1
|
Chen DY, Su M, Wu H, Zhao R, Wang D, Dong S, Yuan X, Li X, Gao L, Yang G, Chu X, Wang JG. Transcriptome profiling of foxtail millet (Setaria italica) pollen and anther. BMC PLANT BIOLOGY 2024; 24:1221. [PMID: 39707174 DOI: 10.1186/s12870-024-05976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Pollen development and germination play a crucial role in the sexual reproduction of plants. This study analysis of transcriptional dynamics of foxtail millet pollen with other tissues and organs (ovule, glume, seedling and root) through RNA-sequencing revealed that a total of 940 genes were up-regulated in foxtail millet pollen. Based on this, we analyzed the genes involved in pollen tube growth of receptor kinases and small peptides, calcium signaling, small G proteins, vesicle transport, cytoskeleton, cell wall correlation, and transcription factors that are up-regulated in pollen. At the same time, we compared the gene expression of foxtail millet pollen and mature anthers, and found that a large number of transcription factors were specific expressed in mature anthers. In addition, we verified the accuracy of the transcriptome data using RT-qPCR. Finally, employed the antisense Oligonucleotide (as-ODN) system found that inhibiting SiPME67 expression would cause abnormal growth of pollen tube subapical. In summary, we preliminarily analyzed the genes that were up-regulated in foxtail millet pollen, which provided a reference for understanding the male sterility mechanism of foxtail millet in the future and theoretical basis for creating new male sterility lines.
Collapse
Affiliation(s)
- Dan-Ying Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China
| | - Min Su
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China
- Qingyang Academy of Agricultural Sciences, Lanzhou, Gansu Province, 745000, China
| | - Huashuang Wu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Rui Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Dan Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaorui Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Lulu Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Guanghui Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoqian Chu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Jia-Gang Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
2
|
Graci S, Barone A. Tomato plant response to heat stress: a focus on candidate genes for yield-related traits. FRONTIERS IN PLANT SCIENCE 2024; 14:1245661. [PMID: 38259925 PMCID: PMC10800405 DOI: 10.3389/fpls.2023.1245661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Climate change and global warming represent the main threats for many agricultural crops. Tomato is one of the most extensively grown and consumed horticultural products and can survive in a wide range of climatic conditions. However, high temperatures negatively affect both vegetative growth and reproductive processes, resulting in losses of yield and fruit quality traits. Researchers have employed different parameters to evaluate the heat stress tolerance, including evaluation of leaf- (stomatal conductance, net photosynthetic rate, Fv/Fm), flower- (inflorescence number, flower number, stigma exertion), pollen-related traits (pollen germination and viability, pollen tube growth) and fruit yield per plant. Moreover, several authors have gone even further, trying to understand the plants molecular response mechanisms to this stress. The present review focused on the tomato molecular response to heat stress during the reproductive stage, since the increase of temperatures above the optimum usually occurs late in the growing tomato season. Reproductive-related traits directly affects the final yield and are regulated by several genes such as transcriptional factors, heat shock proteins, genes related to flower, flowering, pollen and fruit set, and epigenetic mechanisms involving DNA methylation, histone modification, chromatin remodelling and non-coding RNAs. We provided a detailed list of these genes and their function under high temperature conditions in defining the final yield with the aim to summarize the recent findings and pose the attention on candidate genes that could prompt on the selection and constitution of new thermotolerant tomato plant genotypes able to face this abiotic challenge.
Collapse
Affiliation(s)
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| |
Collapse
|
3
|
Zhang R, Xu Y, Yi R, Shen J, Huang S. Actin cytoskeleton in the control of vesicle transport, cytoplasmic organization, and pollen tube tip growth. PLANT PHYSIOLOGY 2023; 193:9-25. [PMID: 37002825 DOI: 10.1093/plphys/kiad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Pollen tubes extend rapidly via tip growth. This process depends on a dynamic actin cytoskeleton, which has been implicated in controlling organelle movements, cytoplasmic streaming, vesicle trafficking, and cytoplasm organization in pollen tubes. In this update review, we describe the progress in understanding the organization and regulation of the actin cytoskeleton and the function of the actin cytoskeleton in controlling vesicle traffic and cytoplasmic organization in pollen tubes. We also discuss the interplay between ion gradients and the actin cytoskeleton that regulates the spatial arrangement and dynamics of actin filaments and the organization of the cytoplasm in pollen tubes. Finally, we describe several signaling components that regulate actin dynamics in pollen tubes.
Collapse
Affiliation(s)
- Ruihui Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanan Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ran Yi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiangfeng Shen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Çetinbaş-Genç A, Conti V, Cai G. Let's shape again: the concerted molecular action that builds the pollen tube. PLANT REPRODUCTION 2022; 35:77-103. [PMID: 35041045 DOI: 10.1007/s00497-022-00437-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The pollen tube is being subjected to control by a complex network of communication that regulates its shape and the misfunction of a single component causes specific deformations. In flowering plants, the pollen tube is a tubular extension of the pollen grain required for successful sexual reproduction. Indeed, maintaining the unique shape of the pollen tube is essential for the pollen tube to approach the embryo sac. Many processes and molecules (such as GTPase activity, phosphoinositides, Ca2+ gradient, distribution of reactive oxygen species and nitric oxide, nonuniform pH values, organization of the cytoskeleton, balance between exocytosis and endocytosis, and cell wall structure) play key and coordinated roles in maintaining the cylindrical shape of pollen tubes. In addition, the above factors must also interact with each other so that the cell shape is maintained while the pollen tube follows chemical signals in the pistil that guide it to the embryo sac. Any intrinsic changes (such as erroneous signals) or extrinsic changes (such as environmental stresses) can affect the above factors and thus fertilization by altering the tube morphology. In this review, the processes and molecules that enable the development and maintenance of the unique shape of pollen tubes in angiosperms are presented emphasizing their interaction with specific tube shape. Thus, the purpose of the review is to investigate whether specific deformations in pollen tubes can help us to better understand the mechanism underlying pollen tube shape.
