1
|
Wang M, Yuan Y, Zhao Y, Hu Z, Zhang S, Luo J, Jiang CZ, Zhang Y, Sun D. PhWRKY30 activates salicylic acid biosynthesis to positively regulate antiviral defense response in petunia. HORTICULTURE RESEARCH 2025; 12:uhaf013. [PMID: 40190442 PMCID: PMC11966387 DOI: 10.1093/hr/uhaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 04/09/2025]
Abstract
Petunia (Petunia hybrida) plants are highly threatened by a diversity of viruses, causing substantial damage to ornamental quality and seed yield. However, the regulatory mechanism of virus resistance in petunia is largely unknown. Here, we revealed that a member of petunia WRKY transcription factors, PhWRKY30, was dramatically up-regulated following Tobacco rattle virus (TRV) infection. Down-regulation of PhWRKY30 through TRV-based virus-induced gene silencing increased green fluorescent protein (GFP)-marked TRV RNA accumulation and exacerbated the symptomatic severity. In comparison with wild-type (WT) plants, PhWRKY30-RNAi transgenic petunia plants exhibited a compromised resistance to TRV infection, whereas an enhanced resistance was observed in PhWRKY30-overexpressing (OE) transgenic plants. PhWRKY30 affected salicylic acid (SA) production and expression of arogenate dehydratase 1 (PhADT1), phenylalanine ammonia-lyase 1 (PhPAL1), PhPAL2b, nonexpressor of pathogenesis-related proteins 1 (PhNPR1), and PhPR1 in SA biosynthesis and signaling pathway. SA treatment restored the reduced TRV resistance to WT levels in PhWRKY30-RNAi plants, and application of SA biosynthesis inhibitor 2-aminoindan-2-phosphonic acid inhibited promoted resistance in PhWRKY30-OE plants. The protein-DNA binding assays showed that PhWRKY30 specifically bound to the promoter of PhPAL2b. RNAi silencing and overexpression of PhPAL2b led to decreased and increased TRV resistance, respectively. The transcription of a number of reactive oxygen species- and RNA silencing-associated genes was changed in PhWRKY30 and PhPAL2b transgenic lines. PhWRKY30 and PhPAL2b were further characterized to be involved in the resistance to Tobacco mosaic virus (TMV) invasion. Our findings demonstrate that PhWRKY30 positively regulates antiviral defense against TRV and TMV infections by modulating SA content.
Collapse
Affiliation(s)
- Meiling Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanping Yuan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yike Zhao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuo Hu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shasha Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianrang Luo
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA 95616, USA
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Xing Y, Li Y, Gui X, Zhang X, Hu Q, Zhao Q, Qiao Y, Xu N, Liu J. An RNA helicase coordinates with iron signal regulators to alleviate chilling stress in Arabidopsis. Nat Commun 2025; 16:3988. [PMID: 40295523 PMCID: PMC12037725 DOI: 10.1038/s41467-025-59334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/18/2025] [Indexed: 04/30/2025] Open
Abstract
Chilling stress is one of the major environmental stresses that restrains plant development and growth. Our previous study showed that a potential iron sensor BTS (BRUTUS) was involved in temperature response in Arabidopsis plants. However, whether plant iron homeostasis is involved in plant response to temperature fluctuation is not known. In this study, we discover that BTS mutant bts-2 is sensitive to chilling stress, and the sensitivity is attributed to the accumulation of iron. The suppressor screening of bts-2 led to the discovery of RH24, a DEAD-box RNA helicase, that fully suppresses bts-2 chilling sensitivity. RH24 is accumulated under low temperatures, where it unwinds the iron regulator ILR3 (IAA-leucine resistant 3) mRNA and increases the ILR3 protein levels. Intriguingly, RH24 sequesters ILR3 in phase-separated condensates to reduce ILR3-mediated iron overload, and BTS or cold treatments further facilitated the condensate formation. Therefore, RH24 and BTS coordinately control ILR3 to reduce iron uptake under chilling stress. Our findings reveal that the RNA helicase RH24 and BTS finetunes ILR3 to maintain plant iron homeostasis in response to temperature fluctuations.
Collapse
Affiliation(s)
- Yingying Xing
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yawen Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xinmeng Gui
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xianyu Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qian Hu
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qiqi Zhao
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ning Xu
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.
| | - Jun Liu
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Thilakarathne AS, Liu F, Zou Z. Plant Signaling Hormones and Transcription Factors: Key Regulators of Plant Responses to Growth, Development, and Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1070. [PMID: 40219138 PMCID: PMC11990802 DOI: 10.3390/plants14071070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Plants constantly encounter a wide range of biotic and abiotic stresses that adversely affect their growth, development, and productivity. Phytohormones such as abscisic acid, jasmonic acid, salicylic acid, and ethylene serve as crucial regulators, integrating internal and external signals to mediate stress responses while also coordinating key developmental processes, including seed germination, root and shoot growth, flowering, and senescence. Transcription factors (TFs) such as WRKY, NAC, MYB, and AP2/ERF play complementary roles by orchestrating complex transcriptional reprogramming, modulating stress-responsive genes, and facilitating physiological adaptations. Recent advances have deepened our understanding of hormonal networks and transcription factor families, revealing their intricate crosstalk in shaping plant resilience and development. Additionally, the synthesis, transport, and signaling of these molecules, along with their interactions with stress-responsive pathways, have emerged as critical areas of study. The integration of cutting-edge biotechnological tools, such as CRISPR-mediated gene editing and omics approaches, provides new opportunities to fine-tune these regulatory networks for enhanced crop resilience. By leveraging insights into transcriptional regulation and hormone signaling, these advancements provide a foundation for developing stress-tolerant, high-yielding crop varieties tailored to the challenges of climate change.
Collapse
Affiliation(s)
| | - Fei Liu
- School of Life Sciences, Henan University, Kaifeng 475001, China;
| | - Zhongwei Zou
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
| |
Collapse
|
4
|
Veremeichik GN, Tikhonova OA, Grigorchuk VP, Silantieva SA, Brodovskaya EV, Bulgakov DV, Bulgakov VP. Overexpression of the constitutively-active AtCPK1 mutant in tobacco plants confers cold and heat tolerance, possibly through modulating abscisic acid and salicylic acid signalling. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154413. [PMID: 39732128 DOI: 10.1016/j.jplph.2024.154413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024]
Abstract
Calcium-dependent protein kinases (CDPKs) are very effective calcium signal decoders due to their unique structure, which mediates substrate-specific [Ca2+]cyt signalling through phosphorylation. However, Ca2+-dependence makes it challenging to study CDPKs. This work focused on the effects of the overexpression of native and modified forms of the AtCPK1 gene on the tolerance of tobacco plants to heat and cold. We studied the interaction between the calcium and signalling systems of abscisic acid (ABA) at various temperatures. The hormonal state, stress-induced senescence, and expression of important corresponding genes were investigated. We showed that inactivation of the autoinhibitory domain of the modified constitutively active form of AtCPK1 has a positive effect on resistance not only to long-term cold but also to heat. We showed that the constitutively active form of AtCPK1 under nonstressed conditions activated biosynthesis of ABA, but a decrease in ABA content was detected upon heat exposure. On the basis of our results, we can assume that this effect is achieved through the CPK-dependent activation of salicylic acid (SA) signalling. The obtained data shed light on heat-associated molecular processes and support the possibility of using intradomain modifications of CDPK both for comprehensive study of its functional features and as a bioengineering tool.
Collapse
Affiliation(s)
- G N Veremeichik
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia.
| | - O A Tikhonova
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - V P Grigorchuk
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - S A Silantieva
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - E V Brodovskaya
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - D V Bulgakov
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - V P Bulgakov
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| |
Collapse
|
5
|
Osborne R. From the archives: Stress signaling-U-box proteins in the cold stress response, sensor activation in response to salt stress, and early work on salicylic acid signaling. THE PLANT CELL 2024; 36:3318-3319. [PMID: 38923945 PMCID: PMC11371131 DOI: 10.1093/plcell/koae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Rory Osborne
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
6
|
Lyu JI, Kim JH, Chuong NN, Doan PPT, Chu H, Baek SH, Lim PO, Kim J. ACCELERATED CELL DEATH 6 is a crucial genetic factor shaping the natural diversity of age- and salicylic acid-induced leaf senescence in Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14507. [PMID: 39221491 DOI: 10.1111/ppl.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Leaf senescence is a crucial process throughout evolution, vital for plant fitness as it facilitates the gradual shift of energy allocation between photosynthesis and catabolism overtime. This onset is influenced by a complex interplay of genetic and environmental factors, making senescence a key adaptation mechanism for plants in their natural habitats. Our study investigated the genetic mechanism underlying age-induced leaf senescence in Arabidopsis natural populations. Using a phenome high-throughput investigator, we comprehensively analyzed senescence responses across 234 Arabidopsis accessions and identified that environmental factors (e.g., ambient temperature) and physiological factors (e.g., defense responses) are substantially linked to senescence phenotypes. Through genome-wide association mapping, we identified the ACCELERATED CELL DEATH 6 (ACD6) locus as a potential regulator of senescence variation among natural accessions. Knocking out ACD6 in accessions with early and delayed senescence phenotypes resulted in varying degrees of delay in age-induced senescence, highlighting the accession-dependent regulatory role of ACD6 in leaf senescence. Furthermore, our findings suggest ACD6's involvement in senescence regulation via the salicylic acid signaling pathway. In summary, our study sheds light on the genetic regulation of leaf senescence in Arabidopsis natural populations, with the discovery of ACD6 as a potential candidate for genetic modification to enhance plant adaptation and survival.
Collapse
Affiliation(s)
- Jae Il Lyu
- Gene Engineering Division, National Institute of Agricultural Sciences, Republic of Korea
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Jin Hee Kim
- Subtropical Horticulture Research Institute, Jeju National University, Republic of Korea
| | - Nguyen Nguyen Chuong
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Republic of Korea
| | - Phan Phuong Thao Doan
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Republic of Korea
| | - Hyosub Chu
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Seung Hee Baek
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Pyung Ok Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jeongsik Kim
- Subtropical Horticulture Research Institute, Jeju National University, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Republic of Korea
- Faculty of Science Education, Jeju National University, Republic of Korea
| |
Collapse
|
7
|
Kim Y, Castroverde CDM, Kim JH. Natural allelic diversity of the calcium signaling regulators in plants. Mol Cells 2024; 47:100104. [PMID: 39098739 PMCID: PMC11387256 DOI: 10.1016/j.mocell.2024.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024] Open
Abstract
Calcium ions act as secondary messengers in diverse signaling pathways in plants throughout their life cycle. Studies have revealed that calcium is involved in developmental events and in responses to external stimuli, such as biotic and abiotic stresses. Cellular calcium ion levels are tightly controlled by intricate molecular machinery such as calcium channels and pumps. Transient and spatial fluctuations in calcium levels are subsequently recognized by diverse calcium-decoding molecules, resulting in signal transduction. In this review, we highlight recent findings on natural variations in genes controlling calcium signaling in diverse plant biological processes. We then show how the calcium ion context is utilized by fine-tuning the natural variation in centrally important genes.
