1
|
Paternoga H, Xia L, Dimitrova-Paternoga L, Li S, Yan LL, Oestereich M, Kasvandik S, Nanjaraj Urs AN, Beckert B, Tenson T, Zaher H, Inada T, Wilson DN. Structure of a Gcn2 dimer in complex with the large 60S ribosomal subunit. Proc Natl Acad Sci U S A 2025; 122:e2415807122. [PMID: 40198700 PMCID: PMC12012509 DOI: 10.1073/pnas.2415807122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
The integrated stress response (ISR) is a central signaling network that enables eukaryotic cells to respond to a variety of different environmental stresses. Such stresses cause ribosome collisions that lead to activation of the kinase Gcn2, resulting in the phosphorylation and inactivation of eukaryotic initiation factor 2 and thereby promoting selective translation of mRNAs to restore homeostasis. Despite the importance of the ISR and intensive study over the past decades, structural insight into how Gcn2 interacts with ribosomal particles has been lacking. Using ex vivo affinity purification approaches, we have obtained a cryoelectron microscopy structure of a yeast Gcn2 dimer in complex with the ribosomal 60S subunit. The Gcn2 dimer is formed by dimerization of the histidine tRNA synthetase-like domains, which establish extensive interactions with the stalk-base and sarcin-ricin loop of the 60S subunit. The C-terminal domain of Gcn2 is also dimerized and occupies the A- and P-site tRNA binding sites at the peptidyl-transferase center of the 60S subunit. Complementary functional studies indicate that binding of Gcn2 to the 60S subunit does not require the coactivators Gcn1 or Gcn20, nor does it lead to phosphorylation of eIF2α. Instead, upon stress, we observe a shift of Gcn2 from the 60S subunit into the colliding ribosome fraction, suggesting that the Gcn2-60S complex represents an inactive stand-by state to enable a rapid redistribution to collided ribosomes, and thereby facilitating a quick and efficient response to stress.
Collapse
Affiliation(s)
- Helge Paternoga
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg20146, Germany
| | - Lu Xia
- Division of Ribonucleic Acid (RNA) and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo108-8639, Japan
| | - Lyudmila Dimitrova-Paternoga
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg20146, Germany
| | - Sihan Li
- Division of Ribonucleic Acid (RNA) and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo108-8639, Japan
| | - Liewei L. Yan
- Department of Biology, Washington University in St. Louis, St. Louis, MO63130
| | - Malte Oestereich
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg20146, Germany
| | - Sergo Kasvandik
- Faculty of Science and Technology, Institute of Technology, University of Tartu, Tartu50411, Estonia
| | | | - Bertrand Beckert
- Dubochet Center for Imaging at the Ecole Polytechnique Fédérale de Lausanne and the Université de Lausanne (DCI EPFL-UNIL), Quartier UNIL-Sorge, Bâtiment Génopode, Lausanne1015, Switzerland
| | - Tanel Tenson
- Faculty of Science and Technology, Institute of Technology, University of Tartu, Tartu50411, Estonia
| | - Hani Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO63130
| | - Toshifumi Inada
- Division of Ribonucleic Acid (RNA) and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo108-8639, Japan
| | - Daniel N. Wilson
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg20146, Germany
| |
Collapse
|
2
|
Noce B, Marchese S, Massari M, Lambona C, Reis J, Fiorentino F, Raucci A, Fioravanti R, Castelôa M, Mormino A, Garofalo S, Limatola C, Basile L, Gottinger A, Binda C, Mattevi A, Mai A, Valente S. Design of Benzyl-triazolopyrimidine-Based NADPH Oxidase Inhibitors Leads to the Discovery of a Potent Dual Covalent NOX2/MAOB Inhibitor. J Med Chem 2025; 68:6292-6311. [PMID: 40042998 PMCID: PMC11956017 DOI: 10.1021/acs.jmedchem.4c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025]
Abstract
NADPH oxidases (NOXs) are enzymes dedicated to reactive oxygen species (ROS) production and are implicated in cancer, neuroinflammation, and neurodegenerative diseases. VAS2870 is a covalent inhibitor of mainly NOX2 and NOX5. It alkylates a conserved active-site cysteine, blocking productive substrate binding. To enhance potency and selectivity toward NOXs, we conducted some chemical modifications, leading to the discovery of compound 9a that preferentially inhibits NOX2 with an IC50 of 0.155 μM, and only upon its preactivation. We found that 9a, bearing a pargyline moiety, is also able to selectively inhibit MAOB over MAOA (465-fold) with an IC50 of 0.182 μM, being the first-in-class dual NOX2/MAOB covalent inhibitor. Tested in the BV2 microglia neuroinflammation model, 9a decreased ROS production and downregulated proinflammatory cytokines as iNOS, IL-1β, and IL-6 expression more efficiently than the single target inhibitors (rasagiline for MAOB and VAS2870 for NOXs) but also, more importantly, than their combination.
Collapse
Affiliation(s)
- Beatrice Noce
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Sara Marchese
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Marta Massari
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Chiara Lambona
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Joana Reis
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Francesco Fiorentino
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Alessia Raucci
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Rossella Fioravanti
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Mariana Castelôa
- CIQUP-IMS/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Alessandro Mormino
- Department
of Physiology and Pharmacology, Sapienza
University of Rome, P.le
Aldo Moro 5, Rome 00185, Italy
| | - Stefano Garofalo
- Department
of Physiology and Pharmacology, Sapienza
University of Rome, P.le
Aldo Moro 5, Rome 00185, Italy
| | - Cristina Limatola
- Department
of Physiology and Pharmacology, Sapienza
University of Rome, P.le
Aldo Moro 5, Rome 00185, Italy
| | - Lorenzo Basile
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Andrea Gottinger
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Claudia Binda
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Andrea Mattevi
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Sergio Valente
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
3
|
Will V, Moynié L, Si Ahmed Charrier E, Le Bas A, Kuhn L, Volck F, Chicher J, Aksoy H, Madec M, Antheaume C, Mislin GLA, Schalk IJ. Structure of the Outer Membrane Transporter FemA and Its Role in the Uptake of Ferric Dihydro-Aeruginoic Acid and Ferric Aeruginoic Acid in Pseudomonas aeruginosa. ACS Chem Biol 2025; 20:690-706. [PMID: 40035455 DOI: 10.1021/acschembio.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Iron is essential for bacterial growth, and Pseudomonas aeruginosa synthesizes the siderophores pyochelin (PCH) and pyoverdine to acquire it. PCH contains a thiazolidine ring that aids in iron chelation but is prone to hydrolysis, leading to the formation of 2-(2-hydroxylphenyl)-thiazole-4-carbaldehyde (IQS). Using mass spectrometry, we demonstrated that PCH undergoes hydrolysis and oxidation in solution, resulting in the formation of aeruginoic acid (AA). This study used proteomic analyses and fluorescent reporters to show that AA, dihydroaeruginoic acid (DHA), and PCH induce the expression of femA, a gene encoding the ferri-mycobactin outer membrane transporter in P. aeruginosa. Notably, the induction by AA and DHA was observed only in strains unable to produce pyoverdine, suggesting their weaker iron-chelating ability compared to that of pyoverdine. 55Fe uptake assays demonstrated that both AA-Fe and DHA-Fe complexes are transported via FemA; however, no uptake was observed for PCH-Fe through this transporter. Structural studies revealed that FemA is able to bind AA2-Fe or DHA2-Fe complexes. Key interactions are conserved between FemA and these two complexes, with specificity primarily driven by one of the two siderophore molecules. Interestingly, although no iron uptake was noted for PCH through FemA, the transporter also binds PCH-Fe in a similar manner. These findings show that under moderate iron deficiency, when only PCH is produced by P. aeruginosa, degradation products AA and DHA enhance iron uptake by inducing femA expression and facilitating iron transport through FemA. This provides new insights into the pathogen's strategies for iron homeostasis.
Collapse
Affiliation(s)
- Virginie Will
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Lucile Moynié
- The Rosalind Franklin Institute, Harwell Campus, Oxfordshire OX11 0QS, United Kingdom
| | - Elise Si Ahmed Charrier
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Audrey Le Bas
- The Rosalind Franklin Institute, Harwell Campus, Oxfordshire OX11 0QS, United Kingdom
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, IBMC, 2 Allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Florian Volck
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Johana Chicher
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, IBMC, 2 Allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Hava Aksoy
- Université de Strasbourg, Institut des Sciences et de L'Ingénieurie Supramoleculaire, Plateforme d'analyses Chimiques 8 allée Gaspard Monge, F-67000 Strasbourg, France
| | - Morgan Madec
- ICube Laboratory, UMR 7357 (CNRS/University of Strasbourg), Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Cyril Antheaume
- Université de Strasbourg, Institut des Sciences et de L'Ingénieurie Supramoleculaire, Plateforme d'analyses Chimiques 8 allée Gaspard Monge, F-67000 Strasbourg, France
| | - Gaëtan L A Mislin
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Isabelle J Schalk
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| |
Collapse
|
4
|
Iversen R, Heggelund JE, Das S, Høydahl LS, Sollid LM. Enzyme-activating B-cell receptors boost antigen presentation to pathogenic T cells in gluten-sensitive autoimmunity. Nat Commun 2025; 16:2387. [PMID: 40064932 PMCID: PMC11894174 DOI: 10.1038/s41467-025-57564-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Autoantibodies against the enzyme transglutaminase 3 (TG3) are characteristic to the gluten-sensitive skin disorder dermatitis herpetiformis (DH), which is an extraintestinal manifestation of celiac disease. We here demonstrate that TG3-specific B cells can activate gluten-specific CD4+ T cells through B-cell receptor (BCR)-mediated internalization of TG3-gluten enzyme-substrate complexes. Stereotypic anti-TG3 antibodies using IGHV2-5/IGKV4-1 gene segments enhance the catalytic activity of TG3, and this effect translates into increased gluten presentation to T cells when such antibodies are expressed as BCRs. The crystal structure of TG3 bound to an IGHV2-5/IGKV4-1 Fab shows that antibody binding to a β-sheet in the catalytic core domain causes the enzyme to adopt the active conformation. This mechanism explains the production of stereotypic anti-TG3 autoantibodies in DH and highlights a role for TG3-specific B cells as antigen-presenting cells for gluten-specific T cells. Similar boosting effects of autoreactive BCRs could be relevant for other autoimmune diseases, including rheumatoid arthritis.
Collapse
Affiliation(s)
- Rasmus Iversen
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| | - Julie Elisabeth Heggelund
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Saykat Das
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Lene S Høydahl
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
- Nextera AS, Oslo, Norway
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| |
Collapse
|
5
|
Majocchi S, Lloveras P, Nouveau L, Legrand M, Viandier A, Malinge P, Charreton M, Raymond C, Pace EA, Millard BL, Svensson LA, Kelpšas V, Anceriz N, Salgado-Pires S, Daubeuf B, Magistrelli G, Gueneau F, Moine V, Masternak K, Shang L, Fischer N, Ferlin WG. NI-3201 Is a Bispecific Antibody Mediating PD-L1-Dependent CD28 Co-stimulation on T Cells for Enhanced Tumor Control. Cancer Immunol Res 2025; 13:365-383. [PMID: 39760515 DOI: 10.1158/2326-6066.cir-24-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
Despite advances in cancer immunotherapy, such as targeting the PD-1/PD-L1 axis, a substantial number of patients harbor tumors that are resistant or relapse. Selective engagement of T-cell co-stimulatory molecules with bispecific antibodies may offer novel therapeutic options by enhancing signal 1-driven activation occurring via T-cell receptor engagement. In this study, we report the development and preclinical characterization of NI-3201, a PD-L1×CD28 bispecific antibody generated on the κλ-body platform that was designed to promote T-cell activity and antitumor function through a dual mechanism of action. We confirmed that NI-3201 blocks the PD-L1/PD-1 immune checkpoint pathway and conditionally provides T-cell co-stimulation via CD28 (signal 2) when engaging PD-L1+ tumors or immune cells. In systems with signal 1-primed T cells, NI-3201 enhanced potent effector functionality: in vitro through antigen-specific recall assays with cytomegalovirus-specific T cells and in vivo by inducing tumor regression and immunologic memory in tumor-associated antigen-expressing MC38 syngeneic mouse models. When T-cell engagers were used to provide synthetic signal 1, the combination with NI-3201 resulted in synergistic T cell-dependent cytotoxicity and potent antitumor activity in two humanized mouse tumor models. Nonhuman primate safety assessments showed favorable tolerability and pharmacokinetics at pharmacologically active doses. Quantitative systems pharmacology modeling predicted that NI-3201 exposure results in antitumor activity in patients, but this remains to be investigated. Overall, this study suggests that by combining PD-L1 blockade with safe and effective CD28 co-stimulation, NI-3201 has the potential to improve cancer immunotherapy outcomes, and the clinical development of NI-3201 for PD-L1+ solid tumors is planned.