Collapse
Affiliation(s)
- Aslıhan Çetinbaş-Genç
- Department of Biology, Marmara University, Göztepe Campus, 34722, Kadıköy, Istanbul, Turkey.
| | - Veronica Conti
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| |
Collapse
|
5
|
Liu HK, Li YJ, Wang SJ, Yuan TL, Huang WJ, Dong X, Pei JQ, Zhang D, McCormick S, Tang WH. Kinase Partner Protein Plays a Key Role in Controlling the Speed and Shape of Pollen Tube Growth in Tomato. PLANT PHYSIOLOGY 2020; 184:1853-1869. [PMID: 33020251 PMCID: PMC7723124 DOI: 10.1104/pp.20.01081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/23/2020] [Indexed: 05/10/2023]
Abstract
The rapid and responsive growth of a pollen tube requires delicate coordination of membrane receptor signaling, Rho-of-Plants (ROP) GTPase activity switching, and actin cytoskeleton assembly. The tomato (Solanum lycopersicum) kinase partner protein (KPP), is a ROP guanine nucleotide exchange factor (GEF) that activates ROP GTPases and interacts with the tomato pollen receptor kinases LePRK1 and LePRK2. It remains unclear how KPP relays signals from plasma membrane-localized LePRKs to ROP switches and other cellular machineries to modulate pollen tube growth. Here, we biochemically verified KPP's activity on ROP4 and showed that KPP RNA interference transgenic pollen tubes grew slower while KPP-overexpressing pollen tubes grew faster, suggesting that KPP functions as a rheostat for speed control in LePRK2-mediated pollen tube growth. The N terminus of KPP is required for self-inhibition of its ROPGEF activity, and expression of truncated KPP lacking the N terminus caused pollen tube tip enlargement. The C-terminus of KPP is required for its interaction with LePRK1 and LePRK2, and the expression of a truncated KPP lacking the C-terminus triggered pollen tube bifurcation. Furthermore, coexpression assays showed that self-associated KPP recruited actin-nucleating Actin-Related Protein2/3 (ARP2/3) complexes to the tip membrane. Interfering with ARP2/3 activity reduced the pollen tube abnormalities caused by overexpressing KPP fragments. In conclusion, KPP plays a key role in pollen tube speed and shape control by recruiting the branched actin nucleator ARP2/3 complex and an actin bundler to the membrane-localized receptors LePRK1 and LePRK2.
Collapse
Affiliation(s)
- Hai-Kuan Liu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Jie Li
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-Jie Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Lu Yuan
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Jie Huang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Dong
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Qi Pei
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Sheila McCormick
- Plant Gene Expression Center, United States Department of Agriculture/Agricultural Research Service, and Department of Plant and Microbial Biology, University of California at Berkeley, Albany, California 94710
| | - Wei-Hua Tang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Xu L, Liu T, Xiong X, Liu W, Yu Y, Cao J. Overexpression of Two CCCH-type Zinc-Finger Protein Genes Leads to Pollen Abortion in Brassica campestris ssp. chinensis. Genes (Basel) 2020; 11:E1287. [PMID: 33138166 PMCID: PMC7693475 DOI: 10.3390/genes11111287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
The pollen grains produced by flowering plants are vital for sexual reproduction. Previous studies have shown that two CCCH-type zinc-finger protein genes in Brassica campestris, BcMF30a and BcMF30c, are involved in pollen development. Due to their possible functional redundancy, gain-of-function analysis is helpful to reveal their respective biological functions. Here, we found that the phenotypes of BcMF30a and BcMF30c overexpression transgenic plants driven by their native promoters were similar, suggesting their functional redundancy. The results showed that the vegetative growth was not affected in both transgenic plants, but male fertility was reduced. Further analysis found that the abortion of transgenic pollen was caused by the degradation of pollen contents from the late uninucleate microspore stage. Subcellular localization analysis demonstrated that BcMF30a and BcMF30c could localize in cytoplasmic foci. Combined with the studies of other CCCH-type genes, we speculated that the overexpression of these genes can induce the continuous assembly of abnormal cytoplasmic foci, thus resulting in defective plant growth and development, which, in this study, led to pollen abortion. Both the overexpression and knockout of BcMF30a and BcMF30c lead to abnormal pollen development, indicating that the appropriate expression levels of these two genes are critical for the maintenance of normal pollen development.
