuba305-8602, Japan
- Institute of Crop Science, National Agricultural and Food Research Organization, Tsukuba305-8518, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki710-0046, Japan
| | - Tokunori Hobo
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya464-8601, Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama230-0045, Japan
| |
Collapse
|
6
|
Gao S, Sun Y, Chen X, Zhu C, Liu X, Wang W, Gan L, Lu Y, Schaarschmidt F, Herde M, Witte CP, Chen M. Pyrimidine catabolism is required to prevent the accumulation of 5-methyluridine in RNA. Nucleic Acids Res 2023; 51:7451-7464. [PMID: 37334828 PMCID: PMC10415118 DOI: 10.1093/nar/gkad529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
5-Methylated cytosine is a frequent modification in eukaryotic RNA and DNA influencing mRNA stability and gene expression. Here we show that free 5-methylcytidine (5mC) and 5-methyl-2'-deoxycytidine are generated from nucleic acid turnover in Arabidopsis thaliana, and elucidate how these cytidines are degraded, which is unclear in eukaryotes. First CYTIDINE DEAMINASE produces 5-methyluridine (5mU) and thymidine which are subsequently hydrolyzed by NUCLEOSIDE HYDROLASE 1 (NSH1) to thymine and ribose or deoxyribose. Interestingly, far more thymine is generated from RNA than from DNA turnover, and most 5mU is directly released from RNA without a 5mC intermediate, since 5-methylated uridine (m5U) is an abundant RNA modification (m5U/U ∼1%) in Arabidopsis. We show that m5U is introduced mainly by tRNA-SPECIFIC METHYLTRANSFERASE 2A and 2B. Genetic disruption of 5mU degradation in the NSH1 mutant causes m5U to occur in mRNA and results in reduced seedling growth, which is aggravated by external 5mU supplementation, also leading to more m5U in all RNA species. Given the similarities between pyrimidine catabolism in plants, mammals and other eukaryotes, we hypothesize that the removal of 5mU is an important function of pyrimidine degradation in many organisms, which in plants serves to protect RNA from stochastic m5U modification.
Collapse
Affiliation(s)
- Shangyu Gao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Chen
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Changhua Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoye Liu
- Department of Criminal Science and Technology, Nanjing Forest Police College, Nanjing 210023, China
| | - Wenlei Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lijun Gan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanwu Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Frank Schaarschmidt
- Department of Biostatistics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Mingjia Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Chen X, Kim SH, Rhee S, Witte CP. A plastid nucleoside kinase is involved in inosine salvage and control of purine nucleotide biosynthesis. THE PLANT CELL 2023; 35:510-528. [PMID: 36342213 PMCID: PMC9806653 DOI: 10.1093/plcell/koac320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/02/2022] [Indexed: 05/19/2023]
Abstract
In nucleotide metabolism, nucleoside kinases recycle nucleosides into nucleotides-a process called nucleoside salvage. Nucleoside kinases for adenosine, uridine, and cytidine have been characterized from many organisms, but kinases for inosine and guanosine salvage are not yet known in eukaryotes and only a few such enzymes have been described from bacteria. Here we identified Arabidopsis thaliana PLASTID NUCLEOSIDE KINASE 1 (PNK1), an enzyme highly conserved in plants and green algae belonging to the Phosphofructokinase B family. We demonstrate that PNK1 from A. thaliana is located in plastids and catalyzes the phosphorylation of inosine, 5-aminoimidazole-4-carboxamide-1-β-d-ribose (AICA ribonucleoside), and uridine but not guanosine in vitro, and is involved in inosine salvage in vivo. PNK1 mutation leads to increased flux into purine nucleotide catabolism and, especially in the context of defective uridine degradation, to over-accumulation of uridine and UTP as well as growth depression. The data suggest that PNK1 is involved in feedback regulation of purine nucleotide biosynthesis and possibly also pyrimidine nucleotide biosynthesis. We additionally report that cold stress leads to accumulation of purine nucleotides, probably by inducing nucleotide biosynthesis, but that this adjustment of nucleotide homeostasis to environmental conditions is not controlled by PNK1.
Collapse
Affiliation(s)
- Xiaoguang Chen
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Sang-Hoon Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Sangkee Rhee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| |
Collapse
|
8
|
Enzymes and cellular interplay required for flux of fixed nitrogen to ureides in bean nodules. Nat Commun 2022; 13:5331. [PMID: 36088455 PMCID: PMC9464200 DOI: 10.1038/s41467-022-33005-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022] Open
Abstract
Tropical legumes transport fixed nitrogen in form of ureides (allantoin and allantoate) over long distances from the nodules to the shoot. Ureides are formed in nodules from purine mononucleotides by a partially unknown reaction network that involves bacteroid-infected and uninfected cells. Here, we demonstrate by metabolic analysis of CRISPR mutant nodules of Phaseolus vulgaris defective in either xanthosine monophosphate phosphatase (XMPP), guanosine deaminase (GSDA), the nucleoside hydrolases 1 and 2 (NSH1, NSH2) or xanthine dehydrogenase (XDH) that nodule ureide biosynthesis involves these enzymes and requires xanthosine and guanosine but not inosine monophosphate catabolism. Interestingly, promoter reporter analyses revealed that XMPP, GSDA and XDH are expressed in infected cells, whereas NSH1, NSH2 and the promoters of the downstream enzymes urate oxidase (UOX) and allantoinase (ALN) are active in uninfected cells. The data suggest a complex cellular organization of ureide biosynthesis with three transitions between infected and uninfected cells. Tropical legumes export fixed nitrogen from nodules as ureides. Here, the authors describe how ureides are produced by several biosynthetic enzymes in different nodule cell types and provide explanations for metabolic compartmentation.
Collapse
|
9
|
Initiation of cytosolic plant purine nucleotide catabolism involves a monospecific xanthosine monophosphate phosphatase. Nat Commun 2021; 12:6846. [PMID: 34824243 PMCID: PMC8616923 DOI: 10.1038/s41467-021-27152-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/02/2021] [Indexed: 12/05/2022] Open
Abstract
In plants, guanosine monophosphate (GMP) is synthesized from adenosine monophosphate via inosine monophosphate and xanthosine monophosphate (XMP) in the cytosol. It has been shown recently that the catabolic route for adenylate-derived nucleotides bifurcates at XMP from this biosynthetic route. Dephosphorylation of XMP and GMP by as yet unknown phosphatases can initiate cytosolic purine nucleotide catabolism. Here we show that Arabidopsis thaliana possesses a highly XMP-specific phosphatase (XMPP) which is conserved in vascular plants. We demonstrate that XMPP catalyzes the irreversible entry reaction of adenylate-derived nucleotides into purine nucleotide catabolism in vivo, whereas the guanylates enter catabolism via an unidentified GMP phosphatase and guanosine deaminase which are important to maintain purine nucleotide homeostasis. We also present a crystal structure and mutational analysis of XMPP providing a rationale for its exceptionally high substrate specificity, which is likely required for the efficient catalysis of the very small XMP pool in vivo. Dephosphorylation of xanthosine monophosphate (XMP) initiates purine nucleotide catabolism in plant cells. Here the authors identify an XMP phosphatase from Arabidopsis that channels XMP towards catabolism in vivo and demonstrate the structural basis for its XMP specificity.
Collapse
|
10
|
Nguyen HN, Nguyen TQ, Kisiala AB, Emery RJN. Beyond transport: cytokinin ribosides are translocated and active in regulating the development and environmental responses of plants. PLANTA 2021; 254:45. [PMID: 34365553 DOI: 10.1007/s00425-021-03693-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Riboside type cytokinins are key components in cytokinin metabolism, transport, and sensitivity, making them important functional signals in plant growth and development and environmental stress responses. Cytokinin (CKs) are phytohormones that regulate multiple processes in plants and are critical for agronomy, as they are involved in seed filling and plant responses to biotic and abiotic stress. Among the over 30 identified CKs, there is uncertainty about the roles of many of the individual CK structural forms. Cytokinin free bases (CKFBs), have been studied in great detail, but, by comparison, roles of riboside-type CKs (CKRs) in CK metabolism and associated signaling pathways and their distal impacts on plant physiology remain largely unknown. Here, recent findings on CKR abundance, transport and localization, are summarized, and their importance in planta is discussed. The history of CKR analyses is reviewed, in the context of the determination of CK metabolic pathways, and research on CKR affinity for CK receptors, all of which yield essential insights into their functions. Recent studies suggest that CKR forms are a lot more than a group of transport CKs and, beyond this, they play important roles in plant development and responses to environmental stress. In this context, this review discusses the involvement of CKRs in plant development, and highlight the less anticipated functions of CKRs in abiotic stress tolerance. Based on this, possible mechanisms for CKR modes of action are proposed and experimental approaches to further uncover their roles and future biotechnological applications are suggested.
Collapse
Affiliation(s)
- Hai Ngoc Nguyen
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada.
| | - Thien Quoc Nguyen
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada
| | - Anna B Kisiala
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada
| |
Collapse
|
11
|
Straube H, Niehaus M, Zwittian S, Witte CP, Herde M. Enhanced nucleotide analysis enables the quantification of deoxynucleotides in plants and algae revealing connections between nucleoside and deoxynucleoside metabolism. THE PLANT CELL 2021; 33:270-289. [PMID: 33793855 PMCID: PMC8136904 DOI: 10.1093/plcell/koaa028] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/12/2020] [Indexed: 05/02/2023]
Abstract
Detecting and quantifying low-abundance (deoxy)ribonucleotides and (deoxy)ribonucleosides in plants remains difficult; this is a major roadblock for the investigation of plant nucleotide (NT) metabolism. Here, we present a method that overcomes this limitation, allowing the detection of all deoxy- and ribonucleotides as well as the corresponding nucleosides from the same plant sample. The method is characterized by high sensitivity and robustness enabling the reproducible detection and absolute quantification of these metabolites even if they are of low abundance. Employing the new method, we analyzed Arabidopsis thaliana null mutants of CYTIDINE DEAMINASE, GUANOSINE DEAMINASE, and NUCLEOSIDE HYDROLASE 1, demonstrating that the deoxyribonucleotide (dNT) metabolism is intricately interwoven with the catabolism of ribonucleosides (rNs). In addition, we discovered a function of rN catabolic enzymes in the degradation of deoxyribonucleosides in vivo. We also determined the concentrations of dNTs in several mono- and dicotyledonous plants, a bryophyte, and three algae, revealing a correlation of GC to AT dNT ratios with genomic GC contents. This suggests a link between the genome and the metabolome previously discussed but not experimentally addressed. Together, these findings demonstrate the potential of this new method to provide insight into plant NT metabolism.
