1
|
Hu X, Li B, Li Y, Xia Y, Jin K. MaPac2, a Transcriptional Regulator, Is Involved in Conidiation, Stress Tolerances and Pathogenicity in Metarhizium acridum. J Fungi (Basel) 2025; 11:100. [PMID: 39997395 PMCID: PMC11855946 DOI: 10.3390/jof11020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/26/2025] Open
Abstract
The Gti1/Pac2 protein family, which is highly conserved across fungi, is pivotal in processes such as fungal development, spore formation, protein export, toxin production, and virulence. Despite its importance, the precise functions of Pac2 within entomopathogenic fungi have yet to be fully understood. In our study, the MaPac2 gene from M. acridum was identified, and its functions were explored. Studying the domain of the protein showed that MaPac2 comprises 422 amino acids with a characteristic Gti1/Pac2 family domain (Pfam09729). Additionally, MaPac2 is predicted to have an N-terminal protein kinase A phosphorylation site and a potential cyclin-dependent kinase phosphorylation site, highlighting its potential regulatory roles in the fungus. Our findings indicate that the inactivation of MaPac2 resulted in faster germination of conidia and a marked reduction in conidial production. Furthermore, stress tolerance tests revealed that the absence of MaPac2 significantly bolstered the fungal resilience to UV-B radiation, heat shock, SDS exposure, and stresses induced by hyperosmotic conditions and oxidative challenges. Virulence assessments through bioassays indicated no substantial differences among the WT, MaPac2-disrupted strain, and CP strains in the topical inoculation trials. Interestingly, deletion of MaPac2 increased the fungal virulence by intrahemocoel injection. Furthermore, we found that disruption of MaPac2 impaired fungal cuticle penetration due to the diminished appressorium formation but increased the fungal growth in locust hemolymph. These findings provide further insights into the roles played by Gti1/Pac2 in insect pathogenic fungi.
Collapse
Affiliation(s)
- Xiaobin Hu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (X.H.); (B.L.); (Y.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Baicheng Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (X.H.); (B.L.); (Y.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Yan Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (X.H.); (B.L.); (Y.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (X.H.); (B.L.); (Y.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (X.H.); (B.L.); (Y.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| |
Collapse
|
2
|
Ribeiro ML, Bitencourt RDOB, Moreira HVS, Golo PS, Bittencourt VREP, Angelo IDC. In Vitro Assessment of Metarhizium Anisopliae Pathogenicity Against Aedes Aegypti Life Stages. NEOTROPICAL ENTOMOLOGY 2024; 53:1260-1270. [PMID: 39382741 DOI: 10.1007/s13744-024-01209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
Aedes aegypti transmits the arboviruses that cause dengue, zika, and chikungunya. Entomopathogenic fungi are beneficial microorganisms that can be incorporated into current strategies against mosquitoes of public health concern. This study molecularly identified the Metarhizium anisopliae CG 153 isolate and evaluated its virulence against larvae, pupae, and adults (both males and females) of Ae. aegypti. Different concentrations of conidia were used (1 × 104-8 conidia mL-1). Larval and pupal survival was monitored daily for seven and three days, respectively, while adults were monitored for 15 days. The efficacy of M. anisopliae sensu stricto was concentration-dependent, with higher concentrations achieving better results, demonstrating greater virulence against larval and adult stages of Ae. aegypti. The fungus reduced the larval survival by 95,5% (1 × 108 con.mL-1), 94,4% (1 × 107 con.mL-1), 78,9% (1 × 106 con.mL-1), 62,2% (1 × 105 con.mL-1), and 41,1% (1 × 104 con.mL-1) after seven days. Adults also showed susceptibility to the fungus, with no observed difference in susceptibility between males and females. Over 15 days of monitoring, adult survival rates ranged from approximately 6.7% to 72%. Pupae exhibited lower susceptibility to the fungus across different concentrations, with survival rates ranging from approximately 87.8% to 100%. This study highlights the high effectiveness of M. anisopliae CG 153 against both Ae. aegypti larvae and adults (male and female) under controlled conditions, suggesting its promising potential for further evaluation and application in field conditions.
