1
|
Qian D, Li T, Zheng C, Wang M, Chen S, Li C, An J, Yang Y, Niu Y, An L, Xiang Y. Heat-stable protein PGSL1 enhances pollen germination and tube growth at high temperature. Nat Commun 2025; 16:3642. [PMID: 40240780 PMCID: PMC12003775 DOI: 10.1038/s41467-025-58869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Global warming intensifies extreme heat events, threatening crop reproduction by impairing pollen development, germination, and tube growth. However, the mechanisms underlying pollen heat responses remain elusive. The actin cytoskeleton and actin-binding proteins (ABPs) are crucial in these processes, yet their roles under heat stress are poorly understood. Here, we identify a mutant, pollen germination sensitive to LatB (pgsl1), via forward genetic screening. PGSL1 encodes a heat-stable, plant-specific ABP that binds and stabilizes actin filaments (F-actin), preventing heat-induced denaturation. High temperatures reduce F-actin content but promote bundling in pollen tubes. Notably, pgsl1 mutants exhibit decreased F-actin abundance and bundling under heat stress compared to wild-type plants. These findings highlight PGSL1 as a key regulator of actin dynamics, essential for pollen heat tolerance, offering potential strategies to enhance crop resilience in a warming climate.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tian Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chen Zheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Muxuan Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shuyuan Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chengying Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiale An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Xie W, Zhao Y, Deng X, Chen R, Qiang Z, García-Caparros P, Mao T, Qin T. GLABRA3-mediated trichome branching requires transcriptional repression of MICROTUBULE-DESTABILIZING PROTEIN25. PLANT PHYSIOLOGY 2024; 197:kiae563. [PMID: 39431560 DOI: 10.1093/plphys/kiae563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024]
Abstract
Microtubules play pivotal roles in establishing trichome branching patterns, which is a model system for studying cell-shape control in Arabidopsis (Arabidopsis thaliana). However, the signaling pathway that regulates microtubule reorganization during trichome branching remains poorly understood. In this study, we report that MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) is involved in GLABRA3 (GL3)-mediated trichome branching by regulating microtubule stability. Loss of MDP25 function led to excessive trichome branching, and this phenotype in mdp25 could not be rescued by the MDP25 K7A or MDP25 K18A mutated variants. Pharmacological treatment and live-cell imaging revealed increased microtubule stability in the mdp25 mutant. Furthermore, the microtubule collar observed during trichome branching remained more intact in mdp25 compared to the WT under oryzalin treatment. Results of genetic assays further demonstrated that knocking out MDP25 rescued the reduced branching phenotype of gl3 trichomes. In gl3 trichomes, normal microtubule organization was disrupted, and microtubule stability was significantly compromised. Moreover, GL3 physically bound to the MDP25 promoter, thereby inhibiting its expression. Overexpression of GL3 negated the effects of PMDP25-driven MDP25 or its mutant proteins on trichome branching and microtubules in the mdp25 background. Overall, our study uncovers a mechanism by which GL3 inhibits MDP25 transcription, thereby influencing microtubule stability and regulating trichome branching. This mechanism provides a connection between early regulatory components and microtubules during trichome development.
Collapse
Affiliation(s)
- Wenfei Xie
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yuang Zhao
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Xianwang Deng
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Ruixin Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Zhiquan Qiang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Pedro García-Caparros
- Department of Superior School Engineering, University of Almería, Ctra. Sacramento 04120, Almería, Spain
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Qin
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
3
|
Wang Q, Cang X, Yan H, Zhang Z, Li W, He J, Zhang M, Lou L, Wang R, Chang M. Activating plant immunity: the hidden dance of intracellular Ca 2+ stores. THE NEW PHYTOLOGIST 2024; 242:2430-2439. [PMID: 38586981 DOI: 10.1111/nph.19717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
Calcium ion (Ca2+) serves as a versatile and conserved second messenger in orchestrating immune responses. In plants, plasma membrane-localized Ca2+-permeable channels can be activated to induce Ca2+ influx from extracellular space to cytosol upon pathogen infection. Notably, different immune elicitors can induce dynamic Ca2+ signatures in the cytosol. During pattern-triggered immunity, there is a rapid and transient increase in cytosolic Ca2+, whereas in effector-triggered immunity, the elevation of cytosolic Ca2+ is strong and sustained. Numerous Ca2+ sensors are localized in the cytosol or different intracellular organelles, which are responsible for detecting and converting Ca2+ signals. In fact, Ca2+ signaling coordinated by cytosol and subcellular compartments plays a crucial role in activating plant immune responses. However, the complete Ca2+ signaling network in plant cells is still largely ambiguous. This review offers a comprehensive insight into the collaborative role of intracellular Ca2+ stores in shaping the Ca2+ signaling network during plant immunity, and several intriguing questions for future research are highlighted.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyan Cang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haiqiao Yan
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zilu Zhang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Li
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyu He
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Laiqing Lou
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ming Chang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
4
|
Gonzalez JP, Frandsen KEH, Kesten C. The role of intrinsic disorder in binding of plant microtubule-associated proteins to the cytoskeleton. Cytoskeleton (Hoboken) 2023; 80:404-436. [PMID: 37578201 DOI: 10.1002/cm.21773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023]
Abstract
Microtubules (MTs) represent one of the main components of the eukaryotic cytoskeleton and support numerous critical cellular functions. MTs are in principle tube-like structures that can grow and shrink in a highly dynamic manner; a process largely controlled by microtubule-associated proteins (MAPs). Plant MAPs are a phylogenetically diverse group of proteins that nonetheless share many common biophysical characteristics and often contain large stretches of intrinsic protein disorder. These intrinsically disordered regions are determinants of many MAP-MT interactions, in which structural flexibility enables low-affinity protein-protein interactions that enable a fine-tuned regulation of MT cytoskeleton dynamics. Notably, intrinsic disorder is one of the major obstacles in functional and structural studies of MAPs and represents the principal present-day challenge to decipher how MAPs interact with MTs. Here, we review plant MAPs from an intrinsic protein disorder perspective, by providing a complete and up-to-date summary of all currently known members, and address the current and future challenges in functional and structural characterization of MAPs.
Collapse
Affiliation(s)
- Jordy Perez Gonzalez
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kristian E H Frandsen
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Christopher Kesten
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
5
|
Yuan G, Gao H, Yang T. Exploring the Role of the Plant Actin Cytoskeleton: From Signaling to Cellular Functions. Int J Mol Sci 2023; 24:15480. [PMID: 37895158 PMCID: PMC10607326 DOI: 10.3390/ijms242015480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
The plant actin cytoskeleton is characterized by the basic properties of dynamic array, which plays a central role in numerous conserved processes that are required for diverse cellular functions. Here, we focus on how actins and actin-related proteins (ARPs), which represent two classical branches of a greatly diverse superfamily of ATPases, are involved in fundamental functions underlying signal regulation of plant growth and development. Moreover, we review the structure, assembly dynamics, and biological functions of filamentous actin (F-actin) from a molecular perspective. The various accessory proteins known as actin-binding proteins (ABPs) partner with F-actin to finely tune actin dynamics, often in response to various cell signaling pathways. Our understanding of the significance of the actin cytoskeleton in vital cellular activities has been furthered by comparison of conserved functions of actin filaments across different species combined with advanced microscopic techniques and experimental methods. We discuss the current model of the plant actin cytoskeleton, followed by examples of the signaling mechanisms under the supervision of F-actin related to cell morphogenesis, polar growth, and cytoplasmic streaming. Determination of the theoretical basis of how the cytoskeleton works is important in itself and is beneficial to future applications aimed at improving crop biomass and production efficiency.
Collapse
Affiliation(s)
| | | | - Tao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (G.Y.); (H.G.)
| |
Collapse
|
6
|
Figueroa NE, Franz P, Luzarowski M, Martinez-Seidel F, Moreno JC, Childs D, Ziemblicka A, Sampathkumar A, Andersen TG, Tsiavaliaris G, Chodasiewicz M, Skirycz A. Protein interactome of 3',5'-cAMP reveals its role in regulating the actin cytoskeleton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1214-1230. [PMID: 37219088 DOI: 10.1111/tpj.16313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Identification of protein interactors is ideally suited for the functional characterization of small molecules. 3',5'-cAMP is an evolutionary ancient signaling metabolite largely uncharacterized in plants. To tap into the physiological roles of 3',5'-cAMP, we used a chemo-proteomics approach, thermal proteome profiling (TPP), for the unbiased identification of 3',5'-cAMP protein targets. TPP measures shifts in the protein thermal stability upon ligand binding. Comprehensive proteomics analysis yielded a list of 51 proteins significantly altered in their thermal stability upon incubation with 3',5'-cAMP. The list contained metabolic enzymes, ribosomal subunits, translation initiation factors, and proteins associated with the regulation of plant growth such as CELL DIVISION CYCLE 48. To functionally validate obtained results, we focused on the role of 3',5'-cAMP in regulating the actin cytoskeleton suggested by the presence of actin among the 51 identified proteins. 3',5'-cAMP supplementation affected actin organization by inducing actin-bundling. Consistent with these results, the increase in 3',5'-cAMP levels, obtained either by feeding or by chemical modulation of 3',5'-cAMP metabolism, was sufficient to partially rescue the short hypocotyl phenotype of the actin2 actin7 mutant, severely compromised in actin level. The observed rescue was specific to 3',5'-cAMP, as demonstrated using a positional isomer 2',3'-cAMP, and true for the nanomolar 3',5'-cAMP concentrations reported for plant cells. In vitro characterization of the 3',5'-cAMP-actin pairing argues against a direct interaction between actin and 3',5'-cAMP. Alternative mechanisms by which 3',5'-cAMP would affect actin dynamics, such as by interfering with calcium signaling, are discussed. In summary, our work provides a specific resource, 3',5'-cAMP interactome, as well as functional insight into 3',5'-cAMP-mediated regulation in plants.