Collapse
Affiliation(s)
- Yejin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | | | - Jong Hum Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
8
|
Armbruster L, Pożoga M, Wu Z, Eirich J, Thulasi Devendrakumar K, De La Torre C, Miklánková P, Huber M, Bradic F, Poschet G, Weidenhausen J, Merker S, Ruppert T, Sticht C, Sinning I, Finkemeier I, Li X, Hell R, Wirtz M. Nα-acetyltransferase NAA50 mediates plant immunity independent of the Nα-acetyltransferase A complex. PLANT PHYSIOLOGY 2024; 195:3097-3118. [PMID: 38588051 DOI: 10.1093/plphys/kiae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024]
Abstract
In humans and plants, 40% of the proteome is cotranslationally acetylated at the N-terminus by a single Nα-acetyltransferase (Nat) termed NatA. The core NatA complex is comprised of the catalytic subunit Nα-acetyltransferase 10 (NAA10) and the ribosome-anchoring subunit NAA15. The regulatory subunit Huntingtin Yeast Partner K (HYPK) and the acetyltransferase NAA50 join this complex in humans. Even though both are conserved in Arabidopsis (Arabidopsis thaliana), only AtHYPK is known to interact with AtNatA. Here we uncover the AtNAA50 interactome and provide evidence for the association of AtNAA50 with NatA at ribosomes. In agreement with the latter, a split-luciferase approach demonstrated close proximity of AtNAA50 and AtNatA in planta. Despite their interaction, AtNatA/HYPK and AtNAA50 exerted different functions in vivo. Unlike NatA/HYPK, AtNAA50 did not modulate drought tolerance or promote protein stability. Instead, transcriptome and proteome analyses of a novel AtNAA50-depleted mutant (amiNAA50) implied that AtNAA50 negatively regulates plant immunity. Indeed, amiNAA50 plants exhibited enhanced resistance to oomycetes and bacterial pathogens. In contrast to what was observed in NatA-depleted mutants, this resistance was independent of an accumulation of salicylic acid prior to pathogen exposure. Our study dissects the in vivo function of the NatA interactors HYPK and NAA50 and uncovers NatA-independent roles for NAA50 in plants.
Collapse
Affiliation(s)
- Laura Armbruster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Marlena Pożoga
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Zhongshou Wu
- Michael Smith Laboratories, University of British Columbia, V6T1Z4 Vancouver, BC, Canada
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | | | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Pavlina Miklánková
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Monika Huber
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Fabian Bradic
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Jonas Weidenhausen
- Structural Biology, Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Sabine Merker
- Core Facility for Mass Spectrometry and Proteomics, Center for Molecular Biology of Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Ruppert
- Core Facility for Mass Spectrometry and Proteomics, Center for Molecular Biology of Heidelberg University, 69120 Heidelberg, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Irmgard Sinning
- Structural Biology, Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, V6T1Z4 Vancouver, BC, Canada
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Li L, Liu J, Zhou JM. From molecule to cell: the expanding frontiers of plant immunity. J Genet Genomics 2024; 51:680-690. [PMID: 38417548 DOI: 10.1016/j.jgg.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
In recent years, the field of plant immunity has witnessed remarkable breakthroughs. During the co-evolution between plants and pathogens, plants have developed a wealth of intricate defense mechanisms to safeguard their survival. Newly identified immune receptors have added unexpected complexity to the surface and intracellular sensor networks, enriching our understanding of the ongoing plant-pathogen interplay. Deciphering the molecular mechanisms of resistosome shapes our understanding of these mysterious molecules in plant immunity. Moreover, technological innovations are expanding the horizon of the plant-pathogen battlefield into spatial and temporal scales. While the development provides new opportunities for untangling the complex realm of plant immunity, challenges remain in uncovering plant immunity across spatiotemporal dimensions from both molecular and cellular levels.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jing Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Min Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China.
| |
Collapse
|
10
|
Kaur D, Schedl A, Lafleur C, Martinez Henao J, van Dam NM, Rivoal J, Bede JC. Arabidopsis Transcriptomics Reveals the Role of Lipoxygenase2 (AtLOX2) in Wound-Induced Responses. Int J Mol Sci 2024; 25:5898. [PMID: 38892085 PMCID: PMC11173247 DOI: 10.3390/ijms25115898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
In wounded Arabidopsis thaliana leaves, four 13S-lipoxygenases (AtLOX2, AtLOX3, AtLOX4, AtLOX6) act in a hierarchical manner to contribute to the jasmonate burst. This leads to defense responses with LOX2 playing an important role in plant resistance against caterpillar herb-ivory. In this study, we sought to characterize the impact of AtLOX2 on wound-induced phytohormonal and transcriptional responses to foliar mechanical damage using wildtype (WT) and lox2 mutant plants. Compared with WT, the lox2 mutant had higher constitutive levels of the phytohormone salicylic acid (SA) and enhanced expression of SA-responsive genes. This suggests that AtLOX2 may be involved in the biosynthesis of jasmonates that are involved in the antagonism of SA biosynthesis. As expected, the jasmonate burst in response to wounding was dampened in lox2 plants. Generally, 1 h after wounding, genes linked to jasmonate biosynthesis, jasmonate signaling attenuation and abscisic acid-responsive genes, which are primarily involved in wound sealing and healing, were differentially regulated between WT and lox2 mutants. Twelve h after wounding, WT plants showed stronger expression of genes associated with plant protection against insect herbivory. This study highlights the dynamic nature of jasmonate-responsive gene expression and the contribution of AtLOX2 to this pathway and plant resistance against insects.
Collapse
Affiliation(s)
- Diljot Kaur
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke E., Montréal, QC H1X 2B2, Canada;
| | - Andreas Schedl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 52, 04103 Leipzig, Germany (N.M.v.D.)
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
- German Biomass Research Centre (DBFZ), Torgauer Straße 116, 04347 Leipzig, Germany
| | - Christine Lafleur
- Department of Animal Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | - Julian Martinez Henao
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 52, 04103 Leipzig, Germany (N.M.v.D.)
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyerweg-1, 14979 Großbeeren, Germany
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke E., Montréal, QC H1X 2B2, Canada;
| | - Jacqueline C. Bede
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
| |
Collapse
|
11
|
Zhang W, Maksym R, Georgii E, Geist B, Schäffner AR. SA and NHP glucosyltransferase UGT76B1 affects plant defense in both SID2- and NPR1-dependent and independent manner. PLANT CELL REPORTS 2024; 43:149. [PMID: 38780624 PMCID: PMC11116260 DOI: 10.1007/s00299-024-03228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
KEY MESSAGE The small-molecule glucosyltransferase loss-of-function mutant ugt76b1 exhibits both SID2- or NPR1-dependent and independent facets of enhanced plant immunity, whereupon FMO1 is required for the SID2 and NPR1 independence. The small-molecule glucosyltransferase UGT76B1 inactivates salicylic acid (SA), isoleucic acid (ILA), and N-hydroxypipecolic acid (NHP). ugt76b1 loss-of-function plants manifest an enhanced defense status. Thus, we were interested how UGT76B1 genetically integrates in defense pathways and whether all impacts depend on SA and NHP. We study the integration of UGT76B1 by transcriptome analyses of ugt76b1. The comparison of transcripts altered by the loss of UGT76B1 with public transcriptome data reveals both SA-responsive, ISOCHORISMATE SYNTHASE 1/SALICYLIC ACID INDUCTION DEFICIENT 2 (ICS1/SID2)- and NON EXPRESSOR OF PR GENES 1 (NPR1)-dependent, consistent with the role of UGT76B1 in glucosylating SA, and SA-non-responsive, SID2/NPR1-independent genes. We also discovered that UGT76B1 impacts on a group of genes showing non-SA-responsiveness and regulation by infections independent from SID2/NPR1. Enhanced resistance of ugt76b1 against Pseudomonas syringae is partially independent from SID2 and NPR1. In contrast, the ugt76b1-activated resistance is completely dependent on FMO1 encoding the NHP-synthesizing FLAVIN-DEPENDENT MONOOXYGENASE 1). Moreover, FMO1 ranks top among the ugt76b1-induced SID2- and NPR1-independent pathogen responsive genes, suggesting that FMO1 determines the SID2- and NPR1-independent effect of ugt76b1. Furthermore, the genetic study revealed that FMO1, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), SID2, and NPR1 are required for the SA-JA crosstalk and senescence development of ugt76b1, indicating that EDS1 and FMO1 have a similar effect like stress-induced SA biosynthesis (SID2) or the key SA signaling regulator NPR1. Thus, UGT76B1 influences both SID2/NPR1-dependent and independent plant immunity, and the SID2/NPR1 independence is relying on FMO1 and its product NHP, another substrate of UGT76B1.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany.
- College of Life Sciences, Jiangsu University, Jiangsu, People's Republic of China.
| | - Rafał Maksym
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elisabeth Georgii
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Birgit Geist
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anton R Schäffner
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
12
|
Park HJ, Kim M, Lee D, Kim HJ, Jung HW. CRISPR-Cas9 and beyond: identifying target genes for developing disease-resistant plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:369-377. [PMID: 38363032 DOI: 10.1111/plb.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Throughout the history of crop domestication, desirable traits have been selected in agricultural products. However, such selection often leads to crops and vegetables with weaker vitality and viability than their wild ancestors when exposed to adverse environmental conditions. Considering the increasing human population and climate change challenges, it is crucial to enhance crop quality and quantity. Accordingly, the identification and utilization of diverse genetic resources are imperative for developing disease-resistant plants that can withstand unexpected epidemics of plant diseases. In this review, we provide a brief overview of recent progress in genome-editing technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) technologies. In particular, we classify disease-resistant mutants of Arabidopsis thaliana and several crop plants based on the roles or functions of the mutated genes in plant immunity and suggest potential target genes for molecular breeding of genome-edited disease-resistant plants. Genome-editing technologies are resilient tools for sustainable development and promising solutions for coping with climate change and population increases.
