1
|
Yamamoto M, Ohtake S, Shinozawa A, Shirota M, Mitsui Y, Kitashiba H. Analysis of randomly mutated AlSRKb genes reveals that most loss-of-function mutations cause defects in plasma membrane localization. THE NEW PHYTOLOGIST 2024; 244:1644-1657. [PMID: 39279039 DOI: 10.1111/nph.20111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024]
Abstract
Only very limited information is available on why some nonsynonymous variants severely alter gene function while others have no effect. To identify the characteristic features of mutations that strongly influence gene function, this study focused on SRK which encodes a highly polymorphic receptor kinase expressed in stigma papillary cells that underlies a female determinant of self-incompatibility in Brassicaceae. A set of 300 Arabidopsis thaliana transformants expressing mutated SRKb from A. lyrata was constructed using error-prone PCR and the genotype and self-incompatibility phenotype of each transformant were determined. Almost all the transformants showing the self-incompatibility defect contained mutations in AlSRKb that altered localization to the plasma membrane. The observed mutations occurred in amino acid residues that were highly conserved across S haplotypes and whose predicted locations were in the interior of the protein. Our findings suggested that mutations causing the self-incompatibility defect were more likely to result from changes to AlSRKb biosynthesis than from loss of AlSRKb function. In addition, we examined whether the RandomForest and Extreme Gradient Boosting methods could predict the self-incompatibility phenotypes of SRK mutants.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Shotaro Ohtake
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Akihisa Shinozawa
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Matsuyuki Shirota
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yuki Mitsui
- Graduate School of Agricultural Science, Tokyo University of Agriculture, 1237 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Hiroyasu Kitashiba
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
2
|
Xue J, Du Q, Yang F, Chen LY. The emerging role of cysteine-rich peptides in pollen-pistil interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6228-6243. [PMID: 39126383 DOI: 10.1093/jxb/erae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Unlike early land plants, flowering plants have evolved a pollen tube that transports a pair of non-motile sperm cells to the female gametophyte. This process, known as siphonogamy, was first observed in gymnosperms and later became prevalent in angiosperms. However, the precise molecular mechanisms underlying the male-female interactions remain enigmatic. From the landing of the pollen grain on the stigma to gamete fusion, the male part needs to pass various tests: how does the stigma distinguish between compatible and incompatible pollen? what mechanisms guide the pollen tube towards the ovule? what factors trigger pollen tube rupture? how is polyspermy prevented? and how does the sperm cell ultimately reach the egg? Successful male-female communication is essential for surmounting these challenges, with cysteine-rich peptides (CRPs) playing a pivotal role in this dialogue. In this review, we summarize the characteristics of four distinct classes of CRPs, systematically review recent progress in the role of CRPs in four crucial stages of pollination and fertilization, consider potential applications of this knowledge in crop breeding, and conclude by suggesting avenues for future research.
Collapse
Affiliation(s)
- Jiao Xue
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qian Du
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangfang Yang
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Yu Chen
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Le Veve A, Genete M, Lepers-Blassiau C, Ponitzki C, Poux C, Vekemans X, Durand E, Castric V. The genetic architecture of the load linked to dominant and recessive self-incompatibility alleles in Arabidopsis halleri and Arabidopsis lyrata. eLife 2024; 13:RP94972. [PMID: 39222005 PMCID: PMC11368402 DOI: 10.7554/elife.94972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The long-term balancing selection acting on mating types or sex-determining genes is expected to lead to the accumulation of deleterious mutations in the tightly linked chromosomal segments that are locally 'sheltered' from purifying selection. However, the factors determining the extent of this accumulation are poorly understood. Here, we took advantage of variations in the intensity of balancing selection along a dominance hierarchy formed by alleles at the sporophytic self-incompatibility system of the Brassicaceae to compare the pace at which linked deleterious mutations accumulate among them. We first experimentally measured the phenotypic manifestation of the linked load at three different levels of the dominance hierarchy. We then sequenced and phased polymorphisms in the chromosomal regions linked to 126 distinct copies of S-alleles in two populations of Arabidopsis halleri and three populations of Arabidopsis lyrata. We find that linkage to the S-locus locally distorts phylogenies over about 10-30 kb along the chromosome. The more intense balancing selection on dominant S-alleles results in greater fixation of linked deleterious mutations, while recessive S-alleles accumulate more linked deleterious mutations that are segregating. Hence, the structure rather than the overall magnitude of the linked genetic load differs between dominant and recessive S-alleles. Our results have consequences for the long-term evolution of new S-alleles, the evolution of dominance modifiers between them, and raise the question of why the non-recombining regions of some sex and mating type chromosomes expand over evolutionary times while others, such as the S-locus of the Brassicaceae, remain restricted to small chromosomal regions.
Collapse
Affiliation(s)
| | | | | | | | - Céline Poux
- Univ. Lille, CNRS, UMR 8198 – Evo-Eco-PaleoLilleFrance
| | | | | | | |
Collapse
|
4
|
Lee Y, Kato S, Kim JY, Shimono Y, Shiga T. Two lineages of Lemna aequinoctialis (Araceae, Lemnoideae) based on physiology, morphology, and phylogeny. JOURNAL OF PLANT RESEARCH 2024; 137:359-376. [PMID: 38349478 DOI: 10.1007/s10265-023-01509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/08/2023] [Indexed: 05/12/2024]
Abstract
Lemna aequinoctialis Welw. is a widely spread species that has diverse physiological and molecular properties. Flower characteristics are important factors in deducing taxonomical status; however, owing to the rarity of flowering observations in Lemna, studying them has been a prolonged challenge. In this study, physiological and morphological analyses were conducted by inducing flowering, and molecular analysis was done based on the two chloroplast DNA loci (matK, atpF-atpH intergeneric spacer) of L. aequinoctialis sensu Landolt (1986) from 70 strains found in 70 localities in Japan, Korea, Thailand, and the US. In total, 752 flowering fronds from 13 strains were observed based on axenic conditions. Two different trends in flower organ development-protogyny and adichogamy-were detected in these strains. Their physiological traits were divided into two groups, showing different morphological features based on frond thickness, root cap, and anther sizes. Molecular analysis showed two lineages corresponding to two physiological groups. These were identified as L. aequinoctialis sensu Beppu et al. (1985) and L. aoukikusa Beppu et Murata based on the description of the nomenclature of L. aoukikusa. These were concluded as independent taxa and can be treated as different species. Furthermore, the distribution of L. aoukikusa is not only limited to Japan.
Collapse
Affiliation(s)
- Yuri Lee
- Graduate School of Science and Technology, Niigata University, Ikarashi Ninocho, Nishi-ku, Niigata, 950-2181, Japan
- Faculty of Education, Niigata University, Ikarashi Ninocho, Nishi-ku, Niigata, 950-2181, Japan
| | - Syou Kato
- Faculty of Education, Niigata University, Ikarashi Ninocho, Nishi-ku, Niigata, 950-2181, Japan
| | - Jae Young Kim
- Division of Horticulture and Medicinal Plant, Andong National University, Andong, 36729, Republic of Korea
| | - Yoshiko Shimono
- Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takashi Shiga
- Graduate School of Science and Technology, Niigata University, Ikarashi Ninocho, Nishi-ku, Niigata, 950-2181, Japan.
- Faculty of Education, Niigata University, Ikarashi Ninocho, Nishi-ku, Niigata, 950-2181, Japan.
| |
Collapse
|
5
|
Yamamoto M, Ohtake S, Shinosawa A, Shirota M, Mitsui Y, Kitashiba H. Self-incompatibility phenotypes of SRK mutants can be predicted with high accuracy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588956. [PMID: 38645205 PMCID: PMC11030437 DOI: 10.1101/2024.04.10.588956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Only very limited information is available on why some non-synonymous variants severely alter gene function while others have no effect. To identify the characteristic features of mutations that strongly influence gene function, this study focused on S-locus receptor kinase, SRK, which encodes a highly polymorphic receptor kinase expressed in stigma papillary cells that underlies a female determinant of self-incompatibility in Brassicaceae. A set of 299 Arabidopsis thaliana transformants expressing mutated SRKb from A. lyrata was constructed and analyzed to determine the genotype and self-incompatibility phenotype of each transformant. Almost all the transformants showing the self-incompatibility defect contained mutations in AlSRKb that altered localization to the plasma membrane. The observed mutations occurred in amino acid residues that were highly conserved across S haplotypes and whose predicted locations were in the interior of the protein. These mutations were likely to underlie the self-incompatibility defect as they caused significant changes to amino acid properties. Such findings suggested that mutations causing the self-incompatibility defect were more likely to result from changes to AlSRKb biosynthesis than from loss of function. In addition, this study showed the RandomForest and Extreme Gradient Boosting methods could predict self-incompatibility phenotypes of SRK mutants with high accuracy.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Shotaro Ohtake
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Akihisa Shinosawa
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Matsuyuki Shirota
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yuki Mitsui
- Graduate School of Agricultural Science, Tokyo University of Agriculture, 1237 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Hiroyasu Kitashiba
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
6
|
Zhang D, Li YY, Zhao X, Zhang C, Liu DK, Lan S, Yin W, Liu ZJ. Molecular insights into self-incompatibility systems: From evolution to breeding. PLANT COMMUNICATIONS 2024; 5:100719. [PMID: 37718509 PMCID: PMC10873884 DOI: 10.1016/j.xplc.2023.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Plants have evolved diverse self-incompatibility (SI) systems for outcrossing. Since Darwin's time, considerable progress has been made toward elucidating this unrivaled reproductive innovation. Recent advances in interdisciplinary studies and applications of biotechnology have given rise to major breakthroughs in understanding the molecular pathways that lead to SI, particularly the strikingly different SI mechanisms that operate in Solanaceae, Papaveraceae, Brassicaceae, and Primulaceae. These best-understood SI systems, together with discoveries in other "nonmodel" SI taxa such as Poaceae, suggest a complex evolutionary trajectory of SI, with multiple independent origins and frequent and irreversible losses. Extensive exploration of self-/nonself-discrimination signaling cascades has revealed a comprehensive catalog of male and female identity genes and modifier factors that control SI. These findings also enable the characterization, validation, and manipulation of SI-related factors for crop improvement, helping to address the challenges associated with development of inbred lines. Here, we review current knowledge about the evolution of SI systems, summarize key achievements in the molecular basis of pollen‒pistil interactions, discuss potential prospects for breeding of SI crops, and raise several unresolved questions that require further investigation.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weilun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Yew CL, Tsuchimatsu T, Shimizu-Inatsugi R, Yasuda S, Hatakeyama M, Kakui H, Ohta T, Suwabe K, Watanabe M, Takayama S, Shimizu KK. Dominance in self-compatibility between subgenomes of allopolyploid Arabidopsis kamchatica shown by transgenic restoration of self-incompatibility. Nat Commun 2023; 14:7618. [PMID: 38030610 PMCID: PMC10687001 DOI: 10.1038/s41467-023-43275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
The evolutionary transition to self-compatibility facilitates polyploid speciation. In Arabidopsis relatives, the self-incompatibility system is characterized by epigenetic dominance modifiers, among which small RNAs suppress the expression of a recessive SCR/SP11 haplogroup. Although the contribution of dominance to polyploid self-compatibility is speculated, little functional evidence has been reported. Here we employ transgenic techniques to the allotetraploid plant A. kamchatica. We find that when the dominant SCR-B is repaired by removing a transposable element insertion, self-incompatibility is restored. This suggests that SCR was responsible for the evolution of self-compatibility. By contrast, the reconstruction of recessive SCR-D cannot restore self-incompatibility. These data indicate that the insertion in SCR-B conferred dominant self-compatibility to A. kamchatica. Dominant self-compatibility supports the prediction that dominant mutations increasing selfing rate can pass through Haldane's sieve against recessive mutations. The dominance regulation between subgenomes inherited from progenitors contrasts with previous studies on novel epigenetic mutations at polyploidization termed genome shock.
