1
|
Kakh M, Doroudchi M, Talepoor A. Induction of Regulatory T Cells After Virus Infection and Vaccination. Immunology 2025. [PMID: 40329764 DOI: 10.1111/imm.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 05/08/2025] Open
Abstract
Vaccines have been proven to be one of the safest and most effective ways to prevent and combat diseases. However, the main focus has been on the evaluation of the potency of effector mechanisms and the lack of adverse effects of vaccine candidates. Recently, the importance of induced regulatory mechanisms of the immune system after vaccination has come to light. With the increase in our knowledge about these regulatory mechanisms including the regulatory T cells (Tregs), we have come to understand the significance of this arm of the immune system in controlling immunopathology and/or diminishing the effectiveness of vaccines, especially viral vaccines. Tregs play a dual role during infectious diseases by limiting immune-mediated pathology and also contributing to chronic pathogen persistence by decreasing effector immunity and clearance of infection. Tregs may also affect immune responses after vaccination primarily by inhibiting antigen presenting cell function such as cytokine secretion and co-stimulatory molecule expression as well as effector T (Teff) and B cell function. In this article, we review the current knowledge on the induction of Tregs after several life-threatening virus infections and their available vaccines to bring them to the spotlight and emphasise that studying viral-induced antigen-specific Tregs will help us improve the effectiveness and decrease the immunopathology or side effects of viral vaccines. Trial Registration: ClinicalTrials.gov identifier: NCT04357444.
Collapse
Affiliation(s)
- MansourehKarimi Kakh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - AtefeGhamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Wang S, Mei Z, Chen J, Zhao K, Kong R, McClements L, Zhang H, Liao A, Liu C. Maternal Immune Activation: Implications for Congenital Heart Defects. Clin Rev Allergy Immunol 2025; 68:36. [PMID: 40175706 DOI: 10.1007/s12016-025-09049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
Congenital heart defects (CHD) are the most common major birth defects and one of the leading causes of death from congenital defects after birth. CHD can arise in pregnancy from the combination of genetic and non-genetic factors. The maternal immune activation (MIA) hypothesis is widely implicated in embryonic neurodevelopmental abnormalities. MIA has been found to be associated with the development of asthma, diabetes mellitus, and other diseases in the offspring. Given the important role of cardiac immune cells and cytokines in embryonic heart development, it is hypothesized that MIA may play a significant role in embryonic heart development. This review aims to stimulate further investigation into the relationship between MIA and CHD and to highlight the gaps in the knowledge. It evaluates the impact of MIA on CHD in the context of pregnancy complications, immune-related diseases, infections, and environmental and lifestyle factors. The review outlines the mechanisms by which immune cells and their secretome indirectly regulate the immuno-microenvironment of the embryonic heart by influencing placental development. Furthermore, the inflammatory cytokines cross the placenta to induce related reactions including oxidative stress in the embryonic heart directly. This review delineates the role of MIA in CHD and underscores the impact of maternal factors, especially immune factors, as well as the embryonic cardiac immuno-microenvironment, on embryonic heart development. This review extends our understanding of the importance of MIA in the pathogenesis of CHD and provides important insights into prenatal prevention and treatment strategies for this congenital condition.
Collapse
Affiliation(s)
- Sixing Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Second Clinical Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zilin Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ruize Kong
- Department of Vascular Surgery, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China First People'S Hospital of Yunnan Province, Kunming, PR China
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Aihua Liao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
3
|
Zeng X, Fan L, Qin Q, Zheng D, Wang H, Li M, Jiang Y, Wang H, Liu H, Liang S, Wu L, Liang S. Exogenous PD-L1 binds to PD-1 to alleviate and prevent autism-like behaviors in maternal immune activation-induced male offspring mice. Brain Behav Immun 2024; 122:527-546. [PMID: 39182588 DOI: 10.1016/j.bbi.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder caused by the interaction of multiple pathogenic factors. Epidemiological studies and animal experiments indicate that maternal immune activation (MIA) is closely related to the development of ASD in offspring. A large number of pro-inflammatory cytokines are transferred from the placenta to the fetal brain during MIA, which impedes fetal neurodevelopment and is accompanied by activation of immune cells and microglia. Programmed cell death protein 1 (PD-1) can be highly expressed on the surface of various activated immune cells, when combined with programmed cell death-ligand 1 (PD-L1), it can activate the PD-1/PD-L1 pathway and exert powerful immunosuppressive effects, suggesting that this immune checkpoint may have the potential to treat MIA-induced ASD. This study combined bioinformatics analysis and experimental validation to explore the efficacy of Fc-fused PD-L1 (PD-L1-Fc) in treating MIA-induced ASD. Bioinformatics analysis results showed that in human placental inflammation, IL-6 was upregulated, T cells proliferated significantly, and the PD-1/PD-L1 pathway was significantly enriched. The experimental results showed that intraperitoneal injection of poly(I:C) induced MIA in pregnant mice resulted in significant expression of IL-6 in their serum, placenta, and fetal brain. At the same time, the expression of PD-1 and PD-L1 in the placenta and fetal brain increased, CD4+ T cells in the spleen were significantly activated, and PD-1 expression increased. Their offspring mice exhibited typical ASD-like behaviors. In vitro experiments on primary microglia of offspring mice have confirmed that the expression of IL-6, PD-1, and PD-L1 is significantly increased, and PD-L1-Fc effectively reduced their expression levels. In the prefrontal cortex of MIA offspring mice, there was an increase in the expression of IL-6, PD-1, and PD-L1; activation of microglial cells, and colocalization with PD-1. Then we administered brain stereotaxic injections of PD-L1-Fc to MIA offspring mice and intraperitoneal injections to MIA pregnant mice. The results indicated that PD-L1-Fc effectively suppressed neuroinflammation in the frontal cortex of offspring mice and partially ameliorated ASD-like behaviors; MIA in pregnant mice was significantly alleviated, and the offspring mice they produced did not exhibit neuroinflammation or ASD-like behaviors. In summary, we have demonstrated the therapeutic ability of PD-L1-Fc for MIA-induced ASD, aiming to provide new strategies and insights for the treatment of ASD.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Linlin Fan
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Qian Qin
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Danyang Zheng
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Han Wang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Mengyue Li
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Yutong Jiang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Hui Wang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Hao Liu
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Shengjun Liang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Lijie Wu
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China.
| | - Shuang Liang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
4
|
Avdonin PP, Blinova MS, Serkova AA, Komleva LA, Avdonin PV. Immunity and Coagulation in COVID-19. Int J Mol Sci 2024; 25:11267. [PMID: 39457048 PMCID: PMC11508857 DOI: 10.3390/ijms252011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Discovered in late 2019, the SARS-CoV-2 coronavirus has caused the largest pandemic of the 21st century, claiming more than seven million lives. In most cases, the COVID-19 disease caused by the SARS-CoV-2 virus is relatively mild and affects only the upper respiratory tract; it most often manifests itself with fever, chills, cough, and sore throat, but also has less-common mild symptoms. In most cases, patients do not require hospitalization, and fully recover. However, in some cases, infection with the SARS-CoV-2 virus leads to the development of a severe form of COVID-19, which is characterized by the development of life-threatening complications affecting not only the lungs, but also other organs and systems. In particular, various forms of thrombotic complications are common among patients with a severe form of COVID-19. The mechanisms for the development of thrombotic complications in COVID-19 remain unclear. Accumulated data indicate that the pathogenesis of severe COVID-19 is based on disruptions in the functioning of various innate immune systems. The key role in the primary response to a viral infection is assigned to two systems. These are the pattern recognition receptors, primarily members of the toll-like receptor (TLR) family, and the complement system. Both systems are the first to engage in the fight against the virus and launch a whole range of mechanisms aimed at its rapid elimination. Normally, their joint activity leads to the destruction of the pathogen and recovery. However, disruptions in the functioning of these innate immune systems in COVID-19 can cause the development of an excessive inflammatory response that is dangerous for the body. In turn, excessive inflammation entails activation of and damage to the vascular endothelium, as well as the development of the hypercoagulable state observed in patients seriously ill with COVID-19. Activation of the endothelium and hypercoagulation lead to the development of thrombosis and, as a result, damage to organs and tissues. Immune-mediated thrombotic complications are termed "immunothrombosis". In this review, we discuss in detail the features of immunothrombosis associated with SARS-CoV-2 infection and its potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (P.P.A.)
| |
Collapse
|
5
|
Jin S, Wan S, Xiong R, Li Y, Dong T, Guan C. The role of regulatory T cells in vitiligo and therapeutic advances: a mini-review. Inflamm Res 2024; 73:1311-1332. [PMID: 38839628 DOI: 10.1007/s00011-024-01900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) play vital roles in controlling immune reactions and maintaining immune tolerance in the body. The targeted destruction of epidermal melanocytes by activated CD8+T cells is a key event in the development of vitiligo. However, Tregs may exert immunosuppressive effects on CD8+T cells, which could be beneficial in treating vitiligo. METHODS A comprehensive search of PubMed and Web of Science was conducted to gather information on Tregs and vitiligo. RESULTS In vitiligo, there is a decrease in Treg numbers and impaired Treg functions, along with potential damage to Treg-related signaling pathways. Increasing Treg numbers and enhancing Treg function could lead to immunosuppressive effects on CD8+T cells. Recent research progress on Tregs in vitiligo has been summarized, highlighting various Treg-related therapies being investigated for clinical use. The current status of Treg-related therapeutic strategies and potential future directions for vitiligo treatment are also discussed. CONCLUSIONS A deeper understanding of Tregs will be crucial for advancing Treg-related drug discovery and treatment development in vitiligo.
