1
|
Marks RA, Ekwealor JTB, Artur MAS, Bondi L, Boothby TC, Carmo OMS, Centeno DC, Coe KK, Dace HJW, Field S, Hutt A, Porembski S, Thalhammer A, van der Pas L, Wood AJ, Alpert P, Bartels D, Boeynaems S, Datar MN, Giese T, Seidou WI, Kirchner SM, Köhler J, Kumara UGVSS, Kyung J, Lyall R, Mishler BD, Ndongmo JBVT, Otegui MS, Reddy V, Rexroth J, Tebele SM, VanBuren R, Verdier J, Vothknecht UC, Wittenberg MF, Zokov E, Oliver MJ, Rhee SY. Life on the dry side: a roadmap to understanding desiccation tolerance and accelerating translational applications. Nat Commun 2025; 16:3284. [PMID: 40189591 PMCID: PMC11973199 DOI: 10.1038/s41467-025-58656-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
To thrive in extreme conditions, organisms have evolved a diverse arsenal of adaptations that confer resilience. These species, their traits, and the mechanisms underlying them comprise a valuable resource that can be mined for numerous conceptual insights and applied objectives. One of the most dramatic adaptations to water limitation is desiccation tolerance. Understanding the mechanisms underlying desiccation tolerance has important potential implications for medicine, biotechnology, agriculture, and conservation. However, progress has been hindered by a lack of standardization across sub-disciplines, complicating the integration of data and slowing the translation of basic discoveries into practical applications. Here, we synthesize current knowledge on desiccation tolerance across evolutionary, ecological, physiological, and cellular scales to provide a roadmap for advancing desiccation tolerance research. We also address critical gaps and technical roadblocks, highlighting the need for standardized experimental practices, improved taxonomic sampling, and the development of new tools for studying biology in a dry state. We hope that this perspective can serve as a roadmap to accelerating research breakthroughs and unlocking the potential of desiccation tolerance to address global challenges related to climate change, food security, and health.
Collapse
Affiliation(s)
- R A Marks
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, University of Illinois, Urbana, IL, USA.
| | - J T B Ekwealor
- Department of Biology, San Francisco State University, San Francisco, CA, USA.
| | - M A S Artur
- Laboratory of Plant Physiology, Wageningen Seed Science Centre, Wageningen University, Wageningen, The Netherlands
| | - L Bondi
- Department of Botany, University of Rostock, Institute of Biosciences, Rostock, Germany
| | - T C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - O M S Carmo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - D C Centeno
- Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - K K Coe
- Department of Biology, Middlebury College, Middlebury, VT, USA
| | - H J W Dace
- Delft University of Technology, Delft, The Netherlands
| | - S Field
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - A Hutt
- University of Texas at Austin, Austin, TX, USA
| | - S Porembski
- Department of Botany, University of Rostock, Institute of Biosciences, Rostock, Germany
| | - A Thalhammer
- Department of Physical Biochemistry, University of Potsdam, Potsdam, Germany
| | - L van der Pas
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - A J Wood
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, USA
| | - P Alpert
- University of Massachusetts-Amherst, Amherst, MA, USA
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, USA
| | - D Bartels
- IMBIO, University of Bonn, Bonn, Germany
| | - S Boeynaems
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX, USA
- Center for Alzheimer's and Neurodegenerative Diseases (CAND), Texas Children's Hospital, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center (DLDCCC), Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - M N Datar
- Agharkar Research Institute, Pune, India
| | - T Giese
- Department of Botany, University of Rostock, Institute of Biosciences, Rostock, Germany
| | - W I Seidou
- WASCAL, Universite Felix Houphouet-Boigny, Abidjan, Côte d'Ivoire
| | - S M Kirchner
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - J Köhler
- Department of Botany, University of Rostock, Institute of Biosciences, Rostock, Germany
| | - U G V S S Kumara
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - J Kyung
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, USA
| | - R Lyall
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - B D Mishler
- Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, CA, USA
| | - J B V T Ndongmo
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - M S Otegui
- University of Wisconsin-Madison, Madison, WI, USA
| | - V Reddy
- Botanic Gardens, Tissue Culture Laboratory, Parks Recreation and Culture Unit, eThekwini Municipality, Durban, South Africa
| | - J Rexroth
- Department of Botany, University of Rostock, Institute of Biosciences, Rostock, Germany
| | - S M Tebele
- Forest Ecology and Management Department, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - R VanBuren
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - J Verdier
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - U C Vothknecht
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - M F Wittenberg
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - E Zokov
- Department of Botany, University of Rostock, Institute of Biosciences, Rostock, Germany
| | - M J Oliver
- Division of Plant Sciences and Technology, University of Missouri, Interdisciplinary Plant Group, Columbia, MO, USA.
| | - S Y Rhee
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA.
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Luo Q, Duan F, Song W. Transcriptomics integrated with metabolomics reveals the defense response of insect-resistant Zea mays infested with Spodoptera exigua. Heliyon 2025; 11:e42565. [PMID: 40034323 PMCID: PMC11872508 DOI: 10.1016/j.heliyon.2025.e42565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Maize (Zea mays) is one of the most important cereal crops worldwide. Insect control through host plant resistance plays an important part in improving both yield and quality of maize. Spodoptera exigua is a common insect pest causing destructive damages to maize. To comprehensively understand molecular mechanism of maize defense against S. exigua, integrated transcriptomics and metabolomics analyses were conducted in the insect-resistant maize inbred line CML139 infested with S. exigua for 24 h. 9845 differentially expressed genes and 34 significantly changed metabolites were identified in infested leaves. Maize transcriptional response to S. exigua infestation involved in genes encoding enzymes in biosynthetic process (ribosome, glycerolipid, glycerophospholipid metabolism), genes in valine, leucine and isoleucine degradation, phenylpropanoid pathway and transcription factors. By metabolism analysis, accumulations of amino acids, organic acids, phenylpropanoids and benzoxazinoids (Bxs) were significantly enhanced, with the exception of salicylic acid (SA) and jasmonic acid (JA). The integrated analysis of transcriptomic and metabolic data demonstrated that both transcripts and metabolites involved in phenylpropanoid and Bxs biosynthesis were differentially modulated in S. exigua infested leaves. This study is valuable in understanding the complex mechanism of interaction between plants and insect herbivores and provide a potential strategy to maize pest control.
Collapse
Affiliation(s)
- Qiulan Luo
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, People's Republic of China
| | - Fangmeng Duan
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Wenwen Song
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| |
Collapse
|
3
|
Baluku E, van der Pas L, Hilhorst HWM, Farrant JM. Metabolite Profiling of the Resurrection Grass Eragrostis nindensis During Desiccation and Recovery. PLANTS (BASEL, SWITZERLAND) 2025; 14:531. [PMID: 40006790 PMCID: PMC11859761 DOI: 10.3390/plants14040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Resurrection plants employ unique metabolic mechanisms to protect themselves against damage caused by desiccation. This study aimed to identify metabolites, using gas chromatography-mass spectrometry, which were differentially abundant in Eragrostis nindensis at different stages of dehydration and rehydration in leaves which are destined to senesce on desiccation termed "senescent tissue" (ST) and those which remain desiccation-tolerant during water deficit and are termed "non-senescent tissue" (NST). Furthermore, the study compared the shoot and root systems during extreme water deficit and recovery therefrom to unravel similarities and differences at the whole plant level in overcoming desiccation. Shoot metabolomics data showed differentially abundant metabolites in NST, including raffinose, sucrose, glutamic acid, aspartic acid, proline, alpha-ketoglutaric acid, and allantoin, which act as major drivers for plant desiccation tolerance and aid the plant post-rehydration. The metabolites which accumulated in the ST-indicated initiation of programmed cell death (PCD) leading to senescence. The roots accumulated fewer metabolites than the shoots, some exclusive to the root tissues with functions such as osmoprotection, reactive oxygen species quenching, and signaling, and thus proposed to minimize damage in leaf tissues during dehydration and desiccation. Collectively, this work gives further insight into the whole plant responses of E. nindensis to extreme dehydration conditions and could serve as a model for future improvements of drought sensitive crops.
Collapse
Affiliation(s)
| | | | | | - Jill M. Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7700, South Africa; (E.B.); (L.v.d.P.); (H.W.M.H.)
| |
Collapse
|
4
|
Alejo‐Jacuinde G, Chávez Montes RA, Gutierrez Reyes CD, Yong‐Villalobos L, Simpson J, Herrera‐Estrella L. Gene family rearrangements and transcriptional priming drive the evolution of vegetative desiccation tolerance in Selaginella. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17169. [PMID: 39666518 PMCID: PMC11711927 DOI: 10.1111/tpj.17169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Extreme dryness is lethal for nearly all plants, excluding the so-called resurrection plants, which evolved vegetative desiccation tolerance (VDT) by recruiting genes common in most plants. To better understand the evolution of VDT, we generated chromosome-level assemblies and improved genome annotations of two Selaginella species with contrasting abilities to survive desiccation. We identified genomic features and critical mechanisms associated with VDT through sister-group comparative genomics integrating multi-omics data. Our findings indicate that Selaginella evolved VDT through the expansion of some stress protection-related gene families and the contraction of senescence-related genes. Comparative analyses revealed that desiccation-tolerant Selaginella species employ a combination of constitutive and inducible protection mechanisms to survive desiccation. We show that transcriptional priming of stress tolerance-related genes and accumulation of flavonoids in unstressed plants are hallmarks of VDT in Selaginella. During water loss, the resurrection Selaginella induces phospholipids and glutathione metabolism, responses that are missing in the desiccation-sensitive species. Additionally, gene regulatory network analyses indicate the suppression of growth processes as a major component of VDT. This study presents novel perspectives on how gene dosage impacts crucial protective mechanisms and the regulation of central processes to survive extreme dehydration.
Collapse
Affiliation(s)
- Gerardo Alejo‐Jacuinde
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST)Texas Tech UniversityLubbockTexas79409USA
| | - Ricardo A. Chávez Montes
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST)Texas Tech UniversityLubbockTexas79409USA
| | | | - Lenin Yong‐Villalobos
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST)Texas Tech UniversityLubbockTexas79409USA
| | - June Simpson
- Department of Genetic EngineeringCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional36824IrapuatoGuanajuatoMexico
| | - Luis Herrera‐Estrella
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST)Texas Tech UniversityLubbockTexas79409USA
- Unidad de Genómica Avanzada/LangebioCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalGto. 36824IrapuatoMexico
| |
Collapse
|
5
|
Huang W, Lu Y, Ren B, Zeng F, Liu Y, Lu L, Li L. Identification and Expression Analysis of UPS Gene Family in Potato. Genes (Basel) 2024; 15:870. [PMID: 39062649 PMCID: PMC11275393 DOI: 10.3390/genes15070870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Ureide permeases (UPSs) mediate the transport of ureides, including allantoin and allantoate, which act as nitrogen-transporting compounds in plants and have recently been found to play a role in cellular signaling. To date, UPSs have not been reported in potato, and their identification is important for further function studies and for understanding molecular mechanisms of plant adverse responses. Based on potato genomic data, we identified 10 StUPS genes in potato (Solanum tuberosum L.). Then, we conducted a comprehensive study of the identified StUPS genes using bioinformatics methods. Genome phylogenetic and genomic localization analyses revealed that StUPSs can be classified into four categories, are highly homologous to Arabidopsis thaliana UPS members, and are distributed on three chromosomes. The six StUPS genes were investigated by RT-qPCR, and the findings indicated that all of these genes are involved in the response to several stresses, including low nitrogen, cold, ABA, salt, H2O2, and drought. This study establishes a strong theoretical framework for investigating the function of potato UPS genes, as well as the molecular mechanisms underlying the responses of these genes to various environmental stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liqin Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.L.); (B.R.); (F.Z.); (Y.L.); (L.L.)