Collapse
Affiliation(s)
- Matheus Lopes Ribeiro
- Student of Veterinary Medicine, Veterinary Institute, Federal Rural Univ of Rio de Janeiro, Seropédica, RJ, Brazil
- Postgraduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural Univ of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Ricardo de Oliveira Barbosa Bitencourt
- Center for Agricultural Sciences and Technologies, Lab of Entomology and Phytopathology, Univ Estadual Do Norte Fluminense Darcy Ribeiro, Campos Dos Goytacazes, Rio de Janeiro, 28013, Brazil
- Postgraduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural Univ of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Haika Victória Sales Moreira
- Student of Veterinary Medicine, Veterinary Institute, Federal Rural Univ of Rio de Janeiro, Seropédica, RJ, Brazil
- Postgraduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural Univ of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Patrícia Silva Golo
- Postgraduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural Univ of Rio de Janeiro, Seropédica, RJ, Brazil
- Dept of Animal Parasitology, Veterinary Institute, Federal Rural Univ of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Vânia Rita Elias Pinheiro Bittencourt
- Postgraduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural Univ of Rio de Janeiro, Seropédica, RJ, Brazil
- Dept of Animal Parasitology, Veterinary Institute, Federal Rural Univ of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Isabele da Costa Angelo
- Postgraduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural Univ of Rio de Janeiro, Seropédica, RJ, Brazil.
- Dept of Epidemiology and Public Health, Veterinary Institute, Federal Rural Univ of Rio de Janeiro, Seropédica, RJ, Brazil.
| |
Collapse
|
3
|
Rodrigues J, Catão AML, Dos Santos AS, Paixão FRS, Santos TR, Martinez JM, Marreto RN, Mascarin GM, Fernandes ÉKK, Humber RA, Luz C. Relative humidity impacts development and activity against Aedes aegypti adults by granular formulations of Metarhizium humberi microsclerotia. Appl Microbiol Biotechnol 2021; 105:2725-2736. [PMID: 33745009 DOI: 10.1007/s00253-021-11157-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 01/09/2023]
Abstract
The impact of ambient relative humidity (RH) on conidial production of Metarhizium humberi IP 46 microsclerotia (MS) formulated in pellets or granules was investigated, and a promising granular formulation was tested against Aedes aegypti adults to confirm its efficacy. Microcrystalline cellulose (MC) and diatomaceous earth (DE) or a combination of vermiculite (VE), DE and silicon dioxide (SD) were tested as carriers in granular formulations containing MS. A range of 93-96.5% RH was critical for fungal development, and at least 96.5-98.5% RH was required for high conidial production on pellets or granules. Conidial production was clearly higher on pellets and granules prepared with VE than MC as the main carrier. VE granules containing MS were highly active against A. aegypti adults. Most mosquitoes were killed within 6 days after treatment regardless of the exposure time of adults to the formulation (1 min-24 h) or ambient humidity (75 or >98%). Production of conidia on dead adults varied between 7.3 × 106 and 2.2 × 107 conidia/individual, when exposed to MS granules for 12 h and 1 min, respectively. Granular formulations containing VE as the main carrier and MS as the active ingredient of M. humberi have strong potential for use against A. aegypti. KEY POINTS: • High conidial production on granular microsclerotial formulations at >96.5% RH • Vermiculite is more appropriate as a carrier than microcrystalline cellulose • Granules with IP 46 microsclerotia are highly active against Aedes aegypti adults.