Collapse
Affiliation(s)
- Sara Majocchi
- Light Chain Bioscience - Novimmune SA, Geneva, Switzerland
| | | | - Lise Nouveau
- Light Chain Bioscience - Novimmune SA, Geneva, Switzerland
| | | | | | | | - Maud Charreton
- Light Chain Bioscience - Novimmune SA, Geneva, Switzerland
| | - Cecile Raymond
- Light Chain Bioscience - Novimmune SA, Geneva, Switzerland
| | | | | | | | | | - Nadia Anceriz
- Light Chain Bioscience - Novimmune SA, Geneva, Switzerland
| | | | - Bruno Daubeuf
- Light Chain Bioscience - Novimmune SA, Geneva, Switzerland
| | | | - Franck Gueneau
- Light Chain Bioscience - Novimmune SA, Geneva, Switzerland
| | - Valéry Moine
- Light Chain Bioscience - Novimmune SA, Geneva, Switzerland
| | | | - Limin Shang
- Light Chain Bioscience - Novimmune SA, Geneva, Switzerland
| | | | | |
Collapse
|
6
|
Schäfer M, Bauder-Wüst U, Roscher M, Motlová L, Kutilová Z, Remde Y, Klika KD, Graf J, Bařinka C, Benešová-Schäfer M. Structure-Activity Relationships and Biological Insights into PSMA-617 and Its Derivatives with Modified Lipophilic Linker Regions. ACS OMEGA 2025; 10:7077-7090. [PMID: 40028088 PMCID: PMC11865982 DOI: 10.1021/acsomega.4c10142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/18/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025]
Abstract
PSMA-617 is recognized as a benchmark ligand for prostate-specific membrane antigen (PSMA) owing to its broad utilization in prostate cancer (PCa) targeted radionuclide therapy. In this study, the structure-activity relationships (SAR) of PSMA-617 and two novel analogs featuring modified linkers were investigated. In compounds P17 and P18, the 2-naphthyl-l-Ala moiety was replaced with a less lipophilic 3-styryl-l-Ala moiety while the cyclohexyl ring in P18 was replaced with a phenyl group. The first ever crystal structure of the PSMA/PSMA-617 complex reported here revealed a folded conformation of the PSMA-617 linker while for the PSMA/P17 and PSMA/P18 complexes, the extended orientations of the linkers revealed linker flexibility within the PSMA cavity, a change in binding that can be exploited for the structure-guided design of PSMA-targeting agents. Despite structural differences from PSMA-617, the analogs maintained high PSMA inhibition potency, cellular binding, and internalization. In vivo biodistribution studies revealed comparable tumor uptake across all three compounds with P18 displaying higher spleen accumulation, likely due to phenyl ring lipophilicity. These SAR findings provide a strategic framework for the rational design of PSMA ligands, paving the way for the development of next-generation theranostic agents for PCa.
Collapse
Affiliation(s)
- Martin Schäfer
- Service
Unit for Radiopharmaceuticals and Preclinical Studies, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ulrike Bauder-Wüst
- Research
Group Translational Radiotheranostics, German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Mareike Roscher
- Service
Unit for Radiopharmaceuticals and Preclinical Studies, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lucia Motlová
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Zsófia Kutilová
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Yvonne Remde
- Service
Unit for Radiopharmaceuticals and Preclinical Studies, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Karel D. Klika
- Molecular
Structure Analysis, German Cancer Research
Center (DKFZ), Im Neuenheimer
Feld 280, 69120 Heidelberg, Germany
| | - Jürgen Graf
- Nuclear
Magnetic Resonance Laboratory, Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Cyril Bařinka
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Martina Benešová-Schäfer
- Research
Group Translational Radiotheranostics, German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Wang G, Seidler NJ, Röhm S, Pan Y, Liang XJ, Haarer L, Berger BT, Sivashanmugam SA, Wydra VR, Forster M, Laufer SA, Chaikuad A, Gehringer M, Knapp S. Probing the Protein Kinases' Cysteinome by Covalent Fragments. Angew Chem Int Ed Engl 2025; 64:e202419736. [PMID: 39716901 DOI: 10.1002/anie.202419736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/23/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
Protein kinases are important drug targets, yet specific inhibitors have been developed for only a fraction of the more than 500 human kinases. A major challenge in designing inhibitors for highly related kinases is selectivity. Unlike their non-covalent counterparts, covalent inhibitors offer the advantage of selectively targeting structurally similar kinases by modifying specific protein side chains, particularly non-conserved cysteines. Previously, covalent fragment screens yielded potent and selective inhibitors for individual kinases such as ERK1/2 but have not been applied to the broader kinome. Furthermore, many of the accessible cysteine positions have not been addressed so far. Here, we outline a generalizable approach to sample ATP-site cysteines with fragment-like covalent inhibitors. We present the development of a kinase-focused covalent fragment library and its systematic screening against a curated selection of 47 kinases, with 60 active site-proximal cysteines using LC/MS and differential scanning fluorimetry (DSF) assays, followed by hit validation through various complementary techniques. Our findings expand the repertoire of targetable cysteines within protein kinases, provide insight into unique binding modes identified from crystal structures and deliver isoform-specific hits with promising profiles as starting points for the development of highly potent and selective covalent inhibitors.
Collapse
Affiliation(s)
- Guiqun Wang
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), DKTK Site Frankfurt-Mainz, German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| | - Nico J Seidler
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
| | - Sandra Röhm
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Yufeng Pan
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Xiaojun Julia Liang
- Faculty of Medicine, Institute for Biomedical Engineering, Department for Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Lisa Haarer
- Faculty of Medicine, Institute for Biomedical Engineering, Department for Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Benedict-Tilman Berger
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Saran Aswathaman Sivashanmugam
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Valentin R Wydra
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
| | - Michael Forster
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Stefan A Laufer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Apirat Chaikuad
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Matthias Gehringer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Faculty of Medicine, Institute for Biomedical Engineering, Department for Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), DKTK Site Frankfurt-Mainz, German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| |
Collapse
|
8
|
Faria JDN, Eufrásio AG, Fagundes M, Lobo-Rojas A, Marchese L, de Lima Silva CC, Bezerra EHS, Mercaldi GF, Alborghetti MR, Sforca ML, Cordeiro AT. Inhibition of L-threonine dehydrogenase from Trypanosoma cruzi reduces glycine and acetate production and interferes with parasite growth and viability. J Biol Chem 2025; 301:108080. [PMID: 39675710 PMCID: PMC11910319 DOI: 10.1016/j.jbc.2024.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
Trypanosoma cruzi is a flagellated protozoan and the etiological agent of Chagas disease, a neglected tropical disease described by Carlos Chagas in 1909 that remains without appropriate diagnostics and treatment. Throughout its life cycle, T. cruzi undergoes through many different environments, requiring adaptation of its metabolism to different nutrition sources. Recent studies have confirmed the adaptability of T. cruzi metabolism to different carbon sources and encouraged a deeper investigation of related metabolic pathways. In the present study, we investigated the catabolism of threonine in T. cruzi epimastigotes cultivated in LIT medium and following 24h of starvation in PBS. In LIT medium, threonine, serine, and histidine were rapidly consumed concomitantly with carbohydrates during parasite exponential growth. When threonine was provided as the only carbon source to starved parasites, they excreted acetate and glycine, corroborating the activity of a mitochondrial threonine degradation pathway. Subsequently, we used a recombinant T. cruzi L-threonine dehydrogrenase (TcTDH) to screen the Chagas Box, an open-source collection of phenotypic hits, and identified compound TCMDC-143160 as a low micromolar TcTDH inhibitor (IC50 = 3.5 μM). When TCMDC-143160 was administrated to starved parasites, it inhibited the threonine degradation pathway. Finally, we report the crystal structure of TcTDH and characterize its allosteric activation by potassium. Collectively, these data demonstrate the relevance of threonine catabolism in T. cruzi metabolism and provide a set of tools to further investigate TcTDH as a potential drug target for Chagas disease.
Collapse
Affiliation(s)
- Jessica do Nascimento Faria
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Sao Paulo, Brazil
| | - Amanda G Eufrásio
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Sao Paulo, Brazil; Faculty of Pharmaceutic Sciences, University of Campinas, Sao Paulo, Brazil
| | - Michelle Fagundes
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Sao Paulo, Brazil
| | - Angel Lobo-Rojas
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Sao Paulo, Brazil
| | - Letícia Marchese
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Sao Paulo, Brazil
| | - Caio Cesar de Lima Silva
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Sao Paulo, Brazil
| | - Eduardo H S Bezerra
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Sao Paulo, Brazil
| | - Gustavo F Mercaldi
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Sao Paulo, Brazil
| | - Marcos R Alborghetti
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Sao Paulo, Brazil
| | - Mauricio L Sforca
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Sao Paulo, Brazil
| | - Artur T Cordeiro
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Sao Paulo, Brazil.
| |
Collapse
|
9
|
Guerriere TB, Fraaije MW, Mattevi A. Biochemical and structural insights into pinoresinol hydroxylase from Pseudomonas sp. Arch Biochem Biophys 2025; 764:110247. [PMID: 39613284 DOI: 10.1016/j.abb.2024.110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024]
Abstract
The vanillyl alcohol oxidase/p-cresol methylhydroxylase (VAO/PCMH) flavoprotein family comprises a broad spectrum of enzymes capable of catalyzing the oxidative bioconversions of various substrates. Among them, pinoresinol hydroxylase (PinH) from the 4-alkylphenol oxidizing subgroup initiates the oxidative degradation of (+)-pinoresinol, a lignan important for both lignin structure and plant defense. In this study, we present a detailed biochemical and structural characterization of PinH from Pseudomonas sp., with focus on its substrate specificity and product formation. PinH was expressed in E. coli and purified as FAD-containing, soluble protein. The flavoenzyme catalyzes the hydroxylation of both (+)-pinoresinol and eugenol. Structural analysis reveals its dimeric form, non-covalent flavin binding, and a large active site. AlphaFold models of the PinH-cytochrome complex demonstrate cytochrome's dual role in electron transfer and modulating PinH's conformation. A distinctive feature of PinH is a large cavity that hosts its multi-ring (+)-pinoresinol substrate. The capability of converting bulky lignans is particularly attractive for biotechnological applications aimed at producing high-value compounds from phenolic precursors. These insights expand our knowledge on the structure and mechanism of the VAO/PCMH flavoenzyme family members.
Collapse
Affiliation(s)
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, the Netherlands.
| | - Andrea Mattevi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
10
|
Guerriere TB, Vancheri A, Ricotti I, Serapian SA, Eggerichs D, Tischler D, Colombo G, Mascotti ML, Fraaije MW, Mattevi A. Dehydrogenase versus oxidase function: the interplay between substrate binding and flavin microenvironment. ACS Catal 2025; 15:1046-1060. [PMID: 39781101 PMCID: PMC7617285 DOI: 10.1021/acscatal.4c05944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Redox enzymes, mostly equipped with metal or organic cofactors, can vary their reactivity with oxygen by orders of magnitudes. Understanding how oxygen reactivity is controlled by the protein milieu remains an open issue with broad implications for mechanistic enzymology and enzyme design. Here, we address this problem by focusing on a widespread group of flavoenzymes that oxidize phenolic compounds derived from microbial lignin degradation, using either oxygen or a cytochrome c as electron acceptors. A comprehensive phylogenetic analysis revealed conserved amino acid motifs in their flavin-binding site. Using a combination of kinetics, mutagenesis, structural, and computational methods, we examined the role of these residues. Our results demonstrate that subtle and localized changes in the flavin environment can drastically impact on oxygen reactivity. These effects are afforded through the creation or blockade of pathways for oxygen diffusion. Substrate binding plays a crucial role by potentially obstructing oxygen access to the flavin, thus influencing the enzyme's reactivity. The switch between oxidase and dehydrogenase functionalities is thereby achieved through targeted, site-specific amino acid replacements that finely tune the microenvironment around the flavin. Our findings explain how very similar enzymes can exhibit distinct functional properties, operating as oxidases or dehydrogenases. They further provide valuable insights for the rational design and engineering of enzymes with tailored functions.
Collapse
Affiliation(s)
| | | | - Ilaria Ricotti
- Department of Chemistry, University of Pavia, 27100Pavia, Italy
| | | | - Daniel Eggerichs
- Microbial Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Dirk Tischler
- Microbial Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, 27100Pavia, Italy
| | - Maria L. Mascotti
- IHEM CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina, M5502JMA
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands, 9747AG
| | - Andrea Mattevi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy27100
| |
Collapse
|
11
|
Monteiro R, Cereija TB, Pombinho R, Voskuilen T, Codée JDC, Sousa S, Morais-Cabral JH, Cabanes D. Molecular properties of the RmlT wall teichoic acid rhamnosyltransferase that modulates virulence in Listeria monocytogenes. Nat Commun 2025; 16:24. [PMID: 39746981 PMCID: PMC11697029 DOI: 10.1038/s41467-024-55360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Wall teichoic acids (WTAs) from the major Gram-positive foodborne pathogen Listeria monocytogenes are peptidoglycan-associated glycopolymers decorated by monosaccharides that, while not essential for bacterial growth, are required for bacterial virulence and resistance to antimicrobials. Here we report the structure and function of a bacterial WTAs rhamnosyltransferase, RmlT, strictly required for L. monocytogenes WTAs rhamnosylation. In particular, we demonstrated that RmlT transfers rhamnose from dTDP-L-rhamnose to naked WTAs, and that specificity towards TDP-rhamnose is not determined by its binding affinity. Structures of RmlT with and without its substrates showed that this enzyme is a dimer, revealed the residues responsible for interaction with the substrates and that the catalytic residue pre-orients the acceptor substrate towards the nucleophilic attack to the sugar. Additionally, the structures provided indications for two potential interaction pathways for the long WTAs on the surface of RmlT. Finally, we confirmed that WTAs glycosyltransferases are promising targets for next-generation strategies against Gram-positive pathogens by showing that inactivation of the RmlT catalytic activity results in a decreased infection in vivo.
