1
|
Murawska-Wlodarczyk K, van der Ent A, Wlodarczyk T, Słomka A, Paterson DJ, Brueckner D, Przybyłowicz WJ, Mesjasz-Przybyłowicz J, Ryan CC, Maier RM, Babst-Kostecka A. Habitat-specific allocations of elements in Atriplex lentiformis seeds indicate adaptation to metal toxicity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5076-5090. [PMID: 38761108 DOI: 10.1093/jxb/erae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
Self-sustaining vegetation in metal-contaminated areas is essential for rebuilding ecological resilience and community stability in degraded lands. Metal-tolerant plants originating from contaminated post-mining areas may hold the key to successful plant establishment and growth. Yet, little is known about the impact of metal toxicity on reproductive strategies, metal accumulation, and allocation patterns at the seed stage. Our research focused on the metal tolerant Atriplex lentiformis. Specifically, we examined the effects of toxic metal(loid) concentration in soils on variability in its reproductive strategies, including germination patterns, elemental uptake, and allocation within the seeds. We employed advanced imaging techniques like synchrotron X-ray fluorescence microscopy (2D scans and 3D tomograms) combined with inductively coupled plasma mass spectrometry to reveal significant differences in metal(loid) concentration and distribution within the seed structures of A. lentiformis from contrasting habitats. Exclusive Zn hotspots of high concentrations were found in the seeds of the metallicolous accession, primarily in the sensitive tissues of shoot apical meristems and root zones of the seed embryos. Our findings offer novel insights into phenotypic variability and metal tolerance and accumulation in plants from extreme environments. This knowledge can be applied to enhance plant survival and performance in land restoration efforts.
Collapse
Affiliation(s)
| | - Antony van der Ent
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, Queensland, Australia
- Laboratoire Sols et Environnement, INRAE, Université de Lorraine, Nancy, France
| | - Tomasz Wlodarczyk
- Department of Environmental Science, The University of Arizona, Tucson, AZ, USA
| | - Aneta Słomka
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | | | | | - Wojciech J Przybyłowicz
- AGH University of Science and Technology, Faculty of Physics & Applied Computer Science, Krakow, Poland
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | | | - Chris C Ryan
- CSIRO, Mineral Resources, Clayton, Victoria, Australia
| | - Raina M Maier
- Department of Environmental Science, The University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
2
|
Goudard L, Blaudez D, Sirguey C, Purwadi I, Invernon V, Rouhan G, van der Ent A. Prospecting for rare earth element (hyper)accumulators in the Paris Herbarium using X-ray fluorescence spectroscopy reveals new distributional and taxon discoveries. ANNALS OF BOTANY 2024; 133:573-584. [PMID: 38310542 PMCID: PMC11037481 DOI: 10.1093/aob/mcae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/02/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Rare earth elements (REEs) are increasingly crucial for modern technologies. Plants could be used as a biogeochemical pathfinder and a tool to extract REEs from deposits. However, a paucity of information on suitable plants for these tasks exists. METHODS We aimed to discover new REE-(hyper)accumulating plant species by performing an X-ray fluorescence (XRF) survey at the Herbarium of the Muséum national d'Histoire naturelle (MNHN, Paris, France). We selected specific families based on the likelihood of containing REE-hyperaccumulating species, using known taxa that accumulate REEs. A total of 4425 specimens, taken in the two main evolutionary lineages of extant vascular plants, were analysed, including the two fern families Blechnaceae (n = 561) and Gleicheniaceae (n = 1310), and the two flowering plant families Phytolaccaceae (n = 1137) and Juglandaceae (n = 1417). KEY RESULTS Yttrium (Y) was used as a proxy for REEs for methodological reasons, and a total of 268 specimens belonging to the genera Blechnopsis (n = 149), Dicranopteris (n = 75), Gleichenella (n = 32), Phytolacca (n = 6), Carya (n = 4), Juglans (n = 1) and Sticherus (n = 1) were identified with Y concentrations ranging from the limit of detection (LOD) >49 µg g-1 up to 1424 µg g-1. Subsequently, analysis of fragments of selected specimens by inductively coupled plasma atomic emission spectroscopy (ICP-AES) revealed that this translated to up to 6423 µg total REEs g-1 in Dicranopteris linearis and up to 4278 µg total REEs g-1 in Blechnopsis orientalis which are among the highest values ever recorded for REE hyperaccumulation in plants. It also proved the validity of Y as an indicator for REEs in XRF analysis of herbarium specimens. The presence of manganese (Mn) and zinc (Zn) was also studied by XRF in the selected specimens. Mn was detected in 1440 specimens ranging from the detection limit at 116 µg g-1 up to 3807 µg g-1 whilst Zn was detected in 345 specimens ranging from the detection limit at 77 µg g-1 up to 938 µg g-1. CONCLUSIONS AND IMPLICATIONS This study led to the discovery of REE accumulation in a range of plant species, substantially higher concentrations in species known to be REE hyperaccumulators, and records of REE hyperaccumulators outside of the well-studied populations in China.
Collapse
Affiliation(s)
- Léo Goudard
- Université de Lorraine, INRAE, LSE, F-54000, Nancy, France
| | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
| | | | - Imam Purwadi
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Vanessa Invernon
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, École Pratique des Hautes Études, Université des Antilles, Paris, France
| | - Germinal Rouhan
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, École Pratique des Hautes Études, Université des Antilles, Paris, France
| | - Antony van der Ent
- Université de Lorraine, INRAE, LSE, F-54000, Nancy, France
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Dean MC, Garrevoet J, Van Malderen SJM, Santos F, Mirazón Lahr M, Foley R, Le Cabec A. The Distribution and Biogenic Origins of Zinc in the Mineralised Tooth Tissues of Modern and Fossil Hominoids: Implications for Life History, Diet and Taphonomy. BIOLOGY 2023; 12:1455. [PMID: 38132281 PMCID: PMC10740576 DOI: 10.3390/biology12121455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 12/23/2023]
Abstract
Zinc is incorporated into enamel, dentine and cementum during tooth growth. This work aimed to distinguish between the processes underlying Zn incorporation and Zn distribution. These include different mineralisation processes, the physiological events around birth, Zn ingestion with diet, exposure to the oral environment during life and diagenetic changes to fossil teeth post-mortem. Synchrotron X-ray Fluorescence (SXRF) was used to map zinc distribution across longitudinal polished ground sections of both deciduous and permanent modern human, great ape and fossil hominoid teeth. Higher resolution fluorescence intensity maps were used to image Zn in surface enamel, secondary dentine and cementum, and at the neonatal line (NNL) and enamel-dentine-junction (EDJ) in deciduous teeth. Secondary dentine was consistently Zn-rich, but the highest concentrations of Zn (range 197-1743 ppm) were found in cuspal, mid-lateral and cervical surface enamel and were similar in unerupted teeth never exposed to the oral environment. Zinc was identified at the NNL and EDJ in both modern and fossil deciduous teeth. In fossil specimens, diagenetic changes were identified in various trace element distributions but only demineralisation appeared to markedly alter Zn distribution. Zinc appears to be tenacious and stable in fossil tooth tissues, especially in enamel, over millions of years.
Collapse
Affiliation(s)
- M. Christopher Dean
- Centre for Human Evolution Research, Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany; (J.G.); (S.J.M.V.M.)
| | - Stijn J. M. Van Malderen
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany; (J.G.); (S.J.M.V.M.)
| | - Frédéric Santos
- Univ. Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR 5199, F-33600 Pessac, France; (F.S.); (A.L.C.)
| | - Marta Mirazón Lahr
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, Fitzwilliam Street, Cambridge CB2 1QH, UK; (M.M.L.); (R.F.)
| | - Robert Foley
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, Fitzwilliam Street, Cambridge CB2 1QH, UK; (M.M.L.); (R.F.)
| | - Adeline Le Cabec
- Univ. Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR 5199, F-33600 Pessac, France; (F.S.); (A.L.C.)
| |
Collapse
|
4
|
Jakovljević K, Mišljenović T, Bačeva Andonovska K, Echevarria G, Baker AJM, Brueckner D, van der Ent A. Thallium hyperaccumulation status of the violets of the Allchar arsenic-thallium deposit (North Macedonia) confirmed through synchrotron µXRF imaging. Metallomics 2023; 15:mfad063. [PMID: 37849236 PMCID: PMC10639103 DOI: 10.1093/mtomcs/mfad063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
The abandoned Allchar Mine in the Republic of North Macedonia is a globally unique deposit with the highest known grades of thallium (Tl) and arsenic (As) mineralization. We aimed to determine the distribution of As and Tl in whole dehydrated shoots of the three Viola taxa using synchrotron micro-X-ray fluorescence analysis. Additionally, soil and plant organ samples were collected from all three Viola taxa at the Allchar site and analysed using inductively coupled plasma-atomic emission spectrometry. Concentrations of Tl were extremely high in all three Viola taxa (up to 58 900 mg kg-1), but concentrations of As were highly variable with V. tricolor subsp. macedonica and V. allchariensis having low As (up to 20.2 and 26.3 mg kg-1, respectively) and V. arsenica having the highest concentrations (up to 381 mg kg-1). The extremely high Tl in all three species is endogenous and not a result of contamination. Arsenic in V. tricolor subsp. macedonica and V. allcharensis is strongly affected by contamination, but not in V. arsenica where it appears to be endogenous. The pattern of As enrichment in V. arsenica is very unusual and coincides with Ca-oxalate deposits and Br hotspots. The results of this study could form the basis for more detailed investigations under controlled conditions, including plant dosing experiments.