Collapse
Affiliation(s)
- Juscelino Rodrigues
- Laboratório de Patologia de Invertebrados (LPI), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Avenida Esperança s/n, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Alaine Maria Lopes Catão
- Laboratório de Patologia de Invertebrados (LPI), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Avenida Esperança s/n, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Amanda Soares Dos Santos
- Laboratório de Patologia de Invertebrados (LPI), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Avenida Esperança s/n, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Flávia Regina Santos Paixão
- Laboratório de Patologia de Invertebrados (LPI), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Avenida Esperança s/n, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Thainá Rodrigues Santos
- Laboratório de Nanosistemas e Dispositivos de Liberação de Fármacos (NanoSYS), Faculdade de Farmácia, UFG, Goiânia, GO, Brazil
| | - Juan Mercado Martinez
- Laboratório de Patologia de Invertebrados (LPI), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Avenida Esperança s/n, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Ricardo Neves Marreto
- Laboratório de Nanosistemas e Dispositivos de Liberação de Fármacos (NanoSYS), Faculdade de Farmácia, UFG, Goiânia, GO, Brazil
| | - Gabriel Moura Mascarin
- Embrapa Meio Ambiente, Rodovia SP 340, km 127.5, S/N, Tanquinho Velho, Jaguariúna, SP, Brazil
| | - Éverton Kort Kamp Fernandes
- Laboratório de Patologia de Invertebrados (LPI), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Avenida Esperança s/n, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | | | - Christian Luz
- Laboratório de Patologia de Invertebrados (LPI), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Avenida Esperança s/n, Campus Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
4
|
Greenhalgh S, Chandwani V. Advocating an attack against severe malaria: a cost-effectiveness analysis. BMC Public Health 2020; 20:17. [PMID: 31910842 PMCID: PMC6947859 DOI: 10.1186/s12889-019-8141-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/30/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND A recent study found that the gut microbiota, Lactobacillus and Bifidobacterium, have the ability to modulate the severity of malaria. The modulation of the severity of malaria is not however, the typical focal point of most widespread interventions. Thus, an essential element of information required before serious consideration of any intervention that targets reducing severe malaria incidence is a prediction of the health benefits and costs required to be cost-effective. METHODS Here, we developed a mathematical model of malaria transmission to evaluate an intervention that targets reducing severe malaria incidence. We consider intervention scenarios of a 2-, 7-, and 14-fold reduction in severe malaria incidence, based on the potential reduction in severe malaria incidence caused by gut microbiota, under entomological inoculation rates occurring in 41 countries in sub-Saharan Africa. For each intervention scenario, disability-adjusted life years averted and incremental cost-effectiveness ratios were estimated using country specific data, including the reported proportions of severe malaria incidence in healthcare settings. RESULTS Our results show that an intervention that targets reducing severe malaria incidence with annual costs between $23.65 to $30.26 USD per person and causes a 14-fold reduction in severe malaria incidence would be cost-effective in 15-19 countries and very cost-effective in 9-14 countries respectively. Furthermore, if model predictions are based on the distribution of gut microbiota through a freeze-dried yogurt that cost $0.20 per serving, a 2- to 14-fold reduction in severe malaria incidence would be cost-effective in 29 countries and very cost-effective in 25 countries. CONCLUSION Our findings indicate interventions that target severe malaria can be cost-effective, in conjunction with standard interventions, for reducing the health burden and costs attributed to malaria. While our results illustrate a stronger cost-effectiveness for greater reductions, they consistently show that even a limited reduction in severe malaria provides substantial health benefits, and could be economically viable. Therefore, we suggest that interventions that target severe malaria are worthy of consideration, and merit further empirical and clinical investigation.
Collapse
Affiliation(s)
- Scott Greenhalgh
- Department of Mathematics, Siena College, 515 Loudon Road, Loudonville, NY 12211 USA
| | - Veda Chandwani
- Department of Biology, Siena College, 515 Loudon Road, Loudonville, NY 12211 USA
| |
Collapse
|
5
|
Tawidian P, Rhodes VL, Michel K. Mosquito-fungus interactions and antifungal immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103182. [PMID: 31265904 PMCID: PMC6639037 DOI: 10.1016/j.ibmb.2019.103182] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 05/14/2023]
Abstract
The mosquito immune system has evolved in the presence of continuous encounters with fungi that range from food to foes. Herein, we review the field of mosquito-fungal interactions, providing an overview of current knowledge and topics of interest. Mosquitoes encounter fungi in their aquatic and terrestrial habitats. Mosquito larvae are exposed to fungi on plant detritus, within the water column, and at the water surface. Adult mosquitoes are exposed to fungi during indoor and outdoor resting, blood and sugar feeding, mating, and oviposition. Fungi enter the mosquito body through different routes, including ingestion and through active or passive breaches in the cuticle. Oral uptake of fungi can be beneficial to mosquitoes, as yeasts hold nutritional value and support larval development. However, ingestion of or surface contact with fungal entomopathogens leads to colonization of the mosquito with often lethal consequences to the host. The mosquito immune system recognizes fungi and mounts cellular and humoral immune responses in the hemocoel, and possibly epithelial immune responses in the gut. These responses are regulated transcriptionally through multiple signal transduction pathways. Proteolytic protease cascades provide additional regulation of antifungal immunity. Together, these immune responses provide an efficient barrier to fungal infections, which need to be overcome by entomopathogens. Therefore, fungi constitute an excellent tool to examine the molecular underpinnings of mosquito immunity and to identify novel antifungal peptides. In addition, recent advances in mycobiome analyses can now be used to examine the contribution of fungi to various mosquito traits, including vector competence.