Collapse
Affiliation(s)
- Ricardo Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Tatiana B Cereija
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Rita Pombinho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Thijs Voskuilen
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Sandra Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - João H Morais-Cabral
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Didier Cabanes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
12
|
Maurya A, Ahmad N, Sharma P, Sharma S, Singh TP. Structure of the Complex of Lactoperoxidase With Nitric Oxide at 1.95 Å Resolution. Proteins 2025. [PMID: 39748619 DOI: 10.1002/prot.26797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
Lactoperoxidase (LPO) is a heme-containing mammalian enzyme that is found in the extracellular fluids of animals including plasma, saliva, airway epithelial and nasal lining fluids, milk, tears, and gastric juices. LPO uses hydrogen peroxide (H2O2) to convert substrates into oxidized products. Previous structural studies have shown that H2O2, CO, and CN are bound to LPO at the distal heme cavity by coordinating with heme iron. The structure of the complex of LPO with NO shows that NO also binds to LPO at the distal heme cavity and forms a coordinate linkage with heme iron. The structure shows that the nitrogen atom of NO is linked to heme iron at a distance of 1.97 while the oxygen atom is attached to the Nε2 atom of His109 at a distance of 2.23 Å. On the other hand, N atom of NO is located with an interatomic distance of 3.25 Å allowing a hydrogen-bonding interaction with the Nε2 atom of Gln105. A comparison of the bindings of NO, CO, CN, and H2O2 in coordination with heme iron indicates stereochemical compatibility of the distal heme cavity for the binding of diatomic molecules. However, notable differences are observed in their orientations in the distal heme cavity indicating functional differences. The bindings of NO, CO, and CN by coordinating with heme iron result in the inhibition of LPO while the binding of H2O2 to heme iron produces an intermediate of LPO known as Compound I.
Collapse
Affiliation(s)
- Ankit Maurya
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Nabeel Ahmad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - T P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
Eadsforth TC, Torrie LS, Rowland P, Edgar EV, MacLean LM, Paterson C, Robinson DA, Shepherd SM, Thomas J, Thomas MG, Gray DW, Postis VLG, De Rycker M. Pharmacological and structural understanding of the Trypanosoma cruzi proteasome provides key insights for developing site-specific inhibitors. J Biol Chem 2025; 301:108049. [PMID: 39638245 PMCID: PMC11748689 DOI: 10.1016/j.jbc.2024.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The proteasome is considered an excellent drug target for many infectious diseases as well as cancer. Challenges with robust and safe supply of proteasomes from infectious agents, lack of structural information, and complex pharmacology due to multiple active sites have hampered progress in the infectious disease space. We recombinantly expressed the proteasome of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, and demonstrate pharmacological equivalence to the native T. cruzi proteasome. Active-site mutant recombinant proteasomes reveal substrate promiscuity for WT proteasomes, with important implications for assessing pharmacological responses of active-site selective inhibitors. Using these mutant proteasomes, we show that some selective parasite proteasome inhibitors only partially inhibit the chymotrypsin-like activity, including a newly developed 5-(phenoxymethyl)furan-2-carboxamide-based proteasome inhibitor. In spite of partial inhibition, these compounds remain potent inhibitors of intracellular T. cruzi growth. Drug-resistant mutants provide further insights in drug mode-of-inhibition. We also present the high-resolution CryoEM structures of both native and recombinantly-expressed T. cruzi proteasomes which reveal pharmacologically relevant differences in the ligand-binding site compared to the related Leishmania proteasome. Furthermore, we show that the trypanosomatid β4/β5 selectivity pocket is not present in the proteasome structures of other protozoan parasites. This work highlights the need, and provides approaches, to precisely assess proteasome substrate selectivity and pharmacology. It enables structure-guided drug discovery for this promising Chagas disease drug target, provides a new chemical starting point for drug discovery, and paves the road for development of robust proteasome drug discovery programmes for other eukaryotic infectious diseases.
Collapse
Affiliation(s)
- Thomas C Eadsforth
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Leah S Torrie
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | | | - Lorna M MacLean
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Christy Paterson
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - David A Robinson
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Sharon M Shepherd
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - John Thomas
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Michael G Thomas
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - David W Gray
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Vincent L G Postis
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Manu De Rycker
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK.
| |
Collapse
|
14
|
Owji AP, Dong J, Kittredge A, Wang J, Zhang Y, Yang T. Neurotransmitter-bound bestrophin channel structures reveal small molecule drug targeting sites for disease treatment. Nat Commun 2024; 15:10766. [PMID: 39737942 PMCID: PMC11685958 DOI: 10.1038/s41467-024-54938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 11/15/2024] [Indexed: 01/01/2025] Open
Abstract
Best1 and Best2 are two members of the bestrophin family of anion channels critically involved in the prevention of retinal degeneration and maintenance of intraocular pressure, respectively. Here, we solved glutamate- and γ-aminobutyric acid (GABA)-bound Best2 structures, which delineate an intracellular glutamate binding site and an extracellular GABA binding site on Best2, respectively, identified extracellular GABA as a permeable activator of Best2, and elucidated the co-regulation of Best2 by glutamate, GABA and glutamine synthetase in vivo. We further identified multiple small molecules as activators of the bestrophin channels. Extensive analyses were carried out for a potent activator, 4-aminobenzoic acid (PABA): PABA-bound Best1 and Best2 structures are solved and illustrate the same binding site as in GABA-bound Best2; PABA treatment rescues the functional deficiency of patient-derived Best1 mutations. Together, our results demonstrate the mechanism and potential of multiple small molecule candidates as clinically applicable drugs for bestrophin-associated diseases/conditions.
Collapse
Affiliation(s)
- Aaron P Owji
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Jingyun Dong
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Alec Kittredge
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Jiali Wang
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Yu Zhang
- Department of Ophthalmology, Columbia University, New York, NY, USA.
| | - Tingting Yang
- Department of Ophthalmology, Columbia University, New York, NY, USA.
| |
Collapse
|
15
|
Sieber A, Parr M, von Ehr J, Dhamotharan K, Kielkowski P, Brewer T, Schäpers A, Krafczyk R, Qi F, Schlundt A, Frishman D, Lassak J. EF-P and its paralog EfpL (YeiP) differentially control translation of proline-containing sequences. Nat Commun 2024; 15:10465. [PMID: 39622818 PMCID: PMC11611912 DOI: 10.1038/s41467-024-54556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024] Open
Abstract
Polyproline sequences are deleterious to cells because they stall ribosomes. In bacteria, EF-P plays an important role in overcoming such polyproline sequence-induced ribosome stalling. Additionally, numerous bacteria possess an EF-P paralog called EfpL (also known as YeiP) of unknown function. Here, we functionally and structurally characterize EfpL from Escherichia coli and demonstrate its role in the translational stress response. Through ribosome profiling, we analyze the EfpL arrest motif spectrum and find additional sequences beyond the canonical polyproline motifs that both EF-P and EfpL can resolve. Notably, the two factors can also induce pauses. We further report that EfpL can sense the metabolic state of the cell via lysine acylation. Overall, our work characterizes the role of EfpL in ribosome rescue at proline-containing sequences, and provides evidence that co-occurrence of EF-P and EfpL is an evolutionary driver for higher bacterial growth rates.
Collapse
Affiliation(s)
- Alina Sieber
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Marina Parr
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Julian von Ehr
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
- IMPRS on Cellular Biophysics, Frankfurt, Germany
| | - Karthikeyan Dhamotharan
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
| | - Pavel Kielkowski
- Department of Chemistry, Institut für Chemische Epigenetik (ICEM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tess Brewer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anna Schäpers
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ralph Krafczyk
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Fei Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Jürgen Lassak
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
16
|
Nielipinski M, Nielipinska D, Pietrzyk-Brzezinska AJ, Sekula B. Arabidopsis thaliana argininosuccinate lyase structure uncovers the role of serine as the catalytic base. J Struct Biol 2024; 216:108130. [PMID: 39384000 DOI: 10.1016/j.jsb.2024.108130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Arginine is an important amino acid in plants, as it not only plays a structural role and serves as nitrogen storage but is also a precursor for various molecules, including polyamines and proline. Arginine is produced by argininosuccinate lyase (ASL) which catalyzes the cleavage of argininosuccinate to arginine and fumarate. ASL belongs to the fumarate lyase family and while many members of this family were well-characterized, little is known about plant ASLs. Here we present the first crystal structures of ASL from the model plant, Arabidopsis thaliana (AtASL). One of the structures represents the unliganded form of the AtASL homotetramer. The other structure, obtained from a crystal soaked in argininosuccinate, accommodates the substrate or the reaction products in one of four active sites of the AtASL tetramer. Each active site is located at the interface of three neighboring protomers. The AtASL structure with ligands allowed us to analyze the enzyme-substrate and the enzyme-product interactions in detail. Furthermore, based on our analyses, we describe residues of AtASL crucial for catalysis. The structure of AtASL gives the rationale for the open-to-close transition of the GSS mobile loop and indicates the importance of serine 333 from this loop for the enzymatic action of the enzyme. Finally, we supplemented the structural data with the identification of sequence motifs characteristic for ASLs.
Collapse
Affiliation(s)
- Maciej Nielipinski
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Dominika Nielipinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Agnieszka J Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Bartosz Sekula
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| |
Collapse
|
17
|
Grenda S, Claiser N, Barbon A, Guégan F, Toury B, Luneau D. An Open-Shell Functionalization of Inorganic Benzene. J Am Chem Soc 2024. [PMID: 39566893 DOI: 10.1021/jacs.4c10736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
A borazine derivative functionalized by nitroxide free radicals, N,N',N″-(tris(4-Bromophenyl))-B,B',B″-tris((2,6-dimethyl-4-(N-tert-butyl-N-oxyamino)phenyl) borazine (TriBNit), was synthesized as a milestone of open-shell inorganic benzene. The crystal structure determined from X-ray diffraction on a single crystal ascertains the grafting of three nitroxide radicals. The temperature dependence of the magnetic susceptibility evidences weak intramolecular antiferromagnetic interactions between the radicals with strong intermolecular antiferromagnetic interactions between two nitroxide moieties of two neighboring molecules. EPR spectroscopy at 80 K on a frozen glassy solution evidences the coexistence of S = 1/2 and S = 3/2 ground-spin state species. This is ascribed to the nitroxide radicals having different orientations with respect to the borazine core giving rise either to antiferromagnetic interaction with a low ground-spin state S = 1/2 or to ferromagnetic interaction with a high ground-spin state S = 3/2 as supported by theoretical data. At room temperature, because of nitroxide mobility, the EPR spectrum is averaged to a ground-spin state S = 1/2.
Collapse
Affiliation(s)
- Sabrina Grenda
- Laboratoire des Multimatériaux et Interfaces (UMR 5615), Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Nicolas Claiser
- Laboratoire de Cristallographie, Resonance Magnétique et Modélisation (UMR 7030), Université de Lorraine, 54506 Vandoeuvre-lès-Nancy CEDEX, France
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, I-35131 Padova, Italy
| | - Frédéric Guégan
- Institut de Chimie des Milieux et Matériaux de Poitiers (UMR 7285), Université de Poitiers, 86000 Poitiers, France
| | - Bérangère Toury
- Laboratoire des Multimatériaux et Interfaces (UMR 5615), Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Dominique Luneau
- Laboratoire des Multimatériaux et Interfaces (UMR 5615), Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
18
|
Škerlová J, Brynda J, Šobotník J, Zákopčaník M, Novák P, Bourguignon T, Sillam-Dussès D, Řezáčová P. Crystal structure of blue laccase BP76, a unique termite suicidal defense weapon. Structure 2024; 32:1581-1585.e5. [PMID: 39151418 DOI: 10.1016/j.str.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/21/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Aging workers of the termite Neocapritermes taracua can defend their colony by sacrificing themselves by body rupture, mixing the externally stored blue laccase BP76 with hydroquinones to produce a sticky liquid rich in toxic benzoquinones. Here, we describe the crystal structure of BP76 isolated from N. taracua in its native form. The structure reveals several stabilization strategies, including compact folding, glycosylation, and flexible loops with disulfide bridges and tight dimer interface. The remarkable stability of BP76 maintains its catalytic activity in solid state during the lifespan of N. taracua workers, providing old workers with an efficient defensive weapon to protect their colony.