Collapse
Affiliation(s)
- H J Park
- Institute of Agricultural Life Science, Dong-A University, Busan, Korea
- Department of Biological Sciences and Research Center of Ecomimetics, Chonnam National University, Gwangju, Korea
| | - M Kim
- Department of Applied Bioscience, Dong-A University, Busan, Korea
| | - D Lee
- Department of Applied Bioscience, Dong-A University, Busan, Korea
| | - H J Kim
- Department of Molecular Genetics, Dong-A University, Busan, Korea
| | - H W Jung
- Institute of Agricultural Life Science, Dong-A University, Busan, Korea
- Department of Applied Bioscience, Dong-A University, Busan, Korea
- Department of Molecular Genetics, Dong-A University, Busan, Korea
| |
Collapse
|
13
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
14
|
Pidon H, Ruge-Wehling B, Will T, Habekuß A, Wendler N, Oldach K, Maasberg-Prelle A, Korzun V, Stein N. High-resolution mapping of Ryd4 Hb, a major resistance gene to Barley yellow dwarf virus from Hordeum bulbosum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:60. [PMID: 38409375 PMCID: PMC10896957 DOI: 10.1007/s00122-024-04542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
KEY MESSAGE We mapped Ryd4Hb in a 66.5 kbp interval in barley and dissociated it from a sublethality factor. These results will enable a targeted selection of the resistance in barley breeding. Virus diseases are causing high yield losses in crops worldwide. The Barley yellow dwarf virus (BYDV) complex is responsible for one of the most widespread and economically important viral diseases of cereals. While no gene conferring complete resistance (immunity) has been uncovered in the primary gene pool of barley, sources of resistance were searched and identified in the wild relative Hordeum bulbosum, representing the secondary gene pool of barley. One such locus, Ryd4Hb, has been previously introgressed into barley, and was allocated to chromosome 3H, but is tightly linked to a sublethality factor that prevents the incorporation and utilization of Ryd4Hb in barley varieties. To solve this problem, we fine-mapped Ryd4Hb and separated it from this negative factor. We narrowed the Ryd4Hb locus to a corresponding 66.5 kbp physical interval in the barley 'Morex' reference genome. The region comprises a gene from the nucleotide-binding and leucine-rich repeat immune receptor family, typical of dominant virus resistance genes. The closest homolog to this Ryd4Hb candidate gene is the wheat Sr35 stem rust resistance gene. In addition to the fine mapping, we reduced the interval bearing the sublethality factor to 600 kbp in barley. Aphid feeding experiments demonstrated that Ryd4Hb provides a resistance to BYDV rather than to its vector. The presented results, including the high-throughput molecular markers, will permit a more targeted selection of the resistance in breeding, enabling the use of Ryd4Hb in barley varieties.
Collapse
Affiliation(s)
- Hélène Pidon
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| | - Brigitte Ruge-Wehling
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Sanitz, Germany
| | - Torsten Will
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Antje Habekuß
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | | | | | | | | | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Göttingen, Germany.
| |
Collapse
|
15
|
Chen J, Li L, Kim JH, Neuhäuser B, Wang M, Thelen M, Hilleary R, Chi Y, Wei L, Venkataramani K, Exposito-Alonso M, Liu C, Keck J, Barragan AC, Schwab R, Lutz U, Pei ZM, He SY, Ludewig U, Weigel D, Zhu W. Small proteins modulate ion-channel-like ACD6 to regulate immunity in Arabidopsis thaliana. Mol Cell 2023; 83:4386-4397.e9. [PMID: 37995686 DOI: 10.1016/j.molcel.2023.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/17/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023]
Abstract
The multi-pass transmembrane protein ACCELERATED CELL DEATH 6 (ACD6) is an immune regulator in Arabidopsis thaliana with an unclear biochemical mode of action. We have identified two loci, MODULATOR OF HYPERACTIVE ACD6 1 (MHA1) and its paralog MHA1-LIKE (MHA1L), that code for ∼7 kDa proteins, which differentially interact with specific ACD6 variants. MHA1L enhances the accumulation of an ACD6 complex, thereby increasing the activity of the ACD6 standard allele for regulating plant growth and defenses. The intracellular ankyrin repeats of ACD6 are structurally similar to those found in mammalian ion channels. Several lines of evidence link increased ACD6 activity to enhanced calcium influx, with MHA1L as a direct regulator of ACD6, indicating that peptide-regulated ion channels are not restricted to animals.
Collapse
Affiliation(s)
- Junbin Chen
- China Key Laboratory of Pest Monitoring and Green Management, MOA, State Key Laboratory of Maize Bio-breeding, and College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lei Li
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Jong Hum Kim
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Benjamin Neuhäuser
- Nutritional Crop Physiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Mingyu Wang
- China Key Laboratory of Pest Monitoring and Green Management, MOA, State Key Laboratory of Maize Bio-breeding, and College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Michael Thelen
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | | | - Yuan Chi
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Luyang Wei
- China Key Laboratory of Pest Monitoring and Green Management, MOA, State Key Laboratory of Maize Bio-breeding, and College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Kavita Venkataramani
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Moises Exposito-Alonso
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany; Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Jakob Keck
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - A Cristina Barragan
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Ulrich Lutz
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Zhen-Ming Pei
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Sheng-Yang He
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Uwe Ludewig
- Nutritional Crop Physiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany; Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.
| | - Wangsheng Zhu
- China Key Laboratory of Pest Monitoring and Green Management, MOA, State Key Laboratory of Maize Bio-breeding, and College of Plant Protection, China Agricultural University, Beijing 100193, China; Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
16
|
Xie Z, Zhao S, Li Y, Deng Y, Shi Y, Chen X, Li Y, Li H, Chen C, Wang X, Liu E, Tu Y, Shi P, Tong J, Gutierrez-Beltran E, Li J, Bozhkov PV, Qian W, Zhou M, Wang W. Phenolic acid-induced phase separation and translation inhibition mediate plant interspecific competition. NATURE PLANTS 2023; 9:1481-1499. [PMID: 37640933 DOI: 10.1038/s41477-023-01499-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Phenolic acids (PAs) secreted by donor plants suppress the growth of their susceptible plant neighbours. However, how structurally diverse ensembles of PAs are perceived by plants to mediate interspecific competition remains a mystery. Here we show that a plant stress granule (SG) marker, RNA-BINDING PROTEIN 47B (RBP47B), is a sensor of PAs in Arabidopsis. PAs, including salicylic acid, 4-hydroxybenzoic acid, protocatechuic acid and so on, directly bind RBP47B, promote its phase separation and trigger SG formation accompanied by global translation inhibition. Salicylic acid-induced global translation inhibition depends on RBP47 family members. RBP47s regulate the proteome rather than the absolute quantity of SG. The rbp47 quadruple mutant shows a reduced sensitivity to the inhibitory effect of the PA mixture as well as to that of PA-rich rice when tested in a co-culturing ecosystem. In this Article, we identified the long sought-after PA sensor as RBP47B and illustrated that PA-induced SG-mediated translational inhibition was one of the PA perception mechanisms.
Collapse
Affiliation(s)
- Zhouli Xie
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Shuai Zhao
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Ying Li
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Yuhua Deng
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yabo Shi
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaoyuan Chen
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yue Li
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Haiwei Li
- College of Life Sciences, Capital Normal University, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Changtian Chen
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Xingwei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Enhui Liu
- College of Life Sciences, Capital Normal University, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Yuchen Tu
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Peng Shi
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Jinjin Tong
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Emilio Gutierrez-Beltran
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Instituto de Bioquímica Vegetal y Fotosíntesis, University of Sevilla, Sevilla, Spain
| | - Jiayu Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Weiqiang Qian
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Mian Zhou
- College of Life Sciences, Capital Normal University, Beijing, China.
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China.
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA.
| | - Wei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Center for Life Sciences, Beijing, China.
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
17
|
Ray R, Halitschke R, Gase K, Leddy SM, Schuman MC, Rodde N, Baldwin IT. A persistent major mutation in canonical jasmonate signaling is embedded in an herbivory-elicited gene network. Proc Natl Acad Sci U S A 2023; 120:e2308500120. [PMID: 37607232 PMCID: PMC10466192 DOI: 10.1073/pnas.2308500120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023] Open
Abstract
When insect herbivores attack plants, elicitors from oral secretions and regurgitants (OS) enter wounds during feeding, eliciting defense responses. These generally require plant jasmonate (JA) signaling, specifically, a jasmonoyl-L-isoleucine (JA-Ile) burst, for their activation and are well studied in the native tobacco Nicotiana attenuata. We used intraspecific diversity captured in a 26-parent MAGIC population planted in nature and an updated genome assembly to impute natural variation in the OS-elicited JA-Ile burst linked to a mutation in the JA-Ile biosynthetic gene NaJAR4. Experiments revealed that NaJAR4 variants were associated with higher fitness in the absence of herbivores but compromised foliar defenses, with two NaJAR homologues (4 and 6) complementing each other spatially and temporally. From decade-long seed collections of natural populations, we uncovered enzymatically inactive variants occurring at variable frequencies, consistent with a balancing selection regime maintaining variants. Integrative analyses of OS-induced transcriptomes and metabolomes of natural accessions revealed that NaJAR4 is embedded in a nonlinear complex gene coexpression network orchestrating responses to OS, which we tested by silencing four hub genes in two connected coexpressed networks and examining their OS-elicited metabolic responses. Lines silenced in two hub genes (NaGLR and NaFB67) co-occurring in the NaJAR4/6 module showed responses proportional to JA-Ile accumulations; two from an adjacent module (NaERF and NaFB61) had constitutively expressed defenses with high resistance. We infer that mutations with large fitness consequences can persist in natural populations due to compensatory responses from gene networks, which allow for diversification in conserved signaling pathways and are generally consistent with predictions of an omnigene model.
Collapse
Affiliation(s)
- Rishav Ray
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| | - Klaus Gase
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| | - Sabrina M. Leddy
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14850
| | - Meredith C. Schuman
- Department of Geography, University of Zurich, 8006Zurich, Switzerland
- Department of Chemistry, University of Zurich, 8006Zurich, Switzerland
| | - Nathalie Rodde
- Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Centre National de Resources Génomiques Végétales, French Plant Genomic Resource Center, Castanet TolosanF-31326, France
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| |
Collapse
|
18
|
Jiang R, Zhou S, Da X, Yan P, Wang K, Xu J, Mo X. OsMKK6 Regulates Disease Resistance in Rice. Int J Mol Sci 2023; 24:12678. [PMID: 37628859 PMCID: PMC10454111 DOI: 10.3390/ijms241612678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Mitogen-activated protein kinase cascades play important roles in various biological programs in plants, including immune responses, but the underlying mechanisms remain elusive. Here, we identified the lesion mimic mutant rsr25 (rust spots rice 25) and determined that the mutant harbored a loss-of-function allele for OsMKK6 (MITOGEN-ACTIVATED KINASE KINASE 6). rsr25 developed reddish-brown spots on its leaves at the heading stage, as well as on husks. Compared to the wild type, the rsr25 mutant exhibited enhanced resistance to the fungal pathogen Magnaporthe oryzae (M. oryzae) and to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). OsMKK6 interacted with OsMPK4 (MITOGEN-ACTIVATED KINASE 4) in vivo, and OsMKK6 phosphorylated OsMPK4 in vitro. The Osmpk4 mutant is also a lesion mimic mutant, with reddish-brown spots on its leaves and husks. Pathogen-related genes were significantly upregulated in Osmpk4, and this mutant exhibited enhanced resistance to M. oryzae compared to the wild type. Our results indicate that OsMKK6 and OsMPK4 form a cascade that regulates immune responses in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China; (R.J.); (S.Z.); (X.D.); (P.Y.); (K.W.); (J.X.)
| |
Collapse
|
19
|
Lin Q, Chen J, Liu X, Wang B, Zhao Y, Liao L, Allan AC, Sun C, Duan Y, Li X, Grierson D, Verdonk JC, Chen K, Han Y, Bi J. A metabolic perspective of selection for fruit quality related to apple domestication and improvement. Genome Biol 2023; 24:95. [PMID: 37101232 PMCID: PMC10131461 DOI: 10.1186/s13059-023-02945-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Apple is an economically important fruit crop. Changes in metabolism accompanying human-guided evolution can be revealed using a multiomics approach. We perform genome-wide metabolic analysis of apple fruits collected from 292 wild and cultivated accessions representing various consumption types. RESULTS We find decreased amounts of certain metabolites, including tannins, organic acids, phenolic acids, and flavonoids as the wild accessions transition to cultivated apples, while lysolipids increase in the "Golden Delicious" to "Ralls Janet" pedigree, suggesting better storage. We identify a total of 222,877 significant single-nucleotide polymorphisms that are associated with 2205 apple metabolites. Investigation of a region from 2.84 to 5.01 Mb on chromosome 16 containing co-mapping regions for tannins, organic acids, phenolic acids, and flavonoids indicates the importance of these metabolites for fruit quality and nutrition during breeding. The tannin and acidity-related genes Myb9-like and PH4 are mapped closely to fruit weight locus fw1 from 3.41 to 3.76 Mb on chromosome 15, a region under selection during domestication. Lysophosphatidylethanolamine (LPE) 18:1, which is suppressed by fatty acid desaturase-2 (FAD2), is positively correlated to fruit firmness. We find the fruit weight is negatively correlated with salicylic acid and abscisic acid levels. Further functional assays demonstrate regulation of these hormone levels by NAC-like activated by Apetala3/Pistillata (NAP) and ATP binding cassette G25 (ABCG25), respectively. CONCLUSIONS This study provides a metabolic perspective for selection on fruit quality during domestication and improvement, which is a valuable resource for investigating mechanisms controlling apple metabolite content and quality.