Collapse
Affiliation(s)
- Henryk Straube
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Markus Niehaus
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Sarah Zwittian
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
- Author for correspondence:
| |
Collapse
|
12
|
Delgado-García E, Piedras P, Gómez-Baena G, García-Magdaleno IM, Pineda M, Gálvez-Valdivieso G. Nucleoside Metabolism Is Induced in Common Bean During Early Seedling Development. FRONTIERS IN PLANT SCIENCE 2021; 12:651015. [PMID: 33841480 PMCID: PMC8027947 DOI: 10.3389/fpls.2021.651015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Nucleoside hydrolases (NSH; nucleosidases) catalyze the cleavage of nucleosides into ribose and free nucleobases. These enzymes have been postulated as key elements controlling the ratio between nucleotide salvage and degradation. Moreover, they play a pivotal role in ureidic legumes by providing the substrate for the synthesis of ureides. Furthermore, nucleotide metabolism has a crucial role during germination and early seedling development, since the developing seedlings require high amount of nucleotide simultaneously to the mobilization of nutrient in cotyledons. In this study, we have cloned two nucleosidases genes from Phaseolus vulgaris, PvNSH1 and PvNSH2, expressed them as recombinant proteins, and characterized their catalytic activities. Both enzymes showed a broad range of substrate affinity; however, PvNSH1 exhibited the highest activity with uridine, followed by xanthosine, whereas PvNSH2 hydrolyses preferentially xanthosine and shows low activity with uridine. The study of the regulation of nucleosidases during germination and early postgerminative development indicated that nucleosidases are induced in cotyledons and embryonic axes just after the radicle emergence, coincident with the induction of nucleases activity and the synthesis of ureides in the embryonic axes, with no remarkable differences in the level of expression of both nucleosidase genes. In addition, nucleosides and nucleobase levels were determined as well in cotyledons and embryonic axes. Our results suggest that PvNSH1 and PvNSH2 play an important role in the mobilization of nutrients during this crucial stage of plant development.
Collapse
Affiliation(s)
- Elena Delgado-García
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas. Campus de Excelencia Internacional en Agroalimentación, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Pedro Piedras
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas. Campus de Excelencia Internacional en Agroalimentación, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Guadalupe Gómez-Baena
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional en Agroalimentación, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Isabel M. García-Magdaleno
- Servicio Central de Apoyo a la Investigación (SCAI), Unidad de Espectrometría de Masas y Cromatografía, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Manuel Pineda
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas. Campus de Excelencia Internacional en Agroalimentación, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Gregorio Gálvez-Valdivieso
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas. Campus de Excelencia Internacional en Agroalimentación, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
13
|
Lardon R, Wijnker E, Keurentjes J, Geelen D. The genetic framework of shoot regeneration in Arabidopsis comprises master regulators and conditional fine-tuning factors. Commun Biol 2020; 3:549. [PMID: 33009513 PMCID: PMC7532540 DOI: 10.1038/s42003-020-01274-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Clonal propagation and genetic engineering of plants requires regeneration, but many species are recalcitrant and there is large variability in explant responses. Here, we perform a genome-wide association study using 190 natural Arabidopsis accessions to dissect the genetics of shoot regeneration from root explants and several related in vitro traits. Strong variation is found in the recorded phenotypes and association mapping pinpoints a myriad of quantitative trait genes, including prior candidates and potential novel regeneration determinants. As most of these genes are trait- and protocol-specific, we propose a model wherein shoot regeneration is governed by many conditional fine-tuning factors and a few universal master regulators such as WUSCHEL, whose transcript levels correlate with natural variation in regenerated shoot numbers. Potentially novel genes in this last category are AT3G09925, SUP, EDA40 and DOF4.4. We urge future research in the field to consider multiple conditions and genetic backgrounds.
Collapse
Affiliation(s)
- Robin Lardon
- Department of Plants and Crops, Horticell Lab, Ghent University, 9000, Ghent, Belgium
| | - Erik Wijnker
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Joost Keurentjes
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Danny Geelen
- Department of Plants and Crops, Horticell Lab, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
14
|
Chen M, Witte CP. A Kinase and a Glycosylase Catabolize Pseudouridine in the Peroxisome to Prevent Toxic Pseudouridine Monophosphate Accumulation. THE PLANT CELL 2020; 32:722-739. [PMID: 31907295 PMCID: PMC7054038 DOI: 10.1105/tpc.19.00639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/25/2019] [Accepted: 01/06/2020] [Indexed: 05/02/2023]
Abstract
Pseudouridine (Ψ) is a frequent nucleoside modification that occurs in both noncoding RNAs and mRNAs. In pseudouridine, C5 of uracil is attached to the Rib via an unusual C-glycosidic bond. This RNA modification is introduced on the RNA by site-specific transglycosylation of uridine (U), a process mediated by pseudouridine synthases. RNA is subject to constant turnover, releasing free pseudouridine, but the metabolic fate of pseudouridine in eukaryotes is unclear. Here, we show that in Arabidopsis (Arabidopsis thaliana), pseudouridine is catabolized in the peroxisome by (1) a pseudouridine kinase (PUKI) from the PfkB family that generates 5'-pseudouridine monophosphate (5'-ΨMP) and (2) a ΨMP glycosylase (PUMY) that hydrolyzes ΨMP to uracil and ribose-5-phosphate. Compromising pseudouridine catabolism leads to strong pseudouridine accumulation and increased ΨMP content. ΨMP is toxic, causing delayed germination and growth inhibition, but compromising pseudouridine catabolism does not affect the Ψ/U ratios in RNA. The bipartite peroxisomal PUKI and PUMY are conserved in plants and algae, whereas some fungi and most animals (except mammals) possess a PUMY-PUKI fusion protein, likely in mitochondria. We propose that vacuolar turnover of ribosomal RNA produces most of the pseudouridine pool via 3'-ΨMP, which is imported through the cytosol into the peroxisomes for degradation by PUKI and PUMY, a process involving a toxic 5'-ΨMP intermediate.
Collapse
Affiliation(s)
- Mingjia Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Hannover 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Hannover 30419, Germany
| |
Collapse
|
15
|
Liu LL, You J, Zhu Z, Chen KY, Hu MM, Gu H, Liu ZW, Wang ZY, Wang YH, Liu SJ, Chen LM, Liu X, Tian YL, Zhou SR, Jiang L, Wan JM. WHITE STRIPE LEAF8, encoding a deoxyribonucleoside kinase, is involved in chloroplast development in rice. PLANT CELL REPORTS 2020; 39:19-33. [PMID: 31485784 DOI: 10.1007/s00299-019-02470-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
WSL8 encoding a deoxyribonucleoside kinase (dNK) that catalyzes the first step in the salvage pathway of nucleotide synthesis plays an important role in early chloroplast development in rice. The chloroplast is an organelle that converts light energy into chemical energy; therefore, the normal differentiation and development of chloroplast are pivotal for plant survival. Deoxyribonucleoside kinases (dNKs) play an important role in the salvage pathway of nucleotides. However, the relationship between dNKs and chloroplast development remains elusive. Here, we identified a white stripe leaf 8 (wsl8) mutant that exhibited a white stripe leaf phenotype at seedling stage (before the four-leaf stage). The mutant showed a significantly lower chlorophyll content and defective chloroplast morphology, whereas higher reactive oxygen species than the wild type. As the leaf developed, the chlorotic mutant plants gradually turned green, accompanied by the restoration in chlorophyll accumulation and chloroplast ultrastructure. Map-based cloning revealed that WSL8 encodes a dNK on chromosome 5. Compared with the wild type, a C-to-G single base substitution occurred in the wsl8 mutant, which caused a missense mutation (Leu 349 Val) and significantly reduced dNK enzyme activity. A subcellular localization experiment showed the WSL8 protein was targeted in the chloroplast and its transcripts were expressed in various tissues, with more abundance in young leaves and nodes. Ribosome and RNA-sequencing analysis indicated that some components and genes related to ribosome biosynthesis were down-regulated in the mutant. An exogenous feeding experiment suggested that the WSL8 performed the enzymic activity of thymidine kinase, especially functioning in the salvage synthesis of thymidine monophosphate. Our results highlight that the salvage pathway mediated by the dNK is essential for early chloroplast development in rice.
Collapse
Affiliation(s)
- L L Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - J You
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Z Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - K Y Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - M M Hu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - H Gu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Z W Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Z Y Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Y H Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - S J Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - L M Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - X Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Y L Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - S R Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - L Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - J M Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
16
|
Witte CP, Herde M. Nucleotide Metabolism in Plants. PLANT PHYSIOLOGY 2020; 182:63-78. [PMID: 31641078 PMCID: PMC6945853 DOI: 10.1104/pp.19.00955] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 05/14/2023]
Abstract
Nucleotide metabolism is an essential function in plants.
Collapse
Affiliation(s)
- Claus-Peter Witte
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Marco Herde
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| |
Collapse
|
17
|
Ohler L, Niopek-Witz S, Mainguet SE, Möhlmann T. Pyrimidine Salvage: Physiological Functions and Interaction with Chloroplast Biogenesis. PLANT PHYSIOLOGY 2019; 180:1816-1828. [PMID: 31101721 PMCID: PMC6670073 DOI: 10.1104/pp.19.00329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/01/2019] [Indexed: 05/07/2023]
Abstract
The synthesis of pyrimidine nucleotides, an essential process in every organism, is accomplished by de novo synthesis or by salvaging pyrimdines from e.g. nucleic acid turnover. Here, we identify two Arabidopsis (Arabidopsis thaliana) uridine/cytidine kinases, UCK1 and UCK2, which are located in the cytosol and are responsible for the majority of pyrimidine salvage activity in vivo. In addition, the chloroplast has an active uracil salvage pathway. Uracil phosphoribosyltransferase (UPP) catalyzes the initial step in this pathway and is required for the establishment of photosynthesis, as revealed by analysis of upp mutants. The upp knockout mutants are unable to grow photoautotrophically, and knockdown mutants exhibit a variegated phenotype, with leaves that have chlorotic pale areas. Moreover, the upp mutants did not show altered expression of chloroplast-encoded genes, but transcript accumulation of the LIGHT HARVESTING COMPLEX B nuclear genes LHCB1.2 and LHCB2.3 was markedly reduced. An active UPP homolog from Escherichia coli failed to complement the upp mutant phenotype when targeted to the chloroplast, suggesting that the catalytic function of UPP is not the important factor for the chloroplast phenotype. Indeed, the expression of catalytically inactive Arabidopsis UPP, generated by introduction of point mutations, did complement the upp chloroplast phenotype. These results suggest that UPP has a vital function in chloroplast biogenesis unrelated to its catalytic activity and driven by a moonlighting function.