Collapse
Grants
- JPMJCR16O3 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- 310030_212551, 31003A_182318, 31003A_159767, 31003A_140917, 310030_212674 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- 310030_212674 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- grant numbers 16H06469, 16K21727, 22H02316, 22K21352, 22H05172 and 22H05179 MEXT | Japan Society for the Promotion of Science (JSPS)
- Postdoctoral fellowship, 22K21352, 16H06467 and 17H05833 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H02162, 22H05172 and 22H05179 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H04711 and 21H05030 MEXT | Japan Society for the Promotion of Science (JSPS)
- URPP Evolutoin in Action, Global Strategy and Partnerships Funding Scheme Universität Zürich (University of Zurich)
- URPP Evolutoini in Action Universität Zürich (University of Zurich)
- fellowship European Molecular Biology Organization (EMBO)
Collapse
Affiliation(s)
- Chow-Lih Yew
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Takashi Tsuchimatsu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
- Department of Biological Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Shinsuke Yasuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
- Functional Genomics Center Zurich, 8057, Zurich, Switzerland
| | - Hiroyuki Kakui
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan
- Institute for Sustainable Agro-ecosystem Services, Graduate School of Agricultural and Life Sciences, University of Tokyo, Nishitokyo, 188-0002, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Takuma Ohta
- Graduate School of Bioresources, Mie University, Tsu, 514-0102, Japan
| | - Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, 514-0102, Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland.
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan.
| |
Collapse
|
8
|
Sawa T, Moriwaki Y, Jiang H, Murase K, Takayama S, Shimizu K, Terada T. Comprehensive computational analysis of the SRK-SP11 molecular interaction underlying self-incompatibility in Brassicaceae using improved structure prediction for cysteine-rich proteins. Comput Struct Biotechnol J 2023; 21:5228-5239. [PMID: 37928947 PMCID: PMC10624595 DOI: 10.1016/j.csbj.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
Plants employ self-incompatibility (SI) to promote cross-fertilization. In Brassicaceae, this process is regulated by the formation of a complex between the pistil determinant S receptor kinase (SRK) and the pollen determinant S-locus protein 11 (SP11, also known as S-locus cysteine-rich protein, SCR). In our previous study, we used the crystal structures of two eSRK-SP11 complexes in Brassica rapa S8 and S9 haplotypes and nine computationally predicted complex models to demonstrate that only the SRK ectodomain (eSRK) and SP11 pairs derived from the same S haplotype exhibit high binding free energy. However, predicting the eSRK-SP11 complex structures for the other 100 + S haplotypes and genera remains difficult because of SP11 polymorphism in sequence and structure. Although protein structure prediction using AlphaFold2 exhibits considerably high accuracy for most protein monomers and complexes, 46% of the predicted SP11 structures that we tested showed < 75 mean per-residue confidence score (pLDDT). Here, we demonstrate that the use of curated multiple sequence alignment (MSA) for cysteine-rich proteins significantly improved model accuracy for SP11 and eSRK-SP11 complexes. Additionally, we calculated the binding free energies of the predicted eSRK-SP11 complexes using molecular dynamics (MD) simulations and observed that some Arabidopsis haplotypes formed a binding mode that was critically different from that of B. rapa S8 and S9. Thus, our computational results provide insights into the haplotype-specific eSRK-SP11 binding modes in Brassicaceae at the residue level. The predicted models are freely available at Zenodo, https://doi.org/10.5281/zenodo.8047768.
Collapse
Affiliation(s)
- Tomoki Sawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshitaka Moriwaki
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hanting Jiang
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kohji Murase
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Seiji Takayama
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kentaro Shimizu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
9
|
Guo L, Huang Z, Chen X, Yang M, Yang M, Liu Z, Han X, Ma X, Wang X, Gao Q. SD-RLK28 positively regulates pollen hydration on stigmas as a PCP-Bβ receptor in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2395-2406. [PMID: 37485903 DOI: 10.1111/jipb.13547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
Pollen hydration on dry stigmas is strictly regulated by pollen-stigma interactions in Brassicaceae. Although several related molecular events have been described, the molecular mechanism underlying pollen hydration remains elusive. Multiple B-class pollen coat proteins (PCP-Bs) are involved in pollen hydration. Here, by analyzing the interactions of two PCP-Bs with three Arabidopsis thaliana stigmas strongly expressing S-domain receptor kinase (SD-RLK), we determined that SD-RLK28 directly interacts with PCP-Bβ. We investigated pollen hydration, pollen germination, pollen tube growth, and stigma receptivity in the sd-rlk28 and pcp-bβ mutants. PCP-Bβ acts in the pollen to regulate pollen hydration on stigmas. Loss of SD-RLK28 had no effect on pollen viability, and sd-rlk28 plants had normal life cycles without obvious defects. However, pollen hydration on sd-rlk28 stigmas was impaired and pollen tube growth in sd-rlk28 pistils was delayed. The defect in pollen hydration on sd-rlk28 stigmas was independent of changes in reactive oxygen species levels in stigmas. These results indicate that SD-RLK28 functions in the stigma as a PCP-Bβ receptor to positively regulate pollen hydration on dry stigmas.
Collapse
Affiliation(s)
- Li Guo
- College of Horticulture and Landscape Architecture, Chongqing, 400716, China
- Ministry of Education, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing, 400716, China
| | - Ziya Huang
- College of Horticulture and Landscape Architecture, Chongqing, 400716, China
- Ministry of Education, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing, 400716, China
| | - Xingyu Chen
- College of Horticulture and Landscape Architecture, Chongqing, 400716, China
- Ministry of Education, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing, 400716, China
| | - Min Yang
- College of Horticulture and Landscape Architecture, Chongqing, 400716, China
- Ministry of Education, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing, 400716, China
| | - Miaomiao Yang
- College of Horticulture and Landscape Architecture, Chongqing, 400716, China
- Ministry of Education, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing, 400716, China
| | - Ziwei Liu
- College of Horticulture and Landscape Architecture, Chongqing, 400716, China
- Ministry of Education, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing, 400716, China
| | - Xuejie Han
- College of Horticulture and Landscape Architecture, Chongqing, 400716, China
- Ministry of Education, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing, 400716, China
| | - Xiangjie Ma
- College of Horticulture and Landscape Architecture, Chongqing, 400716, China
- Ministry of Education, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing, 400716, China
| | - Xiaoli Wang
- College of Horticulture and Landscape Architecture, Chongqing, 400716, China
- Ministry of Education, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing, 400716, China
| | - Qiguo Gao
- College of Horticulture and Landscape Architecture, Chongqing, 400716, China
- Ministry of Education, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing, 400716, China
| |
Collapse
|
10
|
Nasrallah JB. Stop and go signals at the stigma-pollen interface of the Brassicaceae. PLANT PHYSIOLOGY 2023; 193:927-948. [PMID: 37423711 PMCID: PMC10517188 DOI: 10.1093/plphys/kiad301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2023]
Affiliation(s)
- June B Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Zhou D, Godinez-Vidal D, He J, Teixeira M, Guo J, Wei L, Van Norman JM, Kaloshian I. A G-type lectin receptor kinase negatively regulates Arabidopsis immunity against root-knot nematodes. PLANT PHYSIOLOGY 2023; 193:721-735. [PMID: 37103588 PMCID: PMC10469371 DOI: 10.1093/plphys/kiad253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/19/2023]
Abstract
Root-knot nematodes (Meloidogyne spp., RKN) are responsible for extensive crop losses worldwide. During infection, they penetrate plant roots, migrate between plant cells, and establish feeding sites, known as giant cells, near the root vasculature. Previously, we found that nematode perception and early responses in plants were similar to those of microbial pathogens and required the BRI1-ASSOCIATED KINASE1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE3 (BAK1/SERK3) coreceptor in Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum). Here, we implemented a reverse genetic screen for resistance or sensitivity to RKN using Arabidopsis T-DNA alleles of genes encoding transmembrane receptor-like kinases to identify additional receptors involved in this process. This screen identified a pair of allelic mutations with enhanced resistance to RKN in a gene we named ENHANCED RESISTANCE TO NEMATODES1 (ERN1). ERN1 encodes a G-type lectin receptor kinase (G-LecRK) with a single-pass transmembrane domain. Further characterization showed that ern1 mutants displayed stronger activation of MAP kinases, elevated levels of the defense marker MYB51, and enhanced H2O2 accumulation in roots upon RKN elicitor treatments. Elevated MYB51 expression and ROS bursts were also observed in leaves of ern1 mutants upon flg22 treatment. Complementation of ern1.1 with 35S- or native promoter-driven ERN1 rescued the RKN infection and enhanced defense phenotypes. Our results indicate that ERN1 is an important negative regulator of immunity.
Collapse
Affiliation(s)
- Dongmei Zhou
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Damaris Godinez-Vidal
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
| | - Jiangman He
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
| | - Marcella Teixeira
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
| | - Jingzhe Guo
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Jaimie M Van Norman
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Isgouhi Kaloshian
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
12
|
Kolesnikova UK, Scott AD, Van de Velde JD, Burns R, Tikhomirov NP, Pfordt U, Clarke AC, Yant L, Seregin AP, Vekemans X, Laurent S, Novikova PY. Transition to Self-compatibility Associated With Dominant S-allele in a Diploid Siberian Progenitor of Allotetraploid Arabidopsis kamchatica Revealed by Arabidopsis lyrata Genomes. Mol Biol Evol 2023; 40:msad122. [PMID: 37432770 PMCID: PMC10335350 DOI: 10.1093/molbev/msad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
A transition to selfing can be beneficial when mating partners are scarce, for example, due to ploidy changes or at species range edges. Here, we explain how self-compatibility evolved in diploid Siberian Arabidopsis lyrata, and how it contributed to the establishment of allotetraploid Arabidopsis kamchatica. First, we provide chromosome-level genome assemblies for two self-fertilizing diploid A. lyrata accessions, one from North America and one from Siberia, including a fully assembled S-locus for the latter. We then propose a sequence of events leading to the loss of self-incompatibility in Siberian A. lyrata, date this independent transition to ∼90 Kya, and infer evolutionary relationships between Siberian and North American A. lyrata, showing an independent transition to selfing in Siberia. Finally, we provide evidence that this selfing Siberian A. lyrata lineage contributed to the formation of the allotetraploid A. kamchatica and propose that the selfing of the latter is mediated by the loss-of-function mutation in a dominant S-allele inherited from A. lyrata.