Collapse
Affiliation(s)
- Shiyu Jin
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Sheng Wan
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Renxue Xiong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Yujie Li
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Tingru Dong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Cuiping Guan
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China.
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China.
| |
Collapse
|
6
|
Aminsobahni E, Hosseini M, Gholizadeh N, Soltani-Zangbar MS, Savari G, Motlagh Asghari K, Pourlak T, Zolfaghari M, Chakari-Khiavi F, Motavalli R, Chakari-Khiavi A, Shekarchi AA, Mahmoodpoor A, Ahmadian Heris J, Pouya K, Mehdizadeh A, Babalou Z, Yousefi M. T Lymphocyte Characteristic Changes Under Serum Cytokine Deviations and Prognostic Factors of COVID-19 in Pregnant Women. Appl Biochem Biotechnol 2024; 196:4366-4381. [PMID: 37947946 DOI: 10.1007/s12010-023-04775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Physiological changes during pregnancy make the individuals more susceptible to severe respiratory diseases. Hence, pregnant women with coronavirus disease 2019 (COVID-19) are likely at a higher risk. We investigated the effects of COVID-19 on T cell response and serum cytokine profile in pregnant patients. Peripheral blood mononuclear cells (PBMCs) of women with COVID-19 were collected during the first trimester of pregnancy, and the percentage of total lymphocytes, as well as CD4 + and CD8 + T cells, was assessed using flow cytometry. The expression of the programmed death-1 (PD-1) marker for exhausted T cells was evaluated. Additionally, the serum samples were provided to evaluate the levels of antiviral and proinflammatory cytokines, as well as laboratory serological tests. Pregnant women with COVID-19 presented lymphopenia with diminished CD4 + and CD8 + T cells. Besides, high expression levels of the PD-1 gene and protein were observed on PBMCs and T cells, respectively, when compared with normal pregnant individuals. Moreover, serum levels of TNF-α, IL-6, IL-1β, and IL-2 receptor were notably enhanced, while IFN-I α/β values were significantly decreased in the patients when compared with controls. Furthermore, hyperlipidemia, hyperglycemia, and hypertension were directly correlated with the disease although serum albumin and vitamin D3 levels adversely affected the viral infection. Our study showed extreme lymphopenia and poor T cell response while elevated values of serum inflammatory cytokines in infected pregnant women. Moreover, a hypertension background or metabolic changes, including hyperlipidemia, hyperglycemia, and vitamin D3 or albumin deficiency, might be promising prognostic factors in pregnant women with COVID-19.
Collapse
Affiliation(s)
- Ehsan Aminsobahni
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hosseini
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Gholizadeh
- Department of Dermatology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Golaleh Savari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Tannaz Pourlak
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Zolfaghari
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Roza Motavalli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aref Chakari-Khiavi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Pouya
- Department of Obstetrics and Gynecology, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babalou
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Fajardo-Martinez V, Ferreira F, Fuller T, Cambou MC, Kerin T, Paiola S, Mok T, Rao R, Mohole J, Paravastu R, Zhang D, Marschik P, Iyer S, Kesavan K, Borges Lopes MDC, Britto JAA, Moreira ME, Brasil P, Nielsen-Saines K. Neurodevelopmental delay in children exposed to maternal SARS-CoV-2 in-utero. Sci Rep 2024; 14:11851. [PMID: 38789553 PMCID: PMC11126599 DOI: 10.1038/s41598-024-61918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
It is unclear if SARS CoV-2 infection during pregnancy is associated with adverse neurodevelopmental repercussions to infants. We assessed pediatric neurodevelopmental outcomes in children born to mothers with laboratory-confirmed SARS CoV-2 infection during pregnancy. Neurodevelopmental outcomes of in-utero exposed children were compared to that of pre-pandemic control children in Los Angeles (LA), CA, USA and Rio de Janeiro, Brazil. Bayley Scales of Infant and Toddler Development, 3rd edition (Bayley-III), the gold standard tool for evaluating neurodevelopment until 36 months of age and Ages and Stages Questionnaires (ASQ-3), a frequently used screening instrument for evaluating neurodevelopment in this same age group were the assessment tools used. Developmental delay (DD) was defined as having a score < - 2 SD below the norm (< 70) in at least one of three Bayley-III domains, (cognitive, motor or language) or a score below the cut-off (dark zone) in at least one of five ASQ-3 domains (communication, gross motor, fine motor, problem solving, personal-social). Exposed children were born between April 2020 and December 2022 while control children were born between January 2016 to December 2019. Neurodevelopmental testing was performed in 300 children total: 172 COVID-19 exposed children between 5-30 months of age and 128 control children between 6-38 months of age. Bayley-III results demonstrated that 12 of 128 exposed children (9.4%) had DD versus 2 of 128 controls (1.6%), p = 0.0007. Eight of 44 additional exposed children had DD on ASQ-3 testing. Fully, 20 of 172 exposed children (11.6%) and 2 of 128 control children (1.6%), p = 0.0006 had DD. In Rio, 12% of exposed children versus 2.6% of controls, p = 0.02 had DD. In LA, 5.7% of exposed children versus 0 controls, p = 0.12 had DD. Severe/critical maternal COVID-19 predicted below average neurodevelopment in the exposed cohort (OR 2.6, 95% CI 1.1-6.4). Children exposed to antenatal COVID-19 have a tenfold higher frequency of DD as compared to controls and should be offered neurodevelopmental follow-up.
Collapse
Affiliation(s)
| | | | - Trevon Fuller
- UCLA Institute for the Environment and Sustainability, Los Angeles, CA, USA.
| | | | - Tara Kerin
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | - Sophia Paiola
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | - Thalia Mok
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | - Rashmi Rao
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | - Jyodi Mohole
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | | | - Dajie Zhang
- Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
- Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen and Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- Interdisciplinary Developmental Neuroscience (IDN), Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Peter Marschik
- Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
- Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen and Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- Interdisciplinary Developmental Neuroscience (IDN), Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Sai Iyer
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Bi Y, Li T, Zhang S, Yang Y, Dong M. Bioinformatics-based analysis of the dialog between COVID-19 and RSA. Heliyon 2024; 10:e30371. [PMID: 38737245 PMCID: PMC11088317 DOI: 10.1016/j.heliyon.2024.e30371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
Pregnant women infected with SARS-CoV-2 in early pregnancy may face an increased risk of miscarriage due to immune imbalance at the maternal-fetal interface. However, the molecular mechanisms underlying the crosstalk between COVID-19 infection and recurrent spontaneous abortion (RSA) remain poorly understood. This study aimed to elucidate the transcriptomic molecular dialog between COVID-19 and RSA. Based on bioinformatics analysis, 307 common differentially expressed genes were found between COVID-19 (GSE171110) and RSA (GSE165004). Common DEGs were mainly enriched in ribosome-related and cell cycle-related signaling pathways. Using degree algorithm, the top 10 hub genes (RPS27A, RPL5, RPS8, RPL4, RPS2, RPL30, RPL23A, RPL31, RPL26, RPL37A) were selected from the common DEGs based on their scores. The results of the qPCR were in general agreement with the results of the raw letter analysis. The top 10 candidate drugs were also selected based on P-values. In this study, we provide molecular markers, signaling pathways, and small molecule compounds that may associate COVID-19. These findings may increase the accurate diagnosis and treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Yin Bi
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530000, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, 530000, China
| | - Ting Li
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530000, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, 530000, China
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Yihua Yang
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530000, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, 530000, China
| | - Mingyou Dong
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
- The Key Laboratory of Molecular Pathology (For Hepatobiliary Diseases) of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| |
Collapse
|
9
|
Dogan NN, Salihoglu O. How Did the COVID-19 Pandemic Affect Maternal and Neonatal Health? Am J Perinatol 2024; 41:e3255-e3263. [PMID: 38101441 DOI: 10.1055/s-0043-1777717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of the coronavirus disease 2019 (COVID-19) pandemic on the proportional growth of the fetus, maternal health, and neonatal outcomes. STUDY DESIGN The study group (Group 1) included pregnant women with a history of COVID-19. Pregnant women who were hospitalized during the same period without COVID-19 were the control group (Group 2). Maternal and neonatal outcomes were compared between the groups. RESULTS A total of 230 pregnant women and their infants were assessed. Group 1 (n = 74) had significantly higher rates of diabetes mellitus and hypertension than Group 2 (n = 156; p = 0.015 and 0.014, respectively). Premature birth and cesarean section rates were also significantly higher in Group 1 than in Group 2 (p = 0.001 and 0.040, respectively). While the rate of iatrogenic preterm birth was significantly higher in Group 1, the rate of spontaneous preterm birth was significantly higher in Group 2 (p = 0.049). Infants born to COVID-19-positive mothers had lower median gestational age, birth weight, and Apgar scores (p < 0.01). There was no significant difference between the groups in terms of the results of cord blood gas analysis (p > 0.05). The rate of admission to the neonatal intensive care unit (NICU) and need for mechanical ventilation was significantly higher in infants of COVID-19-positive mothers (p < 0.05 for both). The length of stay in the NICU was also significantly longer for the infants of COVID-19-positive mothers (p < 0.05). Birth weights decreased due to increased cases of iatrogenic preterm births (p < 0.05). However, ponderal indices (PIs) of newborns of pregnant COVID-19 mothers did not differ at birth (p > 0.05). CONCLUSION COVID-19 is associated with low Apgar scores, increased risk of premature birth complications, and maternal comorbidities, with no effect on the PI and proportionate growth of the infant at birth. KEY POINTS · No difference in ponderal indices.. · No difference in postnatal cardiovascular adaptation.. · COVID-19 is frequent in pregnant women with comorbidities like diabetes mellitus and hypertension..