Collapse
Affiliation(s)
- Ksenija Jakovljević
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Tomica Mišljenović
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Katerina Bačeva Andonovska
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Guillaume Echevarria
- Université de Lorraine, INRAE, LSE, F-54000, Nancy, France
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, Australia
- Econick, Nancy, France
| | - Alan J M Baker
- Université de Lorraine, INRAE, LSE, F-54000, Nancy, France
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, Australia
- Econick, Nancy, France
| | | | - Antony van der Ent
- Université de Lorraine, INRAE, LSE, F-54000, Nancy, France
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, Australia
- Econick, Nancy, France
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
5
|
van der Ent A, Salinitro M, Brueckner D, Spiers KM, Montanari S, Tassoni A, Schiavon M. Differences and similarities in selenium biopathways in Astragalus, Neptunia (Fabaceae) and Stanleya (Brassicaceae) hyperaccumulators. ANNALS OF BOTANY 2023; 132:349-361. [PMID: 37602676 PMCID: PMC10583200 DOI: 10.1093/aob/mcad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND AND AIMS Selenium hyperaccumulator species are of primary interest for studying the evolution of hyperaccumulation and for use in biofortification because selenium is an essential element in human nutrition. In this study, we aimed to determine whether the distributions of selenium in the three most studied hyperaccumulating taxa (Astragalus bisulcatus, Stanleya pinnata and Neptunia amplexicaulis) are similar or contrasting, in order to infer the underlying physiological mechanisms. METHODS This study used synchrotron-based micro-X-ray fluorescence (µXRF) techniques to visualize the distribution of selenium and other elements in fresh hydrated plant tissues of A. racemosus, S. pinnata and N. amplexicaulis. KEY RESULTS Selenium distribution differed widely in the three species: in the leaves of A. racemosus and N. amplexicaulis selenium was mainly concentrated in the pulvini, whereas in S. pinnata it was primarilylocalized in the leaf margins. In the roots and stems of all three species, selenium was absent in xylem cells, whereas it was particularly concentrated in the pith rays of S. pinnata and in the phloem cells of A. racemosus and N. amplexicaulis. CONCLUSIONS This study shows that Astragalus, Stanleya and Neptunia have different selenium-handling physiologies, with different mechanisms for translocation and storage of excess selenium. Important dissimilarities among the three analysed species suggest that selenium hyperaccumulation has probably evolved multiple times over under similar environmental pressures in the US and Australia.
Collapse
Affiliation(s)
- Antony van der Ent
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, Australia
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France
| | - Mirko Salinitro
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | | | - Sofia Montanari
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Annalisa Tassoni
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Michela Schiavon
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Turin, Italy
| |
Collapse
|
6
|
Chua JQI, Christensen TEK, Palle J, Wittig NK, Grünewald TA, Garrevoet J, Spiers KM, Castillo-Michel H, Schramm A, Chien WL, Sobota RM, Birkedal H, Miserez A. Biomineralization of mantis shrimp dactyl club following molting: Apatite formation and brominated organic components. Acta Biomater 2023; 170:479-495. [PMID: 37659728 DOI: 10.1016/j.actbio.2023.08.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
The stomatopod Odontodactylus scyllarus uses weaponized club-like appendages to attack its prey. These clubs are made of apatite, chitin, amorphous calcium carbonate, and amorphous calcium phosphate organized in a highly hierarchical structure with multiple regions and layers. We follow the development of the biomineralized club as a function of time using clubs harvested at specific times since molting. The clubs are investigated using a broad suite of techniques to unravel the biomineralization history of the clubs. Nano focus synchrotron x-ray diffraction and x-ray fluorescence experiments reveal that the club structure is more organized with more sub-regions than previously thought. The recently discovered impact surface has crystallites in a different size and orientation than those in the impact region. The crystal unit cell parameters vary to a large degree across individual samples, which indicates a spatial variation in the degree of chemical substitution. Energy dispersive spectroscopy and Raman spectroscopy show that this variation cannot be explained by carbonation and fluoridation of the lattice alone. X-ray fluorescence and mass spectroscopy show that the impact surface is coated with a thin membrane rich in bromine that forms at very initial stages of club formation. Proteomic studies show that a fraction of the club mineralization protein-1 has brominated tyrosine suggesting that bromination of club proteins at the club surface is an integral component of the club design. Taken together, the data unravel the spatio-temporal changes in biomineral structure during club formation. STATEMENT OF SIGNIFICANCE: Mantis shrimp hunt using club-like appendages that contain apatite, chitin, amorphous calcium carbonate, and amorphous calcium phosphate ordered in a highly hierarchical structure. To understand the formation process of the club we analyze clubs harvested at specific times since molting thereby constructing a club formation map. By combining several methods ranging from position resolved synchrotron X-ray diffraction to proteomics, we reveal that clubs form from an organic membrane with brominated protein and that crystalline apatite phases are present from the very onset of club formation and grow in relative importance over time. This reveals a complex biomineralization process leading to these fascinating biomineralized tools.
Collapse
Affiliation(s)
- Jia Qing Isaiah Chua
- Biological and Biomimetic Materials Laboratory, Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798, Singapore
| | - Thorbjørn Erik Køppen Christensen
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences
| | - Jonas Palle
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Nina Kølln Wittig
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Tilman A Grünewald
- European Synchrotron Radiation Facility (ESRF), Avenue des Martyrs 71, 38000 Grenoble, France
| | - Jan Garrevoet
- Deutsches Elektronen Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
| | - Kathryn M Spiers
- Deutsches Elektronen Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
| | - Hiram Castillo-Michel
- European Synchrotron Radiation Facility (ESRF), Avenue des Martyrs 71, 38000 Grenoble, France
| | - Andreas Schramm
- Department of Biology, Section for Microbiology and Center for Electromicrobiology, Aarhus University, Aarhus, DK-8000, Denmark
| | - Wang Loo Chien
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Singapore
| | - Henrik Birkedal
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Ali Miserez
- Biological and Biomimetic Materials Laboratory, Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798, Singapore; School of Biological Sciences, NTU, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
7
|
van der Ent A, Brueckner D, Spiers KM, Falch KV, Falkenberg G, Layet C, Liu WS, Zheng HX, Le Jean M, Blaudez D. High-energy interference-free K-lines synchrotron X-ray fluorescence microscopy of rare earth elements in hyperaccumulator plants. Metallomics 2023; 15:mfad050. [PMID: 37591604 PMCID: PMC10496025 DOI: 10.1093/mtomcs/mfad050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
Synchrotron-based micro-X-ray fluorescence analysis (µXRF) is a nondestructive and highly sensitive technique. However, element mapping of rare earth elements (REEs) under standard conditions requires care, since energy-dispersive detectors are not able to differentiate accurately between REEs L-shell X-ray emission lines overlapping with K-shell X-ray emission lines of common transition elements of high concentrations. We aim to test REE element mapping with high-energy interference-free excitation of the REE K-lines on hyperaccumulator plant tissues and compare with measurements with REE L-shell excitation at the microprobe experiment of beamline P06 (PETRA III, DESY). A combination of compound refractive lens optics (CRLs) was used to obtain a micrometer-sized focused incident beam with an energy of 44 keV and an extra-thick silicon drift detector optimized for high-energy X-ray detection to detect the K-lines of yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd) without any interferences due to line overlaps. High-energy excitation from La to Nd in the hyperaccumulator organs was successful but compared to L-line excitation less efficient and therefore slow (∼10-fold slower than similar maps at lower incident energy) due to lower flux and detection efficiency. However, REE K-lines do not suffer significantly from self-absorption, which makes XRF tomography of millimeter-sized frozen-hydrated plant samples possible. The K-line excitation of REEs at the P06 CRL setup has scope for application in samples that are particularly prone to REE interfering elements, such as soil samples with high concomitant Ti, Cr, Fe, Mn, and Ni concentrations.