Collapse
Affiliation(s)
- Liai Xu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (T.L.); (X.X.); (W.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Tingting Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (T.L.); (X.X.); (W.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Xingpeng Xiong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (T.L.); (X.X.); (W.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Weimiao Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (T.L.); (X.X.); (W.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Youjian Yu
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A & F University, Lin’an 311300, China;
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (T.L.); (X.X.); (W.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| |
Collapse
|
7
|
Guo J, Dong X, Li Y, Wang B. NaCl treatment markedly enhanced pollen viability and pollen preservation time of euhalophyte Suaeda salsa via up regulation of pollen development-related genes. JOURNAL OF PLANT RESEARCH 2020; 133:57-71. [PMID: 31654246 DOI: 10.1007/s10265-019-01148-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 10/02/2019] [Indexed: 05/27/2023]
Abstract
Vegetable growth of halophytes has significantly increased through moderate salinity. However, little is known about the reproductive traits of euhalophytes. Male reproduction is pivotal for fertilization and seed production and sensitive to abiotic stressors. The pollen viability and pollen longevity of Suaeda salsa treated with 0 and 200 mM of NaCl were evaluated. It was revealed that the pollen size of S. salsa treated with NaCl was significantly bigger than that in controls. Furthermore, the pollen viability of S. salsa plants treated with NaCl was also significantly higher than that of control after 8 h of the pollens were collected (from 10 to 27 h). The pollen viability of NaCl-treated plants in the field could be maintained for 8 h (from 07:00 to 15:00) in sunny days, which was 1 h longer than that of control plants (from 07:00 to 14:00). Meanwhile, the pollen preservation time of NaCl-treated plants was 16 h at room temperature, which was 8 h longer than that of control plants. Genes related to pollen development, such as SsPRK3, SsPRK4, and SsLRX, exhibited high expression in the flowers of NaCl-treated plants. This indicated that NaCl markedly improved the pollen viability and preservation time via the increased expression of pollen development-related genes, and this benefits the population establishment of halophytes such as S. salsa in saline regions.
Collapse
Affiliation(s)
- Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Xinxiu Dong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Ying Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China.
| |
Collapse
|
8
|
Fawke S, Torode TA, Gogleva A, Fich EA, Sørensen I, Yunusov T, Rose JKC, Schornack S. Glycerol-3-phosphate acyltransferase 6 controls filamentous pathogen interactions and cell wall properties of the tomato and Nicotiana benthamiana leaf epidermis. THE NEW PHYTOLOGIST 2019; 223:1547-1559. [PMID: 30980530 PMCID: PMC6767537 DOI: 10.1111/nph.15846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/29/2019] [Indexed: 05/30/2023]
Abstract
The leaf outer epidermal cell wall acts as a barrier against pathogen attack and desiccation, and as such is covered by a cuticle, composed of waxes and the polymer cutin. Cutin monomers are formed by the transfer of fatty acids to glycerol by glycerol-3-phosphate acyltransferases, which facilitate their transport to the surface. The extent to which cutin monomers affect leaf cell wall architecture and barrier properties is not known. We report a dual functionality of pathogen-inducible GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE 6 (GPAT6) in controlling pathogen entry and cell wall properties affecting dehydration in leaves. Silencing of Nicotiana benthamiana NbGPAT6a increased leaf susceptibility to infection by the oomycetes Phytophthora infestans and Phytophthora palmivora, whereas overexpression of NbGPAT6a-GFP rendered leaves more resistant. A loss-of-function mutation in tomato SlGPAT6 similarly resulted in increased susceptibility of leaves to Phytophthora infection, concomitant with changes in haustoria morphology. Modulation of GPAT6 expression altered the outer wall diameter of leaf epidermal cells. Moreover, we observed that tomato gpat6-a mutants had an impaired cell wall-cuticle continuum and fewer stomata, but showed increased water loss. This study highlights a hitherto unknown role for GPAT6-generated cutin monomers in influencing epidermal cell properties that are integral to leaf-microbe interactions and in limiting dehydration.
Collapse
Affiliation(s)
- Stuart Fawke
- Sainsbury Laboratory (SLCU)University of CambridgeCambridgeUK
| | | | - Anna Gogleva
- Sainsbury Laboratory (SLCU)University of CambridgeCambridgeUK
| | - Eric A. Fich
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Iben Sørensen
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Temur Yunusov
- Sainsbury Laboratory (SLCU)University of CambridgeCambridgeUK
| | - Jocelyn K. C. Rose
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | | |
Collapse
|
9
|
Zhang R, Qu X, Zhang M, Jiang Y, Dai A, Zhao W, Cao D, Lan Y, Yu R, Wang H, Huang S. The Balance between Actin-Bundling Factors Controls Actin Architecture in Pollen Tubes. iScience 2019; 16:162-176. [PMID: 31181400 PMCID: PMC6556835 DOI: 10.1016/j.isci.2019.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 11/19/2022] Open
Abstract
How actin-bundling factors cooperatively regulate shank-localized actin bundles remains largely unexplored. Here we demonstrate that FIM5 and PLIM2a/PLIM2b decorate shank-localized actin bundles and that loss of function of PLIM2a and/or PLIM2b suppresses phenotypes associated with fim5 mutants. Specifically, knockout of PLIM2a and/or PLIM2b partially suppresses the disorganized actin bundle and intracellular trafficking phenotype in fim5 pollen tubes. PLIM2a/PLIM2b generates thick but loosely packed actin bundles, whereas FIM5 generates thin but tight actin bundles that tend to be cross-linked into networks in vitro. Furthermore, PLIM2a/PLIM2b and FIM5 compete for binding to actin filaments in vitro, and PLIM2a/PLIM2b decorate disorganized actin bundles in fim5 pollen tubes. These data together suggest that the disorganized actin bundles in fim5 mutants are at least partially due to gain of function of PLIM2a/PLIM2b. Our data suggest that the balance between FIM5 and PLIM2a/PLIM2b is crucial for the normal bundling and organization of shank-localized actin bundles in pollen tubes. The transcription of PLIM2a and PLIM2b is upregulated in fim5 pollen tubes Downregulation of PLIM2a and/or PLIM2b suppresses the defects in fim5 pollen tubes Both FIM5 and PLIM2a/PLIM2b decorate shank-localized actin filaments FIM5 can inhibit the binding of PLIM2a and PLIM2b to actin filaments
Collapse
Affiliation(s)
- Ruihui Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuxiang Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anbang Dai
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wanying Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dai Cao
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yaxian Lan
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rong Yu
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hongwei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Johnson MA, Harper JF, Palanivelu R. A Fruitful Journey: Pollen Tube Navigation from Germination to Fertilization. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:809-837. [PMID: 30822112 DOI: 10.1146/annurev-arplant-050718-100133] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In flowering plants, pollen tubes undergo tip growth to deliver two nonmotile sperm to the ovule where they fuse with an egg and central cell to achieve double fertilization. This extended journey involves rapid growth and changes in gene activity that manage compatible interactions with at least seven different cell types. Nearly half of the genome is expressed in haploid pollen, which facilitates genetic analysis, even of essential genes. These unique attributes make pollen an ideal system with which to study plant cell-cell interactions, tip growth, cell migration, the modulation of cell wall integrity, and gene expression networks. We highlight the signaling systems required for pollen tube navigation and the potential roles of Ca2+ signals. The dynamics of pollen development make sexual reproduction highly sensitive to heat stress. Understanding this vulnerability may generate strategies to improve seed crop yields that are under threat from climate change.