| |
Collapse
|
6
|
Liu J, Wang Y, Chen X, Tang L, Yang Y, Yang Z, Sun R, Mladenov P, Wang X, Liu X, Jin S, Li H, Zhao L, Wang Y, Wang W, Deng X. Specific metabolic and cellular mechanisms of the vegetative desiccation tolerance in resurrection plants for adaptation to extreme dryness. PLANTA 2024; 259:47. [PMID: 38285274 DOI: 10.1007/s00425-023-04323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/24/2023] [Indexed: 01/30/2024]
Abstract
MAIN CONCLUSION Substantial advancements have been made in our comprehension of vegetative desiccation tolerance in resurrection plants, and further research is still warranted to elucidate the mechanisms governing distinct cellular adaptations. Resurrection plants are commonly referred to as a small group of extremophile vascular plants that exhibit vegetative desiccation tolerance (VDT), meaning that their vegetative tissues can survive extreme drought stress (> 90% water loss) and subsequently recover rapidly upon rehydration. In contrast to most vascular plants, which typically employ water-saving strategies to resist partial water loss and optimize water absorption and utilization to a limited extent under moderate drought stress, ultimately succumbing to cell death when confronted with severe and extreme drought conditions, resurrection plants have evolved unique mechanisms of VDT, enabling them to maintain viability even in the absence of water for extended periods, permitting them to rejuvenate without harm upon water contact. Understanding the mechanisms associated with VDT in resurrection plants holds the promise of expanding our understanding of how plants adapt to exceedingly arid environments, a phenomenon increasingly prevalent due to global warming. This review offers an updated and comprehensive overview of recent advances in VDT within resurrection plants, with particular emphasis on elucidating the metabolic and cellular adaptations during desiccation, including the intricate processes of cell wall folding and the prevention of cell death. Furthermore, this review highlights existing unanswered questions in the field, suggests potential avenues for further research to gain deeper insights into the remarkable VDT adaptations observed in resurrection plants, and highlights the potential application of VDT-derived techniques in crop breeding to enhance tolerance to extreme drought stress.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Yuanyuan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuxiu Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Tang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaolin Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Runze Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Petko Mladenov
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Agrobioinstitute, Agricultural Academy Bulgaria, Sofia, 1164, Bulgaria
| | - Xiaohua Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xiaoqiang Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songsong Jin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yafeng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Beijing University of Agriculture, Beijing, 102206, China
| | - Wenhe Wang
- Beijing University of Agriculture, Beijing, 102206, China
| | - Xin Deng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
7
|
Ramirez JF, Kumara U, Arulsamy N, Boothby TC. Water content, transition temperature and fragility influence protection and anhydrobiotic capacity. BBA ADVANCES 2024; 5:100115. [PMID: 38318251 PMCID: PMC10840120 DOI: 10.1016/j.bbadva.2024.100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Water is essential for metabolism and all life processes. Despite this, many organisms distributed across the kingdoms of life survive near-complete desiccation or anhydrobiosis. Increased intracellular viscosity, leading to the formation of a vitrified state is necessary, but not sufficient, for survival while dry. What properties of a vitrified system make it desiccation-tolerant or -sensitive are unknown. We have analyzed 18 different in vitro vitrified systems, composed of one of three protective disaccharides (trehalose, sucrose, or maltose) and glycerol, quantifying their enzyme-protective capacity and their material properties in a dry state. Protection conferred by mixtures containing maltose correlates strongly with increased water content, increased glass-transition temperature, and reduced glass former fragility, while the protection of glasses formed with sucrose correlates with increased glass transition temperature and the protection conferred by trehalose glasses correlates with reduced glass former fragility. Thus, in vitro different vitrified sugars confer protection through distinct material properties. Next, we examined the material properties of a dry desiccation tolerant and intolerant life stage from three different organisms. The dried desiccation tolerant life stage of all organisms had an increased glass transition temperature and reduced glass former fragility relative to its dried desiccation intolerant life stage. These results suggest in nature organismal desiccation tolerance relies on a combination of various material properties. This study advances our understanding of how protective and non-protective glasses differ in terms of material properties that promote anhydrobiosis. This knowledge presents avenues to develop novel stabilization technologies for pharmaceuticals that currently rely on the cold-chain. Statement of significance For the past three decades the anhydrobiosis field has lived with a paradox, while vitrification is necessary for survival in the dry state, it is not sufficient. Understanding what property(s) distinguishes a desiccation tolerant from an intolerant vitrified system and how anhydrobiotic organisms survive drying is one of the enduring mysteries of organismal physiology. Here we show in vitro the enzyme-protective capacity of different vitrifying sugars can be correlated with distinct material properties. However, in vivo, diverse desiccation tolerant organisms appear to combine these material properties to promote their survival in a dry state.
Collapse
Affiliation(s)
- John F. Ramirez
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - U.G.V.S.S. Kumara
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | - Thomas C. Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
8
|
Yang Q, Yang R, Gao B, Liang Y, Liu X, Li X, Zhang D. Metabolomic Analysis of the Desert Moss Syntrichia caninervis Provides Insights into Plant Dehydration and Rehydration Response. PLANT & CELL PHYSIOLOGY 2023; 64:1419-1432. [PMID: 37706231 DOI: 10.1093/pcp/pcad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Desiccation-tolerant (DT) plants can survive extreme dehydration and tolerate the loss of up to 95% of their water content, making them ideal systems to determine the mechanism behind extreme drought stress and identify potential approaches for developing drought-tolerant crops. The desert moss Syntrichia caninervis is an emerging model for extreme desiccation tolerance that has benefited from high-throughput sequencing analyses, allowing identification of stress-tolerant genes; however, its metabolic response to desiccation is unknown. A liquid chromatography-mass spectrometry analysis of S. caninervis at six dehydration-rehydration stages revealed 912 differentially abundant compounds, belonging to 93 metabolic classes. Many (256) metabolites accumulated during rehydration in S. caninervis, whereas only 71 accumulated during the dehydration period, in contrast to the pattern observed in vascular DT plants. During dehydration, nitrogenous amino acids (l-glutamic acid and cysteinylglycine), alkaloids (vinleurosine) and steroids (physalin D) accumulated, whereas glucose 6-phosphate decreased. During rehydration, γ-aminobutyric acid, glucose 6-phosphate and flavonoids (karanjin and aromadendrin) accumulated, as did the plant hormones 12-oxo phytodienoic acid (12-OPDA) and trans-zeatin riboside. The contents ofl-arginine, maltose, turanose, lactulose and sucrose remained high throughout dehydration-rehydration. Syntrichia caninervis thus accumulates antioxidants to scavenge reactive oxygen species, accumulating nitrogenous amino acids and cytoprotective metabolites and decreasing energy metabolism to enter a protective state from dehydration-induced damage. During subsequent rehydration, many metabolites rapidly accumulated to prevent oxidative stress and restore physiological activities while repairing cells, representing a more elaborate rehydration repair mechanism than vascular DT plants, with a faster and greater accumulation of metabolites. This metabolic kinetics analysis in S. caninervis deepens our understanding of its dehydration mechanisms and provides new insights into the different strategies of plant responses to dehydration and rehydration.
Collapse
Affiliation(s)
- Qilin Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruirui Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
| | - Yuqing Liang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
| | - Xiujin Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, Beijing 838008, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, Beijing 838008, China
| |
Collapse
|
9
|
Mohanan A, Kodigudla A, Raman DR, Bakka K, Challabathula D. Trehalose accumulation enhances drought tolerance by modulating photosynthesis and ROS-antioxidant balance in drought sensitive and tolerant rice cultivars. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:2035-2049. [PMID: 38222274 PMCID: PMC10784439 DOI: 10.1007/s12298-023-01404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
Trehalose being an integral part for plant growth, development and abiotic stress tolerance is accumulated in minute amounts in angiosperms with few exceptions from resurrection plants. In the current study, two rice cultivars differing in drought tolerance were used to analyse the role of trehalose in modulating photosynthesis and ROS-antioxidant balance leading to improvement in drought tolerance. Accumulation of trehalose in leaves of Vaisakh (drought-tolerant) and Aiswarya (drought-sensitive) rice cultivars was observed by spraying 50 mM trehalose and 100 µM validamycin A (trehalase inhibitor) followed by vacuum infiltration. Compared to stress sensitive Aiswarya cultivar, higher trehalose levels were observed in leaves of Vaisakh not only under control conditions but also under drought conditions corresponding with increased root length. The increase in leaf trehalose by treatment with trehalose or validamycin A corresponded well with a decrease in electrolyte leakage in sensitive and tolerant plants. Decreased ROS levels were reflected as increase in antioxidant enzyme activity and their gene expression in leaves of both the cultivars treated with trehalose or Validamycin A under control and drought conditions signifying the importance of trehalose in modulating the ROS-antioxidant balance for cellular protection. Further, higher chlorophyll, higher photosynthetic activity and modulation in other gas exchange parameters upon treatment with trehalose or validamycin A strongly suggested the beneficial role of trehalose for stress tolerance. Trehalose accumulation helped the tolerant cultivar adjust towards drought by maintaining higher water status and alleviating the ROS toxicity by effective activation and increment in antioxidant enzyme activity along with enhanced photosynthesis. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01404-7.
Collapse
Affiliation(s)
- Akhil Mohanan
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610 005 India
| | - Anjali Kodigudla
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610 005 India
| | - Dhana Ramya Raman
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610 005 India
| | - Kavya Bakka
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610005 India
| | - Dinakar Challabathula
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610 005 India
| |
Collapse
|
10
|
He R, Shi H, Hu M, Zhou Q, Zhang Q, Dang H. Divergent effects of warming on nonstructural carbohydrates in woody plants: a meta-analysis. PHYSIOLOGIA PLANTARUM 2023; 175:e14117. [PMID: 38148215 DOI: 10.1111/ppl.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Nonstructural carbohydrates (NSC, including soluble sugars and starch) are essential for supporting growth and survival of woody plants, and play multifunctional roles in various ecophysiological processes that are being rapidly changed by climate warming. However, it still remains unclear whether there is a consistent response pattern of NSC dynamics in woody plants to climate warming across organ types and species taxa. Here, based on a compiled database of 52 woody plant species worldwide, we conducted a meta-analysis to investigate the effects of experimental warming on NSC dynamics. Our results indicated that the responses of NSC dynamics to warming were primarily driven by the fluctuations of starch, while soluble sugars did not undergo significant changes. The effects of warming on NSC shifted from negative to positive with the extension of warming duration, while the negative warming effects on NSC became more pronounced as warming magnitude increased. Overall, our study showed the divergent responses of NSC and its components in different organs of woody plants to experimental warming, suggesting a potentially changed carbon (C) balance in woody plants in future global warming. Thus, our findings highlight that predicting future changes in plant functions and terrestrial C cycle requires a mechanism understanding of how NSC is linked to a specific global change driver.
Collapse
Affiliation(s)
- Rui He
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Hang Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Man Hu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Quan Zhou
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Haishan Dang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| |
Collapse
|
11
|
Dace HJW, Reus R, Ricco CR, Hall R, Farrant JM, Hilhorst HWM. A horizontal view of primary metabolomes in vegetative desiccation tolerance. PHYSIOLOGIA PLANTARUM 2023; 175:e14109. [PMID: 38148236 DOI: 10.1111/ppl.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/28/2023]
Abstract
Vegetative desiccation tolerance (VDT), the ability of such tissues to survive the near complete loss of cellular water, is a rare but polyphyletic phenotype. It is a complex multifactorial trait, typified by universal (core) factors but with many and varied adaptations due to plant architecture, biochemistry and biotic/abiotic dynamics of particular ecological niches. The ability to enter into a quiescent biophysically stable state is what ultimately determines desiccation tolerance. Thus, understanding the metabolomic complement of plants with VDT gives insight into the nature of survival as well as evolutionary aspects of VDT. In this study, we measured the soluble carbohydrate profiles and the polar, TMS-derivatisable metabolomes of 7 phylogenetically diverse species with VDT, in contrast with two desiccation sensitive (DS) species, under conditions of full hydration, severe water deficit stress, and desiccation. Our study confirmed the existence of core mechanisms of VDT systems associated with either constitutively abundant trehalose or the accumulation of raffinose family oligosaccharides and sucrose, with threshold ratios conditioned by other features of the metabolome. DS systems did not meet these ratios. Considerable chemical variations among VDT species suggest that co-occurring but distinct stresses (e.g., photooxidative stress) are dealt with using different chemical regimes. Furthermore, differences in the timing of metabolic shifts suggest there is not a single "desiccation programme" but that subprocesses are coordinated differently at different drying phases. There are likely to be constraints on the composition of a viable dry state and how different adaptive strategies interact with the biophysical constraints of VDT.