Collapse
Affiliation(s)
- Antony van der Ent
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France
- Laboratory of Genetics, Wageningen University and Research, The Netherlands
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Australia
| | | | | | | | | | - Clément Layet
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
| | - Wen-Shen Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, China
| | - Hong-Xiang Zheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, China
| | | | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
| |
Collapse
|
8
|
Le Jean M, Montargès-Pelletier E, Rivard C, Grosjean N, Chalot M, Vantelon D, Spiers KM, Blaudez D. Locked up Inside the Vessels: Rare Earth Elements Are Transferred and Stored in the Conductive Tissues of the Accumulating Fern Dryopteris erythrosora. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2768-2778. [PMID: 36752569 DOI: 10.1021/acs.est.2c06985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rare earth elements (REEs) are strategic metals strongly involved in low-carbon energy conversion. However, these emerging contaminants are increasingly disseminated into ecosystems, raising concern regarding their toxicity. REE-accumulating plants are crucial subjects to better understand REE transfer to the trophic chain but are also promising phytoremediation tools. In this analysis, we deciphered REE accumulation sites in the REE-accumulating fern Dryopteris erythrosora by synchrotron X-ray μfluorescence (μXRF). This technique allows a high-resolution and in situ analysis of fresh samples or frozen-hydrated cross sections of different organs of the plant. In the sporophyte, REEs were translocated from the roots to the fronds by the xylem sap and were stored within the xylem conductive system. The comparison of REE distribution and accumulation levels in the healthy and necrotic parts of the frond shed light on the differential mobility between light and heavy REEs. Furthermore, the comparison emphasized that necrotized areas were not the main REE-accumulating sites. Finally, the absence of cell-to-cell mobility of REEs in the gametophyte suggested the absence of REE-compatible transporters in photosynthetic tissues. These results provide valuable knowledge on the physiology of REE-accumulating ferns to understand the REE cycle in biological systems and the expansion of phytotechnologies for REE-enriched or REE-contaminated soils.
Collapse
Affiliation(s)
- Marie Le Jean
- Université de Lorraine, CNRS, LIEC, Metz F-57000, France
| | | | - Camille Rivard
- Synchrotron SOLEIL, Saint-Aubin F-91190, France
- INRAE, TRANSFORM, Nantes F-44300, France
| | - Nicolas Grosjean
- Université de Lorraine, CNRS, LIEC, Metz F-57000, France
- Université de Lorraine, CNRS, LIEC, Nancy F-54000, France
| | - Michel Chalot
- Université de Franche-Comté, CNRS, Laboratoire Chrono-Environnement, Besançon F-25000, France
- Université de Lorraine, Nancy F-54000, France
| | | | | | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, Nancy F-54000, France
| |
Collapse
|
9
|
Spiers KM, Brueckner D, Garrevoet J, Falkenberg G, van der Ent A. Synchrotron XFM tomography for elucidating metals and metalloids in hyperaccumulator plants. Metallomics 2022; 14:mfac069. [PMID: 36099903 PMCID: PMC9683111 DOI: 10.1093/mtomcs/mfac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/20/2022] [Indexed: 11/14/2022]
Abstract
Visualizing the endogenous distribution of elements within plant organs affords key insights in the regulation of trace elements in plants. Hyperaccumulators have extreme metal(loid) concentrations in their tissues, which make them useful models for studying metal(loid) homeostasis in plants. X-ray-based methods allow for the nondestructive analysis of most macro and trace elements with low limits of detection. However, observing the internal distributions of elements within plant organs still typically requires destructive sample preparation methods, including sectioning, for synchrotron X-ray fluorescence microscopy (XFM). X-ray fluorescence microscopy-computed tomography (XFM-CT) enables "virtual sectioning" of a sample thereby entirely avoiding artefacts arising from destructive sample preparation. The method can be used on frozen-hydrated samples, as such preserving "life-like" conditions. Absorption and Compton scattering maps obtained from synchrotron XFM-CT offer exquisite detail on structural features that can be used in concert with elemental data to interpret the results. In this article we introduce the technique and use it to reveal the internal distribution of hyperaccumulated elements in hyperaccumulator plant species. XFM-CT can be used to effectively probe the distribution of a range of different elements in plant tissues/organs, which has wide ranging applications across the plant sciences.
Collapse
Affiliation(s)
| | - Dennis Brueckner
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Physics, University of Hamburg, Hamburg, Germany
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | | | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, Australia
| |
Collapse
|
10
|
Obtel N, Le Cabec A, Nguyen TN, Giabicani E, Van Malderen SJM, Garrevoet J, Percot A, Paris C, Dean C, Hadj‐Rabia S, Houillier P, Breiderhoff T, Bardet C, Coradin T, Ramirez Rozzi F, Chaussain C. Impact of claudin-10 deficiency on amelogenesis: Lesson from a HELIX tooth. Ann N Y Acad Sci 2022; 1516:197-211. [PMID: 35902997 PMCID: PMC9796262 DOI: 10.1111/nyas.14865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In epithelia, claudin proteins are important components of the tight junctions as they determine the permeability and specificity to ions of the paracellular pathway. Mutations in CLDN10 cause the rare autosomal recessive HELIX syndrome (Hypohidrosis, Electrolyte imbalance, Lacrimal gland dysfunction, Ichthyosis, and Xerostomia), in which patients display severe enamel wear. Here, we assess whether this enamel wear is caused by an innate fragility directly related to claudin-10 deficiency in addition to xerostomia. A third molar collected from a female HELIX patient was analyzed by a combination of microanatomical and physicochemical approaches (i.e., electron microscopy, elemental mapping, Raman microspectroscopy, and synchrotron-based X-ray fluorescence). The enamel morphology, formation time, organization, and microstructure appeared to be within the natural variability. However, we identified accentuated strontium variations within the HELIX enamel, with alternating enrichments and depletions following the direction of the periodical striae of Retzius. These markings were also present in dentin. These data suggest that the enamel wear associated with HELIX may not be related to a disruption of enamel microstructure but rather to xerostomia. However, the occurrence of events of strontium variations within dental tissues might indicate repeated episodes of worsening of the renal dysfunction that may require further investigations.
Collapse
Affiliation(s)
- Nicolas Obtel
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance,AP‐HP Services de médecine bucco‐dentaire, Hôpitaux Universitaires Bretonneau (CRMR phosphore et calcium, filière OSCAR et ERN Bond) and Charles Foix, FHU DDS‐netIle de FranceFrance
| | - Adeline Le Cabec
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199PessacFrance,Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Thè Nghia Nguyen
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance
| | - Eloise Giabicani
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance
| | | | | | - Aline Percot
- Sorbonne Université, CNRS, De la Molécule aux Nano‐Objets: Réactivité, Interactions et Spectroscopies (MONARIS)ParisFrance
| | - Céline Paris
- Sorbonne Université, CNRS, De la Molécule aux Nano‐Objets: Réactivité, Interactions et Spectroscopies (MONARIS)ParisFrance
| | - Christopher Dean
- Department of Earth Sciences, Centre for Human Evolution ResearchNatural History MuseumLondonUK,Department of Cell and Developmental BiologyUniversity College LondonLondonUK
| | - Smail Hadj‐Rabia
- Université Paris Cité, INSERM1163 Institut Imagine; APHP, Hôpital Necker‐Enfants Malades, Department of Dermatology, Reference Center for Rare Skin DiseasesParisFrance
| | - Pascal Houillier
- Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM, CNRS‐ERL8228ParisFrance,APHP, Service de Physiologie, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Européen Georges PompidouParisFrance
| | - Tilman Breiderhoff
- Charité Universitaetsmedizin Berlin, Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of PediatricsBerlinGermany
| | - Claire Bardet
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de ParisParisFrance
| | - Fernando Ramirez Rozzi
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance,Eco‐anthropologie (EA), Muséum national d'Histoire naturelle, CNRSUniversité de ParisParisFrance
| | - Catherine Chaussain
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance,AP‐HP Services de médecine bucco‐dentaire, Hôpitaux Universitaires Bretonneau (CRMR phosphore et calcium, filière OSCAR et ERN Bond) and Charles Foix, FHU DDS‐netIle de FranceFrance
| |
Collapse
|
11
|
Rossbach LM, Brede DA, Nuyts G, Cagno S, Olsson RMS, Oughton DH, Falkenberg G, Janssens K, Lind OC. Synchrotron XRF Analysis Identifies Cerium Accumulation Colocalized with Pharyngeal Deformities in CeO 2 NP-Exposed Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5081-5089. [PMID: 35378039 PMCID: PMC9022427 DOI: 10.1021/acs.est.1c08509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
A combination of synchrotron radiation-based elemental imaging, in vivo redox status analysis, histology, and toxic responses was used to investigate the uptake, biodistribution, and adverse effects of Ce nanoparticles (CeO2 NP; 10 nm; 0.5-34.96 mg Ce L-1) or Ce(NO3)3 (2.3-26 mg Ce L-1) in Caenorhabditis elegans. Elemental mapping of the exposed nematodes revealed Ce uptake in the alimentary canal prior to depuration. Retention of CeO2 NPs was low compared to that of Ce(NO3)3 in depurated individuals. X-ray fluorescence (XRF) mapping showed that Ce translocation was confined to the pharyngeal valve and foregut. Ce(NO3)3 exposure significantly decreased growth, fertility, and reproduction, caused slightly reduced fecundity. XRF mapping and histological analysis revealed severe tissue deformities colocalized with retained Ce surrounding the pharyngeal valve. Both forms of Ce activated the sod-1 antioxidant defense, particularly in the pharynx, whereas no significant effects on the cellular redox balance were identified. The CeO2 NP-induced deformities did not appear to impair the pharyngeal function or feeding ability as growth effects were restricted to Ce(NO3)3 exposure. The results demonstrate the utility of integrated submicron-resolution SR-based XRF elemental mapping of tissue-specific distribution and adverse effect analysis to obtain robust toxicological evaluations of metal-containing contaminants.