Collapse
Affiliation(s)
- Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA;
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA;
| | | |
Collapse
|
11
|
Zhou LZ, Dresselhaus T. Friend or foe: Signaling mechanisms during double fertilization in flowering seed plants. Curr Top Dev Biol 2018; 131:453-496. [PMID: 30612627 DOI: 10.1016/bs.ctdb.2018.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the first description of double fertilization 120 years ago, the processes of pollen tube growth and guidance, sperm cell release inside the receptive synergid cell, as well as fusion of two sperm cells to the female gametes (egg and central cell) have been well documented in many flowering plants. Especially microscopic techniques, including live cell imaging, were used to visualize these processes. Molecular as well as genetic methods were applied to identify key players involved. However, compared to the first 11 decades since its discovery, the past decade has seen a tremendous advancement in our understanding of the molecular mechanisms regulating angiosperm fertilization. Whole signaling networks were elucidated including secreted ligands, corresponding receptors, intracellular interaction partners, and further downstream signaling events involved in the cross-talk between pollen tubes and their cargo with female reproductive cells. Biochemical and structural biological approaches are now increasingly contributing to our understanding of the different signaling processes required to distinguish between compatible and incompatible interaction partners. Here, we review the current knowledge about signaling mechanisms during above processes with a focus on the model plants Arabidopsis thaliana and Zea mays (maize). The analogy that many of the identified "reproductive signaling mechanisms" also act partly or fully in defense responses and/or cell death is also discussed.
Collapse
Affiliation(s)
- Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
12
|
He SL, Hsieh HL, Jauh GY. SMALL AUXIN UP RNA62/75 Are Required for the Translation of Transcripts Essential for Pollen Tube Growth. PLANT PHYSIOLOGY 2018; 178:626-640. [PMID: 30093526 PMCID: PMC6181030 DOI: 10.1104/pp.18.00257] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/29/2018] [Indexed: 05/21/2023]
Abstract
Successful pollen tube elongation is critical for double fertilization, but the biological functions of pollen tube genes and the regulatory machinery underlying this crucial process are largely unknown. A previous translatomic study revealed two Arabidopsis (Arabidopsis thaliana) SAUR (SMALL AUXIN UP RNA) genes, SAUR62 and SAUR75, whose expression is up-regulated by pollination. Here, we found that both SAUR62 and SAUR75 localized mainly to pollen tube nuclei. The siliques of homozygous saur62 (saur62/-), saur75 (saur75/-), and the SAUR62/75 RNA interference (RNAi) knockdown line had many aborted seeds. These lines had normal pollen viability but defective in vitro and in vivo pollen tube growth, with branching phenotypes. Immunoprecipitation with transgenic SAUR62/75-GFP flowers revealed ribosomal protein RPL12 family members as potential interacting partners, and their individual interactions were confirmed further by yeast two-hybrid and bimolecular fluorescence complementation assays. Polysome profiling showed reduced 80S ribosome abundance in homozygous saur62, saur75, ribosomal large subunit12c, and SAUR62/75 RNAi flowers, suggesting that SAUR62/75 play roles in ribosome assembly. To clarify their roles in translation, we analyzed total proteins from RNAi versus wild-type flowers by isobaric tags for relative and absolute quantitation, revealing significantly reduced expression of factors participating in pollen tube wall biogenesis and F-actin dynamics, which are critical for the elastic properties of tube elongation. Indeed, RNAi pollen tubes showed mislocalization of deesterified and esterified pectins and F-actin organization. Thus, the biological roles of SAUR62/75 and their RPL12 partners are critical in ribosomal pre-60S subunit assembly for efficient pollen tube elongation and subsequent fertilization.