Collapse
Affiliation(s)
- Halford J W Dace
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Robbin Reus
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Celeste Righi Ricco
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Robert Hall
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Henk W M Hilhorst
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Shen L, Zhang P, Lin Y, Huang X, Zhang S, Li Z, Fang Z, Wen Y, Liu H. Polystyrene microplastic attenuated the toxic effects of florfenicol on rice (Oryza sativa L.) seedlings in hydroponics: From the perspective of oxidative response, phototoxicity and molecular metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132176. [PMID: 37523959 DOI: 10.1016/j.jhazmat.2023.132176] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Antibiotics and microplastics (MPs) are two emerging pollutants in agroecosystems, however the effects of co-exposure to antibiotics and MPs remain unclear. The toxicity of florfenicol (FF) and polystyrene microplastics (PS-MPs) on rice seedlings was investigated. FF and PS-MPs caused colloidal agglomeration, which changed the environmental behavior of FF. FF inhibited rice growth and altered antioxidant enzyme (superoxide dismutase, peroxidase, and catalase) activities, leading to membrane lipid peroxidation; impaired photosynthetic systems, decreased photosynthetic pigments (Chlorophyll a, Chlorophyll b, and carotene), chlorophyll precursors (Proto IX, Mg-Proto IX, and Pchlide), photosynthetic and respiratory rates. The key photosynthesis related genes (PsaA, PsaB, PsbA, PsbB, PsbC, and PsbD) were significantly down-regulated. The ultrastructure of mesophyll cells was destroyed with chloroplast swelling, membrane surface blurring, irregular thylakoid lamellar structure, and number of peroxisomes increased. PS-MPs mitigated FF toxicity, and the IBR index values showed that 10 mg∙L-1 PS-MPs were more effective. Metabolomic analysis revealed that the abundance of metabolites and metabolic pathways were altered by FF, was greater than the combined "MPs-FF" contamination. The metabolism of amino acids, sugars, and organic acids were severely interfered. Among these, 15 metabolic pathways were significantly altered, with the most significant effects on phenylalanine metabolism and the citric acid cycle (p < 0.05).
Collapse
Affiliation(s)
- Luoqin Shen
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Ping Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Yanyao Lin
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Xinting Huang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Siyi Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zhiguo Fang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
13
|
Dace HJ, Adetunji AE, Moore JP, Farrant JM, Hilhorst HW. A review of the role of metabolites in vegetative desiccation tolerance of angiosperms. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102410. [PMID: 37413962 DOI: 10.1016/j.pbi.2023.102410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
The survival of extreme water deficit stress by tolerant organisms requires a coordinated series of responses, including those at cellular, transcriptional, translational and metabolic levels. Small molecules play a pivotal role in creating the proper chemical environment for the preservation of cellular integrity and homeostasis during dehydration. This review surveys recent insights in the importance of primary and specialised metabolites in the response to drying of angiosperms with vegetative desiccation tolerance, i.e. the ability to survive near total loss of water. Important metabolites include sugars such as sucrose, trehalose and raffinose family of oligosaccharides, amino acids and organic acids, as well as antioxidants, representing a common core mechanism of desiccation tolerance. Additional metabolites are discussed in the context of species specificity and adaptation.
Collapse
Affiliation(s)
- Halford Jw Dace
- Laboratory of Plant Physiology, Wageningen University and Research, The Netherlands
| | - Ademola E Adetunji
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - John P Moore
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, South Africa.
| | - Henk Wm Hilhorst
- Laboratory of Plant Physiology, Wageningen University and Research, The Netherlands; Department of Molecular and Cell Biology, University of Cape Town, South Africa.
| |
Collapse
|
14
|
Raihan MRH, Rahman M, Rastogi A, Fujita M, Hasanuzzaman M. Exogenous Allantoin Confers Rapeseed ( Brassica campestris) Tolerance to Simulated Drought by Improving Antioxidant Metabolism and Physiology. Antioxidants (Basel) 2023; 12:1508. [PMID: 37627503 PMCID: PMC10451791 DOI: 10.3390/antiox12081508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Allantoin is an emerging plant metabolite, but its role in conferring drought-induced oxidative stress is still elusive. Therefore, an experiment was devised to explore the role of allantoin (0.5 and 1.0 mM; foliar spray) in rapeseed (Brassica campestris cv. BARI Sarisha-17) under drought. Seedlings at fifteen days of age were subjected to drought, maintaining soil moisture levels at 50% and 25% field capacities, while well-irrigated plants served as the control group. Drought-stressed plants exhibited increased levels of lipid peroxidation and hydrogen peroxide, electrolyte leakage, and impaired glyoxalase systems. Thus, the growth, biomass, and yield attributes of rapeseed were significantly impaired under drought. However, the allantoin-supplemented plants showed a notable increase in their contents of ascorbate and glutathione and decreased dehydroascorbate and glutathione disulfide contents under drought. Moreover, the activity of antioxidant enzymes such as ascorbate peroxidase, dehydroascorbate reductase, glutathione reductase, glutathione peroxidase, and catalase were accelerated with the allantoin spray and the glyoxalase system was also enhanced under drought. Moreover, the improvement in water balance with reduction in proline and potassium ion contents was also observed when allantoin was applied to the plants. Overall, the beneficial effects of allantoin supplementation resulted in the improved plant growth, biomass, and yield of rapeseed under drought conditions. These findings suggest that allantoin acts as an efficient metabolite in mitigating the oxidative stress caused by reactive oxygen species by enhancing antioxidant defense mechanisms and the glyoxalase system.
Collapse
Affiliation(s)
- Md. Rakib Hossain Raihan
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznań University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland
| | - Mira Rahman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznań University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland
| | - Masayuki Fujita
- Faculty of Agriculture, Kagawa University, Kita-Gun, Kagawa, Miki-cho 761-0795, Japan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
15
|
Yadav P, Singh RP, Alodaini HA, Hatamleh AA, Santoyo G, Kumar A, Gupta RK. Impact of dehydration on the physiochemical properties of Nostoc calcicola BOT1 and its untargeted metabolic profiling through UHPLC-HRMS. FRONTIERS IN PLANT SCIENCE 2023; 14:1147390. [PMID: 37426961 PMCID: PMC10327440 DOI: 10.3389/fpls.2023.1147390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023]
Abstract
The global population growth has led to a higher demand for food production, necessitating improvements in agricultural productivity. However, abiotic and biotic stresses pose significant challenges, reducing crop yields and impacting economic and social welfare. Drought, in particular, severely constrains agriculture, resulting in unproductive soil, reduced farmland, and jeopardized food security. Recently, the role of cyanobacteria from soil biocrusts in rehabilitating degraded land has gained attention due to their ability to enhance soil fertility and prevent erosion. The present study focused on Nostoc calcicola BOT1, an aquatic, diazotrophic cyanobacterial strain collected from an agricultural field at Banaras Hindu University, Varanasi, India. The aim was to investigate the effects of different dehydration treatments, specifically air drying (AD) and desiccator drying (DD) at various time intervals, on the physicochemical properties of N. calcicola BOT1. The impact of dehydration was assessed by analyzing the photosynthetic efficiency, pigments, biomolecules (carbohydrates, lipids, proteins, osmoprotectants), stress biomarkers, and non-enzymatic antioxidants. Furthermore, an analysis of the metabolic profiles of 96-hour DD and control mats was conducted using UHPLC-HRMS. Notably, there was a significant decrease in amino acid levels, while phenolic content, fatty acids, and lipids increased. These changes in metabolic activity during dehydration highlighted the presence of metabolite pools that contribute to the physiological and biochemical adjustments of N. calcicola BOT1, mitigating the impact of dehydration to some extent. Overall, present study demonstrated the accumulation of biochemical and non-enzymatic antioxidants in dehydrated mats, which could be utilized to stabilize unfavorable environmental conditions. Additionally, the strain N. calcicola BOT1 holds promise as a biofertilizer for semi-arid regions.
Collapse
Affiliation(s)
- Priya Yadav
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rahul Prasad Singh
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | | | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Ajay Kumar
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rajan Kumar Gupta
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
16
|
Zhang T, Cui H, Luan F, Liu H, Ding Z, Amanullah S, Zhang M, Ma T, Gao P. A recessive gene Cmpmr2F confers powdery mildew resistance in melon (Cucumis melo L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:4. [PMID: 36651949 DOI: 10.1007/s00122-023-04269-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Identified a recessive gene (Cmpmr2F) associated with resistance to infection by the powdery mildew causing agent Podosphaera xanthii race 2F. Powdery mildew (PM) is one of the most destructive fungal diseases of melon, which significantly reduces the crop yield and quality. Multiple studies are being performed for in-depth genetic understandings of PM-susceptibility or -resistance mechanisms in melon plants, but the holistic knowledge of the precise genetic basis of PM-resistance is unexplored. In this study, we characterized the recessive gene "Cmpmr2F" and found its association with resistance against the PM causative agent "Podosphaera xanthii race 2F." Fine genetic mapping revealed the major-effect region of a 26.25-kb interval on chromosome 12, which harbored the Cmpmr2F gene corresponding to the MELO3C002403, encoding allantoate amidohydrolase. The functional gene annotation, expression pattern, and sequence alignment analyses were carried out using two contrast parent lines of melon "X055" PM-susceptible and "PI 124112" PM-resistant. Further, gene silencing of Cmpmr2F using virus-induced gene silencing (VIGS) significantly increased PM-resistance in the susceptible plant. In contrast to the previously reported studies, we identified that Cmpmr2F-silenced plants showed no impairment in growth due to less apparent negative effects in silenced melon plants. So, it is believed that the Cmpmr2F gene has great potential for further breeding studies to increase the P. xanthii race 2F resistance in melon. In short, our study provides new genetic resources and a solid foundation for further functional analysis of PM-resistance genes in melon, as well as powerful molecular markers for marker-assisted breeding aimed at developing new melon varieties resistant to PM infection.
Collapse
Affiliation(s)
- Taifeng Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
| | - Haonan Cui
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, 066004, China
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
| | - Hongyu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
| | - Zhuo Ding
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, 066004, China
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
| | - Manlin Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
| | - Tingting Ma
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
| | - Peng Gao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China.
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China.
| |
Collapse
|
17
|
Lu S, Jia Z, Meng X, Chen Y, Wang S, Fu C, Yang L, Zhou R, Wang B, Cao Y. Combined Metabolomic and Transcriptomic Analysis Reveals Allantoin Enhances Drought Tolerance in Rice. Int J Mol Sci 2022; 23:ijms232214172. [PMID: 36430648 PMCID: PMC9699107 DOI: 10.3390/ijms232214172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Drought is a misfortune for agriculture and human beings. The annual crop yield reduction caused by drought exceeds the sum of all pathogens. As one of the gatekeepers of China's "granary", rice is the most important to reveal the key drought tolerance factors in rice. Rice seedlings of Nipponbare (Oryza sativa L. ssp. Japonica) were subjected to simulated drought stress, and their root systems were analyzed for the non-targeted metabolome and strand-specific transcriptome. We found that both DEGs and metabolites were enriched in purine metabolism, and allantoin accumulated significantly in roots under drought stress. However, few studies on drought tolerance of exogenous allantoin in rice have been reported. We aimed to further determine whether allantoin can improve the drought tolerance of rice. Under the treatment of exogenous allantoin at different concentrations, the drought resistant metabolites of plants accumulated significantly, including proline and soluble sugar, and reactive oxygen species (ROS) decreased and reached a significant level in 100 μmol L-1. To this end, a follow-up study was identified in 100 μmol L-1 exogenous allantoin and found that exogenous allantoin improved the drought resistance of rice. At the gene level, under allantoin drought treatment, we found that genes of scavenge reactive oxygen species were significantly expressed, including peroxidase (POD), catalase (CATA), ascorbate peroxidase 8 (APX8) and respiratory burst oxidase homolog protein F (RbohF). This indicates that plants treated by allantoin have better ability to scavenge reactive oxygen species to resist drought. Alternative splicing analysis revealed a total of 427 differentially expressed alternative splicing events across 320 genes. The analysis of splicing factors showed that gene alternative splicing could be divided into many different subgroups and play a regulatory role in many aspects. Through further analysis, we restated the key genes and enzymes in the allantoin synthesis and catabolism pathway, and found that the expression of synthetase and hydrolase showed a downward trend. The pathway of uric acid to allantoin is completed by uric acid oxidase (UOX). To find out the key transcription factors that regulate the expression of this gene, we identified two highly related transcription factors OsERF059 and ONAC007 through correlation analysis. They may be the key for allantoin to enhance the drought resistance of rice.
