1
|
Tebbett SB, Emslie MJ, Jonker MJ, Ling SD, Pratchett MS, Siqueira AC, Thompson AA, Yan HF, Bellwood DR. Epilithic algal composition and the functioning of Anthropocene coral reefs. MARINE POLLUTION BULLETIN 2025; 210:117322. [PMID: 39591677 DOI: 10.1016/j.marpolbul.2024.117322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Epilithic algae dominate cover on coral reefs globally, forming a critical ecological interface between the benthos and reef organisms. Yet, the drivers of epilithic algal composition, and how composition relates to the distribution of key taxa, remain unclear. We develop a novel metric, the Epilithic Algal Ratio, based on turf cover relative to total epilithic algae cover, and use this metric to assess cross-scale patterns. We reveal water quality and hydrodynamics as the key environmental drivers of the Epilithic Algal Ratio across the Great Barrier Reef (GBR), and reefs globally. On the GBR, the abundance of herbivorous fishes and juvenile corals were also related to the Epilithic Algal Ratio, suggesting that reefs with long-dense turfs support fewer herbivores and corals. Ultimately, epilithic algae represent the interface through which the effects of declining water quality, which impacts a third of reefs globally, can reverberate up through coral reefs, compromising their functioning.
Collapse
Affiliation(s)
- Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland 4811, Australia; College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia.
| | - Michael J Emslie
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Michelle J Jonker
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Scott D Ling
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia
| | - Morgan S Pratchett
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Alexandre C Siqueira
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland 4811, Australia; College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Perth, WA 6027, Australia
| | - Angus A Thompson
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Helen F Yan
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland 4811, Australia; College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland 4811, Australia; College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
2
|
Chebaane S, Engelen AH, Pais MP, Silva R, Gizzi F, Triay-Portella R, Florido M, Monteiro JG. Evaluating fish foraging behaviour on non-indigenous Asparagopsis taxiformis using a remote video foraging system. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106766. [PMID: 39357202 DOI: 10.1016/j.marenvres.2024.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
The proliferation of pest and invasive marine macroalgae threatens coastal ecosystems, with biotic interactions, including direct effects such as grazing and indirect effects such as the trophic cascades, where one species indirectly affects another through its interactions with a third species, play a critical role in determining the resistance of local communities to these invasions. This study examines the foraging behaviour and preference of native fish communities toward native (Halopteris scoparia, Sargassum vulgare) and non-indigenous (Asparagopsis taxiformis) macroalgae using the Remote Video Foraging System (RVFS). Fifty-four weedpops were deployed across three locations to present these macroalgae, while associated epifaunal assemblages were also collected. Video analysis revealed that four common fish species displayed preference towards native macroalgae, possibly due to by the presence of zoobenthos rather than herbivory. This observation suggests that these fish species identified the macroalgae as a habitat that harboured their preferred food items. In contrast, A. taxiformis was consistently avoided, suggesting limited integration into the local food web. Site-specific variations in fish-macroalgae interactions and epifaunal diversity highlighted the complexity of these dynamics. This study contributes to understanding of the ecological implications of invasive macroalgae and supports the use of RVFS as a tool for assessing local biotic resistance against non-indigenous species in coastal ecosystems globally.
Collapse
Affiliation(s)
- Sahar Chebaane
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Portugal; Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | | | - Miguel Pessanha Pais
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Rodrigo Silva
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal
| | - Francesca Gizzi
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal
| | - Raül Triay-Portella
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal; Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Marta Florido
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología de la Universidad de Sevilla, Av. de la Reina Mercedes, 41012, Sevilla, Spain
| | - João Gama Monteiro
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal; Faculty of Life Sciences, University of Madeira, 9000, Funchal, Portugal
| |
Collapse
|
3
|
Mihalitsis M, Wainwright PC. Feeding kinematics of a surgeonfish reveal novel functions and relationships to reef substrata. Commun Biol 2024; 7:13. [PMID: 38172236 PMCID: PMC10764775 DOI: 10.1038/s42003-023-05696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Biting to obtain attached benthic prey characterizes a large number of fish species on coral reefs, and is a feeding mode that contributes to important ecosystem functions. We use high-speed video to reveal the mechanisms used by a surgeonfish, Acanthurus leucosternon, to detach algae. After gripping algae in its jaws, the species pulls it by ventrally rotating both the head and the closed jaws, in a novel use of the intra-mandibular joint. These motions remain in the plane of the fish, reducing the use of a lateral head flick to detach the algae. The novel ability to bite and pull algae off the substrate without bending the body laterally minimizes exposure to high water flows, and may be an adaptation to feeding in challenging reef habitats such as the crest and flat. Therefore, our results could potentially represent a key milestone in the evolutionary history of coral reef trophodynamics.
Collapse
Affiliation(s)
- Michalis Mihalitsis
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA.
| | - Peter C Wainwright
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
4
|
Tebbett SB, Schlaefer JA, Bowden CL, Collins WP, Hemingson CR, Ling SD, Morais J, Morais RA, Siqueira AC, Streit RP, Swan S, Bellwood DR. Bio-physical determinants of sediment accumulation on an offshore coral reef: A snapshot study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165188. [PMID: 37385494 DOI: 10.1016/j.scitotenv.2023.165188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Sediments are found on all coral reefs around the globe. However, the amount of sediment in different reservoirs, and the rates at which sediments move between reservoirs, can shape the biological functioning of coral reefs. Unfortunately, relatively few studies have examined reef sediment dynamics, and associated bio-physical drivers, simultaneously over matching spatial and temporal scales. This has led to a partial understanding of how sediments and living reef systems are connected, especially on clear-water offshore reefs. To address this problem, four sediment reservoirs/sedimentary processes and three bio-physical drivers were quantified across seven different reef habitats/depths at Lizard Island, an exposed mid-shelf reef on the Great Barrier Reef. Even in this clear-water reef location a substantial load of suspended sediment passed over the reef; a load theoretically capable of replacing the entire standing stock of on-reef turf sediments in just 8 h. However, quantification of actual sediment deposition suggested that just 2 % of this passing sediment settled on the reef. The data also revealed marked spatial incongruence in sediment deposition (sediment trap data) and accumulation (TurfPod data) across the reef profile, with the flat and back reef emerging as key areas of both deposition and accumulation. By contrast, the shallow windward reef crest was an area of deposition but had a limited capacity for sediment accumulation. These cross-reef patterns related to wave energy and reef geomorphology, with low sediment accumulation on the ecologically important reef crest aligning with substantial wave energy. These findings reveal a disconnect between patterns of sediment deposition and accumulation on the benthos, with the 'post-settlement' fate of sediments dependent on local hydrodynamic conditions. From an ecological perspective, the data suggests key contextual constraints (wave energy and reef geomorphology) may predispose some reefs or reef areas to high-load turf sediment regimes.
Collapse
Affiliation(s)
- Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| | - Jodie A Schlaefer
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Townsville, Queensland, 4811, Australia
| | - Casey L Bowden
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - William P Collins
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Christopher R Hemingson
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; Department of Marine Science, The University of Texas at Austin, Marine Science Institute, Port Aransas, TX, USA
| | - Scott D Ling
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia
| | - Juliano Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Renato A Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; Paris Sciences et Lettres Université, École Pratique des Hautes Études, EPHE-UPVD-CNRS, USR 3278 CRIOBE, University of Perpignan, Perpignan, France
| | - Alexandre C Siqueira
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Robert P Streit
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Sam Swan
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
5
|
Reis-Júnior J, Bertrand A, Frédou T, Vasconcelos-Filho J, Aparecido KC, Duarte-Neto PJ. Community-scale relationships between body shape and trophic ecology in tropical demersal marine fish of northeast Brazil. JOURNAL OF FISH BIOLOGY 2023; 102:1017-1028. [PMID: 36794454 DOI: 10.1111/jfb.15350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/13/2023] [Indexed: 05/13/2023]
Abstract
Functional morphology investigates the relationships between morphological characters and external factors, such as environmental, physical and ecological features. Here, we evaluate the functional relationships between body shape and trophic ecology of a tropical demersal marine fish community using geometric morphometrics techniques and modelling, hypothesizing that shape variables could partially explain fish trophic level. Fish were collected over the continental shelf of northeast Brazil (4-9°S). Analysed fish were distributed into 14 orders, 34 families and 72 species. Each individual was photographed in lateral view, and 18 landmarks were distributed along the body. A principal component analysis (PCA) applied on morphometric indices revealed that fish body elongation and fin base shape were the main axes of variation explaining the morphology. Low trophic levels (herbivore and omnivore) are characterized by deep bodies and longer dorsal and anal fin bases, while predators present elongated bodies and narrow fin bases. Fin position (dorsal and anal fins) on the fish body is another important factor contributing to (i) body stability at high velocity (top predators) or (ii) manoeuvrability (low trophic levels). Using multiple linear regression, we verified that 46% of trophic level variability could be explained by morphometric variables, with trophic level increasing with body elongation and size. Interestingly, intermediate trophic categories (e.g., low predators) presented morphological divergence for a given trophic level. Our results, which can likely be expanded to other tropical and nontropical systems, show that morphometric approaches can provide important insights into fish functional characteristics, especially in trophic ecology.