Collapse
Affiliation(s)
- Siou-Luan He
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
13
|
Li HJ, Meng JG, Yang WC. Multilayered signaling pathways for pollen tube growth and guidance. PLANT REPRODUCTION 2018; 31:31-41. [PMID: 29441420 DOI: 10.1007/s00497-018-0324-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/24/2018] [Indexed: 05/22/2023]
Abstract
Sexual reproductive success is essential for the survival of all higher organisms. As the most prosperous and diverse group of land plants on earth, flowering plants evolved highly sophisticated fertilization mechanisms. To adapt to the terrestrial environment, a tubular structure pollen tube has been evolved to deliver the immobile sperm cells to the egg and central cell enclosed within the ovule. The pollen tube is generated from the vegetative cell of the pollen (male gametophyte), where two sperm cells are hosted. Pollen tube elongation in the maternal tissue and navigation to the ovule require intimate cell-cell interactions between the tube and female tissues. Questions on how the single-celled pollen tube accomplishes such task and how the female tissues accommodate the tube have attracted many plant biologists. Here, we review recent progresses and concepts in understanding the molecular mechanisms governing pollen tube growth and its interactions with the female tissues. We will also discuss the future perspective in this field.
Collapse
Affiliation(s)
- Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, East Lincui Road, Beijing, 100101, China.
- The University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| | - Jiang-Guo Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, East Lincui Road, Beijing, 100101, China
- The University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, East Lincui Road, Beijing, 100101, China.
- The University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
14
|
Muschietti JP, Wengier DL. How many receptor-like kinases are required to operate a pollen tube. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:73-82. [PMID: 28992536 DOI: 10.1016/j.pbi.2017.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 05/29/2023]
Abstract
Successful fertilization depends on active molecular dialogues that the male gametophyte can establish with the pistil and the female gametophyte. Pollen grains and stigmas must recognize each other; pollen tubes need to identify the pistil tissues they will penetrate, follow positional cues to exit the transmitting tract and finally, locate the ovules. These molecular dialogues directly affect pollen tube growth rate and orientation. Receptor-like kinases (RLKs) are natural candidates for the perception and decoding of extracellular signals and their transduction to downstream cytoplasmic interactors. Here, we update knowledge regarding how RLKs are involved in pollen tube growth, cell wall integrity and guidance. In addition, we use public data to build a pollen tube RLK interactome that might help direct experiments to elucidate the function of pollen RLKs and their associated proteins.
Collapse
Affiliation(s)
- Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes 2160, Ciudad Universitaria, Pabellón II, Buenos Aires C1428EGA, Argentina.
| | - Diego L Wengier
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina.
| |
Collapse
|
15
|
Sede AR, Borassi C, Wengier DL, Mecchia MA, Estevez JM, Muschietti JP. Arabidopsis pollen extensins LRX are required for cell wall integrity during pollen tube growth. FEBS Lett 2018; 592:233-243. [PMID: 29265366 DOI: 10.1002/1873-3468.12947] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/22/2017] [Accepted: 11/06/2017] [Indexed: 11/07/2022]
Abstract
Proper cell wall assembly is crucial during pollen tube growth. Leucine-rich repeat extensins (LRXs) are extracellular glycoproteins which belong to the hydroxyproline-rich glycoprotein (HRGP) family. They contain a conserved N-terminal leucine-rich repeat (LRR) domain and a highly variable C-terminal extensin domain. Here, we characterized four LRX proteins (LRX8 through LRX11) from pollen of Arabidopsis thaliana. To investigate the role of LRX8-LRX11 in pollen germination and pollen tube growth, multiple T-DNA lrx mutants were obtained. The lrx mutants display abnormal pollen tubes with an irregular deposition of callose and pectin. They also show serious alterations in pollen germination and segregation ratio. Our results suggest that LRXs are involved in ensuring proper cell wall assembly during pollen tube growth.
Collapse
Affiliation(s)
- Ana R Sede
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Cecilia Borassi
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, IFIByNE-CONICET, Universidad de Buenos Aires, Argentina
| | - Diego L Wengier
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Martín A Mecchia
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - José M Estevez
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, IFIByNE-CONICET, Universidad de Buenos Aires, Argentina
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
16
|
Kanaoka MM. Cell-cell communications and molecular mechanisms in plant sexual reproduction. JOURNAL OF PLANT RESEARCH 2018; 131:37-47. [PMID: 29181649 DOI: 10.1007/s10265-017-0997-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Sexual reproduction is achieved by precise interactions between male and female reproductive organs. In plant fertilization, sperm cells are carried to ovules by pollen tubes. Signals from the pistil are involved in elongation and control of the direction of the pollen tube. Genetic, reverse genetic, and cell biological analyses using model plants have identified various factors related to the regulation of pollen tube growth and guidance. In this review, I summarize the mechanisms and molecules controlling pollen tube growth to the ovule, micropylar guidance, reception of the guidance signal in the pollen tube, rupture of the pollen tube to release sperm cells, and cessation of the tube guidance signal. I also briefly introduce various techniques used to analyze pollen tube guidance in vitro.
Collapse
Affiliation(s)
- Masahiro M Kanaoka
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.