Collapse
Affiliation(s)
- Nazan N Dogan
- Division of Neonatology, Department of Pediatrics, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training Research Center, Istanbul, Turkey
| | - Ozgul Salihoglu
- Division of Neonatology, Department of Pediatrics, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training Research Center, Istanbul, Turkey
| |
Collapse
|
10
|
Li M, Song J, Tang X, Bi J, Li Y, Chen C, Feng N, Song Y, Wang L. Critical roles of PAI-1 in lipopolysaccharide-induced acute lung injury. Adv Med Sci 2024; 69:90-102. [PMID: 38387409 DOI: 10.1016/j.advms.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/08/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of fibrinolytic systems. The effect of PAI-1 on inflammatory response is still inconsistent. Our study was conducted to investigate its effects on inflammation to clarify the role of PAI-1 in acute lung injury (ALI) induced by lipopolysaccharide (LPS). MATERIAL AND METHODS ALI models were established in wild-type (WT) and PAI-1 knockout (KO) mice by LPS intervention for 48 h. Lung histopathology, wet-dry ratio, total cell count and TNF-α concentration in bronchoalveolar lavage fluid (BALF), and inflammation related proteins were detected. Flow cytometry was used to sort neutrophils, macrophages, regulatory T cells (Treg) and T helper cell 17 (Th17). RNA sequencing was performed to find differentially expressed genes. Masson staining and immunohistochemistry were used to analyze pulmonary fiber deposition and proliferation. RESULTS Compared with ALI (WT) group, the wet-dry ratio, the total number of BALF cells, the concentration of TNF-α in BALF, and the expression of pp65 in the lung tissue was increased in ALI (PAI-1 KO) group, with increased proportion of neutrophils, decreased proportion of macrophages and decreased proportion of Treg/Th17 in the lung tissue. Collagen fiber deposition and PCNA expression were lighter in ALI (PAI-1 KO) group than ALI (WT) group. PPI analysis showed that PAI-1 was closely related to TNF, IL-6, IL-1β, Smad2/3 and mainly concentrated in the complement and coagulation system, TNF-α and IL-17 signaling pathways. CONCLUSIONS PAI-1 KO could aggravate ALI induced by LPS at 48 h. PAI-1 may be an important target to improve the prognosis of ALI.
Collapse
Affiliation(s)
- Miao Li
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juan Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Infectious Diseases and Biosafety, Shanghai, China
| | - Xinjun Tang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Bi
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yufan Li
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cuicui Chen
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Nana Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China.
| | - Yuanlin Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Infectious Diseases and Biosafety, Shanghai, China; Shanghai Respiratory Research Institute, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Centre of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China.
| | - Linlin Wang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Zhang Z, Wen S, Liu J, Ouyang Y, Su Z, Chen D, Liang Z, Wang Y, Luo T, Jiang Q, Guo L. Advances in the relationship between periodontopathogens and respiratory diseases (Review). Mol Med Rep 2024; 29:42. [PMID: 38240101 PMCID: PMC10828996 DOI: 10.3892/mmr.2024.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/04/2023] [Indexed: 01/23/2024] Open
Abstract
Periodontitis is a common chronic inflammatory and destructive disease in the mouth and is considered to be associated with systemic diseases. Accumulating evidence has suggested that periodontitis is a risk factor for pulmonary diseases such as pneumonia, chronic obstructive pulmonary disease (COPD), asthma, coronavirus disease 2019 (COVID‑19) and lung cancer. The presence of common periodontal pathogens has been detected in samples from a variety of pulmonary diseases. Periodontal pathogens can be involved in lung diseases by promoting the adhesion and invasion of respiratory pathogens, regulating the apoptosis of respiratory epithelium and inducing overexpression of mucin and disrupting the balance of immune systemin respiratory epithelium cells. Additionally, measures to control plaque and maintain the health of periodontal tissue can decrease the incidence of respiratory adverse events. This evidence suggests a close association between periodontitis and pulmonary diseases. The present study aimed to review the clinical association between periodontitis and pneumonia, COPD, asthma, COVID‑19 and lung cancer, and propose a possible mechanism and potential role of periodontal pathogens in linking periodontal disease and lung disease. This could provide a direction for further research on the association between periodontitis and lung disease and provide novel ideas for the clinical diagnosis and treatment management of these two diseases.
Collapse
Affiliation(s)
- Zhiyi Zhang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Siyi Wen
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Jiaohong Liu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Yuanting Ouyang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Zhikang Su
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Ding Chen
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Zitian Liang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Yan Wang
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong 510182, P.R. China
| | - Tao Luo
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Lvhua Guo
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| |
Collapse
|
12
|
Luo C, Chen W, Cai J, He Y. The mechanisms of milder clinical symptoms of COVID-19 in children compared to adults. Ital J Pediatr 2024; 50:28. [PMID: 38355623 PMCID: PMC10865718 DOI: 10.1186/s13052-024-01587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/07/2024] [Indexed: 02/16/2024] Open
Abstract
In stark contrast to adult patients, children who contract Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) typically manifest milder symptoms or remain asymptomatic. However, the precise underlying mechanisms of this pathogenesis remain elusive. In this review, we primarily retrospect the clinical characteristics of SARS-CoV-2 infection in children, and explore the factors that may contribute to the typically milder clinical presentation in pediatric Coronavirus Disease 2019 (COVID-19) patients compare with adults patients with COVID-19. The pathophysiological mechanisms that mitigate lung injury in children are as follows: the expression level of ACE2 receptor in children is lower; the binding affinity between ACE2 receptors and viral spike proteins in children was weaker; children have strong pre-activated innate immune response and appropriate adaptive immune response; children have more natural lymphocytes; children with COVID-19 can produce higher levels of IgM, IgG and interferon; children infected with SARS-CoV-2 can produce lower levels of IL-6 and IL-10; children have fewer underlying diseases and the lower risk of worsening COVID-19; children are usually exposed to other respiratory viruses and have an enhanced cross-reactive immunity. Comprehending the relative contributions of these processes to the protective phenotype in the developing lungs can help in the diagnosis, treatment and research pertaining to children with COVID-19.
Collapse
Affiliation(s)
- Caiyin Luo
- Department of Pharmacy, the First Affiliated Hospital of Guangzhou Medical University, 28 Qiaozhong Middle Road, Liwan District, 510120, Guangzhou, China
| | - Wanwen Chen
- Department of Pharmacy, the First Affiliated Hospital of Guangzhou Medical University, 28 Qiaozhong Middle Road, Liwan District, 510120, Guangzhou, China
| | - Junying Cai
- Department of Pharmacy, the First Affiliated Hospital of Guangzhou Medical University, 28 Qiaozhong Middle Road, Liwan District, 510120, Guangzhou, China
| | - Yuwen He
- Department of Pharmacy, the First Affiliated Hospital of Guangzhou Medical University, 28 Qiaozhong Middle Road, Liwan District, 510120, Guangzhou, China.
| |
Collapse
|
13
|
Chambers CD, Song J, da Silva Antunes R, Sette A, Franco A. T Cell Responses in Pregnant Women Who Received mRNA-Based Vaccination to Prevent COVID-19 Revealed Unknown Exposure to the Natural Infection and Numerous SARS-CoV-2-Specific CD4- CD8- Double Negative T Cells and Regulatory T Cells. Int J Mol Sci 2024; 25:2031. [PMID: 38396707 PMCID: PMC10889590 DOI: 10.3390/ijms25042031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
We studied T-cell responses to SARS-CoV-2 in 19 pregnant subjects at different gestational weeks who received three doses of mRNA-based vaccination to prevent COVID-19. SARS-CoV-2 peptide pools were used for T-cell recognition studies: peptides were 15 amino acids long and had previously been defined in COVID-19-convalescent subjects. T-cell activation was evaluated with the AIM assay. Most subjects showed coordinated, spike-specific CD4+ and CD8+ T-cell responses and the development of T cell memory. Non-spike-specific T cells in subjects who were not aware of previous COVID-19 infection suggested a prior undetected, asymptomatic infection. CD4- CD8- double negative (DN) T cells were numerous, of which a percentage was specific for SARS-CoV-2 spike peptides. Regulatory T cells (Treg), both spike- and non-spike-specific, were also greatly expanded. Two Treg populations were defined: a population differentiated from naïve T cells, and pTreg, reverting from pro-inflammatory T cells. The Treg cells expressed CCR6, suggesting homing to the endometrium and vaginal epithelial cells. The pregnant women responded to SARS-CoV-2 vaccination. Asymptomatic COVID-19 was revealed by the T cell response to the non-spike peptides. The numerous DN T cells and Treg pointed our attention to new aspects of the adaptive immune response in vaccine recipients.