Collapse
Affiliation(s)
- Nicolás E Figueroa
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Peter Franz
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Marcin Luzarowski
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
- Core facility for Mass Spectrometry and Proteomics, Zentrum fur Molekulare Biologie der Universitat Heidelberg, Im Neuenheimer Feld 329, Heidelberg, 69120, Germany
| | - Federico Martinez-Seidel
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
- School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Juan C Moreno
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
| | - Dorothee Childs
- European Molecular Biology Laboratory (EMBL) Heidelberg, Heidelberg, 69117, Germany
| | - Aleksandra Ziemblicka
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
| | - Arun Sampathkumar
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
| | - Tonni Grube Andersen
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Georgios Tsiavaliaris
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Monika Chodasiewicz
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
| | - Aleksandra Skirycz
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
- Boyce Thompson Institute (BTI), Cornell University, 533 Tower Rd., Ithaca, New York, 14853, USA
| |
Collapse
|
7
|
Zhang R, Xu Y, Yi R, Shen J, Huang S. Actin cytoskeleton in the control of vesicle transport, cytoplasmic organization, and pollen tube tip growth. PLANT PHYSIOLOGY 2023; 193:9-25. [PMID: 37002825 DOI: 10.1093/plphys/kiad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Pollen tubes extend rapidly via tip growth. This process depends on a dynamic actin cytoskeleton, which has been implicated in controlling organelle movements, cytoplasmic streaming, vesicle trafficking, and cytoplasm organization in pollen tubes. In this update review, we describe the progress in understanding the organization and regulation of the actin cytoskeleton and the function of the actin cytoskeleton in controlling vesicle traffic and cytoplasmic organization in pollen tubes. We also discuss the interplay between ion gradients and the actin cytoskeleton that regulates the spatial arrangement and dynamics of actin filaments and the organization of the cytoplasm in pollen tubes. Finally, we describe several signaling components that regulate actin dynamics in pollen tubes.
Collapse
Affiliation(s)
- Ruihui Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanan Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ran Yi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiangfeng Shen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Robinson R, Sprott D, Couroux P, Routly E, Labbé N, Xing T, Robert LS. The triticale mature pollen and stigma proteomes - assembling the proteins for a productive encounter. J Proteomics 2023; 278:104867. [PMID: 36870675 DOI: 10.1016/j.jprot.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Triticeae crops are major contributors to global food production and ensuring their capacity to reproduce and generate seeds is critical. However, despite their importance our knowledge of the proteins underlying Triticeae reproduction is severely lacking and this is not only true of pollen and stigma development, but also of their pivotal interaction. When the pollen grain and stigma are brought together they have each accumulated the proteins required for their intended meeting and accordingly studying their mature proteomes is bound to reveal proteins involved in their diverse and complex interactions. Using triticale as a Triticeae representative, gel-free shotgun proteomics was used to identify 11,533 and 2977 mature stigma and pollen proteins respectively. These datasets, by far the largest to date, provide unprecedented insights into the proteins participating in Triticeae pollen and stigma development and interactions. The study of the Triticeae stigma has been particularly neglected. To begin filling this knowledge gap, a developmental iTRAQ analysis was performed revealing 647 proteins displaying differential abundance as the stigma matures in preparation for pollination. An in-depth comparison to an equivalent Brassicaceae analysis divulged both conservation and diversification in the makeup and function of proteins involved in the pollen and stigma encounter. SIGNIFICANCE: Successful pollination brings together the mature pollen and stigma thus initiating an intricate series of molecular processes vital to crop reproduction. In the Triticeae crops (e.g. wheat, barley, rye, triticale) there persists a vast deficit in our knowledge of the proteins involved which needs to be addressed if we are to face the many upcoming challenges to crop production such as those associated with climate change. At maturity, both the pollen and stigma have acquired the protein complement necessary for their forthcoming encounter and investigating their proteomes will inevitably provide unprecedented insights into the proteins enabling their interactions. By combining the analysis of the most comprehensive Triticeae pollen and stigma global proteome datasets to date with developmental iTRAQ investigations, proteins implicated in the different phases of pollen-stigma interaction enabling pollen adhesion, recognition, hydration, germination and tube growth, as well as those underlying stigma development were revealed. Extensive comparisons between equivalent Triticeae and Brassiceae datasets highlighted both the conservation of biological processes in line with the shared goal of activating the pollen grain and promoting pollen tube invasion of the pistil to effect fertilization, as well as the significant distinctions in their proteomes consistent with the considerable differences in their biochemistry, physiology and morphology.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - David Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Natalie Labbé
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada.
| |
Collapse
|
9
|
Vallet A, Martin-Laffon J, Favier A, Revel B, Bonnot T, Vidaud C, Armengaud J, Gaillard JC, Delangle P, Devime F, Figuet S, Serre NBC, Erba EB, Brutscher B, Ravanel S, Bourguignon J, Alban C. The plasma membrane-associated cation-binding protein PCaP1 of Arabidopsis thaliana is a uranyl-binding protein. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130668. [PMID: 36608581 DOI: 10.1016/j.jhazmat.2022.130668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Uranium (U) is a naturally-occurring radionuclide that is toxic to living organisms. Given that proteins are primary targets of U(VI), their identification is an essential step towards understanding the mechanisms of radionuclide toxicity, and possibly detoxification. Here, we implemented a chromatographic strategy including immobilized metal affinity chromatography to trap protein targets of uranyl in Arabidopsis thaliana. This procedure allowed the identification of 38 uranyl-binding proteins (UraBPs) from root and shoot extracts. Among them, UraBP25, previously identified as plasma membrane-associated cation-binding protein 1 (PCaP1), was further characterized as a protein interacting in vitro with U(VI) and other metals using spectroscopic and structural approaches, and in planta through analyses of the fate of U(VI) in Arabidopsis lines with altered PCaP1 gene expression. Our results showed that recombinant PCaP1 binds U(VI) in vitro with affinity in the nM range, as well as Cu(II) and Fe(III) in high proportions, and that Ca(II) competes with U(VI) for binding. U(VI) induces PCaP1 oligomerization through binding at the monomer interface, at both the N-terminal structured domain and the C-terminal flexible region. Finally, U(VI) translocation in Arabidopsis shoots was affected in pcap1 null-mutant, suggesting a role for this protein in ion trafficking in planta.
Collapse
Affiliation(s)
- Alicia Vallet
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, IBS, 38000 Grenoble, France
| | | | - Adrien Favier
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, IBS, 38000 Grenoble, France
| | - Benoît Revel
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Titouan Bonnot
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Claude Vidaud
- BIAM, CEA, CNRS, Univ. Aix-Marseille, 13108 Saint-Paul-lez-Durance, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-F-30200 Bagnols-sur-Cèze, France
| | - Jean-Charles Gaillard
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-F-30200 Bagnols-sur-Cèze, France
| | - Pascale Delangle
- Univ. Grenoble Alpes, CEA, CNRS, GRE-INP, IRIG, SyMMES, 38000 Grenoble, France
| | - Fabienne Devime
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Sylvie Figuet
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Nelson B C Serre
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | | | | | - Stéphane Ravanel
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | | | - Claude Alban
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France.
| |
Collapse
|
10
|
Jiang Y, Ding P. Calcium signaling in plant immunity: a spatiotemporally controlled symphony. TRENDS IN PLANT SCIENCE 2023; 28:74-89. [PMID: 36504136 DOI: 10.1016/j.tplants.2022.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Calcium ions (Ca2+) are prominent intracellular messengers in all eukaryotic cells. Recent studies have emphasized the crucial roles of Ca2+ in plant immunity. Here, we review the latest progress on the spatiotemporal control of Ca2+ function in plant immunity. We discuss discoveries of how Ca2+ influx is triggered upon the activation of immune receptors, how Ca2+-permeable channels are activated, how Ca2+ signals are decoded inside plant cells, and how these signals are switched off. Despite recent advances, many open questions remain and we highlight the existing toolkit and the new technologies to address the outstanding questions of Ca2+ signaling in plant immunity.
Collapse
Affiliation(s)
- Yuxiang Jiang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333, BE, The Netherlands.
| |
Collapse
|
11
|
The Cytoskeleton in Plant Immunity: Dynamics, Regulation, and Function. Int J Mol Sci 2022; 23:ijms232415553. [PMID: 36555194 PMCID: PMC9779068 DOI: 10.3390/ijms232415553] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The plant cytoskeleton, consisting of actin filaments and microtubules, is a highly dynamic filamentous framework involved in plant growth, development, and stress responses. Recently, research has demonstrated that the plant cytoskeleton undergoes rapid remodeling upon sensing pathogen attacks, coordinating the formation of microdomain immune complexes, the dynamic and turnover of pattern-recognizing receptors (PRRs), the movement and aggregation of organelles, and the transportation of defense compounds, thus serving as an important platform for responding to pathogen infections. Meanwhile, pathogens produce effectors targeting the cytoskeleton to achieve pathogenicity. Recent findings have uncovered several cytoskeleton-associated proteins mediating cytoskeletal remodeling and defense signaling. Furthermore, the reorganization of the actin cytoskeleton is revealed to further feedback-regulate reactive oxygen species (ROS) production and trigger salicylic acid (SA) signaling, suggesting an extremely complex role of the cytoskeleton in plant immunity. Here, we describe recent advances in understanding the host cytoskeleton dynamics upon sensing pathogens and summarize the effectors that target the cytoskeleton. We highlight advances in the regulation of cytoskeletal remodeling associated with the defense response and assess the important function of the rearrangement of the cytoskeleton in the immune response. Finally, we propose suggestions for future research in this area.