Collapse
Affiliation(s)
- Lisa Ohler
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany
| | - Sandra Niopek-Witz
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany
| | - Samuel E Mainguet
- INRA-URGV, 91057 Evry, France - Université Paris-Sud 11, ED145 Sciences du Végétal, 91405 Orsay, France
| | - Torsten Möhlmann
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany
| |
Collapse
|
18
|
Liu CJ, Zhao Y, Zhang K. Cytokinin Transporters: Multisite Players in Cytokinin Homeostasis and Signal Distribution. FRONTIERS IN PLANT SCIENCE 2019; 10:693. [PMID: 31214217 PMCID: PMC6555093 DOI: 10.3389/fpls.2019.00693] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/08/2019] [Indexed: 05/04/2023]
Abstract
Cytokinins (CKs) are a group of mobile adenine derivatives that act as chemical signals regulating a variety of biological processes implicated in plant development and stress responses. Their synthesis, homeostasis, and signaling perception evoke complicated intracellular traffic, intercellular movement, and in short- and long-distance translocation. Over nearly two decades, subsets of membrane transporters have been recognized and implicated in the transport of CKs as well as the related adenylates. In this review, we aim to recapitulate the key progresses in exploration of the transporter proteins involved in cytokinin traffic and translocation, discuss their functional implications in the cytokinin-mediated paracrine and long-distance communication, and highlight some knowledge gaps and open issues toward comprehensively understanding the molecular mechanism of membrane transporters in controlling spatiotemporal distribution of cytokinin species.
Collapse
Affiliation(s)
- Chang-Jun Liu
- Department of Biology, Brookhaven National Laboratory, Upton, NY, United States
| | - Yunjun Zhao
- Department of Biology, Brookhaven National Laboratory, Upton, NY, United States
| | - Kewei Zhang
- Department of Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
19
|
Aoki MM, Seegobin M, Kisiala A, Noble A, Brunetti C, Emery RJN. Phytohormone metabolism in human cells: Cytokinins are taken up and interconverted in HeLa cell culture. FASEB Bioadv 2019; 1:320-331. [PMID: 32123835 PMCID: PMC6996375 DOI: 10.1096/fba.2018-00032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 01/30/2023] Open
Abstract
Cytokinins (CKs) encompass a group of phytohormones, known to orchestrate many critical processes in plant development. Excluding Archaea, CKs are pervasive among all kingdoms, but much less is reported about their metabolism beyond plants. Recent evidence from mammalian tissues indicates the presence of six additional CK forms beyond the previously identified, single mammalian CK, N6-isopentenyladenosine (i6A). There is limited understanding of CK biosynthesis pathways in mammalian systems; therefore, human cervical cancer (HeLa) cells were used to further characterize CK processing by tracking the interconversion of CKs into their various structural derivatives in mammalian cells in a time-course study. Through high-performance liquid chromatography-positive electrospray ionization-tandem mass spectrometry (HPLC-(+ESI)-MS/MS), we document changes in the functional profiles of endogenous CKs in a human cell line following metabolism by HeLa cell cultures. The nucleotide CK fraction (iPRP) was found exclusively within the cell pellet (0.34 pmol/106 cells), and the active free base (FB) form (iP) and riboside fraction (iPR) were found in greater abundance extracellularly (1.67 and 0.10 nmol/L respectively). For further confirmation, we demonstrate that HeLa cells metabolize an exogenously supplied CK, N6-benzyladenosine (BAR). In the HeLa culture supernatant, a 12-fold decrease in BAR concentration was observed within the first 24 hours of incubation accompanied by a fivefold increase in the FB form, N6-benzyladenine (BA). These findings support the hypothesis that HeLa cells have the enzymatic pathways required for the metabolism of both endogenous and exogenous CKs.
Collapse
Affiliation(s)
- Megan M. Aoki
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Mark Seegobin
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Anna Kisiala
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | | | - Craig Brunetti
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | | |
Collapse
|
20
|
Baccolini C, Witte CP. AMP and GMP Catabolism in Arabidopsis Converge on Xanthosine, Which Is Degraded by a Nucleoside Hydrolase Heterocomplex. THE PLANT CELL 2019; 31:734-751. [PMID: 30787180 PMCID: PMC6482636 DOI: 10.1105/tpc.18.00899] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 05/17/2023]
Abstract
Plants can fully catabolize purine nucleotides. A firmly established central intermediate is the purine base xanthine. In the current widely accepted model of plant purine nucleotide catabolism, xanthine can be generated in various ways involving either inosine and hypoxanthine or guanosine and xanthosine as intermediates. In a comprehensive mutant analysis involving single and multiple mutants of urate oxidase, xanthine dehydrogenase, nucleoside hydrolases, guanosine deaminase, and hypoxanthine guanine phosphoribosyltransferase, we demonstrate that purine nucleotide catabolism in Arabidopsis (Arabidopsis thaliana) mainly generates xanthosine, but not inosine and hypoxanthine, and that xanthosine is derived from guanosine deamination and a second source, likely xanthosine monophosphate dephosphorylation. Nucleoside hydrolase 1 (NSH1) is known to be essential for xanthosine hydrolysis, but the in vivo function of a second cytosolic nucleoside hydrolase, NSH2, is unclear. We demonstrate that NSH1 activates NSH2 in vitro and in vivo, forming a complex with almost two orders of magnitude higher catalytic efficiency for xanthosine hydrolysis than observed for NSH1 alone. Remarkably, an inactive NSH1 point mutant can activate NSH2 in vivo, fully preventing purine nucleoside accumulation in nsh1 background. Our data lead to an altered model of purine nucleotide catabolism that includes an NSH heterocomplex as a central component.
Collapse
Affiliation(s)
- Chiara Baccolini
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| |
Collapse
|
21
|
Kang PA, Oh J, Lee H, Witte CP, Rhee S. Crystal structure and mutational analyses of ribokinase from Arabidopsis thaliana. J Struct Biol 2019; 206:110-118. [PMID: 30822455 DOI: 10.1016/j.jsb.2019.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
Abstract
Nitrogen remobilization is a key issue in plants. Recent studies in Arabidopsis thaliana have revealed that nucleoside catabolism supplies xanthine, a nitrogen-rich compound, to the purine ring catabolic pathway, which liberates ammonia from xanthine for reassimilation into amino acids. Similarly, pyrimidine nuclosides are degraded and the pyrimidine bases are fully catabolized. During nucleoside hydrolysis, ribose is released, and ATP-dependent ribokinase (RBSK) phosphorylates ribose to ribose-5'-phosphate to allow its entry into central metabolism recycling the sugar carbons from nucleosides. In this study, we report the crystal structure of RBSK from Arapidopsis thaliana (AtRBSK) in three different ligation states: an unliganded state, a ternary complex with ribose and ATP, and a binary complex with ATP in the presence of Mg2+. In the monomeric conformation, AtRBSK is highly homologous to bacterial RBSKs, including the binding sites for a monovalent cation, ribose, and ATP. Its dimeric conformation, however, does not exhibit the noticeable ligand-induced changes that were observed in bacterial orthologs. Only in the presence of Mg2+, ATP in the binary complex adopts a catalytically competent conformation, providing a mode of action for Mg2+ in AtRBSK activity. The structural data combined with activity analyses of mutants allowed assignment of functional roles for the active site residues. Overall, this study provides the first structural characterization of plant RBSK, and experimentally validates a previous hypothetical model concerning the general reaction mechanism of RBSK.
Collapse
Affiliation(s)
- Pyeoung-Ann Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Juntaek Oh
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Haehee Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Claus-Peter Witte
- Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Hannover, Germany
| | - Sangkee Rhee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea.
| |
Collapse
|
22
|
Thicklin L, Shamsuddin A, Alahmry F, Gezley C, Brown E, Stone J, Burns-Carver E, Kline PC. Purification of a non-specific nucleoside hydrolase from Alaska pea seeds. Protein Expr Purif 2019; 154:140-146. [PMID: 30366031 DOI: 10.1016/j.pep.2018.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 11/23/2022]
Abstract
A non-specific nucleoside hydrolase has been isolated from germinated Alaska pea seeds. The enzyme catalyzes the hydrolysis of both purines and pyrimidines along with ribo- and deoxyribonucleosides. A purification scheme utilized ammonium sulfate precipitation, ion exchange chromatography and size exclusion chromatography, resulted in 103-fold purification with a recovery of 2.8%. The purified protein has a specific activity of 0.308 μmol/min•mg. The subunit molecular weight was 26103 Da and the enzyme exists as a dimer. The enzyme retains a significant amount of activity over a wide pH range with the maximum activity occurring at a pH of 6.0. The maximum activity was observed with adenosine as the substrate followed by inosine and guanosine, respectively. The Km for adenosine was 184 ± 34 μM and for inosine 283 ± 88 μM. In addition to the nucleoside hydrolase activity, adenosine deaminase activity was seen in the initial extract. Using adenosine as the substrate with the initial extract from the germinated seeds, the products adenine, inosine, and hypoxanthine were identified based on their retention times during reverse phase HPLC.
Collapse
Affiliation(s)
- Lendsey Thicklin
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Abdullah Shamsuddin
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Fiezah Alahmry
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Claire Gezley
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Erika Brown
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - James Stone
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Elizabeth Burns-Carver
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Paul C Kline
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
23
|
Le Ret M, Belcher S, Graindorge S, Wallet C, Koechler S, Erhardt M, Williams-Carrier R, Barkan A, Gualberto JM. Efficient Replication of the Plastid Genome Requires an Organellar Thymidine Kinase. PLANT PHYSIOLOGY 2018; 178:1643-1656. [PMID: 30305373 PMCID: PMC6288739 DOI: 10.1104/pp.18.00976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/01/2018] [Indexed: 05/17/2023]
Abstract
Thymidine kinase (TK) is a key enzyme of the salvage pathway that recycles thymidine nucleosides to produce deoxythymidine triphosphate. Here, we identified the single TK of maize (Zea mays), denoted CPTK1, as necessary in the replication of the plastidial genome (cpDNA), demonstrating the essential function of the salvage pathway during chloroplast biogenesis. CPTK1 localized to both plastids and mitochondria, and its absence resulted in an albino phenotype, reduced cpDNA copy number and a severe deficiency in plastidial ribosomes. Mitochondria were not affected, indicating they are less reliant on the salvage pathway. Arabidopsis (Arabidopsis thaliana) TKs, TK1A and TK1B, apparently resulted from a gene duplication after the divergence of monocots and dicots. Similar but less-severe effects were observed for Arabidopsis tk1a tk1b double mutants in comparison to those in maize cptk1 TK1B was important for cpDNA replication and repair in conditions of replicative stress but had little impact on the mitochondrial phenotype. In the maize cptk1 mutant, the DNA from the small single-copy region of the plastidial genome was reduced to a greater extent than other regions, suggesting preferential abortion of replication in this region. This was accompanied by the accumulation of truncated genomes that resulted, at least in part, from unfaithful microhomology-mediated repair. These and other results suggest that the loss of normal cpDNA replication elicits the mobilization of new replication origins around the rpoB (beta subunit of plastid-encoded RNA polymerase) transcription unit and imply that increased transcription at rpoB is associated with the initiation of cpDNA replication.