Collapse
Affiliation(s)
- Shuai Lu
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Zichang Jia
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Xiangfeng Meng
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Yaoyu Chen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Surong Wang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Chaozhen Fu
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Lei Yang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Rong Zhou
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong 226019, China
- Correspondence: (B.W.); (Y.C.)
| | - Yunying Cao
- School of Life Sciences, Nantong University, Nantong 226019, China
- Correspondence: (B.W.); (Y.C.)
| |
Collapse
|
18
|
Kahilainen A, Oostra V, Somervuo P, Minard G, Saastamoinen M. Alternative developmental and transcriptomic responses to host plant water limitation in a butterfly metapopulation. Mol Ecol 2022; 31:5666-5683. [PMID: 34516691 DOI: 10.1111/mec.16178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 01/13/2023]
Abstract
Predicting how climate change affects biotic interactions poses a challenge. Plant-insect herbivore interactions are particularly sensitive to climate change, as climate-induced changes in plant quality cascade into the performance of insect herbivores. Whereas the immediate survival of herbivore individuals depends on plastic responses to climate change-induced nutritional stress, long-term population persistence via evolutionary adaptation requires genetic variation for these responses. To assess the prospects for population persistence under climate change, it is therefore crucial to characterize response mechanisms to climate change-induced stressors, and quantify their variability in natural populations. Here, we test developmental and transcriptomic responses to water limitation-induced host plant quality change in a Glanville fritillary butterfly (Melitaea cinxia) metapopulation. We combine nuclear magnetic resonance spectroscopy on the plant metabolome, larval developmental assays and an RNA sequencing analysis of the larval transcriptome. We observed that responses to feeding on water-limited plants, in which amino acids and aromatic compounds are enriched, showed marked variation within the metapopulation, with individuals of some families performing better on control and others on water-limited plants. The transcriptomic responses were concordant with the developmental responses: families exhibiting opposite developmental responses also produced opposite transcriptomic responses (e.g. in growth-associated transcripts). The divergent responses in both larval development and transcriptome are associated with differences between families in amino acid catabolism and storage protein production. The results reveal intrapopulation variability in plasticity, suggesting that the Finnish M. cinxia metapopulation harbours potential for buffering against drought-induced changes in host plant quality.
Collapse
Affiliation(s)
- Aapo Kahilainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, P.O. Box 65, Helsinki, FIN-00014, Finland
| | - Vicencio Oostra
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, P.O. Box 65, Helsinki, FIN-00014, Finland.,Department of Evolution, Ecology and Behaviour, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Panu Somervuo
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, P.O. Box 65, Helsinki, FIN-00014, Finland
| | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Marjo Saastamoinen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, P.O. Box 65, Helsinki, FIN-00014, Finland.,Helsinki Institute of Life Science, University of Helsinki, Finland
| |
Collapse
|
19
|
Xanthophyll cycles in the juniper haircap moss (Polytrichum juniperinum) and Antarctic hair grass (Deschampsia antarctica) on Livingston Island (South Shetland Islands, Maritime Antarctica). Polar Biol 2022. [DOI: 10.1007/s00300-022-03068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractThe summer climate in Maritime Antarctica is characterised by high humidity and cloudiness with slightly above zero temperatures. Under such conditions, photosynthetic activity is temperature-limited and plant communities are formed by a few species. These conditions could prevent the operation of the photoprotective xanthophyll (VAZ) cycle as low irradiance reduces the excess of energy and low temperatures limit enzyme activity. The VAZ cycle regulates the dissipation of the excess of absorbed light as heat, which is the main mechanism of photoprotection in plants. To test whether this mechanism operates dynamically in Antarctic plant communities, we characterised pigment dynamics under natural field conditions in two representative species: the moss Polytrichum juniperinum and the grass Deschampsia antarctica. Pigment analyses revealed that the total VAZ pool was in the upper range of the values reported for most plant species, suggesting that they are exposed to a high degree of environmental stress. Despite cloudiness, there was a strong conversion of violaxanthin (V) to zeaxanthin (Z) during daytime. Conversely, the dark-induced enzymatic epoxidation back to V was not limited by nocturnal temperatures. In contrast with plants from other cold ecosystems, we did not find any evidence of overnight retention of Z or sustained reductions in photochemical efficiency. These results are of interest for modelling, remote sensing and upscaling of the responses of Antarctic vegetation to environmental challenges.
Collapse
|
20
|
Alejo-Jacuinde G, Kean-Galeno T, Martínez-Gallardo N, Tejero-Díez JD, Mehltreter K, Délano-Frier JP, Oliver MJ, Simpson J, Herrera-Estrella L. Viability markers for determination of desiccation tolerance and critical stages during dehydration in Selaginella species. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3898-3912. [PMID: 35312760 PMCID: PMC9232207 DOI: 10.1093/jxb/erac121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/19/2022] [Indexed: 05/16/2023]
Abstract
While most plants die below a threshold of water content, desiccation-tolerant species display specific responses that allow them to survive extreme dehydration. Some of these responses are activated at critical stages during water loss and could represent the difference between desiccation tolerance (DT) and death. Here, we report the development of a simple and reproducible system to determine DT in Selaginella species. The system is based on exposure of excised tissue to a dehydration agent inside small containers, and subsequent evaluation for tissue viability. We evaluated several methodologies to determine viability upon desiccation including: triphenyltetrazolium chloride (TTC) staining, the quantum efficiency of PSII, antioxidant potential, and relative electrolyte leakage. Our results show that the TTC test is a simple and accurate assay to identify novel desiccation-tolerant Selaginella species, and can also indicate viability in other desiccation-tolerant models (i.e. ferns and mosses). The system we developed is particularly useful to identify critical points during the dehydration process. We found that a desiccation-sensitive Selaginella species shows a change in viability when dehydrated to 40% relative water content, indicating the onset of a critical condition at this water content. Comparative studies at critical stages could provide a better understanding of DT mechanisms and unravel insights into the key responses to survive desiccation.
Collapse
Affiliation(s)
- Gerardo Alejo-Jacuinde
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
- National Laboratory of Genomics for Biodiversity (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824 Irapuato, Guanajuato, Mexico
- Department of Genetic Engineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824 Irapuato, Guanajuato, Mexico
| | - Tania Kean-Galeno
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
- National Laboratory of Genomics for Biodiversity (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824 Irapuato, Guanajuato, Mexico
| | - Norma Martínez-Gallardo
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824 Irapuato, Guanajuato, Mexico
| | - J Daniel Tejero-Díez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, 54090 Tlalnepantla, Estado de Mexico, Mexico
| | - Klaus Mehltreter
- Red de Ecología Funcional, Instituto de Ecología A.C., 91070 Xalapa, Veracruz, Mexico
| | - John P Délano-Frier
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824 Irapuato, Guanajuato, Mexico
| | - Melvin J Oliver
- Division of Plant Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - June Simpson
- Department of Genetic Engineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824 Irapuato, Guanajuato, Mexico
| | | |
Collapse
|
21
|
Aigner S, Arc E, Schletter M, Karsten U, Holzinger A, Kranner I. Metabolite Profiling in Green Microalgae with Varying Degrees of Desiccation Tolerance. Microorganisms 2022; 10:946. [PMID: 35630392 PMCID: PMC9144557 DOI: 10.3390/microorganisms10050946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Trebouxiophyceae are microalgae occupying even extreme environments such as polar regions or deserts, terrestrial or aquatic, and can occur free-living or as lichen photobionts. Yet, it is poorly understood how environmental factors shape their metabolism. Here, we report on responses to light and temperature, and metabolic adjustments to desiccation in Diplosphaera epiphytica, isolated from a lichen, and Edaphochlorella mirabilis, isolated from Tundra soil, assessed via growth and photosynthetic performance parameters. Metabolite profiling was conducted by GC-MS. A meta-analysis together with data from a terrestrial and an aquatic Chlorella vulgaris strain reflected elements of phylogenetic relationship, lifestyle, and relative desiccation tolerance of the four algal strains. For example, compatible solutes associated with desiccation tolerance were up-accumulated in D. epiphytica, but also sugars and sugar alcohols typically produced by lichen photobionts. The aquatic C. vulgaris, the most desiccation-sensitive strain, showed the greatest variation in metabolite accumulation after desiccation and rehydration, whereas the most desiccation-tolerant strain, D. epiphytica, showed the least, suggesting that it has a more efficient constitutive protection from desiccation and/or that desiccation disturbed the metabolic steady-state less than in the other three strains. The authors hope that this study will stimulate more research into desiccation tolerance mechanisms in these under-investigated microorganisms.
Collapse
Affiliation(s)
- Siegfried Aigner
- Department of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; (S.A.); (E.A.); (M.S.); (A.H.)
| | - Erwann Arc
- Department of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; (S.A.); (E.A.); (M.S.); (A.H.)
| | - Michael Schletter
- Department of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; (S.A.); (E.A.); (M.S.); (A.H.)
| | - Ulf Karsten
- Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, D-18057 Rostock, Germany;
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; (S.A.); (E.A.); (M.S.); (A.H.)
| | - Ilse Kranner
- Department of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; (S.A.); (E.A.); (M.S.); (A.H.)
| |
Collapse
|
22
|
Exploring the High Variability of Vegetative Desiccation Tolerance in Pteridophytes. PLANTS 2022; 11:plants11091222. [PMID: 35567223 PMCID: PMC9103120 DOI: 10.3390/plants11091222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/19/2022]
Abstract
In the context of plant evolution, pteridophytes, which is comprised of lycophytes and ferns, occupy an intermediate position between bryophytes and seed plants, sharing characteristics with both groups. Pteridophytes is a highly diverse group of plant species that occupy a wide range of habitats including ecosystems with extreme climatic conditions. There is a significant number of pteridophytes that can tolerate desiccation by temporarily arresting their metabolism in the dry state and reactivating it upon rehydration. Desiccation-tolerant pteridophytes exhibit a strategy that appears to be intermediate between the constitutive and inducible desiccation tolerance (DT) mechanisms observed in bryophytes and angiosperms, respectively. In this review, we first describe the incidence and anatomical diversity of desiccation-tolerant pteridophytes and discuss recent advances on the origin of DT in vascular plants. Then, we summarize the highly diverse adaptations and mechanisms exhibited by this group and describe how some of these plants could exhibit tolerance to multiple types of abiotic stress. Research on the evolution and regulation of DT in different lineages is crucial to understand how plants have adapted to extreme environments. Thus, in the current scenario of climate change, the knowledge of the whole landscape of DT strategies is of vital importance as a potential basis to improve plant abiotic stress tolerance.
Collapse
|
23
|
Li M, Li J, Tan H, Luo Y, Zhang Y, Chen Q, Wang Y, Lin Y, Zhang Y, Wang X, Tang H. Comparative metabolomics provides novel insights into the basis of petiole color differences in celery ( Apiumgraveolens L.). J Zhejiang Univ Sci B 2022; 23:300-314. [PMID: 35403385 DOI: 10.1631/jzus.b2100806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Plant metabolites are important for plant development and human health. Plants of celery (Apiumgraveolens L.) with different-colored petioles have been formed in the course of long-term evolution. However, the composition, content distribution, and mechanisms of accumulation of metabolites in different-colored petioles remain elusive. Using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), 1159 metabolites, including 100 lipids, 72 organic acids and derivatives, 83 phenylpropanoids and polyketides, and several alkaloids and terpenoids, were quantified in four celery cultivars, each with a different petiole color. There were significant differences in the types and contents of metabolites in celery with different-colored petioles, with the most striking difference between green celery and purple celery, followed by white celery and green celery. Annotated analysis of metabolic pathways showed that the metabolites of the different-colored petioles were significantly enriched in biosynthetic pathways such as anthocyanin, flavonoid, and chlorophyll pathways, suggesting that these metabolic pathways may play a key role in determining petiole color in celery. The content of chlorophyll in green celery was significantly higher than that in other celery cultivars, yellow celery was rich in carotenoids, and the content of anthocyanin in purple celery was significantly higher than that in the other celery cultivars. The color of the celery petioles was significantly correlated with the content of related metabolites. Among the four celery cultivars, the metabolites of the anthocyanin biosynthesis pathway were enriched in purple celery. The results of quantitative real-time polymerase chain reaction (qRT-PCR) suggested that the differential expression of the chalcone synthase (CHS) gene in the anthocyanin biosynthesis pathway might affect the biosynthesis of anthocyanin in celery. In addition, HPLC analysis revealed that cyanidin is the main pigment in purple celery. This study explored the differences in the types and contents of metabolites in celery cultivars with different-colored petioles and identified key substances for color formation. The results provide a theoretical basis and technical support for genetic improvement of celery petiole color.
Collapse
Affiliation(s)
- Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haohan Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China. .,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
24
|
Wang Z, Lu C, Chen J, Luo Q, Yang R, Gu D, Wang T, Zhang P, Chen H. Physiological and multi-omics responses of Neoporphyra haitanensis to dehydration-rehydration cycles. BMC PLANT BIOLOGY 2022; 22:168. [PMID: 35369869 PMCID: PMC8978406 DOI: 10.1186/s12870-022-03547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Seaweeds in the upper intertidal zone experience extreme desiccation during low tide, followed by rapid rehydration during high tide. Porphyra sensu lato are typical upper intertidal seaweeds. Therefore, it is valuable to investigate the adaptive mechanisms of seaweed in response to dehydration-rehydration stress. RESULTS A reduction in photosynthetic capacity and cell shrinkage were observed when N. haitanensis was dehydrated, and such changes were ameliorated once rehydrated. And the rate and extent of rehydration were affected by the air flow speed, water content before rehydration, and storage temperature and time. Rapid dehydration at high air-flow speed and storage at - 20 °C with water content of 10% caused less damage to N. haitanensis and better-protected cell activity. Moreover, proteomic and metabolomic analyses revealed the abundance members of the differentially expressed proteins (DEPs) and differentially abundant metabolites (DAMs) mainly involved in antioxidant system and osmotic regulation. The ascorbic acid-glutathione coupled with polyamine antioxidant system was enhanced in the dehydration response of N. haitanensis. The increased soluble sugar content, the accumulated polyols, but hardly changed (iso)floridoside and insignificant amount of sucrose during dehydration indicated that polyols as energetically cheaper organic osmolytes might help resist desiccation. Interestingly, the recovery of DAMs and DEPs upon rehydration was fast. CONCLUSIONS Our research results revealed that rapid dehydration and storage at - 20 °C were beneficial for recovery of N. haitanensis. And the strategy to resist dehydration was strongly directed toward antioxidant activation and osmotic regulation. This work provided valuable insights into physiological changes and adaptative mechanism in desiccation, which can be applied for seaweed farming.