Collapse
Affiliation(s)
- Christina D. Chambers
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.D.C.); (J.S.)
| | - Jaeyoon Song
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.D.C.); (J.S.)
| | - Ricardo da Silva Antunes
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA (A.S.)
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA 92093, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA (A.S.)
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA 92093, USA
| | - Alessandra Franco
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.D.C.); (J.S.)
| |
Collapse
|
14
|
Bernier E, Brien ME, Girard S. Pregnant individuals with uncomplicated pregnancies display pro-inflammatory immune changes when exposed to the COVID-19 pandemic. Am J Reprod Immunol 2024; 91:e13828. [PMID: 38374807 DOI: 10.1111/aji.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/04/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
PROBLEM The COVID-19 pandemic has been shown to have a detrimental impact on the mental health of pregnant individuals, and chronic stress can alter the immune profile. However, the effects of the COVID-19 pandemic on the immune system in pregnancy are still poorly understood. We aimed to evaluate the impact of pandemic exposure on the maternal immune profile in uncomplicated pregnancies. METHOD OF STUDY We collected blood and placenta samples from pregnant individuals exposed and unexposed to the pandemic to compare their immune and inflammatory profiles. We performed co-culture with circulating maternal immune cells and endothelial cells to assess endothelial activation. Statistical analysis was performed using unpaired t-test, Mann-Whitney, or Fisher's exact test as appropriate. RESULTS In exposed individuals, we observed a decreased proportion of Th2 cells (p < .0001) and Treg/Th17 ratio (p < .05), as well as an increased Th1/Th2 ratio (p < .0001). Levels of IL-1β (p < .01) and IL-18 (p < .01) were increased in the circulation of exposed participants, whilst other mediators were significantly decreased (IFNγ, IL-8, MCP-1, amongst others). Furthermore, we observed increased production of ICAM, hallmark of endothelial activation, when we co-cultured endothelial cells with immune cells from exposed individuals. Vaccination status impacted the cellular profile with increased proportions of Th1 and B cells in vaccinated participants. CONCLUSION Overall, we observed a pro-inflammatory bias in the circulation of pregnant individuals exposed to the COVID-19 pandemic, with otherwise uncomplicated pregnancies. Our work also supports an association between the increased risk of endothelial activation/hypertension and SARS-CoV2 infection, which might be driven in part by exposure to the pandemic and associated stressors.
Collapse
Affiliation(s)
- Elsa Bernier
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Marie-Eve Brien
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Obstetrics and Gynecology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Wang C, Wang M, Li G, Song B, Xing Q, Cao Y. Effects of COVID-19 vaccination on human fertility: a post-pandemic literature review. Ann Med 2023; 55:2261964. [PMID: 37756386 PMCID: PMC10538453 DOI: 10.1080/07853890.2023.2261964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Although vaccination with the Coronavirus disease 2019 vaccine is important and effective in the prevention of SARS-CoV-2 infection, the public expressed concerns regarding the adverse effects of vaccine on fertility. Some reviews have focused on it, they have been unable to collect sufficient research data because of the earlier publication period. As relevant evidence has gradually increased, we reviewed these studies from the perspectives of males, females with or without pregnancy, and different vaccine types. The results suggest that although males may experience fluctuations in semen parameters within their physiological ranges after receiving the vaccine, it has not yet reached a level of influence on the partner's pregnancy probability. As to female without pregnancy, it is believed that vaccination will not affect fertility; however, more research is needed to explore the short-term impact. Vaccination during any trimester is considered safe in pregnant women.
Collapse
Affiliation(s)
- Chao Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Wang
- Department of General Office, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guanjian Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bing Song
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiong Xing
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Hora S, Pahwa P, Siddiqui H, Saxena A, Kashyap M, Sevak JK, Singh R, Javed M, Yadav P, Kale P, Ramakrishna G, Bajpai M, Rathore A, Maras JS, Tyagi S, Sarin SK, Trehanpati N. Metabolic alterations unravel the maternofetal immune responses with disease severity in pregnant women infected with SARS-CoV-2. J Med Virol 2023; 95:e29257. [PMID: 38054548 DOI: 10.1002/jmv.29257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Pregnancy being an immune compromised state, coronavirus disease of 2019 (COVID-19) disease poses high risk of premature delivery and threat to fetus. Plasma metabolome regulates immune cellular responses, therefore we aimed to analyze the change in plasma secretome, metabolome, and immune cells with disease severity in COVID-19 positive pregnant females and their cord blood. COVID-19 reverse transcriptase-polymerase chain reaction positive pregnant females (n = 112) with asymptomatic (Asy) (n = 82), mild (n = 21), or moderate (n = 9) disease, healthy pregnant (n = 18), COVID-19 positive nonpregnant females (n = 7) were included. Eighty-two cord blood from COVID-19 positive and seven healthy cord blood were also analyzed. Mother's peripheral blood and cord blood were analyzed for untargeted metabolome profiling and cytokines by using high-resolution mass spectrometry and cytokine bead array. Immune scan was performed only in mothers' blood by flow cytometry. In Asy severe acute respiratory syndrome coronavirus 2 infection, the amino acid metabolic pathways such as glycine, serine, l-lactate, and threonine metabolism were upregulated with downregulation of riboflavin and tyrosine metabolism. However, with mild-to-moderate disease, the pyruvate and nicotinamide adenine dinucleotide (NAD+ ) metabolism were mostly altered. Cord blood mimicked the mother's metabolomic profiles by showing altered valine, leucine, isoleucine, glycine, serine, threonine in Asy and NAD+ , riboflavin metabolism in mild and moderate. Additionally, with disease severity tumor necrosis factor-α, interferon (IFN)-α, IFN-γ, interleukin (IL)-6 cytokine storm, IL-9 was raised in both mothers and neonates. Pyruvate, NAD metabolism and increase in IL-9 and IFN-γ had an impact on nonclassical monocytes, exhausted T and B cells. Our results demonstrated that immune-metabolic interplay in mother and fetus is influenced with increase in IL-9 and IFN-γ regulated pyruvate, lactate tricarboxylic acid, and riboflavin metabolism with context to disease severity.
Collapse
Affiliation(s)
- Sandhya Hora
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Prabhjyoti Pahwa
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Hamda Siddiqui
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Anoushka Saxena
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Minal Kashyap
- Department of Gynecology and Obstetrics, Lok Nayak Jai Prakash Hospital, New Delhi, India
| | - Jayesh K Sevak
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ravinder Singh
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Maryam Javed
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Pushpa Yadav
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Pratibha Kale
- Department of Microbiology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Meenu Bajpai
- Department of Transfusion Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Asmita Rathore
- Department of Gynecology and Obstetrics, Lok Nayak Jai Prakash Hospital, New Delhi, India
| | - Jaswinder S Maras
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shakun Tyagi
- Department of Gynecology and Obstetrics, Lok Nayak Jai Prakash Hospital, New Delhi, India
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupama Trehanpati
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
17
|
Chrysanthopoulos I, Potiris A, Drakaki E, Mavrogianni D, Machairiotis N, Zarogoulidis P, Karampitsakos T, Machairoudias P, Vrachnis D, Panagopoulos P, Drakakis P, Stavros S. Association between COVID-19 Infection and Miscarriages, What We Really Know? Diseases 2023; 11:173. [PMID: 38131979 PMCID: PMC10742925 DOI: 10.3390/diseases11040173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND COVID-19 is a modern worldwide pandemic that affected and continues to affect millions of people around the world. Since the discovery that angiotensin-converting enzyme 2 (ACE2) is the binding site for COVID-19 to achieve cell entry, there has been a continuous debate about the effect of COVID-19 infection in first and second trimester abortions. The aim of this review is to investigate the impact of COVID-19 infection on the incidence of miscarriage. Furthermore, we seek to identify potential pathophysiological mechanisms of early pregnancy loss present in infected women. METHODS A literature review was conducted on different databases, including PubMed, Google Scholar, Ovid, Science Direct, Scopus, and Cochrane library, between 1 January 2020 and 31 August 2023. A total of 364 articles were identified and 32 articles were ultimately included in the review. RESULTS There are several case studies that provide evidence that early pregnancy loss is associated with COVID-19 infection. These findings are not further confirmed by the majority of systematic reviews and meta-analyses, which demonstrate that the total number of miscarriages do not differ significantly between infected and non-infected groups. Furthermore, there are also case reports that associate COVID-19 infection with late second trimester abortions. CONCLUSIONS Given that the virus persists globally, it is important to gain a better understanding of its associated risks in the reproductive process, and larger, more homogeneous, and controlled studies are required to obtain more robust data that can be meta-analyzed to obtain an overview of this potential relationship.