Collapse
Affiliation(s)
- Monique Le Ret
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Susan Belcher
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Stéfanie Graindorge
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Clémentine Wallet
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Sandrine Koechler
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Mathieu Erhardt
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| | | | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
24
|
Melino VJ, Casartelli A, George J, Rupasinghe T, Roessner U, Okamoto M, Heuer S. RNA Catabolites Contribute to the Nitrogen Pool and Support Growth Recovery of Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1539. [PMID: 30455708 PMCID: PMC6230992 DOI: 10.3389/fpls.2018.01539] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/01/2018] [Indexed: 05/23/2023]
Abstract
Turn-over of RNA and catabolism of nucleotides releases one to four ammonia molecules; the released nutrients being reassimilated into primary metabolism. Preliminary evidence indicates that monocots store high levels of free nucleotides and nucleosides but their potential as a source of internal organic nitrogen for use and remobilization is uncharted. Early tillering wheat plants were therefore starved of N over a 5-day time-course with examination of nucleic acid yields in whole shoots, young and old leaves and roots. Nucleic acids constituted ∼4% of the total N pool of N starved wheat plants, which was comparable with the N available from nitrate (NO3 -) and greater than that available from the sum of 20 proteinogenic amino acids. Methods were optimized to detect nucleotide (purine and pyrimidine) metabolites, and wheat orthologs of RNA degradation (TaRNS), nucleoside transport (TaENT1, TaENT3) and salvage (TaADK) were identified. It was found that N starved wheat roots actively catabolised RNA and specific purines but accumulated pyrimidines. Reduced levels of RNA corresponded with induction of TaRNS2, TaENT1, TaENT3, and TaADK in the roots. Reduced levels of GMP, guanine, xanthine, allantoin, allantoate and glyoxylate in N starved roots correlated with accumulation of allantoate and glyoxylate in the oldest leaf, suggesting translocation of allantoin. Furthermore, N starved wheat plants exogenously supplied with N in the form of purine catabolites grew and photosynthesized as well as those plants re-supplied with NO3 -. These results support the hypothesis that the nitrogen and carbon recovered from purine metabolism can support wheat growth.
Collapse
Affiliation(s)
- Vanessa Jane Melino
- Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
- School of Agriculture and Food, University of Melbourne, Parkville, VIC, Australia
| | - Alberto Casartelli
- Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Jessey George
- Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Thusitha Rupasinghe
- Metabolomics Australia, School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ute Roessner
- Metabolomics Australia, School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Mamoru Okamoto
- Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Sigrid Heuer
- Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
25
|
Ashihara H, Stasolla C, Fujimura T, Crozier A. Purine salvage in plants. PHYTOCHEMISTRY 2018; 147:89-124. [PMID: 29306799 DOI: 10.1016/j.phytochem.2017.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/10/2017] [Accepted: 12/14/2017] [Indexed: 05/04/2023]
Abstract
Purine bases and nucleosides are produced by turnover of nucleotides and nucleic acids as well as from some cellular metabolic pathways. Adenosine released from the S-adenosyl-L-methionine cycle is linked to many methyltransferase reactions, such as the biosynthesis of caffeine and glycine betaine. Adenine is produced by the methionine cycles, which is related to other biosynthesis pathways, such those for the production of ethylene, nicotianamine and polyamines. These purine compounds are recycled for nucleotide biosynthesis by so-called "salvage pathways". However, the salvage pathways are not merely supplementary routes for nucleotide biosynthesis, but have essential functions in many plant processes. In plants, the major salvage enzymes are adenine phosphoribosyltransferase (EC 2.4.2.7) and adenosine kinase (EC 2.7.1.20). AMP produced by these enzymes is converted to ATP and utilised as an energy source as well as for nucleic acid synthesis. Hypoxanthine, guanine, inosine and guanosine are salvaged to IMP and GMP by hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) and inosine/guanosine kinase (EC 2.7.1.73). In contrast to de novo purine nucleotide biosynthesis, synthesis by the salvage pathways is extremely favourable, energetically, for cells. In addition, operation of the salvage pathway reduces the intracellular levels of purine bases and nucleosides which inhibit other metabolic reactions. The purine salvage enzymes also catalyse the respective formation of cytokinin ribotides, from cytokinin bases, and cytokinin ribosides. Since cytokinin bases are the active form of cytokinin hormones, these enzymes act to maintain homeostasis of cellular cytokinin bioactivity. This article summarises current knowledge of purine salvage pathways and their possible function in plants and purine salvage activities associated with various physiological phenomena are reviewed.
Collapse
Affiliation(s)
- Hiroshi Ashihara
- Department of Biology, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610, Japan.
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Tatsuhito Fujimura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Alan Crozier
- Department of Nutrition, University of California, Davis, CA, 95616-5270, USA
| |
Collapse
|
26
|
Schroeder RY, Zhu A, Eubel H, Dahncke K, Witte CP. The ribokinases of Arabidopsis thaliana and Saccharomyces cerevisiae are required for ribose recycling from nucleotide catabolism, which in plants is not essential to survive prolonged dark stress. THE NEW PHYTOLOGIST 2018; 217:233-244. [PMID: 28921561 DOI: 10.1111/nph.14782] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
Nucleotide catabolism in Arabidopsis thaliana and Saccharomyces cerevisiae leads to the release of ribose, which requires phosphorylation to ribose-5-phosphate mediated by ribokinase (RBSK). We aimed to characterize RBSK in plants and yeast, to quantify the contribution of plant nucleotide catabolism to the ribose pool, and to investigate whether ribose carbon contributes to dark stress survival of plants. We performed a phylogenetic analysis and determined the kinetic constants of plant-expressed Arabidopsis and yeast RBSKs. Using mass spectrometry, several metabolites were quantified in AtRBSK mutants and double mutants with genes of nucleoside catabolism. Additionally, the dark stress performance of several nucleotide metabolism mutants and rbsk was compared. The plant PfkB family of sugar kinases forms nine major clades likely representing distinct biochemical functions, one of them RBSK. Nucleotide catabolism is the dominant ribose source in plant metabolism and is highly induced by dark stress. However, rbsk cannot be discerned from the wild type in dark stress. Interestingly, the accumulation of guanosine in a guanosine deaminase mutant strongly enhances dark stress symptoms. Although nucleotide catabolism contributes to carbon mobilization upon darkness and is the dominant source of ribose, the contribution appears to be of minor importance for dark stress survival.
Collapse
Affiliation(s)
- Rebekka Y Schroeder
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Anting Zhu
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Holger Eubel
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Kathleen Dahncke
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, Berlin, 14195, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| |
Collapse
|
27
|
Riggs JW, Rockwell NC, Cavales PC, Callis J. Identification of the Plant Ribokinase and Discovery of a Role for Arabidopsis Ribokinase in Nucleoside Metabolism. J Biol Chem 2016; 291:22572-22582. [PMID: 27601466 DOI: 10.1074/jbc.m116.754689] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/06/2016] [Indexed: 12/30/2022] Open
Abstract
Ribose can be used for energy or as a component of several important biomolecules, but for it to be used in either capacity it must first be phosphorylated by ribokinase (RBSK). RBSK proteins are part of the phosphofructokinase-B (pfkB) family of carbohydrate kinases. Sequence comparisons of pfkB proteins from the model plant Arabidopsis thaliana with the human and Escherichia coli RBSK identified a single candidate RBSK, At1g17160 (AtRBSK). AtRBSK is more similar to predicted RBSKs from other plant species and known mammalian and prokaryotic RBSK than to all other PfkB proteins in Arabidopsis AtRBSK contains a predicted chloroplast transit peptide, and we confirmed plastid localization using AtRBSK fused to YFP. Structure prediction software verified that the AtRBSK sequence mapped onto a known RBSK structure. Kinetic parameters of purified recombinant AtRBSK were determined to be Kmribose = 150 μm ± 17 μm, KmATP = 45 μm ± 5.6 μm, and kcat = 2.0 s-1 Substrate inhibition was observed for AtRBSK (KiATP = 2.44 mm ± 0.36 mm), as has been demonstrated for other RBSK proteins. Ribose accumulated in Arabidopsis plants lacking AtRBSK. Such plants grew normally unless media was supplemented with ribose, which led to chlorosis and growth inhibition. Both chlorosis and ribose accumulation were abolished upon the introduction of a transgene expressing AtRBSK-MYC, demonstrating that the loss of protein is responsible for ribose hypersensitivity. Ribose accumulation in plants lacking AtRBSK was reduced in plants also deficient in the nucleoside ribohydrolase NSH1, linking AtRBSK activity to nucleoside metabolism.