Collapse
Affiliation(s)
- Qiong Lin
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, 6708 PD The Netherlands
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 China
| | - Jing Chen
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xuan Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Bin Wang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, 430070 China
| | - Yaoyao Zhao
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Liao Liao
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited, Auckland Mail Centre, Auckland, 1142 New Zealand
| | - Chongde Sun
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 China
| | - Yuquan Duan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xuan Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Donald Grierson
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 China
- Plant and Science Crop Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Julian C. Verdonk
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, 6708 PD The Netherlands
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 China
| | - Yuepeng Han
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Jinfeng Bi
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
20
|
Fabian M, Gao M, Zhang XN, Shi J, Vrydagh L, Kim SH, Patel P, Hu AR, Lu H. The flowering time regulator FLK controls pathogen defense in Arabidopsis thaliana. PLANT PHYSIOLOGY 2023; 191:2461-2474. [PMID: 36662556 PMCID: PMC10069895 DOI: 10.1093/plphys/kiad021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 05/22/2023]
Abstract
Plant disease resistance is a complex process that is maintained in an intricate balance with development. Increasing evidence indicates the importance of posttranscriptional regulation of plant defense by RNA binding proteins. In a genetic screen for suppressors of Arabidopsis (Arabidopsis thaliana) accelerated cell death 6-1 (acd6-1), a small constitutive defense mutant whose defense level is grossly in a reverse proportion to plant size, we identified an allele of the canonical flowering regulatory gene FLOWERING LOCUS K HOMOLOGY DOMAIN (FLK) encoding a putative protein with triple K homology (KH) repeats. The KH repeat is an ancient RNA binding motif found in proteins from diverse organisms. The relevance of KH-domain proteins in pathogen resistance is largely unexplored. In addition to late flowering, the flk mutants exhibited decreased resistance to the bacterial pathogen Pseudomonas syringae and increased resistance to the necrotrophic fungal pathogen Botrytis cinerea. We further found that the flk mutations compromised basal defense and defense signaling mediated by salicylic acid (SA). Mutant analysis revealed complex genetic interactions between FLK and several major SA pathway genes. RNA-seq data showed that FLK regulates expression abundance of some major defense- and development-related genes as well as alternative splicing of a number of genes. Among the genes affected by FLK is ACD6, whose transcripts had increased intron retentions influenced by the flk mutations. Thus, this study provides mechanistic support for flk suppression of acd6-1 and establishes that FLK is a multifunctional gene involved in regulating pathogen defense and development of plants.
Collapse
Affiliation(s)
- Matthew Fabian
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | - Min Gao
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
- Biochemistry Program, Department of Biology, St Bonaventure University, St Bonaventure, New York 14778, USA
| | - Xiao-Ning Zhang
- Biochemistry Program, Department of Biology, St Bonaventure University, St Bonaventure, New York 14778, USA
| | - Jiangli Shi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
- Department of Biology Education, Korea National University of Education, Chungbuk 28644, Korea
| | - Leah Vrydagh
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | - Sung-Ha Kim
- Department of Biology Education, Korea National University of Education, Chungbuk 28644, Korea
| | - Priyank Patel
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | - Anna R Hu
- Biochemistry Program, Department of Biology, St Bonaventure University, St Bonaventure, New York 14778, USA
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| |
Collapse
|
21
|
Li W, He J, Wang X, Ashline M, Wu Z, Liu F, Fu ZQ, Chang M. PBS3: a versatile player in and beyond salicylic acid biosynthesis in Arabidopsis. THE NEW PHYTOLOGIST 2023; 237:414-422. [PMID: 36263689 DOI: 10.1111/nph.18558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
AVRPPHB SUSCEPTIBLE 3 (PBS3) belongs to the GH3 family of acyl acid amido synthetases, which conjugates amino acids to diverse acyl acid substrates. Recent studies demonstrate that PBS3 in Arabidopsis plays a key role in the biosynthesis of plant defense hormone salicylic acid (SA) by catalyzing the conjugation of glutamate to isochorismate to form isochorismate-9-glutamate, which is then used to produce SA through spontaneous decay or ENHANCED PSEUDOMONAS SUSCEPTIBILITY (EPS1) catalysis. Consistent with its function as an essential enzyme for SA biosynthesis, PBS3 is well known to be a positive regulator of plant immunity in Arabidopsis. Additionally, PBS3 is also involved in the trade-off between abiotic and biotic stress responses in Arabidopsis by suppressing the inhibitory effect of abscisic acid on SA-mediated plant immunity. Besides stress responses, PBS3 also plays a role in plant development. Under long-day conditions, PBS3 influences Arabidopsis flowering time by regulating the expression of flowering regulators FLOWERING LOCUS C and FLOWERING LOCUS T. Taken together, PBS3 functions in the signaling network of plant development and responses to biotic and/or abiotic stresses, but the molecular mechanisms underlying its diverse roles remain obscure.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jinyu He
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiuzhuo Wang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Matthew Ashline
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Zirui Wu
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Ming Chang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
22
|
Yang F, Wu C, Zhu G, Yang Q, Wang K, Li Y. An integrated transcriptomic and metabolomic analysis for changes in rose plant induced by rose powdery mildew and exogenous salicylic acid. Genomics 2022; 114:110516. [PMID: 36306956 DOI: 10.1016/j.ygeno.2022.110516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 01/15/2023]
Abstract
We explored the transcriptomic and metabolomic changes in Rosa chinensis after the infection with Podosphaera pannosa and after the treatment with exogenous salicylic acid (SA), separately. The rose responses to the mildew-infection were clearly similar to the responses to the SA-treatment. Based on the combined omics analysis, after the induction by both P. pannosa and SA, R. chinensis responded consistently by MAPK cascades, plant-pathogen interaction pathway activation, and resistance (R) genes expression, and further, triterpenoid biosynthesis, glutathione metabolism, and linoleic acid metabolism were significantly enriched when compared with the control. The levels of the triterpenoids with the largest fold change values were significantly up-regulated such as dehydro (11,12) ursolic acid lactone and maslinic acid, suggesting that these pathways and metabolites were involved in the resistance to P. pannosa. The contents of salicylic acid beta-D-glucoside, methyl salicylate, and methyl jasmonate increased significantly resulting from both P. pannosa-infection and exogenous SA-treatment.
Collapse
Affiliation(s)
- Fazhong Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, Yunnan, PR China; Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, Yunnan, PR China
| | - Chunhua Wu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, Yunnan, PR China
| | - Guolei Zhu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, Yunnan, PR China
| | - Qi Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, Yunnan, PR China
| | - Kejian Wang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, Yunnan, PR China
| | - Yunxian Li
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, Yunnan, PR China.
| |
Collapse
|
23
|
The TGA Transcription Factors from Clade II Negatively Regulate the Salicylic Acid Accumulation in Arabidopsis. Int J Mol Sci 2022; 23:ijms231911631. [PMID: 36232932 PMCID: PMC9569720 DOI: 10.3390/ijms231911631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Salicylic acid (SA) is a hormone that modulates plant defenses by inducing changes in gene expression. The mechanisms that control SA accumulation are essential for understanding the defensive process. TGA transcription factors from clade II in Arabidopsis, which include the proteins TGA2, TGA5, and TGA6, are known to be key positive mediators for the transcription of genes such as PR-1 that are induced by SA application. However, unexpectedly, stress conditions that induce SA accumulation, such as infection with the avirulent pathogen P. syringae DC3000/AvrRPM1 and UV-C irradiation, result in enhanced PR-1 induction in plants lacking the clade II TGAs (tga256 plants). Increased PR-1 induction was accompanied by enhanced isochorismate synthase-dependent SA production as well as the upregulation of several genes involved in the hormone’s accumulation. In response to avirulent P. syringae, PR-1 was previously shown to be controlled by both SA-dependent and -independent pathways. Therefore, the enhanced induction of PR-1 (and other defense genes) and accumulation of SA in the tga256 mutant plants is consistent with the clade II TGA factors providing negative feedback regulation of the SA-dependent and/or -independent pathways. Together, our results indicate that the TGA transcription factors from clade II negatively control SA accumulation under stress conditions that induce the hormone production. Our study describes a mechanism involving old actors playing new roles in regulating SA homeostasis under stress.
Collapse
|
24
|
Hu P, Ren Y, Xu J, Wei Q, Song P, Guan Y, Gao H, Zhang Y, Hu H, Li C. Identification of ankyrin-transmembrane-type subfamily genes in Triticeae species reveals TaANKTM2A-5 regulates powdery mildew resistance in wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:943217. [PMID: 35937376 PMCID: PMC9353636 DOI: 10.3389/fpls.2022.943217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The ankyrin-transmembrane (ANKTM) subfamily is the most abundant subgroup of the ANK superfamily, with critical roles in pathogen defense. However, the function of ANKTM proteins in wheat immunity remains largely unexplored. Here, a total of 381 ANKTMs were identified from five Triticeae species and Arabidopsis, constituting five classes. Among them, class a only contains proteins from Triticeae species and the number of ANKTM in class a of wheat is significantly larger than expected, even after consideration of the ploidy level. Tandem duplication analysis of ANKTM indicates that Triticum urartu, Triticum dicoccoides and wheat all had experienced tandem duplication events which in wheat-produced ANKTM genes all clustered in class a. The above suggests that not only did the genome polyploidization result in the increase of ANKTM gene number, but that tandem duplication is also a mechanism for the expansion of this subfamily. Micro-collinearity analysis of Triticeae ANKTMs indicates that some ANKTM type genes evolved into other types of ANKs in the evolution process. Public RNA-seq data showed that most of the genes in class d and class e are expressed, and some of them show differential responses to biotic stresses. Furthermore, qRT-PCR results showed that some ANKTMs in class d and class e responded to powdery mildew. Silencing of TaANKTM2A-5 by barley stripe mosaic virus-induced gene silencing compromised powdery mildew resistance in common wheat Bainongaikang58. Findings in this study not only help to understand the evolutionary process of ANKTM genes, but also form the basis for exploring disease resistance genes in the ANKTM gene family.