Collapse
|
12
|
Klodová B, Potěšil D, Steinbachová L, Michailidis C, Lindner AC, Hackenberg D, Becker JD, Zdráhal Z, Twell D, Honys D. Regulatory dynamics of gene expression in the developing male gametophyte of Arabidopsis. PLANT REPRODUCTION 2022:10.1007/s00497-022-00452-5. [PMID: 36282332 PMCID: PMC10363097 DOI: 10.1007/s00497-022-00452-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Sexual reproduction in angiosperms requires the production and delivery of two male gametes by a three-celled haploid male gametophyte. This demands synchronized gene expression in a short developmental window to ensure double fertilization and seed set. While transcriptomic changes in developing pollen are known for Arabidopsis, no studies have integrated RNA and proteomic data in this model. Further, the role of alternative splicing has not been fully addressed, yet post-transcriptional and post-translational regulation may have a key role in gene expression dynamics during microgametogenesis. We have refined and substantially updated global transcriptomic and proteomic changes in developing pollen for two Arabidopsis accessions. Despite the superiority of RNA-seq over microarray-based platforms, we demonstrate high reproducibility and comparability. We identify thousands of long non-coding RNAs as potential regulators of pollen development, hundreds of changes in alternative splicing and provide insight into mRNA translation rate and storage in developing pollen. Our analysis delivers an integrated perspective of gene expression dynamics in developing Arabidopsis pollen and a foundation for studying the role of alternative splicing in this model.
Collapse
Affiliation(s)
- Božena Klodová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Praha 2, 128 00, Czech Republic
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Christos Michailidis
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Ann-Cathrin Lindner
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
- KWS SAAT SE & Co. KGaA, Grimsehlstraße 31, 37574, Einbeck, Germany
| | - Jörg D Becker
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| |
Collapse
|
13
|
Yang P, Jin J, Zhang J, Wang D, Bai X, Xie W, Hu T, Zhao X, Mao T, Qin T. MDP25 mediates the fine-tuning of microtubule organization in response to salt stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1181-1195. [PMID: 35436387 DOI: 10.1111/jipb.13264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Microtubules are dynamic cytoskeleton structures playing fundamental roles in plant responses to salt stress. The precise mechanisms by which microtubule organization is regulated under salt stress are largely unknown. Here, we report that Arabidopsis thaliana MICROTUBULE-DESTABILIZING PROTEIN 25 (MDP25; also known as PLASMA MEMBRANE-ASSOCIATED CATION-BINDING PROTEIN 1 (PCaP1)) helps regulate microtubule organization. Under salt treatment, elevated cytosolic Ca2+ concentration caused MDP25 to partially dissociate from the plasma membrane, promoting microtubule depolymerization. When Ca2+ signaling was blocked by BAPTA-AM or LaCl3 , microtubule depolymerization in wild-type and MDP25-overexpressing cells was slower, while there was no obvious change in mdp25 cells. Knockout of MDP25 improved microtubule reassembly and was conducive to microtubule integrity under long-term salt treatment and microtubule recovery after salt stress. Moreover, mdp25 seedlings exhibited a higher survival rate under salt stress. The presence microtubule-disrupting reagent oryzalin or microtubule-stabilizing reagent paclitaxel differentially affected the survival rates of different genotypes under salt stress. MDP25 promoted microtubule instability by affecting the catastrophe and rescue frequencies, shrinkage rate and time in pause phase at the microtubule plus-end and the depolymerization rate at the microtubule minus-end. These findings reveal a role for MDP25 in regulating microtubule organization under salt treatment by affecting microtubule dynamics.
Collapse
Affiliation(s)
- Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Jingwei Jin
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Jingru Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Dan Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Xuechun Bai
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Wenfei Xie
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Xuan Zhao
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, China
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tao Qin
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
14
|
Hormonal Signaling in the Progamic Phase of Fertilization in Plants. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pollen–pistil interaction is a basic process in the reproductive biology of flowering plants and has been the subject of intense fundamental research that has a pronounced practical value. The phytohormones ethylene (ET) and cytokinin (CK) together with other hormones such as auxin, gibberellin (GA), jasmonic acid (JA), abscisic acid (ABA), and brassinosteroids (BRs) influence different stages of plant development and growth. Here, we mainly focus on the information about the ET and CK signaling in the progamic phase of fertilization. This signaling occurs during male gametophyte development, including tapetum (TAP) cell death, and pollen tube growth, including synergid programmed cell death (PCD) and self-incompatibility (SI)-induced PCD. ET joins the coordination of successive events in the developing anther, including the TAP development and cell death, anther dehiscence, microspore development, pollen grain maturation, and dehydration. Both ET and CK take part in the regulation of E. ET signaling accompanies adhesion, hydration, and germination of pollen grains in the stigma and growth of pollen tubes in style tissues. Thus, ET production may be implicated in the pollination signaling between organs accumulated in the stigma and transmitted to the style and ovary to ensure successful pollination. Some data suggest that ET and CK signaling are involved in S-RNase-based SI.
Collapse
|
15
|
Bai J, Wang Y, Liu Z, Guo H, Zhang F, Guo L, Yuan S, Duan W, Li Y, Tan Z, Zhao C, Zhang L. Global survey of alternative splicing and gene modules associated with fertility regulation in a thermosensitive genic male sterile wheat. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2157-2174. [PMID: 34849734 DOI: 10.1093/jxb/erab516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Thermosensitive genic male sterile (TGMS) wheat lines are the core of two-line hybrid systems. Understanding the mechanism that regulates male sterility in TGMS wheat lines is helpful for promoting wheat breeding. Several studies have obtained information regarding the mechanisms associated with male sterility at the transcriptional level, but it is not clear how the post-transcriptional process of alternative splicing might contribute to controlling male sterility. In this study, we performed genome-wide analyses of alternative splicing during the meiosis stage in TGMS line BS366 using PacBio and RNA-Seq hybrid sequencing. Cytological observations indicated that cytoskeleton assembly in pollen cells, calcium deposition in pollen and tapetal cells, and vesicle transport in tapetal cells were deficient in BS366. According to our cytological findings, 49 differentially spliced genes were isolated. Moreover, 25 long non-coding RNA targets and three bHLH transcription factors were identified. Weighted gene co-expression network analysis detected four candidate differentially spliced genes that had strong co-relation with the seed setting percentage, which is the direct representation of male sterility in BS366. In this study, we obtained comprehensive data regarding the alternative splicing-mediated regulation of male sterility in TGMS wheat. The candidates identified may provide the molecular basis for an improved understanding of male sterility.
Collapse
Affiliation(s)
- Jianfang Bai
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
| | - Yukun Wang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, NARA 630-0192, Japan
| | - Zihan Liu
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
| | - Haoyu Guo
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Fengting Zhang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
| | - Liping Guo
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
| | - Shaohua Yuan
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
| | - Wenjing Duan
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Yanmei Li
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
| | - Zhaoguo Tan
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
| | - Changping Zhao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
| | - Liping Zhang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
| |
Collapse
|
16
|
Giovannoni M, Marti L, Ferrari S, Tanaka‐Takada N, Maeshima M, Ott T, De Lorenzo G, Mattei B. The plasma membrane-associated Ca 2+ -binding protein, PCaP1, is required for oligogalacturonide and flagellin-induced priming and immunity. PLANT, CELL & ENVIRONMENT 2021; 44:3078-3093. [PMID: 34050546 PMCID: PMC8457133 DOI: 10.1111/pce.14118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 05/12/2023]
Abstract
Early signalling events in response to elicitation include reversible protein phosphorylation and re-localization of plasma membrane (PM) proteins. Oligogalacturonides (OGs) are a class of damage-associated molecular patterns (DAMPs) that act as endogenous signals to activate the plant immune response. Previous data on early phosphoproteome changes in Arabidopsis thaliana upon OG perception uncovered the immune-related phospho-regulation of several membrane proteins, among which PCaP1, a PM-anchored protein with actin filament-severing activity, was chosen for its potential involvement in OG- and flagellin-triggered responses. Here, we demonstrate that PCaP1 is required for late, but not early, responses induced by OGs and flagellin. Moreover, pcap1 mutants, unlike the wild type, are impaired in the recovery of full responsiveness to a second treatment with OGs performed 24 h after the first one. Localization studies on PCaP1 upon OG treatment in plants expressing a functional PCaP1-GFP fusion under the control of PCaP1 promoter revealed fluorescence on the PM, organized in densely packed punctate structures, previously reported as microdomains. Fluorescence was found to be associated also with endocytic vesicles, the number of which rapidly increased after OG treatment, suggesting both an endocytic turnover of PCaP1 for maintaining its homeostasis at the PM and an OG-induced endocytosis.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Biology and Biotechnology “C. Darwin”Sapienza University of RomeRomeItaly
- Department of Health, Life and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Lucia Marti
- Department of Biology and Biotechnology “C. Darwin”Sapienza University of RomeRomeItaly
| | - Simone Ferrari
- Department of Biology and Biotechnology “C. Darwin”Sapienza University of RomeRomeItaly
| | - Natsuki Tanaka‐Takada
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
| | - Thomas Ott
- Faculty of Biology, Cell BiologyUniversity of FreiburgFreiburgGermany
- CIBSS ‐ Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology “C. Darwin”Sapienza University of RomeRomeItaly
| | - Benedetta Mattei
- Department of Health, Life and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| |
Collapse
|
17
|
Ho-Pl�garo T, Huertas R, Tamayo-Navarrete MI, Blancaflor E, Gavara N, Garc�a-Garrido JM. A Novel Putative Microtubule-Associated Protein Is Involved in Arbuscule Development during Arbuscular Mycorrhiza Formation. PLANT & CELL PHYSIOLOGY 2021; 62:306-320. [PMID: 33386853 PMCID: PMC8112838 DOI: 10.1093/pcp/pcaa159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/06/2020] [Indexed: 05/11/2023]
Abstract
The formation of arbuscular mycorrhizal (AM) symbiosis requires plant root host cells to undergo major structural and functional reprogramming to house the highly branched AM fungal structure for the reciprocal exchange of nutrients. These morphological modifications are associated with cytoskeleton remodelling. However, molecular bases and the role of microtubules (MTs) and actin filament dynamics during AM formation are largely unknown. In this study, the tomato tsb (tomato similar to SB401) gene, belonging to a Solanaceae group of genes encoding MT-associated proteins (MAPs) for pollen development, was found to be highly expressed in root cells containing arbuscules. At earlier stages of mycorrhizal development, tsb overexpression enhanced the formation of highly developed and transcriptionally active arbuscules, while tsb silencing hampers the formation of mature arbuscules and represses arbuscule functionality. However, at later stages of mycorrhizal colonization, tsb overexpressing (OE) roots accumulate fully developed transcriptionally inactive arbuscules, suggesting that the collapse and turnover of arbuscules might be impaired by TSB accumulation. Imaging analysis of the MT cytoskeleton in cortex root cells OE tsb revealed that TSB is involved in MT bundling. Taken together, our results provide unprecedented insights into the role of novel MAP in MT rearrangements throughout the different stages of the arbuscule life cycle.