Collapse
Affiliation(s)
- John W Riggs
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Nathan C Rockwell
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Philip C Cavales
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Judy Callis
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| |
Collapse
|
28
|
Chen M, Herde M, Witte CP. Of the Nine Cytidine Deaminase-Like Genes in Arabidopsis, Eight Are Pseudogenes and Only One Is Required to Maintain Pyrimidine Homeostasis in Vivo. PLANT PHYSIOLOGY 2016; 171:799-809. [PMID: 27208239 PMCID: PMC4902590 DOI: 10.1104/pp.15.02031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/31/2016] [Indexed: 05/17/2023]
Abstract
CYTIDINE DEAMINASE (CDA) catalyzes the deamination of cytidine to uridine and ammonia in the catabolic route of C nucleotides. The Arabidopsis (Arabidopsis thaliana) CDA gene family comprises nine members, one of which (AtCDA) was shown previously in vitro to encode an active CDA. A possible role in C-to-U RNA editing or in antiviral defense has been discussed for other members. A comprehensive bioinformatic analysis of plant CDA sequences, combined with biochemical functionality tests, strongly suggests that all Arabidopsis CDA family members except AtCDA are pseudogenes and that most plants only require a single CDA gene. Soybean (Glycine max) possesses three CDA genes, but only two encode functional enzymes and just one has very high catalytic efficiency. AtCDA and soybean CDAs are located in the cytosol. The functionality of AtCDA in vivo was demonstrated with loss-of-function mutants accumulating high amounts of cytidine but also CMP, cytosine, and some uridine in seeds. Cytidine hydrolysis in cda mutants is likely caused by NUCLEOSIDE HYDROLASE1 (NSH1) because cytosine accumulation is strongly reduced in a cda nsh1 double mutant. Altered responses of the cda mutants to fluorocytidine and fluorouridine indicate that a dual specific nucleoside kinase is involved in cytidine as well as uridine salvage. CDA mutants display a reduction in rosette size and have fewer leaves compared with the wild type, which is probably not caused by defective pyrimidine catabolism but by the accumulation of pyrimidine catabolism intermediates reaching toxic concentrations.
Collapse
Affiliation(s)
- Mingjia Chen
- Leibniz University Hannover, Institute of Plant Nutrition, Department of Molecular Nutrition and Biochemistry of Plants, 30419 Hannover, Germany
| | - Marco Herde
- Leibniz University Hannover, Institute of Plant Nutrition, Department of Molecular Nutrition and Biochemistry of Plants, 30419 Hannover, Germany
| | - Claus-Peter Witte
- Leibniz University Hannover, Institute of Plant Nutrition, Department of Molecular Nutrition and Biochemistry of Plants, 30419 Hannover, Germany
| |
Collapse
|
29
|
Xu J, Zhang L, Yang DL, Li Q, He Z. Thymidine kinases share a conserved function for nucleotide salvage and play an essential role in Arabidopsis thaliana growth and development. THE NEW PHYTOLOGIST 2015; 208:1089-1103. [PMID: 26139575 DOI: 10.1111/nph.13530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/23/2015] [Indexed: 06/04/2023]
Abstract
Thymidine kinases (TKs) are important components in the nucleotide salvage pathway. However, knowledge about plant TKs is quite limited. In this study, the molecular function of TKs in Arabidopsis thaliana was investigated. Two TKs were identified and named AtTK1 and AtTK2. Expression of both genes was ubiquitous, but AtTK1 was strongly expressed in high-proliferation tissues. AtTK1 was localized to the cytosol, whereas AtTK2 was localized to the mitochondria. Mutant analysis indicated that the two genes function coordinately to sustain normal plant development. Enzymatic assays showed that the two TK proteins shared similar catalytic specificity for pyrimidine nucleosides. They were able to complement an Escherichia coli strain lacking TK activity. 5'-Fluorodeoxyuridine (FdU) resistance and 5-ethynyl 2'-deoxyuridine (EdU) incorporation assays confirmed their activity in vivo. Furthermore, the tk mutant phenotype could be alleviated by nucleotide feeding, establishing that the biosynthesis of pyrimidine nucleotides was disrupted by the TK deficiency. Finally, both human and rice (Oryza sativa) TKs were able to rescue the tk mutants, demonstrating the functional conservation of TKs across organisms. Taken together, our findings clarify the specialized function of two TKs in A. thaliana and establish that the salvage pathway mediated by the kinases is essential for plant growth and development.
Collapse
Affiliation(s)
- Jing Xu
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lin Zhang
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
30
|
Soto D, Córdoba JP, Villarreal F, Bartoli C, Schmitz J, Maurino VG, Braun HP, Pagnussat GC, Zabaleta E. Functional characterization of mutants affected in the carbonic anhydrase domain of the respiratory complex I in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:831-844. [PMID: 26148112 DOI: 10.1111/tpj.12930] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 06/04/2023]
Abstract
The NADH-ubiquinone oxidoreductase complex (complex I) (EC 1.6.5.3) is the main entrance site of electrons into the respiratory chain. In a variety of eukaryotic organisms, except animals and fungi (Opisthokonta), it contains an extra domain comprising trimers of putative γ-carbonic anhydrases, named the CA domain, which has been proposed to be essential for assembly of complex I. However, its physiological role in plants is not fully understood. Here, we report that Arabidopsis mutants defective in two CA subunits show an altered photorespiratory phenotype. Mutants grown in ambient air show growth retardation compared to wild-type plants, a feature that is reversed by cultivating plants in a high-CO2 atmosphere. Moreover, under photorespiratory conditions, carbon assimilation is diminished and glycine accumulates, suggesting an imbalance with respect to photorespiration. Additionally, transcript levels of specific CA subunits are reduced in plants grown under non-photorespiratory conditions. Taken together, these results suggest that the CA domain of plant complex I contributes to sustaining efficient photosynthesis under ambient (photorespiratory) conditions.
Collapse
Affiliation(s)
- Débora Soto
- Instituto de Investigaciones Biológicas IIB/CONICET, Universidad Nacional de Mar del Plata, cc 1245, 7600, Mar del Plata, Argentina
| | - Juan Pablo Córdoba
- Instituto de Investigaciones Biológicas IIB/CONICET, Universidad Nacional de Mar del Plata, cc 1245, 7600, Mar del Plata, Argentina
| | - Fernando Villarreal
- Instituto de Investigaciones Biológicas IIB/CONICET, Universidad Nacional de Mar del Plata, cc 1245, 7600, Mar del Plata, Argentina
| | - Carlos Bartoli
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata/CONICET La Plata, cc 327, 1900, La Plata, Argentina
| | - Jessica Schmitz
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Cluster of Excellence on Plant Sciences, Heinrich Heine Universität, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Veronica G Maurino
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Cluster of Excellence on Plant Sciences, Heinrich Heine Universität, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Hans Peter Braun
- Institute for Plant Genetics, Leibniz Universität Hannover, Herrenhäuserstraße 2, D-30419, Hannover, Germany
| | - Gabriela C Pagnussat
- Instituto de Investigaciones Biológicas IIB/CONICET, Universidad Nacional de Mar del Plata, cc 1245, 7600, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas IIB/CONICET, Universidad Nacional de Mar del Plata, cc 1245, 7600, Mar del Plata, Argentina
| |
Collapse
|
31
|
Daumann M, Fischer M, Niopek-Witz S, Girke C, Möhlmann T. Apoplastic Nucleoside Accumulation in Arabidopsis Leads to Reduced Photosynthetic Performance and Increased Susceptibility Against Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2015; 6:1158. [PMID: 26779190 PMCID: PMC4688390 DOI: 10.3389/fpls.2015.01158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/07/2015] [Indexed: 05/15/2023]
Abstract
Interactions between plant and pathogen often occur in the extracellular space and especially nucleotides like ATP and NAD have been identified as key players in this scenario. Arabidopsis mutants accumulating nucleosides in the extracellular space were generated and studied with respect to susceptibility against Botrytis cinerea infection and general plant fitness determined as photosynthetic performance. The mutants used are deficient in the main nucleoside uptake system ENT3 and the extracellular nucleoside hydrolase NSH3. When grown on soil but not in hydroponic culture, these plants markedly accumulate adenosine and uridine in leaves. This nucleoside accumulation was accompanied by reduced photosystem II efficiency and altered expression of photosynthesis related genes. Moreover, a higher susceptibility toward Botrytis cinerea infection and a reduced induction of pathogen related genes PR1 and WRKY33 was observed. All these effects did not occur in hydroponically grown plants substantiating a contribution of extracellular nucleosides to these effects. Whether reduced general plant fitness, altered pathogen response capability or more direct interactions with the pathogen are responsible for these observations is discussed.
Collapse
|
32
|
Niopek-Witz S, Deppe J, Lemieux MJ, Möhlmann T. Biochemical characterization and structure–function relationship of two plant NCS2 proteins, the nucleobase transporters NAT3 and NAT12 from Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3025-35. [DOI: 10.1016/j.bbamem.2014.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/30/2014] [Accepted: 08/09/2014] [Indexed: 11/28/2022]
|
33
|
Liu F, Xiong X, Wu L, Fu D, Hayward A, Zeng X, Cao Y, Wu Y, Li Y, Wu G. BraLTP1, a lipid transfer protein gene involved in epicuticular wax deposition, cell proliferation and flower development in Brassica napus. PLoS One 2014; 9:e110272. [PMID: 25314222 PMCID: PMC4196963 DOI: 10.1371/journal.pone.0110272] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022] Open
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) constitute large multigene families that possess complex physiological functions, many of which remain unclear. This study isolated and characterized the function of a lipid transfer protein gene, BraLTP1 from Brassica rapa, in the important oilseed crops Brassica napus. BraLTP1 encodes a predicted secretory protein, in the little known VI Class of nsLTP families. Overexpression of BnaLTP1 in B. napus caused abnormal green coloration and reduced wax deposition on leaves and detailed wax analysis revealed 17-80% reduction in various major wax components, which resulted in significant water-loss relative to wild type. BnaLTP1 overexpressing leaves exhibited morphological disfiguration and abaxially curled leaf edges, and leaf cross-sections revealed cell overproliferation that was correlated to increased cytokinin levels (tZ, tZR, iP, and iPR) in leaves and high expression of the cytokinin biosynthsis gene IPT3. BnaLTP1-overexpressing plants also displayed morphological disfiguration of flowers, with early-onset and elongated carpel development and outwardly curled stamen. This was consistent with altered expression of a a number of ABC model genes related to flower development. Together, these results suggest that BraLTP1 is a new nsLTP gene involved in wax production or deposition, with additional direct or indirect effects on cell division and flower development.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaojuan Xiong
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lei Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Donghui Fu
- The Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Alice Hayward
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Queensland, Australia
| | - Xinhua Zeng
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yinglong Cao
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuhua Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yunjing Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
34
|
Hauck OK, Scharnberg J, Escobar NM, Wanner G, Giavalisco P, Witte CP. Uric acid accumulation in an Arabidopsis urate oxidase mutant impairs seedling establishment by blocking peroxisome maintenance. THE PLANT CELL 2014; 26:3090-100. [PMID: 25052714 PMCID: PMC4145134 DOI: 10.1105/tpc.114.124008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/30/2014] [Accepted: 07/04/2014] [Indexed: 05/21/2023]
Abstract
Purine nucleotides can be fully catabolized by plants to recycle nutrients. We have isolated a urate oxidase (uox) mutant of Arabidopsis thaliana that accumulates uric acid in all tissues, especially in the developing embryo. The mutant displays a reduced germination rate and is unable to establish autotrophic growth due to severe inhibition of cotyledon development and nutrient mobilization from the lipid reserves in the cotyledons. The uox mutant phenotype is suppressed in a xanthine dehydrogenase (xdh) uox double mutant, demonstrating that the underlying cause is not the defective purine base catabolism, or the lack of UOX per se, but the elevated uric acid concentration in the embryo. Remarkably, xanthine accumulates to similar levels in the xdh mutant without toxicity. This is paralleled in humans, where hyperuricemia is associated with many diseases whereas xanthinuria is asymptomatic. Searching for the molecular cause of uric acid toxicity, we discovered a local defect of peroxisomes (glyoxysomes) mostly confined to the cotyledons of the mature embryos, which resulted in the accumulation of free fatty acids in dry seeds. The peroxisomal defect explains the developmental phenotypes of the uox mutant, drawing a novel link between uric acid and peroxisome function, which may be relevant beyond plants.