Collapse
Affiliation(s)
- Jana Škerlová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, 165 00 Prague, Czech Republic; Institute of Entomology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Marek Zákopčaník
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Petr Novák
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Thomas Bourguignon
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - David Sillam-Dussès
- Laboratory of Experimental and Comparative Ethology, UR 4443, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic.
| |
Collapse
|
19
|
Sotiropoulou AI, Hatzinikolaou DG, Chrysina ED. Structural studies of β-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus. Acta Crystallogr D Struct Biol 2024; 80:733-743. [PMID: 39361356 PMCID: PMC11448918 DOI: 10.1107/s2059798324009252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
β-Glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus (Bgl1) has been denoted as having an attractive catalytic profile for various industrial applications. Bgl1 catalyses the final step of in the decomposition of cellulose, an unbranched glucose polymer that has attracted the attention of researchers in recent years as it is the most abundant renewable source of reduced carbon in the biosphere. With the aim of enhancing the thermostability of Bgl1 for a broad spectrum of biotechnological processes, it has been subjected to structural studies. Crystal structures of Bgl1 and its complex with glucose were determined at 1.47 and 1.95 Å resolution, respectively. Bgl1 is a member of glycosyl hydrolase family 1 (GH1 superfamily, EC 3.2.1.21) and the results showed that the 3D structure of Bgl1 follows the overall architecture of the GH1 family, with a classical (β/α)8 TIM-barrel fold. Comparisons of Bgl1 with sequence or structural homologues of β-glucosidase reveal quite similar structures but also unique structural features in Bgl1 with plausible functional roles.
Collapse
Affiliation(s)
- Anastasia I Sotiropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35 Athens, Greece
| | - Dimitris G Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 72 Athens, Greece
| | - Evangelia D Chrysina
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35 Athens, Greece
| |
Collapse
|
20
|
Stachelska-Wierzchowska A, Narczyk M, Wierzchowski J, Bzowska A, Wielgus-Kutrowska B. Interaction of Tri-Cyclic Nucleobase Analogs with Enzymes of Purine Metabolism: Xanthine Oxidase and Purine Nucleoside Phosphorylase. Int J Mol Sci 2024; 25:10426. [PMID: 39408755 PMCID: PMC11477426 DOI: 10.3390/ijms251910426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Fluorescent markers play important roles in spectroscopic and microscopic research techniques and are broadly used in basic and applied sciences. We have obtained markers with fluorescent properties, two etheno derivatives of 2-aminopurine, as follows: 1,N2-etheno-2-aminopurine (1,N2-ε2APu, I) and N2,3-etheno-2-aminopurine (N2,3-ε2APu, II). In the present paper, we investigate their interaction with two key enzymes of purine metabolism, purine nucleoside phosphorylase (PNP), and xanthine oxidase (XO), using diffraction of X-rays on protein crystals, isothermal titration calorimetry, and fluorescence spectroscopy. Crystals were obtained and structures were solved for WT PNP and D204N-PNP mutant in a complex with N2,3-ε2APu (II). In the case of WT PNP-1,N2-ε2APu (I) complex, the electron density corresponding to the ligand could not be identified in the active site. Small electron density bobbles may indicate that the ligand binds to the active site of a small number of molecules. On the basis of spectroscopic studies in solution, we found that, in contrast to PNP, 1,N2-ε2APu (I) is the ligand with better affinity to XO. Enzymatic oxidation of (I) leads to a marked increase in fluorescence near 400 nm. Hence, we have developed a new method to determine XO activity in biological material, particularly suitable for milk analysis.
Collapse
Affiliation(s)
- Alicja Stachelska-Wierzchowska
- Department of Physics and Biophysics, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 4 Oczapowskiego St., PL-10-719 Olsztyn, Poland; (A.S.-W.); (J.W.)
| | - Marta Narczyk
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland;
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 4 Oczapowskiego St., PL-10-719 Olsztyn, Poland; (A.S.-W.); (J.W.)
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland;
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland;
| |
Collapse
|
21
|
Chen R, Shen F, Zhang Y, Sun M, Dong Y, Yin Y, Su C, Peng C, Liu J, Xu J. Calcium modulates the tethering of BCOR-PRC1.1 enzymatic core to KDM2B via liquid-liquid phase separation. Commun Biol 2024; 7:1112. [PMID: 39256555 PMCID: PMC11387744 DOI: 10.1038/s42003-024-06820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
Recruitment of non-canonical BCOR-PRC1.1 to non-methylated CpG islands via KDM2B plays a fundamental role in transcription control during developmental processes and cancer progression. However, the mechanism is still largely unknown on how this recruitment is regulated. Here, we unveiled the importance of the Poly-D/E regions within the linker of BCOR for its binding to KDM2B. Interestingly, we also demonstrated that these negatively charged Poly-D/E regions on BCOR play autoinhibitory roles in liquid-liquid phase separation (LLPS) of BCORANK-linker-PUFD/PCGF1RAWUL. Through neutralizing negative charges of these Poly-D/E regions, Ca2+ not only weakens the interaction between BCOR/PCGF1 and KDM2B, but also promotes co-condensation of the enzymatic core of BCOR-PRC1.1 with KDM2B into liquid-like droplet. Accordingly, we propose that Ca2+ could modulate the compartmentation and recruitment of the enzymatic core of BCOR-PRC1.1 on KDM2B target loci. Thus, our finding advances the mechanistic understanding on how the tethering of BCOR-PRC1.1 enzymatic core to KDM2B is regulated.
Collapse
Affiliation(s)
- Rui Chen
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Feng Shen
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yulong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mingze Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China
| | - Yan Dong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Chen Su
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Jinsong Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
22
|
Busetto V, Pshanichnaya L, Lichtenberger R, Hann S, Ketting R, Falk S. MUT-7 exoribonuclease activity and localization are mediated by an ancient domain. Nucleic Acids Res 2024; 52:9076-9091. [PMID: 39188014 PMCID: PMC11347159 DOI: 10.1093/nar/gkae610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 08/28/2024] Open
Abstract
The MUT-7 family of 3'-5' exoribonucleases is evolutionarily conserved across the animal kingdom and plays essential roles in small RNA production in the germline. Most MUT-7 homologues carry a C-terminal domain of unknown function named MUT7-C appended to the exoribonuclease domain. Our analysis shows that the MUT7-C is evolutionary ancient, as a minimal version of the domain exists as an individual protein in prokaryotes. In animals, MUT7-C has acquired an insertion that diverged during evolution, expanding its functions. Caenorhabditis elegans MUT-7 contains a specific insertion within MUT7-C, which allows binding to MUT-8 and, consequently, MUT-7 recruitment to germ granules. In addition, in C. elegans and human MUT-7, the MUT7-C domain contributes to RNA binding and is thereby crucial for ribonuclease activity. This RNA-binding function most likely represents the ancestral function of the MUT7-C domain. Overall, this study sheds light on MUT7-C and assigns two functions to this previously uncharacterized domain.
Collapse
Affiliation(s)
- Virginia Busetto
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Lizaveta Pshanichnaya
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | - Raffael Lichtenberger
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Stephan Hann
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - René F Ketting
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, 55099Mainz, Germany
| | - Sebastian Falk
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
23
|
Martínez-Carranza M, Škerlová J, Lee PG, Zhang J, Krč A, Sirohiwal A, Burgin D, Elliott M, Philippe J, Donald S, Hornby F, Henriksson L, Masuyer G, Kaila VRI, Beard M, Dong M, Stenmark P. Activity of botulinum neurotoxin X and its structure when shielded by a non-toxic non-hemagglutinin protein. Commun Chem 2024; 7:179. [PMID: 39138288 PMCID: PMC11322297 DOI: 10.1038/s42004-024-01262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known and are used to treat an increasing number of medical disorders. All BoNTs are naturally co-expressed with a protective partner protein (NTNH) with which they form a 300 kDa complex, to resist acidic and proteolytic attack from the digestive tract. We have previously identified a new botulinum neurotoxin serotype, BoNT/X, that has unique and therapeutically attractive properties. We present the cryo-EM structure of the BoNT/X-NTNH/X complex and the crystal structure of the isolated NTNH protein. Unexpectedly, the BoNT/X complex is stable and protease-resistant at both neutral and acidic pH and disassembles only in alkaline conditions. Using the stabilizing effect of NTNH, we isolated BoNT/X and showed that it has very low potency both in vitro and in vivo. Given the high catalytic activity and translocation efficacy of BoNT/X, low activity of the full toxin is likely due to the receptor-binding domain, which presents very weak ganglioside binding and exposed hydrophobic surfaces.
Collapse
Affiliation(s)
| | - Jana Škerlová
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Pyung-Gang Lee
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Jie Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Ajda Krč
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Abhishek Sirohiwal
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | - Linda Henriksson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
24
|
Takada H, Paternoga H, Fujiwara K, Nakamoto J, Park E, Dimitrova-Paternoga L, Beckert B, Saarma M, Tenson T, Buskirk A, Atkinson G, Chiba S, Wilson D, Hauryliuk V. A role for the S4-domain containing protein YlmH in ribosome-associated quality control in Bacillus subtilis. Nucleic Acids Res 2024; 52:8483-8499. [PMID: 38811035 PMCID: PMC11317155 DOI: 10.1093/nar/gkae399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
Ribosomes trapped on mRNAs during protein synthesis need to be rescued for the cell to survive. The most ubiquitous bacterial ribosome rescue pathway is trans-translation mediated by tmRNA and SmpB. Genetic inactivation of trans-translation can be lethal, unless ribosomes are rescued by ArfA or ArfB alternative rescue factors or the ribosome-associated quality control (RQC) system, which in Bacillus subtilis involves MutS2, RqcH, RqcP and Pth. Using transposon sequencing in a trans-translation-incompetent B. subtilis strain we identify a poorly characterized S4-domain-containing protein YlmH as a novel potential RQC factor. Cryo-EM structures reveal that YlmH binds peptidyl-tRNA-50S complexes in a position analogous to that of S4-domain-containing protein RqcP, and that, similarly to RqcP, YlmH can co-habit with RqcH. Consistently, we show that YlmH can assume the role of RqcP in RQC by facilitating the addition of poly-alanine tails to truncated nascent polypeptides. While in B. subtilis the function of YlmH is redundant with RqcP, our taxonomic analysis reveals that in multiple bacterial phyla RqcP is absent, while YlmH and RqcH are present, suggesting that in these species YlmH plays a central role in the RQC.
Collapse
Affiliation(s)
- Hiraku Takada
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
- Department of Biotechnology, Toyama Prefectural University,5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Keigo Fujiwara
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Jose A Nakamoto
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Esther N Park
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lyudmila Dimitrova-Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Bertrand Beckert
- Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland
| | - Merilin Saarma
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Tanel Tenson
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gemma C Atkinson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Virus Centre, Lund University, Lund, Sweden
| | - Shinobu Chiba
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Virus Centre, Lund University, Lund, Sweden
- Science for Life Laboratory, Lund, Sweden
| |
Collapse
|
25
|
Šoltysová M, Škerlová J, Pachl P, Škubník K, Fábry M, Sieglová I, Farolfi M, Grishkovskaya I, Babiak M, Nováček J, Krásný L, Řezáčová P. Structural characterization of two prototypical repressors of SorC family reveals tetrameric assemblies on DNA and mechanism of function. Nucleic Acids Res 2024; 52:7305-7320. [PMID: 38842936 PMCID: PMC11229326 DOI: 10.1093/nar/gkae434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 07/09/2024] Open
Abstract
The SorC family of transcriptional regulators plays a crucial role in controlling the carbohydrate metabolism and quorum sensing. We employed an integrative approach combining X-ray crystallography and cryo-electron microscopy to investigate architecture and functional mechanism of two prototypical representatives of two sub-classes of the SorC family: DeoR and CggR from Bacillus subtilis. Despite possessing distinct DNA-binding domains, both proteins form similar tetrameric assemblies when bound to their respective DNA operators. Structural analysis elucidates the process by which the CggR-regulated gapA operon is derepressed through the action of two effectors: fructose-1,6-bisphosphate and newly confirmed dihydroxyacetone phosphate. Our findings provide the first comprehensive understanding of the DNA binding mechanism of the SorC-family proteins, shedding new light on their functional characteristics.