Collapse
Affiliation(s)
- Ioannis Chrysanthopoulos
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (I.C.); (E.D.); (D.M.); (P.D.)
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (N.M.); (T.K.); (P.M.); (S.S.)
| | - Eirini Drakaki
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (I.C.); (E.D.); (D.M.); (P.D.)
| | - Despoina Mavrogianni
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (I.C.); (E.D.); (D.M.); (P.D.)
| | - Nikolaos Machairiotis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (N.M.); (T.K.); (P.M.); (S.S.)
| | - Paul Zarogoulidis
- Pulmonary Department, General Clinic Euromedica, 544 54 Thessaloniki, Greece;
| | - Theodoros Karampitsakos
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (N.M.); (T.K.); (P.M.); (S.S.)
| | - Pavlos Machairoudias
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (N.M.); (T.K.); (P.M.); (S.S.)
| | - Dionysios Vrachnis
- Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Periklis Panagopoulos
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (N.M.); (T.K.); (P.M.); (S.S.)
| | - Peter Drakakis
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (I.C.); (E.D.); (D.M.); (P.D.)
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (N.M.); (T.K.); (P.M.); (S.S.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (N.M.); (T.K.); (P.M.); (S.S.)
| |
Collapse
|
18
|
Muyayalo KP, Gong GS, Kiyonga Aimeé K, Liao AH. Impaired immune response against SARS-CoV-2 infection is the major factor indirectly altering reproductive function in COVID-19 patients: a narrative review. HUM FERTIL 2023; 26:778-796. [PMID: 37811836 DOI: 10.1080/14647273.2023.2262757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/25/2023] [Indexed: 10/10/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease affecting multiple systems and organs, including the reproductive system. SARS-CoV-2, the virus that causes COVID-19, can damage reproductive organs through direct (angiotensin converting enzyme-2, ACE-2) and indirect mechanisms. The immune system plays an essential role in the homeostasis and function of the male and female reproductive systems. Therefore, an altered immune response related to infectious and inflammatory diseases can affect reproductive function and fertility in both males and females. This narrative review discussed the dysregulation of innate and adaptive systems induced by SARS-CoV-2 infection. We reviewed the evidence showing that this altered immune response in COVID-19 patients is the major indirect mechanism leading to adverse reproduction outcomes in these patients. We summarized studies reporting the long-term effect of SARS-CoV-2 infection on women's reproductive function and proposed the chronic inflammation and chronic autoimmunity characterizing long COVID as potential underlying mechanisms. Further studies are needed to clarify the role of autoimmunity and chronic inflammation (long COVID) in altered female reproduction function in COVID-19.
Collapse
Affiliation(s)
- Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Department of Obstetrics and Gynecology, University of Kinshasa, Kinshasa, D. R. Congo
| | - Guang-Shun Gong
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Kahindo Kiyonga Aimeé
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, People's Republic of China
- Department of Tropical Medicine Infectious and Parasitic Diseases, University of Kinshasa, Kinshasa, D. R. Congo
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
19
|
Doratt BM, Sureshchandra S, True H, Rincon M, Marshall NE, Messaoudi I. Mild/asymptomatic COVID-19 in unvaccinated pregnant mothers impairs neonatal immune responses. JCI Insight 2023; 8:e172658. [PMID: 37698937 PMCID: PMC10629812 DOI: 10.1172/jci.insight.172658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Maternal SARS-CoV-2 infection triggers placental inflammation and alters cord blood immune cell composition. However, most studies focus on outcomes of severe maternal infection. Therefore, we analyzed cord blood and chorionic villi from newborns of unvaccinated mothers who experienced mild/asymptomatic SARS-CoV-2 infection during pregnancy. We investigated immune cell rewiring using flow cytometry, single-cell RNA sequencing, and functional readouts using ex vivo stimulation with TLR agonists and pathogens. Maternal infection was associated with increased frequency of memory T and B cells and nonclassical monocytes in cord blood. Ex vivo T and B cell responses to stimulation were attenuated, suggesting a tolerogenic state. Maladaptive responses were also observed in cord blood monocytes, where antiviral responses were dampened but responses to bacterial TLRs were increased. Maternal infection was also associated with expansion and activation of placental Hofbauer cells, secreting elevated levels of myeloid cell-recruiting chemokines. Moreover, we reported increased activation of maternally derived monocytes/macrophages in the fetal placenta that were transcriptionally primed for antiviral responses. Our data indicate that even in the absence of vertical transmission or symptoms in the neonate, mild/asymptomatic maternal COVID-19 altered the transcriptional and functional state in fetal immune cells in circulation and in the placenta.
Collapse
Affiliation(s)
- Brianna M. Doratt
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Suhas Sureshchandra
- Department of Physiology and Biophysics, School of Medicine, and
- Institute for Immunology, University of California, Irvine, California, USA
| | - Heather True
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Monica Rincon
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Nicole E. Marshall
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
20
|
Gashimova NR, Pankratyeva LL, Bitsadze VO, Khizroeva JK, Tretyakova MV, Grigoreva KN, Tsibizova VI, Gris JC, Degtyareva ND, Yakubova FE, Makatsariya AD. Inflammation and Immune Reactions in the Fetus as a Response to COVID-19 in the Mother. J Clin Med 2023; 12:4256. [PMID: 37445296 DOI: 10.3390/jcm12134256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Background: Contracting COVID-19 during pregnancy can harm both the mother and the unborn child. Pregnant women are highly likely to develop respiratory viral infection complications with critical conditions caused by physiological changes in the immune and cardiopulmonary systems. Asymptomatic COVID-19 in pregnant women may be accompanied by fetal inflammatory response syndrome, which has adverse consequences for the newborn's life and health. Purpose: To conduct an inflammatory response assessment of the fetus due to the effects of COVID-19 on the mother during pregnancy by determining pro-inflammatory cytokines, cell markers, T regulatory cells, T cell response, evaluation of cardiac function, and thymus size. Materials and methods: A prospective study included pregnant women (n = 92). The main group consisted of 62 pregnant women with COVID-19 infection: subgroup 1-SARS-CoV-2 PCR-positive pregnant women 4-6 weeks before delivery (n = 30); subgroup 2-SARS-CoV-2 PCR-positive earlier during pregnancy (n = 32). The control group consisted of 30 healthy pregnant women. In all pregnant women, the levels of circulating cytokines and chemokines (IL-1α, IL-6, IL-8, IL-10, GM-CSF, TNF-α, IFN-γ, MIP-1β, and CXCL-10) were determined in the peripheral blood and after delivery in the umbilical cord blood, and an analysis was performed of the cell markers on dendritic cells, quantitative and functional characteristics of T regulatory cells, and specific T cell responses. The levels of thyroxine and thyroid-stimulating hormone were determined in the newborns of the studied groups, and ultrasound examinations of the thymus and echocardiography of the heart were also performed. Results: The cord blood dendritic cells of newborns born to mothers who suffered from COVID-19 4-6 weeks before delivery (subgroup 1) showed a significant increase in CD80 and CD86 expression compared to the control group (p = 0.023). In the umbilical cord blood samples of children whose mothers tested positive for COVID-19 4-6 weeks before delivery (subgroup 1), the CD4+CCR7+ T cells increased with a concomitant decrease in the proportion of naive CD4+ T cells compared with the control group (p = 0.016). Significantly higher levels of pro-inflammatory cytokines and chemokines were detected in the newborns of subgroup 1 compared to the control group. In the newborns of subgroup 1, the functional activity of T regulatory cells was suppressed, compared with the newborns of the control group (p < 0.001). In all pregnant women with a severe coronavirus infection, a weak T cell response was detected in them as well as in their newborns. In newborns whose mothers suffered a coronavirus infection, a decrease in thymus size, transient hypothyroxinemia, and changes in functional parameters according to echocardiography were revealed compared with the newborns of the control group. Conclusions: Fetal inflammatory response syndrome can occur in infants whose mothers suffered from a COVID-19 infection during pregnancy and is characterized by the activation of the fetal immune system and increased production of pro-inflammatory cytokines. The disease severity in a pregnant woman does not correlate with SIRS severity in the neonatal period. It can vary from minimal laboratory parameter changes to the development of complications in the organs and systems of the fetus and newborn.