Collapse
Affiliation(s)
- Tania Ho-Pl�garo
- Department of Soil Microbiology and Symbiotic Systems, Estaci�n Experimental del Zaid�n (EEZ), CSIC, Calle Profesor Albareda No 1, Granada 18008, Spain
| | - Ra�l Huertas
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Mar�a I Tamayo-Navarrete
- Department of Soil Microbiology and Symbiotic Systems, Estaci�n Experimental del Zaid�n (EEZ), CSIC, Calle Profesor Albareda No 1, Granada 18008, Spain
| | - Elison Blancaflor
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Nuria Gavara
- Unitat de Biof�sica i Bioenginyeria, Facultat de Medicina i Ci�ncies de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Jos� M Garc�a-Garrido
- Department of Soil Microbiology and Symbiotic Systems, Estaci�n Experimental del Zaid�n (EEZ), CSIC, Calle Profesor Albareda No 1, Granada 18008, Spain
| |
Collapse
|
18
|
Hayashi M, Palmgren M. The quest for the central players governing pollen tube growth and guidance. PLANT PHYSIOLOGY 2021; 185:682-693. [PMID: 33793904 PMCID: PMC8133568 DOI: 10.1093/plphys/kiaa092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 05/02/2023]
Abstract
Recent insights into the mechanism of pollen tube growth and guidance point to the importance of H+ dynamics, which are regulated by the plasma membrane H+-ATPase.
Collapse
Affiliation(s)
- Maki Hayashi
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | - Michael Palmgren
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
- Author for communication:
| |
Collapse
|
19
|
Kollárová E, Baquero Forero A, Cvrčková F. The Arabidopsis thaliana Class II Formin FH13 Modulates Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:599961. [PMID: 33679824 PMCID: PMC7929981 DOI: 10.3389/fpls.2021.599961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/29/2021] [Indexed: 05/10/2023]
Abstract
Formins are a large, evolutionarily conserved family of actin-nucleating proteins with additional roles in regulating microfilament, microtubule, and membrane dynamics. Angiosperm formins, expressed in both sporophytic and gametophytic tissues, can be divided into two subfamilies, Class I and Class II, each often exhibiting characteristic domain organization. Gametophytically expressed Class I formins have been documented to mediate plasma membrane-based actin assembly in pollen grains and pollen tubes, contributing to proper pollen germination and pollen tube tip growth, and a rice Class II formin, FH5/RMD, has been proposed to act as a positive regulator of pollen tube growth based on mutant phenotype and overexpression data. Here we report functional characterization of the Arabidopsis thaliana pollen-expressed typical Class II formin FH13 (At5g58160). Consistent with published transcriptome data, live-cell imaging in transgenic plants expressing fluorescent protein-tagged FH13 under the control of the FH13 promoter revealed expression in pollen and pollen tubes with non-homogeneous signal distribution in pollen tube cytoplasm, suggesting that this formin functions in the male gametophyte. Surprisingly, fh13 loss of function mutations do not affect plant fertility but result in stimulation of in vitro pollen tube growth, while tagged FH13 overexpression inhibits pollen tube elongation. Pollen tubes of mutants expressing a fluorescent actin marker exhibited possible minor alterations of actin organization. Our results thus indicate that FH13 controls or limits pollen tube growth, or, more generally, that typical Class II formins should be understood as modulators of pollen tube elongation rather than merely components of the molecular apparatus executing tip growth.
Collapse
|
20
|
Lian N, Wang X, Jing Y, Lin J. Regulation of cytoskeleton-associated protein activities: Linking cellular signals to plant cytoskeletal function. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:241-250. [PMID: 33274838 DOI: 10.1111/jipb.13046] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/01/2020] [Indexed: 05/24/2023]
Abstract
The plant cytoskeleton undergoes dynamic remodeling in response to diverse developmental and environmental cues. Remodeling of the cytoskeleton coordinates growth in plant cells, including trafficking and exocytosis of membrane and wall components during cell expansion, and regulation of hypocotyl elongation in response to light. Cytoskeletal remodeling also has key functions in disease resistance and abiotic stress responses. Many stimuli result in altered activity of cytoskeleton-associated proteins, microtubule-associated proteins (MAPs) and actin-binding proteins (ABPs). MAPs and ABPs are the main players determining the spatiotemporally dynamic nature of the cytoskeleton, functioning in a sensory hub that decodes signals to modulate plant cytoskeletal behavior. Moreover, MAP and ABP activities and levels are precisely regulated during development and environmental responses, but our understanding of this process remains limited. In this review, we summarize the evidence linking multiple signaling pathways, MAP and ABP activities and levels, and cytoskeletal rearrangements in plant cells. We highlight advances in elucidating the multiple mechanisms that regulate MAP and ABP activities and levels, including calcium and calmodulin signaling, ROP GTPase activity, phospholipid signaling, and post-translational modifications.
Collapse
Affiliation(s)
- Na Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xinwei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanping Jing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
21
|
Xu Y, Huang S. Control of the Actin Cytoskeleton Within Apical and Subapical Regions of Pollen Tubes. Front Cell Dev Biol 2020; 8:614821. [PMID: 33344460 PMCID: PMC7744591 DOI: 10.3389/fcell.2020.614821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/13/2020] [Indexed: 01/07/2023] Open
Abstract
In flowering plants, sexual reproduction involves a double fertilization event, which is facilitated by the delivery of two non-motile sperm cells to the ovule by the pollen tube. Pollen tube growth occurs exclusively at the tip and is extremely rapid. It strictly depends on an intact actin cytoskeleton, and is therefore an excellent model for uncovering the molecular mechanisms underlying dynamic actin cytoskeleton remodeling. There has been a long-term debate about the organization and dynamics of actin filaments within the apical and subapical regions of pollen tube tips. By combining state-of-the-art live-cell imaging with the usage of mutants which lack different actin-binding proteins, our understanding of the origin, spatial organization, dynamics and regulation of actin filaments within the pollen tube tip has greatly improved. In this review article, we will summarize the progress made in this area.
Collapse
Affiliation(s)
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Su C, Klein ML, Hernández-Reyes C, Batzenschlager M, Ditengou FA, Lace B, Keller J, Delaux PM, Ott T. The Medicago truncatula DREPP Protein Triggers Microtubule Fragmentation in Membrane Nanodomains during Symbiotic Infections. THE PLANT CELL 2020; 32:1689-1702. [PMID: 32102845 PMCID: PMC7203945 DOI: 10.1105/tpc.19.00777] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 05/20/2023]
Abstract
The initiation of intracellular host cell colonization by symbiotic rhizobia in Medicago truncatula requires repolarization of root hairs, including the rearrangement of cytoskeletal filaments. The molecular players governing microtubule (MT) reorganization during rhizobial infections remain to be discovered. Here, we identified M. truncatula DEVELOPMENTALLY REGULATED PLASMA MEMBRANE POLYPEPTIDE (DREPP), a member of the MT binding DREPP/PCaP protein family, and investigated its functions during rhizobial infections. We show that rhizobial colonization of drepp mutant roots as well as transgenic roots overexpressing DREPP is impaired. DREPP relocalizes into symbiosis-specific membrane nanodomains in a stimulus-dependent manner. This subcellular segregation coincides with DREPP-dependent MT fragmentation and a partial loss of the ability to reorganize the MT cytoskeleton in response to rhizobia, which might rely on an interaction between DREPP and the MT-organizing protein SPIRAL2. Taken together, our results reveal that establishment of symbiotic associations in M. truncatula requires DREPP in order to regulate MT reorganization during initial root hair responses to rhizobia.