Collapse
Affiliation(s)
- Markéta Šoltysová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, 166 10, Czechia
| | - Jana Škerlová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, 166 10, Czechia
| | - Petr Pachl
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, 166 10, Czechia
| | - Karel Škubník
- CryoElectron Microscopy and Tomography Core Facility, Central European Institute of Technology, Brno, 601 77, Czechia
| | - Milan Fábry
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, 166 10, Czechia
| | - Irena Sieglová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, 166 10, Czechia
| | - Martina Farolfi
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 20, Czechia
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology, Campus-ViennaBiocenter 1, 1030 Vienna, Austria
| | - Michal Babiak
- CryoElectron Microscopy and Tomography Core Facility, Central European Institute of Technology, Brno, 601 77, Czechia
| | - Jiří Nováček
- CryoElectron Microscopy and Tomography Core Facility, Central European Institute of Technology, Brno, 601 77, Czechia
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 20, Czechia
| | - Pavlína Řezáčová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, 166 10, Czechia
| |
Collapse
|
26
|
Szczygiel M, Derewenda U, Scheiner S, Minor W, Derewenda ZS. A structural role for tryptophan in proteins, and the ubiquitous Trp C δ1-H...O=C (backbone) hydrogen bond. Acta Crystallogr D Struct Biol 2024; 80:551-562. [PMID: 38941144 PMCID: PMC11220837 DOI: 10.1107/s2059798324005515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024] Open
Abstract
Tryptophan is the most prominent amino acid found in proteins, with multiple functional roles. Its side chain is made up of the hydrophobic indole moiety, with two groups that act as donors in hydrogen bonds: the Nϵ-H group, which is a potent donor in canonical hydrogen bonds, and a polarized Cδ1-H group, which is capable of forming weaker, noncanonical hydrogen bonds. Due to adjacent electron-withdrawing moieties, C-H...O hydrogen bonds are ubiquitous in macromolecules, albeit contingent on the polarization of the donor C-H group. Consequently, Cα-H groups (adjacent to the carbonyl and amino groups of flanking peptide bonds), as well as the Cϵ1-H and Cδ2-H groups of histidines (adjacent to imidazole N atoms), are known to serve as donors in hydrogen bonds, for example stabilizing parallel and antiparallel β-sheets. However, the nature and the functional role of interactions involving the Cδ1-H group of the indole ring of tryptophan are not well characterized. Here, data mining of high-resolution (r ≤ 1.5 Å) crystal structures from the Protein Data Bank was performed and ubiquitous close contacts between the Cδ1-H groups of tryptophan and a range of electronegative acceptors were identified, specifically main-chain carbonyl O atoms immediately upstream and downstream in the polypeptide chain. The stereochemical analysis shows that most of the interactions bear all of the hallmarks of proper hydrogen bonds. At the same time, their cohesive nature is confirmed by quantum-chemical calculations, which reveal interaction energies of 1.5-3.0 kcal mol-1, depending on the specific stereochemistry.
Collapse
Affiliation(s)
- Michal Szczygiel
- Department of Molecular Physiology and Biological PhysicsUniversity of Virginia1340 Jefferson Park AvenueCharlottesvilleVA22908-0736USA
| | - Urszula Derewenda
- Department of Molecular Physiology and Biological PhysicsUniversity of Virginia1340 Jefferson Park AvenueCharlottesvilleVA22908-0736USA
| | - Steve Scheiner
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Wladek Minor
- Department of Molecular Physiology and Biological PhysicsUniversity of Virginia1340 Jefferson Park AvenueCharlottesvilleVA22908-0736USA
| | - Zygmunt S. Derewenda
- Department of Molecular Physiology and Biological PhysicsUniversity of Virginia1340 Jefferson Park AvenueCharlottesvilleVA22908-0736USA
| |
Collapse
|
27
|
Cai Y, Diallo S, Rosenthal K, Ren K, Flores DJ, Dippel A, Oganesyan V, van Dyk N, Chen X, Cantu E, Choudhary R, Sulikowski M, Adissu H, Chawla B, Kar S, Liu C, Dijokaite-Guraliuc A, Mongkolsapaya J, Rajan S, Loo YM, Beavon R, Webber C, Chang LJ, Thomas S, Clegg L, Zhang H, Screaton GR, Philbin N, Harre M, Selim A, Martinez-Alier N, Uriel A, Cohen TS, Perez JL, Esser MT, Blair W, Francica JR. AZD3152 neutralizes SARS-CoV-2 historical and contemporary variants and is protective in hamsters and well tolerated in adults. Sci Transl Med 2024; 16:eado2817. [PMID: 38924429 DOI: 10.1126/scitranslmed.ado2817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in variants that can escape neutralization by therapeutic antibodies. Here, we describe AZD3152, a SARS-CoV-2-neutralizing monoclonal antibody designed to provide improved potency and coverage against emerging variants. AZD3152 binds to the back left shoulder of the SARS-CoV-2 spike protein receptor binding domain and prevents interaction with the human angiotensin-converting enzyme 2 receptor. AZD3152 potently neutralized a broad panel of pseudovirus variants, including the currently dominant Omicron variant JN.1 but has reduced potency against XBB subvariants containing F456L. In vitro studies confirmed F456L resistance and additionally identified T415I and K458E as escape mutations. In a Syrian hamster challenge model, prophylactic administration of AZD3152 protected hamsters from weight loss and inflammation-related lung pathologies and reduced lung viral load. In the phase 1 sentinel safety cohort of the ongoing SUPERNOVA study (ClinicalTrials.gov: NCT05648110), a single 600-mg intramuscular injection of AZD5156 (containing 300 mg each of AZD3152 and cilgavimab) was well tolerated in adults through day 91. Observed serum concentrations of AZD3152 through day 91 were similar to those observed with cilgavimab and consistent with predictions for AZD7442, a SARS-CoV-2-neutralizing antibody combination of cilgavimab and tixagevimab, in a population pharmacokinetic model. On the basis of its pharmacokinetic characteristics, AZD3152 is predicted to provide durable protection against symptomatic coronavirus disease 2019 caused by susceptible SARS-CoV-2 variants, such as JN.1, in humans.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/drug effects
- Humans
- COVID-19/virology
- Antibodies, Neutralizing/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Cricetinae
- COVID-19 Drug Treatment
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Mesocricetus
- Female
- Male
- Adult
- Antibodies, Viral/immunology
- Mutation/genetics
- Antibodies, Monoclonal
- Angiotensin-Converting Enzyme 2/metabolism
- Viral Load/drug effects
Collapse
Affiliation(s)
- Yingyun Cai
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Seme Diallo
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Kim Rosenthal
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Kuishu Ren
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Daniel J Flores
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Andrew Dippel
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Vaheh Oganesyan
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Nydia van Dyk
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Xiaoru Chen
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Erin Cantu
- Imaging and Data Analytics, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Rakesh Choudhary
- Imaging and Data Analytics, AstraZeneca, Gaithersburg, MD 20878, USA
| | | | - Hibret Adissu
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | | | | | - Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Aiste Dijokaite-Guraliuc
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand, Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Saravanan Rajan
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Yueh-Ming Loo
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Rohini Beavon
- Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK
| | - Chris Webber
- Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK
| | - Lee-Jah Chang
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Steven Thomas
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Lindsay Clegg
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Huixia Zhang
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Gavin R Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Nora Philbin
- Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK
| | - Mark Harre
- Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK
| | - Abdulhafez Selim
- Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK
| | - Nuria Martinez-Alier
- Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK
| | - Alison Uriel
- Department of Infectious Diseases and Tropical Medicine, North Manchester General Hospital (Manchester University NHS Foundation Trust), Manchester M8 5RB, UK
| | - Taylor S Cohen
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - John L Perez
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Mark T Esser
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Wade Blair
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Joseph R Francica
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| |
Collapse
|
28
|
Błaszczyk L, Ryczek M, Das B, Mateja-Pluta M, Bejger M, Śliwiak J, Nakatani K, Kiliszek A. Antisense RNA C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms a triplex-like structure and binds small synthetic ligand. Nucleic Acids Res 2024; 52:6707-6717. [PMID: 38738637 PMCID: PMC11194091 DOI: 10.1093/nar/gkae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/05/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
The abnormal expansion of GGGGCC/GGCCCC hexanucleotide repeats (HR) in C9orf72 is associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Structural polymorphisms of HR result in the multifactorial pathomechanism of ALS/FTD. Consequently, many ongoing studies are focused at developing therapies targeting pathogenic HR RNA. One of them involves small molecules blocking sequestration of important proteins, preventing formation of toxic nuclear foci. However, rational design of potential therapeutics is hindered by limited number of structural studies of RNA-ligand complexes. We determined the crystal structure of antisense HR RNA in complex with ANP77 ligand (1.1 Å resolution) and in the free form (0.92 and 1.5 Å resolution). HR RNA folds into a triplex structure composed of four RNA chains. ANP77 interacted with two neighboring single-stranded cytosines to form pseudo-canonical base pairs by adopting sandwich-like conformation and adjusting the position of its naphthyridine units to the helical twist of the RNA. In the unliganded structure, the cytosines formed a peculiar triplex i-motif, assembled by trans C•C+ pair and a third cytosine located at the Hoogsteen edge of the C•C+ pair. These results extend our knowledge of the structural polymorphisms of HR and can be used for rational design of small molecules targeting disease-related RNAs.
Collapse
Affiliation(s)
- Leszek Błaszczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Marcin Ryczek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Bimolendu Das
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Martyna Mateja-Pluta
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Magdalena Bejger
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Joanna Śliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Agnieszka Kiliszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| |
Collapse
|
29
|
Faridoon, Zheng J, Zhang T, Tong S, Liu T, Cui J, Xu H, Hu D, Shen Y, Yin Y, Zhao D, Tan C, Dong X, Chen J, Ji F, Tong C, Li JJ, Li J, Zhang G. Structure-Based Design and Optimization of Methionine Adenosyltransferase 2A (MAT2A) Inhibitors with High Selectivity, Brain Penetration, and In Vivo Efficacy. J Med Chem 2024; 67:9431-9446. [PMID: 38818879 DOI: 10.1021/acs.jmedchem.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Synthetic lethality has recently emerged as a new approach for the treatment of mutated genes that were previously considered undruggable. Targeting methionine adenosyltransferase 2A (MAT2A) in cancers with deletion of the methylthioadenosine phosphorylase (MTAP) gene leads to synthetic lethality and thus has attracted significant interest in the field of precise anticancer drug development. Herein, we report the discovery of a series of novel MAT2A inhibitors featuring a pyrazolo[3,4-c]quinolin-4-one skeleton based on structure-based drug design. Further optimization led to compound 39, which has a high potency for inhibiting MAT2A and a remarkable selectivity for MTAP-deleted cancer cell lines. Compound 39 has a favorable pharmacokinetic profile with high plasma exposure and oral bioavailability, and it exhibits significant efficacy in xenograft MTAP-depleted models. Moreover, 39 demonstrates excellent brain exposure with a Kpuu of 0.64 in rats.
Collapse
Affiliation(s)
- Faridoon
- Center for Drug Design and Development, Suzhou Genhouse Bio Co., Ltd., No. 1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Jiyue Zheng
- Center for Drug Design and Development, Suzhou Genhouse Bio Co., Ltd., No. 1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Tao Zhang
- Center for Drug Design and Development, Suzhou Genhouse Bio Co., Ltd., No. 1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Shuilong Tong
- Center for Drug Design and Development, Suzhou Genhouse Bio Co., Ltd., No. 1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Tao Liu
- Center for Drug Design and Development, Suzhou Genhouse Bio Co., Ltd., No. 1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Jiuen Cui
- Center for Drug Design and Development, Suzhou Genhouse Bio Co., Ltd., No. 1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Haojie Xu
- Center for Drug Design and Development, Suzhou Genhouse Bio Co., Ltd., No. 1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Di Hu
- Center for Drug Design and Development, Suzhou Genhouse Bio Co., Ltd., No. 1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Ying Shen
- Center for Drug Design and Development, Suzhou Genhouse Bio Co., Ltd., No. 1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Yajing Yin
- Center for Drug Design and Development, Suzhou Genhouse Bio Co., Ltd., No. 1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Danhua Zhao
- Center for Drug Design and Development, Suzhou Genhouse Bio Co., Ltd., No. 1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Chensheng Tan
- Center for Drug Design and Development, Suzhou Genhouse Bio Co., Ltd., No. 1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xue Dong
- Center for Drug Design and Development, Suzhou Genhouse Bio Co., Ltd., No. 1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Jiali Chen
- Center for Drug Design and Development, Suzhou Genhouse Bio Co., Ltd., No. 1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Feihong Ji
- Center for Drug Design and Development, Suzhou Genhouse Bio Co., Ltd., No. 1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Chenhua Tong
- Center for Drug Design and Development, Suzhou Genhouse Bio Co., Ltd., No. 1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Jie Jack Li
- Center for Drug Design and Development, Suzhou Genhouse Bio Co., Ltd., No. 1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Jiapeng Li
- Center for Drug Design and Development, Suzhou Genhouse Bio Co., Ltd., No. 1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Guiping Zhang
- Center for Drug Design and Development, Suzhou Genhouse Bio Co., Ltd., No. 1 Xinze Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| |
Collapse
|
30
|
Peng W, Giesbers KC, Šiborová M, Beugelink JW, Pronker MF, Schulte D, Hilkens J, Janssen BJ, Strijbis K, Snijder J. Reverse-engineering the anti-MUC1 antibody 139H2 by mass spectrometry-based de novo sequencing. Life Sci Alliance 2024; 7:e202302366. [PMID: 38508723 PMCID: PMC10955041 DOI: 10.26508/lsa.202302366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
Mucin 1 (MUC1) is a transmembrane mucin expressed at the apical surface of epithelial cells at mucosal surfaces. MUC1 has a barrier function against bacterial invasion and is well known for its aberrant expression and glycosylation in adenocarcinomas. The MUC1 extracellular domain contains a variable number of tandem repeats (VNTR) of 20 amino acids, which are heavily O-linked glycosylated. Monoclonal antibodies against the MUC1 VNTR are powerful research tools with applications in the diagnosis and treatment of MUC1-expressing cancers. Here, we report direct mass spectrometry-based sequencing of anti-MUC1 hybridoma-derived 139H2 IgG, enabling reverse-engineering of the functional recombinant monoclonal antibody. The crystal structure of the 139H2 Fab fragment in complex with the MUC1 epitope was solved, revealing the molecular basis of 139H2 binding specificity to MUC1 and its tolerance to O-glycosylation of the VNTR. The available sequence of 139H2 will allow further development of MUC1-related diagnostic, targeting, and treatment strategies.