Collapse
Affiliation(s)
- Josafá Reis-Júnior
- Programa de Pós-graduação em Biometria e Estatística Aplicada, Universidade Federal Rural de Pernambuco, Recife, Brazil
- Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Arnaud Bertrand
- MARBEC, Université de Montpellier, CNRS, Ifremer, Institut de Recherche pour le Développement (IRD), Sète, France
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Thierry Frédou
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Jonas Vasconcelos-Filho
- Programa de Pós-graduação em Biometria e Estatística Aplicada, Universidade Federal Rural de Pernambuco, Recife, Brazil
- Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Kátia C Aparecido
- MARBEC, Université de Montpellier, CNRS, Ifremer, Institut de Recherche pour le Développement (IRD), Sète, France
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Paulo J Duarte-Neto
- Programa de Pós-graduação em Biometria e Estatística Aplicada, Universidade Federal Rural de Pernambuco, Recife, Brazil
- Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, Brazil
| |
Collapse
|
6
|
Schakmann M, Korsmeyer KE. Fish swimming mode and body morphology affect the energetics of swimming in a wave-surge water flow. J Exp Biol 2023; 226:297193. [PMID: 36779237 DOI: 10.1242/jeb.244739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/30/2023] [Indexed: 02/14/2023]
Abstract
Fish swimming modes and the shape of both the fins and body are expected to affect their swimming ability under different flow conditions. These swimming strategies and body morphologies often correspond to distributional patterns of distinct functional groups exposed to natural and variable water flows. In this study, we used a swimming-respirometer to measure energetic costs during prolonged, steady swimming and while station holding in a range of simulated oscillatory wave-surge water flows, within the natural range of flow speeds and wave frequencies on coral reefs. We quantified the net cost of swimming (NCOS, metabolic costs above resting) for four reef fish species with differences in swimming mode and morphologies of the fin and body: a body and caudal fin (BCF) swimmer, the Hawaiian flagtail, Kuhlia xenura, and three pectoral fin swimmers, the kole tang, Ctenochaetus strigosus, the saddle wrasse, Thalassoma duperrey, and the Indo-Pacific sergeant major, Abudefduf vaigiensis. We found that the BCF swimmer had the highest rates of increase in NCOS with increasing wave frequency (i.e. increased turning frequency) compared with the pectoral fin swimmers. The wrasse, with a more streamlined, higher body fineness, had lower rates of increase in NCOS with increasing swimming speeds than the low body fineness species, but overall had the highest swimming NCOS, which may be a result of a higher aerobic swimming capacity. The deep-bodied (low fineness) pectoral fin swimmers (A. vaigiensis and C. strigosus) were the most efficient at station holding in oscillating, wave-surge water flows.
Collapse
Affiliation(s)
- Mathias Schakmann
- Department of Natural Sciences, Hawaii Pacific University, 1 Aloha Tower Drive, Honolulu, HI 96813, USA.,Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI 96744, USA
| | - Keith E Korsmeyer
- Department of Natural Sciences, Hawaii Pacific University, 1 Aloha Tower Drive, Honolulu, HI 96813, USA
| |
Collapse
|
7
|
Bosch NE, Pessarrodona A, Filbee-Dexter K, Tuya F, Mulders Y, Bell S, Langlois T, Wernberg T. Habitat configurations shape the trophic and energetic dynamics of reef fishes in a tropical-temperate transition zone: implications under a warming future. Oecologia 2022; 200:455-470. [PMID: 36344837 PMCID: PMC9675646 DOI: 10.1007/s00442-022-05278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Understanding the extent to which species' traits mediate patterns of community assembly is key to predict the effect of natural and anthropogenic disturbances on ecosystem functioning. Here, we apply a trait-based community assembly framework to understand how four different habitat configurations (kelp forests, Sargassum spp. beds, hard corals, and turfs) shape the trophic and energetic dynamics of reef fish assemblages in a tropical-temperate transition zone. Specifically, we tested (i) the degree of trait divergence and convergence in each habitat, (ii) which traits explained variation in species' abundances, and (iii) differences in standing biomass (kg ha-1), secondary productivity (kg ha-1 day-1) and turnover (% day-1). Fish assemblages in coral and kelp habitats displayed greater evidence of trait convergence, while turf and Sargassum spp. habitats displayed a higher degree of trait divergence, a pattern that was mostly driven by traits related to resource use and thermal affinity. This filtering effect had an imprint on the trophic and energetic dynamics of reef fishes, with turf habitats supporting higher fish biomass and productivity. However, these gains were strongly dependent on trophic guild, with herbivores/detritivores disproportionately contributing to among-habitat differences. Despite these perceived overall gains, turnover was decoupled for fishes that act as conduit of energy to higher trophic levels (i.e. microinvertivores), with coral habitats displaying higher rates of fish biomass replenishment than turf despite their lower productivity. This has important implications for biodiversity conservation and fisheries management, questioning the long-term sustainability of ecological processes and fisheries yields in increasingly altered marine habitats.
Collapse
Affiliation(s)
- Nestor E Bosch
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | - Albert Pessarrodona
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Karen Filbee-Dexter
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Institute of Marine Research, Nye Flødevigveien 20, 4817, His, Norway
| | - Fernando Tuya
- Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte S/N, 35214, Telde, Spain
| | - Yannick Mulders
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Sahira Bell
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Tim Langlois
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Thomas Wernberg
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Institute of Marine Research, Nye Flødevigveien 20, 4817, His, Norway
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark
| |
Collapse
|
8
|
Quitzau M, Frelat R, Bonhomme V, Möllmann C, Nagelkerke L, Bejarano S. Traits, landmarks and outlines: Three congruent sides of a tale on coral reef fish morphology. Ecol Evol 2022; 12:e8787. [PMID: 35475185 PMCID: PMC9021933 DOI: 10.1002/ece3.8787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 01/27/2022] [Accepted: 03/15/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Marita Quitzau
- Aquaculture and Fisheries Group Wageningen Institute of Animal Sciences Wageningen University and Research Wageningen The Netherlands
| | - Romain Frelat
- Aquaculture and Fisheries Group Wageningen Institute of Animal Sciences Wageningen University and Research Wageningen The Netherlands
| | - Vincent Bonhomme
- UMR 5554 Institut des Sciences de l’Evolution, équipe Dynamique de la biodiversité Anthropo‐écologie Université de Montpellier CNRS IRD Montpellier Cedex 05 France
| | - Christian Möllmann
- Centre for Earth System Research and Sustainability (CEN) Institute of Marine Ecosystem and Fishery Science University of Hamburg Hamburg Germany
| | - Leopold Nagelkerke
- Aquaculture and Fisheries Group Wageningen Institute of Animal Sciences Wageningen University and Research Wageningen The Netherlands
| | - Sonia Bejarano
- Reef Systems Research Group Ecology Department Leibniz Centre for Tropical Marine Research Bremen Germany
| |
Collapse
|
9
|
Pérez-Matus A, Neubauer P, Shima JS, Rivadeneira MM. Reef Fish Diversity Across the Temperate South Pacific Ocean. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.768707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Patterns of species richness and their structuring forces at multiple scales provide a critical context for research efforts focusing on ecology, evolution, and conservation. Diversity gradients have been demonstrated in tropical reef fish, but corresponding patterns and mechanisms remain poorly understood in temperate regions. We conducted hierarchical (spatially nested) sampling of temperate reef fish faunas across > 140 degrees of longitude in the eastern and western South Pacific Ocean. Our sampling efforts spanned five distinct provinces: the Southeast Australian Shelf (SAS), Northern and Southern New Zealand (N-SNZ), Juan Fernandez and Desventuradas Islands (JFD), and the Warm Temperate Southeastern Pacific (WTPA). We evaluated (i) spatial variation in patterns of species richness and abundance (using Chao 1 index), and distribution of functional diversity (using several functional attributes: max body size, trophic groups, feeding guilds, trophic level, habitat use, gregariousness, and activity patterns) and (ii) scale-dependencies in these patterns. Species richness declined from west to east across the temperate South Pacific, but this pattern was detectable only across larger spatial scales. A functional redundancy index was significantly higher in the western South Australian Shelf at multiple scales, revealing that species contribute in equivalent ways to an ecosystem function such that one species may substitute for another. We also detected that patterns of variation in functional diversity differed from patterns of variation in species richness, and were also dependent on the spatial scale of analysis. Lastly, we identified that species’ traits are not equally distributed among reef fish assemblages, where some provinces are characterized by a distinct functional component within their reef fish assemblages. Planktivorous and schooling species, for instance, dominated the assemblages in the eastern Pacific, which is characterized by higher primary productivity and steep bathymetric slopes favoring these traits. Demersal and pairing behavior traits dominated the reef fish assemblages in western Pacific provinces (SAS, SNZ). We conclude that combining the identifies and species’ traits allow us to disentangle historical, biogeographic and environmental factors that structure reef fish fauna.