Collapse
Affiliation(s)
- Lisa Magdalena Rossbach
- Faculty
of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. BOX 5003 NMBU, No-1432 Ås, Norway
- Centre
for Environmental Radioactivity (CERAD CoE), Faculty of Environmental
Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Dag Anders Brede
- Faculty
of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. BOX 5003 NMBU, No-1432 Ås, Norway
- Centre
for Environmental Radioactivity (CERAD CoE), Faculty of Environmental
Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Gert Nuyts
- Faculty
of Science, AXIS Research group, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
| | - Simone Cagno
- Faculty
of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. BOX 5003 NMBU, No-1432 Ås, Norway
- Centre
for Environmental Radioactivity (CERAD CoE), Faculty of Environmental
Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Ragni Maria Skjervold Olsson
- Faculty
of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. BOX 5003 NMBU, No-1432 Ås, Norway
- Faculty
of Natural Sciences, Norwegian University
of Science and Technology, P.O. Box 8900, No-7491 Trondheim, Torgarden, Norway
| | - Deborah Helen Oughton
- Faculty
of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. BOX 5003 NMBU, No-1432 Ås, Norway
- Centre
for Environmental Radioactivity (CERAD CoE), Faculty of Environmental
Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Gerald Falkenberg
- Photon
Science, Deutsches Elektronen-Synchrotron
DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Koen Janssens
- Faculty
of Science, AXIS Research group, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
| | - Ole Christian Lind
- Faculty
of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. BOX 5003 NMBU, No-1432 Ås, Norway
- Centre
for Environmental Radioactivity (CERAD CoE), Faculty of Environmental
Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
12
|
Veselý M, Valadian R, Lohse LM, Toepperwien M, Spiers K, Garrevoet J, Vogt ETC, Salditt T, Weckhuysen BM, Meirer F. 3‐D X‐ray Nanotomography Reveals Different Carbon Deposition Mechanisms in a Single Catalyst Particle. ChemCatChem 2021. [DOI: 10.1002/cctc.202100276] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Martin Veselý
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Roozbeh Valadian
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Leon Merten Lohse
- Institute for X-ray Physics University of Göttingen Friedrich-Hund-Platz 1 37077 Göttingen Germany
| | - Mareike Toepperwien
- Institute for X-ray Physics University of Göttingen Friedrich-Hund-Platz 1 37077 Göttingen Germany
| | - Kathryn Spiers
- Deutsches Elektronen-Synchrotron DESY Notkestrasse 85 22607 Hamburg Germany
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY Notkestrasse 85 22607 Hamburg Germany
| | - Eelco T. C. Vogt
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Albemarle Catalysts Company BV Research Center Amsterdam PO box 37650 1030 BE Amsterdam The Netherlands
| | - Tim Salditt
- Institute for X-ray Physics University of Göttingen Friedrich-Hund-Platz 1 37077 Göttingen Germany
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
13
|
Sanchez-Cano C, Alvarez-Puebla RA, Abendroth JM, Beck T, Blick R, Cao Y, Caruso F, Chakraborty I, Chapman HN, Chen C, Cohen BE, Conceição ALC, Cormode DP, Cui D, Dawson KA, Falkenberg G, Fan C, Feliu N, Gao M, Gargioni E, Glüer CC, Grüner F, Hassan M, Hu Y, Huang Y, Huber S, Huse N, Kang Y, Khademhosseini A, Keller TF, Körnig C, Kotov NA, Koziej D, Liang XJ, Liu B, Liu S, Liu Y, Liu Z, Liz-Marzán LM, Ma X, Machicote A, Maison W, Mancuso AP, Megahed S, Nickel B, Otto F, Palencia C, Pascarelli S, Pearson A, Peñate-Medina O, Qi B, Rädler J, Richardson JJ, Rosenhahn A, Rothkamm K, Rübhausen M, Sanyal MK, Schaak RE, Schlemmer HP, Schmidt M, Schmutzler O, Schotten T, Schulz F, Sood AK, Spiers KM, Staufer T, Stemer DM, Stierle A, Sun X, Tsakanova G, Weiss PS, Weller H, Westermeier F, Xu M, Yan H, Zeng Y, Zhao Y, Zhao Y, Zhu D, Zhu Y, Parak WJ. X-ray-Based Techniques to Study the Nano-Bio Interface. ACS NANO 2021; 15:3754-3807. [PMID: 33650433 PMCID: PMC7992135 DOI: 10.1021/acsnano.0c09563] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/25/2021] [Indexed: 05/03/2023]
Abstract
X-ray-based analytics are routinely applied in many fields, including physics, chemistry, materials science, and engineering. The full potential of such techniques in the life sciences and medicine, however, has not yet been fully exploited. We highlight current and upcoming advances in this direction. We describe different X-ray-based methodologies (including those performed at synchrotron light sources and X-ray free-electron lasers) and their potentials for application to investigate the nano-bio interface. The discussion is predominantly guided by asking how such methods could better help to understand and to improve nanoparticle-based drug delivery, though the concepts also apply to nano-bio interactions in general. We discuss current limitations and how they might be overcome, particularly for future use in vivo.
Collapse
Affiliation(s)
- Carlos Sanchez-Cano
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| | - Ramon A. Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís
Companys 23, 08010 Barcelona, Spain
| | - John M. Abendroth
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Tobias Beck
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Robert Blick
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Cao
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Frank Caruso
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Indranath Chakraborty
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Henry N. Chapman
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Centre
for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunying Chen
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Bruce E. Cohen
- The
Molecular Foundry and Division of Molecular Biophysics and Integrated
Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - David P. Cormode
- Radiology
Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daxiang Cui
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Gerald Falkenberg
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Neus Feliu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Mingyuan Gao
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elisabetta Gargioni
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claus-C. Glüer
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Florian Grüner
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Moustapha Hassan
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yalan Huang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Samuel Huber
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nils Huse
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yanan Kang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90049, United States
| | - Thomas F. Keller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Christian Körnig
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan
Institute for Translational Nanotechnology (MITRAN), Ypsilanti, Michigan 48198, United States
| | - Dorota Koziej
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Xing-Jie Liang
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Beibei Liu
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Yang Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ziyao Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Centro de Investigación Biomédica
en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramon 182, 20014 Donostia-San Sebastián, Spain
| | - Xiaowei Ma
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Andres Machicote
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wolfgang Maison
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La
Trobe Institute for Molecular
Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Saad Megahed
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Bert Nickel
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Ferdinand Otto
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Cristina Palencia
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Arwen Pearson
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Oula Peñate-Medina
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Bing Qi
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Joachim Rädler
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Joseph J. Richardson
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Axel Rosenhahn
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Rübhausen
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Raymond E. Schaak
- Department of Chemistry, Department of Chemical Engineering,
and
Materials Research Institute, The Pennsylvania
State University, University Park, Pensylvania 16802, United States
| | - Heinz-Peter Schlemmer
- Department of Radiology, German Cancer
Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marius Schmidt
- Department of Physics, University
of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Oliver Schmutzler
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Florian Schulz
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - A. K. Sood
- Department of Physics, Indian Institute
of Science, Bangalore 560012, India
| | - Kathryn M. Spiers
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Theresa Staufer
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik M. Stemer
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Andreas Stierle
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Xing Sun
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Molecular Science and Biomedicine Laboratory (MBL) State
Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Gohar Tsakanova
- Institute of Molecular Biology of National
Academy of Sciences of
Republic of Armenia, 7 Hasratyan str., 0014 Yerevan, Armenia
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040 Yerevan, Armenia
| | - Paul S. Weiss
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Horst Weller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Huijie Yan
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Zeng
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhao
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yuliang Zhao
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Dingcheng Zhu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhu
- Bioimaging Center, Shanghai Synchrotron Radiation Facility,
Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Division of Physical Biology, CAS Key Laboratory
of Interfacial
Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Wolfgang J. Parak
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Dean C, Zanolli C, Le Cabec A, Tawane M, Garrevoet J, Mazurier A, Macchiarelli R. Growth and development of the third permanent molar in Paranthropus robustus from Swartkrans, South Africa. Sci Rep 2020; 10:19053. [PMID: 33149180 PMCID: PMC7642444 DOI: 10.1038/s41598-020-76032-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 11/24/2022] Open
Abstract
Third permanent molars (M3s) are the last tooth to form but have not been used to estimate age at dental maturation in early fossil hominins because direct histological evidence for the timing of their growth has been lacking. We investigated an isolated maxillary M3 (SK 835) from the 1.5 to 1.8-million-year-old (Mya) site of Swartkrans, South Africa, attributed to Paranthropus robustus. Tissue proportions of this specimen were assessed using 3D X-ray micro-tomography. Thin ground sections were used to image daily growth increments in enamel and dentine. Transmitted light microscopy and synchrotron X-ray fluorescence imaging revealed fluctuations in Ca concentration that coincide with daily growth increments. We used regional daily secretion rates and Sr marker-lines to reconstruct tooth growth along the enamel/dentine and then cementum/dentine boundaries. Cumulative growth curves for increasing enamel thickness and tooth height and age-of-attainment estimates for fractional stages of tooth formation differed from those in modern humans. These now provide additional means for assessing late maturation in early hominins. M3 formation took ≥ 7 years in SK 835 and completion of the roots would have occurred between 11 and 14 years of age. Estimated age at dental maturation in this fossil hominin compares well with what is known for living great apes.