Collapse
Affiliation(s)
- P Tawidian
- Division of Biology, Kansas State University, 267 Chalmers Hall, Manhattan, KS, 66506, USA
| | - V L Rhodes
- Missouri Southern State University, Biology Department, Reynolds Hall 220, 3950 E. Newman Rd., Joplin, MO, 64801-1595, USA
| | - K Michel
- Division of Biology, Kansas State University, 267 Chalmers Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
6
|
Rodrigues J, Borges PR, Fernandes ÉKK, Luz C. Activity of additives and their effect in formulations of Metarhizium anisopliae s.l. IP 46 against Aedes aegypti adults and on post mortem conidiogenesis. Acta Trop 2019; 193:192-198. [PMID: 30836061 DOI: 10.1016/j.actatropica.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/02/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Oil formulations of entomopathogenic fungi have interest for biological mosquito control. OBJECTIVES The activities of M. anisopliae s.l. IP 46 conidia were tested in Aedes aegypti adults either without any formulation or formulated with vegetable or mineral oil and in combination with diatomaceous earth. FINDINGS IP 46 was highly active against adults, the vector of important arboviruses in the tropics and subtropics. At an exposure of adults to 3.3 × 107 conidia/cm2, values of lethal times TL50 and TL90 reached minimal 3.8 and 4.6 days, respectively, and lethal concentrations LC50 and LC90 were 2.7 × 105 and 2.4 × 106 conidia/cm2, respectively, after 10 days of exposure. Activity against adults was improved by diatomaceous earth (KeepDry® KD) combined with mineral oil (Naturol® N) or vegetable oil (Graxol® G). Additives KD or N separately (and G to a lesser extent) or in combination, KD + N and KD + G without conidia had also a clear adulticidal effect. Efficacy of conidia formulated or not with KD + N decreased somewhat at shorter exposure periods. Time of exposure (0.017, 12, 48, 72 or 120 h) of adults to KD and N or IP 46 or conidia and KD and N had no significant effect on mortality. M. anisopliae s.l. recycled on fungus-killed mosquitoes producing high quantities of new conidia regardless of the conidial concentrations or formulations tested. Additives tested had no clear effect on quantitative conidiogenesis on cadavers. MAIN CONCLUSIONS Formulations of IP 46 conidia with mineral oil and diatomaceous earth represent a promising tool for the development of potent strategies of focal control of this important vector with entomopathogenic fungi.
Collapse
|
7
|
Santi L, Coutinho-Rodrigues CJB, Berger M, Klein LAS, De Souza EM, Rosa RL, Guimarães JA, Yates JR, Perinotto WMS, Bittencourt VREP, Beys-da-Silva WO. Secretomic analysis of Beauveria bassiana related to cattle tick, Rhipicephalus microplus, infection. Folia Microbiol (Praha) 2018; 64:361-372. [PMID: 30361880 DOI: 10.1007/s12223-018-0659-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/12/2018] [Indexed: 01/10/2023]
Abstract
Beauveria bassiana is widely studied as an alternative to chemical acaricides in controlling the cattle tick Rhipicephalus microplus. Although its biocontrol efficiency has been proved in laboratory and field scales, there is a need to a better understanding of host interaction process at molecular level related to biocontrol activity. In this work, applying a proteomic technique multidimensional protein identification technology (MudPIT), the differential secretome of B. bassiana induced by the host R. microplus cuticle was evaluated. The use of the host cuticle in a culture medium, mimicking an infection condition, is an established experimental model that triggers the secretion of inducible enzymes. From a total of 236 proteins, 50 proteins were identified exclusively in infection condition, assigned to different aspects of infection like host adhesion, cuticle penetration and fungal defense, and stress. Other 32 proteins were considered up- or down-regulated. In order to get a meaningful global view of the secretome, several bioinformatic analyses were performed. Regarding molecular function classification, the highest number of proteins in the differential secretome was assigned in to hydrolase activity, enzyme class of all cuticle-degrading enzymes like lipases and proteases. These activities were also further validated through enzymatic assays. The results presented here reveal dozens of specific proteins and different processes potentially implicated in cattle tick infection improving the understanding of molecular basis of biocontrol of B. bassiana against R. microplus.