Collapse
|
10
|
Yamazaki D, Chiba S. Comparing the genetic diversity and population structure of sister marine snails having contrasting habitat specificity. Mol Biol Rep 2021; 49:393-401. [PMID: 34797494 DOI: 10.1007/s11033-021-06885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND To grasp the processes of spatial genetic structuring in open and connectable marine environments is the principal study goal in molecular biological studies. Comparative seascape genetics using multiple species are a powerful approach to understand the physical geographic and oceanographic effects on genetic variation. Besides, species-specific ecological traits such as dispersal abilities and habitat specificity are important factors for spatial genetic structuring. METHODS AND RESULTS We focused on the sister marine snail species Tegula kusairo and T. xanthostigma around the Japanese mainland, which have contrasting habitat specificities for wave strength. Tegula kusairo only inhabits sheltered coastal environments, while T. xanthostigma is found mainly on wave-exposed rocky shores facing the open sea. We estimated their genetic diversity indices and levels of population differentiation based on mtDNA. We found that the genetic diversity of T. kusairo was lower than that of T. xanthostigma, while their level of population genetic differentiation was higher than that of T. xanthostigma. Namely, the species specific to weak wave environments had a higher level of population genetic differentiation than the species specific to strong wave action. CONCLUSION Ecological traits linked not only to dispersal abilities but also to habitat specificity can influence genetic variation in a pair of closely related sister species distributed in the same seascape.
Collapse
Affiliation(s)
- Daishi Yamazaki
- Center for Northeast Asian Studies, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai, Miyagi, 980-8576, Japan.
| | - Satoshi Chiba
- Center for Northeast Asian Studies, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai, Miyagi, 980-8576, Japan
- Graduate School of Life Science, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| |
Collapse
|
11
|
Castejón‐Silvo I, Terrados J, Nguyen T, Jutfelt F, Infantes E. Increased energy expenditure is an indirect effect of habitat structural complexity loss. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Inés Castejón‐Silvo
- Mediterranean Institute for Advanced StudiesIMEDEA (CSIC‐UIB) Esporles Spain
| | - Jorge Terrados
- Mediterranean Institute for Advanced StudiesIMEDEA (CSIC‐UIB) Esporles Spain
| | - Thanh Nguyen
- Department of Marine Sciences Gothenburg University Kristineberg Sweden
| | - Fredrik Jutfelt
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Eduardo Infantes
- Department of Marine Sciences Gothenburg University Kristineberg Sweden
- Norwegian Institute for Water Research Oslo Norway
| |
Collapse
|
12
|
Tebbett SB, Bellwood DR. Algal turf productivity on coral reefs: A meta-analysis. MARINE ENVIRONMENTAL RESEARCH 2021; 168:105311. [PMID: 33798994 DOI: 10.1016/j.marenvres.2021.105311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 05/26/2023]
Abstract
Algal turfs are an abundant and highly productive component of coral reef ecosystems. However, our understanding of the drivers that shape algal turf productivity across studies and among reefs is limited. Based on published studies we considered how different factors may shape turf productivity and turnover rates. Of the factors considered, depth was the primary driver of turf productivity rates, while turnover was predominantly related to turf biomass. We also highlight shortcomings in the available data collected on turf productivity to-date; most data were collected prior to global coral bleaching events, within a limited geographic range, and were largely from experimental substrata. Despite the fact turfs are a widespread benthic covering on most coral reefs, and one of the major sources of benthic productivity, our understanding of their productivity is constrained by both a paucity of data and methodological limitations. We offer a potential way forward to address these challenges.
Collapse
Affiliation(s)
- Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia.
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
13
|
Martinez CM, Friedman ST, Corn KA, Larouche O, Price SA, Wainwright PC. The deep sea is a hot spot of fish body shape evolution. Ecol Lett 2021; 24:1788-1799. [PMID: 34058793 DOI: 10.1111/ele.13785] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/25/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022]
Abstract
Deep-sea fishes have long captured our imagination with striking adaptations to life in the mysterious abyss, raising the possibility that this cold, dark ocean region may be a key hub for physiological and functional diversification. We explore this idea through an analysis of body shape evolution across ocean depth zones in over 3000 species of marine teleost fishes. We find that the deep ocean contains twice the body shape disparity of shallow waters, driven by elevated rates of evolution in traits associated with locomotion. Deep-sea fishes display more frequent adoption of forms suited to slow and periodic swimming, whereas shallow living species are concentrated around shapes conferring strong, sustained swimming capacity and manoeuvrability. Our results support long-standing impressions of the deep sea as an evolutionary hotspot for fish body shape evolution and highlight that factors like habitat complexity and ecological interactions are potential drivers of this adaptive diversification.
Collapse
Affiliation(s)
| | - Sarah T Friedman
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Katherine A Corn
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Olivier Larouche
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Samantha A Price
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Peter C Wainwright
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| |
Collapse
|
14
|
Ford AK, Visser PM, van Herk MJ, Jongepier E, Bonito V. First insights into the impacts of benthic cyanobacterial mats on fish herbivory functions on a nearshore coral reef. Sci Rep 2021; 11:7147. [PMID: 33785764 PMCID: PMC8009962 DOI: 10.1038/s41598-021-84016-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/04/2021] [Indexed: 11/22/2022] Open
Abstract
Benthic cyanobacterial mats (BCMs) are becoming increasingly common on coral reefs. In Fiji, blooms generally occur in nearshore areas during warm months but some are starting to prevail through cold months. Many fundamental knowledge gaps about BCM proliferation remain, including their composition and how they influence reef processes. This study examined a seasonal BCM bloom occurring in a 17-year-old no-take inshore reef area in Fiji. Surveys quantified the coverage of various BCM-types and estimated the biomass of key herbivorous fish functional groups. Using remote video observations, we compared fish herbivory (bite rates) on substrate covered primarily by BCMs (> 50%) to substrate lacking BCMs (< 10%) and looked for indications of fish (opportunistically) consuming BCMs. Samples of different BCM-types were analysed by microscopy and next-generation amplicon sequencing (16S rRNA). In total, BCMs covered 51 ± 4% (mean ± s.e.m) of the benthos. Herbivorous fish biomass was relatively high (212 ± 36 kg/ha) with good representation across functional groups. Bite rates were significantly reduced on BCM-dominated substratum, and no fish were unambiguously observed consuming BCMs. Seven different BCM-types were identified, with most containing a complex consortium of cyanobacteria. These results provide insight into BCM composition and impacts on inshore Pacific reefs.
Collapse
Affiliation(s)
- Amanda K Ford
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), University of the South Pacific, Suva, Fiji.
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.
| | - Petra M Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria J van Herk
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Evelien Jongepier
- Bioinformatics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
15
|
Desbiens AA, Roff G, Robbins WD, Taylor BM, Castro-Sanguino C, Dempsey A, Mumby PJ. Revisiting the paradigm of shark-driven trophic cascades in coral reef ecosystems. Ecology 2021; 102:e03303. [PMID: 33565624 DOI: 10.1002/ecy.3303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/19/2020] [Accepted: 12/06/2020] [Indexed: 01/17/2023]
Abstract
Global overfishing of higher-level predators has caused cascading effects to lower trophic levels in many marine ecosystems. On coral reefs, which support highly diverse food webs, the degree to which top-down trophic cascades can occur remains equivocal. Using extensive survey data from coral reefs across the relatively unfished northern Great Barrier Reef (nGBR), we quantified the role of reef sharks in structuring coral reef fish assemblages. Using a structural equation modeling (SEM) approach, we explored the interactions between shark abundance and teleost mesopredator and prey functional group density and biomass, while explicitly accounting for the potentially confounding influence of environmental variation across sites. Although a fourfold difference in reef shark density was observed across our survey sites, this had no impact on either the density or biomass of teleost mesopredators or prey, providing evidence for a lack of trophic cascading across nGBR systems. Instead, many functional groups, including sharks, responded positively to environmental drivers. We found reef sharks to be positively associated with habitat complexity. In turn, physical processes such as wave exposure and current velocity were both correlated well with multiple functional groups, reflecting how changes to energetic conditions and food availability, or modification of habitat affect fish distribution. The diversity of species within coral reef food webs and their associations with bottom-up drivers likely buffers against trophic cascading across GBR functional guilds when reef shark assemblages are depleted, as has been demonstrated in other complex ecosystems.