Collapse
Affiliation(s)
- Christopher Dean
- Department of Earth Sciences, Natural History Museum, London, UK. .,Department of Cell and Developmental Biology, University College London, London, UK.
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, 33600 Pessac, France.,Department of Maxillofacial and Oral Surgery, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, South Africa
| | - Adeline Le Cabec
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, 33600 Pessac, France.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mirriam Tawane
- Ditsong National Museum of Natural History, Pretoria, South Africa
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Arnaud Mazurier
- IC2MP, UMR 7285 CNRS, Université de Poitiers, Poitiers, France
| | - Roberto Macchiarelli
- UMR 7194 CNRS, Muséum National D'Histoire Naturelle, Musée de L'Homme, Paris, France.,Unité de Formation Géosciences, Université de Poitiers, Poitiers, France
| |
Collapse
|
15
|
Dean MC, Le Cabec A, Van Malderen SJ, Garrevoet J. Synchrotron X-ray fluorescence imaging of strontium incorporated into the enamel and dentine of wild-shot orangutan canine teeth. Arch Oral Biol 2020; 119:104879. [DOI: 10.1016/j.archoralbio.2020.104879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/10/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
|
16
|
Bulin A, Broekgaarden M, Chaput F, Baisamy V, Garrevoet J, Busser B, Brueckner D, Youssef A, Ravanat J, Dujardin C, Motto‐Ros V, Lerouge F, Bohic S, Sancey L, Elleaume H. Radiation Dose-Enhancement Is a Potent Radiotherapeutic Effect of Rare-Earth Composite Nanoscintillators in Preclinical Models of Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001675. [PMID: 33101867 PMCID: PMC7578894 DOI: 10.1002/advs.202001675] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/16/2020] [Indexed: 05/20/2023]
Abstract
To improve the prognosis of glioblastoma, innovative radiotherapy regimens are required to augment the effect of tolerable radiation doses while sparing surrounding tissues. In this context, nanoscintillators are emerging radiotherapeutics that down-convert X-rays into photons with energies ranging from UV to near-infrared. During radiotherapy, these scintillating properties amplify radiation-induced damage by UV-C emission or photodynamic effects. Additionally, nanoscintillators that contain high-Z elements are likely to induce another, currently unexplored effect: radiation dose-enhancement. This phenomenon stems from a higher photoelectric absorption of orthovoltage X-rays by high-Z elements compared to tissues, resulting in increased production of tissue-damaging photo- and Auger electrons. In this study, Geant4 simulations reveal that rare-earth composite LaF3:Ce nanoscintillators effectively generate photo- and Auger-electrons upon orthovoltage X-rays. 3D spatially resolved X-ray fluorescence microtomography shows that LaF3:Ce highly concentrates in microtumors and enhances radiotherapy in an X-ray energy-dependent manner. In an aggressive syngeneic model of orthotopic glioblastoma, intracerebral injection of LaF3:Ce is well tolerated and achieves complete tumor remission in 15% of the subjects receiving monochromatic synchrotron radiotherapy. This study provides unequivocal evidence for radiation dose-enhancement by nanoscintillators, eliciting a prominent radiotherapeutic effect. Altogether, nanoscintillators have invaluable properties for enhancing the focal damage of radiotherapy in glioblastoma and other radioresistant cancers.
Collapse
Affiliation(s)
- Anne‐Laure Bulin
- Synchrotron Radiation for Biomedical Research (STROBE)UA7 INSERMUniversité Grenoble AlpesMedical Beamline at the European Synchrotron Radiation Facility71 Avenue des MartyrsGrenoble Cedex 938043France
| | - Mans Broekgaarden
- Synchrotron Radiation for Biomedical Research (STROBE)UA7 INSERMUniversité Grenoble AlpesMedical Beamline at the European Synchrotron Radiation Facility71 Avenue des MartyrsGrenoble Cedex 938043France
| | - Frédéric Chaput
- Université de LyonÉcole Normale Supérieure de LyonCNRS UMR 5182Université Claude Bernard Lyon 1Laboratoire de ChimieLyonF69342France
| | - Victor Baisamy
- Synchrotron Radiation for Biomedical Research (STROBE)UA7 INSERMUniversité Grenoble AlpesMedical Beamline at the European Synchrotron Radiation Facility71 Avenue des MartyrsGrenoble Cedex 938043France
| | - Jan Garrevoet
- Deutsches Elektronen‐Synchrotron DESYNotkestrasse 85HamburgDE‐22607Germany
| | - Benoît Busser
- Cancer Targets and Experimental TherapeuticsInstitute for Advanced BiosciencesUniversité Grenoble AlpesINSERM U1209CNRS UMR5309Allée des AlpesLa Tronche38700France
- Cancer Clinical LaboratoryGrenoble University HospitalGrenoble38700France
| | - Dennis Brueckner
- Deutsches Elektronen‐Synchrotron DESYNotkestrasse 85HamburgDE‐22607Germany
- Department PhysikUniversität HamburgLuruper Chaussee 149Hamburg22761Germany
| | - Antonia Youssef
- Synchrotron Radiation for Biomedical Research (STROBE)UA7 INSERMUniversité Grenoble AlpesMedical Beamline at the European Synchrotron Radiation Facility71 Avenue des MartyrsGrenoble Cedex 938043France
- Université Grenoble AlpesCEACNRSIRIGSyMMES UMR 5819GrenobleF‐38000France
| | - Jean‐Luc Ravanat
- Université Grenoble AlpesCEACNRSIRIGSyMMES UMR 5819GrenobleF‐38000France
| | - Christophe Dujardin
- Institut Lumière MatièreUMR5306Université Claude Bernard Lyon 1CNRSVilleurbanne Cedex69622France
| | - Vincent Motto‐Ros
- Institut Lumière MatièreUMR5306Université Claude Bernard Lyon 1CNRSVilleurbanne Cedex69622France
| | - Frédéric Lerouge
- Université de LyonÉcole Normale Supérieure de LyonCNRS UMR 5182Université Claude Bernard Lyon 1Laboratoire de ChimieLyonF69342France
| | - Sylvain Bohic
- Synchrotron Radiation for Biomedical Research (STROBE)UA7 INSERMUniversité Grenoble AlpesMedical Beamline at the European Synchrotron Radiation Facility71 Avenue des MartyrsGrenoble Cedex 938043France
| | - Lucie Sancey
- Cancer Targets and Experimental TherapeuticsInstitute for Advanced BiosciencesUniversité Grenoble AlpesINSERM U1209CNRS UMR5309Allée des AlpesLa Tronche38700France
| | - Hélène Elleaume
- Synchrotron Radiation for Biomedical Research (STROBE)UA7 INSERMUniversité Grenoble AlpesMedical Beamline at the European Synchrotron Radiation Facility71 Avenue des MartyrsGrenoble Cedex 938043France
| |
Collapse
|
17
|
Monico L, Cotte M, Vanmeert F, Amidani L, Janssens K, Nuyts G, Garrevoet J, Falkenberg G, Glatzel P, Romani A, Miliani C. Damages Induced by Synchrotron Radiation-Based X-ray Microanalysis in Chrome Yellow Paints and Related Cr-Compounds: Assessment, Quantification, and Mitigation Strategies. Anal Chem 2020; 92:14164-14173. [PMID: 32955250 DOI: 10.1021/acs.analchem.0c03251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Synchrotron radiation (SR)-based X-ray methods are powerful analytical tools for several purposes. They are widely used to probe the degradation mechanisms of inorganic artists' pigments in paintings, including chrome yellows (PbCr1-xSxO4; 0 ≤ x ≤ 0.8), a class of compounds often found in Van Gogh masterpieces. However, the high intensity and brightness of SR beams raise important issues regarding the potential damage inflicted on the analyzed samples. A thorough knowledge of the SR X-ray sensitivity of each class of pigment in the painting matrix is therefore required to find analytical strategies that seek to minimize the damage for preserving the integrity of the analyzed samples and to avoid data misinterpretation. Here, we employ a combination of Cr K-edge X-ray absorption near-edge structure spectroscopy, Cr-Kβ X-ray emission spectroscopy, and X-ray diffraction to monitor and quantify the effects of SR X-rays on the stability of chrome yellows and related Cr compounds and to define mitigation strategies. We found that the SR X-ray beam exposure induces changes in the oxidation state and local coordination environment of Cr ions and leads to a loss of the compound's crystalline structure. The extent of X-ray damage depends on some intrinsic properties of the samples (chemical composition of the pigment and the presence/absence and nature of the binder). It can be minimized by optimizing the overall fluence/dose released to the samples and by working in vacuum and under cryogenic conditions.