Collapse
Affiliation(s)
- Lucélia Santi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av Ipiranga, 2752, Porto Alegre, RS, 90610-000, Brazil
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, R. Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Caio J B Coutinho-Rodrigues
- Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Rod BR 465, km 7, Seropédica, RJ, 23890-000, Brazil
| | - Markus Berger
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, R. Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Lisete A S Klein
- Univates, Av Avelino Talini, 171, Lajeado, RS, 95914-014, Brazil
| | | | - Rafael L Rosa
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves, 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Jorge A Guimarães
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, R. Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves, 9500, Porto Alegre, RS, 91501-970, Brazil
| | - John R Yates
- Department of Chemical Physiology and Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Wendell M S Perinotto
- Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Tv. Primeira Brejinhos, 540-736, Cruz das Almas, BA, 44380-000, Brazil
| | - Vânia R E P Bittencourt
- Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Rod BR 465, km 7, Seropédica, RJ, 23890-000, Brazil
| | - Walter O Beys-da-Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av Ipiranga, 2752, Porto Alegre, RS, 90610-000, Brazil.
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, R. Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil.
| |
Collapse
|
8
|
Rhodes VL, Thomas MB, Michel K. The interplay between dose and immune system activation determines fungal infection outcome in the African malaria mosquito, Anopheles gambiae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:125-133. [PMID: 29649553 PMCID: PMC5935592 DOI: 10.1016/j.dci.2018.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 05/27/2023]
Abstract
The Toll pathway is a central regulator of antifungal immunity in insects. In mosquitoes, the Toll pathway affects infections with the fungal entomopathogen, Beauveria bassiana, which is considered a potential mosquito biopesticide. We report here the use of B. bassiana strain I93-825 in Anopheles gambiae to analyze the impact of Toll pathway modulation on mosquito survival. Exposure to a narrow dose range of conidia by direct contact decreased mosquito longevity and median survival. In addition, fungal exposure dose correlated positively and linearly with hazard ratio. Increased Toll signaling by knockdown of its inhibitor, cactus, decreased survivorship of uninfected females, increased mosquito survival after low dose B. bassiana exposure, but had little effect following exposure to higher doses. This observed trade-off could have implications for development of B. bassiana as a prospective vector control tool. On the one hand, selection for small increases in mosquito immune signaling across a narrow dose range could impair efficacy of B. bassiana. On the other hand, costs of immunity and the capacity for higher doses of fungus to overwhelm immune responses could limit evolution of resistance.
Collapse
Affiliation(s)
- Victoria L Rhodes
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Matthew B Thomas
- Department of Entomology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
9
|
Sternberg ED, Cook J, Ahoua Alou LP, Aoura CJ, Assi SB, Doudou DT, Koffi AA, N’Guessan R, Oumbouke WA, Smith RA, Worrall E, Kleinschmidt I, Thomas MB. Evaluating the impact of screening plus eave tubes on malaria transmission compared to current best practice in central Côte d'Ivoire: a two armed cluster randomized controlled trial. BMC Public Health 2018; 18:894. [PMID: 30021543 PMCID: PMC6052618 DOI: 10.1186/s12889-018-5746-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/25/2018] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Access to long-lasting insecticidal nets (LLINs) has increased and malaria has decreased globally, but malaria transmission remains high in parts of sub-Saharan Africa and insecticide resistance threatens current progress. Eave tubes are a new tool for the targeted delivery of insecticides against mosquitoes attempting to enter houses. The primary objective of this trial is to test whether screening plus eave tubes (SET) provides protection against malaria, on top of universal coverage with LLINs in an area of intense pyrethroid resistance. The trial will also assess acceptability and cost-effectiveness of the intervention. METHODS/DESIGN A two-armed, cluster randomized controlled trial will be conducted to evaluate the effect of SET on clinical malaria incidence in children living in central Côte d'Ivoire. Forty villages will be selected based on population size and the proportion of houses suitable for modification with SET. Using restricted randomization, half the villages will be assigned to the treatment arm (SET + LLINs) and the remainder will be assigned to the control arm (LLINs only). In both arms, LLINs will be distributed and in the treatment arm, householders will be offered SET. Fifty children aged six months to eight years old will be enrolled from randomly selected households in each of the 40 villages. Cohorts will be cleared of malaria parasites at the start of the study and one year after recruitment, and will be monitored for clinical malaria case incidence by active case detection over two years. Mosquito densities will be assessed using CDC light traps and human landing catches and a subset of Anopheles mosquitoes will be examined for parity status and tested for sporozoite infection. Acceptability of SET will be monitored using surveys and focus groups. Cost-effectiveness analysis will measure the incremental cost per case averted and per disability-adjusted life year (DALY) averted of adding SET to LLINs. Economic and financial costs will be estimated from societal and provider perspective using standard economic evaluation methods. DISCUSSION This study will be the first evaluation of the epidemiological impact of SET. Trial findings will show whether SET is a viable, cost-effective technology for malaria control in Côte d'Ivoire and possibly elsewhere. TRIAL REGISTRATION ISRCTN18145556 , registered on 01 February 2017 - retrospectively registered.