| |
Collapse
|
17
|
Yu Y, Song J, Tian X, Zhang H, Li L, Zhu H. Arabidopsis PRK6 interacts specifically with AtRopGEF8/12 and induces depolarized growth of pollen tubes when overexpressed. SCIENCE CHINA. LIFE SCIENCES 2018; 61:100-112. [PMID: 28795376 DOI: 10.1007/s11427-016-9107-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/02/2017] [Indexed: 11/25/2022]
Abstract
The pollen receptor kinases (PRK) are critical regulators of pollen tube growth. The Arabidopsis genome encodes eight PRK genes, of which six are highly expressed in pollen tubes. The potential functions of AtPRK1 through AtPRK5, but not of AtPRK6, in pollen growth were analyzed in tobacco. Herein, AtPRK6 was cloned, and its function was identified. AtPRK6 was expressed specifically in pollen tubes. A yeast two-hybrid screen of AtPRK6 against 14 Arabidopsis Rop guanine nucleotide exchange factors (RopGEFs) showed that AtPRK6 interacted with AtRopGEF8 and AtRopGEF12. These interactions were confirmed in Arabidopsis mesophyll protoplasts. The interactions between AtPRK6 and AtRopGEF8/12 were mediated by the C-termini of AtRopGEF8/12 and by the juxtamembrane and kinase domain of AtPRK6, but were not dependent on the kinase activity. In addition, transient overexpression of AtPRK6::GFP in Arabidopsis protoplasts revealed that AtPRK6 was localized to the plasma membrane. Tobacco pollen tubes overexpressing AtPRK6 exhibited shorter tubes with enlarged tips. This depolarized tube growth required the kinase domain of AtPRK6 and was not dependent on kinase activity. Taken together, the results show that AtPRK6, through its juxtamembrane and kinase domains (KD), interacts with AtRopGEF8/12 and plays crucial roles in polarized growth of pollen tubes.
Collapse
Affiliation(s)
- Yuexuan Yu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jiali Song
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xiaohui Tian
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Haiwen Zhang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Legong Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Huifen Zhu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
18
|
Bascom CS, Hepler PK, Bezanilla M. Interplay between Ions, the Cytoskeleton, and Cell Wall Properties during Tip Growth. PLANT PHYSIOLOGY 2018; 176:28-40. [PMID: 29138353 PMCID: PMC5761822 DOI: 10.1104/pp.17.01466] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/05/2017] [Indexed: 05/08/2023]
Abstract
Tip growth is a focused and tightly regulated apical explosion that depends on the interconnected activities of ions, the cytoskeleton, and the cell wall.
Collapse
Affiliation(s)
- Carlisle S Bascom
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
- Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01002
| | - Peter K Hepler
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01002
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
19
|
Abstract
The budding yeast Saccharomyces cerevisiae is a useful system to express recombinant proteins and analyze protein-protein interaction. Membrane-spanning proteins like plant receptor kinases find their way to the plasma membrane when expressed in yeast and seem to retain their structure and function. Here, we describe a general yeast DNA transformation procedure based on lithium acetate, salmon sperm DNA, and polyethylene glycol used to express recombinant proteins. Yeast cells expressing plant receptor kinases can be used for in vivo and in vitro studies of receptor function.
Collapse
Affiliation(s)
- María Laura Barberini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Vueltade Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Vueltade Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Bascom CS, Wu SZ, Nelson K, Oakey J, Bezanilla M. Long-Term Growth of Moss in Microfluidic Devices Enables Subcellular Studies in Development. PLANT PHYSIOLOGY 2016; 172:28-37. [PMID: 27406170 PMCID: PMC5074637 DOI: 10.1104/pp.16.00879] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/08/2016] [Indexed: 05/20/2023]
Abstract
Key developmental processes that occur on the subcellular and cellular level or occur in occluded tissues are difficult to access, let alone image and analyze. Recently, culturing living samples within polydimethylsiloxane (PDMS) microfluidic devices has facilitated the study of hard-to-reach developmental events. Here, we show that an early diverging land plant, Physcomitrella patens, can be continuously cultured within PDMS microfluidic chambers. Because the PDMS chambers are bonded to a coverslip, it is possible to image P. patens development at high resolution over long time periods. Using PDMS chambers, we report that wild-type protonemal tissue grows at the same rate as previously reported for growth on solid medium. Using long-term imaging, we highlight key developmental events, demonstrate compatibility with high-resolution confocal microscopy, and obtain growth rates for a slow-growing mutant. By coupling the powerful genetic tools available to P. patens with long-term growth and imaging provided by PDMS microfluidic chambers, we demonstrate the capability to study cellular and subcellular developmental events in plants directly and in real time.
Collapse
Affiliation(s)
- Carlisle S Bascom
- Department of Biology (C.S.B., S.-Z.W., M.B.) and Plant Biology Graduate Program (C.S.B.), University of Massachusetts, Amherst, Massachusetts 01003; andDepartment of Chemical Engineering (K.N., J.O.) and Department of Molecular Biology (K.N.), University of Wyoming, Laramie, Wyoming 82071
| | - Shu-Zon Wu
- Department of Biology (C.S.B., S.-Z.W., M.B.) and Plant Biology Graduate Program (C.S.B.), University of Massachusetts, Amherst, Massachusetts 01003; andDepartment of Chemical Engineering (K.N., J.O.) and Department of Molecular Biology (K.N.), University of Wyoming, Laramie, Wyoming 82071
| | - Katherine Nelson
- Department of Biology (C.S.B., S.-Z.W., M.B.) and Plant Biology Graduate Program (C.S.B.), University of Massachusetts, Amherst, Massachusetts 01003; andDepartment of Chemical Engineering (K.N., J.O.) and Department of Molecular Biology (K.N.), University of Wyoming, Laramie, Wyoming 82071
| | - John Oakey
- Department of Biology (C.S.B., S.-Z.W., M.B.) and Plant Biology Graduate Program (C.S.B.), University of Massachusetts, Amherst, Massachusetts 01003; andDepartment of Chemical Engineering (K.N., J.O.) and Department of Molecular Biology (K.N.), University of Wyoming, Laramie, Wyoming 82071
| | - Magdalena Bezanilla