Collapse
Affiliation(s)
- Letizia Monico
- CNR-SCITEC, Via Elce di Sotto 8, 06123 Perugia, Italy.,SMAArt Centre and Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.,AXES Research Group, NANOlab Centre of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Marine Cotte
- ESRF, Avenue des Martyrs 71, 38000 Grenoble, France.,LAMS, CNRS UMR 8220, Sorbonne Université, UPMC Univ Paris 06, Place Jussieu 4, 75005 Paris, France
| | - Frederik Vanmeert
- AXES Research Group, NANOlab Centre of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,Laboratories of the Royal Institute of Cultural Heritage (KIK-IRPA), Parc du Cinquantenaire 1, 1000 Bruxelles, Belgium
| | - Lucia Amidani
- ESRF, Avenue des Martyrs 71, 38000 Grenoble, France.,HZDR, Institute of Resource Ecology, Rossendorf Beamline at the ESRF, 01314 Dresden, Germany
| | - Koen Janssens
- AXES Research Group, NANOlab Centre of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,Rijksmuseum, Conservation & Restoration-Scientific Research, Hobbemastraat 22, 1071 ZC Amsterdam, The Netherlands
| | - Gert Nuyts
- AXES Research Group, NANOlab Centre of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | | | | | | | - Aldo Romani
- CNR-SCITEC, Via Elce di Sotto 8, 06123 Perugia, Italy.,SMAArt Centre and Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Costanza Miliani
- CNR-ISPC, Via Cardinale Guglielmo Sanfelice 8, 80134 Napoli, Italy
| |
Collapse
|
18
|
Schropp A, Döhrmann R, Botta S, Brückner D, Kahnt M, Lyubomirskiy M, Ossig C, Scholz M, Seyrich M, Stuckelberger ME, Wiljes P, Wittwer F, Garrevoet J, Falkenberg G, Fam Y, Sheppard TL, Grunwaldt JD, Schroer CG. PtyNAMi: ptychographic nano-analytical microscope. J Appl Crystallogr 2020; 53:957-971. [PMID: 32788903 PMCID: PMC7401781 DOI: 10.1107/s1600576720008420] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ptychographic X-ray imaging at the highest spatial resolution requires an optimal experimental environment, providing a high coherent flux, excellent mechanical stability and a low background in the measured data. This requires, for example, a stable performance of all optical components along the entire beam path, high temperature stability, a robust sample and optics tracking system, and a scatter-free environment. This contribution summarizes the efforts along these lines to transform the nanoprobe station on beamline P06 (PETRA III) into the ptychographic nano-analytical microscope (PtyNAMi).
Collapse
Affiliation(s)
- Andreas Schropp
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, DE-22607 Hamburg, Germany
| | - Ralph Döhrmann
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, DE-22607 Hamburg, Germany
| | - Stephan Botta
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, DE-22607 Hamburg, Germany
| | - Dennis Brückner
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, DE-22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, DE-22761 Hamburg, Germany
| | - Maik Kahnt
- Department Physik, Universität Hamburg, Luruper Chaussee 149, DE-22761 Hamburg, Germany
- MAX IV Laboratory, Fotongatan 2, SE-225 94 Lund, Sweden
| | - Mikhail Lyubomirskiy
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, DE-22607 Hamburg, Germany
| | - Christina Ossig
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, DE-22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, DE-22761 Hamburg, Germany
| | - Maria Scholz
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, DE-22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, DE-22761 Hamburg, Germany
| | - Martin Seyrich
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, DE-22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, DE-22761 Hamburg, Germany
| | | | - Patrik Wiljes
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, DE-22607 Hamburg, Germany
| | - Felix Wittwer
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, DE-22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, DE-22761 Hamburg, Germany
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, DE-22607 Hamburg, Germany
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, DE-22607 Hamburg, Germany
| | - Yakub Fam
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 20, DE-76131 Karlsruhe, Germany
| | - Thomas L. Sheppard
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 20, DE-76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, DE-76344 Eggenstein-Leopoldshafen, Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 20, DE-76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, DE-76344 Eggenstein-Leopoldshafen, Germany
| | - Christian G. Schroer
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, DE-22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, DE-22761 Hamburg, Germany
| |
Collapse
|
19
|
Monico L, Cartechini L, Rosi F, Chieli A, Grazia C, De Meyer S, Nuyts G, Vanmeert F, Janssens K, Cotte M, De Nolf W, Falkenberg G, Sandu ICA, Tveit ES, Mass J, de Freitas RP, Romani A, Miliani C. Probing the chemistry of CdS paints in The Scream by in situ noninvasive spectroscopies and synchrotron radiation x-ray techniques. SCIENCE ADVANCES 2020; 6:eaay3514. [PMID: 32440540 PMCID: PMC7228759 DOI: 10.1126/sciadv.aay3514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/06/2020] [Indexed: 05/15/2023]
Abstract
The degradation of cadmium sulfide (CdS)-based oil paints is a phenomenon potentially threatening the iconic painting The Scream (ca. 1910) by Edvard Munch (Munch Museum, Oslo) that is still poorly understood. Here, we provide evidence for the presence of cadmium sulfate and sulfites as alteration products of the original CdS-based paint and explore the external circumstances and internal factors causing this transformation. Macroscale in situ noninvasive spectroscopy studies of the painting in combination with synchrotron-radiation x-ray microspectroscopy investigations of a microsample and artificially aged mock-ups show that moisture and mobile chlorine compounds are key factors for promoting the oxidation of CdS, while light (photodegradation) plays a less important role. Furthermore, under exposure to humidity, parallel/secondary reactions involving dissolution, migration through the paint, and recrystallization of water-soluble phases of the paint are associated with the formation of cadmium sulfates.
Collapse
Affiliation(s)
- Letizia Monico
- CNR-SCITEC, via Elce di Sotto 8, 06123 Perugia, Italy
- SMAArt Centre and Department of Chemistry, Biology, and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
- AXES Research Group, NANOlab Centre of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Corresponding author. (L.M.); (C.M.)
| | - Laura Cartechini
- CNR-SCITEC, via Elce di Sotto 8, 06123 Perugia, Italy
- SMAArt Centre and Department of Chemistry, Biology, and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Francesca Rosi
- CNR-SCITEC, via Elce di Sotto 8, 06123 Perugia, Italy
- SMAArt Centre and Department of Chemistry, Biology, and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Annalisa Chieli
- CNR-SCITEC, via Elce di Sotto 8, 06123 Perugia, Italy
- SMAArt Centre and Department of Chemistry, Biology, and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Chiara Grazia
- CNR-SCITEC, via Elce di Sotto 8, 06123 Perugia, Italy
- SMAArt Centre and Department of Chemistry, Biology, and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Steven De Meyer
- AXES Research Group, NANOlab Centre of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gert Nuyts
- AXES Research Group, NANOlab Centre of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Frederik Vanmeert
- AXES Research Group, NANOlab Centre of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Koen Janssens
- AXES Research Group, NANOlab Centre of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Rijksmuseum, Conservation & Restoration—Scientific Research, Hobbemastraat 22, 1071 ZC Amsterdam, Netherlands
| | - Marine Cotte
- ESRF, 71 Avenue des Martyrs, 38000 Grenoble, France
- LAMS, CNRS UMR 8220, Sorbonne Université, UPMC Univ. Paris 06, 4 place Jussieu, 75005 Paris, France
| | - Wout De Nolf
- ESRF, 71 Avenue des Martyrs, 38000 Grenoble, France
| | | | | | | | - Jennifer Mass
- Bard Graduate Center, 86th St., New York, NY 10024, USA
- Scientific Analysis of Fine Art LLC, 843 Old State Rd., Berwyn, PA 19312, USA
| | - Renato Pereira de Freitas
- CNR-SCITEC, via Elce di Sotto 8, 06123 Perugia, Italy
- LISComp Laboratory, Federal Institute of Rio de Janeiro, Paracambi, RJ 26600000, Brazil
| | - Aldo Romani
- CNR-SCITEC, via Elce di Sotto 8, 06123 Perugia, Italy
- SMAArt Centre and Department of Chemistry, Biology, and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Costanza Miliani
- CNR-SCITEC, via Elce di Sotto 8, 06123 Perugia, Italy
- SMAArt Centre and Department of Chemistry, Biology, and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
- CNR-ISPC, via Cardinale Guglielmo Sanfelice 8, 80134 Napoli, Italy
- Corresponding author. (L.M.); (C.M.)
| |
Collapse
|
20
|
Liu WS, van der Ent A, Erskine PD, Morel JL, Echevarria G, Spiers KM, Montargès-Pelletier E, Qiu RL, Tang YT. Spatially Resolved Localization of Lanthanum and Cerium in the Rare Earth Element Hyperaccumulator Fern Dicranopteris linearis from China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2287-2294. [PMID: 31951400 DOI: 10.1021/acs.est.9b05728] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fern Dicranopteris linearis (Gleicheniaceae) from China is a hyperaccumulator of rare earth element (REE), but little is known about the ecophysiology of REE in this species. This study aimed to clarify tissue-level and organ-level distribution of REEs via synchrotron-based X-ray fluorescence microscopy (XFM). The results show that REEs (La + Ce) are mainly colocalized with Mn in the pinnae and pinnules, with the highest concentrations in necrotic lesions and lower concentrations in veins. In the cross sections of the pinnules, midveins, rachis, and stolons, La + Ce and Mn are enriched in the epidermis, vascular bundles, and pericycle (midvein). In these tissues, Mn is localized mainly in the cortex and mesophyll. We hypothesize that the movement of REEs in the transpiration flow in the veins is initially restricted in the veins by the pericycle between vascular bundle and cortex, while excess REEs are transported by evaporation and cocompartmentalized with Mn in the necrotic lesions and epidermis in an immobile form, possibly a Si-coprecipitate. The results presented here provide insights on how D. linearis regulates high concentrations of REEs in vivo, and this knowledge is useful for developing phytotechnological applications (such as REE agromining) using this fern in REE-contaminated sites in China.