Collapse
Affiliation(s)
- Amelia A Desbiens
- Marine Spatial Ecology Lab, School of Biological Sciences & Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, Queensland, Australia
| | - George Roff
- Marine Spatial Ecology Lab, School of Biological Sciences & Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, Queensland, Australia
| | - William D Robbins
- Wildlife Marine, Perth, Western Australia, Australia.,Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Marine Science Program, Department of Biodiversity, Conservation and Attractions, Perth, Western Australia, Australia
| | - Brett M Taylor
- The Australian Institute of Marine Science, Crawley, Western Australia, Australia
| | - Carolina Castro-Sanguino
- Marine Spatial Ecology Lab, School of Biological Sciences & Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, Queensland, Australia
| | - Alexandra Dempsey
- Khaled bin Sultan Living Oceans Foundation, Annapolis, Maryland, USA
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences & Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
16
|
Eggertsen M, Tano SA, Chacin DH, Eklöf JS, Larsson J, Berkström C, Buriyo AS, Halling C. Different environmental variables predict distribution and cover of the introduced red seaweed Eucheuma denticulatum in two geographical locations. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02417-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractIn this study we examined abiotic and biotic factors that could potentially influence the presence of a non-indigenous seaweed, Eucheuma denticulatum, in two locations, one outside (Kane’ohe Bay, Hawai’i, USA) and one within (Mafia Island, Tanzania) its natural geographical range. We hypothesized that the availability of hard substrate and the amount of wave exposure would explain distribution patterns, and that higher abundance of herbivorous fishes in Tanzania would exert stronger top–down control than in Hawai’i. To address these hypotheses, we surveyed E. denticulatum in sites subjected to different environmental conditions and used generalized linear mixed models (GLMM) to identify predictors of E. denticulatum presence. We also estimated grazing intensity on E. denticulatum by surveying the type and the amount of grazing scars. Finally, we used molecular tools to distinguish between indigenous and non-indigenous strains of E. denticulatum on Mafia Island. In Kane’ohe Bay, the likelihood of finding E. denticulatum increased with wave exposure, whereas on Mafia Island, the likelihood increased with cover of coral rubble, and decreased with distance from areas of introduction (AOI), but this decrease was less pronounced in the presence of coral rubble. Grazing intensity was higher in Kane’ohe Bay than on Mafia Island. However, we still suggest that efforts to reduce non-indigenous E. denticulatum should include protection of important herbivores in both sites because of the high levels of grazing close to AOI. Moreover, we recommend that areas with hard substrate and high structural complexity should be avoided when farming non-indigenous strains of E. denticulatum.
Collapse
|
17
|
Perevolotsky T, Martin CH, Rivlin A, Holzman R. Work that body: fin and body movements determine herbivore feeding performance within the natural reef environment. Proc Biol Sci 2020; 287:20201903. [PMID: 33171080 PMCID: PMC7735264 DOI: 10.1098/rspb.2020.1903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/19/2020] [Indexed: 11/12/2022] Open
Abstract
Herbivorous fishes form a keystone component of reef ecosystems, yet the functional mechanisms underlying their feeding performance are poorly understood. In water, gravity is counter-balanced by buoyancy, hence fish are recoiled backwards after every bite they take from the substrate. To overcome this recoil and maintain contact with the algae covered substrate, fish need to generate thrust while feeding. However, the locomotory performance of reef herbivores in the context of feeding has hitherto been ignored. We used a three-dimensional high-speed video system to track mouth and body kinematics during in situ feeding strikes of fishes in the genus Zebrasoma, while synchronously recording the forces exerted on the substrate. These herbivores committed stereotypic and coordinated body and fin movements when feeding off the substrate and these movements determined algal biomass removed. Specifically, the speed of rapidly backing away from the substrate was associated with the magnitude of the pull force and the biomass of algae removed from the substrate per feeding bout. Our new framework for measuring biting performance in situ demonstrates that coordinated movements of the body and fins play a crucial role in herbivore foraging performance and may explain major axes of body and fin shape diversification across reef herbivore guilds.
Collapse
Affiliation(s)
- Tal Perevolotsky
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, POB 469, Eilat 88103, Israel
| | - Christopher H. Martin
- Department of Integrative Biology, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Asaph Rivlin
- The Inter-University Institute for Marine Sciences, POB 469, Eilat 88103, Israel
| | - Roi Holzman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, POB 469, Eilat 88103, Israel
| |
Collapse
|
18
|
Inter-Habitat Variability in Parrotfish Bioerosion Rates and Grazing Pressure on an Indian Ocean Reef Platform. DIVERSITY 2020. [DOI: 10.3390/d12100381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Parrotfish perform a variety of vital ecological functions on coral reefs, but we have little understanding of how these vary spatially as a result of inter-habitat variability in species assemblages. Here, we examine how two key ecological functions that result from parrotfish feeding, bioerosion and substrate grazing, vary between habitats over a reef scale in the central Maldives. Eight distinct habitats were delineated in early 2015, prior to the 2016 bleaching event, each supporting a unique parrotfish assemblage. Bioerosion rates varied from 0 to 0.84 ± 0.12 kg m−2 yr−1 but were highest in the coral rubble- and Pocillopora spp.-dominated habitat. Grazing pressure also varied markedly between habitats but followed a different inter-habitat pattern from that of bioerosion, with different contributing species. Total parrotfish grazing pressure ranged from 0 to ~264 ± 16% available substrate grazed yr-1 in the branching Acropora spp.-dominated habitat. Despite the importance of these functions in influencing reef-scale physical structure and ecological health, the highest rates occurred over less than 30% of the platform area. The results presented here provide new insights into within-reef variability in parrotfish ecological functions and demonstrate the importance of considering how these interact to influence reef geo-ecology.
Collapse
|
19
|
Site-Level Variation in Parrotfish Grazing and Bioerosion as a Function of Species-Specific Feeding Metrics. DIVERSITY 2020. [DOI: 10.3390/d12100379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Parrotfish provide important ecological functions on coral reefs, including the provision of new settlement space through grazing and the generation of sediment through bioerosion of reef substrate. Estimating these functions at an ecosystem level depends on accurately quantifying the functional impact of individuals, yet parrotfish feeding metrics are only available for a limited range of sites, species and size classes. We quantified bite rates, proportion of bites leaving scars and scar sizes in situ for the dominant excavator (Cetoscarus ocellatus, Chlorurus strongylocephalus, Ch. sordidus) and scraper species (Scarus rubroviolaceus, S. frenatus, S. niger, S. tricolor, S. scaber, S. psittacus) in the central Indian Ocean. This includes the first record of scar frequencies and sizes for the latter three species. Bite rates varied with species and life phase and decreased with body size. The proportion of bites leaving scars and scar sizes differed among species and increased with body size. Species-level allometric relationships between body size and each of these feeding metrics were used to parameterize annual individual grazing and bioerosion rates which increase non-linearly with body size. Large individuals of C. ocellatus, Ch. strongylocephalus and S. rubroviolaceus can graze 200–400 m2 and erode >500 kg of reef substrate annually. Smaller species graze 1–100 m2 yr−1 and erode 0.2–30 kg yr−1. We used these individual functional rates to quantify community grazing and bioerosion levels at 15 sites across the Maldives and the Chagos Archipelago. Although parrotfish density was 2.6 times higher on Maldivian reefs, average grazing (3.9 ± 1.4 m2 m−2 reef yr−1) and bioerosion levels (3.1 ± 1.2 kg m−2 reef yr−1) were about 15% lower than in the Chagos Archipelago (4.5 ± 2.3 and 3.7 ± 3.0, respectively), due to the dominance of small species and individuals in the Maldives (90% <30 cm length). This demonstrates that large-bodied species and individuals contribute disproportionally to both grazing and bioerosion. Across all sites, grazing increased by 66 ± 5 m2 ha−1 and bioerosion by 109 ± 9 kg ha−1 for every kg increase in parrotfish biomass. However, for a given level of parrotfish biomass, grazing and bioerosion levels were higher on Maldivian reefs than in the Chagos Archipelago. This suggests that small-bodied fish assemblages can maintain ecosystem functions, but only if key species are present in sufficiently high numbers.
Collapse
|
20
|
Tebbett SB, Goatley CHR, Streit RP, Bellwood DR. Algal turf sediments limit the spatial extent of function delivery on coral reefs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139422. [PMID: 32460082 DOI: 10.1016/j.scitotenv.2020.139422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
The presence of key organisms is frequently associated with the delivery of specific ecosystem functions. Areas with such organisms are therefore often considered to have greater levels of these functions. While this assumption has been the backbone of coral reef ecosystem-based management approaches for decades, we currently have only a limited understanding of how fish presence equates to function on coral reefs and whether this relationship is susceptible to stressors. To assess the capacity of a stressor to shape function delivery we used a multi-scale approach ranging from tens of kilometres across the continental shelf of Australia's Great Barrier Reef, down to centimetres within a reef habitat. At each scale, we quantified the spatial extent of a model function (detritivory) by a coral reef surgeonfish (Ctenochaetus striatus) and its potential to be shaped by sediments. At broad spatial scales, C. striatus presence was correlated strongly with algal turf sediment loads, while at smaller spatial scales, function delivery appears to be constrained by algal turf sediment distributions. In all cases, sediment loads above ~250-500 g m-2 were associated with a marked decrease in fish abundance or feeding activity, suggesting that a common ecological threshold lies within this range. Our results reveal a complex functional dynamic between proximate agents of function delivery (fish) and the ultimate drivers of function delivery (sediments), which emphasizes: a) weaknesses in the assumed links between fish presence and function, and b) the multi-scale capacity of algal turf sediments to shape reef processes. Unless direct extractive activities (e.g. fishing) are the main driver of function loss on coral reefs, managing to conserve fish abundance is unlikely to yield the desired outcomes. It only addresses one potential driver. Instead, management of both the agents that deliver functions (e.g. fishes), and the drivers that modify functions (e.g. sediments), is needed.