Collapse
Affiliation(s)
- Nilufar R Gashimova
- Sechenov University, 2 bldg. 4, Bolshaya Pirogovskaya Str., 119991 Moscow, Russia
| | - Liudmila L Pankratyeva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela Street, 117997 Moscow, Russia
- Clinical Research Center, Vorokhobov City Clinical Hospital No 67, 2/44 Salama Adil Str., 123423 Moscow, Russia
| | - Victoria O Bitsadze
- Sechenov University, 2 bldg. 4, Bolshaya Pirogovskaya Str., 119991 Moscow, Russia
| | - Jamilya Kh Khizroeva
- Sechenov University, 2 bldg. 4, Bolshaya Pirogovskaya Str., 119991 Moscow, Russia
| | - Maria V Tretyakova
- Sechenov University, 2 bldg. 4, Bolshaya Pirogovskaya Str., 119991 Moscow, Russia
| | - Kristina N Grigoreva
- Sechenov University, 2 bldg. 4, Bolshaya Pirogovskaya Str., 119991 Moscow, Russia
| | - Valentina I Tsibizova
- Federal State Budgetary Institution "Almazov National Medical Research Centre", Ministry of Health of the Russian Federation 2 Akkuratova Street, 197341 St. Petersburg, Russia
| | - Jean-Christophe Gris
- Sechenov University, 2 bldg. 4, Bolshaya Pirogovskaya Str., 119991 Moscow, Russia
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| | - Natalia D Degtyareva
- Sechenov University, 2 bldg. 4, Bolshaya Pirogovskaya Str., 119991 Moscow, Russia
| | - Fidan E Yakubova
- Sechenov University, 2 bldg. 4, Bolshaya Pirogovskaya Str., 119991 Moscow, Russia
| | | |
Collapse
|
21
|
Chamorro BM, Luca KD, Swaminathan G, Rochereau N, Majorel J, Poulet H, Chanut B, Piney L, Mundt E, Paul S. Mucosal Vaccination with Live Attenuated Bordetella bronchiseptica Protects against Challenge in Wistar Rats. Vaccines (Basel) 2023; 11:vaccines11050982. [PMID: 37243086 DOI: 10.3390/vaccines11050982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Bordetella bronchiseptica (Bb) is a Gram-negative bacterium responsible for canine infectious respiratory disease complex (CIRDC). Several vaccines targeting this pathogen are currently licensed for use in dogs, but their mechanism of action and the correlates of protection are not fully understood. To investigate this, we used a rat model to examine the immune responses induced and the protection conferred by a canine mucosal vaccine after challenge. Wistar rats were vaccinated orally or intranasally on D0 and D21 with a live attenuated Bb vaccine strain. At D35, the rats of all groups were inoculated with 103 CFU of a pathogenic strain of B. bronchiseptica. Animals vaccinated via either the intranasal or the oral route had Bb-specific IgG and IgM in their serum and Bb-specific IgA in nasal lavages. Bacterial load in the trachea, lung, and nasal lavages was lower in vaccinated animals than in non-vaccinated control animals. Interestingly, coughing improved in the group vaccinated intranasally, but not in the orally vaccinated or control group. These results suggest that mucosal vaccination can induce mucosal immune responses and provide protection against a Bb challenge. This study also highlights the advantages of a rat model as a tool for studying candidate vaccines and routes of administration for dogs.
Collapse
Affiliation(s)
- Beatriz Miguelena Chamorro
- CIRI-Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, F69007 Lyon, France
- Boehringer Ingelheim, Global Innovation, F69800 Saint Priest, France
| | - Karelle De Luca
- Boehringer Ingelheim, Global Innovation, F69800 Saint Priest, France
| | - Gokul Swaminathan
- Boehringer Ingelheim, Global Innovation, F69800 Saint Priest, France
| | - Nicolas Rochereau
- CIRI-Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, F69007 Lyon, France
| | - Jade Majorel
- CIRI-Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, F69007 Lyon, France
| | - Hervé Poulet
- Boehringer Ingelheim, Global Innovation, F69800 Saint Priest, France
| | - Blandine Chanut
- CIRI-Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, F69007 Lyon, France
| | - Lauriane Piney
- Boehringer Ingelheim, Global Innovation, F69800 Saint Priest, France
| | - Egbert Mundt
- Boehringer Ingelheim, Global Innovation, F69800 Saint Priest, France
| | - Stéphane Paul
- CIRI-Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, F69007 Lyon, France
- 3CIC Inserm 1408 Vaccinology, F42023 Saint-Etienne, France
| |
Collapse
|
22
|
Doratt BM, Sureshchandra S, True H, Rincon M, Marshall N, Messaoudi I. Mild/Asymptomatic Maternal SARS-CoV-2 Infection Leads to Immune Paralysis in Fetal Circulation and Immune Dysregulation in Fetal-Placental Tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540233. [PMID: 37214938 PMCID: PMC10197637 DOI: 10.1101/2023.05.10.540233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Few studies have addressed the impact of maternal mild/asymptomatic SARS-CoV-2 infection on the developing neonatal immune system. In this study, we analyzed umbilical cord blood and placental chorionic villi from newborns of unvaccinated mothers with mild/asymptomatic SARSCoV-2 infection during pregnancy using flow cytometry, single-cell transcriptomics, and functional assays. Despite the lack of vertical transmission, levels of inflammatory mediators were altered in cord blood. Maternal infection was also associated with increased memory T, B cells, and non-classical monocytes as well as increased activation. However, ex vivo responses to stimulation were attenuated. Finally, within the placental villi, we report an expansion of fetal Hofbauer cells and infiltrating maternal macrophages and rewiring towards a heightened inflammatory state. In contrast to cord blood monocytes, placental myeloid cells were primed for heightened antiviral responses. Taken together, this study highlights dysregulated fetal immune cell responses in response to mild maternal SARS-CoV-2 infection during pregnancy.
Collapse
Affiliation(s)
- Brianna M. Doratt
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington KY 40536
| | - Suhas Sureshchandra
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine CA 92697
- Institute for Immunology, University of California, Irvine CA 92697
| | - Heather True
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington KY 40536
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington KY 40536
| | - Monica Rincon
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland OR 97239
| | - Nicole Marshall
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland OR 97239
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington KY 40536
| |
Collapse
|
23
|
Moscucci F, Gallina S, Bucciarelli V, Aimo A, Pelà G, Cadeddu-Dessalvi C, Nodari S, Maffei S, Meloni A, Deidda M, Mercuro G, Pedrinelli R, Penco M, Sciomer S, Mattioli AV. Impact of COVID-19 on the cardiovascular health of women: a review by the Italian Society of Cardiology Working Group on 'gender cardiovascular diseases'. J Cardiovasc Med (Hagerstown) 2023; 24:e15-e23. [PMID: 36729627 PMCID: PMC10100638 DOI: 10.2459/jcm.0000000000001398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/02/2022] [Indexed: 02/03/2023]
Abstract
The coronavirus disease 19 (COVID-19), due to coronavirus 2 (SARS-CoV-2) infection, presents with an extremely heterogeneous spectrum of symptoms and signs. COVID-19 susceptibility and mortality show a significant sex imbalance, with men being more prone to infection and showing a higher rate of hospitalization and mortality than women. In particular, cardiovascular diseases (preexistent or arising upon infection) play a central role in COVID-19 outcomes, differently in men and women. This review will discuss the potential mechanisms accounting for sex/gender influence in vulnerability to COVID-19. Such variability can be ascribed to both sex-related biological factors and sex-related behavioural traits. Sex differences in cardiovascular disease and COVID-19 involve the endothelial dysfunction, the innate immune system and the renin-angiotensin system (RAS). Furthermore, the angiotensin-converting enzyme 2 (ACE2) is involved in disease pathogenesis in cardiovascular disease and COVID-19 and it shows hormone-dependent actions. The incidence of myocardial injury during COVID-19 is sex-dependent, predominantly in association with a greater degree of inflammation and coagulation disorders among men. Its pathogenesis is not fully elucidated, but the main theories foresee a direct role for the ACE2 receptor, the hyperimmune response and the RAS imbalance, which may also lead to isolated presentation of COVID-19-mediated myopericarditis. Moreover, the latest evidence on cardiovascular diseases and their relationship with COVID-19 during pregnancy will be discussed. Finally, authors will analyse the prevalence of the long-covid syndrome between the two sexes and its impact on the quality of life and cardiovascular health.