Collapse
Affiliation(s)
- Wen-Shen Liu
- School of Environmental Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology , Sun Yat-sen University , Guangzhou 510275 , China
- Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation , Sun Yat-sen University , Guangzhou 510275 , China
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute , The University of Queensland , St Lucia , Queensland 4072 , Australia
- Université de Lorraine, INRA, Laboratoire Sols et Environnement , Nancy 54000 , France
| | - Peter D Erskine
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Jean Louis Morel
- Université de Lorraine, INRA, Laboratoire Sols et Environnement , Nancy 54000 , France
| | - Guillaume Echevarria
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute , The University of Queensland , St Lucia , Queensland 4072 , Australia
- Université de Lorraine, INRA, Laboratoire Sols et Environnement , Nancy 54000 , France
| | - Kathryn M Spiers
- Photon Science, Deutsches Elektronen-Synchrotron DESY , Hamburg 22607 , Germany
| | - Emmanuelle Montargès-Pelletier
- CNRS-Université de Lorraine Laboratoire Interdisciplinaire des Environnements Continentaux , Vandoeuvre-lès-Nancy F-54500 , France
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology , Sun Yat-sen University , Guangzhou 510275 , China
- Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation , Sun Yat-sen University , Guangzhou 510275 , China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology , Sun Yat-sen University , Guangzhou 510275 , China
- Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
21
|
Morina F, Mishra A, Mijovilovich A, Matoušková Š, Brückner D, Špak J, Küpper H. Interaction Between Zn Deficiency, Toxicity and Turnip Yellow Mosaic Virus Infection in Noccaea ochroleucum. FRONTIERS IN PLANT SCIENCE 2020; 11:739. [PMID: 32582260 PMCID: PMC7290001 DOI: 10.3389/fpls.2020.00739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/08/2020] [Indexed: 05/08/2023]
Abstract
Zinc is essential for the functioning of numerous proteins in plants. To investigate how Zn homeostasis interacts with virus infection, Zn-tolerant Noccaea ochroleucum plants exposed to deficient (Zn'0'), optimal (Zn10), and excess Zn (Zn100) concentrations, as well as Cd amendment, were infected with Turnip yellow mosaic virus (TYMV). Imaging analysis of fluorescence kinetics from the μs (OJIP) to the minutes (Kautsky effect, quenching analysis) time domain revealed strong patchiness of systemic virus-induced photosystem II (PSII) inhibition. That was more pronounced in Zn-deficient plants, while Zn excess acted synergistically with TYMV, in both cases resulting in reduced PSII reaction centers. Infected Cd-treated plants, already severely stressed, showed inhibited non-photochemical quenching and PSII activity. Quantitative in situ hybridization at the cellular level showed increased gene expression of ZNT5 and downregulation of HMA4 in infected Zn-deficient leaves. In Zn10 and Zn100 infected leaves, vacuolar sequestration of Zn increased by activation of HMA3 (mesophyll) and MTP1 (epidermis). This correlated with Zn accumulation in the mesophyll and formation of biomineralization dots in the cell wall (Zn100) visible by micro X-ray fluorescence tomography. The study reveals the importance of adequate Zn supply and distribution in the maintenance of photosynthesis under TYMV infection, achieved by tissue-targeted activation of metal transporter gene expression.
Collapse
Affiliation(s)
- Filis Morina
- Department of Plant Biophysics and Biochemistry, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, Czechia
| | - Archana Mishra
- Department of Plant Biophysics and Biochemistry, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, Czechia
| | - Ana Mijovilovich
- Department of Plant Biophysics and Biochemistry, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, Czechia
| | - Šárka Matoušková
- Department of Geological Processes, Czech Academy of Sciences, Institute of Geology, Rozvojová, Czechia
| | - Dennis Brückner
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Physics, University of Hamburg, Hamburg, Germany
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Josef Špak
- Department of Plant Virology, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, Czechia
| | - Hendrik Küpper
- Department of Plant Biophysics and Biochemistry, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Experimental Plant Biology, University of South Bohemia, České Budějovice, Czechia
- *Correspondence: Hendrik Küpper,
| |
Collapse
|
22
|
Wittig NK, Palle J, Østergaard M, Frølich S, Birkbak ME, Spiers KM, Garrevoet J, Birkedal H. Bone Biomineral Properties Vary across Human Osteonal Bone. ACS NANO 2019; 13:12949-12956. [PMID: 31613594 DOI: 10.1021/acsnano.9b05535] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The biomineralization of bone remains a puzzle. During Haversian remodeling in the dense human cortical bone, osteoclasts excavate a tunnel that is then filled in by osteoblasts with layers of bone of varying fibril orientations, resulting in a lamellar motif. Such bone represents an excellent possibility to increase our understanding of bone as a material as well as bone biomineralization by studying spatio/temporal variations in the biomineral across an osteon. To this end, fluorescence computed tomography and diffraction scattering computed tomography with sub-micrometer resolution is applied to obtain position resolved fluorescence spectra and diffraction patterns in a 3D volume. The microstructural properties of the apatite biomineral are not homogeneous but depend critically on the time point at which it was laid down. This indicates that the nature of bone biomineral is highly dependent on the microenvironment during bone formation and remodeling.
Collapse
Affiliation(s)
- Nina K Wittig
- Department of Chemistry and iNANO , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| | - Jonas Palle
- Department of Chemistry and iNANO , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| | - Maja Østergaard
- Department of Chemistry and iNANO , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| | - Simon Frølich
- Department of Chemistry and iNANO , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| | - Mie E Birkbak
- Department of Chemistry and iNANO , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| | | | - Jan Garrevoet
- DESY Photon Science , Notkestr. 85 , D-22607 Hamburg , Germany
| | - Henrik Birkedal
- Department of Chemistry and iNANO , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| |
Collapse
|
23
|
Dean MC, Spiers KM, Garrevoet J, Le Cabec A. Synchrotron X-ray fluorescence mapping of Ca, Sr and Zn at the neonatal line in human deciduous teeth reflects changing perinatal physiology. Arch Oral Biol 2019; 104:90-102. [PMID: 31176148 DOI: 10.1016/j.archoralbio.2019.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/06/2019] [Accepted: 05/21/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Our first objective was to review the evidence describing the appearance and microstructure of the neonatal line in human deciduous teeth and to link this with known changes in neonatal physiology occurring at and around birth. A second objective was to explore ways to improve identification of the neonatal line by mapping the pre- and postnatal distribution of Ca, Sr and Zn in deciduous cuspal enamel and superimposing these maps onto transmitted light micrographs that included a clear true section of the neonatal line. MATERIALS AND METHODS We used synchrotron X-ray fluorescence to map elemental distributions in pre- and postnatal enamel and dentine. Two deciduous canines and 5 deciduous molars were scanned with an X-ray beam monochromatised to 17.0 keV at either 10.0, 2.5 or 1.0 μm resolution and 10 ms integration time. RESULTS Calcium maps distinguished enamel and dentine but did not clearly demarcate tissues formed pre- or postnatally. Strontium maps reflected presumed pre- and postnatal maternal serum levels and what are likely to be diet-dependent regions of Sr enrichment or depletion. Prenatal Zn maps, particularly for dentine, mirror elevated levels in the fetus and in colostrum during the first few days of life. CONCLUSIONS The neonatal line, enamel dentine junction and surface enamel were all Zn-rich. Within the neonatal line Zn may be associated with increased crystallinity but also with caries resistance, both of which have been reported previously. Elemental mapping may improve the identification of ambiguous NNLs and so be useful in forensic and archaeological studies.
Collapse
Affiliation(s)
- M Christopher Dean
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK; Department of Earth Sciences, Centre for Human Evolution Research, Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Kathryn M Spiers
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Adeline Le Cabec
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| |
Collapse
|
24
|
Carmona A, Zogzas CE, Roudeau S, Porcaro F, Garrevoet J, Spiers KM, Salomé M, Cloetens P, Mukhopadhyay S, Ortega R. SLC30A10 Mutation Involved in Parkinsonism Results in Manganese Accumulation within Nanovesicles of the Golgi Apparatus. ACS Chem Neurosci 2019; 10:599-609. [PMID: 30272946 DOI: 10.1021/acschemneuro.8b00451] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Manganese (Mn) is an essential metal that can be neurotoxic when elevated exposition occurs leading to parkinsonian-like syndromes. Mutations in the Slc30a10 gene have been identified in new forms of familial parkinsonism. SLC30A10 is a cell surface protein involved in the efflux of Mn and protects the cell against Mn toxicity. Disease-causing mutations block the efflux activity of SLC30A10, resulting in Mn accumulation. Determining the intracellular localization of Mn when disease-causing SLC30A10 mutants are expressed is essential to elucidate the mechanisms of Mn neurotoxicity. Here, using organelle fluorescence microscopy and synchrotron X-ray fluorescence (SXRF) imaging, we found that Mn accumulates in the Golgi apparatus of human cells transfected with the disease-causing SLC30A10-Δ105-107 mutant under physiological conditions and after exposure to Mn. In cells expressing the wild-type SLC30A10 protein, cellular Mn content was low after all exposure conditions, confirming efficient Mn efflux. In nontransfected cells that do not express endogenous SLC30A10 and in mock transfected cells, Mn was located in the Golgi apparatus, similarly to its distribution in cells expressing the mutant protein, confirming deficient Mn efflux. The newly developed SXRF cryogenic nanoimaging (<50 nm resolution) indicated that Mn was trapped in single vesicles within the Golgi apparatus. Our results confirm the role of SLC30A10 in Mn efflux and the accumulation of Mn in cells expressing the disease-causing SLC30A10-Δ105-107 mutation. Moreover, we identified suborganelle Golgi nanovesicles as the main compartment of Mn accumulation in SLC30A10 mutants, suggesting interactions with the vesicular trafficking machinery as a cause of the disease.