Collapse
Affiliation(s)
- Eleanore D. Sternberg
- Department of Entomology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, 16802 PA USA
| | - Jackie Cook
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Ludovic P. Ahoua Alou
- Institut Pierre Richet (IPR) / Institut National de Santé Publique (INSP), Bouaké, Côte d’Ivoire
| | - Carine J. Aoura
- Institut Pierre Richet (IPR) / Institut National de Santé Publique (INSP), Bouaké, Côte d’Ivoire
| | - Serge Brice Assi
- Institut Pierre Richet (IPR) / Institut National de Santé Publique (INSP), Bouaké, Côte d’Ivoire
| | | | - A. Alphonsine Koffi
- Institut Pierre Richet (IPR) / Institut National de Santé Publique (INSP), Bouaké, Côte d’Ivoire
| | - Raphael N’Guessan
- Institut Pierre Richet (IPR) / Institut National de Santé Publique (INSP), Bouaké, Côte d’Ivoire
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Welbeck A. Oumbouke
- Institut Pierre Richet (IPR) / Institut National de Santé Publique (INSP), Bouaké, Côte d’Ivoire
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Rachel A. Smith
- Department of Communication Arts and Sciences and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, 16802 PA USA
| | - Eve Worrall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Immo Kleinschmidt
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Matthew B. Thomas
- Department of Entomology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, 16802 PA USA
| |
Collapse
|
10
|
Popko DA, Henke JA, Mullens BA, Walton WE. Evaluation of Two Entomopathogenic Fungi for Control of Culex quinquefasciatus (Diptera: Culicidae) in Underground Storm Drains in the Coachella Valley, California, United States. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:654-665. [PMID: 29294059 DOI: 10.1093/jme/tjx233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Indexed: 06/07/2023]
Abstract
Commercially available formulations of two entomopathogenic fungi, Beauveria bassiana (Bals.-Criv.) Vuill. (Hypocreales: Clavicipitaceae) and Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitaceae), were assessed for control of Culex quinquefasciatus Say (Diptera: Culicidae) in underground storm drain systems (USDS) in the Coachella Valley of southern California. Each of three treatments, the two fungi or a water control, was applied to 1 m2 of vertical wall at eight USDS sites in spring and autumn of 2015. Fungal infectivity and lethality were assessed at 1 d and 1, 2, and 4 wk post-application. Overnight bioassays using adult lab-reared female mosquitoes were carried out on the treated USDS wall areas and then mosquitoes were held in the laboratory for up to 21 d to allow fungal infections to be expressed. Postmortem fungal sporulation was assessed up to 2 wk at 100% humidity. Mosquito-fungal interactions also were assessed in bioassays of the three treatments on filter paper exposed to USDS conditions during autumn. Metarhizium anisopliae killed mosquitoes faster than B. bassiana; nevertheless, both freshly applied formulations caused greater than 80% mortality. Fungal persistence declined significantly after 1 wk under USDS conditions, but some infectivity persisted for more than 4 wk. Beauveria bassiana was more effective against Cx. qinquefasciatus in the spring, while M. anisopliae was more effective in the cooler conditions during autumn. USDS environmental conditions (e.g., temperature, relative humidity, standing water) influenced fungal-related mortality and infection of Cx. quinquefasciatus. The utility of these fungal formulations for mosquito abatement in the Coachella Valley and implications for fungal control agents in USDS environments are discussed.