Collapse
Affiliation(s)
- Weiwei Peng
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Koen Cap Giesbers
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Marta Šiborová
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - J Wouter Beugelink
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Matti F Pronker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Douwe Schulte
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - John Hilkens
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Bert Jc Janssen
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Karin Strijbis
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
31
|
Boverio A, Jamil N, Mannucci B, Mascotti ML, Fraaije MW, Mattevi A. Structure, mechanism, and evolution of the last step in vitamin C biosynthesis. Nat Commun 2024; 15:4158. [PMID: 38755143 PMCID: PMC11099136 DOI: 10.1038/s41467-024-48410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Photosynthetic organisms, fungi, and animals comprise distinct pathways for vitamin C biosynthesis. Besides this diversity, the final biosynthetic step consistently involves an oxidation reaction carried out by the aldonolactone oxidoreductases. Here, we study the origin and evolution of the diversified activities and substrate preferences featured by these flavoenzymes using molecular phylogeny, kinetics, mutagenesis, and crystallographic experiments. We find clear evidence that they share a common ancestor. A flavin-interacting amino acid modulates the reactivity with the electron acceptors, including oxygen, and determines whether an enzyme functions as an oxidase or a dehydrogenase. We show that a few side chains in the catalytic cavity impart the reaction stereoselectivity. Ancestral sequence reconstruction outlines how these critical positions were affixed to specific amino acids along the evolution of the major eukaryotic clades. During Eukarya evolution, the aldonolactone oxidoreductases adapted to the varying metabolic demands while retaining their overarching vitamin C-generating function.
Collapse
Affiliation(s)
- Alessandro Boverio
- Molecular Enzymology group, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Neelam Jamil
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Barbara Mannucci
- Centro Grandi Strumenti, University of Pavia, Via Bassi 21, 27100, Pavia, Italy
| | - Maria Laura Mascotti
- Molecular Enzymology group, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
- IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, 5500, Mendoza, Argentina.
| | - Marco W Fraaije
- Molecular Enzymology group, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
32
|
Wang W, Atherton P, Kreft M, te Molder L, van der Poel S, Hoekman L, Celie P, Joosten RP, Fässler R, Perrakis A, Sonnenberg A. Caskin2 is a novel talin- and Abi1-binding protein that promotes cell motility. J Cell Sci 2024; 137:jcs262116. [PMID: 38587458 PMCID: PMC11166458 DOI: 10.1242/jcs.262116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Talin (herein referring collectively to talin 1 and 2) couples the actomyosin cytoskeleton to integrins and transmits tension to the extracellular matrix. Talin also interacts with numerous additional proteins capable of modulating the actin-integrin linkage and thus downstream mechanosignaling cascades. Here, we demonstrate that the scaffold protein Caskin2 interacts directly with the R8 domain of talin through its C-terminal LD motif. Caskin2 also associates with the WAVE regulatory complex to promote cell migration in an Abi1-dependent manner. Furthermore, we demonstrate that the Caskin2-Abi1 interaction is regulated by growth factor-induced phosphorylation of Caskin2 on serine 878. In MCF7 and UACC893 cells, which contain an amplification of CASKIN2, Caskin2 localizes in plasma membrane-associated plaques and around focal adhesions in cortical microtubule stabilization complexes. Taken together, our results identify Caskin2 as a novel talin-binding protein that might not only connect integrin-mediated adhesion to actin polymerization but could also play a role in crosstalk between integrins and microtubules.
Collapse
Affiliation(s)
- Wei Wang
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Paul Atherton
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool L69 7BE, UK
| | - Maaike Kreft
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Lisa te Molder
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Sabine van der Poel
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Patrick Celie
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Robbie P. Joosten
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
33
|
Sridhar S, Kiema T, Schmitz W, Widersten M, Wierenga RK. Structural enzymology studies with the substrate 3S-hydroxybutanoyl-CoA: bifunctional MFE1 is a less efficient dehydrogenase than monofunctional HAD. FEBS Open Bio 2024; 14:655-674. [PMID: 38458818 PMCID: PMC10988713 DOI: 10.1002/2211-5463.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Multifunctional enzyme, type-1 (MFE1) catalyzes the second and third step of the β-oxidation cycle, being, respectively, the 2E-enoyl-CoA hydratase (ECH) reaction (N-terminal part, crotonase fold) and the NAD+-dependent, 3S-hydroxyacyl-CoA dehydrogenase (HAD) reaction (C-terminal part, HAD fold). Structural enzymological properties of rat MFE1 (RnMFE1) as well as of two of its variants, namely the E123A variant (a glutamate of the ECH active site is mutated into alanine) and the BCDE variant (without domain A of the ECH part), were studied, using as substrate 3S-hydroxybutanoyl-CoA. Protein crystallographic binding studies show the hydrogen bond interactions of 3S-hydroxybutanoyl-CoA as well as of its 3-keto, oxidized form, acetoacetyl-CoA, with the catalytic glutamates in the ECH active site. Pre-steady state binding experiments with NAD+ and NADH show that the kon and koff rate constants of the HAD active site of monomeric RnMFE1 and the homologous human, dimeric 3S-hydroxyacyl-CoA dehydrogenase (HsHAD) for NAD+ and NADH are very similar, being the same as those observed for the E123A and BCDE variants. However, steady state and pre-steady state kinetic data concerning the HAD-catalyzed dehydrogenation reaction of the substrate 3S-hydroxybutanoyl-CoA show that, respectively, the kcat and kchem rate constants for conversion into acetoacetyl-CoA by RnMFE1 (and its two variants) are about 10 fold lower as when catalyzed by HsHAD. The dynamical properties of dehydrogenases are known to be important for their catalytic efficiency, and it is discussed that the greater complexity of the RnMFE1 fold correlates with the observation that RnMFE1 is a slower dehydrogenase than HsHAD.
Collapse
Affiliation(s)
- Shruthi Sridhar
- Faculty of Biochemistry and Molecular MedicineUniversity of OuluFinland
| | | | - Werner Schmitz
- Theodor Boveri Institute of Biosciences (Biocenter)University of WürzburgGermany
| | | | - Rik K. Wierenga
- Faculty of Biochemistry and Molecular MedicineUniversity of OuluFinland
| |
Collapse
|
34
|
Mydy LS, Hungerford J, Chigumba DN, Konwerski JR, Jantzi SC, Wang D, Smith JL, Kersten RD. An intramolecular macrocyclase in plant ribosomal peptide biosynthesis. Nat Chem Biol 2024; 20:530-540. [PMID: 38355722 PMCID: PMC11049724 DOI: 10.1038/s41589-024-01552-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
The biosynthetic dogma of ribosomally synthesized and posttranslationally modified peptides (RiPP) involves enzymatic intermolecular modification of core peptide motifs in precursor peptides. The plant-specific BURP-domain protein family, named after their four founding members, includes autocatalytic peptide cyclases involved in the biosynthesis of side-chain-macrocyclic plant RiPPs. Here we show that AhyBURP, a representative of the founding Unknown Seed Protein-type BURP-domain subfamily, catalyzes intramolecular macrocyclizations of its core peptide during the sequential biosynthesis of monocyclic lyciumin I via glycine-tryptophan crosslinking and bicyclic legumenin via glutamine-tyrosine crosslinking. X-ray crystallography of AhyBURP reveals the BURP-domain fold with two type II copper centers derived from a conserved stapled-disulfide and His motif. We show the macrocyclization of lyciumin-C(sp3)-N-bond formation followed by legumenin-C(sp3)-O-bond formation requires dioxygen and radical involvement based on enzyme assays in anoxic conditions and isotopic labeling. Our study expands enzymatic intramolecular modifications beyond catalytic moiety and chromophore biogenesis to RiPP biosynthesis.
Collapse
Affiliation(s)
- Lisa S Mydy
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Jordan Hungerford
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Desnor N Chigumba
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Sarah C Jantzi
- Plasma Chemistry Laboratory, Center for Applied Isotope Studies, University of Georgia, Athens, GA, USA
| | - Di Wang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
Nitin K, Rajakumara E. Proxy-approach in understanding the bisubstrate activity of strictosidine synthases. Int J Biol Macromol 2024; 262:130091. [PMID: 38354931 DOI: 10.1016/j.ijbiomac.2024.130091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/20/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Besides tryptamine (1) and secologanin (2), non-cognate substrates also undergo a Pictet-Spengler reaction (PSR) catalyzed by strictosidine synthases (STR) with differing catalytic properties. We characterized the bisubstrate binding aspect of catalysis - order, affinity, and cooperativity - with STR orthologs from Rauvolfia serpentina (RsSTR) and Ophiorrhiza pumila (OpSTR) by an isothermal titration calorimetry (ITC) based 'proxy approach' that employed a non-reactive tryptamine analog (m1) to capture its inert ternary complexes with STRs and (2). ITC studies with OpSTR and (2) revealed 'tryptamine-first' cooperative binding with (1) and a simultaneous cooperative binding with (m1). Binding cooperativity among (m1) and (2) towards OpSTR was higher than RsSTR. Crystallographic study of RsSTR-(m1) complex helped to understand the unreactive binding of (m1) in terms of orientation and interactions in the RsSTR pocket. PSR with (m1) was revealed to be energetically unfeasible by the density functional theory (DFT) scans of the first hydrogen abstraction by RsSTR. The effect of pH on the bisubstrate binding to OpSTR was deciphered by molecular dynamics simulations (MDS), which also provided a molecular basis for the stability of complex of OpSTR with (m1) and (2). Therefore, we investigated STRs from a substrate binding perspective to inform drug-design and rational enzyme engineering efforts.
Collapse
Affiliation(s)
- Kulhar Nitin
- Macromolecular Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy 502284, Telangana, India.
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
36
|
Haataja T, Hansson H, Moriya S, Sandgren M, Ståhlberg J. The crystal structure of RsSymEG1 reveals a unique form of smaller GH7 endoglucanases alongside GH7 cellobiohydrolases in protist symbionts of termites. FEBS J 2024; 291:1168-1185. [PMID: 38073120 DOI: 10.1111/febs.17029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Glycoside hydrolase family 7 (GH7) cellulases are key enzymes responsible for carbon cycling on earth through their role in cellulose degradation and constitute highly important industrial enzymes as well. Although these enzymes are found in a wide variety of evolutionarily distant organisms across eukaryotes, they exhibit remarkably conserved features within two groups: exo-acting cellobiohydrolases and endoglucanases. However, recently reports have emerged of a separate clade of GH7 endoglucanases from protist symbionts of termites that are 60-80 amino acids shorter. In this work, we describe the first crystal structure of a short GH7 endoglucanase, RsSymEG1, from a symbiont of the lower termite Reticulitermes speratus. A more open flat surface and shorter loops around the non-reducing end of the cellulose-binding cleft indicate enhanced access to cellulose chains on the surface of cellulose microfibrils. Additionally, when comparing activities on polysaccharides to a typical fungal GH7 endoglucanase (Trichoderma longibrachiatum Cel7B), RsSymEG1 showed significantly faster initial hydrolytic activity. We also examine the prevalence and diversity of GH7 enzymes that the symbionts provide to the termite host, compare overall structures and substrate binding between cellobiohydrolase and long and short endoglucanase, and highlight the presence of similar short GH7s in other organisms.
Collapse
Affiliation(s)
- Topi Haataja
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Henrik Hansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
37
|
Solovou TGA, Stravodimos G, Papadopoulos GE, Skamnaki VT, Papadopoulou K, Leonidas DD. Biochemical and Structural Studies of LjSK1, a Lotus japonicus GSK3β/SHAGGY-like Kinase, Reveal Its Functional Role. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3763-3772. [PMID: 38330914 DOI: 10.1021/acs.jafc.3c07101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The crystal structure of a truncated form of the Lotus japonicus glycogen synthase kinase 3β (GSK3β) like kinase (LjSK190-467) has been resolved at 2.9 Å resolution, providing, for the first time, structural data for a plant GKS3β like kinase. The 3D structure of LjSK190-467 revealed conservation at the structural level for this plant member of the GSK3β family. However, comparative structural analysis to the human homologue revealed significant differences at the N- and C-termini, supporting the notion for an additional regulatory mechanism in plant GSK3-like kinases. Structural similarities at the catalytic site and the ATP binding site explained the similarity in the function of the human and plant protein. LjSK1 and lupeol are strongly linked to symbiotic bacterial infection and nodulation initiation. An inhibitory capacity of lupeol (IC50 = 0.77 μM) for LjSK1 was discovered, providing a biochemical explanation for the involvement of these two molecules in nodule formation, and constituted LjSK1 as a molecular target for the discovery of small molecule modulators for crop protection and development. Studies on the inhibitory capacity of two phytogenic triterpenoids (betulinic acid and hederacoside C) to LjSK1 provided their structure-activity relationship and showed that hederacoside C can be the starting point for such endeavors.