Collapse
Affiliation(s)
- Sterling B Tebbett
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| | - Christopher H R Goatley
- Function, Evolution and Anatomy Research Lab and Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia; Australian Museum Research Institute, Australian Museum, Sydney, New South Wales 2010, Australia
| | - Robert P Streit
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - David R Bellwood
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
21
|
Habitat zonation on coral reefs: Structural complexity, nutritional resources and herbivorous fish distributions. PLoS One 2020; 15:e0233498. [PMID: 32497043 PMCID: PMC7272040 DOI: 10.1371/journal.pone.0233498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/06/2020] [Indexed: 11/20/2022] Open
Abstract
Distinct zonation of community assemblages among habitats is a ubiquitous feature of coral reefs. The distribution of roving herbivorous fishes (parrotfishes, surgeonfishes and rabbitfishes) is a particularly clear example, with the abundance of these fishes generally peaking in shallow-water, high-energy habitats, regardless of the biogeographic realm. Yet, our understanding of the factors which structure this habitat partitioning, especially with regards to different facets of structural complexity and nutritional resource availability, is limited. To address this issue, we used three-dimensional photogrammetry and structure-from-motion technologies to describe five components of structural complexity (rugosity, coral cover, verticality, refuge density and field-of-view) and nutritional resource availability (grazing surface area) among habitats and considered how these factors are related to herbivorous fish distributions. All complexity metrics (including coral cover) were highest on the slope and crest. Nutritional resource availability differed from this general pattern and peaked on the outer-flat. Unexpectedly, when compared to the distribution of herbivorous fishes, none of the complexity metrics had a marked influence in the models. However, grazing surface area was a strong predictor of both the abundance and biomass of herbivorous fishes. The strong relationship between grazing surface area and herbivorous fish distributions indicates that nutritional resource availability may be one of the primary factors driving the distribution of roving herbivorous fishes. The lack of a relationship between complexity and herbivorous fishes, and a strong affinity of herbivorous fishes for low-complexity, algal turf-dominated outer-flat habitats, offers some cautious optimism that herbivory may be sustained on future, low-complexity, algal turf-dominated reef configurations.
Collapse
|
22
|
Siqueira AC, Morais RA, Bellwood DR, Cowman PF. Trophic innovations fuel reef fish diversification. Nat Commun 2020; 11:2669. [PMID: 32472063 PMCID: PMC7260216 DOI: 10.1038/s41467-020-16498-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/01/2020] [Indexed: 12/29/2022] Open
Abstract
Reef fishes are an exceptionally speciose vertebrate assemblage, yet the main drivers of their diversification remain unclear. It has been suggested that Miocene reef rearrangements promoted opportunities for lineage diversification, however, the specific mechanisms are not well understood. Here, we assemble near-complete reef fish phylogenies to assess the importance of ecological and geographical factors in explaining lineage origination patterns. We reveal that reef fish diversification is strongly associated with species' trophic identity and body size. Large-bodied herbivorous fishes outpace all other trophic groups in recent diversification rates, a pattern that is consistent through time. Additionally, we show that omnivory acts as an intermediate evolutionary step between higher and lower trophic levels, while planktivory represents a common transition destination. Overall, these results suggest that Miocene changes in reef configurations were likely driven by, and subsequently promoted, trophic innovations. This highlights trophic evolution as a key element in enhancing reef fish diversification.
Collapse
Affiliation(s)
- Alexandre C Siqueira
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.
| | - Renato A Morais
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - David R Bellwood
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Peter F Cowman
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
23
|
Richardson LE, Graham NAJ, Hoey AS. Coral species composition drives key ecosystem function on coral reefs. Proc Biol Sci 2020; 287:20192214. [PMID: 32070253 PMCID: PMC7062023 DOI: 10.1098/rspb.2019.2214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rapid and unprecedented ecological change threatens the functioning and stability of ecosystems. On coral reefs, global climate change and local stressors are reducing and reorganizing habitat-forming corals and associated species, with largely unknown implications for critical ecosystem functions such as herbivory. Herbivory mediates coral-algal competition, thereby facilitating ecosystem recovery following disturbance such as coral bleaching events or large storms. However, relationships between coral species composition, the distribution of herbivorous fishes and the delivery of their functional impact are not well understood. Here, we investigate how herbivorous fish assemblages and delivery of two distinct herbivory processes, grazing and browsing, differ among three taxonomically distinct, replicated coral habitats. While grazing on algal turf assemblages was insensitive to different coral configurations, browsing on the macroalga Laurencia cf. obtusa varied considerably among habitats, suggesting that different mechanisms may shape these processes. Variation in browsing among habitats was best predicted by the composition and structural complexity of benthic assemblages (in particular the cover and composition of corals, but not macroalgal cover), and was poorly reflected by visual estimates of browser biomass. Surprisingly, the lowest browsing rates were recorded in the most structurally complex habitat, with the greatest cover of coral (branching Porites habitat). While the mechanism for the variation in browsing is not clear, it may be related to scale-dependent effects of habitat structure on visual occlusion inhibiting foraging activity by browsing fishes, or the relative availability of alternate dietary resources. Our results suggest that maintained functionality may vary among distinct and emerging coral reef configurations due to ecological interactions between reef fishes and their environment determining habitat selection.
Collapse
Affiliation(s)
- Laura E Richardson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia.,School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB, UK
| | - Nicholas A J Graham
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia.,Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Andrew S Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
24
|
Gouezo M, Golbuu Y, Fabricius K, Olsudong D, Mereb G, Nestor V, Wolanski E, Harrison P, Doropoulos C. Drivers of recovery and reassembly of coral reef communities. Proc Biol Sci 2020; 286:20182908. [PMID: 30963834 DOI: 10.1098/rspb.2018.2908] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding processes that drive community recovery are needed to predict ecosystem trajectories and manage for impacts under increasing global threats. Yet, the quantification of community recovery in coral reefs has been challenging owing to a paucity of long-term ecological data and high frequency of disturbances. Here we investigate community re-assembly and the bio-physical drivers that determine the capacity of coral reefs to recover following the 1998 bleaching event, using long-term monitoring data across four habitats in Palau. Our study documents that the time needed for coral reefs to recover from bleaching disturbance to coral-dominated state in disturbance-free regimes is at least 9-12 years. Importantly, we show that reefs in two habitats achieve relative stability to a climax community state within that time frame. We then investigated the direct and indirect effects of drivers on the rate of recovery of four dominant coral groups using a structural equation modelling approach. While the rates of recovery differed among coral groups, we found that larval connectivity and juvenile coral density were prominent drivers of recovery for fast growing Acropora but not for the other three groups. Competitive algae and parrotfish had negative and positive effects on coral recovery in general, whereas wave exposure had variable effects related to coral morphology. Overall, the time needed for community re-assembly is habitat specific and drivers of recovery are taxa specific, considerations that require incorporation into planning for ecosystem management under climate change.
Collapse
Affiliation(s)
- Marine Gouezo
- 1 Palau International Coral Reef Center , PO Box 7086, Koror , Palau.,2 Marine Ecology Research Centre, Southern Cross University , PO Box 157, Lismore, New South Wales 2480 , Australia
| | - Yimnang Golbuu
- 1 Palau International Coral Reef Center , PO Box 7086, Koror , Palau
| | - Katharina Fabricius
- 3 Australian Institute of Marine Science , PMB 3, Townsville, Queensland 4810 , Australia
| | - Dawnette Olsudong
- 1 Palau International Coral Reef Center , PO Box 7086, Koror , Palau
| | - Geory Mereb
- 1 Palau International Coral Reef Center , PO Box 7086, Koror , Palau
| | - Victor Nestor
- 1 Palau International Coral Reef Center , PO Box 7086, Koror , Palau
| | - Eric Wolanski
- 4 TropWATER and College of Marine and Environmental Sciences, James Cook University , Townsville, Queensland , Australia
| | - Peter Harrison
- 2 Marine Ecology Research Centre, Southern Cross University , PO Box 157, Lismore, New South Wales 2480 , Australia
| | | |
Collapse
|
25
|
Tzanatos E, Moukas C, Koutsidi M. Mediterranean nekton traits: distribution, relationships and significance for marine ecology monitoring and management. PeerJ 2020; 8:e8494. [PMID: 32095343 PMCID: PMC7025708 DOI: 10.7717/peerj.8494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/31/2019] [Indexed: 11/20/2022] Open
Abstract
Biological traits are increasingly used in order to study aspects of ecology as they are related to the organisms' fitness. Here we analyze a dataset of 23 traits regarding the life cycle, distribution, ecology and behavior of 235 nektonic species of the Mediterranean Sea in order to evaluate the distribution of traits, identify rare ones, detect relationships between trait pairs and identify species functional groups. Trait relationships were tested using correlation and non-linear regression for continuous traits, parametric and non-parametric inference tests for pairs of continuous-categorical traits and cooccurrence testing for categorical traits. The findings have significant implications concerning the potential effects of climate change (e.g., through the relationships of the trait of optimal temperature), fisheries or habitat loss (from the relationships of traits related to tolerance ranges). Furthermore, some unexpected relationships are documented, like the inversely proportional relationship between longevity and age at maturity as a percentage of life span. Associations between functional traits show affinities derived from phylogenetic constraints or life strategies; however, relationships among functional and ecological traits can indicate the potential environmental filtering that acts on functional traits. In total, 18 functional groups were identified by Hill-Smith ordination and hierarchical clustering and were characterized by their dominant traits. For the assessment of the results, we first evaluate the importance of each trait at the level of population, community, ecosystem and landscape and then propose the traits that should be monitored for the regulation and resilience of ecosystem functioning and the management of the marine ecosystems.