Collapse
Affiliation(s)
- Asuncion Carmona
- Chemical Imaging and Speciation, CENBG, University of Bordeaux, UMR 5797, 33175 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, 33175 Gradignan, France
| | - Charles E. Zogzas
- Division of Pharmacology and Toxicology; Institute for Cellular and Molecular Biology and Institute for Neuroscience, University of Texas, Austin, Texas 78712, United States
| | - Stéphane Roudeau
- Chemical Imaging and Speciation, CENBG, University of Bordeaux, UMR 5797, 33175 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, 33175 Gradignan, France
| | - Francesco Porcaro
- Chemical Imaging and Speciation, CENBG, University of Bordeaux, UMR 5797, 33175 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, 33175 Gradignan, France
| | - Jan Garrevoet
- Deutsches Elektronen Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
| | - Kathryn M. Spiers
- Deutsches Elektronen Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
| | - Murielle Salomé
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Peter Cloetens
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology; Institute for Cellular and Molecular Biology and Institute for Neuroscience, University of Texas, Austin, Texas 78712, United States
| | - Richard Ortega
- Chemical Imaging and Speciation, CENBG, University of Bordeaux, UMR 5797, 33175 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, 33175 Gradignan, France
| |
Collapse
|
25
|
Terzano R, Denecke MA, Falkenberg G, Miller B, Paterson D, Janssens K. Recent advances in analysis of trace elements in environmental samples by X-ray based techniques (IUPAC Technical Report). PURE APPL CHEM 2019; 91:1029-1063. [PMID: 32831407 PMCID: PMC7433040 DOI: 10.1515/pac-2018-0605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trace elements analysis is a fundamental challenge in environmental sciences. Scientists measure trace elements in environmental media in order to assess the quality and safety of ecosystems and to quantify the burden of anthropogenic pollution. Among the available analytical techniques, X-ray based methods are particularly powerful, as they can quantify trace elements in situ. Chemical extraction is not required, as is the case for many other analytical techniques. In the last few years, the potential for X-ray techniques to be applied in the environmental sciences has dramatically increased due to developments in laboratory instruments and synchrotron radiation facilities with improved sensitivity and spatial resolution. In this report, we summarize the principles of the X-ray based analytical techniques most frequently employed to study trace elements in environmental samples. We report on the most recent developments in laboratory and synchrotron techniques, as well as advances in instrumentation, with a special attention on X-ray sources, detectors, and optics. Lastly, we inform readers on recent applications of X-ray based analysis to different environmental matrices, such as soil, sediments, waters, wastes, living organisms, geological samples, and atmospheric particulate, and we report examples of sample preparation.
Collapse
Affiliation(s)
- Roberto Terzano
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - Melissa A. Denecke
- The University of Manchester, Dalton Nuclear Institute, Oxford Road, Manchester M14 9PL, UK
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Photon Science, Notkestr. 85, 22603 Hamburg, Germany
| | - Bradley Miller
- United States Environmental Protection Agency, National Enforcement Investigations Center, Lakewood, Denver, CO 80225, USA
| | - David Paterson
- Australian Synchrotron, ANSTO Clayton Campus, Clayton, Victoria 3168, Australia
| | - Koen Janssens
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
26
|
Ryan CG, Kirkham R, de Jonge MD, Siddons DP, van der Ent A, Pagés A, Boesenberg U, Kuczewski AJ, Dunn P, Jensen M, Liu W, Harris H, Moorhead GF, Paterson DJ, Howard DL, Afshar N, Garrevoet J, Spiers K, Falkenberg G, Woll AR, De Geronimo G, Carini GA, James SA, Jones MWM, Fisher LA, Pearce M. The Maia Detector and Event Mode. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/08940886.2018.1528430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | | | - M. D. de Jonge
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia
| | - D. P. Siddons
- Brookhaven National Laboratory, Upton, New York, USA
| | - A. van der Ent
- Sustainable Minerals Institute, University of Queensland, Brisbane, Queensland, Australia
| | - A. Pagés
- CSIRO, Clayton, Victoria, Australia
| | - U. Boesenberg
- European X-ray Free-Electron Laser Facility, Schenefeld, Germany
| | | | - P. Dunn
- CSIRO, Clayton, Victoria, Australia
| | | | - W. Liu
- CSIRO, Clayton, Victoria, Australia
| | - H. Harris
- Department of Chemisty, University of Adelaide, Adelaide, Australia
| | | | - D. J. Paterson
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia
| | - D. L. Howard
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia
| | - N. Afshar
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia
| | - J. Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - K. Spiers
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - G. Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - A. R. Woll
- Cornell High Energy Synchrotron Source, Ithaca, New York, USA
| | | | - G. A. Carini
- Brookhaven National Laboratory, Upton, New York, USA
| | - S. A. James
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - M. W. M. Jones
- Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
27
|
Rauwolf M, Turyanskaya A, Ingerle D, Szoboszlai N, Pape I, Malandain AW, Fox OJL, Hahn L, Sawhney KJS, Streli C. Characterization of a submicro-X-ray fluorescence setup on the B16 beamline at Diamond Light Source. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1189-1195. [PMID: 29979181 PMCID: PMC6038595 DOI: 10.1107/s1600577518006203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
An X-ray fluorescence setup has been tested on the B16 beamline at the Diamond Light Source synchrotron with two different excitation energies (12.7 and 17 keV). This setup allows the scanning of thin samples (thicknesses up to several micrometers) with a sub-micrometer resolution (beam size of 500 nm × 600 nm determined with a 50 µm Au wire). Sensitivities and detection limits reaching values of 249 counts s-1 fg-1 and 4 ag in 1000 s, respectively (for As Kα excited with 17 keV), are presented in order to demonstrate the capabilities of this setup. Sample measurements of a human bone and a single cell performed at B16 are presented in order to illustrate the suitability of the setup in biological applications.
Collapse
Affiliation(s)
| | | | | | - N. Szoboszlai
- Laboratory of Environmental Chemistry and Bioanalytics, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - I. Pape
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
| | - A. W. Malandain
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
| | - O. J. L. Fox
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
| | - L. Hahn
- Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - K. J. S. Sawhney
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
| | - C. Streli
- Atominstitut, TU Wien, Vienna, Austria
| |
Collapse
|
28
|
Boesenberg U, Ryan CG, Kirkham R, Jahn A, Madsen A, Moorhead G, Falkenberg G, Garrevoet J. Fast XANES fluorescence imaging using a Maia detector. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:892-898. [PMID: 29714202 DOI: 10.1107/s1600577518004940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
A new fast X-ray absorption spectroscopy scanning method was recently implemented at the Hard X-ray Microprobe endstation P06, PETRA III, DESY, utilizing a Maia detector. Spectromicroscopy maps were acquired with spectra for X-ray absorption near-edge structure (XANES) acquisition in the sub-second regime. The method combines XANES measurements with raster-scanning of the sample through the focused beam. The order of the scanning sequence of the axes, one beam energy axis and two (or more) spatial axes, is a variable experimental parameter and, depending on it, the dwell at each location can be either single and continuous (if the energy axis is the inner loop) or in shorter discontinuous intervals (if a spatial axis is innermost). The combination of improved spatial and temporal resolution may be necessary for rapidly changing samples, e.g. for following in operando chemical reactions or samples highly susceptible to beam damage where the rapid collection of single XANES spectra avoids issues with the emergence of chemical changes developing from latent damage. This paper compares data sets collected on a specially designed test pattern and a geological thin-section scanning the energy as inner, middle and outer axis in the sequence. The XANES data of all three scanning schemes is found to show excellent agreement down to the single-pixel level.
Collapse
Affiliation(s)
- Ulrike Boesenberg
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, Schenefeld 22869, Germany
| | - Christopher G Ryan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Robin Kirkham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Andreas Jahn
- Institut für Halbleiter- und Mikrosystemtechnik, Technische Universität Dresden, Dresden 01062, Germany
| | - Anders Madsen
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, Schenefeld 22869, Germany
| | - Gareth Moorhead
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| |
Collapse
|