- Department of Biology (C.S.B., S.-Z.W., M.B.) and Plant Biology Graduate Program (C.S.B.), University of Massachusetts, Amherst, Massachusetts 01003; andDepartment of Chemical Engineering (K.N., J.O.) and Department of Molecular Biology (K.N.), University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
21
|
RLKs orchestrate the signaling in plant male-female interaction. SCIENCE CHINA-LIFE SCIENCES 2016; 59:867-77. [DOI: 10.1007/s11427-016-0118-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 05/16/2016] [Indexed: 11/26/2022]
|
22
|
Paul P, Röth S, Schleiff E. Importance of organellar proteins, protein translocation and vesicle transport routes for pollen development and function. PLANT REPRODUCTION 2016; 29:53-65. [PMID: 26874709 DOI: 10.1007/s00497-016-0274-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/18/2016] [Indexed: 05/27/2023]
Abstract
Protein translocation. Cellular homeostasis strongly depends on proper distribution of proteins within cells and insertion of membrane proteins into the destined membranes. The latter is mediated by organellar protein translocation and the complex vesicle transport system. Considering the importance of protein transport machineries in general it is foreseen that these processes are essential for pollen function and development. However, the information available in this context is very scarce because of the current focus on deciphering the fundamental principles of protein transport at the molecular level. Here we review the significance of protein transport machineries for pollen development on the basis of pollen-specific organellar proteins as well as of genetic studies utilizing mutants of known organellar proteins. In many cases these mutants exhibit morphological alterations highlighting the requirement of efficient protein transport and translocation in pollen. Furthermore, expression patterns of genes coding for translocon subunits and vesicle transport factors in Arabidopsis thaliana are summarized. We conclude that with the exception of the translocation systems in plastids-the composition and significance of the individual transport systems are equally important in pollen as in other cell types. Apparently for plastids only a minimal translocon, composed of only few subunits, exists in the envelope membranes during maturation of pollen. However, only one of the various transport systems known from thylakoids seems to be required for the function of the "simple thylakoid system" existing in pollen plastids. In turn, the vesicle transport system is as complex as seen for other cell types as it is essential, e.g., for pollen tube formation.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany.
- Cluster of Excellence Frankfurt, Goethe University, 60438, Frankfurt Am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, 60438, Frankfurt Am Main, Germany.
| |
Collapse
|
23
|
|
24
|
Zhang M, Zhang R, Qu X, Huang S. Arabidopsis FIM5 decorates apical actin filaments and regulates their organization in the pollen tube. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3407-17. [PMID: 27117336 PMCID: PMC4892729 DOI: 10.1093/jxb/erw160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The actin cytoskeleton is increasingly recognized as a major regulator of pollen tube growth. Actin filaments have distinct distribution patterns and dynamic properties within different regions of the pollen tube. Apical actin filaments are highly dynamic and crucial for pollen tube growth. However, how apical actin filaments are generated and properly constructed remains an open question. Here we showed that Arabidopsis fimbrin5 (FIM5) decorates filamentous structures throughout the entire tube but is apically concentrated. Apical actin structures are disorganized to different degrees in the pollen tubes of fim5 loss-of-function mutants. Further observations suggest that apical actin structures are not constructed properly because apical actin filaments cannot be maintained at the cortex of fim5 pollen tubes. Actin filaments appeared to be more curved in fim5 pollen tubes and this was confirmed by measurements showing that the convolutedness and the rate of change of convolutedness of actin filaments was significantly increased in fim5 pollen tubes. This suggests that the rigidity of the actin filaments may be compromised in fim5 pollen tubes. Further, the apical cell wall composition is altered, implying that tip-directed vesicle trafficking events are impaired in fim5 pollen tubes. Thus, we found that FIM5 decorates apical actin filaments and regulates their organization in order to drive polarized pollen tube growth.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany Chinese Academy of Sciences, Beijing 100093 China University of Chinese Academy of Sciences, Beijing 100049 China
| | - Ruihui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany Chinese Academy of Sciences, Beijing 100093 China University of Chinese Academy of Sciences, Beijing 100049 China
| | - Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University Beijing 100084, China Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084 China
| | - Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany Chinese Academy of Sciences, Beijing 100093 China Center for Plant Biology, School of Life Sciences, Tsinghua University Beijing 100084, China National Center for Plant Gene Research, Beijing 100101 China
| |
Collapse
|
25
|
Pan X, Chen J, Yang Z. Auxin regulation of cell polarity in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:144-53. [PMID: 26599954 PMCID: PMC7513928 DOI: 10.1016/j.pbi.2015.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 05/04/2023]
Abstract
Auxin is well known to control pattern formation and directional growth at the organ/tissue levels via the nuclear TIR1/AFB receptor-mediated transcriptional responses. Recent studies have expanded the arena of auxin actions as a trigger or key regulator of cell polarization and morphogenesis. These actions require non-transcriptional responses such as changes in the cytoskeleton and vesicular trafficking, which are commonly regulated by ROP/Rac GTPase-dependent pathways. These findings beg for the question about the nature of auxin receptors that regulate these responses and renew the interest in ABP1 as a cell surface auxin receptor, including the work showing auxin-binding protein 1 (ABP1) interacts with the extracellular domain of the transmembrane kinase (TMK) receptor-like kinases in an auxin-dependent manner, as well as the debate on this auxin binding protein discovered about 40 years ago. This review highlights recent work on the non-transcriptional auxin signaling mechanisms underscoring cell polarity and shape formation in plants.