Collapse
Affiliation(s)
- Ping Hu
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yueming Ren
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Jun Xu
- College of Landscape Architecture and Horticulture, Henan Institute of Science and Technology, Xinxiang, China
| | - Qichao Wei
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Puwen Song
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yuanyuan Guan
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Huanting Gao
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yang Zhang
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Hu
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Chengwei Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
25
|
Köster P, DeFalco TA, Zipfel C. Ca 2+ signals in plant immunity. EMBO J 2022; 41:e110741. [PMID: 35560235 PMCID: PMC9194748 DOI: 10.15252/embj.2022110741] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
Calcium ions function as a key second messenger ion in eukaryotes. Spatially and temporally defined cytoplasmic Ca2+ signals are shaped through the concerted activity of ion channels, exchangers, and pumps in response to diverse stimuli; these signals are then decoded through the activity of Ca2+ -binding sensor proteins. In plants, Ca2+ signaling is central to both pattern- and effector-triggered immunity, with the generation of characteristic cytoplasmic Ca2+ elevations in response to potential pathogens being common to both. However, despite their importance, and a long history of scientific interest, the transport proteins that shape Ca2+ signals and their integration remain poorly characterized. Here, we discuss recent work that has both shed light on and deepened the mysteries of Ca2+ signaling in plant immunity.
Collapse
Affiliation(s)
- Philipp Köster
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland.,The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| |
Collapse
|
26
|
Li A, Sun X, Liu L. Action of Salicylic Acid on Plant Growth. FRONTIERS IN PLANT SCIENCE 2022; 13:878076. [PMID: 35574112 PMCID: PMC9093677 DOI: 10.3389/fpls.2022.878076] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/06/2022] [Indexed: 06/02/2023]
Abstract
The phytohormone salicylic acid (SA) not only is a well-known signal molecule mediating plant immunity, but also is involved in plant growth regulation. However, while its role in plant immunity has been well elucidated, its action on plant growth has not been clearly described to date. Recently, increasing evidence has shown that SA plays crucial roles in regulating cell division and cell expansion, the key processes that determines the final stature of plant. This review summarizes the current knowledge on the action and molecular mechanisms through which SA regulates plant growth via multiple pathways. It is here highlighted that SA mediates growth regulation by affecting cell division and expansion. In addition, the interactions of SA with other hormones and their role in plant growth determination were also discussed. Further understanding of the mechanism underlying SA-mediated growth will be instrumental for future crop improvement.
Collapse
|
27
|
Zhang M, Lv S, Wang Y, Wang S, Chen C, Wang C, Wang Y, Zhang H, Ji W. Fine mapping and distribution analysis of hybrid necrosis genes Ne1 and Ne2 in wheat in China. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1177-1189. [PMID: 35088104 DOI: 10.1007/s00122-021-04023-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Flanking markers useful for identifying hybrid necrosis alleles were identified by fine mapping Ne1 and Ne2 and the distribution of the two necrosis genes was investigated in Chinese elite wheat varieties. Hybrid necrosis of wheat is caused by the interaction of two dominant complementary genes Ne1 and Ne2 present separately in normal parents and is regarded as a barrier to gene transfer in wheat breeding. However, the necrosis alleles still occur at a high frequency in modern wheat varieties. In this study, we constructed two high-density genetic maps of Ne1 and Ne2 in winter wheat. In these cultivars, Ne1 was found to be located in a span interval of 0.50 centimorgan (cM) on chromosome 5BL delimited by markers Nwu_5B_4137 and Nwu_5B_5114, while Ne2 co-segregated with markers Lseq102 and TC67744 on 2BS. Statistical analysis confirmed that the dosage effect of Ne1 and Ne2 also existed in moderate and severe hybrid necrosis systems, and the symptoms of necrosis can also be affected by the genetic background. Furthermore, we clarified the discrete distribution and proportion of the Ne1 and Ne2 in the 10 China's agro-ecological production zones. We concluded that 26.2% and 33.2% of the 1364 cultivars (lines) were genotyped with Ne1Ne1ne2ne2 and ne1ne1Ne2Ne2, respectively and introduced modern cultivars should directly affect the frequencies of necrosis genes in modern Chinese cultivars (lines), especially that of Ne2. Taking investigations in spring wheat together, we proposed that hybrid necrosis alleles could positively affect breeding owing to their linked excellent genes such as Lr13. Additionally, based on the pedigrees and hybridization tests, we speculated that the Ne1 and Ne2 in winter wheat may directly originate from wild emmer and introduced cultivars or hexaploid triticale, respectively.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shikai Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, 810008, Qinghai, China
| | - Yanzhen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Siwen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
28
|
cDNA Transcriptome of Arabidopsis Reveals Various Defense Priming Induced by a Broad-Spectrum Biocontrol Agent Burkholderia sp. SSG. Int J Mol Sci 2022; 23:ijms23063151. [PMID: 35328570 PMCID: PMC8954528 DOI: 10.3390/ijms23063151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 02/05/2023] Open
Abstract
Burkholderia sp. SSG is a potent biological control agent. Even though its survival on the leaf surface declined rapidly, SSG provided extended, moderate plant protection from a broad spectrum of pathogens. This study used Arabidopsis Col-0 and its mutants, eds16-1, npr1-1, and pad4-1 as model plants and compared treated plants with non-treated controls to elucidate whether SSG triggers plant defense priming. Only eds16-1 leaves with SSG became purplish, suggesting the involvement of salicylic acid (SA) in SSG-induced priming. cDNA sequencing of Col-0 plants and differential gene expression analysis identified 120 and 119 differentially expressed genes (DEGs) at 6- and 24-h post-treatment (hpt) with SSG, respectively. Most of these DEGs encoded responses to biotic and abiotic stimuli or stresses; four DEGs had more than two isoforms. A total of 23 DEGs were shared at 6 and 24 hpt, showing four regulation patterns. Functional categorization of these shared DEGs, and 44 very significantly upregulated DEGs revealed that SSG triggered various defense priming mechanisms, including responses to phosphate or iron deficiency, modulation of defense-linked SA, jasmonic acid, ethylene, and abscisic acid pathways, defense-related gene regulation, and chromatin modification. These data support that SSG is an induced systemic resistance (ISR) trigger conferring plant protection upon pathogen encounter.
Collapse
|
29
|
Yang L, Lang C, Wu Y, Meng D, Yang T, Li D, Jin T, Zhou X. ROS1-mediated decrease in DNA methylation and increase in expression of defense genes and stress response genes in Arabidopsis thaliana due to abiotic stresses. BMC PLANT BIOLOGY 2022; 22:104. [PMID: 35255815 PMCID: PMC8903643 DOI: 10.1186/s12870-022-03473-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Small interfering RNAs (siRNAs) target homologous genomic DNA sequences for cytosine methylation, known as RNA-directed DNA methylation (RdDM), plays an important role in transposon control and regulation of gene expression in plants. Repressor of silencing 1 (ROS1) can negatively regulate the RdDM pathway. RESULTS In this paper, we investigated the molecular mechanisms by which an upstream regulator ACD6 in the salicylic acid (SA) defense pathway, an ABA pathway-related gene ACO3, and GSTF14, an endogenous gene of the glutathione S-transferase superfamily, were induced by various abiotic stresses. The results demonstrated that abiotic stresses, including water deficit, cold, and salt stresses, induced demethylation of the repeats in the promoters of ACD6, ACO3, and GSTF14 and transcriptionally activated their expression. Furthermore, our results revealed that ROS1-mediated DNA demethylation plays an important role in the process of transcriptional activation of ACD6 and GSTF14 when Arabidopsis plants are subjected to cold stress. CONCLUSIONS This study revealed that ROS1 plays an important role in the molecular mechanisms associated with genes involved in defense pathways in response to abiotic stresses.
Collapse
Affiliation(s)
- Liping Yang
- The School of Life Sciences, Jilin Normal University, Siping, China
| | - Chenjing Lang
- The School of Life Sciences, Jilin Normal University, Siping, China
| | - Yanju Wu
- The School of Life Sciences, Jilin Normal University, Siping, China
| | - Dawei Meng
- The School of Life Sciences, Jilin Normal University, Siping, China
| | - Tianbo Yang
- The School of Life Sciences, Northwest A&F University, Xianyang, Shanxi, China
| | - Danqi Li
- The School of Life Sciences, Jilin University, Changchun, China
| | - Taicheng Jin
- The School of Life Sciences, Jilin Normal University, Siping, China.
| | - Xiaofu Zhou
- The School of Life Sciences, Jilin Normal University, Siping, China.
| |
Collapse
|
30
|
Freh M, Gao J, Petersen M, Panstruga R. Plant autoimmunity-fresh insights into an old phenomenon. PLANT PHYSIOLOGY 2022; 188:1419-1434. [PMID: 34958371 PMCID: PMC8896616 DOI: 10.1093/plphys/kiab590] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
The plant immune system is well equipped to ward off the attacks of different types of phytopathogens. It primarily relies on two types of immune sensors-plasma membrane-resident receptor-like kinases and intracellular nucleotide-binding domain leucine-rich repeat (NLRs) receptors that engage preferentially in pattern- and effector-triggered immunity, respectively. Delicate fine-tuning, in particular of the NLR-governed branch of immunity, is key to prevent inappropriate and deleterious activation of plant immune responses. Inadequate NLR allele constellations, such as in the case of hybrid incompatibility, and the mis-activation of NLRs or the absence or modification of proteins guarded by these NLRs can result in the spontaneous initiation of plant defense responses and cell death-a phenomenon referred to as plant autoimmunity. Here, we review recent insights augmenting our mechanistic comprehension of plant autoimmunity. The recent findings broaden our understanding regarding hybrid incompatibility, unravel candidates for proteins likely guarded by NLRs and underline the necessity for the fine-tuning of NLR expression at various levels to avoid autoimmunity. We further present recently emerged tools to study plant autoimmunity and draw a cross-kingdom comparison to the role of NLRs in animal autoimmune conditions.