Collapse
Affiliation(s)
- Zekai Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Caiping Lu
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Qijun Luo
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Rui Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Denghui Gu
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Tiegan Wang
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Peng Zhang
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Haimin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
25
|
A comparative genomics examination of desiccation tolerance and sensitivity in two sister grass species. Proc Natl Acad Sci U S A 2022; 119:2118886119. [PMID: 35082155 PMCID: PMC8812550 DOI: 10.1073/pnas.2118886119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
This is a significant sister group contrast comparative study of the underpinning genomics and evolution of desiccation tolerance (DT), a critical trait in the evolution of land plants. Our results revealed that the DT grass Sporobolus stapfianus is transcriptionally primed to tolerate a dehydration/desiccation event and that the desiccation response in the DT S. stapfianus is distinct from the water stress response of the desiccation-sensitive Sporobolus pyramidalis. Our results also show that the desiccation response is largely unique, indicating a recent evolution of this trait within the angiosperms, and that inhibition of senescence during dehydration is likely critical in rendering a plant desiccation tolerant. Desiccation tolerance is an ancient and complex trait that spans all major lineages of life on earth. Although important in the evolution of land plants, the mechanisms that underlay this complex trait are poorly understood, especially for vegetative desiccation tolerance (VDT). The lack of suitable closely related plant models that offer a direct contrast between desiccation tolerance and sensitivity has hampered progress. We have assembled high-quality genomes for two closely related grasses, the desiccation-tolerant Sporobolus stapfianus and the desiccation-sensitive Sporobolus pyramidalis. Both species are complex polyploids; S. stapfianus is primarily tetraploid, and S. pyramidalis is primarily hexaploid. S. pyramidalis undergoes a major transcriptome remodeling event during initial exposure to dehydration, while S. stapfianus has a muted early response, with peak remodeling during the transition between 1.5 and 1.0 grams of water (gH2O) g−1 dry weight (dw). Functionally, the dehydration transcriptome of S. stapfianus is unrelated to that for S. pyramidalis. A comparative analysis of the transcriptomes of the hydrated controls for each species indicated that S. stapfianus is transcriptionally primed for desiccation. Cross-species comparative analyses indicated that VDT likely evolved from reprogramming of desiccation tolerance mechanisms that evolved in seeds and that the tolerance mechanism of S. stapfianus represents a recent evolution for VDT within the Chloridoideae. Orthogroup analyses of the significantly differentially abundant transcripts reconfirmed our present understanding of the response to dehydration, including the lack of an induction of senescence in resurrection angiosperms. The data also suggest that failure to maintain protein structure during dehydration is likely critical in rendering a plant desiccation sensitive.
Collapse
|
26
|
Mihailova G, Vasileva I, Gigova L, Gesheva E, Simova-Stoilova L, Georgieva K. Antioxidant Defense during Recovery of Resurrection Plant Haberlea rhodopensis from Drought- and Freezing-Induced Desiccation. PLANTS 2022; 11:plants11020175. [PMID: 35050062 PMCID: PMC8778515 DOI: 10.3390/plants11020175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
In this study, the contribution of nonenzymatic (ascorbate, glutathione) and enzymatic antioxidants (superoxide dismutase, catalase, glutathione reductase, glutathione S-transferase) in the first hours of recovery of the resurrection plant Haberlea rhodopensis from drought- and freezing-induced desiccation was assessed. The initial stage of recovery after desiccation is critical for plants, but less investigated. To better understand the alterations in the activity of antioxidant enzymes, their isoenzyme patterns were determined. Our results showed that ascorbate content remained high during the first 9 h of rehydration of desiccated plants and declined when the leaves′ water content significantly increased. The glutathione content remained high at the first hour of rehydration and then strongly decreased. The changes in ascorbate and glutathione content during recovery from drought- and freezing-induced desiccation showed great similarity. At the beginning of rehydration (1–5 h), the activities of antioxidant enzymes were significantly increased or remained as in dry plants. During 7–24 h of rehydration, certain differences in the enzymatic responses between the two plant groups were registered. The maintenance of a high antioxidant activity and upregulation of individual enzyme isoforms indicated their essential role in protecting plants from oxidative damage during the onset of recovery.
Collapse
Affiliation(s)
- Gergana Mihailova
- Laboratory of Photosynthesis–Activity and Regulation, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Ivanina Vasileva
- Laboratory of Experimental Algology, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113 Sofia, Bulgaria; (I.V.); (L.G.)
| | - Liliana Gigova
- Laboratory of Experimental Algology, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113 Sofia, Bulgaria; (I.V.); (L.G.)
| | - Emiliya Gesheva
- Laboratory of Plant-Soil Interactions, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 25, 1113 Sofia, Bulgaria;
| | - Lyudmila Simova-Stoilova
- Laboratory of Regulation of Gene Expression, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Katya Georgieva
- Laboratory of Photosynthesis–Activity and Regulation, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
- Correspondence: or ; Tel.: +359-2-979-2620
| |
Collapse
|
27
|
Tebele SM, Marks RA, Farrant JM. Two Decades of Desiccation Biology: A Systematic Review of the Best Studied Angiosperm Resurrection Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122784. [PMID: 34961255 PMCID: PMC8706221 DOI: 10.3390/plants10122784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 05/25/2023]
Abstract
Resurrection plants have an extraordinary ability to survive extreme water loss but still revive full metabolic activity when rehydrated. These plants are useful models to understand the complex biology of vegetative desiccation tolerance. Despite extensive studies of resurrection plants, many details underlying the mechanisms of desiccation tolerance remain unexplored. To summarize the progress in resurrection plant research and identify unexplored questions, we conducted a systematic review of 15 model angiosperm resurrection plants. This systematic review provides an overview of publication trends on resurrection plants, the geographical distribution of species and studies, and the methodology used. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses protocol we surveyed all publications on resurrection plants from 2000 and 2020. This yielded 185 empirical articles that matched our selection criteria. The most investigated plants were Craterostigma plantagineum (17.5%), Haberlea rhodopensis (13.7%), Xerophyta viscosa (reclassified as X. schlechteri) (11.9%), Myrothamnus flabellifolia (8.5%), and Boea hygrometrica (8.1%), with all other species accounting for less than 8% of publications. The majority of studies have been conducted in South Africa, Bulgaria, Germany, and China, but there are contributions from across the globe. Most studies were led by researchers working within the native range of the focal species, but some international and collaborative studies were also identified. The number of annual publications fluctuated, with a large but temporary increase in 2008. Many studies have employed physiological and transcriptomic methodologies to investigate the leaves of resurrection plants, but there was a paucity of studies on roots and only one metagenomic study was recovered. Based on these findings we suggest that future research focuses on resurrection plant roots and microbiome interactions to explore microbial communities associated with these plants, and their role in vegetative desiccation tolerance.
Collapse
Affiliation(s)
- Shandry M. Tebele
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
| | - Rose A. Marks
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Plant Resiliency Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Jill M. Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
| |
Collapse
|
28
|
Ge N, Yang K, Yang L, Meng ZG, Li LG, Chen JW. iTRAQ and RNA-seq analyses provide an insight into mechanisms of recalcitrance in a medicinal plant Panax notoginseng seeds during the after-ripening process. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 49:68-88. [PMID: 34822750 DOI: 10.1071/fp21197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Panax notoginseng (Burk) F.H. Chen is an important economic and medicinal plant from the family of Araliaceae, and its seed is characterised by the recalcitrance and after-ripening process. However, the molecular mechanism on the dehydration sensitivity is not clear in recalcitrant seeds. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) and RNA-seq were used to analyse the proteomic and transcriptomic changes in seeds of P. notoginseng in days after-ripening (DAR). A total of 454 differentially expressed proteins (DEPs) and 12000 differentially expressed genes (DEGs) were obtained. The activity of enzymes related to antioxidant system were significantly increased, and the late embryogenesis abundant (LEA) protein family and most members of glutathione metabolism enzymes have been downregulated during the after-ripening process. The lack or inadequate accumulation of LEA proteins in the embryo and the low activity of antioxidant defense in glutathione metabolism might be the key factors leading to the dehydration sensitivity in recalcitrant seeds of P. notoginseng. In addition, the increased activity of elycolysis (EMP), citric acid cycle (TCA) and pentose phosphate pathway (PPP) pathways might be one of important signals to complete the after-ripening process. Overall, our study might provide a new insight into the molecular mechanism on dehydration sensitivity of recalcitrant seeds.
Collapse
Affiliation(s)
- Na Ge
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Kai Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Ling Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Zhen-Gui Meng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Long-Geng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| |
Collapse
|
29
|
A Label-Free Proteomic and Complementary Metabolomic Analysis of Leaves of the Resurrection Plant Xerophytaschlechteri during Dehydration. Life (Basel) 2021; 11:life11111242. [PMID: 34833116 PMCID: PMC8624122 DOI: 10.3390/life11111242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Vegetative desiccation tolerance, or the ability to survive the loss of ~95% relative water content (RWC), is rare in angiosperms, with these being commonly called resurrection plants. It is a complex multigenic and multi-factorial trait, with its understanding requiring a comprehensive systems biology approach. The aim of the current study was to conduct a label-free proteomic analysis of leaves of the resurrection plant Xerophyta schlechteri in response to desiccation. A targeted metabolomics approach was validated and correlated to the proteomics, contributing the missing link in studies on this species. Three physiological stages were identified: an early response to drying, during which the leaf tissues declined from full turgor to a RWC of ~80–70%, a mid-response in which the RWC declined to 40% and a late response where the tissues declined to 10% RWC. We identified 517 distinct proteins that were differentially expressed, of which 253 proteins were upregulated and 264 were downregulated in response to the three drying stages. Metabolomics analyses, which included monitoring the levels of a selection of phytohormones, amino acids, sugars, sugar alcohols, fatty acids and organic acids in response to dehydration, correlated with some of the proteomic differences, giving insight into the biological processes apparently involved in desiccation tolerance in this species.
Collapse
|
30
|
Gechev T, Lyall R, Petrov V, Bartels D. Systems biology of resurrection plants. Cell Mol Life Sci 2021; 78:6365-6394. [PMID: 34390381 PMCID: PMC8558194 DOI: 10.1007/s00018-021-03913-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Plant species that exhibit vegetative desiccation tolerance can survive extreme desiccation for months and resume normal physiological activities upon re-watering. Here we survey the recent knowledge gathered from the sequenced genomes of angiosperm and non-angiosperm desiccation-tolerant plants (resurrection plants) and highlight some distinct genes and gene families that are central to the desiccation response. Furthermore, we review the vast amount of data accumulated from analyses of transcriptomes and metabolomes of resurrection species exposed to desiccation and subsequent rehydration, which allows us to build a systems biology view on the molecular and genetic mechanisms of desiccation tolerance in plants.
Collapse
Affiliation(s)
- Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria.
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen Str., Plovdiv, 4000, Bulgaria.
| | - Rafe Lyall
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria
| | - Veselin Petrov
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria
- Department of Plant Physiology, Biochemistry and Genetics, Agricultural University - Plovdiv, 12, Mendeleev Str, Plovdiv, 4000, Bulgaria
| | | |
Collapse
|
31
|
Terlova EF, Holzinger A, Lewis LA. Terrestrial Green Algae Show Higher Tolerance to Dehydration than Do Their Aquatic Sister-Species. MICROBIAL ECOLOGY 2021; 82:770-782. [PMID: 33502573 PMCID: PMC7612456 DOI: 10.1007/s00248-020-01679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/29/2020] [Indexed: 05/09/2023]
Abstract
Diverse algae possess the ability to recover from extreme desiccation without forming specialized resting structures. Green algal genera such as Tetradesmus (Sphaeropleales, Chlorophyceae) contain temperate terrestrial, desert, and aquatic species, providing an opportunity to compare physiological traits associated with the transition to land in closely related taxa. We subjected six species from distinct habitats to three dehydration treatments varying in relative humidity (RH 5%, 65%, 80%) followed by short- and long-term rehydration. We tested the capacity of the algae to recover from dehydration using the effective quantum yield of photosystem II as a proxy for physiological activity. The degree of recovery was dependent both on the habitat of origin and the dehydration scenario, with terrestrial, but not aquatic, species recovering from dehydration. Distinct strains of each species responded similarly to dehydration and rehydration, with the exception of one aquatic strain that recovered from the mildest dehydration treatment. Cell ultrastructure was uniformly maintained in both aquatic and desert species during dehydration and rehydration, but staining with an amphiphilic styryl dye indicated damage to the plasma membrane from osmotically induced water loss in the aquatic species. These analyses demonstrate that terrestrial Tetradesmus possess a vegetative desiccation tolerance phenotype, making these species ideal for comparative omics studies.