Collapse
Affiliation(s)
- Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jozefien D Van de Velde
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Robin Burns
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nikita P Tikhomirov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Ursula Pfordt
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrew C Clarke
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Levi Yant
- Future Food Beacon of Excellence and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alexey P Seregin
- Herbarium (MW), Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Xavier Vekemans
- University Lille, CNRS, UMR 8198—Evo-Eco-Paleo, Lille, France
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
13
|
Li Y, Mamonova E, Köhler N, van Kleunen M, Stift M. Breakdown of self-incompatibility due to genetic interaction between a specific S-allele and an unlinked modifier. Nat Commun 2023; 14:3420. [PMID: 37296115 PMCID: PMC10256779 DOI: 10.1038/s41467-023-38802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Breakdown of self-incompatibility has frequently been attributed to loss-of-function mutations of alleles at the locus responsible for recognition of self-pollen (i.e. the S-locus). However, other potential causes have rarely been tested. Here, we show that self-compatibility of S1S1-homozygotes in selfing populations of the otherwise self-incompatible Arabidopsis lyrata is not due to S-locus mutation. Between-breeding-system cross-progeny are self-compatible if they combine S1 from the self-compatible cross-partner with recessive S1 from the self-incompatible cross-partner, but self-incompatible with dominant S-alleles. Because S1S1 homozygotes in outcrossing populations are self-incompatible, mutation of S1 cannot explain self-compatibility in S1S1 cross-progeny. This supports the hypothesis that an S1-specific modifier unlinked to the S-locus causes self-compatibility by functionally disrupting S1. Self-compatibility in S19S19 homozygotes may also be caused by an S19-specific modifier, but we cannot rule out a loss-of-function mutation of S19. Taken together, our findings indicate that breakdown of self-incompatibility is possible without disruptive mutations at the S-locus.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany.
| | - Ekaterina Mamonova
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| | - Nadja Köhler
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Marc Stift
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany.
| |
Collapse
|
14
|
Caperta AD, Fernandes I, Conceição SIR, Marques I, Róis AS, Paulo OS. Ovule Transcriptome Analysis Discloses Deregulation of Genes and Pathways in Sexual and Apomictic Limonium Species (Plumbaginaceae). Genes (Basel) 2023; 14:genes14040901. [PMID: 37107659 PMCID: PMC10137852 DOI: 10.3390/genes14040901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The genus Limonium Mill. (sea lavenders) includes species with sexual and apomixis reproductive strategies, although the genes involved in these processes are unknown. To explore the mechanisms beyond these reproduction modes, transcriptome profiling of sexual, male sterile, and facultative apomictic species was carried out using ovules from different developmental stages. In total, 15,166 unigenes were found to be differentially expressed with apomictic vs. sexual reproduction, of which 4275 were uniquely annotated using an Arabidopsis thaliana database, with different regulations according to each stage and/or species compared. Gene ontology (GO) enrichment analysis indicated that genes related to tubulin, actin, the ubiquitin degradation process, reactive oxygen species scavenging, hormone signaling such as the ethylene signaling pathway and gibberellic acid-dependent signal, and transcription factors were found among differentially expressed genes (DEGs) between apomictic and sexual plants. We found that 24% of uniquely annotated DEGs were likely to be implicated in flower development, male sterility, pollen formation, pollen-stigma interactions, and pollen tube formation. The present study identifies candidate genes that are highly associated with distinct reproductive modes and sheds light on the molecular mechanisms of apomixis expression in Limonium sp.
Collapse
Affiliation(s)
- Ana D Caperta
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Isabel Fernandes
- cE3c-Centre for Ecology, Evolution and Environmental Changes, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Sofia I R Conceição
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- LASIGE Computer Science and Engineering Research Centre, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Isabel Marques
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Forest Research Centre (CEF), Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana S Róis
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- School of Psychology and Life Sciences, Universidade Lusófona de Humanidades e Tecnologias (ULHT), Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Octávio S Paulo
- cE3c-Centre for Ecology, Evolution and Environmental Changes, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
15
|
Novikova PY, Kolesnikova UK, Scott AD. Ancestral self-compatibility facilitates the establishment of allopolyploids in Brassicaceae. PLANT REPRODUCTION 2023; 36:125-138. [PMID: 36282331 PMCID: PMC9957919 DOI: 10.1007/s00497-022-00451-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 05/15/2023]
Abstract
Self-incompatibility systems based on self-recognition evolved in hermaphroditic plants to maintain genetic variation of offspring and mitigate inbreeding depression. Despite these benefits in diploid plants, for polyploids who often face a scarcity of mating partners, self-incompatibility can thwart reproduction. In contrast, self-compatibility provides an immediate advantage: a route to reproductive viability. Thus, diploid selfing lineages may facilitate the formation of new allopolyploid species. Here, we describe the mechanism of establishment of at least four allopolyploid species in Brassicaceae (Arabidopsis suecica, Arabidopsis kamchatica, Capsella bursa-pastoris, and Brassica napus), in a manner dependent on the prior loss of the self-incompatibility mechanism in one of the ancestors. In each case, the degraded S-locus from one parental lineage was dominant over the functional S-locus of the outcrossing parental lineage. Such dominant loss-of-function mutations promote an immediate transition to selfing in allopolyploids and may facilitate their establishment.
Collapse
Affiliation(s)
- Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany.
| | - Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
16
|
Yu H, Sun E, Mao X, Chen Z, Xu T, Zuo L, Jiang D, Cao Y, Zuo C. Evolutionary and functional analysis reveals the crucial roles of receptor-like proteins in resistance to Valsa canker in Rosaceae. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:162-177. [PMID: 36255986 DOI: 10.1093/jxb/erac417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Rosaceae is an economically important plant family that can be affected by a multitude of pathogenic microbes, some of which can cause dramatic losses in production. As a type of pattern-recognition receptor, receptor-like proteins (RLPs) are considered vital regulators of plant immunity. Based on genome-wide identification, bioinformatic analysis, and functional determination, we investigated the evolutionary characteristics of RLPs, and specifically those that regulate Valsa canker, a devastating fungal disease affecting apple and pear production. A total of 3028 RLPs from the genomes of 19 species, including nine Rosaceae, were divided into 24 subfamilies. Five subfamilies and seven co-expression modules were found to be involved in the responses to Valsa canker signals of the resistant pear rootstock Pyrus betulifolia 'Duli-G03'. Fourteen RLPs were subsequently screened as candidate genes for regulation of resistance. Among these, PbeRP23 (Chr13.g24394) and PbeRP27 (Chr16.g31400) were identified as key resistance genes that rapidly enhance the resistance of 'Duli-G03' and strongly initiate immune responses, and hence they have potential for further functional exploration and breeding applications for resistance to Valsa canker. In addition, as a consequence of this work we have established optimal methods for the classification and screening of disease-resistant RLPs.
Collapse
Affiliation(s)
- Hongqiang Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - E Sun
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Xia Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Zhongjian Chen
- Agro-Biological Gene Research Center, Guangdong Academy of Agriculture, Guangzhou, 510640, China
| | - Tong Xu
- Chengdu Life Baseline Technology Co, Ltd, Chengdu, 610041, China
| | - Longgang Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Daji Jiang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Yanan Cao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Cunwu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- State Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| |
Collapse
|
17
|
Chang Y, Gong W, Xu J, Gong H, Song Q, Xiao S, Yuan D. Integration of semi- in vivo assays and multi-omics data reveals the effect of galloylated catechins on self-pollen tube inhibition in Camellia oleifera. HORTICULTURE RESEARCH 2023; 10:uhac248. [PMID: 36643738 PMCID: PMC9832949 DOI: 10.1093/hr/uhac248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/04/2022] [Indexed: 05/02/2023]
Abstract
Camellia oil extracted from the seeds of Camellia oleifera Abel. is a popular and high-quality edible oil, but its yield is limited by seed setting, which is mainly caused by self-incompatibility (SI). One of the obvious biological features of SI plants is the inhibition of self-pollen tubes; however, the underlying mechanism of this inhibition in C. oleifera is poorly understood. In this study, we constructed a semi-in vivo pollen tube growth test (SIV-PGT) system that can screen for substances that inhibit self-pollen tubes without interference from the genetic background. Combined with multi-omics analysis, the results revealed the important role of galloylated catechins in self-pollen tube inhibition, and a possible molecular regulatory network mediated by UDP-glycosyltransferase (UGT) and serine carboxypeptidase-like (SCPL) was proposed. In summary, galloylation of catechins and high levels of galloylated catechins are specifically involved in pollen tube inhibition under self-pollination rather than cross-pollination, which provides a new understanding of SI in C. oleifera. These results will contribute to sexual reproduction research on C. oleifera and provide theoretical support for improving Camellia oil yield in production.
Collapse
Affiliation(s)
- Yihong Chang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wenfang Gong
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jinming Xu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Han Gong
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiling Song
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Shixin Xiao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
18
|
McCombe CL, Greenwood JR, Solomon PS, Williams SJ. Molecular plant immunity against biotrophic, hemibiotrophic, and necrotrophic fungi. Essays Biochem 2022; 66:581-593. [PMID: 35587147 PMCID: PMC9528087 DOI: 10.1042/ebc20210073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
Pathogenic fungi use diverse infection strategies to obtain nutrients from plants. Biotrophic fungi feed only on living plant tissue, whereas necrotrophic fungi kill host cells to extract nutrients. To prevent disease, plants need to distinguish between pathogens with different life cycles, as a successful defense against a biotroph, which often involves programmed cell-death around the site of infection, is not an appropriate response to some necrotrophs. Plants utilize a vast collection of extracellular and intracellular receptors to detect the signatures of pathogen attack. In turn, pathogens are under strong selection to mask or avoid certain receptor responses while enhancing or manipulating other receptor responses to promote virulence. In this review, we focus on the plant receptors involved in resistance responses to fungal pathogens and highlight, with examples, how the infection strategy of fungal pathogens can determine if recognition responses are effective at preventing disease.
Collapse
Affiliation(s)
- Carl L McCombe
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Julian R Greenwood
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Peter S Solomon
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Simon J Williams
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
19
|
Tsuchimatsu T, Fujii S. The selfing syndrome and beyond: diverse evolutionary consequences of mating system transitions in plants. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200510. [PMID: 35634918 PMCID: PMC9149797 DOI: 10.1098/rstb.2020.0510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/04/2021] [Indexed: 07/20/2023] Open
Abstract
The shift from outcrossing to self-fertilization (selfing) is considered one of the most prevalent evolutionary transitions in flowering plants. Selfing species tend to share similar reproductive traits in morphology and function, and such a set of traits is called the 'selfing syndrome'. Although the genetic basis of the selfing syndrome has been of great interest to evolutionary biologists, knowledge of the causative genes or mutations was limited until recently. Thanks to advances in population genomic methodologies combined with high-throughput sequencing technologies, several studies have successfully unravelled the molecular and genetic basis for evolution of the selfing syndrome in Capsella, Arabidopsis, Solanum and other genera. Here we first introduce recent research examples that have explored the loci, genes and mutations responsible for the selfing syndrome traits, such as reductions in petal size or in pollen production, that are mainly relevant to pre-pollination processes. Second, we review the relationship between the evolution of selfing and interspecific pollen transfer, highlighting the findings of post-pollination reproductive barriers at the molecular level. We then discuss the emerging view of patterns in evolution of the selfing syndrome, such as the pervasive involvement of loss-of-function mutations and the relative importance of selection versus neutral degradation. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.