Collapse
Affiliation(s)
- Matthias Freh
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Jinlan Gao
- Institute of Biology, Functional Genomics, Copenhagen University, Copenhagen 2200, Denmark
| | - Morten Petersen
- Institute of Biology, Functional Genomics, Copenhagen University, Copenhagen 2200, Denmark
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| |
Collapse
|
31
|
Stahlhut KN, Dowell JA, Temme AA, Burke JM, Goolsby EW, Mason CM. Genetic control of arbuscular mycorrhizal colonization by Rhizophagus intraradices in Helianthus annuus (L.). MYCORRHIZA 2021; 31:723-734. [PMID: 34480215 DOI: 10.1007/s00572-021-01050-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Plant symbiosis with arbuscular mycorrhizal (AM) fungi provides many benefits, including increased nutrient uptake, drought tolerance, and belowground pathogen resistance. To develop a better understanding of the genetic architecture of mycorrhizal symbiosis, we conducted a genome-wide association study (GWAS) of this plant-fungal interaction in cultivated sunflower. A diversity panel of cultivated sunflower (Helianthus annuus L.) was phenotyped for root colonization under inoculation with the AM fungus Rhizophagus intraradices. Using a mixed linear model approach with a high-density genetic map, we identified genomic regions that are likely associated with R. intraradices colonization in sunflower. Additionally, we used a set of twelve diverse lines to assess the effect that inoculation with R. intraradices has on dried shoot biomass and macronutrient uptake. Colonization among lines in the mapping panel ranged from 0-70% and was not correlated with mycorrhizal growth response, shoot phosphorus response, or shoot potassium response among the Core 12 lines. Association mapping yielded three single-nucleotide polymorphisms (SNPs) that were significantly associated with R. intraradices colonization. This is the first study to use GWAS to identify genomic regions associated with AM colonization in an Asterid eudicot species. Three genes of interest identified from the regions containing these SNPs are likely related to plant defense.
Collapse
Affiliation(s)
| | - Jordan A Dowell
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Andries A Temme
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Eric W Goolsby
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
32
|
Genome-wide survey and characterization of ACD6-like genes in leguminous plants. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00829-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
A Ubiquitously Expressed UDP-Glucosyltransferase, UGT74J1, Controls Basal Salicylic Acid Levels in Rice. PLANTS 2021; 10:plants10091875. [PMID: 34579409 PMCID: PMC8469147 DOI: 10.3390/plants10091875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022]
Abstract
Salicylic acid (SA) is a phytohormone that regulates a variety of physiological and developmental processes, including disease resistance. SA is a key signaling component in the immune response of many plant species. However, the mechanism underlying SA-mediated immunity is obscure in rice (Oryza sativa). Prior analysis revealed a correlation between basal SA level and blast resistance in a range of rice varieties. This suggested that resistance might be improved by increasing basal SA level. Here, we identified a novel UDP-glucosyltransferase gene, UGT74J1, which is expressed ubiquitously throughout plant development. Mutants of UGT74J1 generated by genome editing accumulated high levels of SA under non-stressed conditions, indicating that UGT74J1 is a key enzyme for SA homeostasis in rice. Microarray analysis revealed that the ugt74j1 mutants constitutively overexpressed a set of pathogenesis-related (PR) genes. An inoculation assay demonstrated that these mutants had increased resistance against rice blast, but they also exhibited stunted growth phenotypes. To our knowledge, this is the first report of a rice mutant displaying SA overaccumulation.
Collapse
|
34
|
Kim JY, Song JT, Seo HS. Ammonium-mediated reduction in salicylic acid content and recovery of plant growth in Arabidopsis siz1 mutants is modulated by NDR1 and NPR1. PLANT SIGNALING & BEHAVIOR 2021; 16:1928819. [PMID: 33989128 PMCID: PMC8281091 DOI: 10.1080/15592324.2021.1928819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 06/01/2023]
Abstract
The siz1 mutants exhibit high SA accumulation and consequently severe dwarfism. Although siz1 mutants exhibit growth recovery upon exogenous ammonium supply, the underlying mechanism remains unknown. Here, we investigated the effect of ammonium on SA level and plant growth in SA-accumulating mutants. The growth of siz1-2 and siz1-3 mutants was recovered to wild-type (WT) levels upon exogenous ammonium supply, but that of siz1-3 ndr1 (non-race-specific disease resistance 1) and siz1-3 npr1 (non-expressor of pathogenesis related gene 1) double mutants was unaffected. The SA level was decreased by exogenous ammonium application in siz1-3 ndr1, siz1-3 npr1, and siz1-3 mutants. The level of nitrate reductase (NR) was almost the same in all genotypes (WT, siz1-3, ndr1, npr1, siz1-3 ndr1, and siz1-3 npr1), regardless of the ammonium treatment, suggesting that exogenous ammonium supply to ndr1 siz1-3 and npr1 siz1-3 double mutants does not have any effect on their growth and NR levels, but decreases the SA level. Taken together, these results indicate that ammonium acts as a signaling molecule to regulate the SA amount, and NDR1 and NPR1 play a positive role in the ammonium-mediated growth recovery of siz1 mutants.
Collapse
Affiliation(s)
- Ju Yong Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Jong Tae Song
- Department of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
- Bio-MAX Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
35
|
Yildiz I, Mantz M, Hartmann M, Zeier T, Kessel J, Thurow C, Gatz C, Petzsch P, Köhrer K, Zeier J. The mobile SAR signal N-hydroxypipecolic acid induces NPR1-dependent transcriptional reprogramming and immune priming. PLANT PHYSIOLOGY 2021; 186:1679-1705. [PMID: 33871649 PMCID: PMC8260123 DOI: 10.1093/plphys/kiab166] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 05/07/2023]
Abstract
N-hydroxypipecolic acid (NHP) accumulates in the plant foliage in response to a localized microbial attack and induces systemic acquired resistance (SAR) in distant leaf tissue. Previous studies indicated that pathogen inoculation of Arabidopsis (Arabidopsis thaliana) systemically activates SAR-related transcriptional reprogramming and a primed immune status in strict dependence of FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1), which mediates the endogenous biosynthesis of NHP. Here, we show that elevations of NHP by exogenous treatment are sufficient to induce a SAR-reminiscent transcriptional response that mobilizes key components of immune surveillance and signal transduction. Exogenous NHP primes Arabidopsis wild-type and NHP-deficient fmo1 plants for a boosted induction of pathogen-triggered defenses, such as the biosynthesis of the stress hormone salicylic acid (SA), accumulation of the phytoalexin camalexin and branched-chain amino acids, as well as expression of defense-related genes. NHP also sensitizes the foliage systemically for enhanced SA-inducible gene expression. NHP-triggered SAR, transcriptional reprogramming, and defense priming are fortified by SA accumulation, and require the function of the transcriptional coregulator NON-EXPRESSOR OF PR GENES1 (NPR1). Our results suggest that NPR1 transduces NHP-activated immune signaling modes with predominantly SA-dependent and minor SA-independent features. They further support the notion that NHP functions as a mobile immune regulator capable of moving independently of active SA signaling between leaves to systemically activate immune responses.
Collapse
Affiliation(s)
- Ipek Yildiz
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Melissa Mantz
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Michael Hartmann
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Tatyana Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Jana Kessel
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Corinna Thurow
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen D-37077, Germany
| | - Christiane Gatz
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen D-37077, Germany
| | - Patrick Petzsch
- Medical Faculty, Biological and Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Karl Köhrer
- Medical Faculty, Biological and Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Jürgen Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf D-40225, Germany
- Author for communication:
| |
Collapse
|
36
|
Ha CM, Rao X, Saxena G, Dixon RA. Growth-defense trade-offs and yield loss in plants with engineered cell walls. THE NEW PHYTOLOGIST 2021; 231:60-74. [PMID: 33811329 DOI: 10.1111/nph.17383] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 05/18/2023]
Abstract
As a major component of plant secondary cell walls, lignin provides structural integrity and rigidity, and contributes to primary defense by providing a physical barrier to pathogen ingress. Genetic modification of lignin biosynthesis has been adopted to reduce the recalcitrance of lignified cell walls to improve biofuel production, tree pulping properties and forage digestibility. However, lignin-modification is often, but unpredictably, associated with dwarf phenotypes. Hypotheses suggested to explain this include: collapsed vessels leading to defects in water and solute transport; accumulation of molecule(s) that are inhibitory to plant growth or deficiency of metabolites that are critical for plant growth; activation of defense pathways linked to cell wall integrity sensing. However, there is still no commonly accepted underlying mechanism for the growth defects. Here, we discuss recent data on transcriptional reprogramming in plants with modified lignin content and their corresponding suppressor mutants, and evaluate growth-defense trade-offs as a factor underlying the growth phenotypes. New approaches will be necessary to estimate how gross changes in transcriptional reprogramming may quantitatively affect growth. Better understanding of the basis for yield drag following cell wall engineering is important for the biotechnological exploitation of plants as factories for fuels and chemicals.
Collapse
Affiliation(s)
- Chan Man Ha
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xiaolan Rao
- College of Life Sciences, Hubei University, No. 28 Nanli Road, Hong-shan District, Wuchang, Wuhan, Hubei Province, 430068, China
| | - Garima Saxena
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
37
|
Kolodziej MC, Singla J, Sánchez-Martín J, Zbinden H, Šimková H, Karafiátová M, Doležel J, Gronnier J, Poretti M, Glauser G, Zhu W, Köster P, Zipfel C, Wicker T, Krattinger SG, Keller B. A membrane-bound ankyrin repeat protein confers race-specific leaf rust disease resistance in wheat. Nat Commun 2021; 12:956. [PMID: 33574268 PMCID: PMC7878491 DOI: 10.1038/s41467-020-20777-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
Plasma membrane-associated and intracellular proteins and protein complexes play a pivotal role in pathogen recognition and disease resistance signaling in plants and animals. The two predominant protein families perceiving plant pathogens are receptor-like kinases and nucleotide binding-leucine-rich repeat receptors (NLR), which often confer race-specific resistance. Leaf rust is one of the most prevalent and most devastating wheat diseases. Here, we clone the race-specific leaf rust resistance gene Lr14a from hexaploid wheat. The cloning of Lr14a is aided by the recently published genome assembly of ArinaLrFor, an Lr14a-containing wheat line. Lr14a encodes a membrane-localized protein containing twelve ankyrin (ANK) repeats and structural similarities to Ca2+-permeable non-selective cation channels. Transcriptome analyses reveal an induction of genes associated with calcium ion binding in the presence of Lr14a. Haplotype analyses indicate that Lr14a-containing chromosome segments were introgressed multiple times into the bread wheat gene pool, but we find no variation in the Lr14a coding sequence itself. Our work demonstrates the involvement of an ANK-transmembrane (TM)-like type of gene family in race-specific disease resistance in wheat. This forms the basis to explore ANK-TM-like genes in disease resistance breeding.