Collapse
Affiliation(s)
- Chao Su
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marie-Luise Klein
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Casandra Hernández-Reyes
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | | | | | - Beatrice Lace
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique, Universit Paul Sabatier, 31326 Castanet Tolosan, France
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique, Universit Paul Sabatier, 31326 Castanet Tolosan, France
| | - Thomas Ott
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
23
|
Cheng G, Yang Z, Zhang H, Zhang J, Xu J. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. THE NEW PHYTOLOGIST 2020; 225:2122-2139. [PMID: 31657467 DOI: 10.1111/nph.16285] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Group 1 Remorins (REMs) are extensively involved in virus trafficking through plasmodesmata (PD). However, their roles in Potyvirus cell-to-cell movement are not known. The plasma membrane (PM)-associated Ca2+ binding protein 1 (PCaP1) interacts with the P3N-PIPO of Turnip mosaic virus (TuMV) and is required for TuMV cell-to-cell movement, but the underlying mechanism remains elusive. The mutant plants with overexpression or knockout of REM1.2 were used to investigate its role in TuMV cell-to-cell movement. Arabidopsis thaliana complementary mutants of pcap1 were used to investigate the role of PCaP1 in TuMV cell-to-cell movement. Yeast-two-hybrid, bimolecular fluorescence complementation, co-immunoprecipitation and RT-qPCR assays were employed to investigate the underlying molecular mechanism. The results show that TuMV-P3N-PIPO recruits PCaP1 to PD and the actin filament-severing activity of PCaP1 is required for TuMV intercellular movement. REM1.2 negatively regulates the cell-to-cell movement of TuMV via competition with PCaP1 for binding actin filaments. As a counteractive response, TuMV mediates REM1.2 degradation via both 26S ubiquitin-proteasome and autophagy pathways through the interaction of VPg with REM1.2 to establish systemic infection in Arabidopsis. This work unveils the actin cytoskeleton and PM nanodomain-associated molecular events underlying the cell-to-cell movement of potyviruses.
Collapse
Affiliation(s)
- Guangyuan Cheng
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Zongtao Yang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Hai Zhang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Jisen Zhang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Jingsheng Xu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| |
Collapse
|
24
|
Tobias LM, Spokevicius AV, McFarlane HE, Bossinger G. The Cytoskeleton and Its Role in Determining Cellulose Microfibril Angle in Secondary Cell Walls of Woody Tree Species. PLANTS (BASEL, SWITZERLAND) 2020; 9:E90. [PMID: 31936868 PMCID: PMC7020502 DOI: 10.3390/plants9010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/28/2022]
Abstract
Recent advances in our understanding of the molecular control of secondary cell wall (SCW) formation have shed light on molecular mechanisms that underpin domestication traits related to wood formation. One such trait is the cellulose microfibril angle (MFA), an important wood quality determinant that varies along tree developmental phases and in response to gravitational stimulus. The cytoskeleton, mainly composed of microtubules and actin filaments, collectively contribute to plant growth and development by participating in several cellular processes, including cellulose deposition. Studies in Arabidopsis have significantly aided our understanding of the roles of microtubules in xylem cell development during which correct SCW deposition and patterning are essential to provide structural support and allow for water transport. In contrast, studies relating to SCW formation in xylary elements performed in woody trees remain elusive. In combination, the data reviewed here suggest that the cytoskeleton plays important roles in determining the exact sites of cellulose deposition, overall SCW patterning and more specifically, the alignment and orientation of cellulose microfibrils. By relating the reviewed evidence to the process of wood formation, we present a model of microtubule participation in determining MFA in woody trees forming reaction wood (RW).
Collapse
Affiliation(s)
- Larissa Machado Tobias
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| | - Antanas V. Spokevicius
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| | - Heather E. McFarlane
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Gerd Bossinger
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| |
Collapse
|
25
|
|
26
|
Wang C, Zhang H, Xia Q, Yu J, Zhu D, Zhao Q. ZmGLR, a cell membrane localized microtubule-associated protein, mediated leaf morphogenesis in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110248. [PMID: 31623783 DOI: 10.1016/j.plantsci.2019.110248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Microtubule arrays play notable roles in cell division, cell movement, cell morphogenesis and signal transduction. Due to their important regulation of microtubule dynamic instability and array-ordering processes, microtubule-associated proteins have been a cutting-edge issue in research. Here, a new maize microtubule-associated protein, ZmGLR (Zea mays glutamic acid- and lysine-rich), was found. ZmGLR bundles microtubules in vitro and targets the cell membrane through an interaction between 24 conserved N-terminal amino acids and specific phosphatidylinositol phosphates (PtdInsPs). Increased Ca2+ levels in the cytoplasm lead to ZmGLR partially dissociating from the cell membrane and moving into the cytoplasm to associate with microtubule. Overexpression and RNAi of ZmGLR both resulted in misoriented microtubule arrays, which led to dwarf maize plants and curved leaves. In addition, the expression of ZmGLR was regulated by BR and auxin through ZmBES1 and ZmARF9, respectively. This study reveals that the microtubule-associated protein ZmGLR plays a crucial role in cortical microtubule reorientation and maize leaf morphogenesis.
Collapse
Affiliation(s)
- Chenchen Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qi Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Dengyun Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qian Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
27
|
Orr RG, Cheng X, Vidali L, Bezanilla M. Orchestrating cell morphology from the inside out - using polarized cell expansion in plants as a model. Curr Opin Cell Biol 2019; 62:46-53. [PMID: 31546159 DOI: 10.1016/j.ceb.2019.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022]
Abstract
Intracellular organization forms the basis of changes in the extracellular matrix. In walled cells, these changes are essential for morphogenesis and growth. The highly polarized cells of mosses and liverworts together with root hairs and pollen tubes are geometrically simple cells that develop in the absence of complex tissue-scale signaling, providing an excellent model to study cell polarity. Recent advances present a unifying theme where the cytoskeleton and its associated motors work in coordination with vesicle trafficking. This coordination results in a recycling system near the cell tip, where endocytosed molecules are sorted and combined with exocytic cargo driving growth. Interestingly, functional similarities between filamentous fungi and plants promise to advance our understanding of cell polarization and growth across kingdoms.
Collapse
Affiliation(s)
- Robert G Orr
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester MA, 01609, United States
| | - Xiaohang Cheng
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, United States
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester MA, 01609, United States
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, United States.
| |
Collapse
|
28
|
AP3M harbors actin filament binding activity that is crucial for vacuole morphology and stomatal closure in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:18132-18141. [PMID: 31431522 DOI: 10.1073/pnas.1901431116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stomatal movement is essential for plant growth. This process is precisely regulated by various cellular activities in guard cells. F-actin dynamics and vacuole morphology are both involved in stomatal movement. The sorting of cargoes by clathrin adaptor protein (AP) complexes from the Golgi to the vacuole is critical for establishing a normal vacuole morphology. In this study, we demonstrate that the medium subunit of the AP3 complex (AP3M) binds to and severs actin filaments in vitro and that it participates in the sorting of cargoes (such as the sucrose exporter SUC4) to the tonoplast, and thereby regulates stomatal closure in Arabidopsis thaliana Defects in AP3 or SUC4 led to more rapid water loss and delayed stomatal closure, as well as hypersensitivity to drought stress. In ap3m mutants, the F-actin status was altered compared to the wild type, and the sorted cargoes failed to localize to the tonoplast. AP3M contains a previously unidentified F-actin binding domain that is conserved in AP3M homologs in both plants and animals. Mutations in the F-actin binding domain of AP3M abolished its F-actin binding activity in vitro, leading to an aberrant vacuole morphology and reduced levels of SUC4 on the tonoplast in guard cells. Our findings indicate that the F-actin binding activity of AP3M is required for the precise localization of AP3-dependent cargoes to the tonoplast and for the regulation of vacuole morphology in guard cells during stomatal closure.
Collapse
|
29
|
Tanaka-Takada N, Kobayashi A, Takahashi H, Kamiya T, Kinoshita T, Maeshima M. Plasma Membrane-Associated Ca2+-Binding Protein PCaP1 is Involved in Root Hydrotropism of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:1331-1341. [PMID: 30828737 DOI: 10.1093/pcp/pcz042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/21/2019] [Indexed: 05/26/2023]
Abstract
Root hydrotropism is an essential growth response to water potential gradients in plants. To understand the mechanism, fundamental elements such as MIZU-KUSSEI 1 (MIZ1) have been investigated extensively. We investigated the physiological role of a plasma membrane-associated cation-binding protein (PCaP1) and examined the effect of PCaP1 loss-of-function mutations on root hydrotropism. pcap1 knockout mutants showed a defect in root bending as a hydrotropic response, although gravitropism was normal in pcap1 mutants. When pcap1 seedlings were treated with abscisic acid, a negative regulator of gravitropism, the seedlings showed normal gravitropism. The hydrotropism defect in pcap1 mutants was clearly rescued by introducing the genomic sequence of PCaP1 with an endodermis-specific promoter. Analysis of PCaP1-greenfluorescent protein-expressing roots by confocal laser scanning microscopy revealed that PCaP1 was stably associated with the plasma membrane in most cells, but in the cytoplasm of endodermal cells at the bending region. Furthermore, we prepared a transgenic line overexpressing MIZ1 on the pcap1 background and found that the pcap1 hydrotropism defect was rescued. Our results indicate that PCaP1 in the endodermal cells of the root elongation zone is involved in the hydrotropic response. We suggest that PCaP1 contributes to hydrotropism through a MIZ1-independent pathway or as one of the upstream components that transduce water potential signals to MIZ1.