Collapse
Affiliation(s)
- David A Popko
- Department of Entomology, University of California, Riverside, CA
| | - Jennifer A Henke
- Coachella Valley Mosquito and Vector Control District, Indio, CA
| | | | - William E Walton
- Department of Entomology, University of California, Riverside, CA
| |
Collapse
|
11
|
Stoks R, Verheyen J, Van Dievel M, Tüzün N. Daily temperature variation and extreme high temperatures drive performance and biotic interactions in a warming world. CURRENT OPINION IN INSECT SCIENCE 2017; 23:35-42. [PMID: 29129280 DOI: 10.1016/j.cois.2017.06.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/25/2017] [Accepted: 06/28/2017] [Indexed: 05/28/2023]
Abstract
We review the major patterns on the effects of daily temperature variation (DTV) and extreme high temperatures (EXT) on performance traits and the resulting outcome of biotic interactions in insects. EXT profoundly affects the outcome of all types of biotic interactions: competitive, predator-prey, herbivore-plant, host-pathogen/parasitoid and symbiotic interactions. Studies investigating effects of DTV on biotic interactions are few but also show strong effects on competitive and host-pathogen/parasitoid interactions. EXT typically reduces predation, and is expected to reduce parasitoid success. The effects of EXT and DTV on the outcome of the other interaction types are highly variable, yet can be predicted based on comparisons of the TPCs of the interacting species, and challenges the formulation of general predictions about the change in biotic interactions in a warming world.
Collapse
Affiliation(s)
- Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicogy, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium.
| | - Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicogy, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| | - Marie Van Dievel
- Evolutionary Stress Ecology and Ecotoxicogy, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicogy, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|
12
|
Sternberg ED, Thomas MB. Insights from agriculture for the management of insecticide resistance in disease vectors. Evol Appl 2017; 11:404-414. [PMID: 29636795 PMCID: PMC5891047 DOI: 10.1111/eva.12501] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/30/2017] [Indexed: 01/09/2023] Open
Abstract
Key to contemporary management of diseases such as malaria, dengue, and filariasis is control of the insect vectors responsible for transmission. Insecticide‐based interventions have contributed to declines in disease burdens in many areas, but this progress could be threatened by the emergence of insecticide resistance in vector populations. Insecticide resistance is likewise a major concern in agriculture, where insect pests can cause substantial yield losses. Here, we explore overlaps between understanding and managing insecticide resistance in agriculture and in public health. We have used the Global Plan for Insecticide Resistance Management in malaria vectors, developed under the auspices of the World Health Organization Global Malaria Program, as a framework for this exploration because it serves as one of the few cohesive documents for managing a global insecticide resistance crisis. Generally, this comparison highlights some fundamental differences between insect control in agriculture and in public health. Moreover, we emphasize that the success of insecticide resistance management strategies is strongly dependent on the biological specifics of each system. We suggest that the biological, operational, and regulatory differences between agriculture and public health limit the wholesale transfer of knowledge and practices from one system to the other. Nonetheless, there are some valuable insights from agriculture that could assist in advancing the existing Global Plan for Insecticide Resistance Management framework.
Collapse
Affiliation(s)
- Eleanore D Sternberg
- Department of Entomology and Center for Infectious Disease Dynamics The Pennsylvania State University University Park PA USA
| | - Matthew B Thomas
- Department of Entomology and Center for Infectious Disease Dynamics The Pennsylvania State University University Park PA USA
| |
Collapse
|
13
|
Thomas MB. Biological control of human disease vectors: a perspective on challenges and opportunities. BIOCONTROL (DORDRECHT, NETHERLANDS) 2017; 63:61-69. [PMID: 29391855 PMCID: PMC5769823 DOI: 10.1007/s10526-017-9815-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 05/03/2017] [Indexed: 05/31/2023]
Abstract
Chemical insecticides are the mainstay of contemporary control of human disease vectors. However, the spread of insecticide resistance and the emergence of new disease threats are creating an urgent need for alternative tools. This perspective paper explores whether biological control might be able to make a greater contribution to vector control in the future, and highlights some of the challenges in taking a technology from initial concept through to operational use. The aim is to stimulate a dialogue within biocontrol and vector control communities, in order to make sure that biological control tools can realize their full potential.