Collapse
Affiliation(s)
- Oliver K Hauck
- Freie Universität Berlin, Dahlem Centre of Plant Sciences, Department of Plant Biochemistry, 14195 Berlin, Germany
| | - Jana Scharnberg
- Freie Universität Berlin, Dahlem Centre of Plant Sciences, Department of Plant Biochemistry, 14195 Berlin, Germany
| | - Nieves Medina Escobar
- Freie Universität Berlin, Dahlem Centre of Plant Sciences, Department of Plant Biochemistry, 14195 Berlin, Germany
| | - Gerhard Wanner
- Biozentrum der Ludwig-Maximillians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Patrick Giavalisco
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Claus-Peter Witte
- Freie Universität Berlin, Dahlem Centre of Plant Sciences, Department of Plant Biochemistry, 14195 Berlin, Germany
| |
Collapse
|
35
|
Kunz S, Pesquet E, Kleczkowski LA. Functional dissection of sugar signals affecting gene expression in Arabidopsis thaliana. PLoS One 2014; 9:e100312. [PMID: 24950222 PMCID: PMC4065033 DOI: 10.1371/journal.pone.0100312] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/26/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sugars modulate expression of hundreds of genes in plants. Previous studies on sugar signaling, using intact plants or plant tissues, were hampered by tissue heterogeneity, uneven sugar transport and/or inter-conversions of the applied sugars. This, in turn, could obscure the identity of a specific sugar that acts as a signal affecting expression of given gene in a given tissue or cell-type. METHODOLOGY/PRINCIPAL FINDINGS To bypass those biases, we have developed a novel biological system, based on stem-cell-like Arabidopsis suspension culture. The cells were grown in a hormone-free medium and were sustained on xylose as the only carbon source. Using functional genomics we have identified 290 sugar responsive genes, responding rapidly (within 1 h) and specifically to low concentration (1 mM) of glucose, fructose and/or sucrose. For selected genes, the true nature of the signaling sugar molecules and sites of sugar perception were further clarified using non-metabolizable sugar analogues. Using both transgenic and wild-type A. thaliana seedlings, it was shown that the expression of selected sugar-responsive genes was not restricted to a specific tissue or cell type and responded to photoperiod-related changes in sugar availability. This suggested that sugar-responsiveness of genes identified in the cell culture system was not biased toward heterotrophic background and resembled that in whole plants. CONCLUSIONS Altogether, our research strategy, using a combination of cell culture and whole plants, has provided an unequivocal evidence for the identity of sugar-responsive genes and the identity of the sugar signaling molecules, independently from their inter-conversions or use for energy metabolism.
Collapse
Affiliation(s)
- Sabine Kunz
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Edouard Pesquet
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Leszek A. Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
36
|
A purine nucleoside phosphorylase in Solanum tuberosum L. (potato) with specificity for cytokinins contributes to the duration of tuber endodormancy. Biochem J 2014; 458:225-37. [PMID: 24325449 DOI: 10.1042/bj20130792] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
StCKP1 (Solanum tuberosum cytokinin riboside phosphorylase) catalyses the interconversion of the N9-riboside form of the plant hormone CK (cytokinin), a subset of purines, with its most active free base form. StCKP1 prefers CK to unsubstituted aminopurines. The protein was discovered as a CK-binding activity in extracts of tuberizing potato stolon tips, from which it was isolated by affinity chromatography. The N-terminal amino acid sequence matched the translation product of a set of ESTs, enabling a complete mRNA sequence to be obtained by RACE-PCR. The predicted polypeptide includes a cleavable signal peptide and motifs for purine nucleoside phosphorylase activity. The expressed protein was assayed for purine nucleoside phosphorylase activity against CKs and adenine/adenosine. Isopentenyladenine, trans-zeatin, dihydrozeatin and adenine were converted into ribosides in the presence of ribose 1-phosphate. In the opposite direction, isopentenyladenosine, trans-zeatin riboside, dihydrozeatin riboside and adenosine were converted into their free bases in the presence of Pi. StCKP1 had no detectable ribohydrolase activity. Evidence is presented that StCKP1 is active in tubers as a negative regulator of CKs, prolonging endodormancy by a chill-reversible mechanism.
Collapse
|
37
|
Li Y, Nie Y, Zhang Z, Ye Z, Zou X, Zhang L, Wang Z. Comparative proteomic analysis of methyl jasmonate-induced defense responses in different rice cultivars. Proteomics 2014; 14:1088-101. [DOI: 10.1002/pmic.201300104] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 01/20/2014] [Accepted: 01/24/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Yunfeng Li
- Laboratory of Physiological Plant Pathology; South China Agricultural University; Guangzhou P. R. China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control; South China Agricultural University; Guangzhou P. R. China
| | - Yanfang Nie
- College of Natural Resources and Environment; South China Agricultural University; Guangzhou P. R. China
| | - Zhihui Zhang
- Laboratory of Physiological Plant Pathology; South China Agricultural University; Guangzhou P. R. China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control; South China Agricultural University; Guangzhou P. R. China
| | - Zhijian Ye
- Laboratory of Physiological Plant Pathology; South China Agricultural University; Guangzhou P. R. China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control; South China Agricultural University; Guangzhou P. R. China
| | - Xiaotao Zou
- Laboratory of Physiological Plant Pathology; South China Agricultural University; Guangzhou P. R. China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control; South China Agricultural University; Guangzhou P. R. China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control; South China Agricultural University; Guangzhou P. R. China
| | - Zhenzhong Wang
- Laboratory of Physiological Plant Pathology; South China Agricultural University; Guangzhou P. R. China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control; South China Agricultural University; Guangzhou P. R. China
| |
Collapse
|
38
|
Fonseca MV, Sauer JD, Crepin S, Byrne B, Swanson MS. The phtC-phtD locus equips Legionella pneumophila for thymidine salvage and replication in macrophages. Infect Immun 2014; 82:720-30. [PMID: 24478086 PMCID: PMC3911408 DOI: 10.1128/iai.01043-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/24/2013] [Indexed: 11/20/2022] Open
Abstract
The phagosomal transporter (Pht) family of the major facilitator superfamily (MFS) is encoded by phylogenetically related intracellular gammaproteobacteria, including the opportunistic pathogen Legionella pneumophila. The location of the pht genes between the putative thymidine kinase (tdk) and phosphopentomutase (deoB) genes suggested that the phtC and phtD loci contribute to thymidine salvage in L. pneumophila. Indeed, a phtC(+) allele in trans restored pyrimidine uptake to an Escherichia coli mutant that lacked all known nucleoside transporters, whereas a phtD(+) allele did not. The results of phenotypic analyses of L. pneumophila strains lacking phtC or phtD strongly indicate that L. pneumophila requires PhtC and PhtD function under conditions where sustained dTMP synthesis is compromised. First, in broth cultures that mimicked thymidine limitation or starvation, L. pneumophila exhibited a marked requirement for PhtC function. Conversely, mutation of phtD conferred a survival advantage. Second, in medium that lacked thymidine, multicopy phtC(+) or phtD(+) alleles enhanced the survival of L. pneumophila thymidylate synthase (thyA)-deficient strains, which cannot synthesize dTMP endogenously. Third, under conditions in which transport of the pyrimidine nucleoside analog 5-fluorodeoxyuridine (FUdR) would inhibit growth, PhtC and PhtD conferred a growth advantage to L. pneumophila thyA(+) strains. Finally, when cultured in macrophages, L. pneumophila required the phtC-phtD locus to replicate. Accordingly, we propose that PhtC and PhtD contribute to protect L. pneumophila from dTMP starvation during its intracellular life cycle.
Collapse
Affiliation(s)
- Maris V Fonseca
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
39
|
Girke C, Daumann M, Niopek-Witz S, Möhlmann T. Nucleobase and nucleoside transport and integration into plant metabolism. FRONTIERS IN PLANT SCIENCE 2014; 5:443. [PMID: 25250038 PMCID: PMC4158802 DOI: 10.3389/fpls.2014.00443] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/18/2014] [Indexed: 05/18/2023]
Abstract
Nucleotide metabolism is an essential process in all living organisms. Besides newly synthesized nucleotides, the recycling (salvage) of partially degraded nucleotides, i.e., nucleosides and nucleobases serves to keep the homeostasis of the nucleotide pool. Both types of metabolites are substrates of at least six families of transport proteins in Arabidopsis thaliana (Arabidopsis) with a total of 49 members. In the last years several members of such transport proteins have been analyzed allowing to present a more detailed picture of nucleoside and nucleobase transport and the physiological function of these processes. Besides functioning in nucleotide metabolism it turned out that individual members of the before named transporters exhibit the capacity to transport a wide range of different substrates including vitamins and phytohormones. The aim of this review is to summarize the current knowledge on nucleobase and nucleoside transport processes in plants and integrate this into nucleotide metabolism in general. Thereby, we will focus on those proteins which have been characterized at the biochemical level.