Collapse
Affiliation(s)
- Takashi Tsuchimatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-0033, Japan
| | - Sota Fujii
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku 113-8657, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE) Fellow, Bunkyo, Japan
| |
Collapse
|
20
|
Yamamoto M, Kitashiba H, Nishio T. Generation of Arabidopsis thaliana transformants showing the self-recognition activity of Brassica rapa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:496-507. [PMID: 35560670 DOI: 10.1111/tpj.15811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Self-incompatibility in the Brassicaceae family is governed by SRK and SCR, which are two highly polymorphic genes located at the S-locus. Previously, the Arabidopsis lyrata SRK and SCR genes were introduced into Arabidopsis thaliana to generate self-incompatible lines. However, there are no reports showing that Brassica SRK and SCR genes confer self-incompatibility in A. thaliana. Doing so would further advance the mechanistic understanding of self-incompatibility in Brassicaceae. Therefore, we attempted to generate A. thaliana transformants showing the self-recognition activity of Brassica rapa by introducing BrSCR along with a chimeric BrSRK (BrSRK chimera, in which the kinase domain of BrSRK was replaced with that of AlSKR-b). We found that the BrSRK chimera and BrSCR of B. rapa S-9 and S-46 haplotypes, but not those of S-29, S-44, and S-60 haplotypes, conferred self-recognition activity in A. thaliana. Analyses of A. thaliana transformants expressing mutant variants of the BrSRK-9 chimera and BrSCR-9 revealed that mutations at the amino acid residues involved in BrSRK9-BrSCR9 interaction caused defects in the self-incompatibility response. The method developed in this study for generating self-incompatible A. thaliana transformants showing B. rapa self-recognition activity will be useful for analysis of self-recognition mechanisms in Brassicaceae.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba Aobaku, Sendai, Miyagi, 980-8572, Japan
| | - Hiroyasu Kitashiba
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba Aobaku, Sendai, Miyagi, 980-8572, Japan
| | - Takeshi Nishio
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba Aobaku, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
21
|
Abhinandan K, Sankaranarayanan S, Macgregor S, Goring DR, Samuel MA. Cell-cell signaling during the Brassicaceae self-incompatibility response. TRENDS IN PLANT SCIENCE 2022; 27:472-487. [PMID: 34848142 DOI: 10.1016/j.tplants.2021.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Self-incompatibility (SI) is a mechanism that many plant families employ to prevent self-fertilization. In the Brassicaceae, the S-haplotype-specific interaction of the pollen-borne ligand, and a stigma-specific receptor protein kinase triggers a signaling cascade that culminates in the rejection of self-pollen. While the upstream molecular components at the receptor level of the signaling pathway have been extensively studied, the intracellular responses beyond receptor activation were not as well understood. Recent research has uncovered several key molecules and signaling events that operate in concert for the manifestation of the self-incompatible responses in Brassicaceae stigmas. Here, we review the recent discoveries in both the compatible and self-incompatible pathways and provide new perspectives on the early stages of Brassicaceae pollen-pistil interactions.
Collapse
Affiliation(s)
- Kumar Abhinandan
- University of Calgary, Department of Biological Sciences, Calgary, Alberta T2N 1N4, Canada; 20/20 Seed Labs Inc., Nisku, Alberta T9E 7N5, Canada
| | | | - Stuart Macgregor
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Daphne R Goring
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Marcus A Samuel
- University of Calgary, Department of Biological Sciences, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
22
|
Macgregor SR, Lee HK, Nelles H, Johnson DC, Zhang T, Ma C, Goring DR. Autophagy is required for self-incompatible pollen rejection in two transgenic Arabidopsis thaliana accessions. PLANT PHYSIOLOGY 2022; 188:2073-2084. [PMID: 35078230 PMCID: PMC8969033 DOI: 10.1093/plphys/kiac026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/22/2021] [Indexed: 05/16/2023]
Abstract
Successful reproduction in the Brassicaceae is mediated by a complex series of interactions between the pollen and the pistil, and some species have an additional layer of regulation with the self-incompatibility trait. While the initial activation of the self-incompatibility pathway by the pollen S-locus protein 11/S locus cysteine-rich protein and the stigma S Receptor Kinase is well characterized, the downstream mechanisms causing self-pollen rejection are still not fully understood. In previous studies, we detected the presence of autophagic bodies with self-incompatible (SI) pollinations in Arabidopsis lyrata and transgenic Arabidopsis thaliana lines, but whether autophagy was essential for self-pollen rejection was unknown. Here, we investigated the requirement of autophagy in this response by crossing mutations in the essential AUTOPHAGY7 (ATG7) and ATG5 genes into two different transgenic SI A. thaliana lines in the Col-0 and C24 accessions. By using these previously characterized transgenic lines that express A. lyrata and Arabidopsis halleri self-incompatibility genes, we demonstrated that disrupting autophagy weakened their SI responses in the stigma. When the atg7 or atg5 mutations were present, an increased number of SI pollen was found to hydrate and form pollen tubes that successfully fertilized the SI pistils. Additionally, we confirmed the presence of GFP-ATG8a-labeled autophagosomes in the stigmatic papillae following SI pollinations. Together, these findings support the requirement of autophagy in the self-incompatibility response and add to the growing understanding of the intracellular mechanisms employed in the transgenic A. thaliana stigmas to reject self-pollen.
Collapse
Affiliation(s)
- Stuart R Macgregor
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | | | - Hayley Nelles
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Daniel C Johnson
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Tong Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
23
|
Zhao H, Zhang Y, Zhang H, Song Y, Zhao F, Zhang Y, Zhu S, Zhang H, Zhou Z, Guo H, Li M, Li J, Gao Q, Han Q, Huang H, Copsey L, Li Q, Chen H, Coen E, Zhang Y, Xue Y. Origin, loss, and regain of self-incompatibility in angiosperms. THE PLANT CELL 2022; 34:579-596. [PMID: 34735009 PMCID: PMC8774079 DOI: 10.1093/plcell/koab266] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/26/2021] [Indexed: 06/02/2023]
Abstract
The self-incompatibility (SI) system with the broadest taxonomic distribution in angiosperms is based on multiple S-locus F-box genes (SLFs) tightly linked to an S-RNase termed type-1. Multiple SLFs collaborate to detoxify nonself S-RNases while being unable to detoxify self S-RNases. However, it is unclear how such a system evolved, because in an ancestral system with a single SLF, many nonself S-RNases would not be detoxified, giving low cross-fertilization rates. In addition, how the system has been maintained in the face of whole-genome duplications (WGDs) or lost in other lineages remains unclear. Here we show that SLFs from a broad range of species can detoxify S-RNases from Petunia with a high detoxification probability, suggestive of an ancestral feature enabling cross-fertilization and subsequently modified as additional SLFs evolved. We further show, based on its genomic signatures, that type-1 was likely maintained in many lineages, despite WGD, through deletion of duplicate S-loci. In other lineages, SI was lost either through S-locus deletions or by retaining duplications. Two deletion lineages regained SI through type-2 (Brassicaceae) or type-4 (Primulaceae), and one duplication lineage through type-3 (Papaveraceae) mechanisms. Thus, our results reveal a highly dynamic process behind the origin, maintenance, loss, and regain of SI.
Collapse
Affiliation(s)
- Hong Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yanzhai Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu’e Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Sihui Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing 100101, China
| | - Hongkui Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing 100101, China
| | - Zhendiao Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing 100101, China
| | - Han Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhui Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianqian Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaqiu Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Qun Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Chen
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing 100101, China
| | | | - Yijing Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing 100101, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
24
|
Mondal R, Biswas S, Srivastava A, Basu S, Trivedi M, Singh SK, Mishra Y. In silico analysis and expression profiling of S-domain receptor-like kinases (SD-RLKs) under different abiotic stresses in Arabidopsis thaliana. BMC Genomics 2021; 22:817. [PMID: 34772363 PMCID: PMC8590313 DOI: 10.1186/s12864-021-08133-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND S-domain receptor-like kinases (SD-RLKs) are an important and multi-gene subfamily of plant receptor-like/pelle kinases (RLKs), which are known to play a significant role in the development and immune responses of Arabidopsis thaliana. The conserved cysteine residues in the extracellular domain of SD-RLKs make them interesting candidates for sensing reactive oxygen species (ROS), assisting oxidative stress mitigation and associated signaling pathways during abiotic stresses. However, how closely SD-RLKs are interrelated to abiotic stress mitigation and signaling remains unknown in A. thaliana. RESULTS This study was initiated by examining the chromosomal localization, phylogeny, sequence and differential expression analyses of 37 SD-RLK genes using publicly accessible microarray datasets under cold, osmotic stress, genotoxic stress, drought, salt, UV-B, heat and wounding. Out of 37 SD-RLKs, 12 genes displayed differential expression patterns in both the root and the shoot tissues. Promoter structure analysis suggested that these 12 SD-RLK genes harbour several potential cis-regulatory elements (CREs), which are involved in regulating multiple abiotic stress responses. Based on these observations, we investigated the expression patterns of 12 selected SD-RLKs under ozone, wounding, oxidative (methyl viologen), UV-B, cold, and light stress at different time points using semi-qRT-PCR. Of these 12 SD-SRKs, the genes At1g61360, At1g61460, At1g61380, and At4g27300 emerged as potential candidates that maintain their expression in most of the stress treatments till exposure for 12 h. Expression patterns of these four genes were further verified under similar stress treatments using qRT-PCR. The expression analysis indicated that the gene At1g61360, At1g61380, and At1g61460 were mostly up-regulated, whereas the expression of At4g27300 either up- or down-regulated in these conditions. CONCLUSIONS To summarize, the computational analysis and differential transcript accumulation of SD-RLKs under various abiotic stresses suggested their association with abiotic stress tolerance and related signaling in A. thaliana. We believe that a further detailed study will decipher the specific role of these representative SD-RLKs in abiotic stress mitigation vis-a-vis signaling pathways in A. thaliana.
Collapse
Affiliation(s)
- Raju Mondal
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.,Current address: Mulberry Tissue Culture Lab, Central Sericultural Germplasm Resources Center, Central Silk Board-Ministry of Textiles (GoI), Hosur, Tamil Nadu, 635109, India
| | - Subhankar Biswas
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Suvajit Basu
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Maitri Trivedi
- Plant Cell and Molecular Biology Lab, Department of Botany, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390 002, India
| | - Sunil Kumar Singh
- Plant Cell and Molecular Biology Lab, Department of Botany, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390 002, India
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
25
|
Homology-Based Interactions between Small RNAs and Their Targets Control Dominance Hierarchy of Male Determinant Alleles of Self-Incompatibility in Arabidopsis lyrata. Int J Mol Sci 2021; 22:ijms22136990. [PMID: 34209661 PMCID: PMC8268441 DOI: 10.3390/ijms22136990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Self-incompatibility (SI) is conserved among members of the Brassicaceae plant family. This trait is controlled epigenetically by the dominance hierarchy of the male determinant alleles. We previously demonstrated that a single small RNA (sRNA) gene is sufficient to control the linear dominance hierarchy in Brassica rapa and proposed a model in which a homology-based interaction between sRNAs and target sites controls the complicated dominance hierarchy of male SI determinants. In Arabidopsis halleri, male dominance hierarchy is reported to have arisen from multiple networks of sRNA target gains and losses. Despite these findings, it remains unknown whether the molecular mechanism underlying the dominance hierarchy is conserved among Brassicaceae. Here, we identified sRNAs and their target sites that can explain the linear dominance hierarchy of Arabidopsis lyrata, a species closely related to A. halleri. We tested the model that we established in Brassica to explain the linear dominance hierarchy in A. lyrata. Our results suggest that the dominance hierarchy of A. lyrata is also controlled by a homology-based interaction between sRNAs and their targets.