Collapse
Affiliation(s)
- Markus C Kolodziej
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Jyoti Singla
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Javier Sánchez-Martín
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Helen Zbinden
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Miroslava Karafiátová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Julien Gronnier
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Manuel Poretti
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, Université de Neuchâtel, Avenue de Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - Wangsheng Zhu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
- College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Philipp Köster
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Cyril Zipfel
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Thomas Wicker
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Simon G Krattinger
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Beat Keller
- University of Zurich, Department of Plant and Microbial Biology, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| |
Collapse
|
38
|
Jasinski S, Fabrissin I, Masson A, Marmagne A, Lécureuil A, Bill L, Chardon F. ACCELERATED CELL DEATH 6 Acts on Natural Leaf Senescence and Nitrogen Fluxes in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 11:611170. [PMID: 33488657 PMCID: PMC7817547 DOI: 10.3389/fpls.2020.611170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/23/2020] [Indexed: 05/30/2023]
Abstract
As the last step of leaf development, senescence is a molecular process involving cell death mechanism. Leaf senescence is trigged by both internal age-dependent factors and environmental stresses. It must be tightly regulated for the plant to adopt a proper response to environmental variation and to allow the plant to recycle nutrients stored in senescing organs. However, little is known about factors that regulate both nutrients fluxes and plant senescence. Taking advantage of variation for natural leaf senescence between Arabidopsis thaliana accessions, Col-0 and Ct-1, we did a fine mapping of a quantitative trait loci for leaf senescence and identified ACCELERATED CELL DEATH 6 (ACD6) as the causal gene. Using two near-isogeneic lines, differing solely around the ACD6 locus, we showed that ACD6 regulates rosette growth, leaf chlorophyll content, as well as leaf nitrogen and carbon percentages. To unravel the role of ACD6 in N remobilization, the two isogenic lines and acd6 mutant were grown and labeled with 15N at the vegetative stage in order to determine 15N partitioning between plant organs at harvest. Results showed that N remobilization efficiency was significantly lower in all the genotypes with lower ACD6 activity irrespective of plant growth and productivity. Measurement of N uptake at vegetative and reproductive stages revealed that ACD6 did not modify N uptake efficiency but enhanced nitrogen translocation from root to silique. In this study, we have evidenced a new role of ACD6 in regulating both sequential and monocarpic senescences and disrupting the balance between N remobilization and N uptake that is required for a good seed filling.
Collapse
|
39
|
Leontovyčová H, Kalachova T, Janda M. Disrupted actin: a novel player in pathogen attack sensing? THE NEW PHYTOLOGIST 2020; 227:1605-1609. [PMID: 32259281 DOI: 10.1111/nph.16584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The actin cytoskeleton is widely involved in plant immune responses. The majority of studies show that chemical disruption of the actin cytoskeleton increases plant susceptibility to pathogen infection. Similarly, several pathogens have adopted this as a virulence strategy and produce effectors that affect cytoskeleton integrity. Such effectors either exhibit actin-depolymerizing activity themselves or prevent actin polymerization. Is it thus possible for plants to recognize the actin's status and launch a counterattack? Recently we showed that chemical depolymerization of actin filaments can trigger resistance to further infection via the specific activation of salicylic acid (SA) signalling. This is accompanied by several defence-related, but SA-independent, effects (e.g. callose deposition, gene expression), relying on vesicular trafficking and phospholipid metabolism. These data suggest that the role of actin in plant-pathogen interactions is more complex than previously believed. It raises the question of whether plants have evolved a mechanism of sensing pathological actin disruption that eventually triggers defence responses. If so, what is the molecular basis of it? Otherwise, why does actin depolymerization specifically influence SA content but not any other phytohormone? Here we propose an updated model of actin's role in plant-microbe interactions and suggest some future directions of research to be conducted in this area.
Collapse
Affiliation(s)
- Hana Leontovyčová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6, Czech Republic
- Laboratory of Plant Biochemistry, Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 44, Prague 2, Czech Republic
| | - Tetiana Kalachova
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6, Czech Republic
| | - Martin Janda
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6, Czech Republic
- Laboratory of Plant Biochemistry, Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic
- Faculty of Biology, Biocenter, Department Genetics, Ludwig-Maximilians-University of Munich (LMU), Grosshaderner Str. 2-4, D-82152, Martinsried, Germany
| |
Collapse
|
40
|
Fujikura U, Ezaki K, Horiguchi G, Seo M, Kanno Y, Kamiya Y, Lenhard M, Tsukaya H. Suppression of class I compensated cell enlargement by xs2 mutation is mediated by salicylic acid signaling. PLoS Genet 2020; 16:e1008873. [PMID: 32584819 PMCID: PMC7343186 DOI: 10.1371/journal.pgen.1008873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/08/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
The regulation of leaf size has been studied for decades. Enhancement of post-mitotic cell expansion triggered by impaired cell proliferation in Arabidopsis is an important process for leaf size regulation, and is known as compensation. This suggests a key interaction between cell proliferation and cell expansion during leaf development. Several studies have highlighted the impact of this integration mechanism on leaf size determination; however, the molecular basis of compensation remains largely unknown. Previously, we identified extra-small sisters (xs) mutants which can suppress compensated cell enlargement (CCE) via a specific defect in cell expansion within the compensation-exhibiting mutant, angustifolia3 (an3). Here we revealed that one of the xs mutants, namely xs2, can suppress CCE not only in an3 but also in other compensation-exhibiting mutants erecta (er) and fugu2. Molecular cloning of XS2 identified a deleterious mutation in CATION CALCIUM EXCHANGER 4 (CCX4). Phytohormone measurement and expression analysis revealed that xs2 shows hyper activation of the salicylic acid (SA) response pathway, where activation of SA response can suppress CCE in compensation mutants. All together, these results highlight the regulatory connection which coordinates compensation and SA response. Leaves are determinate organ and size of leaves are determined by intrinsic and extrinsic cues. Cell proliferation and post-mitotic cell expansion should be coordinated during leaf morphogenesis to develop appropriate size depending on its developmental programs. Recent studies highlighted the existence of integrated mechanism which coordinates cell proliferation and cell expansion during leaf development. Compensation, which is enhanced post-mitotic cell expansion accompanied by a significant decrease in cell number during leaf organogenesis, is one of the clues for such coordination. However, the molecular mechanisms linking cell proliferation and cell expansion are still poorly understood. Previously, we reported extra-small sisters 2 (xs2) mutation caused specific defect in cell expansion and it suppressed increased post-mitotic cell enlargement in angustifolia3 (an3) mutant, which exhibits typical compensation. Here we identify the affected gene of xs2 mutant encodes a member of cation calcium exchanger which is believed to be involved in cation homeostasis within cells. Loss of function of this protein causes hyper accumulation of salicylic acid (SA) and increased expression of pathogen related genes. Physiological and genetic studies revealed activated SA signal transduction reduced cell size. It suppressed post-mitotic cell expansion in several compensation mutants not only an3 but partially suppressed in another type of compensation mutant which increases size of mitotic cells. This finding suggests post-mitotic cell expansion pathway is regulated in common by SA-dependent signaling and by compensation signaling during leaf development.
Collapse
Affiliation(s)
- Ushio Fujikura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
- * E-mail:
| | - Kazune Ezaki
- Graduate School of Science, The University of Tokyo, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Japan
| | - Yuji Kamiya
- RIKEN Center for Sustainable Resource Science, Japan
| | - Michael Lenhard
- Institut für Biochemie und Biologie, Universität Potsdam, Potsdam-Golm, Germany
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Japan
- Okazaki Institute for Integrative Bioscience, Japan
| |
Collapse
|
41
|
Kim Y, Gilmour SJ, Chao L, Park S, Thomashow MF. Arabidopsis CAMTA Transcription Factors Regulate Pipecolic Acid Biosynthesis and Priming of Immunity Genes. MOLECULAR PLANT 2020; 13:157-168. [PMID: 31733370 DOI: 10.1016/j.molp.2019.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 05/24/2023]
Abstract
The Arabidopsis thaliana Calmodulin-binding Transcription Activator (CAMTA) transcription factors CAMTA1, CAMTA2, and CAMTA3 (CAMTA123) serve as master regulators of salicylic acid (SA)-mediated immunity, repressing the biosynthesis of SA in healthy plants. Here, we show that CAMTA123 also repress the biosynthesis of pipecolic acid (Pip) in healthy plants. Loss of CAMTA123 function resulted in the induction of AGD2-like defense response protein 1 (ALD1), which encodes an enzyme involved in Pip biosynthesis. Induction of ALD1 resulted in the accumulation of high levels of Pip, which brought about increased levels of the SA receptor protein NPR1 without induction of NPR1 expression or requirement for an increase in SA levels. Pip-mediated induction of ALD1 and genes regulating the biosynthesis of SA-CBP60g, SARD1, PAD4, and EDS1-was largely dependent on NPR1. Furthermore, Pip-mediated increase in NPR1 protein levels was associated with priming of Pip and SA biosynthesis genes to induction by low levels of SA. Taken together, our findings expand the role for CAMTA123 in regulating key immunity genes and suggest a working model whereby loss of CAMTA123 repression leads to the induction of plant defense genes and initiation of SAR.
Collapse
Affiliation(s)
- Yongsig Kim
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; MSU Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah J Gilmour
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Lumen Chao
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; MSU Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Sunchung Park
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Michael F Thomashow
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; MSU Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
42
|
"Salicylic Acid Mutant Collection" as a Tool to Explore the Role of Salicylic Acid in Regulation of Plant Growth under a Changing Environment. Int J Mol Sci 2019; 20:ijms20246365. [PMID: 31861218 PMCID: PMC6941003 DOI: 10.3390/ijms20246365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/02/2022] Open
Abstract
The phytohormone salicylic acid (SA) has a crucial role in plant physiology. Its role is best described in the context of plant response to pathogen attack. During infection, SA is rapidly accumulated throughout the green tissues and is important for both local and systemic defences. However, some genetic/metabolic variations can also result in SA overaccumulation in plants, even in basal conditions. To date, more than forty Arabidopsis thaliana mutants have been described as having enhanced endogenous SA levels or constitutively activated SA signalling pathways. In this study, we established a collection of mutants containing different SA levels due to diverse genetic modifications and distinct gene functions. We chose prototypic SA-overaccumulators (SA-OAs), such as bon1-1, but also “non-typical” ones such as exo70b1-1; the selection of OA is accompanied by their crosses with SA-deficient lines. Here, we extensively studied the plant development and SA level/signalling under various growth conditions in soil and in vitro, and showed a strong negative correlation between rosette size, SA content and PR1/ICS1 transcript signature. SA-OAs (namely cpr5, acd6, bon1-1, fah1/fah2 and pi4kβ1β2) had bigger rosettes under high light conditions, whereas WT plants did not. Our data provide new insights clarifying a link between SA and plant behaviour under environmental stresses. The presented SA mutant collection is thus a suitable tool to shed light on the mechanisms underlying trade-offs between growth and defence in plants.
Collapse
|
43
|
Filgueiras CC, Martins AD, Pereira RV, Willett DS. The Ecology of Salicylic Acid Signaling: Primary, Secondary and Tertiary Effects with Applications in Agriculture. Int J Mol Sci 2019; 20:E5851. [PMID: 31766518 PMCID: PMC6928651 DOI: 10.3390/ijms20235851] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
The salicylic acid pathway is one of the primary plant defense pathways, is ubiquitous in vascular plants, and plays a role in rapid adaptions to dynamic abiotic and biotic stress. Its prominence and ubiquity make it uniquely suited for understanding how biochemistry within plants can mediate ecological consequences. Induction of the salicylic acid pathway has primary effects on the plant in which it is induced resulting in genetic, metabolomic, and physiologic changes as the plant adapts to challenges. These primary effects can in turn have secondary consequences for herbivores and pathogens attacking the plant. These secondary effects can both directly influence plant attackers and mediate indirect interactions between herbivores and pathogens. Additionally, stimulation of salicylic acid related defenses can affect natural enemies, predators and parasitoids, which can recruit to plant signals with consequences for herbivore populations and plant herbivory aboveground and belowground. These primary, secondary, and tertiary ecological consequences of salicylic acid signaling hold great promise for application in agricultural systems in developing sustainable high-yielding management practices that adapt to changing abiotic and biotic environments.