Collapse
Affiliation(s)
- Elizaveta F Terlova
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA.
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, Austria
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
32
|
Genome-wide association studies: assessing trait characteristics in model and crop plants. Cell Mol Life Sci 2021; 78:5743-5754. [PMID: 34196733 PMCID: PMC8316211 DOI: 10.1007/s00018-021-03868-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/19/2023]
Abstract
GWAS involves testing genetic variants across the genomes of many individuals of a population to identify genotype–phenotype association. It was initially developed and has proven highly successful in human disease genetics. In plants genome-wide association studies (GWAS) initially focused on single feature polymorphism and recombination and linkage disequilibrium but has now been embraced by a plethora of different disciplines with several thousand studies being published in model and crop species within the last decade or so. Here we will provide a comprehensive review of these studies providing cases studies on biotic resistance, abiotic tolerance, yield associated traits, and metabolic composition. We also detail current strategies of candidate gene validation as well as the functional study of haplotypes. Furthermore, we provide a critical evaluation of the GWAS strategy and its alternatives as well as future perspectives that are emerging with the emergence of pan-genomic datasets.
Collapse
|
33
|
Mayer JA, Wone BWM, Alexander DC, Guo L, Ryals JA, Cushman JC. Metabolic profiling of epidermal and mesophyll tissues under water-deficit stress in Opuntia ficus-indica reveals stress-adaptive metabolic responses. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:717-731. [PMID: 33896444 DOI: 10.1071/fp20332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Cactus pear (Opuntia ficus-indica) is a high productivity species within the Cactaceae grown in many semiarid parts of the world for food, fodder, forage, and biofuels. O. ficus-indica utilises obligate crassulacean acid metabolism (CAM), an adaptation that greatly improves water-use efficiency (WUE) and reduces crop water usage. To better understand CAM-related metabolites and water-deficit stress responses of O. ficus-indica, comparative metabolic profiling was performed on mesophyll and epidermal tissues collected from well-watered and water-deficit stressed cladodes at 50% relative water content (RWC). Tissues were collected over a 24-h period to identify metabolite levels throughout the diel cycle and analysed using a combination of acidic/basic ultra-high-performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS) and gas chromatography/mass spectrometry (GC/MS) platforms. A total of 382 metabolites, including 210 (55%) named and 172 (45%) unnamed compounds, were characterised across both tissues. Most tricarboxylic acid (TCA) cycle and glycolysis intermediates were depleted in plants undergoing water-deficit stress indicative of CAM idling or post-idling, while the raffinose family oligosaccharides (RFO) accumulated in both mesophyll and epidermal tissues as osmoprotectants. Levels of reduced glutathione and other metabolites of the ascorbate cycle as well as oxylipins, stress hormones such as traumatic acid, and nucleotide degradation products were increased under water-deficit stress conditions. Notably, tryptophan accumulation, an atypical response, was significantly (24-fold) higher during all time points in water-deficit stressed mesophyll tissue compared with well-watered controls. Many of the metabolite increases were indicative of a highly oxidising environment under water-deficit stress. A total of 34 unnamed metabolites also accumulated in response to water-deficit stress indicating that such compounds might play important roles in water-deficit stress tolerance.
Collapse
Affiliation(s)
- Jesse A Mayer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA; and Present address: Thermo Fisher Scientific, Carlsbad, CA 92008, USA
| | - Bernard W M Wone
- Department of Biology, University of South Dakota, SD 57069, USA
| | | | - Lining Guo
- Metabolon Inc., 800 Capitola Drive, Suite 1, Durham, NC 27713, USA
| | - John A Ryals
- Metabolon Inc., 800 Capitola Drive, Suite 1, Durham, NC 27713, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA; and Corresponding author.
| |
Collapse
|
34
|
Cloutier M, Xiang D, Gao P, Kochian LV, Zou J, Datla R, Wang E. Integrative Modeling of Gene Expression and Metabolic Networks of Arabidopsis Embryos for Identification of Seed Oil Causal Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:642938. [PMID: 33889166 PMCID: PMC8056077 DOI: 10.3389/fpls.2021.642938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Fatty acids in crop seeds are a major source for both vegetable oils and industrial applications. Genetic improvement of fatty acid composition and oil content is critical to meet the current and future demands of plant-based renewable seed oils. Addressing this challenge can be approached by network modeling to capture key contributors of seed metabolism and to identify underpinning genetic targets for engineering the traits associated with seed oil composition and content. Here, we present a dynamic model, using an Ordinary Differential Equations model and integrated time-course gene expression data, to describe metabolic networks during Arabidopsis thaliana seed development. Through in silico perturbation of genes, targets were predicted in seed oil traits. Validation and supporting evidence were obtained for several of these predictions using published reports in the scientific literature. Furthermore, we investigated two predicted targets using omics datasets for both gene expression and metabolites from the seed embryo, and demonstrated the applicability of this network-based model. This work highlights that integration of dynamic gene expression atlases generates informative models which can be explored to dissect metabolic pathways and lead to the identification of causal genes associated with seed oil traits.
Collapse
Affiliation(s)
- Mathieu Cloutier
- Laboratory of Bioinformatics and Systems Biology, National Research Council Canada, Montreal, QC, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Leon V. Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jitao Zou
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Raju Datla
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Edwin Wang
- Laboratory of Bioinformatics and Systems Biology, National Research Council Canada, Montreal, QC, Canada
- Centre for Health Genomics and Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
35
|
Okemo P, Long H, Cheng Y, Mundree S, Williams B. Stachyose triggers apoptotic like cell death in drought sensitive but not resilient plants. Sci Rep 2021; 11:7099. [PMID: 33782503 PMCID: PMC8007635 DOI: 10.1038/s41598-021-86559-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/24/2021] [Indexed: 02/01/2023] Open
Abstract
Programmed cell death (PCD) is one of the most intensively researched fields in modern mammalian biology with roles in cancer, aging, diabetes and numerous neurodegenerative diseases. It is becoming increasingly clear that PCD also plays significant roles in plant defence and responses to the environment. Given their unique ability to tolerate desiccation (cells remain viable even after they've lost 95% of their water), resurrection plants make ideal models to study the regulation of plant PCD pathways. Previously, we showed that the Australian resurrection plant, Tripogon loliiformis, suppresses plant PCD, via trehalose-mediated activation of autophagy pathways, during drying. In the present study, we created a full-length T. loliiformis cDNA library, performed a large-scale Agrobacterium screen for improved salinity tolerance and identified Stachyose synthase (TlStach) as a potential candidate for improving stress tolerance. Tripogon loliiformis shoots accumulate stachyose synthase transcripts and stachyose during drying. Attempts to generate transgenic plants expressing TlStach failed and were consistent with previous reports in mammals that demonstrated stachyose-mediated induction of apoptosis. Using a combination of transcriptomics, metabolomics and cell death assays (TUNNEL and DNA laddering), we investigated whether stachyose induces apoptotic-like cell death in T. loliiformis. We show that stachyose triggers the formation of the hallmarks of plant apoptotic-like cell death in the desiccation sensitive Nicotiana benthamiana but not the resilient T. loliiformis. These findings suggest that T. loliiformis suppresses stachyose-mediated apoptotic-like cell death and provides insights on the role of sugar metabolism and plant PCD pathways. A better understanding of how resilient plants regulate sugar metabolism and PCD pathways may facilitate future targeting of plant metabolic pathways for increased stress tolerance.
Collapse
Affiliation(s)
- Pauline Okemo
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Hao Long
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yen Cheng
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sagadevan Mundree
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brett Williams
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
36
|
Marks RA, Farrant JM, Nicholas McLetchie D, VanBuren R. Unexplored dimensions of variability in vegetative desiccation tolerance. AMERICAN JOURNAL OF BOTANY 2021; 108:346-358. [PMID: 33421106 DOI: 10.1002/ajb2.1588] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/03/2020] [Indexed: 06/12/2023]
Abstract
Desiccation tolerance has evolved recurrently across diverse land plant lineages as an adaptation for survival in regions where seasonal rainfall drives periodic drying of vegetative tissues. Growing interest in this phenomenon has fueled recent physiological, biochemical, and genomic insights into the mechanistic basis of desiccation tolerance. Although, desiccation tolerance is often viewed as binary and monolithic, substantial variation exists in the phenotype and underlying mechanisms across diverse lineages, heterogeneous populations, and throughout the development of individual plants. Most studies have focused on conserved responses in a subset desiccation-tolerant plants under laboratory conditions. Consequently, the variability and natural diversity of desiccation-tolerant phenotypes remains largely uncharacterized. Here, we discuss the natural variation in desiccation tolerance and argue that leveraging this diversity can improve our mechanistic understanding of desiccation tolerance. We summarize information collected from ~600 desiccation-tolerant land plants and discuss the taxonomic distribution and physiology of desiccation responses. We point out the need to quantify natural diversity of desiccation tolerance on three scales: variation across divergent lineages, intraspecific variation across populations, and variation across tissues and life stages of an individual plant. We conclude that this variability should be accounted for in experimental designs and can be leveraged for deeper insights into the intricacies of desiccation tolerance.
Collapse
Affiliation(s)
- Rose A Marks
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa
| | | | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
37
|
Singh KK, Saha S, Kadiravana RC, Mazumdar D, Rai V, Ghosh S. Ammonium metabolism in Selaginella bryopteris in response to dehydration-rehydration and characterisation of desiccation tolerant, thermostable, cytosolic glutamine synthetase from plant. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:257-267. [PMID: 33059817 DOI: 10.1071/fp20144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Water deficit (WD) has adverse effects on plant growth, and acclimation requires responses allowing primary metabolism to continue. Resurrection plants can serve as model system to gain insight into metabolic regulation during WD. We herein report the response of a resurrection lycophyte, Selaginella bryopteris, to dehydration-rehydration cycle with emphasis on ammonium metabolism. Dehydration of S. bryopteris fronds resulted in decrease of total protein and increase of free ammonium levels and the effect was reversed on rehydration. The proline content increased twice after 24 h of dehydration, which again recovered to background levels comparable to that at full turgor state. The specific activity of glutamine synthetase (GS) didn't change significantly till 6 h and then declined by 21% after 24 h of dehydration, whereas specific activities of glutamate synthase (GOGAT) and aminating glutamate dehydrogenase (GDH) were enhanced significantly during dehydration. The deaminating activity of GDH also increased during dehydration albeit at a slower rate. Immunoblot analysis indicated overexpression of GS and GDH polypeptides during dehydration and their levels declined on rehydration. The results suggested significant role of GDH along with GS/GOGAT in production of nitrogen-rich amino acids for desiccation tolerance. Unlike higher plants S. bryopteris expressed GS only in cytosol. The enzyme had pH and temperature optima of 5.5 and 60°C, respectively, and it retained 96% activity on preincubation at 60°C for 30 min indicating thermostability. Hence, like higher plants the cytosolic GS from S. bryopteris has a conserved role in stress tolerance.
Collapse
Affiliation(s)
- Kamal K Singh
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Siliguri-734013, India
| | - Shyamaprasad Saha
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, Siliguri-734013, India
| | - Ram C Kadiravana
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Siliguri-734013, India
| | - Deepika Mazumdar
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Siliguri-734013, India
| | - Vijeta Rai
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Siliguri-734013, India
| | - Shilpi Ghosh
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Siliguri-734013, India; and Corresponding author. ;
| |
Collapse
|
38
|
Marks RA, Smith JJ, VanBuren R, McLetchie DN. Expression dynamics of dehydration tolerance in the tropical plant Marchantia inflexa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:209-222. [PMID: 33119914 DOI: 10.1111/tpj.15052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 09/10/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Tolerance to prolonged water deficit occurs along a continuum in plants, with dehydration tolerance (DhT) and desiccation tolerance (DT) representing some of the most extreme adaptations to water scarcity. Although DhT and DT presumably vary among individuals of a single species, this variability remains largely unstudied. Here, we characterized expression dynamics throughout a dehydration-rehydration time-course in six diverse genotypes of the dioecious liverwort Marchantia inflexa. We identified classical signatures of stress response in M. inflexa, including major changes in transcripts related to metabolism, expression of LEA and ELIP genes, and evidence of cell wall remodeling. However, we detected very little temporal synchronization of these responses across different genotypes of M. inflexa, which may be related to genotypic variation among samples, constitutive expression of dehydration-associated transcripts, the sequestration of mRNAs in ribonucleoprotein partials prior to drying, or the lower tolerance of M. inflexa relative to most bryophytes studied to date. Our characterization of intraspecific variation in expression dynamics suggests that differences in the timing of transcriptional adjustments contribute to variation among genotypes, and that developmental differences impact the relative tolerance of meristematic and differentiated tissues. This work highlights the complexity and variability of water stress tolerance, and underscores the need for comparative studies that seek to characterize variation in DT and DhT.