Collapse
|
26
|
Takou M, Hämälä T, Koch EM, Steige KA, Dittberner H, Yant L, Genete M, Sunyaev S, Castric V, Vekemans X, Savolainen O, de Meaux J. Maintenance of Adaptive Dynamics and No Detectable Load in a Range-Edge Outcrossing Plant Population. Mol Biol Evol 2021; 38:1820-1836. [PMID: 33480994 PMCID: PMC8097302 DOI: 10.1093/molbev/msaa322] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During range expansion, edge populations are expected to face increased genetic drift, which in turn can alter and potentially compromise adaptive dynamics, preventing the removal of deleterious mutations and slowing down adaptation. Here, we contrast populations of the European subspecies Arabidopsis lyrata ssp. petraea, which expanded its Northern range after the last glaciation. We document a sharp decline in effective population size in the range-edge population and observe that nonsynonymous variants segregate at higher frequencies. We detect a 4.9% excess of derived nonsynonymous variants per individual in the range-edge population, suggesting an increase of the genomic burden of deleterious mutations. Inference of the fitness effects of mutations and modeling of allele frequencies under the explicit demographic history of each population predicts a depletion of rare deleterious variants in the range-edge population, but an enrichment for fixed ones, consistent with the bottleneck effect. However, the demographic history of the range-edge population predicts a small net decrease in per-individual fitness. Consistent with this prediction, the range-edge population is not impaired in its growth and survival measured in a common garden experiment. We further observe that the allelic diversity at the self-incompatibility locus, which ensures strict outcrossing and evolves under negative frequency-dependent selection, has remained unchanged. Genomic footprints indicative of selective sweeps are broader in the Northern population but not less frequent. We conclude that the outcrossing species A. lyrata ssp. petraea shows a strong resilience to the effect of range expansion.
Collapse
Affiliation(s)
- Margarita Takou
- Institute of Botany, University of Cologne, Cologne, Germany
| | - Tuomas Hämälä
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Evan M Koch
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Kim A Steige
- Institute of Botany, University of Cologne, Cologne, Germany
| | | | - Levi Yant
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Mathieu Genete
- CNRS, UMR 8198 – Evo-Eco-Paleo, University of Lille, Lille, France
| | - Shamil Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Vincent Castric
- CNRS, UMR 8198 – Evo-Eco-Paleo, University of Lille, Lille, France
| | - Xavier Vekemans
- CNRS, UMR 8198 – Evo-Eco-Paleo, University of Lille, Lille, France
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | |
Collapse
|
27
|
Kodera C, Just J, Da Rocha M, Larrieu A, Riglet L, Legrand J, Rozier F, Gaude T, Fobis-Loisy I. The molecular signatures of compatible and incompatible pollination in Arabidopsis. BMC Genomics 2021; 22:268. [PMID: 33853522 PMCID: PMC8048354 DOI: 10.1186/s12864-021-07503-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/02/2021] [Indexed: 12/30/2022] Open
Abstract
Background Fertilization in flowering plants depends on the early contact and acceptance of pollen grains by the receptive papilla cells of the stigma. Deciphering the specific transcriptomic response of both pollen and stigmatic cells during their interaction constitutes an important challenge to better our understanding of this cell recognition event. Results Here we describe a transcriptomic analysis based on single nucleotide polymorphisms (SNPs) present in two Arabidopsis thaliana accessions, one used as female and the other as male. This strategy allowed us to distinguish 80% of transcripts according to their parental origins. We also developed a tool which predicts male/female specific expression for genes without SNP. We report an unanticipated transcriptional activity triggered in stigma upon incompatible pollination and show that following compatible interaction, components of the pattern-triggered immunity (PTI) pathway are induced on the female side. Conclusions Our work unveils the molecular signatures of compatible and incompatible pollinations both at the male and female side. We provide invaluable resource and tools to identify potential new molecular players involved in pollen-stigma interaction. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07503-7.
Collapse
Affiliation(s)
- Chie Kodera
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France. .,Present Address: Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France.
| | - Jérémy Just
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Martine Da Rocha
- INRAE, Université Côte d'Azur, CNRS, ISA 400 route des Chappes BP 167, F-06903, Sophia Antipolis Cedex, France
| | - Antoine Larrieu
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France.,Present Address: Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lucie Riglet
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France.,Present Address: Sainsbury Laboratory, Cambridge University, Cambridge, CB2 1LR, UK
| | - Jonathan Legrand
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Frédérique Rozier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Thierry Gaude
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Isabelle Fobis-Loisy
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France.
| |
Collapse
|
28
|
Lee HK, Goring DR. Two subgroups of receptor-like kinases promote early compatible pollen responses in the Arabidopsis thaliana pistil. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1198-1211. [PMID: 33097927 DOI: 10.1093/jxb/eraa496] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
In flowering plants, cell-cell communication between the compatible pollen grain/growing pollen tube and the pistil is an essential component for successful sexual reproduction. In Arabidopsis thaliana, the later stages of this dialogue are mediated by several peptide ligands and receptors that guide pollen tubes to the ovules for the release of sperm cells. Despite a detailed understanding of these processes, a key gap remains regarding the nature of the regulators that function at the earlier stages which are essential steps leading to fertilization. Here, we report on new functions for A. thaliana Receptor-Like Kinase (RLK) genes belonging to the LRR-II and LRR-VIII-2 RLK subgroups in the female reproductive tract to regulate compatible pollen hydration and the early stages of pollen tube growth. Mutant pistils for the A. thaliana RKF1 gene cluster were observed to support reduced wild-type pollen hydration and, when combined with the SERK1 and SERK3/BAK1 mutations, reduced pollen tube travel distances occurred. As these mutant pistils displayed a wild-type morphology, we propose that the observed altered compatible pollen responses result from an impaired pollen-pistil dialogue at these early stages.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Daphne R Goring
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| |
Collapse
|
29
|
Singh P, Mishra AK, Singh CM. Genome-wide identification and characterization of Lectin receptor-like kinase (LecRLK) genes in mungbean (Vigna radiata L. Wilczek). J Appl Genet 2021; 62:223-234. [PMID: 33469874 DOI: 10.1007/s13353-021-00613-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/26/2020] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
Abstract
Lectins are a diverse group of proteins found throughout plant species. Numerous lectins are involved in many important processes such as organogenesis, defense mechanism, signaling, and stress response. Although the mungbean whole genome sequence has been published, distribution, diversification, and gene structure of lectin genes in mungbean are still unknown. A total of 73 putative lectin genes with kinase domain have been identified through BLAST and HMM profiling. Furthermore, these sequences could be classified into three families, such as G-type, L-type, and C-type VrLecRLKs. 59 out of 73 VrLecRLKs were distributed on to 11 chromosomes, whereas rest could not be anchored onto any specific chromosome. Gene structure analysis revealed a varying number of exons in 73 VrLecRLK genes. Gene ontology annotations were grouped into three categories like biological processes, cellular components and molecular functions, which were associated with signaling pathways, defense responses, transferase activity, binding activity, and kinase activity. The comprehensive and systematic studies of LecRLK genes family provides a reference and foundation for further functional analysis of VrLecRLK genes in mungbean.
Collapse
Affiliation(s)
- Poornima Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | | | - Chandra Mohan Singh
- Department of Genetics and Plant Breeding, College of Agriculture, Banda University of Agriculture and Technology, Banda, Uttar Pradesh, 210 001, India.
| |
Collapse
|
30
|
Kenney P, Sankaranarayanan S, Balogh M, Indriolo E. Expression of Brassica napus GLO1 is sufficient to breakdown artificial self-incompatibility in Arabidopsis thaliana. PLANT REPRODUCTION 2020; 33:159-171. [PMID: 32862319 DOI: 10.1007/s00497-020-00392-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Members of the Brassicaceae family have the ability to regulate pollination events occurring on the stigma surface. In Brassica species, self-pollination leads to an allele-specific interaction between the pollen small cysteine-rich peptide ligand (SCR/SP11) and the stigmatic S-receptor kinase (SRK) that activates the E3 ubiquitin ligase ARC1 (Armadillo repeat-containing 1), resulting in proteasomal degradation of various compatibility factors including glyoxalase I (GLO1) which is necessary for successful pollination. In Brassica napus, the suppression of GLO1 was sufficient to reduce compatibility, and overexpression of GLO1 in self-incompatible Brassica napus stigmas resulted in partial breakdown of the self-incompatibility response. Here, we verified if BnGLO1 could function as a compatibility factor in the artificial self-incompatibility system of Arabidopsis thaliana expressing AlSCRb, AlSRKb and AlARC1 proteins from A. lyrata. Overexpression of BnGLO1 is sufficient to breakdown self-incompatibility response in A. thaliana stigmas. Therefore, GLO1 has an indisputable role as a compatibility factor in the stigma in regulating pollen attachment and pollen tube growth. Lastly, this study demonstrates the usefulness of an artificial self-incompatibility system in A. thaliana for interspecific self-incompatibility studies.
Collapse
Affiliation(s)
- Patrick Kenney
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr, Las Cruces, NM, 88003, USA
- Division of Plant Sciences, University of Missouri, Waters Hall 1112 University Ave, Columbia, MO, 65201, USA
| | | | - Michael Balogh
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr, Las Cruces, NM, 88003, USA
| | - Emily Indriolo
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr, Las Cruces, NM, 88003, USA.
| |
Collapse
|
31
|
Suwabe K, Nagasaka K, Windari EA, Hoshiai C, Ota T, Takada M, Kitazumi A, Masuko-Suzuki H, Kagaya Y, Yano K, Tsuchimatsu T, Shimizu KK, Takayama S, Suzuki G, Watanabe M. Double-Locking Mechanism of Self-Compatibility in Arabidopsis thaliana: The Synergistic Effect of Transcriptional Depression and Disruption of Coding Region in the Male Specificity Gene. FRONTIERS IN PLANT SCIENCE 2020; 11:576140. [PMID: 33042191 PMCID: PMC7517786 DOI: 10.3389/fpls.2020.576140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Self-compatibility in Arabidopsis thaliana represents the relatively recent disruption of ancestral obligate cross pollination, recognized as one of the prevalent evolutionary pathways in flowering plants, as noted by Darwin. Our previous study found that inversion of the male specificity gene (SP11/SCR) disrupted self-incompatibility, which was restored by overexpressing the SCR with the reversed inversion. However, SCR in A. thaliana has other mutations aside from the pivotal inversion, in both promoter and coding regions, with probable effects on transcriptional regulation. To examine the functional consequences of these mutations, we conducted reciprocal introductions of native promoters and downstream sequences from orthologous loci of self-compatible A. thaliana and self-incompatible A. halleri. Use of this inter-species pair enabled us to expand the scope of the analysis to transcriptional regulation and deletion in the intron, in addition to inversion in the native genomic background. Initial analysis revealed that A. thaliana has a significantly lower basal expression level of SCR transcripts in the critical reproductive stage compared to that of A. halleri, suggesting that the promoter was attenuated in inducing transcription in A. thaliana. However, in reciprocal transgenic experiments, this A. thaliana promoter was able to restore partial function if coupled with the functional A. halleri coding sequence, despite extensive alterations due to the self-compatible mode of reproduction in A. thaliana. This represents a synergistic effect of the promoter and the inversion resulting in fixation of self-compatibility, primarily enforced by disruption of SCR. Our findings elucidate the functional and evolutionary context of the historical transition in A. thaliana thus contributing to the understanding of the molecular events leading to development of self-compatibility.