Collapse
Affiliation(s)
- Natsuki Tanaka-Takada
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Akie Kobayashi
- Laboratory of Plant Sennsory and Developmental Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hideyuki Takahashi
- Laboratory of Plant Sennsory and Developmental Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takehiro Kamiya
- Laboratory of Plant Nutrition and Fertilizers, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
30
|
Qian D, Xiang Y. Actin Cytoskeleton as Actor in Upstream and Downstream of Calcium Signaling in Plant Cells. Int J Mol Sci 2019; 20:ijms20061403. [PMID: 30897737 PMCID: PMC6471457 DOI: 10.3390/ijms20061403] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/04/2023] Open
Abstract
In plant cells, calcium (Ca2+) serves as a versatile intracellular messenger, participating in several fundamental and important biological processes. Recent studies have shown that the actin cytoskeleton is not only an upstream regulator of Ca2+ signaling, but also a downstream regulator. Ca2+ has been shown to regulates actin dynamics and rearrangements via different mechanisms in plants, and on this basis, the upstream signaling encoded within the Ca2+ transient can be decoded. Moreover, actin dynamics have also been proposed to act as an upstream of Ca2+, adjust Ca2+ oscillations, and establish cytosolic Ca2+ ([Ca2+]cyt) gradients in plant cells. In the current review, we focus on the advances in uncovering the relationship between the actin cytoskeleton and calcium in plant cells and summarize our current understanding of this relationship.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
31
|
Kölling M, Kumari P, Bürstenbinder K. Calcium- and calmodulin-regulated microtubule-associated proteins as signal-integration hubs at the plasma membrane-cytoskeleton nexus. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:387-396. [PMID: 30590729 DOI: 10.1093/jxb/ery397] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/06/2018] [Indexed: 05/09/2023]
Abstract
Plant growth and development are a genetically predetermined series of events but can change dramatically in response to environmental stimuli, involving perpetual pattern formation and reprogramming of development. The rate of growth is determined by cell division and subsequent cell expansion, which are restricted and controlled by the cell wall-plasma membrane-cytoskeleton continuum, and are coordinated by intricate networks that facilitate intra- and intercellular communication. An essential role in cellular signaling is played by calcium ions, which act as universal second messengers that transduce, integrate, and multiply incoming signals during numerous plant growth processes, in part by regulation of the microtubule cytoskeleton. In this review, we highlight recent advances in the understanding of calcium-mediated regulation of microtubule-associated proteins, their function at the microtubule cytoskeleton, and their potential role as hubs in crosstalk with other signaling pathways.
Collapse
Affiliation(s)
- Malte Kölling
- Leibniz Institute of Plant Biochemistry, Weinberg, Halle/Saale, Germany
| | - Pratibha Kumari
- Leibniz Institute of Plant Biochemistry, Weinberg, Halle/Saale, Germany
| | | |
Collapse
|
32
|
Lipchinsky A. Electromechanics of polarized cell growth. Biosystems 2018; 173:114-132. [PMID: 30300677 DOI: 10.1016/j.biosystems.2018.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/30/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
Abstract
One of the most challenging questions in cell and developmental biology is how molecular signals are translated into mechanical forces that ultimately drive cell growth and motility. Despite an impressive body of literature demonstrating the importance of cytoskeletal and motor proteins as well as osmotic stresses for cell developmental mechanics, a host of dissenting evidence strongly suggests that these factors per se cannot explain growth mechanics even at the level of a single tip-growing cell. The present study addresses this issue by exploring fundamental interrelations between electrical and mechanical fields operating in cells. In the first instance, we employ a simplified but instructive model of a quiescent cell to demonstrate that even in a quasi-equilibrium state, ion transport processes are conditioned principally by mechanical tenets. Then we inquire into the electromechanical conjugacy in growing pollen tubes as biologically relevant and physically tractable developmental systems owing to their extensively characterized growth-associated ionic fluxes and strikingly polarized growth and morphology. A comprehensive analysis of the multifold stress pattern in the growing apices of pollen tubes suggests that tip-focused ionic fluxes passing through the polyelectrolyte-rich apical cytoplasm give rise to electrokinetic flows that actualize otherwise isotropic intracellular turgor into anisotropic stress field. The stress anisotropy can be then imparted from the apical cytoplasm to the abutting frontal cell wall to induce its local extension and directional cell growth. Converging lines of evidence explored in the concluding sections attest that tip-focused ionic fluxes and associated interfacial transport phenomena are not specific for pollen tubes but are also employed by a vast variety of algal, plant, fungal and animal cells, rendering their cytoplasmic stress fields essentially anisotropic and ultimately instrumental in cell shaping, growth and motility.
Collapse
Affiliation(s)
- Andrei Lipchinsky
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia.
| |
Collapse
|
33
|
Theerawitaya C, Yamada-Kato N, Singh HP, Cha-Um S, Takabe T. Isolation, expression, and functional analysis of developmentally regulated plasma membrane polypeptide 1 (DREPP1) in Sporobolus virginicus grown under alkali salt stress. PROTOPLASMA 2018; 255:1423-1432. [PMID: 29574487 DOI: 10.1007/s00709-018-1242-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
The plant specific DREPP proteins have been shown to bind Ca2+ and regulate the N-myristoylation signaling and microtubule polymerization in Arabidopsis thaliana. The information about DREPP proteins in other plants is, however, scarce. In the present study, we isolated the DREPP gene from a halophytic grass, Sporobolus virginicus, and tested whether the gene was involved in alkaline salt stress responses. The SvDREPP1 was cloned from S. virginicus by RACE methods. The isolated gene showed high homology to DREPP homologs from C4 grasses, Setaria italica, and Panicum hallii as well as rice (OsDREPP1). The encoded protein contained 202 amino acid residues. It was expressed in E. coli, and its biochemical properties were studied. It was observed that SvDREPP1 was not only Ca2+-binding protein, but also bind to calmodulin and microtubules. The SvDREPP1 mRNA expression in plants grown under alkaline salt stress was upregulated by 3.5 times over the control in leaf tissues after 48-h treatment, whereas it was increased for 6.0 times in the root tissues at 36 h. The data suggests the importance of SvDREPP1 in regulating alkali salt stress responses in the leaf tissues.
Collapse
Affiliation(s)
- Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Nana Yamada-Kato
- Research Institute, Meijo University, Tenpaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Teruhiro Takabe
- Research Institute, Meijo University, Tenpaku-ku, Nagoya, Aichi, 468-8502, Japan.
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan.
| |
Collapse
|
34
|
Vosolsobě S, Schwarzerová K, Petrášek J. Determination of Plasma Membrane Partitioning for Peripherally-associated Proteins. J Vis Exp 2018. [PMID: 29985355 DOI: 10.3791/57837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This method provides a fast approach for the determination of plasma membrane partitioning of any fluorescently-tagged peripherally-associated protein using the profiles of fluorescence intensity across the plasma membrane. Measured fluorescence profiles are fitted by a model for membrane and cytoplasm fluorescence distribution along a line applied perpendicularly to the cell periphery. This model is constructed from the fluorescence intensity values in reference cells expressing a fluorescently-tagged marker for cytoplasm and with FM 4-64-labeled plasma membrane. The method can be applied to various cell types and organisms; however, only plasma membranes of non-neighboring cells can be evaluated. This fast microscopy-based method is suitable for experiments, where subtle and dynamic changes of plasma membrane-associated markers are expected and need to be quantified, e.g., in the analysis of mutant versions of proteins, inhibitor treatments, and signal transduction observations. The method is implemented in a multi-platform R package that is coupled with an ImageJ macro that serves as a user-friendly interface.
Collapse
Affiliation(s)
- Stanislav Vosolsobě
- Department of Experimental Plant Biology, University of Science, Charles University;
| | | | - Jan Petrášek
- Department of Experimental Plant Biology, University of Science, Charles University
| |
Collapse
|
35
|
Paez-Garcia A, Sparks JA, de Bang L, Blancaflor EB. Plant Actin Cytoskeleton: New Functions from Old Scaffold. PLANT CELL MONOGRAPHS 2018. [DOI: 10.1007/978-3-319-69944-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Goring DR. Exocyst, exosomes, and autophagy in the regulation of Brassicaceae pollen-stigma interactions. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:69-78. [PMID: 29036428 DOI: 10.1093/jxb/erx340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Brassicaceae pollen-stigma interactions have been extensively studied in Brassica and Arabidopsis species to identify cellular events triggered in the stigmatic papillae by pollen contact. Compatible pollinations are linked to the activation of basal cellular responses in the stigmatic papillae, which include calcium gradients, actin networks, and polarized secretion. The occurrence of these cellular events in stigmatic papillae coincides with the stages of pollen hydration and pollen tube entry into the stigmatic papillar cell wall. However, the form of the vesicle trafficking appears to differ between species, with vesicle-like structures detected in Arabidopsis species while exosomes were found to be secreted in Brassica species. Around the same timeframe, self-incompatible pollen recognition leads altered cellular responses in the stigmatic papillae to interfere with basal compatible pollen responses and disrupt regulated secretion, causing self-pollen rejection. Here, the literature on the changing cellular dynamics in the stigmatic papillae following pollination is reviewed and discussed in the context of other well-characterized examples of polarized secretion in plants.