Collapse
|
26
|
Relative roles of biological and physical processes influencing coral recruitment during the lag phase of reef community recovery. Sci Rep 2020; 10:2471. [PMID: 32051446 PMCID: PMC7015914 DOI: 10.1038/s41598-020-59111-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/19/2020] [Indexed: 11/09/2022] Open
Abstract
Following disturbances, corals recolonize space through the process of recruitment consisting of the three phases of propagule supply, settlement, and post-settlement survival. Yet, each phase is influenced by biophysical factors, leading to recruitment success variability through space. To resolve the relative contributions of biophysical factors on coral recruitment, the recovery of a 150 km long coral reefs in Palau was investigated after severe typhoon disturbances. Overall, we found that benthic organisms had a relatively weak interactive influence on larval settlement rates at the scale of individual tiles, with negative effects mainly exerted from high wave exposure for Acropora corals. In contrast, juvenile coral densities were well predicted by biophysical drivers, through both direct and indirect pathways. High densities of Acropora and Poritidae juveniles were directly explained by the availability of substrata free from space competitors. Juvenile Montipora were found in higher densities where coralline algae coverage was high, which occurred at reefs with high wave exposure, while high densities of juvenile Pocilloporidae occurred on structurally complex reefs with high biomass of bioeroder fish. Our findings demonstrate that strengths of biophysical interactions were taxon-specific and had cascading effects on coral recruitment, which need consideration for predicting reef recovery and conservation strategies.
Collapse
|
27
|
Domenici P, Seebacher F. The impacts of climate change on the biomechanics of animals: Themed Issue Article: Biomechanics and Climate Change. CONSERVATION PHYSIOLOGY 2020; 8:coz102. [PMID: 31976075 PMCID: PMC6956782 DOI: 10.1093/conphys/coz102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/24/2019] [Accepted: 11/03/2019] [Indexed: 05/09/2023]
Abstract
Anthropogenic climate change induces unprecedented variability in a broad range of environmental parameters. These changes will impact material properties and animal biomechanics, thereby affecting animal performance and persistence of populations. Climate change implies warming at the global level, and it may be accompanied by altered wind speeds, wave action, ocean circulation, acidification as well as increased frequency of hypoxic events. Together, these environmental drivers affect muscle function and neural control and thereby movement of animals such as bird migration and schooling behaviour of fish. Altered environmental conditions will also modify material properties of animals. For example, ocean acidification, particularly when coupled with increased temperatures, compromises calcified shells and skeletons of marine invertebrates and byssal threads of mussels. These biomechanical consequences can lead to population declines and disintegration of habitats. Integrating biomechanical research with ecology is instrumental in predicting the future responses of natural systems to climate change and the consequences for ecosystem services such as fisheries and ecotourism.
Collapse
Affiliation(s)
- Paolo Domenici
- IAS-CNR, Località Sa Mardini, Torregrande, Oristano, 09170 Italy
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
28
|
Myers EMV, Anderson MJ, Eme D, Liggins L, Roberts CD. Changes in key traits versus depth and latitude suggest energy-efficient locomotion, opportunistic feeding and light lead to adaptive morphologies of marine fishes. J Anim Ecol 2019; 89:309-322. [PMID: 31646627 DOI: 10.1111/1365-2656.13131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 10/03/2019] [Indexed: 11/27/2022]
Abstract
Understanding patterns and processes governing biodiversity along broad-scale environmental gradients, such as depth or latitude, requires an assessment of not just taxonomic richness, but also morphological and functional traits of organisms. Studies of traits can help to identify major selective forces acting on morphology. Currently, little is known regarding patterns of variation in the traits of fishes at broad spatial scales. The aims of this study were (a) to identify a suite of key traits in marine fishes that would allow assessment of morphological variability across broad-scale depth (50-1200 m) and latitudinal (29.15-50.91°S) gradients, and (b) to characterize patterns in these traits across depth and latitude for 144 species of ray-finned fishes in New Zealand waters. Here, we describe three new morphological traits, namely fin-base-to-perimeter ratio, jaw-length-to-mouth-width ratio, and pectoral-fin-base-to-body-depth ratio. Four other morphological traits essential for locomotion and food acquisition that are commonly measured in fishes were also included in the study. Spatial ecological distributions of individual fish species were characterized in response to a standardized replicated sampling design, and morphological measurements were obtained for each species from preserved museum specimens. With increasing depth, fishes, on average, became larger and more elongate, with higher fin-base-to-perimeter ratio and larger jaw-length-to-mouth-width ratio, all of which translates into a more eel-like anguilliform morphology. Variation in mean trait values along the depth gradient was stronger at lower latitudes for fin-base-to-perimeter ratio, elongation and total body length. Average eye size peaked at intermediate depths (500-700 m) and increased with increasing latitude at 700 m. These findings suggest that, in increasingly extreme environments, fish morphology shifts towards a body shape that favours an energy-efficient undulatory swimming style and an increase in jaw-length vs. mouth width for opportunistic feeding. Furthermore, increases in eye size with both depth and latitude indicate that changes in both the average ambient light conditions as well as seasonal variations in day-length can act to select ecomorphological adaptations in fishes.
Collapse
Affiliation(s)
- Elisabeth M V Myers
- New Zealand Institute for Advanced Study (NZIAS), Massey University, Auckland, New Zealand
| | - Marti J Anderson
- New Zealand Institute for Advanced Study (NZIAS), Massey University, Auckland, New Zealand
| | - David Eme
- New Zealand Institute for Advanced Study (NZIAS), Massey University, Auckland, New Zealand.,IFREMER, unité Ecologie et Modèles pour l'Halieutique, Nantes, France
| | - Libby Liggins
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand.,Auckland War Memorial Museum, Tāmaki Paenga Hira, Auckland, New Zealand
| | - Clive D Roberts
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| |
Collapse
|
29
|
Ecomorphology, trophic niche, and distribution divergences of two common damselfishes in the Gulf of California. C R Biol 2019; 342:309-321. [PMID: 31784218 DOI: 10.1016/j.crvi.2019.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 11/22/2022]
Abstract
Damselfishes of the genus Stegastes are among the most conspicuous benthic reef-associated fish in the Gulf of California, and the two most commonly found species are the Beaubrummel Gregory Stegastes flavilatus and the Cortez damselfish Stegastes rectifraenum. Both species are described as ecologically and morphologically very similar. However, the niche theory predicts that coexisting species will tend to minimize competition through niche partitioning. We, therefore, investigated the degree of their ecological similarity through their morphology, trophic ecology, and spatial distribution, as well as, the effects of environmental variables on their abundance. We showed that S. rectifraenum is highly abundant in the entire Gulf of California while S. flavilatus is only found in the central and southern part. The abundance of S. rectifraenum was higher in shallow water and decreased when the cover of macroalgae and sand increased. No environmental variable was related to the abundance of S. flavilatus. Both species had distinct isotopic niches: S. flavilatus fed almost exclusively on plankton and zoobenthos, while S. rectifraenum had an omnivorous diet mixing turf, zoobenthos and plankton. The diet divergence was reflected in the morphology of the two species. Stegastes flavilatus had a more rounded body shape, with a higher supraoccipital crest and more gill rakers than S. rectifraenum, which may increase its ability to feed on vagile invertebrates and zooplankton. Our results support the hypothesis that a niche partition has occurred between the two species. Furthermore, the importance of planktonic food sources to both species, considered as benthic territorial feeders, challenges the traditional ecological description of the Stegastes species.