Collapse
Affiliation(s)
- Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Kaori Nagasaka
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | | | | | - Takuma Ota
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Maho Takada
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Ai Kitazumi
- Department of Plant and Soil Science, Texas Tech University, TX, United States
| | | | - Yasuaki Kagaya
- Life Science Research Center, Mie University, Tsu, Japan
| | - Kentaro Yano
- School of Agriculture, Meiji University, Kawasaki, Japan
| | | | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Studies, Yokohama City University, Yokohama, Japan
| | - Seiji Takayama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, Kashiwara, Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
32
|
Base-Pairing Requirements for Small RNA-Mediated Gene Silencing of Recessive Self-Incompatibility Alleles in Arabidopsis halleri. Genetics 2020; 215:653-664. [PMID: 32461267 DOI: 10.1534/genetics.120.303351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
Small noncoding RNAs are central regulators of genome activity and stability. Their regulatory function typically involves sequence similarity with their target sites, but understanding the criteria by which they specifically recognize and regulate their targets across the genome remains a major challenge in the field, especially in the face of the diversity of silencing pathways involved. The dominance hierarchy among self-incompatibility alleles in Brassicaceae is controlled by interactions between a highly diversified set of small noncoding RNAs produced by dominant S-alleles and their corresponding target sites on recessive S-alleles. By controlled crosses, we created numerous heterozygous combinations of S-alleles in Arabidopsis halleri and developed an real-time quantitative PCR assay to compare allele-specific transcript levels for the pollen determinant of self-incompatibility (SCR). This provides the unique opportunity to evaluate the precise base-pairing requirements for effective transcriptional regulation of this target gene. We found strong transcriptional silencing of recessive SCR alleles in all heterozygote combinations examined. A simple threshold model of base pairing for the small RNA-target interaction captures most of the variation in SCR transcript levels. For a subset of S-alleles, we also measured allele-specific transcript levels of the determinant of pistil specificity (SRK), and found sharply distinct expression dynamics throughout flower development between SCR and SRK In contrast to SCR, both SRK alleles were expressed at similar levels in the heterozygote genotypes examined, suggesting no transcriptional control of dominance for this gene. We discuss the implications for the evolutionary processes associated with the origin and maintenance of the dominance hierarchy among self-incompatibility alleles.
Collapse
|
33
|
Azibi T, Hadj-Arab H, Lodé M, Ferreira de Carvalho J, Trotoux G, Nègre S, Gilet MM, Boutte J, Lucas J, Vekemans X, Chèvre AM, Rousseau-Gueutin M. Impact of whole genome triplication on the evolutionary history and the functional dynamics of regulatory genes involved in Brassica self-incompatibility signalling pathway. PLANT REPRODUCTION 2020; 33:43-58. [PMID: 32080762 DOI: 10.1007/s00497-020-00385-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Polyploidy or whole genome duplication is a frequent and recurrent phenomenon in flowering plants that has played a major role in their diversification, adaptation and speciation. The adaptive success of polyploids relates to the different evolutionary fates of duplicated genes. In this study, we explored the impact of the whole genome triplication (WGT) event in the Brassiceae tribe on the genes involved in the self-incompatibility (SI) signalling pathway, a mechanism allowing recognition and rejection of self-pollen in hermaphrodite plants. By taking advantage of the knowledge acquired on this pathway as well as of several reference genomes in Brassicaceae species, we determined copy number of the different genes involved in this pathway and investigated their structural and functional evolutionary dynamics. We could infer that whereas most genes involved in the SI signalling returned to single copies after the WGT event (i.e. ARC1, JDP1, THL1, THL2, Exo70A01) in diploid Brassica species, a few were retained in duplicated (GLO1 and PLDα) or triplicated copies (MLPK). We also carefully studied the gene structure of these latter duplicated genes (including the conservation of functional domains and active sites) and tested their transcription in the stigma to identify which copies seem to be involved in the SI signalling pathway. By taking advantage of these analyses, we then explored the putative origin of a contrasted SI phenotype between two Brassica rapa varieties that have been fully sequenced and shared the same S-allele (S60).
Collapse
Affiliation(s)
- Thanina Azibi
- University of Sciences and Technology Houari Boumedienne USTHB, Faculty of Biological Sciences FSB, Laboratory of Biology and Physiology of Organisms LBPO, Bab-Ezzouar, El-Alia, BP 32, 16111, Algiers, Algeria
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Houria Hadj-Arab
- University of Sciences and Technology Houari Boumedienne USTHB, Faculty of Biological Sciences FSB, Laboratory of Biology and Physiology of Organisms LBPO, Bab-Ezzouar, El-Alia, BP 32, 16111, Algiers, Algeria.
| | - Maryse Lodé
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | | - Gwenn Trotoux
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Sylvie Nègre
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | | - Julien Boutte
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Jérémy Lucas
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, 59000, Lille, France
| | - Anne-Marie Chèvre
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | |
Collapse
|
34
|
Wang M, Zhang L, Zhang Z, Li M, Wang D, Zhang X, Xi Z, Keefover-Ring K, Smart LB, DiFazio SP, Olson MS, Yin T, Liu J, Ma T. Phylogenomics of the genus Populus reveals extensive interspecific gene flow and balancing selection. THE NEW PHYTOLOGIST 2020; 225:1370-1382. [PMID: 31550399 DOI: 10.1111/nph.16215] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 09/16/2019] [Indexed: 05/10/2023]
Abstract
Phylogenetic analysis is complicated by interspecific gene flow and the presence of shared ancestral polymorphisms, particularly those maintained by balancing selection. In this study, we aimed to examine the prevalence of these factors during the diversification of Populus, a model tree genus in the Northern Hemisphere. We constructed phylogenetic trees of 29 Populus taxa using 80 individuals based on re-sequenced genomes. Our species tree analyses recovered four main clades in the genus based on consensus nuclear phylogenies, but in conflict with the plastome phylogeny. A few interspecific relationships remained unresolved within the multiple-species clade because of inconsistent gene trees. Our results indicated that gene flow has been widespread within each clade and also occurred among the four clades during their early divergence. We identified 45 candidate genes with ancient polymorphisms maintained by balancing selection. These genes were mainly associated with mating compatibility, growth and stress resistance. Both gene flow and selection-mediated ancient polymorphisms are prevalent in the genus Populus. These are potentially important contributors to adaptive variation. Our results provide a framework for the diversification of model tree genus that will facilitate future comparative studies.
Collapse
Affiliation(s)
- Mingcheng Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhiyang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Mengmeng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Deyan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xu Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, 430 Lincoln Dr., Madison, WI, 53706, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, NY, 14456, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, 25606, USA
| | - Matthew S Olson
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX, 79409-3131, USA
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
35
|
Welgemoed T, Pierneef R, Sterck L, Van de Peer Y, Swart V, Scheepers KD, Berger DK. De novo Assembly of Transcriptomes From a B73 Maize Line Introgressed With a QTL for Resistance to Gray Leaf Spot Disease Reveals a Candidate Allele of a Lectin Receptor-Like Kinase. FRONTIERS IN PLANT SCIENCE 2020; 11:191. [PMID: 32231673 PMCID: PMC7083176 DOI: 10.3389/fpls.2020.00191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/07/2020] [Indexed: 05/03/2023]
Abstract
Gray leaf spot (GLS) disease in maize, caused by the fungus Cercospora zeina, is a threat to maize production globally. Understanding the molecular basis for quantitative resistance to GLS is therefore important for food security. We developed a de novo assembly pipeline to identify candidate maize resistance genes. Near-isogenic maize lines with and without a QTL for GLS resistance on chromosome 10 from inbred CML444 were produced in the inbred B73 background. The B73-QTL line showed a 20% reduction in GLS disease symptoms compared to B73 in the field (p = 0.01). B73-QTL leaf samples from this field experiment conducted under GLS disease pressure were RNA sequenced. The reads that did not map to the B73 or C. zeina genomes were expected to contain novel defense genes and were de novo assembled. A total of 141 protein-coding sequences with B73-like or plant annotations were identified from the B73-QTL plants exposed to C. zeina. To determine whether candidate gene expression was induced by C. zeina, the RNAseq reads from C. zeina-challenged and control leaves were mapped to a master assembly of all of the B73-QTL reads, and differential gene expression analysis was conducted. Combining results from both bioinformatics approaches led to the identification of a likely candidate gene, which was a novel allele of a lectin receptor-like kinase named L-RLK-CML that (i) was induced by C. zeina, (ii) was positioned in the QTL region, and (iii) had functional domains for pathogen perception and defense signal transduction. The 817AA L-RLK-CML protein had 53 amino acid differences from its 818AA counterpart in B73. A second "B73-like" allele of L-RLK was expressed at a low level in B73-QTL. Gene copy-specific RT-qPCR confirmed that the l-rlk-cml transcript was the major product induced four-fold by C. zeina. Several other expressed defense-related candidates were identified, including a wall-associated kinase, two glutathione s-transferases, a chitinase, a glucan beta-glucosidase, a plasmodesmata callose-binding protein, several other receptor-like kinases, and components of calcium signaling, vesicular trafficking, and ethylene biosynthesis. This work presents a bioinformatics protocol for gene discovery from de novo assembled transcriptomes and identifies candidate quantitative resistance genes.
Collapse
Affiliation(s)
- Tanya Welgemoed
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Rian Pierneef
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Yves Van de Peer
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Genomics Research Institute, University of Pretoria, Pretoria, South Africa
| | - Velushka Swart
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Kevin Daniel Scheepers
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Dave K. Berger
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- *Correspondence: Dave K. Berger,
| |
Collapse
|
36
|
Zhang T, Zhou G, Goring DR, Liang X, Macgregor S, Dai C, Wen J, Yi B, Shen J, Tu J, Fu T, Ma C. Generation of Transgenic Self-Incompatible Arabidopsis thaliana Shows a Genus-Specific Preference for Self-Incompatibility Genes. PLANTS 2019; 8:plants8120570. [PMID: 31817214 PMCID: PMC6963867 DOI: 10.3390/plants8120570] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
Brassicaceae species employ both self-compatibility and self-incompatibility systems to regulate post-pollination events. Arabidopsis halleri is strictly self-incompatible, while the closely related Arabidopsis thaliana has transitioned to self-compatibility with the loss of functional S-locus genes during evolution. The downstream signaling protein, ARC1, is also required for the self-incompatibility response in some Arabidopsis and Brassica species, and its gene is deleted in the A. thaliana genome. In this study, we attempted to reconstitute the SCR-SRK-ARC1 signaling pathway to restore self-incompatibility in A. thaliana using genes from A. halleri and B. napus, respectively. Several of the transgenic A. thaliana lines expressing the A. halleriSCR13-SRK13-ARC1 transgenes displayed self-incompatibility, while all the transgenic A. thaliana lines expressing the B. napusSCR1-SRK1-ARC1 transgenes failed to show any self-pollen rejection. Furthermore, our results showed that the intensity of the self-incompatibility response in transgenic A. thaliana plants was not associated with the expression levels of the transgenes. Thus, this suggests that there are differences between the Arabidopsis and Brassica self-incompatibility signaling pathways, which perhaps points to the existence of other factors downstream of B. napusSRK that are absent in Arabidopsis species.
Collapse
Affiliation(s)
- Tong Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Guilong Zhou
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Daphne R. Goring
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Centre for Genome Analysis & Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Xiaomei Liang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Stuart Macgregor
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-18-07
| |
Collapse
|
37
|
Honjo MN, Kudoh H. Arabidopsis halleri: a perennial model system for studying population differentiation and local adaptation. AOB PLANTS 2019; 11:plz076. [PMID: 31832127 PMCID: PMC6899346 DOI: 10.1093/aobpla/plz076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/26/2019] [Indexed: 05/21/2023]
Abstract
Local adaptation is assumed to occur when populations differ in a phenotypic trait or a set of traits, and such variation has a genetic basis. Here, we introduce Arabidopsis halleri and its life history as a perennial model system to study population differentiation and local adaptation. Studies on altitudinal adaptation have been conducted in two regions: Mt. Ibuki in Japan and the European Alps. Several studies have demonstrated altitudinal adaptation in ultraviolet-B (UV-B) tolerance, leaf water repellency against spring frost and anti-herbivore defences. Studies on population differentiation in A. halleri have also focused on metal hyperaccumulation and tolerance to heavy metal contamination. In these study systems, genome scans to identify candidate genes under selection have been applied. Lastly, we briefly discuss how RNA-Seq can broaden phenotypic space and serve as a link to underlying mechanisms. In conclusion, A. halleri provides us with opportunities to study population differentiation and local adaptation, and relate these to the genetic systems underlying target functional traits.