Collapse
Affiliation(s)
| | | | | | - Torsten Möhlmann
- *Correspondence: Torsten Möhlmann, Pflanzenphysiologie, Universität Kaiserslautern, Erwin-Schrödinger-Str., Postfach 3049, D-67653 Kaiserslautern, Germany e-mail:
| |
Collapse
|
40
|
Nucleotides and Nucleosides: Transport, Metabolism, and Signaling Function of Extracellular ATP. PROGRESS IN BOTANY 2014. [DOI: 10.1007/978-3-642-38797-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
Hann DR, Domínguez-Ferreras A, Motyka V, Dobrev PI, Schornack S, Jehle A, Felix G, Chinchilla D, Rathjen JP, Boller T. The Pseudomonas type III effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity. THE NEW PHYTOLOGIST 2014; 201:585-598. [PMID: 24124900 DOI: 10.1111/nph.12544] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/02/2013] [Indexed: 05/26/2023]
Abstract
We characterized the molecular function of the Pseudomonas syringae pv. tomato DC3000 (Pto) effector HopQ1. In silico studies suggest that HopQ1 might possess nucleoside hydrolase activity based on the presence of a characteristic aspartate motif. Transgenic Arabidopsis lines expressing HopQ1 or HopQ1 aspartate mutant variants were characterized with respect to flagellin triggered immunity, phenotype and changes in phytohormone content by high-performance liquid chromatography-MS (HPLC-MS). We found that HopQ1, but not its aspartate mutants, suppressed all tested immunity marker assays. Suppression of immunity was the result of a lack of the flagellin receptor FLS2, whose gene expression was abolished by HopQ1 in a promoter-dependent manner. Furthermore, HopQ1 induced cytokinin signaling in Arabidopsis and the elevation in cytokinin signaling appears to be responsible for the attenuation of FLS2 expression. We conclude that HopQ1 can activate cytokinin signaling and that moderate activation of cytokinin signaling leads to suppression of FLS2 accumulation and thus defense signaling.
Collapse
Affiliation(s)
- Dagmar R Hann
- Section of Plant Physiology, Botanical Institute, Hebelstrasse 1, CH-4056, Basel, Switzerland
| | - Ana Domínguez-Ferreras
- Section of Plant Physiology, Botanical Institute, Hebelstrasse 1, CH-4056, Basel, Switzerland
| | - Vaclav Motyka
- Institute of Experimental Botany AS CR, Rozvojová 263, 165 02, Praha 6 - Lysolaje, Czech Republic
| | - Petre I Dobrev
- Institute of Experimental Botany AS CR, Rozvojová 263, 165 02, Praha 6 - Lysolaje, Czech Republic
| | | | - Anna Jehle
- Forschungsgruppe Pflanzenbiochemie, ZMBP - Zentrum für Molekularbiologie der Pflanzen, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Georg Felix
- Forschungsgruppe Pflanzenbiochemie, ZMBP - Zentrum für Molekularbiologie der Pflanzen, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Delphine Chinchilla
- Section of Plant Physiology, Botanical Institute, Hebelstrasse 1, CH-4056, Basel, Switzerland
| | - John P Rathjen
- The Australian National University, The Linnaeus Building, Building 134, Linnaeus Way, Canberra, ACT, 0200, Australia
| | - Thomas Boller
- Section of Plant Physiology, Botanical Institute, Hebelstrasse 1, CH-4056, Basel, Switzerland
| |
Collapse
|
42
|
Kopečná M, Blaschke H, Kopečný D, Vigouroux A, Končitíková R, Novák O, Kotland O, Strnad M, Moréra S, von Schwartzenberg K. Structure and function of nucleoside hydrolases from Physcomitrella patens and maize catalyzing the hydrolysis of purine, pyrimidine, and cytokinin ribosides. PLANT PHYSIOLOGY 2013; 163:1568-83. [PMID: 24170203 PMCID: PMC3850210 DOI: 10.1104/pp.113.228775] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We present a comprehensive characterization of the nucleoside N-ribohydrolase (NRH) family in two model plants, Physcomitrella patens (PpNRH) and maize (Zea mays; ZmNRH), using in vitro and in planta approaches. We identified two NRH subclasses in the plant kingdom; one preferentially targets the purine ribosides inosine and xanthosine, while the other is more active toward uridine and xanthosine. Both subclasses can hydrolyze plant hormones such as cytokinin ribosides. We also solved the crystal structures of two purine NRHs, PpNRH1 and ZmNRH3. Structural analyses, site-directed mutagenesis experiments, and phylogenetic studies were conducted to identify the residues responsible for the observed differences in substrate specificity between the NRH isoforms. The presence of a tyrosine at position 249 (PpNRH1 numbering) confers high hydrolase activity for purine ribosides, while an aspartate residue in this position confers high activity for uridine. Bud formation is delayed by knocking out single NRH genes in P. patens, and under conditions of nitrogen shortage, PpNRH1-deficient plants cannot salvage adenosine-bound nitrogen. All PpNRH knockout plants display elevated levels of certain purine and pyrimidine ribosides and cytokinins that reflect the substrate preferences of the knocked out enzymes. NRH enzymes thus have functions in cytokinin conversion and activation as well as in purine and pyrimidine metabolism.
Collapse
|
43
|
Dahncke K, Witte CP. Plant purine nucleoside catabolism employs a guanosine deaminase required for the generation of xanthosine in Arabidopsis. THE PLANT CELL 2013; 25:4101-9. [PMID: 24130159 PMCID: PMC3877791 DOI: 10.1105/tpc.113.117184] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/19/2013] [Accepted: 09/27/2013] [Indexed: 05/17/2023]
Abstract
Purine nucleotide catabolism is common to most organisms and involves a guanine deaminase to convert guanine to xanthine in animals, invertebrates, and microorganisms. Using metabolomic analysis of mutants, we demonstrate that Arabidopsis thaliana uses an alternative catabolic route employing a highly specific guanosine deaminase (GSDA) not reported from any organism so far. The enzyme is ubiquitously expressed and deaminates exclusively guanosine and 2'-deoxyguanosine but no other aminated purines, pyrimidines, or pterines. GSDA belongs to the cytidine/deoxycytidylate deaminase family of proteins together with a deaminase involved in riboflavin biosynthesis, the chloroplastic tRNA adenosine deaminase Arg and a predicted tRNA-specific adenosine deaminase 2 in A. thaliana. GSDA is conserved in plants, including the moss Physcomitrella patens, but is absent in the algae and outside the plant kingdom. Our data show that xanthosine is exclusively generated through the deamination of guanosine by GSDA in A. thaliana, excluding other possible sources like the dephosphorylation of xanthosine monophosphate. Like the nucleoside hydrolases NUCLEOSIDE HYDROLASE1 (NSH1) and NSH2, GSDA is located in the cytosol, indicating that GMP catabolism to xanthine proceeds in a mostly cytosolic pathway via guanosine and xanthosine. Possible implications for the biosynthetic route of purine alkaloids (caffeine and theobromine) and ureides in other plants are discussed.
Collapse
|
44
|
Hoffmann C, Plocharski B, Haferkamp I, Leroch M, Ewald R, Bauwe H, Riemer J, Herrmann JM, Neuhaus HE. From endoplasmic reticulum to mitochondria: absence of the Arabidopsis ATP antiporter endoplasmic Reticulum Adenylate Transporter1 perturbs photorespiration. THE PLANT CELL 2013; 25:2647-60. [PMID: 23860249 PMCID: PMC3753389 DOI: 10.1105/tpc.113.113605] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The carrier Endoplasmic Reticulum Adenylate Transporter1 (ER-ANT1) resides in the endoplasmic reticulum (ER) membrane and acts as an ATP/ADP antiporter. Mutant plants lacking ER-ANT1 exhibit a dwarf phenotype and their seeds contain reduced protein and lipid contents. In this study, we describe a further surprising metabolic peculiarity of the er-ant1 mutants. Interestingly, Gly levels in leaves are immensely enhanced (26×) when compared with that of wild-type plants. Gly accumulation is caused by significantly decreased mitochondrial glycine decarboxylase (GDC) activity. Reduced GDC activity in mutant plants was attributed to oxidative posttranslational protein modification induced by elevated levels of reactive oxygen species (ROS). GDC activity is crucial for photorespiration; accordingly, morphological and physiological defects in er-ant1 plants were nearly completely abolished by application of high environmental CO(2) concentrations. The latter observation demonstrates that the absence of ER-ANT1 activity mainly affects photorespiration (maybe solely GDC), whereas basic cellular metabolism remains largely unchanged. Since ER-ANT1 homologs are restricted to higher plants, it is tempting to speculate that this carrier fulfils a plant-specific function directly or indirectly controlling cellular ROS production. The observation that ER-ANT1 activity is associated with cellular ROS levels reveals an unexpected and critical physiological connection between the ER and other organelles in plants.
Collapse
Affiliation(s)
- Christiane Hoffmann
- Department of Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Bartolome Plocharski
- Department of Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Ilka Haferkamp
- Department of Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Michaela Leroch
- Department of Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Ralph Ewald
- Department of Plant Physiology, University of Rostock, D-18059 Rostock, Germany
| | - Hermann Bauwe
- Department of Plant Physiology, University of Rostock, D-18059 Rostock, Germany
| | - Jan Riemer
- Department of Cell Biochemistry, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Johannes M. Herrmann
- Department of Cell Biology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - H. Ekkehard Neuhaus
- Department of Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
- Address correspondence to
| |
Collapse
|
45
|
Clausen AR, Girandon L, Ali A, Knecht W, Rozpedowska E, Sandrini MPB, Andreasson E, Munch-Petersen B, Piškur J. Two thymidine kinases and one multisubstrate deoxyribonucleoside kinase salvage DNA precursors in Arabidopsis thaliana. FEBS J 2012; 279:3889-97. [PMID: 22897443 DOI: 10.1111/j.1742-4658.2012.08747.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 07/10/2012] [Accepted: 08/13/2012] [Indexed: 11/28/2022]
Abstract
Deoxyribonucleotides are the building blocks of DNA and can be synthesized via de novo and salvage pathways. Deoxyribonucleoside kinases (EC 2.7.1.145) salvage deoxyribonucleosides by transfer of a phosphate group to the 5' of a deoxyribonucleoside. This salvage pathway is well characterized in mammals, but in contrast, little is known about how plants salvage deoxyribonucleosides. We show that during salvage, deoxyribonucleosides can be phosphorylated by extracts of Arabidopsis thaliana into corresponding monophosphate compounds with an unexpected preference for purines over pyrimidines. Deoxyribonucleoside kinase activities were present in all tissues during all growth stages. In the A. thaliana genome, we identified two types of genes that could encode enzymes which are involved in the salvage of deoxyribonucleosides. Thymidine kinase activity was encoded by two thymidine kinase 1 (EC 2.7.1.21)-like genes (AtTK1a and AtTK1b). Deoxyadenosine, deoxyguanosine and deoxycytidine kinase activities were encoded by a single AtdNK gene. T-DNA insertion lines of AtTK1a and AtTK1b mutant genes had normal growth, although AtTK1a AtTK1b double mutants died at an early stage, which indicates that AtTK1a and AtTK1b catalyze redundant reactions. The results obtained in the present study suggest a crucial role for the salvage of thymidine during early plant development.