Collapse
|
30
|
Lamb RW, Smith F, Witman JD. Consumer mobility predicts impacts of herbivory across an environmental stress gradient. Ecology 2019; 101:e02910. [PMID: 31605535 DOI: 10.1002/ecy.2910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/14/2019] [Accepted: 09/03/2019] [Indexed: 11/07/2022]
Abstract
Environmental stress impedes predation and herbivory by limiting the ability of animals to search for and consume prey. We tested the contingency of this relationship on consumer traits and specifically hypothesized that herbivore mobility relative to the return time of limiting environmental stress would predict consumer effects. We examined how wave-induced water motion affects marine communities via herbivory by highly mobile (fish) vs. slow-moving (pencil urchin) consumers at two wave-sheltered and two wave-exposed rocky subtidal locations in the Galapagos Islands. The exposed locations experienced 99th percentile flow speeds that were 2-5 times greater than sheltered locations, with mean flow speeds >33 cm/s vs. <16 cm/s, 2-7 times higher standing macroalgal cover and 2-3 times lower cover of crustose coralline algae than the sheltered locations. As predicted by the environmental stress hypothesis (ESH), there was a negative relationship between mean flow speed and urchin abundance and herbivory rates on Ulva spp. algal feeding assays. In contrast, the biomass of surgeonfishes (Acanthuridae) and parrotfishes (Labridae: Scarinae) was positively correlated with mean flow speed. Ulva assays were consumed at equal rates by fish at exposed and sheltered locations, indicating continued herbivory even when flow speeds surpassed maximum reported swimming speeds at a rate of 1-2 times per minute. Modeled variation in fish species richness revealed minimal effects of diversity on herbivory rates at flow speeds <40 cm/s, when all species were capable of foraging, and above 120 cm/s, when no species could forage, while increasing diversity maximized herbivory rates at flow speeds of 40-120 cm/s. Two-month herbivore exclusion experiments during warm and cool seasons revealed that macroalgal biomass was positively correlated with flow speed. Fish limited macroalgal development by 65-91% at one exposed location but not the second and by 70% at the two sheltered locations. In contrast, pencil urchins did not affect algal communities at either exposed location, but reduced macroalgae by 87% relative to controls at both sheltered locations. We propose an extension of the ESH that is contingent upon mobility to explain species-specific changes in feeding rates and consumer effects on benthic communities across environmental gradients.
Collapse
Affiliation(s)
- Robert W Lamb
- Ecology and Evolutionary Biology Department, Brown University, 80 Waterman Street, Box G-W, Providence, Rhode Island, 02912, USA.,Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, MS 50, Woods Hole, Massachusetts, 02543, USA
| | - Franz Smith
- Ecology and Evolutionary Biology Department, Brown University, 80 Waterman Street, Box G-W, Providence, Rhode Island, 02912, USA
| | - Jon D Witman
- Ecology and Evolutionary Biology Department, Brown University, 80 Waterman Street, Box G-W, Providence, Rhode Island, 02912, USA
| |
Collapse
|
31
|
Robinson JPW, McDevitt‐Irwin JM, Dajka J, Hadj‐Hammou J, Howlett S, Graba‐Landry A, Hoey AS, Nash KL, Wilson SK, Graham NAJ. Habitat and fishing control grazing potential on coral reefs. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13457] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | - Jan‐Claas Dajka
- Lancaster Environment Centre Lancaster University Lancaster UK
| | | | | | - Alexia Graba‐Landry
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Andrew S. Hoey
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Kirsty L. Nash
- Centre for Marine Socioecology University of Tasmania Hobart Tas. Australia
- Institute for Marine & Antarctic Studies University of Tasmania Hobart Tas. Australia
| | - Shaun K. Wilson
- Department of Biodiversity, Conservation and Attractions: Marine Science Program Kensington WA Australia
- Oceans Institute University of Western Australia Crawley WA Australia
| | | |
Collapse
|
32
|
Williams GJ, Graham NAJ, Jouffray JB, Norström AV, Nyström M, Gove JM, Heenan A, Wedding LM. Coral reef ecology in the Anthropocene. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13290] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | | | - Jean-Baptiste Jouffray
- Stockholm Resilience Centre; Stockholm University; Stockholm Sweden
- Global Economic Dynamics and the Biosphere Academy Programme; Royal Swedish Academy of Sciences; Stockholm Sweden
| | | | - Magnus Nyström
- Stockholm Resilience Centre; Stockholm University; Stockholm Sweden
| | - Jamison M. Gove
- NOAA Pacific Islands Fisheries Science Center; Honolulu Hawaii
| | - Adel Heenan
- School of Ocean Sciences; Bangor University; Anglesey UK
| | - Lisa M. Wedding
- Center for Ocean Solutions; Stanford University; Stanford California
| |
Collapse
|
33
|
Bellwood DR, Streit RP, Brandl SJ, Tebbett SB. The meaning of the term ‘function’ in ecology: A coral reef perspective. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13265] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David R. Bellwood
- College of Science and Engineering James Cook University Townsville Qld Australia
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Robert P. Streit
- College of Science and Engineering James Cook University Townsville Qld Australia
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Simon J. Brandl
- Department of Biological Sciences Simon Fraser University Burnaby BC Canada
| | - Sterling B. Tebbett
- College of Science and Engineering James Cook University Townsville Qld Australia
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| |
Collapse
|
34
|
Clayman S, Seebacher F. Increased wave action promotes muscle performance but increasing temperatures cause a tenacity-endurance trade-off in intertidal snails ( Nerita atramentosa). CONSERVATION PHYSIOLOGY 2019; 7:coz039. [PMID: 31333844 PMCID: PMC6637719 DOI: 10.1093/conphys/coz039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/29/2019] [Accepted: 06/05/2019] [Indexed: 05/11/2023]
Abstract
Concurrent increases in wave action and sea surface temperatures increase the physical impact on intertidal organisms and affect their physiological capacity to respond to that impact. Our aim was to determine whether wave exposure altered muscle function in intertidal snails (Nerita atramentosa) and whether responses to wave action and temperature are plastic, leading to compensation for altered environmental conditions. We show that field snails from exposed shores had greater endurance and vertical tenacity than snails from matched protected shores (n = 5 pairs of shores). There were no differences in muscle metabolic capacities (strombine/lactate dehydrogenase, citrate synthase and cytochrome c oxidase activities) between shore types. Maximum stress (force/foot area) produced by isolated foot muscle did not differ between shore types, but foot muscle from snails on exposed shores had greater endurance. A laboratory experiment showed that vertical tenacity was greater in animals acclimated for 3 weeks to cool winter temperatures (15 C) compared to summer temperatures (25 C), but endurance was greater in snails acclimated to 25°C. Acclimation to water flow that mimicked wave action in the field increased vertical tenacity but decreased endurance. Our data show that increased wave action elicits a training effect on muscle, but that increasing sea surface temperature can cause a trade-off between tenacity and endurance. Ocean warming would negate the beneficial increase in tenacity that could render snails more resistant to acute impacts of wave action, while promoting longer term resistance to dislodgment by waves.
Collapse
Affiliation(s)
- Samuel Clayman
- School of Life and Environmental Sciences A08, University of Sydney, New South Wales, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, New South Wales, Australia
- Corresponding author: School of Life and Environmental Sciences A08, University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
35
|
Reef fish functional traits evolve fastest at trophic extremes. Nat Ecol Evol 2018; 3:191-199. [DOI: 10.1038/s41559-018-0725-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 10/21/2018] [Indexed: 12/11/2022]
|
36
|
Donovan MK, Friedlander AM, Lecky J, Jouffray JB, Williams GJ, Wedding LM, Crowder LB, Erickson AL, Graham NAJ, Gove JM, Kappel CV, Karr K, Kittinger JN, Norström AV, Nyström M, Oleson KLL, Stamoulis KA, White C, Williams ID, Selkoe KA. Combining fish and benthic communities into multiple regimes reveals complex reef dynamics. Sci Rep 2018; 8:16943. [PMID: 30446687 PMCID: PMC6240066 DOI: 10.1038/s41598-018-35057-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/30/2018] [Indexed: 11/10/2022] Open
Abstract
Coral reefs worldwide face an uncertain future with many reefs reported to transition from being dominated by corals to macroalgae. However, given the complexity and diversity of the ecosystem, research on how regimes vary spatially and temporally is needed. Reef regimes are most often characterised by their benthic components; however, complex dynamics are associated with losses and gains in both fish and benthic assemblages. To capture this complexity, we synthesised 3,345 surveys from Hawai'i to define reef regimes in terms of both fish and benthic assemblages. Model-based clustering revealed five distinct regimes that varied ecologically, and were spatially heterogeneous by island, depth and exposure. We identified a regime characteristic of a degraded state with low coral cover and fish biomass, one that had low coral but high fish biomass, as well as three other regimes that varied significantly in their ecology but were previously considered a single coral dominated regime. Analyses of time series data reflected complex system dynamics, with multiple transitions among regimes that were a function of both local and global stressors. Coupling fish and benthic communities into reef regimes to capture complex dynamics holds promise for monitoring reef change and guiding ecosystem-based management of coral reefs.