Collapse
Affiliation(s)
- Daphne R Goring
- Department of Cell & Systems Biology, University of Toronto, Canada M5S 3B2
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Canada M5S 3B2
| |
Collapse
|
37
|
Zhu J, Nan Q, Qin T, Qian D, Mao T, Yuan S, Wu X, Niu Y, Bai Q, An L, Xiang Y. Higher-Ordered Actin Structures Remodeled by Arabidopsis ACTIN-DEPOLYMERIZING FACTOR5 Are Important for Pollen Germination and Pollen Tube Growth. MOLECULAR PLANT 2017; 10:1065-1081. [PMID: 28606871 DOI: 10.1016/j.molp.2017.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
Dynamics of the actin cytoskeleton are essential for pollen germination and pollen tube growth. ACTIN-DEPOLYMERIZING FACTORs (ADFs) typically contribute to actin turnover by severing/depolymerizing actin filaments. Recently, we demonstrated that Arabidopsis subclass III ADFs (ADF5 and ADF9) evolved F-actin-bundling function from conserved F-actin-depolymerizing function. However, little is known about the physiological function, the evolutional significance, and the actin-bundling mechanism of these neofunctionalized ADFs. Here, we report that loss of ADF5 function caused delayed pollen germination, retarded pollen tube growth, and increased sensitive to latrunculin B (LatB) treatment by affecting the generation and maintenance of actin bundles. Examination of actin filament dynamics in living cells revealed that the bundling frequency was significantly decreased in adf5 pollen tubes, consistent with its biochemical functions. Further biochemical and genetic complementation analyses demonstrated that both the N- and C-terminal actin-binding domains of ADF5 are required for its physiological and biochemical functions. Interestingly, while both are atypical actin-bundling ADFs, ADF5, but not ADF9, plays an important role in mature pollen physiological activities. Taken together, our results suggest that ADF5 has evolved the function of bundling actin filaments and plays an important role in the formation, organization, and maintenance of actin bundles during pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- Jingen Zhu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiong Nan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tao Qin
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shunjie Yuan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaorong Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qifeng Bai
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
38
|
Takáč T, Šamajová O, Pechan T, Luptovčiak I, Šamaj J. Feedback Microtubule Control and Microtubule-Actin Cross-talk in Arabidopsis Revealed by Integrative Proteomic and Cell Biology Analysis of KATANIN 1 Mutants. Mol Cell Proteomics 2017; 16:1591-1609. [PMID: 28706004 DOI: 10.1074/mcp.m117.068015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
Microtubule organization and dynamics are critical for key developmental processes such as cell division, elongation, and morphogenesis. Microtubule severing is an essential regulator of microtubules and is exclusively executed by KATANIN 1 in Arabidopsis In this study, we comparatively studied the proteome-wide effects in two KATANIN 1 mutants. Thus, shotgun proteomic analysis of roots and aerial parts of single nucleotide mutant fra2 and T-DNA insertion mutant ktn1-2 was carried out. We have detected 42 proteins differentially abundant in both fra2 and ktn1-2 KATANIN 1 dysfunction altered the abundance of proteins involved in development, metabolism, and stress responses. The differential regulation of tubulins and microtubule-destabilizing protein MDP25 implied a feedback microtubule control in KATANIN 1 mutants. Furthermore, deregulation of profilin 1, actin-depolymerizing factor 3, and actin 7 was observed. These findings were confirmed by immunoblotting analysis of actin and by microscopic observation of actin filaments using fluorescently labeled phalloidin. Results obtained by quantitative RT-PCR analysis revealed that changed protein abundances were not a consequence of altered expression levels of corresponding genes in the mutants. In conclusion, we show that abundances of several cytoskeletal proteins as well as organization of microtubules and the actin cytoskeleton are amended in accordance with defective microtubule severing.
Collapse
Affiliation(s)
- Tomáš Takáč
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Tibor Pechan
- §Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, Mississippi 39759
| | - Ivan Luptovčiak
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic;
| |
Collapse
|
39
|
Qu X, Zhang R, Zhang M, Diao M, Xue Y, Huang S. Organizational Innovation of Apical Actin Filaments Drives Rapid Pollen Tube Growth and Turning. MOLECULAR PLANT 2017; 10:930-947. [PMID: 28502709 DOI: 10.1016/j.molp.2017.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/15/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Polarized tip growth is a fundamental cellular process in many eukaryotes. In this study, we examined the dynamic restructuring of the actin cytoskeleton and its relationship to vesicle transport during pollen tip growth in Arabidopsis. We found that actin filaments originating from the apical membrane form a specialized structure consisting of longitudinally aligned actin bundles at the cortex and inner cytoplasmic filaments with a distinct distribution. Using actin-based pharmacological treatments and genetic mutants in combination with FRAP (fluorescence recovery after photobleaching) technology to visualize the transport of vesicles within the growth domain of pollen tubes, we demonstrated that cortical actin filaments facilitate tip-ward vesicle transport. We also discovered that the inner apical actin filaments prevent backward movement of vesicles, thus ensuring that sufficient vesicles accumulate at the pollen tube tip to support the rapid growth of the pollen tube. The combinatorial effect of cortical and internal apical actin filaments perfectly explains the generation of the inverted "V" cone-shaped vesicle distribution pattern at the pollen tube tip. When pollen tubes turn, apical actin filaments at the facing side undergo depolymerization and repolymerization to reorient the apical actin structure toward the new growth direction. This actin restructuring precedes vesicle accumulation and changes in tube morphology. Thus, our study provides new insights into the functional relationship between actin dynamics and vesicle transport during rapid and directional pollen tube growth.
Collapse
Affiliation(s)
- Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruihui Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Min Diao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yongbiao Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
40
|
Evolutionary plasticity of plasma membrane interaction in DREPP family proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:686-697. [DOI: 10.1016/j.bbamem.2017.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 01/10/2023]
|
41
|
Higaki T. Quantitative evaluation of cytoskeletal organizations by microscopic image analysis. ACTA ACUST UNITED AC 2017. [DOI: 10.5685/plmorphol.29.15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| |
Collapse
|
42
|
Michard E, Simon AA, Tavares B, Wudick MM, Feijó JA. Signaling with Ions: The Keystone for Apical Cell Growth and Morphogenesis in Pollen Tubes. PLANT PHYSIOLOGY 2017; 173:91-111. [PMID: 27895207 PMCID: PMC5210754 DOI: 10.1104/pp.16.01561] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/19/2016] [Indexed: 05/18/2023]
Abstract
Ion homeostasis and signaling are crucial to regulate pollen tube growth and morphogenesis and affect upstream membrane transporters and downstream targets.
Collapse
Affiliation(s)
- Erwan Michard
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - Alexander A Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - Bárbara Tavares
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - Michael M Wudick
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| |
Collapse
|
43
|
Niczyj M, Champagne A, Alam I, Nader J, Boutry M. Expression of a constitutively activated plasma membrane H +-ATPase in Nicotiana tabacum BY-2 cells results in cell expansion. PLANTA 2016; 244:1109-1124. [PMID: 27444008 DOI: 10.1007/s00425-016-2571-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
MAIN CONCLUSION Increased acidification of the external medium by an activated H + -ATPase results in cell expansion, in the absence of upstream activating signaling. The plasma membrane H+-ATPase couples ATP hydrolysis with proton transport outside the cell, and thus creates an electrochemical gradient, which energizes secondary transporters. According to the acid growth theory, this enzyme is also proposed to play a major role in cell expansion, by acidifying the external medium and so activating enzymes that are involved in cell wall-loosening. However, this theory is still debated. To challenge it, we made use of a plasma membrane H+-ATPase isoform from Nicotiana plumbaginifolia truncated from its C-terminal auto-inhibitory domain (ΔCPMA4), and thus constitutively activated. This protein was expressed in Nicotiana tabacum BY-2 suspension cells using a heat shock inducible promoter. The characterization of several independent transgenic lines showed that the expression of activated ΔCPMA4 resulted in a reduced external pH by 0.3-1.2 units, as well as in an increased H+-ATPase activity by 77-155 % (ATP hydrolysis), or 70-306 % (proton pumping) of isolated plasma membranes. In addition, ΔCPMA4-expressing cells were 17-57 % larger than the wild-type cells and displayed abnormal shapes. A proteomic comparison of plasma membranes isolated from ΔCPMA4-expressing and wild-type cells revealed the altered abundance of several proteins involved in cell wall synthesis, transport, and signal transduction. In conclusion, the data obtained in this work showed that H+-ATPase activation is sufficient to induce cell expansion and identified possible actors which intervene in this process.