Collapse
Affiliation(s)
- Mie N Honjo
- Center for Ecological Research, Kyoto University, Hirano, Otsu, Shiga, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano, Otsu, Shiga, Japan
| |
Collapse
|
38
|
Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude. Proc Natl Acad Sci U S A 2019; 116:7137-7146. [PMID: 30894495 PMCID: PMC6452661 DOI: 10.1073/pnas.1817580116] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Crucihimalaya himalaica, a close relative of Arabidopsis and Capsella, grows on the Qinghai-Tibet Plateau (QTP) about 4,000 m above sea level and represents an attractive model system for studying speciation and ecological adaptation in extreme environments. We assembled a draft genome sequence of 234.72 Mb encoding 27,019 genes and investigated its origin and adaptive evolutionary mechanisms. Phylogenomic analyses based on 4,586 single-copy genes revealed that C. himalaica is most closely related to Capsella (estimated divergence 8.8 to 12.2 Mya), whereas both species form a sister clade to Arabidopsis thaliana and Arabidopsis lyrata, from which they diverged between 12.7 and 17.2 Mya. LTR retrotransposons in C. himalaica proliferated shortly after the dramatic uplift and climatic change of the Himalayas from the Late Pliocene to Pleistocene. Compared with closely related species, C. himalaica showed significant contraction and pseudogenization in gene families associated with disease resistance and also significant expansion in gene families associated with ubiquitin-mediated proteolysis and DNA repair. We identified hundreds of genes involved in DNA repair, ubiquitin-mediated proteolysis, and reproductive processes with signs of positive selection. Gene families showing dramatic changes in size and genes showing signs of positive selection are likely candidates for C. himalaica's adaptation to intense radiation, low temperature, and pathogen-depauperate environments in the QTP. Loss of function at the S-locus, the reason for the transition to self-fertilization of C. himalaica, might have enabled its QTP occupation. Overall, the genome sequence of C. himalaica provides insights into the mechanisms of plant adaptation to extreme environments.
Collapse
|
39
|
Wu M, Kostyun JL, Moyle LC. Genome Sequence of Jaltomata Addresses Rapid Reproductive Trait Evolution and Enhances Comparative Genomics in the Hyper-Diverse Solanaceae. Genome Biol Evol 2019; 11:335-349. [PMID: 30608583 PMCID: PMC6368146 DOI: 10.1093/gbe/evy274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2018] [Indexed: 12/11/2022] Open
Abstract
Within the economically important plant family Solanaceae, Jaltomata is a rapidly evolving genus that has extensive diversity in flower size and shape, as well as fruit and nectar color, among its ∼80 species. Here, we report the whole-genome sequencing, assembly, and annotation, of one representative species (Jaltomata sinuosa) from this genus. Combining PacBio long reads (25×) and Illumina short reads (148×) achieved an assembly of ∼1.45 Gb, spanning ∼96% of the estimated genome. Ninety-six percent of curated single-copy orthologs in plants were detected in the assembly, supporting a high level of completeness of the genome. Similar to other Solanaceous species, repetitive elements made up a large fraction (∼80%) of the genome, with the most recently active element, Gypsy, expanding across the genome in the last 1–2 Myr. Computational gene prediction, in conjunction with a merged transcriptome data set from 11 tissues, identified 34,725 protein-coding genes. Comparative phylogenetic analyses with six other sequenced Solanaceae species determined that Jaltomata is most likely sister to Solanum, although a large fraction of gene trees supported a conflicting bipartition consistent with substantial introgression between Jaltomata and Capsicum after these species split. We also identified gene family dynamics specific to Jaltomata, including expansion of gene families potentially involved in novel reproductive trait development, and loss of gene families that accompanied the loss of self-incompatibility. This high-quality genome will facilitate studies of phenotypic diversification in this rapidly radiating group and provide a new point of comparison for broader analyses of genomic evolution across the Solanaceae.
Collapse
Affiliation(s)
- Meng Wu
- Department of Biology, Indiana University Bloomington
| | - Jamie L Kostyun
- Department of Biology, Indiana University Bloomington.,Department of Plant Biology, University of Vermont
| | | |
Collapse
|
40
|
Nasrallah JB. Self-incompatibility in the Brassicaceae: Regulation and mechanism of self-recognition. Curr Top Dev Biol 2019; 131:435-452. [DOI: 10.1016/bs.ctdb.2018.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
41
|
Sugiyama R, Hirai MY. Atypical Myrosinase as a Mediator of Glucosinolate Functions in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1008. [PMID: 31447873 PMCID: PMC6691170 DOI: 10.3389/fpls.2019.01008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/18/2019] [Indexed: 05/04/2023]
Abstract
Glucosinolates (GLSs) are a well-known class of specialized plant metabolites, distributed mostly in the order Brassicales. A vast research field in basic and applied sciences has grown up around GLSs owing to their presence in important agricultural crops and the model plant Arabidopsis thaliana, and their broad range of bioactivities beneficial to human health. The major purpose of GLSs in plants has been considered their function as a chemical defense against predators. GLSs are physically separated from a specialized class of beta-thioglucosidases called myrosinases, at the tissue level or at the single-cell level. They are brought together as a consequence of tissue damage, primarily triggered by herbivores, and their interaction results in the release of toxic volatile chemicals including isothiocyanates. In addition, recent studies have suggested that plants may adopt other strategies independent of tissue disruption for initiating GLS breakdown to cope with certain biotic/abiotic stresses. This hypothesis has been further supported by the discovery of an atypical class of GLS-hydrolyzing enzymes possessing features that are distinct from those of the classical myrosinases. Nevertheless, there is only little information on the physiological importance of atypical myrosinases. In this review, we focus on the broad diversity of the beta-glucosidase subclasses containing known atypical myrosinases in A. thaliana to discuss the hypothesis that numerous members of these subclasses can hydrolyze GLSs to regulate their diverse functions in plants. Also, the increasingly broadening functional repertoires of known atypical/classical myrosinases are described with reference to recent findings. Assessment of independent insights gained from A. thaliana with respect to (1) the phenotype of mutants lacking genes in the GLS metabolic/breakdown pathways, (2) fluctuation in GLS contents/metabolism under specific conditions, and (3) the response of plants to exogenous GLSs or their hydrolytic products, will enable us to reconsider the physiological importance of GLS breakdown in particular situations, which is likely to be regulated by specific beta-glucosidases.
Collapse
|
42
|
Jamieson PA, Shan L, He P. Plant cell surface molecular cypher: Receptor-like proteins and their roles in immunity and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:242-251. [PMID: 30080610 PMCID: PMC6297115 DOI: 10.1016/j.plantsci.2018.05.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/03/2018] [Accepted: 05/26/2018] [Indexed: 05/21/2023]
Abstract
Plant receptor-like proteins (RLPs) are a family of transmembrane receptors which are distinguished from receptor-like kinases (RLKs) by their lack of a cytoplasmic kinase domain. RLPs continue to be implicated in a broad range of plant immunological and developmental processes as critical sensors or participants in receptor complexes on the plasma membrane. RLPs often associate with RLKs to activate or attenuate signal perception and relay. Some RLPs also physically cluster with RLKs and bear similar expression patterns. Here, we discuss the characteristics, function, and expression of characterized RLPs in the context of their associated RLKs in plant immunity and development.
Collapse
Affiliation(s)
- Pierce A Jamieson
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
43
|
Mable BK, Brysting AK, Jørgensen MH, Carbonell AKZ, Kiefer C, Ruiz-Duarte P, Lagesen K, Koch MA. Adding Complexity to Complexity: Gene Family Evolution in Polyploids. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
44
|
Sehgal N, Singh S. Progress on deciphering the molecular aspects of cell-to-cell communication in Brassica self-incompatibility response. 3 Biotech 2018; 8:347. [PMID: 30073132 PMCID: PMC6066494 DOI: 10.1007/s13205-018-1372-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022] Open
Abstract
The sporophytic system of self-incompatibility is a widespread genetic phenomenon in plant species, promoting out-breeding and maintaining genetic diversity. This phenomenon is of commercial importance in hybrid breeding of Brassicaceae crops and is controlled by single S locus with multiple S haplotypes. The molecular genetic studies of Brassica 'S' locus has revealed the presence of three tightly linked loci viz. S-receptor kinase (SRK), S-locus cysteine-rich protein/S-locus protein 11 (SCR/SP11), and S-locus glycoprotein (SLG). On self-pollination, the allele-specific ligand-receptor interaction activates signal transduction in stigma papilla cells and leads to rejection of pollen tube on stigmatic surface. In addition, arm-repeat-containing protein 1 (ARC1), M-locus protein kinase (MLPK), kinase-associated protein phosphatase (KAPP), exocyst complex subunit (Exo70A1) etc. has been identified in Brassica crops and plays a key role in self-incompatibility signaling pathway. Furthermore, the cytoplasmic calcium (Ca2+) influx in papilla cells also mediates self-incompatibility response in Brassicaceae, but how this cytoplasmic Ca2+ influx triggers signal transduction to inhibit pollen hydration is still obscure. There are many other signaling components which are not well characterized yet. Much progress has been made in elucidating the downstream multiple pathways of Brassica self-incompatibility response. Hence, in this review, we have made an effort to describe the recent advances made on understanding the molecular aspects of genetic mechanism of self-incompatibility in Brassicaceae.
Collapse
Affiliation(s)
- Nidhi Sehgal
- Department of Vegetable Science, CCS Haryana Agricultural University, Hisar, 125 004 India
| | - Saurabh Singh
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110 012 India
| |
Collapse
|
45
|
Jany E, Nelles H, Goring DR. The Molecular and Cellular Regulation of Brassicaceae Self-Incompatibility and Self-Pollen Rejection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 343:1-35. [PMID: 30712670 DOI: 10.1016/bs.ircmb.2018.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In flowering plants, sexual reproduction is actively regulated by cell-cell communication between the male pollen and female pistil, and many species possess self-incompatibility systems for the selective rejection of self-pollen to maintain genetic diversity. The Brassicaceae self-incompatibility pathway acts early on when pollen grains have landed on the stigmatic papillae at the top of the pistil. Extensive studies have revealed that self-pollen rejection in the Brassicaceae is initiated by an S-haplotype-specific interaction between two polymorphic proteins: the pollen S-locus protein 11/S cysteine-rich (SP11/SCR) ligand and the stigma S receptor kinase (SRK). While the different S-haplotypes are typically codominant, there are several examples of dominant-recessive interactions, and a small RNA-based regulation of SP11/SCR expression has been uncovered as a mechanism behind these genetic interactions. Recent research has also added to our understanding of various cellular components in the pathway leading from the SP11/SCR-SRK interaction, including two signaling proteins, the M-locus protein kinase (MLPK) and the ARM-repeat containing 1 (ARC1) E3 ligase, as well as calcium fluxes and induction of autophagy in the stigmatic papillae. Finally, a better understanding of the compatible pollen responses that are targeted by the self-incompatibility pathway is starting to emerge, and this will allow us to more fully understand how the Brassicaceae self-incompatibility pathway causes self-pollen rejection. Here, we provide an overview of the field, highlighting recent contributions to our understanding of Brassicaceae self-incompatibility, and draw comparisons to a recently discovered unilateral incompatibility system.