Collapse
Affiliation(s)
- Mary K Donovan
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kaneohe, HI, 96744, USA.
| | | | - Joey Lecky
- Department of Natural Resources and Environmental Management, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.,Office of National Marine Sanctuaries, National Oceanic Atmospheric Administration, Honolulu, HI, 96818, USA
| | - Jean-Baptiste Jouffray
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.,Global Economic Dynamics and the Biosphere Academy Programme, Royal Swedish Academy of Sciences, Stockholm, Sweden
| | | | - Lisa M Wedding
- Center for Ocean Solutions, Stanford University, Stanford, CA, 94305, USA
| | - Larry B Crowder
- Hopkins Marine Station, Stanford University, Monterey, CA, 93950, USA
| | - Ashley L Erickson
- Center for Ocean Solutions, Stanford University, Stanford, CA, 94305, USA
| | - Nick A J Graham
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Jamison M Gove
- Ecosystem Sciences Division, Pacific Islands Fisheries Science Center, National Oceanic Atmospheric Administration, Honolulu, HI, 96818, USA
| | - Carrie V Kappel
- National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, CA, 93101, USA
| | - Kendra Karr
- Oceans Program, Environmental Defense Fund, San Francisco, CA, 94105, USA
| | - John N Kittinger
- Center for Oceans, Conservation International, Honolulu, HI, 96825, USA.,Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, AZ, 85281, USA
| | - Albert V Norström
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Magnus Nyström
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Kirsten L L Oleson
- Department of Natural Resources and Environmental Management, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Kostantinos A Stamoulis
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.,Curtin University, Bentley, WA, 6102, Australia
| | - Crow White
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Ivor D Williams
- Ecosystem Sciences Division, Pacific Islands Fisheries Science Center, National Oceanic Atmospheric Administration, Honolulu, HI, 96818, USA
| | - Kimberly A Selkoe
- National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, CA, 93101, USA
| |
Collapse
|
37
|
Roff G, Bejarano S, Priest M, Marshell A, Chollett I, Steneck RS, Doropoulos C, Golbuu Y, Mumby PJ. Seascapes as drivers of herbivore assemblages in coral reef ecosystems. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- George Roff
- Marine Spatial Ecology Lab; School of Biological Sciences; University of Queensland; St Lucia Queensland 4072 Australia
| | - Sonia Bejarano
- Reef Systems Research Group, Ecology Department; Leibniz Centre for Tropical Marine Research (ZMT); Fahrenheitstraße 6 28359 Bremen Germany
| | - Mark Priest
- Marine Spatial Ecology Lab; School of Biological Sciences; University of Queensland; St Lucia Queensland 4072 Australia
| | - Alyssa Marshell
- Department of Marine Science and Fisheries; College of Agricultural and Marine Sciences; Sultan Qaboos University; Muscat Oman
| | - Iliana Chollett
- Smithsonian Marine Station; Smithsonian Institution; Fort Pierce Florida 34949 USA
| | - Robert S. Steneck
- Darling Marine Center; School of Marine Sciences; University of Maine; Walpole Maine 04573 USA
| | | | | | - Peter J. Mumby
- Marine Spatial Ecology Lab; School of Biological Sciences; University of Queensland; St Lucia Queensland 4072 Australia
| |
Collapse
|
38
|
Robinson JPW, Williams ID, Yeager LA, McPherson JM, Clark J, Oliver TA, Baum JK. Environmental conditions and herbivore biomass determine coral reef benthic community composition: implications for quantitative baselines. CORAL REEFS (ONLINE) 2018; 37:1157-1168. [PMID: 30930680 PMCID: PMC6404665 DOI: 10.1007/s00338-018-01737-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/20/2018] [Indexed: 05/30/2023]
Abstract
Our ability to understand natural constraints on coral reef benthic communities requires quantitative assessment of the relative strengths of abiotic and biotic processes across large spatial scales. Here, we combine underwater images, visual censuses and remote sensing data for 1566 sites across 34 islands spanning the central-western Pacific Ocean, to empirically assess the relative roles of abiotic and grazing processes in determining the prevalence of calcifying organisms and fleshy algae on coral reefs. We used regression trees to identify the major predictors of benthic composition and to test whether anthropogenic stress at inhabited islands decouples natural relationships. We show that sea surface temperature, wave energy, oceanic productivity and aragonite saturation strongly influence benthic community composition; overlooking these factors may bias expectations of calcified reef states. Maintenance of grazing biomass above a relatively low threshold (~ 10-20 kg ha-1) may also prevent transitions to algal-dominated states, providing a tangible management target for rebuilding overexploited herbivore populations. Biophysical relationships did not decouple at inhabited islands, indicating that abiotic influences remain important macroscale processes, even at chronically disturbed reefs. However, spatial autocorrelation among inhabited reefs was substantial and exceeded abiotic and grazing influences, suggesting that natural constraints on reef benthos were superseded by unmeasured anthropogenic impacts. Evidence of strong abiotic influences on reef benthic communities underscores their importance in specifying quantitative targets for coral reef management and restoration that are realistic within the context of local conditions.
Collapse
Affiliation(s)
- James P. W. Robinson
- Department of Biology, University of Victoria, PO BOX 1700, Station CSC, Victoria, BC V8W 2Y2 Canada
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ UK
| | - Ivor D. Williams
- Ecosystem Science Division, Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, 1845 Wasp Boulevard, Building 176, Honolulu, HI USA
| | - Lauren A. Yeager
- Department of Marine Science, University of Texas at Austin, Port Aransas, TX 78373 USA
| | - Jana M. McPherson
- Center for Conservation Research, Calgary Zoological Society, 1300 Zoo Road NE, Calgary, AB T2E 7V6 Canada
- Department of Biological Sciences, Simon Fraser University, 888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Jeanette Clark
- Ecosystem Science Division, Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, 1845 Wasp Boulevard, Building 176, Honolulu, HI USA
- Joint Institute for Marine and Atmospheric Research, University of Hawaìi at Mānoa, Honolulu, HI USA
- National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, 735 State St #300, Santa Barbara, CA 93101 USA
| | - Thomas A. Oliver
- Ecosystem Science Division, Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, 1845 Wasp Boulevard, Building 176, Honolulu, HI USA
| | - Julia K. Baum
- Department of Biology, University of Victoria, PO BOX 1700, Station CSC, Victoria, BC V8W 2Y2 Canada
| |
Collapse
|
39
|
Caillon F, Bonhomme V, Möllmann C, Frelat R. A morphometric dive into fish diversity. Ecosphere 2018. [DOI: 10.1002/ecs2.2220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Florian Caillon
- Institute for Marine Ecosystem and Fisheries Science Center for Earth System Research and Sustainability (CEN) University of Hamburg Große Elbstraße 133 22767 Hamburg Germany
| | - Vincent Bonhomme
- UMR 5554 Institut des Sciences de l'Evolution, Équipe Dynamique de la Biodiversité, Anthropo‐Écologie CNRS IRD EPHE Université de Montpellier Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| | - Christian Möllmann
- Institute for Marine Ecosystem and Fisheries Science Center for Earth System Research and Sustainability (CEN) University of Hamburg Große Elbstraße 133 22767 Hamburg Germany
| | - Romain Frelat
- Institute for Marine Ecosystem and Fisheries Science Center for Earth System Research and Sustainability (CEN) University of Hamburg Große Elbstraße 133 22767 Hamburg Germany
| |
Collapse
|
40
|
Bellwood DR, Tebbett SB, Bellwood O, Mihalitsis M, Morais RA, Streit RP, Fulton CJ. The role of the reef flat in coral reef trophodynamics: Past, present, and future. Ecol Evol 2018; 8:4108-4119. [PMID: 29721284 PMCID: PMC5916286 DOI: 10.1002/ece3.3967] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 01/12/2018] [Accepted: 02/09/2018] [Indexed: 01/02/2023] Open
Abstract
The reef flat is one of the largest and most distinctive habitats on coral reefs, yet its role in reef trophodynamics is poorly understood. Evolutionary evidence suggests that reef flat colonization by grazing fishes was a major innovation that permitted the exploitation of new space and trophic resources. However, the reef flat is hydrodynamically challenging, subject to high predation risks and covered with sediments that inhibit feeding by grazers. To explore these opposing influences, we examine the Great Barrier Reef (GBR) as a model system. We focus on grazing herbivores that directly access algal primary productivity in the epilithic algal matrix (EAM). By assessing abundance, biomass, and potential fish productivity, we explore the potential of the reef flat to support key ecosystem processes and its ability to maintain fisheries yields. On the GBR, the reef flat is, by far, the most important habitat for turf-grazing fishes, supporting an estimated 79% of individuals and 58% of the total biomass of grazing surgeonfishes, parrotfishes, and rabbitfishes. Approximately 59% of all (reef-wide) turf algal productivity is removed by reef flat grazers. The flat also supports approximately 75% of all grazer biomass growth. Our results highlight the evolutionary and ecological benefits of occupying shallow-water habitats (permitting a ninefold population increase). The acquisition of key locomotor and feeding traits has enabled fishes to access the trophic benefits of the reef flat, outweighing the costs imposed by water movement, predation, and sediments. Benthic assemblages on reefs in the future may increasingly resemble those seen on reef flats today, with low coral cover, limited topographic complexity, and extensive EAM. Reef flat grazing fishes may therefore play an increasingly important role in key ecosystem processes and in sustaining future fisheries yields.
Collapse
Affiliation(s)
- David R Bellwood
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland Australia.,College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Sterling B Tebbett
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland Australia.,College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Orpha Bellwood
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Michalis Mihalitsis
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland Australia.,College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Renato A Morais
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland Australia.,College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Robert P Streit
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland Australia.,College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Christopher J Fulton
- Research School of Biology The Australian National University Canberra ACT Australia
| |
Collapse
|