Collapse
Affiliation(s)
- Marta Niczyj
- Institute of Life Sciences, University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Antoine Champagne
- Institute of Life Sciences, University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Iftekhar Alam
- Institute of Life Sciences, University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Joseph Nader
- Institute of Life Sciences, University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Marc Boutry
- Institute of Life Sciences, University of Louvain, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
44
|
Hafidh S, Fíla J, Honys D. Male gametophyte development and function in angiosperms: a general concept. PLANT REPRODUCTION 2016; 29:31-51. [PMID: 26728623 DOI: 10.1007/s00497-015-0272-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/19/2015] [Indexed: 05/23/2023]
Abstract
Overview of pollen development. Male gametophyte development of angiosperms is a complex process that requires coordinated activity of different cell types and tissues of both gametophytic and sporophytic origin and the appropriate specific gene expression. Pollen ontogeny is also an excellent model for the dissection of cellular networks that control cell growth, polarity, cellular differentiation and cell signaling. This article describes two sequential phases of angiosperm pollen ontogenesis-developmental phase leading to the formation of mature pollen grains, and a functional or progamic phase, beginning with the impact of the grains on the stigma surface and ending at double fertilization. Here we present an overview of important cellular processes in pollen development and explosive pollen tube growth stressing the importance of reserves accumulation and mobilization and also the mutual activation of pollen tube and pistil tissues, pollen tube guidance and the communication between male and female gametophytes. We further describe the recent advances in regulatory mechanisms involved such as posttranscriptional regulation (including mass transcript storage) and posttranslational modifications to modulate protein function, intracellular metabolic signaling, ionic gradients such as Ca(2+) and H(+) ions, cell wall synthesis, protein secretion and intercellular signaling within the reproductive tissues.
Collapse
Affiliation(s)
- Said Hafidh
- Institute of Experimental Botany ASCR, v.v.i., Rozvojová 263, 165 00, Prague 6, Czech Republic
| | - Jan Fíla
- Institute of Experimental Botany ASCR, v.v.i., Rozvojová 263, 165 00, Prague 6, Czech Republic
| | - David Honys
- Institute of Experimental Botany ASCR, v.v.i., Rozvojová 263, 165 00, Prague 6, Czech Republic.
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic.
| |
Collapse
|
45
|
Zhao S, Jiang Y, Zhao Y, Huang S, Yuan M, Zhao Y, Guo Y. CASEIN KINASE1-LIKE PROTEIN2 Regulates Actin Filament Stability and Stomatal Closure via Phosphorylation of Actin Depolymerizing Factor. THE PLANT CELL 2016; 28:1422-39. [PMID: 27268429 PMCID: PMC4944410 DOI: 10.1105/tpc.16.00078] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/06/2016] [Indexed: 05/03/2023]
Abstract
The opening and closing of stomata are crucial for plant photosynthesis and transpiration. Actin filaments undergo dynamic reorganization during stomatal closure, but the underlying mechanism for this cytoskeletal reorganization remains largely unclear. In this study, we identified and characterized Arabidopsis thaliana casein kinase 1-like protein 2 (CKL2), which responds to abscisic acid (ABA) treatment and participates in ABA- and drought-induced stomatal closure. Although CKL2 does not bind to actin filaments directly and has no effect on actin assembly in vitro, it colocalizes with and stabilizes actin filaments in guard cells. Further investigation revealed that CKL2 physically interacts with and phosphorylates actin depolymerizing factor 4 (ADF4) and inhibits its activity in actin filament disassembly. During ABA-induced stomatal closure, deletion of CKL2 in Arabidopsis alters actin reorganization in stomata and renders stomatal closure less sensitive to ABA, whereas deletion of ADF4 impairs the disassembly of actin filaments and causes stomatal closure to be more sensitive to ABA Deletion of ADF4 in the ckl2 mutant partially recues its ABA-insensitive stomatal closure phenotype. Moreover, Arabidopsis ADFs from subclass I are targets of CKL2 in vitro. Thus, our results suggest that CKL2 regulates actin filament reorganization and stomatal closure mainly through phosphorylation of ADF.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuxiang Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
| | - Yang Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanxiu Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
46
|
Krtková J, Benáková M, Schwarzerová K. Multifunctional Microtubule-Associated Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:474. [PMID: 27148302 PMCID: PMC4838777 DOI: 10.3389/fpls.2016.00474] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/24/2016] [Indexed: 05/21/2023]
Abstract
Microtubules (MTs) are involved in key processes in plant cells, including cell division, growth and development. MT-interacting proteins modulate MT dynamics and organization, mediating functional and structural interaction of MTs with other cell structures. In addition to conventional microtubule-associated proteins (MAPs) in plants, there are many other MT-binding proteins whose primary function is not related to the regulation of MTs. This review focuses on enzymes, chaperones, or proteins primarily involved in other processes that also bind to MTs. The MT-binding activity of these multifunctional MAPs is often performed only under specific environmental or physiological conditions, or they bind to MTs only as components of a larger MT-binding protein complex. The involvement of multifunctional MAPs in these interactions may underlie physiological and morphogenetic events, e.g., under specific environmental or developmental conditions. Uncovering MT-binding activity of these proteins, although challenging, may contribute to understanding of the novel functions of the MT cytoskeleton in plant biological processes.
Collapse
Affiliation(s)
- Jana Krtková
- Department of Biology, University of WashingtonSeattle, WA, USA
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Martina Benáková
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
- Department of Biology, Faculty of Science, University of Hradec KrálovéRokitanského, Czech Republic
| | - Kateřina Schwarzerová
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| |
Collapse
|
47
|
Hepler PK. The Cytoskeleton and Its Regulation by Calcium and Protons. PLANT PHYSIOLOGY 2016; 170:3-22. [PMID: 26722019 PMCID: PMC4704593 DOI: 10.1104/pp.15.01506] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/28/2015] [Indexed: 05/18/2023]
Abstract
Calcium and protons exert control over the formation and activity of the cytoskeleton, usually by modulating an associated motor protein or one that affects the structural organization of the polymer.
Collapse
Affiliation(s)
- Peter K Hepler
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
48
|
Mattei B, Spinelli F, Pontiggia D, De Lorenzo G. Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1107. [PMID: 27532006 PMCID: PMC4969306 DOI: 10.3389/fpls.2016.01107] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/12/2016] [Indexed: 05/03/2023]
Abstract
Early changes in the Arabidopsis thaliana membrane phosphoproteome in response to oligogalacturonides (OGs), a class of plant damage-associated molecular patterns (DAMPs), were analyzed by two complementary proteomic approaches. Differentially phosphorylated sites were determined through phosphopeptide enrichment followed by LC-MS/MS using label-free quantification; differentially phosphorylated proteins were identified by 2D-DIGE combined with phospho-specific fluorescent staining (phospho-DIGE). This large-scale phosphoproteome analysis of early OG-signaling enabled us to determine 100 regulated phosphosites using LC-MS/MS and 46 differential spots corresponding to 34 pdhosphoproteins using phospho-DIGE. Functional classification showed that the OG-responsive phosphoproteins include kinases, phosphatases and receptor-like kinases, heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, proteins related to cellular trafficking, transport, defense and signaling as well as novel candidates for a role in immunity, for which elicitor-induced phosphorylation changes have not been shown before. A comparison with previously identified elicitor-regulated phosphosites shows only a very limited overlap, uncovering the immune-related regulation of 70 phosphorylation sites and revealing novel potential players in the regulation of elicitor-dependent immunity.
Collapse
|
49
|
Zhou X, Groves NR, Meier I. SUN anchors pollen WIP-WIT complexes at the vegetative nuclear envelope and is necessary for pollen tube targeting and fertility. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7299-307. [PMID: 26409047 PMCID: PMC4765795 DOI: 10.1093/jxb/erv425] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
LINC (linker of nucleoskeleton and cytoskeleton) complexes play an essential role in nuclear migration by connecting the nucleus to the cytoskeleton and/or motor proteins. Plant LINC complexes have recently been identified in Arabidopsis thaliana, with the inner nuclear membrane SUN and outer nuclear membrane WIP proteins comprising the first identified complex. A recent study identified a nuclear movement defect in Arabidopsis pollen vegetative nuclei linked to the outer nuclear envelope WIP and WIT proteins. However, the role that SUN proteins may play in pollen nuclear migration has yet to be addressed. To explore this question, a SUN2 lumenal domain that was targeted to the ER specifically in pollen was over-expressed. It is shown that the ER-targeted SUN2 lumenal domain was able to displace WIP and WIT proteins from the pollen vegetative nuclear envelope. Expression of this dominant-negative transgene led to impaired VN mobility, impaired pollen tube guidance, and defective pollen tube reception. The observed pollen defects are similar to phenotypes observed in a wip1-1 wip2-1 wip3-1 wit1-1 wit2-1 mutant. It is also shown that these defects were dependent on the KASH-binding function of the SUN2 lumenal domain. These data support a model where LINC complexes formed by SUN, WIP, and WIT at the VNE are responsible for VN migration and suggest an important function of SUN, WIP, and WIT in pollen tube guidance and reception.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Norman Reid Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
50
|
Fu Y. The cytoskeleton in the pollen tube. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:111-9. [PMID: 26550939 DOI: 10.1016/j.pbi.2015.10.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 05/10/2023]
Abstract
The cytoskeleton in pollen tubes has been intensively studied, because of its abundance and prominent roles and because the pollen tube is an excellent experimental system for cell biological studies. Pollen actin microfilaments (MFs) exist as multiple distinct populations, each participating in a specific cellular trafficking or organization process. Consequently, MFs are essential for pollen tube growth and are tightly regulated in response to various signals. Pollen microtubules (MTs) are non-essential and less characterized, but recent studies have implicated MTs in vesicle trafficking and cell wall construction in pollen tubes. This review summarizes recent advances in understanding the organization and regulation of both MFs and MTs and discusses their roles in cellular trafficking and the modulation of pollen-tube tip growth.
Collapse
Affiliation(s)
- Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|