Collapse
|
44
|
Bernacki MJ, Czarnocka W, Szechyńska-Hebda M, Mittler R, Karpiński S. Biotechnological Potential of LSD1, EDS1, and PAD4 in the Improvement of Crops and Industrial Plants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E290. [PMID: 31426325 PMCID: PMC6724177 DOI: 10.3390/plants8080290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022]
Abstract
Lesion Simulating Disease 1 (LSD1), Enhanced Disease Susceptibility (EDS1) and Phytoalexin Deficient 4 (PAD4) were discovered a quarter century ago as regulators of programmed cell death and biotic stress responses in Arabidopsis thaliana. Recent studies have demonstrated that these proteins are also required for acclimation responses to various abiotic stresses, such as high light, UV radiation, drought and cold, and that their function is mediated through secondary messengers, such as salicylic acid (SA), reactive oxygen species (ROS), ethylene (ET) and other signaling molecules. Furthermore, LSD1, EDS1 and PAD4 were recently shown to be involved in the modification of cell walls, and the regulation of seed yield, biomass production and water use efficiency. The function of these proteins was not only demonstrated in model plants, such as Arabidopsis thaliana or Nicotiana benthamiana, but also in the woody plant Populus tremula x tremuloides. In addition, orthologs of LSD1, EDS1, and PAD4 were found in other plant species, including different crop species. In this review, we focus on specific LSD1, EDS1 and PAD4 features that make them potentially important for agricultural and industrial use.
Collapse
Affiliation(s)
- Maciej Jerzy Bernacki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- The Division of Plant Sciences, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Magdalena Szechyńska-Hebda
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek Street 21, 30-239 Cracow, Poland
- The Plant Breeding and Acclimatization Institute - National Research Institute, 05-870 Błonie, Radzików, Poland
| | - Ron Mittler
- The Division of Plant Sciences, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| |
Collapse
|
45
|
A Cerato-Platanin Family Protein FocCP1 Is Essential for the Penetration and Virulence of Fusarium oxysporum f. sp. cubense Tropical Race 4. Int J Mol Sci 2019; 20:ijms20153785. [PMID: 31382478 PMCID: PMC6695778 DOI: 10.3390/ijms20153785] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 01/03/2023] Open
Abstract
Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is well-known as the causal agent of Fusarium wilt of banana and is one of the most destructive phytopathogens for banana plants. The molecular mechanisms underlying Foc TR4 virulence remain elusive. Here, we demonstrate that a cerato-platanin (CP) protein, FocCP1, functions as a virulence factor that is required by Foc TR4 for penetration and full virulence. The FocCP1 gene was expressed in every condition studied, showing a high transcript level in planta at the early stage of infection. Infiltration of the recombinant FocCP1 protein induced significant cell death and upregulated defence-related gene expression. FocCP1 knock-out strains showed a significant decrease in aerial growth rather than aqueous growth, which is reminiscent of hydrophobins. Furthermore, deletion of FocCP1 significantly reduced virulence and dramatically reduced infective growth in banana roots, likely resulting from a defective penetration ability. Taken together, the results of this study provide novel insight into the function of the recently identified FocCP1 as a virulence factor in Foc TR4.
Collapse
|
46
|
Salicylic Acid Signals Plant Defence against Cadmium Toxicity. Int J Mol Sci 2019; 20:ijms20122960. [PMID: 31216620 PMCID: PMC6627907 DOI: 10.3390/ijms20122960] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Salicylic acid (SA), as an enigmatic signalling molecule in plants, has been intensively studied to elucidate its role in defence against biotic and abiotic stresses. This review focuses on recent research on the role of the SA signalling pathway in regulating cadmium (Cd) tolerance in plants under various SA exposure methods, including pre-soaking, hydroponic exposure, and spraying. Pretreatment with appropriate levels of SA showed a mitigating effect on Cd damage, whereas an excessive dose of exogenous SA aggravated the toxic effects of Cd. SA signalling mechanisms are mainly associated with modification of reactive oxygen species (ROS) levels in plant tissues. Then, ROS, as second messengers, regulate a series of physiological and genetic adaptive responses, including remodelling cell wall construction, balancing the uptake of Cd and other ions, refining the antioxidant defence system, and regulating photosynthesis, glutathione synthesis and senescence. These findings together elucidate the expanding role of SA in phytotoxicology.
Collapse
|
47
|
Zhang C, Gao M, Seitz NC, Angel W, Hallworth A, Wiratan L, Darwish O, Alkharouf N, Dawit T, Lin D, Egoshi R, Wang X, McClung CR, Lu H. LUX ARRHYTHMO mediates crosstalk between the circadian clock and defense in Arabidopsis. Nat Commun 2019. [PMID: 31186426 DOI: 10.1038/s41467-019-10485-10486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The circadian clock is known to regulate plant innate immunity but the underlying mechanism of this regulation remains largely unclear. We show here that mutations in the core clock component LUX ARRHYTHMO (LUX) disrupt circadian regulation of stomata under free running and Pseudomonas syringae challenge conditions as well as defense signaling mediated by SA and JA, leading to compromised disease resistance. RNA-seq analysis reveals that both clock- and defense-related genes are regulated by LUX. LUX binds to clock gene promoters that have not been shown before, expanding the clock gene networks that require LUX function. LUX also binds to the promoters of EDS1 and JAZ5, likely acting through these genes to affect SA- and JA-signaling. We further show that JA signaling reciprocally affects clock activity. Thus, our data support crosstalk between the circadian clock and plant innate immunity and imply an important role of LUX in this process.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
- Genetic Improvement of Fruits and Vegetables Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Min Gao
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Nicholas C Seitz
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - William Angel
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Amelia Hallworth
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Linda Wiratan
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Omar Darwish
- Department of Computer and Information Sciences, Towson University, Towson, MD, 21252, USA
| | - Nadim Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, 21252, USA
| | - Teklu Dawit
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Daniela Lin
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Riki Egoshi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
| |
Collapse
|
48
|
Zhang C, Gao M, Seitz NC, Angel W, Hallworth A, Wiratan L, Darwish O, Alkharouf N, Dawit T, Lin D, Egoshi R, Wang X, McClung CR, Lu H. LUX ARRHYTHMO mediates crosstalk between the circadian clock and defense in Arabidopsis. Nat Commun 2019; 10:2543. [PMID: 31186426 PMCID: PMC6560066 DOI: 10.1038/s41467-019-10485-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 05/13/2019] [Indexed: 01/02/2023] Open
Abstract
The circadian clock is known to regulate plant innate immunity but the underlying mechanism of this regulation remains largely unclear. We show here that mutations in the core clock component LUX ARRHYTHMO (LUX) disrupt circadian regulation of stomata under free running and Pseudomonassyringae challenge conditions as well as defense signaling mediated by SA and JA, leading to compromised disease resistance. RNA-seq analysis reveals that both clock- and defense-related genes are regulated by LUX. LUX binds to clock gene promoters that have not been shown before, expanding the clock gene networks that require LUX function. LUX also binds to the promoters of EDS1 and JAZ5, likely acting through these genes to affect SA- and JA-signaling. We further show that JA signaling reciprocally affects clock activity. Thus, our data support crosstalk between the circadian clock and plant innate immunity and imply an important role of LUX in this process. Circadian control of plant defence likely reflects plants’ ability to coordinate development and defense. Here, Zhang et al. show that LUX regulates stomatal defense and SA/JA signaling, leading to broad-spectrum disease resistance, and that JA signaling can, in turn, regulate clock activity.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.,Genetic Improvement of Fruits and Vegetables Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Min Gao
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Nicholas C Seitz
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - William Angel
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Amelia Hallworth
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Linda Wiratan
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Omar Darwish
- Department of Computer and Information Sciences, Towson University, Towson, MD, 21252, USA
| | - Nadim Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, 21252, USA
| | - Teklu Dawit
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Daniela Lin
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Riki Egoshi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
| |
Collapse
|
49
|
Ehonen S, Yarmolinsky D, Kollist H, Kangasjärvi J. Reactive Oxygen Species, Photosynthesis, and Environment in the Regulation of Stomata. Antioxid Redox Signal 2019; 30:1220-1237. [PMID: 29237281 DOI: 10.1089/ars.2017.7455] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Stomata sense the intercellular carbon dioxide (CO2) concentration (Ci) and water availability under changing environmental conditions and adjust their apertures to maintain optimal cellular conditions for photosynthesis. Stomatal movements are regulated by a complex network of signaling cascades where reactive oxygen species (ROS) play a key role as signaling molecules. Recent Advances: Recent research has uncovered several new signaling components involved in CO2- and abscisic acid-triggered guard cell signaling pathways. In addition, we are beginning to understand the complex interactions between different signaling pathways. CRITICAL ISSUES Plants close their stomata in reaction to stress conditions, such as drought, and the subsequent decrease in Ci leads to ROS production through photorespiration and over-reduction of the chloroplast electron transport chain. This reduces plant growth and thus drought may cause severe yield losses for agriculture especially in arid areas. FUTURE DIRECTIONS The focus of future research should be drawn toward understanding the interplay between various signaling pathways and how ROS, redox, and hormonal balance changes in space and time. Translating this knowledge from model species to crop plants will help in the development of new drought-resistant crop species with high yields.
Collapse
Affiliation(s)
- Sanna Ehonen
- 1 Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland.,2 Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | | | - Hannes Kollist
- 3 Institute of Technology, University of Tartu, Tartu, Estonia
| | - Jaakko Kangasjärvi
- 1 Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
50
|
Kramer EM, Statter SA, Yi HJ, Carlson JW, McClelland DHR. Flowering plant immune repertoires expand under mycorrhizal symbiosis. PLANT DIRECT 2019; 3:e00125. [PMID: 31245768 PMCID: PMC6508770 DOI: 10.1002/pld3.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Immune perception in flowering plants is mediated by a repertoire of cytoplasmic and cell-surface receptors that detect invading microbes and their effects on cells. Here, we show that several large families of immune receptors exhibit size variations related to a plant's competence to host symbiotic root fungi (mycorrhiza). Plants that do not participate in mycorrhizal associations have significantly smaller immune repertoires, while the most promiscuous symbiotic hosts (ectomycorrhizal plant species) have significantly larger immune repertoires. By contrast, we find no significant increase in immune repertoire size among legumes competent to form a symbiosis with nitrogen-fixing bacteria (rhizobia). To explain these observations, we hypothesize that plant immune repertoire size expands with symbiote species diversity.
Collapse
Affiliation(s)
- Eric M. Kramer
- Department of PhysicsBard College at Simon's RockGreat BarringtonMassachusetts
| | - Samantha A. Statter
- Department of PhysicsBard College at Simon's RockGreat BarringtonMassachusetts
| | - Ho Jun Yi
- Department of PhysicsBard College at Simon's RockGreat BarringtonMassachusetts
| | - Joseph W. Carlson
- Lawrence Berkeley National LaboratoryJoint Genome InstituteBerkeleyCalifornia
| | - Donald H. R. McClelland
- Department of Environmental ScienceBard College at Simon's RockGreat BarringtonMassachusetts
| |
Collapse
|