Collapse
Affiliation(s)
- Rose A Marks
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | | |
Collapse
|
39
|
Alejo-Jacuinde G, González-Morales SI, Oropeza-Aburto A, Simpson J, Herrera-Estrella L. Comparative transcriptome analysis suggests convergent evolution of desiccation tolerance in Selaginella species. BMC PLANT BIOLOGY 2020; 20:468. [PMID: 33046015 PMCID: PMC7549206 DOI: 10.1186/s12870-020-02638-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/04/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Desiccation tolerant Selaginella species evolved to survive extreme environmental conditions. Studies to determine the mechanisms involved in the acquisition of desiccation tolerance (DT) have focused on only a few Selaginella species. Due to the large diversity in morphology and the wide range of responses to desiccation within the genus, the understanding of the molecular basis of DT in Selaginella species is still limited. RESULTS Here we present a reference transcriptome for the desiccation tolerant species S. sellowii and the desiccation sensitive species S. denticulata. The analysis also included transcriptome data for the well-studied S. lepidophylla (desiccation tolerant), in order to identify DT mechanisms that are independent of morphological adaptations. We used a comparative approach to discriminate between DT responses and the common water loss response in Selaginella species. Predicted proteomes show strong homology, but most of the desiccation responsive genes differ between species. Despite such differences, functional analysis revealed that tolerant species with different morphologies employ similar mechanisms to survive desiccation. Significant functions involved in DT and shared by both tolerant species included induction of antioxidant systems, amino acid and secondary metabolism, whereas species-specific responses included cell wall modification and carbohydrate metabolism. CONCLUSIONS Reference transcriptomes generated in this work represent a valuable resource to study Selaginella biology and plant evolution in relation to DT. Our results provide evidence of convergent evolution of S. sellowii and S. lepidophylla due to the different gene sets that underwent selection to acquire DT.
Collapse
Affiliation(s)
- Gerardo Alejo-Jacuinde
- National Laboratory of Genomics for Biodiversity (Langebio), Unit of Advanced Genomics, CINVESTAV, 36824 Irapuato, Guanajuato Mexico
- Department of Genetic Engineering, CINVESTAV, 36824 Irapuato, Guanajuato Mexico
| | | | - Araceli Oropeza-Aburto
- National Laboratory of Genomics for Biodiversity (Langebio), Unit of Advanced Genomics, CINVESTAV, 36824 Irapuato, Guanajuato Mexico
| | - June Simpson
- Department of Genetic Engineering, CINVESTAV, 36824 Irapuato, Guanajuato Mexico
| | - Luis Herrera-Estrella
- National Laboratory of Genomics for Biodiversity (Langebio), Unit of Advanced Genomics, CINVESTAV, 36824 Irapuato, Guanajuato Mexico
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409 USA
| |
Collapse
|
40
|
Liu L, Liu D, Wang Z, Zou C, Wang B, Zhang H, Gai Z, Zhang P, Wang Y, Li C. Exogenous allantoin improves the salt tolerance of sugar beet by increasing putrescine metabolism and antioxidant activities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:699-713. [PMID: 32750647 DOI: 10.1016/j.plaphy.2020.06.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 05/22/2023]
Abstract
Allantoin as a nitrogen metabolite can improve the salt tolerance in plants, but its mechanism of action remain elusive. Herein, the effects of pretreatment with exogenous allantoin in salt tolerance were investigated in sugar beet. The seedlings were subjected to salt stress (300 mM Na+) without or with different allantoin concentrations (0.01, 0.1, and 1 mM). The effects of allantoin on plant growth, homeostasis, oxidative damage, osmoregulation, and polyamine metabolism were studied. The results showed that salt stress inhibited the net photosynthetic rate and plant growth, and caused oxidative damage. However, these adverse effects were mitigated by exogenous allantoin in a dose-dependent manner, especially at 0.1 mM. Allantoin reduced the accumulation of ROS by increasing the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and AsA content. Under salt stress, allantoin reduced the root concentrations of free putrescine (Put) but increased the free spermine (Spm) in leaves and roots. Furthermore, allantoin decreased the Na+/K+ ratio and promoted the accumulation of betaine and soluble sugars in leaves and roots. Under salinity conditions, allantoin may enhance the antioxidant system and improve ion homeostasis by enhancing putrescine and/or spermine accumulation. In addition, Pearson's correlation and principal component analysis (PCA) established correlations between physiological parameters, and significant differences between different concentrations of allantoin were observed. In total, exogenous allantoin effectively reduced the oxidative damage and ion toxicity in sugar beet, caused by salinity, this finding would be helpful in improving salt tolerance in plant.
Collapse
Affiliation(s)
- Lei Liu
- College of Agronomy, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Dan Liu
- College of Agronomy, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Ziyang Wang
- College of Agronomy, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Chunlei Zou
- College of Agronomy, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Bin Wang
- College of Agronomy, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - He Zhang
- College of Agronomy, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhijia Gai
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Pengfei Zhang
- College of Agronomy, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yubo Wang
- College of Agronomy, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Caifeng Li
- College of Agronomy, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
41
|
Chen T, Zhang W, Yang G, Chen JH, Chen BX, Sun R, Zhang H, An LZ. TRANSTHYRETIN-LIKE and BYPASS1-LIKE co-regulate growth and cold tolerance in Arabidopsis. BMC PLANT BIOLOGY 2020; 20:332. [PMID: 32664862 PMCID: PMC7362626 DOI: 10.1186/s12870-020-02534-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/28/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Cold stress inhibits normal physiological metabolism in plants, thereby seriously affecting plant development. Meanwhile, plants also actively adjust their metabolism and development to adapt to changing environments. Several cold tolerance regulators have been found to participate in the regulation of plant development. Previously, we reported that BYPASS1-LIKE (B1L), a DUF793 family protein, participates in the regulation of cold tolerance, at least partly through stabilizing C-REPEAT BINDING FACTORS (CBFs). In this study, we found that B1L interacts with TRANSTHYRETIN-LIKE (TTL) protein, which is involved in brassinosteroid (BR)-mediated plant growth and catalyses the synthesis of S-allantoin, and both proteins participate in modulating plant growth and cold tolerance. RESULTS The results obtained with yeast two hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that B1L directly interacted with TTL. Similar to the ttl-1 and ttl-2 mutants, the b1l mutant displayed a longer hypocotyl and greater fresh weight than wild type, whereas B1L-overexpressing lines exhibited a shorter hypocotyl and reduced fresh weight. Moreover, ttl-1 displayed freezing tolerance to cold treatment compared with WT, whereas the b1l mutant and TTL-overexpressing lines were freezing-sensitive. The b1l ttl double mutant had a developmental phenotype and freezing tolerance that were highly similar to those of ttl-1 compared to b1l, indicating that TTL is important for B1L function. Although low concentrations of brassinolide (0.1 or 1 nM) displayed similarly promoted hypocotyl elongation of WT and b1l under normal temperature, it showed less effect to the hypocotyl elongation of b1l than to that of WT under cold conditions. In addition, the b1l mutant also contained less amount of allantoin than Col-0. CONCLUSION Our results indicate that B1L and TTL co-regulate development and cold tolerance in Arabidopsis, and BR and allantoin may participate in these processes through B1L and TTL.
Collapse
Affiliation(s)
- Tao Chen
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wei Zhang
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Gang Yang
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jia-Hui Chen
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Bi-Xia Chen
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Rui Sun
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hua Zhang
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Li-Zhe An
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- School of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
42
|
Coleine C, Gevi F, Fanelli G, Onofri S, Timperio AM, Selbmann L. Specific adaptations are selected in opposite sun exposed Antarctic cryptoendolithic communities as revealed by untargeted metabolomics. PLoS One 2020; 15:e0233805. [PMID: 32460306 PMCID: PMC7253227 DOI: 10.1371/journal.pone.0233805] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Antarctic cryptoendolithic communities are self-supporting borderline ecosystems spreading across the extreme conditions of the Antarctic desert and represent the predominant life-form in the ice-free areas of McMurdo Dry Valleys, accounted as the closest terrestrial Martian analogue. Components of these communities are highly adapted extremophiles and extreme-tolerant microorganisms, among the most resistant known to date. Recently, studies investigated biodiversity and community composition in these ecosystems but the metabolic activity of the metacommunity has never been investigated. Using an untargeted metabolomics, we explored stress-response of communities spreading in two sites of the same location, subjected to increasing environmental pressure due to opposite sun exposure, accounted as main factor influencing the diversity and composition of these ecosystems. Overall, 331 altered metabolites (206 and 125 unique for north and south, respectively), distinguished the two differently exposed communities. We also selected 10 metabolites and performed two-stage Receiver Operating Characteristic (ROC) analysis to test them as potential biomarkers. We further focused on melanin and allantoin as protective substances; their concentration was highly different in the community in the shadow or in the sun. These results clearly indicate that opposite insolation selected organisms in the communities with different adaptation strategies in terms of key metabolites produced.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Federica Gevi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
- * E-mail: (AMT); (LS)
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy
- * E-mail: (AMT); (LS)
| |
Collapse
|
43
|
Yobi A, Bagaza C, Batushansky A, Shrestha V, Emery ML, Holden S, Turner-Hissong S, Miller ND, Mawhinney TP, Angelovici R. The complex response of free and bound amino acids to water stress during the seed setting stage in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:838-855. [PMID: 31901179 DOI: 10.1111/tpj.14668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Free amino acids (FAAs) and protein-bound amino acids (PBAAs) in seeds play an important role in seed desiccation, longevity, and germination. However, the effect that water stress has on these two functional pools, especially when imposed during the crucial seed setting stage is unclear. To better understand these effects, we exposed Arabidopsis plants at the seed setting stage to a range of water limitation and water deprivation conditions and then evaluated physiological, metabolic, and proteomic parameters, with special focus on FAAs and PBAAs. We found that in response to severe water limitation, seed yield decreased, while seed weight, FAA, and PBAA content per seed increased. Nevertheless, the composition of FAAs and PBAAs remained unaltered. In response to severe water deprivation, however, both seed yield and weight were reduced. In addition, major alterations were observed in both FAA and proteome compositions, which indicated that both osmotic adjustment and proteomic reprogramming occurred in these naturally desiccation-tolerant organs. However, despite the major proteomic alteration, the PBAA composition did not change, suggesting that the proteomic reprogramming was followed by a proteomic rebalancing. Proteomic rebalancing has not been observed previously in response to stress, but its occurrence under stress strongly suggests its natural function. Together, our data show that the dry seed PBAA composition plays a key role in seed fitness and therefore is rigorously maintained even under severe water stress, while the FAA composition is more plastic and adaptable to changing environments, and that both functional pools are distinctly regulated.