Collapse
Affiliation(s)
- Xue Pan
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Center for Plant Cell Biology, Institute of Integrated Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Jisheng Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
26
|
Fu Y. The cytoskeleton in the pollen tube. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:111-9. [PMID: 26550939 DOI: 10.1016/j.pbi.2015.10.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 05/10/2023]
Abstract
The cytoskeleton in pollen tubes has been intensively studied, because of its abundance and prominent roles and because the pollen tube is an excellent experimental system for cell biological studies. Pollen actin microfilaments (MFs) exist as multiple distinct populations, each participating in a specific cellular trafficking or organization process. Consequently, MFs are essential for pollen tube growth and are tightly regulated in response to various signals. Pollen microtubules (MTs) are non-essential and less characterized, but recent studies have implicated MTs in vesicle trafficking and cell wall construction in pollen tubes. This review summarizes recent advances in understanding the organization and regulation of both MFs and MTs and discusses their roles in cellular trafficking and the modulation of pollen-tube tip growth.
Collapse
Affiliation(s)
- Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
27
|
Kanaoka MM, Higashiyama T. Peptide signaling in pollen tube guidance. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:127-36. [PMID: 26580200 DOI: 10.1016/j.pbi.2015.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 05/05/2023]
Abstract
Fertilization is an important life event for sexually reproductive plants. Part of this process involves precise regulation of a series of complicated cell-cell communications between male and female tissues. Through genetic and omics approaches, many genes and proteins involved in this process have been identified. Here we review our current understanding of signaling components during fertilization. We will especially focus on LURE peptides and related signaling events that are required for micropylar pollen tube guidance. We will also summarize signaling events required for termination of micropylar pollen tube guidance after fertilization.
Collapse
Affiliation(s)
- Masahiro M Kanaoka
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tetsuya Higashiyama
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; JST, ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
28
|
Qu X, Jiang Y, Chang M, Liu X, Zhang R, Huang S. Organization and regulation of the actin cytoskeleton in the pollen tube. FRONTIERS IN PLANT SCIENCE 2015; 5:786. [PMID: 25620974 PMCID: PMC4287052 DOI: 10.3389/fpls.2014.00786] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/17/2014] [Indexed: 05/18/2023]
Abstract
Proper organization of the actin cytoskeleton is crucial for pollen tube growth. However, the precise mechanisms by which the actin cytoskeleton regulates pollen tube growth remain to be further elucidated. The functions of the actin cytoskeleton are dictated by its spatial organization and dynamics. However, early observations of the distribution of actin filaments at the pollen tube apex were quite perplexing, resulting in decades of controversial debate. Fortunately, due to improvements in fixation regimens for staining actin filaments in fixed pollen tubes, as well as the adoption of appropriate markers for visualizing actin filaments in living pollen tubes, this issue has been resolved and has given rise to the consensus view of the spatial distribution of actin filaments throughout the entire pollen tube. Importantly, recent descriptions of the dynamics of individual actin filaments in the apical region have expanded our understanding of the function of actin in regulation of pollen tube growth. Furthermore, careful documentation of the function and mode of action of several actin-binding proteins expressed in pollen have provided novel insights into the regulation of actin spatial distribution and dynamics. In the current review, we summarize our understanding of the organization, dynamics, and regulation of the actin cytoskeleton in the pollen tube.
Collapse
Affiliation(s)
- Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua UniversityBeijing, China
| | - Yuxiang Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany – Chinese Academy of SciencesBeijing, China
| | - Ming Chang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany – Chinese Academy of SciencesBeijing, China
| | - Xiaonan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany – Chinese Academy of SciencesBeijing, China
| | - Ruihui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany – Chinese Academy of SciencesBeijing, China
| | - Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany – Chinese Academy of SciencesBeijing, China
| |
Collapse
|
29
|
Malhó R, Serrazina S, Saavedra L, Dias FV, Ul-Rehman R. Ion and lipid signaling in apical growth-a dynamic machinery responding to extracellular cues. FRONTIERS IN PLANT SCIENCE 2015; 6:816. [PMID: 26500662 PMCID: PMC4594336 DOI: 10.3389/fpls.2015.00816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/18/2015] [Indexed: 05/07/2023]
Abstract
Apical cell growth seems to have independently evolved throughout the major lineages of life. To a certain extent, so does our body of knowledge on the mechanisms regulating this morphogenetic process. Studies on pollen tubes, root hairs, rhizoids, fungal hyphae, even nerve cells, have highlighted tissue and cell specificities but also common regulatory characteristics (e.g., ions, proteins, phospholipids) that our focused research sometimes failed to grasp. The working hypothesis to test how apical cell growth is established and maintained have thus been shaped by the model organism under study and the type of methods used to study them. The current picture is one of a dynamic and adaptative process, based on a spatial segregation of components that network to achieve growth and respond to environmental (extracellular) cues. Here, we explore some examples of our live imaging research, namely on cyclic nucleotide gated ion channels, lipid kinases and syntaxins involved in exocytosis. We discuss how their spatial distribution, activity and concentration suggest that the players regulating apical cell growth may display more mobility than previously thought. Furthermore, we speculate on the implications of such perspective in our understanding of the mechanisms regulating apical cell growth and their responses to extracellular cues.
Collapse
Affiliation(s)
- Rui Malhó
- *Correspondence: Rui Malhó and Reiaz Ul-Rehman, BioISI – Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal, ,
| | | | - Laura Saavedra
- †Present address: Laura Saavedra, Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina; Reiaz Ul-Rehman, Department of Bioresources, University of Kashmir, Hazratbal, Srinagar 190006, India
| | | | - Reiaz Ul-Rehman
- *Correspondence: Rui Malhó and Reiaz Ul-Rehman, BioISI – Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal, ,
| |
Collapse
|