Collapse
Affiliation(s)
- Anders R Clausen
- Department of Cell and Organism Biology, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cornelius S, Traub M, Bernard C, Salzig C, Lang P, Möhlmann T. Nucleoside transport across the plasma membrane mediated by equilibrative nucleoside transporter 3 influences metabolism of Arabidopsis seedlings. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:696-705. [PMID: 22372734 DOI: 10.1111/j.1438-8677.2012.00562.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The metabolism of nitrogen-rich nucleosides in Arabidopsis seedlings was investigated at the level of import and subsequent salvage or degradation. Uptake and fate of nucleosides imported by equilibrative nucleoside transporter 3 (ENT3) was analysed and, furthermore, a comprehensive analysis of the effect of exogenously fed nucleosides at the level of metabolic as well as transcriptomic alterations was performed. Expression of nucleoside transporters ENT1 and ENT3, together with nucleoside import, was increased upon nitrogen limitation. Thereby a role for ENT3, which is expressed mainly in the vasculature of roots and leaves, as a major import route for nucleosides was supported. Exogenously fed nucleosides were able to attenuate nitrogen starvation effects such as chlorophyll breakdown, anthocyanin accumulation, RNA breakdown and reduced levels of amino acids. In response to nucleoside supply, up-regulation of genes involved in nitrogen distribution in plants was observed. In addition, genes involved in nucleoside metabolism were identified as regulated upon nitrogen limitation. In summary, an overall beneficial effect of nucleoside supply to Arabidopsis seedlings, especially under limiting nitrogen conditions, was observed.
Collapse
Affiliation(s)
- S Cornelius
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Kaiserslautern, Germany Fraunhofer-Institut für Techno und Wirtschaftsmathematik, Kaiserslautern, Germany
| | - M Traub
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Kaiserslautern, Germany Fraunhofer-Institut für Techno und Wirtschaftsmathematik, Kaiserslautern, Germany
| | - C Bernard
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Kaiserslautern, Germany Fraunhofer-Institut für Techno und Wirtschaftsmathematik, Kaiserslautern, Germany
| | - C Salzig
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Kaiserslautern, Germany Fraunhofer-Institut für Techno und Wirtschaftsmathematik, Kaiserslautern, Germany
| | - P Lang
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Kaiserslautern, Germany Fraunhofer-Institut für Techno und Wirtschaftsmathematik, Kaiserslautern, Germany
| | - T Möhlmann
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Kaiserslautern, Germany Fraunhofer-Institut für Techno und Wirtschaftsmathematik, Kaiserslautern, Germany
| |
Collapse
|
47
|
Tang LY, Matsushima R, Sakamoto W. Mutations defective in ribonucleotide reductase activity interfere with pollen plastid DNA degradation mediated by DPD1 exonuclease. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:637-49. [PMID: 22239102 DOI: 10.1111/j.1365-313x.2012.04904.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Organellar DNAs in mitochondria and plastids are present in multiple copies and make up a substantial proportion of total cellular DNA despite their limited genetic capacity. We recently demonstrated that organellar DNA degradation occurs during pollen maturation, mediated by the Mg(2+) -dependent organelle exonuclease DPD1. To further understand organellar DNA degradation, we characterized a distinct mutant (dpd2). In contrast to the dpd1 mutant, which retains both plastid and mitochondrial DNAs, dpd2 showed specific accumulation of plastid DNAs. Multiple abnormalities in vegetative and reproductive tissues of dpd2 were also detected. DPD2 encodes the large subunit of ribonucleotide reductase, an enzyme that functions at the rate-limiting step of de novo nucleotide biosynthesis. We demonstrated that the defects in ribonucleotide reductase indirectly compromise the activity of DPD1 nuclease in plastids, thus supporting a different regulation of organellar DNA degradation in pollen. Several lines of evidence provided here reinforce our previous conclusion that the DPD1 exonuclease plays a central role in organellar DNA degradation, functioning in DNA salvage rather than maternal inheritance during pollen development.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Exoribonucleases/genetics
- Exoribonucleases/metabolism
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genetic Complementation Test
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microscopy, Electron, Scanning
- Microscopy, Fluorescence
- Mutation
- Phenotype
- Plants, Genetically Modified
- Plastids/genetics
- Pollen/genetics
- Pollen/ultrastructure
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleotide Reductases/genetics
- Ribonucleotide Reductases/metabolism
Collapse
Affiliation(s)
- Lay Yin Tang
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | | | | |
Collapse
|
48
|
Witz S, Jung B, Fürst S, Möhlmann T. De novo pyrimidine nucleotide synthesis mainly occurs outside of plastids, but a previously undiscovered nucleobase importer provides substrates for the essential salvage pathway in Arabidopsis. THE PLANT CELL 2012; 24:1549-59. [PMID: 22474184 PMCID: PMC3398563 DOI: 10.1105/tpc.112.096743] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/14/2012] [Accepted: 03/22/2012] [Indexed: 05/18/2023]
Abstract
Nucleotide de novo synthesis is highly conserved among organisms and represents an essential biochemical pathway. In plants, the two initial enzymatic reactions of de novo pyrimidine synthesis occur in the plastids. By use of green fluorescent protein fusions, clear support is provided for a localization of the remaining reactions in the cytosol and mitochondria. This implies that carbamoyl aspartate, an intermediate of this pathway, must be exported and precursors of pyrimidine salvage (i.e., nucleobases or nucleosides) are imported into plastids. A corresponding uracil transport activity could be measured in intact plastids isolated from cauliflower (Brassica oleracea) buds. PLUTO (for plastidic nucleobase transporter) was identified as a member of the Nucleobase:Cation-Symporter1 protein family from Arabidopsis thaliana, capable of transporting purine and pyrimidine nucleobases. A PLUTO green fluorescent protein fusion was shown to reside in the plastid envelope after expression in Arabidopsis protoplasts. Heterologous expression of PLUTO in an Escherichia coli mutant lacking the bacterial uracil permease uraA allowed a detailed biochemical characterization. PLUTO transports uracil, adenine, and guanine with apparent affinities of 16.4, 0.4, and 6.3 μM, respectively. Transport was markedly inhibited by low concentrations of a proton uncoupler, indicating that PLUTO functions as a proton-substrate symporter. Thus, a protein for the absolutely required import of pyrimidine nucleobases into plastids was identified.
Collapse
|
49
|
Wingenter K, Trentmann O, Winschuh I, Hörmiller II, Heyer AG, Reinders J, Schulz A, Geiger D, Hedrich R, Neuhaus HE. A member of the mitogen-activated protein 3-kinase family is involved in the regulation of plant vacuolar glucose uptake. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:890-900. [PMID: 21838775 DOI: 10.1111/j.1365-313x.2011.04739.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Vacuolar solute accumulation is an important process during plant development, growth and stress responses. Although several vacuolar carriers have been identified recently, knowledge regarding the regulation of transport is still limited. Solute accumulation may be controlled by various factors, such as alterations in carrier abundance or activity. Phosphorylation via kinases is a well-known principle for activation or deactivation of proteins. Several phosphorylated proteins have been identified in the tonoplast proteome; however, kinases that catalyse the phosphorylation of tonoplast proteins are currently unknown. The tonoplast monosaccaride transporter from Arabidopsis (AtTMT1) and its homologue from barley have multiple phosphorylation sites in their extremely large loops. Here we demonstrate that the loop of AtTMT1 interacts with a mitogen-activated triple kinase-like protein kinase (VIK), that an aspartate-rich loop domain is required for effective interaction, and that the presence of VIK stimulates glucose import into isolated vacuoles. Furthermore, the phenotype of VIK loss-of-function plants strikingly resembles that of plants lacking AtTMT1/2. These data suggest that VIK-mediated phosphorylation of the AtTMT1 loop enhances carrier activity and consequently vacuolar sugar accumulation. As many phosphorylated proteins have been identified in the tonoplast, differential phosphorylation may be a general mechanism regulating vacuolar solute import.
Collapse
Affiliation(s)
- Karina Wingenter
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger Straße, D-67653 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Elhiti M, Ashihara H, Stasolla C. Distinct fluctuations in nucleotide metabolism accompany the enhanced in vitro embryogenic capacity of Brassica cells over-expressing SHOOTMERISTEMLESS. PLANTA 2011; 234:1251-1265. [PMID: 21773791 DOI: 10.1007/s00425-011-1482-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/07/2011] [Indexed: 05/31/2023]
Abstract
Besides regulating meristem formation and maintenance in vivo, SHOOTMERISTEMLESS (STM) has been shown to affect embryogenesis. While the over-expression of Brassica napus (Bn)STM enhances the number of microspore-derived embryos produced in culture and their ability to regenerate viable plants, a down-regulation of this gene represses the embryogenic process (Elhiti et al., J Exp Bot, 61:4069-4085, 2010). Synthesis and degradation of pyrimidine and purine nucleotides were measured in developing microspore-derived embryos (MDEs) generated from B. napus lines ectopically expressing or down-regulating BnSTM. Pyrimidine metabolism was investigated by following the metabolic fate of exogenously supplied (14)C-uridine, uracil and orotic acid, whereas purine metabolism was estimated by using (14)C-adenine, adenosine and inosine. The improvement in embryo number and quality affected by the ectopic expression of BnSTM was linked to the increased pyrimidine and purine salvage activity during the early phases of embryogenesis and the enlargement of the adenylate pool (ATP + ADP) required for the active growth of the embryos. This was due to an increase in transcriptional and enzymatic activity of several salvage enzymes, including adenine phosphoribosyltransferase (APRT) and adenosine kinase (ADK). The highly operative salvage pathway induced by the ectopic expression of BnSTM was associated with a slow catabolism of nucleotides, suggesting the presence of an antagonist mechanism controlling the rate of salvage and degradation pathways. During the second half of embryogenesis utilization of uridine for UTP + UDPglucose (UDPG) synthesis increased in the embryos over-expressing BnSTM, and this coincided with a better post-germination performance. All these events were precluded by the down-regulation of BnSTM which repressed the formation of the embryos and their post-embryonic performance. Overall, this work provides evidence that precise metabolic changes are associated with proper embryo development in culture.
Collapse
Affiliation(s)
- Mohamed Elhiti
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | | | | |
Collapse
|