Collapse
Affiliation(s)
- Abou Yobi
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Clement Bagaza
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Albert Batushansky
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Vivek Shrestha
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Marianne L Emery
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Samuel Holden
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sarah Turner-Hissong
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Nathan D Miller
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - Thomas P Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Ruthie Angelovici
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
44
|
Fernández-Marín B, Nadal M, Gago J, Fernie AR, López-Pozo M, Artetxe U, García-Plazaola JI, Verhoeven A. Born to revive: molecular and physiological mechanisms of double tolerance in a paleotropical and resurrection plant. THE NEW PHYTOLOGIST 2020; 226:741-759. [PMID: 32017123 DOI: 10.1111/nph.16464] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/20/2020] [Indexed: 05/24/2023]
Abstract
Resurrection plants recover physiological functions after complete desiccation. Almost all of them are native to tropical warm environments. However, the Gesneriaceae include four genera, remnant of the past palaeotropical flora, which inhabit temperate mountains. One of these species is additionally freezing-tolerant: Ramonda myconi. We hypothesise that this species has been able to persist in a colder climate thanks to some resurrection-linked traits. To disentangle the physiological mechanisms underpinning multistress tolerance to desiccation and freezing, we conducted an exhaustive seasonal assessment of photosynthesis (gas exchange, limitations to partitioning, photochemistry and galactolipids) and primary metabolism (through metabolomics) in two natural populations at different elevations. R. myconi displayed low rates of photosynthesis, largely due to mesophyll limitation. However, plants were photosynthetically active throughout the year, excluding a reversible desiccation period. Common responses to desiccation and low temperature involved chloroplast protection: enhanced thermal energy dissipation, higher carotenoid to Chl ratio and de-epoxidation of the xanthophyll cycle. As specific responses, antioxidants and secondary metabolic routes rose upon desiccation, while putrescine, proline and a variety of sugars rose in winter. The data suggest conserved mechanisms to cope with photo-oxidation during desiccation and cold events, while additional metabolic mechanisms may have evolved as specific adaptations to cold during recent glaciations.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), Tenerife, 38200, Spain
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Agroecología y Economía del Agua (INAGEA), ctra. Valldemossa km 7.5, Palma de Mallorca, 07122, Spain
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Agroecología y Economía del Agua (INAGEA), ctra. Valldemossa km 7.5, Palma de Mallorca, 07122, Spain
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Marina López-Pozo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Unai Artetxe
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Amy Verhoeven
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
- Biology Department (OWS352), University of St Thomas, 2115 Summit Ave., St Paul, MN, USA
| |
Collapse
|
45
|
Oliver MJ, Farrant JM, Hilhorst HWM, Mundree S, Williams B, Bewley JD. Desiccation Tolerance: Avoiding Cellular Damage During Drying and Rehydration. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:435-460. [PMID: 32040342 DOI: 10.1146/annurev-arplant-071219-105542] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Desiccation of plants is often lethal but is tolerated by the majority of seeds and by vegetative tissues of only a small number of land plants. Desiccation tolerance is an ancient trait, lost from vegetative tissues following the appearance of tracheids but reappearing in several lineages when selection pressures favored its evolution. Cells of all desiccation-tolerant plants and seeds must possess a core set of mechanisms to protect them from desiccation- and rehydration-induced damage. This review explores how desiccation generates cell damage and how tolerant cells assuage the complex array of mechanical, structural, metabolic, and chemical stresses and survive.Likewise, the stress of rehydration requires appropriate mitigating cellular responses. We also explore what comparative genomics, both structural and responsive, have added to our understanding of cellular protection mechanisms induced by desiccation, and how vegetative desiccation tolerance circumvents destructive, stress-induced cell senescence.
Collapse
Affiliation(s)
- Melvin J Oliver
- Plant Genetics Research Unit, US Department of Agriculture, Agricultural Research Service, Columbia, Missouri 65211, USA
- Current affiliation: Division of Plant Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA;
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7700, South Africa;
| | - Henk W M Hilhorst
- Laboratory of Plant Physiology, Wageningen University, 6706 PB Wageningen, The Netherlands;
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Gardens Point Campus, Brisbane, 4001 Queensland, Australia; ,
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Gardens Point Campus, Brisbane, 4001 Queensland, Australia; ,
| | - J Derek Bewley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| |
Collapse
|
46
|
Zhang X, Wu H, Chen J, Chen L, Wan X. Chloride and amino acids are associated with K +-alleviated drought stress in tea (Camellia sinesis). FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:398-408. [PMID: 32138810 DOI: 10.1071/fp19221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Drought is one of the main limiting factors affecting tea plant yield and quality. Previous studies have reported that K+ (potassium) application significantly alleviated drought-induced damage in tea plants. However, the intrinsic mechanisms underlying K+-alleviated drought stress are still obscure. In our study, two contrasting varieties, Taicha12 (drought tolerant) and Fuyun6 (drought sensitive), were used to investigate the intrinsic mechanisms behind K+-alleviated drought stress in tea plants. In the present study, we compared with the case of tea plants under drought: higher water and chlorophyll contents were found in drought-stressed tea plants with an external K+ supply, confirming the role of externally supplied K+ in mitigating drought stress. We also found that an adequate K+ supply promoted Cl- accumulation in the mesophyll of Taicha12 (drought tolerant) over that of in Fuyun6 (drought sensitive). Moreover, Gly, Cys, Lys and Arg were not detected in Fuyun6 under 'Drought' or 'Drought + K+' conditions. Results showed that an exogenous supply of Arg and Val significantly alleviated drought-induced damage in Fuyun6, suggesting their role in K+-alleviated drought stress in tea plants. Collectively, our results show that chloride and amino acids are important components associated with K+-alleviated drought stress in tea plants.
Collapse
Affiliation(s)
- Xianchen Zhang
- State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei, 230036, China
| | - Honghong Wu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; and College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jingguang Chen
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Linmu Chen
- State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei, 230036, China; and Corresponding author.
| |
Collapse
|
47
|
Sub-Genome Polyploidization Effects on Metabolomic Signatures in Triploid Hybrids of Populus. FORESTS 2019. [DOI: 10.3390/f10121091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Allopolyploids are known to have superior advantages such as high growth speed. Triploids have even greater heterozygosity, explaining more phenotypic variance than 2n hybrid F1 and have therefore become new resources in breeding. To date, the metabolomic basis underlying polyploidization vigor remains unclear. Here, we identified and compared 235 metabolites in the shoot apical buds between multiple allo-triploid populations and parental 2n hybrid F1 in Populus via metabolome profiling using liquid chromatography–mass spectrometry (LC–MS) assays. Associations with growth vigor in three types of allo-triploid populations, namely first division restitution (FDR), second division restitution (SDR) and postmeiotic restitution (PMR) generated from doubled 2n female gametes and male gametes of 2n hybrid, were also investigated. Each allo-triploid population has different sub-genome duplicated. Major metabolomes were amino acids, secondary metabolism associated, and carbohydrates. We mapped 181 metabolites into known metabolism pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG). Ten compounds, i.e., fructose 1,6-diphosphate and xylulose, were more abundant in all allo-triploids than the 2n hybrid. Principal component analysis revealed the abundance of metabolites fell into distinct clusters corresponding to ploidy composition. Heterozygosity in triploids mainly effected the contents of carbohydrates and secondary metabolites rather than lipids. Comparisons between subgroups with different growth rates revealed some carbohydrates and secondary metabolites of flavonoids were positively associated with gene expression and the high growth vigor. The results provided an informative metabolomic basis for factors conferring growth vigor in polyploid Populus.
Collapse
|
48
|
Radermacher AL, du Toit SF, Farrant JM. Desiccation-Driven Senescence in the Resurrection Plant Xerophyta schlechteri (Baker) N.L. Menezes: Comparison of Anatomical, Ultrastructural, and Metabolic Responses Between Senescent and Non-Senescent Tissues. FRONTIERS IN PLANT SCIENCE 2019; 10:1396. [PMID: 31737017 PMCID: PMC6831622 DOI: 10.3389/fpls.2019.01396] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/09/2019] [Indexed: 05/30/2023]
Abstract
Drought-induced senescence is a degenerative process that involves the degradation of cellular metabolites and photosynthetic pigments and uncontrolled dismantling of cellular membranes and organelles. Angiosperm resurrection plants display vegetative desiccation tolerance and avoid drought-induced senescence in most of their tissues. Developmentally older tissues, however, fail to recover during rehydration and ultimately senesce. Comparison of the desiccation-associated responses of older senescent tissues (ST) with non-ST (NST) will allow for understanding of mechanisms promoting senescence in the former and prevention of senescence in the latter. In the monocotyledonous resurrection plant Xerophyta schlechteri (Baker) N.L. Menezes*, leaf tips senesce following desiccation, whereas the rest of the leaf blade survives. We characterized structural and metabolic changes in ST and NST at varying water contents during desiccation and rehydration. Light and transmission electron microscopy was used to follow anatomical and subcellular responses, and metabolic differences were studied using gas chromatography-mass spectrometry and colorimetric metabolite assays. The results show that drying below 35% relative water content (0.7 gH2O/g dry mass) in ST resulted in the initiation of age-related senescence hallmarks and that these tissues continue this process after rehydration. We propose that an age-related desiccation sensitivity occurs in older tissues, in a process metabolically similar to that observed during age-related senescence in Arabidopsis thaliana.
Collapse
Affiliation(s)
| | | | - Jill M. Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
49
|
Liu J, Moyankova D, Djilianov D, Deng X. Common and Specific Mechanisms of Desiccation Tolerance in Two Gesneriaceae Resurrection Plants. Multiomics Evidences. FRONTIERS IN PLANT SCIENCE 2019; 10:1067. [PMID: 31552070 PMCID: PMC6737074 DOI: 10.3389/fpls.2019.01067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/07/2019] [Indexed: 05/06/2023]
Abstract
Environmental stress, especially water deficiency, seriously limits plant distribution and crop production worldwide. A small group of vascular angiosperm plants termed "resurrection plants," possess desiccation tolerance (DT) to withstand dehydration and to recover fully upon rehydration. In recent years, with the rapid development of life science in plants different omics technologies have been widely applied in resurrection plants to study DT. Boea hygrometrica is native in East and Southeast Asia, and Haberlea rhodopensis is endemic to the Balkans in Europe. They are both resurrection pants from Gesneriaceae family. This paper reviews recent advances in transcriptome and metabolome, and discusses the differences and similarities of DT features between both species. Finally, we believe we provide novel insights into understanding the mechanisms underlying the acquisition and evolution of desiccation tolerance of the resurrection plants that could substantially contribute to develop new approaches for agriculture to overcome water deficiency in future.
Collapse
Affiliation(s)
- Jie Liu
- Facility Horticulture Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, China
- Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Daniela Moyankova
- Abiotic Stress Group, Agrobioinstitute, Agricultural Academy, Sofia, Bulgaria
| | - Dimitar Djilianov
- Abiotic Stress Group, Agrobioinstitute, Agricultural Academy, Sofia, Bulgaria
| | - Xin Deng
- Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Vetter VMS, Walter J, Wilfahrt PA, Buhk C, Braun M, Clemens S, Dinkel E, Dubbert M, Schramm A, Wegener F, Werner C, Jentsch A. Invasion windows for a global legume invader are revealed after joint examination of abiotic and biotic filters. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:832-843. [PMID: 30908797 DOI: 10.1111/plb.12987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Successful alien plant invasion is influenced by both climate change and plant-plant interactions. We estimate the single and interactive effects of competition and extreme weather events on the performance of the global legume invader Lupinus polyphyllus (Lindl.). In three experimental studies we assessed (i) the stress tolerance of seedling and adult L. polyphyllus plants against extreme weather events (drought, fluctuating precipitation, late frost), (ii) the competitive effects of L. polyphyllus on native grassland species and vice versa, and (iii) the interactive effects of extreme weather events and competition on the performance of L. polyphyllus. Drought reduced growth and led to early senescence of L. polyphyllus but did not reduce adult survival. Fluctuating precipitation events and late frost reduced the length of inflorescences. Under control conditions, interspecific competition reduced photosynthetic activity and growth of L. polyphyllus. When subjected to competition during drought, L. polyphyllus conserved water while simultaneously maintaining high assimilation rates, demonstrating increased water use efficiency. Meanwhile, native species had reduced performance under drought. In summary, the invader gained an advantage under drought conditions through a smaller reduction in performance relative to its native competitors but was competitively inferior under control conditions. This provides evidence for a possible invasion window for this species. While regions of high elevation or latitude with regular severe late frost events might remain inaccessible for L. polyphyllus, further spread across Europe seems probable as the predicted increase in drought events may favour this non-native legume over native species.
Collapse
Affiliation(s)
- V M S Vetter
- Disturbance Ecology, BayCEER, University of Bayreuth, Bayreuth, Germany
- Biogeography, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - J Walter
- Disturbance Ecology, BayCEER, University of Bayreuth, Bayreuth, Germany
- Institute of Landscape and Plant Ecology, University of Hohenheim, Stuttgart, Germany
| | - P A Wilfahrt
- Disturbance Ecology, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - C Buhk
- Geoecology/Physical Geography, Institute for Environmental Science, University of Landau, Landau, Germany
| | - M Braun
- Plant Physiology, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - S Clemens
- Plant Physiology, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - E Dinkel
- BayCEER, University of Bayreuth, Bayreuth, Germany
| | - M Dubbert
- BayCEER, University of Bayreuth, Bayreuth, Germany
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
| | - A Schramm
- BayCEER, University of Bayreuth, Bayreuth, Germany
| | - F Wegener
- BayCEER, University of Bayreuth, Bayreuth, Germany
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
| | - C Werner
- BayCEER, University of Bayreuth, Bayreuth, Germany
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
| | - A Jentsch
- Disturbance Ecology, BayCEER, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|