Collapse
Affiliation(s)
- Theodora G A Solovou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500 Larissa, Greece
| | - George Stravodimos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500 Larissa, Greece
| | - Georgios E Papadopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500 Larissa, Greece
| | - Vassiliki T Skamnaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500 Larissa, Greece
| | - Kalliope Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500 Larissa, Greece
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500 Larissa, Greece
| |
Collapse
|
38
|
Lewandowski M, Carmina M, Knümann L, Sai M, Willems S, Kasch T, Pollinger J, Knapp S, Marschner JA, Chaikuad A, Merk D. Structure-Guided Design of a Highly Potent Partial RXR Agonist with Superior Physicochemical Properties. J Med Chem 2024; 67:2152-2164. [PMID: 38237049 DOI: 10.1021/acs.jmedchem.3c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Retinoid X receptors (RXRs, NR2B1-3) hold therapeutic potential in oncology, neurodegeneration, and metabolic diseases, but traditional RXR agonists mimicking the natural ligand 9-cis retinoic acid exhibit poor physicochemical properties, pharmacokinetics, and safety profiles. Improved RXR ligands are needed to exploit RXR modulation as a promising therapeutic concept in various indications beyond its current role in second-line cancer treatment. Here, we report the co-crystal structure of RXR in complex with a novel pyrimidine-based ligand and the structure-informed optimization of this scaffold to highly potent and highly soluble RXR agonists. Focused structure-activity relationship elucidation and rigidization resulted in a substantially optimized partial RXR agonist with low nanomolar potency, no cytotoxic activity, and very favorable physicochemical properties highlighting this promising scaffold for the development of next-generation RXR targeting drugs.
Collapse
Affiliation(s)
- Max Lewandowski
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Melania Carmina
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Loris Knümann
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Minh Sai
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Sabine Willems
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Till Kasch
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Julius Pollinger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| |
Collapse
|
39
|
Li F, Zhu WF, Empel C, Datsenko O, Kumar A, Xu Y, Ehrler JHM, Atodiresei I, Knapp S, Mykhailiuk PK, Proschak E, Koenigs RM. Photosensitization enables Pauson-Khand-type reactions with nitrenes. Science 2024; 383:498-503. [PMID: 38301027 DOI: 10.1126/science.adm8095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024]
Abstract
The Pauson-Khand reaction has in the past 50 years become one of the most common cycloaddition reactions in chemistry. Coupling two unsaturated bonds with carbon monoxide, the transformation remains limited to CO as a C1 building block. Herein we report analogous cycloaddition reactions with nitrenes as an N1 unit. The reaction of a nonconjugated diene with a nitrene precursor produces bicyclic bioisosteres of common saturated heterocycles such as piperidine, morpholine, and piperazine. Experimental and computational mechanistic studies support relaying of the diradical nature of triplet nitrene into the π-system. We showcase the reaction's utility in late-stage functionalization of drug compounds and discovery of soluble epoxide hydrolase inhibitors.
Collapse
Affiliation(s)
- Fang Li
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - W Felix Zhu
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
- Goethe University, Institute of Pharmaceutical Chemistry, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | | | - Adarsh Kumar
- Goethe University, Institute of Pharmaceutical Chemistry, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University, Max-von-Laue-Str. 15, D-60438 Frankfurt, Germany
| | - Yameng Xu
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Johanna H M Ehrler
- Goethe University, Institute of Pharmaceutical Chemistry, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Iuliana Atodiresei
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Stefan Knapp
- Goethe University, Institute of Pharmaceutical Chemistry, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University, Max-von-Laue-Str. 15, D-60438 Frankfurt, Germany
| | - Pavel K Mykhailiuk
- Enamine Ltd, Winston Churchill Str. 78, 02094 Kyiv, Ukraine
- Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine
| | - Ewgenij Proschak
- Goethe University, Institute of Pharmaceutical Chemistry, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
40
|
Dimitrova-Paternoga L, Kasvandik S, Beckert B, Granneman S, Tenson T, Wilson DN, Paternoga H. Structural basis of ribosomal 30S subunit degradation by RNase R. Nature 2024; 626:1133-1140. [PMID: 38326618 PMCID: PMC10901742 DOI: 10.1038/s41586-024-07027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
Protein synthesis is a major energy-consuming process of the cell that requires the controlled production1-3 and turnover4,5 of ribosomes. Although the past few years have seen major advances in our understanding of ribosome biogenesis, structural insight into the degradation of ribosomes has been lacking. Here we present native structures of two distinct small ribosomal 30S subunit degradation intermediates associated with the 3' to 5' exonuclease ribonuclease R (RNase R). The structures reveal that RNase R binds at first to the 30S platform to facilitate the degradation of the functionally important anti-Shine-Dalgarno sequence and the decoding-site helix 44. RNase R then encounters a roadblock when it reaches the neck region of the 30S subunit, and this is overcome by a major structural rearrangement of the 30S head, involving the loss of ribosomal proteins. RNase R parallels this movement and relocates to the decoding site by using its N-terminal helix-turn-helix domain as an anchor. In vitro degradation assays suggest that head rearrangement poses a major kinetic barrier for RNase R, but also indicate that the enzyme alone is sufficient for complete degradation of 30S subunits. Collectively, our results provide a mechanistic basis for the degradation of 30S mediated by RNase R, and reveal that RNase R targets orphaned 30S subunits using a dynamic mechanism involving an anchored switching of binding sites.
Collapse
Affiliation(s)
| | - Sergo Kasvandik
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Bertrand Beckert
- Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland
| | - Sander Granneman
- Centre for Engineering Biology (SynthSys), University of Edinburgh, Edinburgh, UK
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
41
|
Glukhov A, Marchenkov V, Dzhus U, Krutilina A, Selikhanov G, Gabdulkhakov A. Bacteriophage T5 dUTPase: Combination of Common Enzymatic and Novel Functions. Int J Mol Sci 2024; 25:892. [PMID: 38255966 PMCID: PMC10815766 DOI: 10.3390/ijms25020892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The main function of dUTPases is to regulate the cellular levels of dUTP and dTTP, thereby playing a crucial role in DNA repair mechanisms. Despite the fact that mutant organisms with obliterated dUTPase enzymatic activity remain viable, it is not possible to completely knock out the dut gene due to the lethal consequences of such a mutation for the organism. As a result, it is considered that this class of enzymes performs an additional function that is essential for the organism's survival. In this study, we provide evidence that the dUTPase of bacteriophage T5 fulfills a supplemental function, in addition to its canonical role. We determined the crystal structure of bacteriophage T5 dUTPase with a resolution of 2.0 Å, and we discovered a distinct short loop consisting of six amino acid residues, representing a unique structural feature specific to the T5-like phages dUTPases. The removal of this element did not affect the overall structure of the homotrimer, but it had significant effects on the development of the phage. Furthermore, it was shown that the enzymatic function and the novel function of the bacteriophage T5 dUTPase are unrelated and independent from each other.
Collapse
Affiliation(s)
- Anatoly Glukhov
- Institute of Protein Research RAS, 142290 Pushchino, Russia; (A.G.); (V.M.); (U.D.); (G.S.)
| | - Victor Marchenkov
- Institute of Protein Research RAS, 142290 Pushchino, Russia; (A.G.); (V.M.); (U.D.); (G.S.)
| | - Ulyana Dzhus
- Institute of Protein Research RAS, 142290 Pushchino, Russia; (A.G.); (V.M.); (U.D.); (G.S.)
| | - Antonina Krutilina
- Institute of Protein Research RAS, 142290 Pushchino, Russia; (A.G.); (V.M.); (U.D.); (G.S.)
| | - Georgii Selikhanov
- Institute of Protein Research RAS, 142290 Pushchino, Russia; (A.G.); (V.M.); (U.D.); (G.S.)
- International Institute “Solution Chemistry of Advanced Materials and Technologies”, ITMO University, 191002 St. Petersburg, Russia
- Almetyevsk State Petroleum Institute, 423450 Almetyevsk, Russia
| | - Azat Gabdulkhakov
- Institute of Protein Research RAS, 142290 Pushchino, Russia; (A.G.); (V.M.); (U.D.); (G.S.)
| |
Collapse
|
42
|
Fernández FJ, Querol-García J, Navas-Yuste S, Martino F, Vega MC. X-Ray Crystallography for Macromolecular Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:125-140. [PMID: 38507204 DOI: 10.1007/978-3-031-52193-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
X-ray crystallography has for most of the last century been the standard technique to determine the high-resolution structure of biological macromolecules, including multi-subunit protein-protein and protein-nucleic acids as large as the ribosome and viruses. As such, the successful application of X-ray crystallography to many biological problems revolutionized biology and biomedicine by solving the structures of small molecules and vitamins, peptides and proteins, DNA and RNA molecules, and many complexes-affording a detailed knowledge of the structures that clarified biological and chemical mechanisms, conformational changes, interactions, catalysis and the biological processes underlying DNA replication, translation, and protein synthesis. Now reaching well into the first quarter of the twenty-first century, X-ray crystallography shares the structural biology stage with cryo-electron microscopy and other innovative structure determination methods, as relevant and central to our understanding of biological function and structure as ever. In this chapter, we provide an overview of modern X-ray crystallography and how it interfaces with other mainstream structural biology techniques, with an emphasis on macromolecular complexes.
Collapse
Affiliation(s)
| | | | - Sergio Navas-Yuste
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Fabrizio Martino
- Structural Biology Research Centre, Human Technopole, Milan, Italy
| | - M Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain.
| |
Collapse
|
43
|
Ignatiou A, Macé K, Redzej A, Costa TRD, Waksman G, Orlova EV. Structural Analysis of Protein Complexes by Cryo-Electron Microscopy. Methods Mol Biol 2024; 2715:431-470. [PMID: 37930544 DOI: 10.1007/978-1-0716-3445-5_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Structural studies of bio-complexes using single particle cryo-Electron Microscopy (cryo-EM) is nowadays a well-established technique in structural biology and has become competitive with X-ray crystallography. Development of digital registration systems for electron microscopy images and algorithms for the fast and efficient processing of the recorded images and their following analysis has facilitated the determination of structures at near-atomic resolution. The latest advances in EM have enabled the determination of protein complex structures at 1.4-3 Å resolution for an extremely broad range of sizes (from ~100 kDa up to hundreds of MDa (Bartesaghi et al., Science 348(6239):1147-1151, 2015; Herzik et al., Nat Commun 10:1032, 2019; Wu et al., J Struct Biol X 4:100020, 2020; Zhang et al., Nat Commun 10:5511, 2019; Zhang et al., Cell Res 30(12):1136-1139, 2020; Yip et al., Nature 587(7832):157-161, 2020; https://www.ebi.ac.uk/emdb/statistics/emdb_resolution_year )). In 2022, nearly 1200 structures deposited to the EMDB database were at a resolution of better than 3 Å ( https://www.ebi.ac.uk/emdb/statistics/emdb_resolution_year ).To date, the highest resolutions have been achieved for apoferritin, which comprises a homo-oligomer of high point group symmetry (O432) and has rigid organization together with high stability (Zhang et al., Cell Res 30(12):1136-1139, 2020; Yip et al., Nature 587(7832):157-161, 2020). It has been used as a test object for the assessments of modern cryo-microscopes and processing methods during the last 5 years. In contrast to apoferritin bacterial secretion systems are typical examples of multi protein complexes exhibiting high flexibility owing to their functions relating to the transportation of small molecules, proteins, and DNA into the extracellular space or target cells. This makes their structural characterization extremely challenging (Barlow, Methods Mol Biol 532:397-411, 2009; Costa et al., Nat Rev Microbiol 13:343-359, 2015). The most feasible approach to reveal their spatial organization and functional modification is cryo-electron microscopy (EM). During the last decade, structural cryo-EM has become broadly used for the analysis of the bio-complexes that comprise multiple components and are not amenable to crystallization (Lyumkis, J Biol Chem 294:5181-5197, 2019; Orlova and Saibil, Methods Enzymol 482:321-341, 2010; Orlova and Saibil, Chem Rev 111(12):7710-7748, 2011).In this review, we will describe the basics of sample preparation for cryo-EM, the principles of digital data collection, and the logistics of image analysis focusing on the common steps required for reconstructions of both small and large biological complexes together with refinement of their structures to nearly atomic resolution. The workflow of processing will be illustrated by examples of EM analysis of Type IV Secretion System.