Collapse
Affiliation(s)
- Matthew B. Thomas
- Department of Entomology and Center for Infectious Disease Dynamics, Penn State, University Park, PA 16802 USA
| |
Collapse
|
14
|
Heinig RL, Paaijmans KP, Hancock PA, Thomas MB. The potential for fungal biopesticides to reduce malaria transmission under diverse environmental conditions. J Appl Ecol 2015; 52:1558-1566. [PMID: 26792946 PMCID: PMC4716011 DOI: 10.1111/1365-2664.12522] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effectiveness of conventional malaria vector control is being threatened by the spread of insecticide resistance. One promising alternative to chemicals is the use of naturally-occurring insect-killing fungi. Numerous laboratory studies have shown that isolates of fungal pathogens such as Beauveria bassiana can infect and kill adult mosquitoes, including those resistant to chemical insecticides.Unlike chemical insecticides, fungi may take up to a week or more to kill mosquitoes following exposure. This slow kill speed can still reduce malaria transmission because the malaria parasite itself takes at least eight days to complete its development within the mosquito. However, both fungal virulence and parasite development rate are strongly temperature-dependent, so it is possible that biopesticide efficacy could vary across different transmission environments.We examined the virulence of a candidate fungal isolate against two key malaria vectors at temperatures from 10-34 °C. Regardless of temperature, the fungus killed more than 90% of exposed mosquitoes within the predicted duration of the malarial extrinsic incubation period, a result that was robust to realistic diurnal temperature variation.We then incorporated temperature sensitivities of a suite of mosquito, parasite and fungus life-history traits that are important determinants of malaria transmission into a stage-structured malaria transmission model. The model predicted that, at achievable daily fungal infection rates, fungal biopesticides have the potential to deliver substantial reductions in the density of malaria-infectious mosquitoes across all temperatures representative of malaria transmission environments.Synthesis and applications. Our study combines empirical data and theoretical modelling to prospectively evaluate the potential of fungal biopesticides to control adult malaria vectors. Our results suggest that Beauveria bassiana could be a potent tool for malaria control and support further development of fungal biopesticides to manage infectious disease vectors.
Collapse
Affiliation(s)
- R L Heinig
- Center for Infectious Disease Dynamics and Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Krijn P Paaijmans
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | | - Matthew B Thomas
- Center for Infectious Disease Dynamics and Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
15
|
The potential for fungal biopesticides to reduce malaria transmission under diverse environmental conditions. Curr Nutr Rep 2015. [PMID: 26792946 DOI: 10.1007/s13668-012-0032-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effectiveness of conventional malaria vector control is being threatened by the spread of insecticide resistance. One promising alternative to chemicals is the use of naturally-occurring insect-killing fungi. Numerous laboratory studies have shown that isolates of fungal pathogens such as Beauveria bassiana can infect and kill adult mosquitoes, including those resistant to chemical insecticides.Unlike chemical insecticides, fungi may take up to a week or more to kill mosquitoes following exposure. This slow kill speed can still reduce malaria transmission because the malaria parasite itself takes at least eight days to complete its development within the mosquito. However, both fungal virulence and parasite development rate are strongly temperature-dependent, so it is possible that biopesticide efficacy could vary across different transmission environments.We examined the virulence of a candidate fungal isolate against two key malaria vectors at temperatures from 10-34 °C. Regardless of temperature, the fungus killed more than 90% of exposed mosquitoes within the predicted duration of the malarial extrinsic incubation period, a result that was robust to realistic diurnal temperature variation.We then incorporated temperature sensitivities of a suite of mosquito, parasite and fungus life-history traits that are important determinants of malaria transmission into a stage-structured malaria transmission model. The model predicted that, at achievable daily fungal infection rates, fungal biopesticides have the potential to deliver substantial reductions in the density of malaria-infectious mosquitoes across all temperatures representative of malaria transmission environments.Synthesis and applications. Our study combines empirical data and theoretical modelling to prospectively evaluate the potential of fungal biopesticides to control adult malaria vectors. Our results suggest that Beauveria bassiana could be a potent tool for malaria control and support further development of fungal biopesticides to manage infectious disease vectors.
Collapse
|