Collapse
Affiliation(s)
- Eli Jany
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hayley Nelles
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Daphne R Goring
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada; Centre for Genome Analysis & Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
46
|
Li L, Liu B, Deng X, Zhao H, Li H, Xing S, Fetzer DD, Li M, Nasrallah ME, Nasrallah JB, Liu P. Evolution of interspecies unilateral incompatibility in the relatives of Arabidopsis thaliana. Mol Ecol 2018; 27:2742-2753. [PMID: 29717521 DOI: 10.1111/mec.14707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/07/2018] [Accepted: 04/11/2018] [Indexed: 11/26/2022]
Abstract
The evolutionary concurrence of intraspecies self-incompatibility (SI) and explosive angiosperm radiation in the Cretaceous have led to the hypothesis that SI was one of the predominant drivers of rapid speciation in angiosperms. Interspecies unilateral incompatibility (UI) usually occurs when pollen from a self-compatible (SC) species is rejected by the pistils of a SI species, while the reciprocal pollination is compatible (UC). Although this SI × SC type UI is most prevalent and viewed as a prezygotic isolation barrier to promote incipient speciation of angiosperms, comparative evidence to support such a role is lacking. We show that SI × SI type UI in SI species pairs is also common in the well-characterized accessions representing the four major lineages of the Arabidopsis genus and is developmentally regulated. This allowed us to reveal a strong correlation between UI strength and species divergence in these representative accessions. In addition, analyses of a SC accession and the pseudo-self-compatible (psc) spontaneous mutant of Arabidopsis lyrata indicate that UI shares, at least, common pollen rejection pathway with SI. Furthermore, genetic and genomic analyses of SI × SI type UI in A. lyrata × A. arenosa species pair showed that two major-effect quantitative trait loci are the stigma and pollen-side determinant of UI, respectively, which could be involved in heterospecies pollen discrimination. By revealing a close link between UI and SI pathway, particularly between UI and species divergence in these representative accessions, our findings establish a connection between SI and speciation. Thus, the pre-existence of SI system would have facilitated the evolution of UI and accordingly promote speciation.
Collapse
Affiliation(s)
- Ling Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Bo Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Xiaomei Deng
- Beijing Engineering and Technological Research Center of Plant Tissue Culture, Beijing, China
| | - Hainan Zhao
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Hongyan Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Shilai Xing
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Della D Fetzer
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Mikhail E Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York
| | - June B Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
47
|
Teixeira MA, Rajewski A, He J, Castaneda OG, Litt A, Kaloshian I. Classification and phylogenetic analyses of the Arabidopsis and tomato G-type lectin receptor kinases. BMC Genomics 2018; 19:239. [PMID: 29625550 PMCID: PMC5889549 DOI: 10.1186/s12864-018-4606-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 03/16/2018] [Indexed: 01/04/2023] Open
Abstract
Background Pathogen perception by plants is mediated by plasma membrane-localized immune receptors that have varied extracellular domains. Lectin receptor kinases (LecRKs) are among these receptors and are subdivided into 3 classes, C-type LecRKs (C-LecRKs), L-type LecRKs (L-LecRKs) and G-type LecRKs (G-LecRKs). While C-LecRKs are represented by one or two members in all plant species investigated and have unknown functions, L-LecRKs have been characterized in a few plant species and have been shown to play roles in plant defense against pathogens. Whereas Arabidopsis G-LecRKs have been characterized, this family of LecRKs has not been studied in tomato. Results This investigation updates the current characterization of Arabidopsis G-LecRKs and characterizes the tomato G-LecRKs, using LecRKs from the monocot rice and the basal eudicot columbine to establish a basis for comparisons between the two core eudicots. Additionally, revisiting parameters established for Arabidopsis nomenclature for LecRKs is suggested for both Arabidopsis and tomato. Moreover, using phylogenetic analysis, we show the relationship among and between members of G-LecRKs from all three eudicot plant species. Furthermore, investigating presence of motifs in G-LecRKs we identified conserved motifs among members of G-LecRKs in tomato and Arabidopsis, with five present in at least 30 of the 38 Arabidopsis members and in at least 45 of the 73 tomato members. Conclusions This work characterized tomato G-LecRKs and added members to the currently characterized Arabidopsis G-LecRKs. Additionally, protein sequence analysis showed an expansion of this family in tomato as compared to Arabidopsis, and the existence of conserved common motifs in the two plant species as well as conserved species-specific motifs. Electronic supplementary material The online version of this article (10.1186/s12864-018-4606-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcella A Teixeira
- Department of Nematology, University of California, Riverside, California, USA
| | - Alex Rajewski
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA
| | - Jiangman He
- Department of Nematology, University of California, Riverside, California, USA
| | | | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA.,Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Isgouhi Kaloshian
- Department of Nematology, University of California, Riverside, California, USA. .,Institute for Integrative Genome Biology, University of California, Riverside, California, USA.
| |
Collapse
|
48
|
Bachmann JA, Tedder A, Laenen B, Steige KA, Slotte T. Targeted Long-Read Sequencing of a Locus Under Long-Term Balancing Selection in Capsella. G3 (BETHESDA, MD.) 2018; 8:1327-1333. [PMID: 29476024 PMCID: PMC5873921 DOI: 10.1534/g3.117.300467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/20/2018] [Indexed: 11/18/2022]
Abstract
Rapid advances in short-read DNA sequencing technologies have revolutionized population genomic studies, but there are genomic regions where this technology reaches its limits. Limitations mostly arise due to the difficulties in assembly or alignment to genomic regions of high sequence divergence and high repeat content, which are typical characteristics for loci under strong long-term balancing selection. Studying genetic diversity at such loci therefore remains challenging. Here, we investigate the feasibility and error rates associated with targeted long-read sequencing of a locus under balancing selection. For this purpose, we generated bacterial artificial chromosomes (BACs) containing the Brassicaceae S-locus, a region under strong negative frequency-dependent selection which has previously proven difficult to assemble in its entirety using short reads. We sequence S-locus BACs with single-molecule long-read sequencing technology and conduct de novo assembly of these S-locus haplotypes. By comparing repeated assemblies resulting from independent long-read sequencing runs on the same BAC clone we do not detect any structural errors, suggesting that reliable assemblies are generated, but we estimate an indel error rate of 5.7×10-5 A similar error rate was estimated based on comparison of Illumina short-read sequences and BAC assemblies. Our results show that, until de novo assembly of multiple individuals using long-read sequencing becomes feasible, targeted long-read sequencing of loci under balancing selection is a viable option with low error rates for single nucleotide polymorphisms or structural variation. We further find that short-read sequencing is a valuable complement, allowing correction of the relatively high rate of indel errors that result from this approach.
Collapse
Affiliation(s)
- Jörg A Bachmann
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Andrew Tedder
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Kim A Steige
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| |
Collapse
|
49
|
Tsuchimatsu T, Goubet PM, Gallina S, Holl AC, Fobis-Loisy I, Bergès H, Marande W, Prat E, Meng D, Long Q, Platzer A, Nordborg M, Vekemans X, Castric V. Patterns of Polymorphism at the Self-Incompatibility Locus in 1,083 Arabidopsis thaliana Genomes. Mol Biol Evol 2018; 34:1878-1889. [PMID: 28379456 PMCID: PMC5850868 DOI: 10.1093/molbev/msx122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although the transition to selfing in the model plant Arabidopsis thaliana involved the loss of the self-incompatibility (SI) system, it clearly did not occur due to the fixation of a single inactivating mutation at the locus determining the specificities of SI (the S-locus). At least three groups of divergent haplotypes (haplogroups), corresponding to ancient functional S-alleles, have been maintained at this locus, and extensive functional studies have shown that all three carry distinct inactivating mutations. However, the historical process of loss of SI is not well understood, in particular its relation with the last glaciation. Here, we took advantage of recently published genomic resequencing data in 1,083 Arabidopsis thaliana accessions that we combined with BAC sequencing to obtain polymorphism information for the whole S-locus region at a species-wide scale. The accessions differed by several major rearrangements including large deletions and interhaplogroup recombinations, forming a set of haplogroups that are widely distributed throughout the native range and largely overlap geographically. “Relict” A. thaliana accessions that directly derive from glacial refugia are polymorphic at the S-locus, suggesting that the three haplogroups were already present when glacial refugia from the last Ice Age became isolated. Interhaplogroup recombinant haplotypes were highly frequent, and detailed analysis of recombination breakpoints suggested multiple independent origins. These findings suggest that the complete loss of SI in A. thaliana involved independent self-compatible mutants that arose prior to the last Ice Age, and experienced further rearrangements during postglacial colonization.
Collapse
Affiliation(s)
- Takashi Tsuchimatsu
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.,Department of Biology, Chiba University, Inage-ku, Chiba, Japan
| | | | - Sophie Gallina
- Université de Lille CNRS, UMR 8198-Evo-Eco-Paleo, Lille, France
| | | | - Isabelle Fobis-Loisy
- Reproduction et Développement des Plantes, Univ. Lyon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon I, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Hélène Bergès
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - William Marande
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Elisa Prat
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Dazhe Meng
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Quan Long
- Department of Biochemistry and Molecular Biology & Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alexander Platzer
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Xavier Vekemans
- Université de Lille CNRS, UMR 8198-Evo-Eco-Paleo, Lille, France
| | - Vincent Castric
- Université de Lille CNRS, UMR 8198-Evo-Eco-Paleo, Lille, France
| |
Collapse
|
50
|
Ray HA, Stuhl CJ, Gillett-Kaufman JL. Floral fragrance analysis of Prosthechea cochleata (Orchidaceae), an endangered native, epiphytic orchid, in Florida. PLANT SIGNALING & BEHAVIOR 2018; 13:e1422461. [PMID: 29297748 PMCID: PMC5790404 DOI: 10.1080/15592324.2017.1422461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
South Florida is home to a number of native species of orchids. The Florida Panther National Wildlife Refuge has 27 known species, including Prosthechea cochleata, the clamshell orchid, which is listed as endangered on Florida's Regulated Plant Index. In a prior study done on this species in Mexico, P. cochleata was found to produce no floral fragrance at the particular study location. However, blooming orchids of this species at the University of Florida in Gainesville, were noted to be fragrant. In this paper, we document the presence of floral fragrance compounds from P. cochleata by using by gas chromatography mass spectrometry (GC/MS) analysis of headspace volatile collection. The orchids sampled were found to be consistently producing eight volatiles that are common in floral fragrances, including those of previous orchid species studied. By knowing the fragrance compounds produced, we can better understand the pollination biology of this endangered orchid. This information could be used to help future conservation efforts for P. cochelata by increasing pollination and subsequent seed capsule production.
Collapse
Affiliation(s)
- Haleigh A. Ray
- 1881 Natural Area Drive, Steinmetz Hall, Entomology and Nematology Department, University of Florida, Gainesville, FL
| | - Charles J. Stuhl
- Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service U.S. Department of Agriculture, Gainesville, FL
| | - Jennifer L. Gillett-Kaufman
- 1881 Natural Area Drive, Steinmetz Hall, Entomology and Nematology Department, University of Florida, Gainesville, FL
| |
Collapse
|