Collapse
Affiliation(s)
- Federica Moscucci
- Department of Clinical and Internal Medicine, Anesthesiology and Cardiovascular Sciences, University of Rome ‘Sapienza’, Policlinico Umberto I, Rome
| | - Sabina Gallina
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti
| | - Valentina Bucciarelli
- Department of Paediatric and Congenital Cardiac Surgery and Cardiology, Azienda Ospedaliero-Universitaria Ospedali Riuniti Ancona ‘Umberto I, G. M. Lancisi, G. Salesi’, Ancona
| | - Alberto Aimo
- Cardiology Division, Fondazione Toscana Gabriele Monasterio
- Scuola Superiore Sant’Anna, Pisa
| | - Giovanna Pelà
- Department of Medicine and Surgery, University of Parma
- Department of General and Specialistic Medicine, University-Hospital of Parma, Parma
| | | | - Savina Nodari
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia
| | - Silvia Maffei
- Cardiovascular and Gynaecological Endocrinology Unit, Fondazione G Monasterio CNR-Regione Toscana
| | - Antonella Meloni
- Department of Radiology, Fondazione G Monasterio CNR-Regione Toscana, Pisa
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari
| | - Roberto Pedrinelli
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa
| | - Maria Penco
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila
| | - Susanna Sciomer
- Department of Clinical and Internal Medicine, Anesthesiology and Cardiovascular Sciences, University of Rome ‘Sapienza’, Policlinico Umberto I, Rome
| | - Anna Vittoria Mattioli
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
24
|
Ning L, Shishi Z, Bo W, Huiqing L. Targeting immunometabolism against acute lung injury. Clin Immunol 2023; 249:109289. [PMID: 36918041 PMCID: PMC10008193 DOI: 10.1016/j.clim.2023.109289] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening conditions triggered by multiple intra- and extra-pulmonary injury factors, characterized by complicated molecular mechanisms and high mortality. Great strides have been made in the field of immunometabolism to clarify the interplay between intracellular metabolism and immune function in the past few years. Emerging evidence unveils the crucial roles of immunometabolism in inflammatory response and ALI. During ALI, both macrophages and lymphocytes undergo robust metabolic reprogramming and discrete epigenetic changes after activated. Apart from providing ATP and biosynthetic precursors, these metabolic cellular reactions and processes in lung also regulate inflammation and immunity.In fact, metabolic reprogramming involving glucose metabolism and fatty acidoxidation (FAO) acts as a double-edged sword in inflammatory response, which not only drives inflammasome activation but also elicits anti-inflammatory response. Additionally, the features and roles of metabolic reprogramming in different immune cells are not exactly the same. Here, we outline the evidence implicating how adverse factors shape immunometabolism in differentiation types of immune cells during ALI and summarize key proteins associated with energy expenditure and metabolic reprogramming. Finally, novel therapeutic targets in metabolic intermediates and enzymes together with current challenges in immunometabolism against ALI were discussed.
Collapse
Affiliation(s)
- Li Ning
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Zou Shishi
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Wang Bo
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China.
| | - Lin Huiqing
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
25
|
Lim MJ, Lakshminrusimha S, Hedriana H, Albertson T. Pregnancy and Severe ARDS with COVID-19: Epidemiology, Diagnosis, Outcomes and Treatment. Semin Fetal Neonatal Med 2023; 28:101426. [PMID: 36964118 PMCID: PMC9990893 DOI: 10.1016/j.siny.2023.101426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Pregnancy-related acute respiratory distress syndrome (ARDS) is fast becoming a growing and clinically relevant subgroup of ARDS amidst global outbreaks of various viral respiratory pathogens that include H1N1-influenza, severe acute respiratory syndrome (SARS), middle east respiratory syndrome (MERS), and the most recent COVID-19 pandemic. Pregnancy is a risk factor for severe viral-induced ARDS and commonly associated with poor maternal and fetal outcomes including fetal growth-restriction, preterm birth, and spontaneous abortion. Physiologic changes of pregnancy further compounded by mechanical and immunologic alterations are theorized to impact the development of ARDS from viral pneumonia. The COVID-19 sub-phenotype of ARDS share overlapping molecular features of maternal pathogenicity of pregnancy with respect to immune-dysregulation and endothelial/microvascular injury (i.e., preeclampsia) that may in part explain a trend toward poor maternal and fetal outcomes seen with severe COVID-19 maternal infections. To date, current ARDS diagnostic criteria and treatment management fail to include and consider physiologic adaptations that are unique to maternal physiology of pregnancy and consideration of maternal-fetal interactions. Treatment focused on lung-protective ventilation strategies have been shown to improve clinical outcomes in adults with ARDS but may have adverse maternal-fetal interactions when applied in pregnancy-related ARDS. No specific pharmacotherapy has been identified to improve outcomes in pregnancy with ARDS. Adjunctive therapies aimed at immune-modulation and anti-viral treatment with COVID-19 infection during pregnancy have been reported but data in regard to its efficacy and safety is currently lacking.
Collapse
Affiliation(s)
- Michelle J Lim
- UC Davis School of Medicine, UC Davis Children's Hospital, Department of Pediatrics, Division of Critical Care and Neonatology, Sacramento, CA, USA.
| | - Satyan Lakshminrusimha
- UC Davis School of Medicine, UC Davis Children's Hospital, Department of Pediatrics, Division of Critical Care and Neonatology, Sacramento, CA, USA
| | - Herman Hedriana
- UC Davis School of Medicine, UC Davis Medical Center, Department of Obstetrics and Gynecology, Sacramento, CA, USA
| | - Timothy Albertson
- UC Davis School of Medicine, UC Davis Medical Center, Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Sacramento, CA, USA
| |
Collapse
|
26
|
Liu J, Liu Y, Kirschen G, Liu A, Lei J, Burd I. Sex-specific differences in T-cell immune dysregulation and aberrant response to inflammatory stimuli in offspring exposed to maternal chronic inflammation. Am J Reprod Immunol 2023; 89:e13665. [PMID: 36504421 DOI: 10.1111/aji.13665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
PROBLEMS Maternal chronic inflammation (MI) can adversely affect offspring's immune development resulting in dysregulation of splenic T cells. Interleukin 1 beta (IL-1β) contributes to mediating inflammation in the placenta to induce fetal toxicity and cause long-term postnatal sequelae. In this study, we investigated how MI affects the T-cell immune development from the fetal to the neonatal period and how offspring responded to postnatal IL-1β challenge when exposed to an adverse intrauterine environment. We also extend these studies to examine the sex-specific differences. METHODS OF STUDY Time-pregnant CD1 dams were administrated with four consecutive injections of mouse recombinant Interleukin-1β (rIL-1β) or phosphate-buffered saline (PBS) from embryonic day (E)14 to E17. Pups were treated with rIL-1β or PBS at postnatal day (PND)11 (pre-weaning) or PND24 (post-weaning). Pups' splenic immune cells were isolated and then characterized using flow cytometry. RESULTS At PND12, no differences were observed either in Ctrl or MI offspring. At PND25, we observed elevated amount of CD8+ T cells, descending CD4+ /CD8+ and Treg/Teff ratio in MI offspring. Pre-weaning rIL-1β administration did not affect T-cell subpopulation in Ctrl pups while post-weaning rIL-1β administration increased T cells and CD8+ T cells and decreased CD4+ /CD8+ and Treg/Teff ratio in Ctrl offspring. Furthermore, pre-weaning rIL-1β administration decreased the frequency of T cells and Treg/Teff ratio in MI pups while post-weaning rIL-1β administration increased Tregs and Treg/Teff in MI pups. Regarding sex-specific changes, we observed that at PND12, MI females exhibited higher CD4+ /CD8+ and Treg/Teff ratio than Ctrl females. At PND25, we observed elevated amount of CD8+ T cells, descending CD4+ /CD8+ and Treg/Teff ratio in MI Females, while MI males did not show any changes in T-cell population. Pre-weaning rIL-1β administration decreased T-cell frequency in both MI males and females and decreased Treg/Teff ratio only in MI females. Post-weaning rIL-1β administration increased Tregs and Treg/Teff ratio, and decreased CD4+ /CD8+ ratio in MI females. CONCLUSIONS Prenatal-inflammation-exposed offspring exhibited dysfunctional T-cell immunity and regulatory immune responses to postnatal challenges, showing both sex-specific and age-dependent differences. It could be speculated from our results that experiencing environmental challenges or adverse stimuli during the vulnerable intrauterine period, such as maternal chronic inflammation, stress, preterm birth, and chronic infections, might induce fetal immune reprogramming and potentially cause long-term adverse immune consequences, such as a predisposition to allergic diseases, autoimmune diseases, asthma and pediatric mortality of unknown etiology.