Collapse
Affiliation(s)
- Athanasios Ignatiou
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK
| | - Kévin Macé
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK
| | - Adam Redzej
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK
| | - Tiago R D Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College, London, UK
| | - Gabriel Waksman
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK
| | - Elena V Orlova
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK.
| |
Collapse
|
44
|
Daniel-Ivad P, Ryan KS. Structure of methyltransferase RedM that forms the dimethylpyrrolinium of the bisindole reductasporine. J Biol Chem 2024; 300:105520. [PMID: 38042494 PMCID: PMC10784701 DOI: 10.1016/j.jbc.2023.105520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023] Open
Abstract
Bisindoles are biologically active natural products that arise from the oxidative dimerization of two molecules of l-tryptophan. In bacterial bisindole pathways, a core set of transformations is followed by the action of diverse tailoring enzymes that catalyze reactions that lead to diverse bisindole products. Among bisindoles, reductasporine is distinct due to its dimethylpyrrolinium structure. Its previously reported biosynthetic gene cluster encodes two unique tailoring enzymes, the imine reductase RedE and the dimethyltransferase RedM, which were shown to produce reductasporine from a common bisindole intermediate in recombinant E. coli. To gain more insight into the unique tailoring enzymes in reductasporine assembly, we reconstituted the biosynthetic pathway to reductasporine in vitro and then solved the 1.7 Å resolution structure of RedM. Our work reveals RedM adopts a variety of conformational changes with distinct open and closed conformations, and site-directed mutagenesis alongside sequence analysis identifies important active site residues. Finally, our work sets the stage for understanding how RedM evolved to react with a pyrrolinium scaffold and may enable the development of new dimethyltransferase catalysts.
Collapse
Affiliation(s)
- Phillip Daniel-Ivad
- Department of Chemistry, The University of British Columbia, Vancouver, Canada
| | - Katherine S Ryan
- Department of Chemistry, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
45
|
Hattne J, Clabbers MTB, Martynowycz MW, Gonen T. Electron counting with direct electron detectors in MicroED. Structure 2023; 31:1504-1509.e1. [PMID: 37992709 PMCID: PMC10756876 DOI: 10.1016/j.str.2023.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/30/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
The combination of high sensitivity and rapid readout makes it possible for electron-counting detectors to record cryogenic electron microscopy data faster and more accurately without increasing the number of electrons used for data collection. This is especially useful for MicroED of macromolecular crystals where the strength of the diffracted signal at high resolution is comparable to the surrounding background. The ability to decrease fluence also alleviates concerns about radiation damage which limits the information that can be recovered from a diffraction measurement. The major concern with electron-counting direct detectors lies at the low end of the resolution spectrum: their limited linear range makes strong low-resolution reflections susceptible to coincidence loss and careful data collection is required to avoid compromising data quality. Nevertheless, these cameras are increasingly deployed in cryo-EM facilities, and several have been successfully used for MicroED. Provided coincidence loss can be minimized, electron-counting detectors bring high potential rewards.
Collapse
Affiliation(s)
- Johan Hattne
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Max T B Clabbers
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael W Martynowycz
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
46
|
Moriscot C, Schoehn G, Housset D. High pressure freezing and cryo-sectioning can be used for protein structure determination by electron diffraction. Ultramicroscopy 2023; 254:113834. [PMID: 37666105 DOI: 10.1016/j.ultramic.2023.113834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/17/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Electron diffraction of three-dimensional nanometer sized crystals has emerged since 2013 as an efficient technique to solve the structure of both small organic molecules and model proteins. However, the major bottleneck of the technique when applied to protein samples is to produce nano-crystals that do not exceed 200 to 300 nm in at least one dimension and to deposit them on a grid while keeping the minimum amount of solvent around them. Since the presence of amorphous solvent around the crystal, necessary to preserve its integrity, increases the amount of diffuse scattering, thus degrading the signal-to noise ratio of the diffraction signal, other sample preparation strategies have been developed. One of them is the milling of thin crystal lamella using focused ion beam (FIB), which was successfully applied to several protein crystals. Here, we present a new approach that uses cryo-sectioning after high pressure freezing of dextran embedded protein crystals. 150 to 200 nm thick cryo-sections of hen egg white lysozyme tetragonal crystals where used for electron diffraction experiments. Complete diffraction data up to 2.9 Å resolution have been collected and the lysozyme structure has been solved by molecular replacement and refined against these data. Our data demonstrate that cryo-sectioning can preserve protein structure at high resolution and can be used as a new sample preparation technique for 3D electron diffraction experiments of protein crystals. The different orientations found in the crystal chips and their large number resulting from the cryo-sectioning make the latter an attractive approach as it combines advantages from both blotting approaches (number of crystals) and FIB-milling (controlled thickness and absence of solvent around the crystal).
Collapse
Affiliation(s)
| | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | |
Collapse
|
47
|
Catapano L, Long F, Yamashita K, Nicholls RA, Steiner RA, Murshudov GN. Neutron crystallographic refinement with REFMAC5 from the CCP4 suite. Acta Crystallogr D Struct Biol 2023; 79:1056-1070. [PMID: 37921806 PMCID: PMC7615533 DOI: 10.1107/s2059798323008793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
Hydrogen (H) atoms are abundant in macromolecules and often play critical roles in enzyme catalysis, ligand-recognition processes and protein-protein interactions. However, their direct visualization by diffraction techniques is challenging. Macromolecular X-ray crystallography affords the localization of only the most ordered H atoms at (sub-)atomic resolution (around 1.2 Å or higher). However, many H atoms of biochemical significance remain undetectable by this method. In contrast, neutron diffraction methods enable the visualization of most H atoms, typically in the form of deuterium (2H) atoms, at much more common resolution values (better than 2.5 Å). Thus, neutron crystallography, although technically demanding, is often the method of choice when direct information on protonation states is sought. REFMAC5 from the Collaborative Computational Project No. 4 (CCP4) is a program for the refinement of macromolecular models against X-ray crystallographic and cryo-EM data. This contribution describes its extension to include the refinement of structural models obtained from neutron crystallographic data. Stereochemical restraints with accurate bond distances between H atoms and their parent atom nuclei are now part of the CCP4 Monomer Library, the source of prior chemical information used in the refinement. One new feature for neutron data analysis in REFMAC5 is refinement of the protium/deuterium (1H/2H) fraction. This parameter describes the relative 1H/2H contribution to neutron scattering for hydrogen isotopes. The newly developed REFMAC5 algorithms were tested by performing the (re-)refinement of several entries available in the PDB and of one novel structure (FutA) using either (i) neutron data only or (ii) neutron data supplemented by external restraints to a reference X-ray crystallographic structure. Re-refinement with REFMAC5 afforded models characterized by R-factor values that are consistent with, and in some cases better than, the originally deposited values. The use of external reference structure restraints during refinement has been observed to be a valuable strategy, especially for structures at medium-low resolution.
Collapse
Affiliation(s)
- Lucrezia Catapano
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Fei Long
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Keitaro Yamashita
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Robert A. Nicholls
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Roberto A. Steiner
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Garib N. Murshudov
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
48
|
Russell C, Carter JL, Borgia JM, Bush J, Calderón F, Gabarró R, Conway SJ, Mottram JC, Wilkinson AJ, Jones NG. Bromodomain Factor 5 as a Target for Antileishmanial Drug Discovery. ACS Infect Dis 2023; 9:2340-2357. [PMID: 37906637 PMCID: PMC10644352 DOI: 10.1021/acsinfecdis.3c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
Leishmaniases are a collection of neglected tropical diseases caused by kinetoplastid parasites in the genus Leishmania. Current chemotherapies are severely limited, and the need for new antileishmanials is of pressing international importance. Bromodomains are epigenetic reader domains that have shown promising therapeutic potential for cancer therapy and may also present an attractive target to treat parasitic diseases. Here, we investigate Leishmania donovani bromodomain factor 5 (LdBDF5) as a target for antileishmanial drug discovery. LdBDF5 contains a pair of bromodomains (BD5.1 and BD5.2) in an N-terminal tandem repeat. We purified recombinant bromodomains of L. donovani BDF5 and determined the structure of BD5.2 by X-ray crystallography. Using a histone peptide microarray and fluorescence polarization assay, we identified binding interactions of LdBDF5 bromodomains with acetylated peptides derived from histones H2B and H4. In orthogonal biophysical assays including thermal shift assays, fluorescence polarization, and NMR, we showed that BDF5 bromodomains bind to human bromodomain inhibitors SGC-CBP30, bromosporine, and I-BRD9; moreover, SGC-CBP30 exhibited activity against Leishmania promastigotes in cell viability assays. These findings exemplify the potential BDF5 holds as a possible drug target in Leishmania and provide a foundation for the future development of optimized antileishmanial compounds targeting this epigenetic reader protein.
Collapse
Affiliation(s)
- Catherine
N. Russell
- York
Structural Biology Laboratory and York Biomedical Research Institute,
Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Jennifer L. Carter
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Juliet M. Borgia
- York
Structural Biology Laboratory and York Biomedical Research Institute,
Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Jacob Bush
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | | | | | - Stuart J. Conway
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Jeremy C. Mottram
- York
Biomedical Research Institute, Department of Biology, University of York, York YO10 5NG, U.K.
| | - Anthony J. Wilkinson
- York
Structural Biology Laboratory and York Biomedical Research Institute,
Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Nathaniel G. Jones
- York
Biomedical Research Institute, Department of Biology, University of York, York YO10 5NG, U.K.
| |
Collapse
|
49
|
Tjallinks G, Boverio A, Maric I, Rozeboom H, Arentshorst M, Visser J, Ram AFJ, Mattevi A, Fraaije MW. Structure elucidation and characterization of patulin synthase, insights into the formation of a fungal mycotoxin. FEBS J 2023; 290:5114-5126. [PMID: 37366079 DOI: 10.1111/febs.16804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 06/28/2023]
Abstract
Patulin synthase (PatE) from Penicillium expansum is a flavin-dependent enzyme that catalyses the last step in the biosynthesis of the mycotoxin patulin. This secondary metabolite is often present in fruit and fruit-derived products, causing postharvest losses. The patE gene was expressed in Aspergillus niger allowing purification and characterization of PatE. This confirmed that PatE is active not only on the proposed patulin precursor ascladiol but also on several aromatic alcohols including 5-hydroxymethylfurfural. By elucidating its crystal structure, details on its catalytic mechanism were revealed. Several aspects of the active site architecture are reminiscent of that of fungal aryl-alcohol oxidases. Yet, PatE is most efficient with ascladiol as substrate confirming its dedicated role in biosynthesis of patulin.
Collapse
Affiliation(s)
- Gwen Tjallinks
- Molecular Enzymology, University of Groningen, The Netherlands
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Alessandro Boverio
- Molecular Enzymology, University of Groningen, The Netherlands
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Ivana Maric
- Molecular Enzymology, University of Groningen, The Netherlands
| | | | | | - Jaap Visser
- Institute of Biology Leiden, Leiden University, The Netherlands
| | - Arthur F J Ram
- Institute of Biology Leiden, Leiden University, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, The Netherlands
| |
Collapse
|
50
|
Koutná E, Lux V, Kouba T, Škerlová J, Nováček J, Srb P, Hexnerová R, Šváchová H, Kukačka Z, Novák P, Fábry M, Poepsel S, Veverka V. Multivalency of nucleosome recognition by LEDGF. Nucleic Acids Res 2023; 51:10011-10025. [PMID: 37615563 PMCID: PMC10570030 DOI: 10.1093/nar/gkad674] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/01/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Eukaryotic transcription is dependent on specific histone modifications. Their recognition by chromatin readers triggers complex processes relying on the coordinated association of transcription regulatory factors. Although various modification states of a particular histone residue often lead to differential outcomes, it is not entirely clear how they are discriminated. Moreover, the contribution of intrinsically disordered regions outside of the specialized reader domains to nucleosome binding remains unexplored. Here, we report the structures of a PWWP domain from transcriptional coactivator LEDGF in complex with the H3K36 di- and trimethylated nucleosome, indicating that both methylation marks are recognized by PWWP in a highly conserved manner. We identify a unique secondary interaction site for the PWWP domain at the interface between the acidic patch and nucleosomal DNA that might contribute to an H3K36-methylation independent role of LEDGF. We reveal DNA interacting motifs in the intrinsically disordered region of LEDGF that discriminate between the intra- or extranucleosomal DNA but remain dynamic in the context of dinucleosomes. The interplay between the LEDGF H3K36-methylation reader and protein binding module mediated by multivalent interactions of the intrinsically disordered linker with chromatin might help direct the elongation machinery to the vicinity of RNA polymerase II, thereby facilitating productive elongation.
Collapse
Affiliation(s)
- Eliška Koutná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Vanda Lux
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | - Tomáš Kouba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | - Jana Škerlová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | | | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | - Rozálie Hexnerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | - Hana Šváchová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | - Zdeněk Kukačka
- Institute of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Petr Novák
- Institute of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Milan Fábry
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | - Simon Poepsel
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, Cologne 509 31, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne 509 31, Germany
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| |
Collapse
|