Collapse
Affiliation(s)
- Jin Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yang Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gregory Kirschen
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anguo Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Irina Burd
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, USA
| |
Collapse
|
27
|
Shojaei M, Foshati S, Abdi M, Askari G, Sukhorukov VN, Bagherniya M, Sahebkar A. The effectiveness of nano-curcumin on patients with COVID-19: A systematic review of clinical trials. Phytother Res 2023; 37:1663-1677. [PMID: 36799442 DOI: 10.1002/ptr.7778] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/18/2023]
Abstract
The main aim of the current study was to summarize the findings of available clinical studies to assess nano-curcumin's influence on COVID patients. A comprehensive online search was performed in Scopus, PubMed, ISI Web of Science, and Google Scholar until March 2022 to identify trials that investigated the effects of nano-curcumin in patients with COVID-19. Eight studies comprising 569 patients were included in this review. Compared with placebo, nano-curcumin had no significant effect on C-reactive protein (CRP) and high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). However, gene expression of IL-6 and gene expression as well as secretion of interleukin-1 beta (IL-1β) significantly decreased following nano-curcumin intervention. Nano-curcumin had beneficial effects on fever, cough, chills, myalgia, and olfactory and taste disturbances. The duration of hospitalization and mortality rate were significantly lower in the nano-curcumin group compared with the control group. Lymphocyte count was significantly increased after curcumin supplementation. Nano-curcumin also had favorable effects on O2 saturation, sputum, chest pain, wheeze, and dyspnea in patients with COVID-19. No major adverse effects were reported in response to nano-curcumin supplementation. In summary, the results of this systematic review of clinical trials suggested that nano-curcumin supplementation has beneficial effects on inflammation, respiratory function, disease manifestations, and complications in patients with COVID-19 viral infection.
Collapse
Affiliation(s)
- Mehrnaz Shojaei
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Foshati
- Food Security Research Center, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohaddese Abdi
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohammad Bagherniya
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Saadedine M, El Sabeh M, Borahay MA, Daoud G. The influence of COVID-19 infection-associated immune response on the female reproductive system†. Biol Reprod 2023; 108:172-182. [PMID: 36173920 PMCID: PMC9620712 DOI: 10.1093/biolre/ioac187] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a multi-system disease that has led to a pandemic with unprecedented ramifications. The pandemic has challenged scientists for the past 2 years and brought back previously abandoned research topics. COVID-19 infection causes a myriad of symptoms ranging from mild flu-like symptoms to severe illness requiring hospitalization. Case reports showed multiple systemic effects of COVID-19 infection, including acute respiratory distress syndrome, fibrosis, colitis, thyroiditis, demyelinating syndromes, and mania, indicating that COVID-19 can affect most human body systems. Unsurprisingly, a major concern for women all over the globe is whether a COVID-19 infection has any long-term effects on their menstrual cycle, fertility, or pregnancy. Published data have suggested an effect on the reproductive health, and we hypothesize that the reported reproductive adverse effects are due to the robust immune reaction against COVID-19 and the associated cytokine storm. While the COVID-19 receptor (angiotensin converting enzyme, ACE2) is expressed in the ovaries, uterus, vagina, and placenta, we hypothesize that it plays a less important role in the adverse effects on the reproductive system. Cytokines and glucocorticoids act on the hypothalamo-pituitary gonadal axis, arachidonic acid pathways, and the uterus, which leads to menstrual disturbances and pregnancy-related adverse events such as preterm labor and miscarriages. This hypothesis is further supported by the apparent lack of long-term effects on the reproductive health in females, indicating that when the cytokine storm and its effects are dampened, the reproductive health of women is no longer affected.
Collapse
Affiliation(s)
- Mariam Saadedine
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Malak El Sabeh
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Georges Daoud
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
29
|
Nasrollahi H, Talepoor AG, Saleh Z, Eshkevar Vakili M, Heydarinezhad P, Karami N, Noroozi M, Meri S, Kalantar K. Immune responses in mildly versus critically ill COVID-19 patients. Front Immunol 2023; 14:1077236. [PMID: 36793739 PMCID: PMC9923185 DOI: 10.3389/fimmu.2023.1077236] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
The current coronavirus pandemic (COVID-19), caused by SARS-CoV-2, has had devastating effects on the global health and economic system. The cellular and molecular mediators of both the innate and adaptive immune systems are critical in controlling SARS-CoV-2 infections. However, dysregulated inflammatory responses and imbalanced adaptive immunity may contribute to tissue destruction and pathogenesis of the disease. Important mechanisms in severe forms of COVID-19 include overproduction of inflammatory cytokines, impairment of type I IFN response, overactivation of neutrophils and macrophages, decreased frequencies of DC cells, NK cells and ILCs, complement activation, lymphopenia, Th1 and Treg hypoactivation, Th2 and Th17 hyperactivation, as well as decreased clonal diversity and dysregulated B lymphocyte function. Given the relationship between disease severity and an imbalanced immune system, scientists have been led to manipulate the immune system as a therapeutic approach. For example, anti-cytokine, cell, and IVIG therapies have received attention in the treatment of severe COVID-19. In this review, the role of immunity in the development and progression of COVID-19 is discussed, focusing on molecular and cellular aspects of the immune system in mild vs. severe forms of the disease. Moreover, some immune- based therapeutic approaches to COVID-19 are being investigated. Understanding key processes involved in the disease progression is critical in developing therapeutic agents and optimizing related strategies.
Collapse
Affiliation(s)
- Hamid Nasrollahi
- Radio-Oncology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Saleh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paria Heydarinezhad
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karami
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Noroozi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki and Diagnostic Center of the Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
30
|
Boychuk AV, Yakymchuk YB, Shevchuk OО, Vari SG, Nikitina IM. PREGNANT WOMEN WITH COVID-19 AND PLACENTA ANGIOGENESIS. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2023; 51:441-447. [PMID: 38069843 DOI: 10.36740/merkur202305101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE Aim of our research was to conduct a clinical and laboratory analysis of the impact of COVID-19 on pregnancy and the condition of the fetus. PATIENTS AND METHODS Materials and Methods: At the first stage, we conducted a retrospective examination of 50 pregnant women treated at Ternopil Municipal Hospital No.2 (Ukraine) between November 2020 and January 2022 with the history of COVID-19, confirmed by PCR test, and 25 pregnant COVID-19 negative pregnant women (control group). At the second stage, we performed prospective cohort study and involved 40 pregnant women treated with the history of COVID-19, confirmed by PCR, and 10 pregnant COVID-19 negative women with a physiological course of pregnancy as a control group.Women were divided into the following groups: group I -10 women diagnosed with COVID-19 during the first trimester of pregnancy: group II-15 women diagnosed during the second trimester; group III-15 women diagnosed during the third trimester. Ultrasound examination and cardiotocograms were performed to assess fetus status. Blood samples were collected at delivery. To determine whether COVID-19 could alter placental angiogenesis, vascular endothelial growth factor A (VEGFA), PlGF and interleuin-32-α were assessed. RESULTS Results: We identified that concentration of VEGFA was 95.30±5.65 pg/ml in control group. In women who had COVID-19 in first trimester, this index was 1.3 times higher, in second trimester 1.63 times higher and in third trimester by 2 times compared to control group. PlGF concentration was only 27,4 percent in group I, 16 percent in group II and 30 percent in group III,compared to control group. Concentration of interleuin-32-α was 67.27±5.63 pg/ml in control group and increased to 167 percent in group I, by 2.8 times in group II and by 6.3 times in group III compared to control group. CONCLUSION Conclusions: COVID-19 has a negative impact on placental angiogenesis, including VEGFA and PlGF. Fetal post-COVID-19 syndrome requires timely diagnosis of disorders and further study. Post-COVID-19 syndrome is an immune-dependent pathology in which the processes of protracted cytokine activation occur in the body of a pregnant woman.
Collapse
Affiliation(s)
- Alla V Boychuk
- I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, TERNOPIL, UKRAINE
| | | | - Oksana О Shevchuk
- I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, TERNOPIL, UKRAINE
| | - Sandor G Vari
- INTERNATIONAL RESEARCH AND INNOVATION IN MEDICINE PROGRAM, CEDARS-SINAI MEDICAL CENTER, LOS ANGELES, CA, USA
| | | |
Collapse
|
31
|
Jackson-Gibson M, Diseko M, Caniglia EC, Mayondi G, Mabuta J, Luckett R, Moyo S, Lawrence P, Matshaba M, Mosepele M, Mmalane M, Banga J, Lockman S, Makhema J, Zash R, Shapiro RL. Association of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection With Maternal Mortality and Neonatal Birth Outcomes in Botswana by Human Immunodeficiency Virus Status. Obstet Gynecol 2023; 141:135-143. [PMID: 36701614 PMCID: PMC10462386 DOI: 10.1097/aog.0000000000005020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To evaluate the combined association of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human immunodeficiency virus (HIV) infection on adverse birth outcomes in an HIV-endemic region. METHODS The Tsepamo Study abstracts data from antenatal and obstetric records in government maternity wards across Botswana. We assessed maternal mortality and adverse birth outcomes for all singleton pregnancies from September 2020 to mid-November 2021 at 13 Tsepamo sites among individuals with documented SARS-CoV-2 screening tests and known HIV status. RESULTS Of 20,410 individuals who gave birth, 11,483 (56.3%) were screened for SARS-CoV-2 infection; 4.7% tested positive. People living with HIV were more likely to test positive (144/2,421, 5.9%) than those without HIV (392/9,030, 4.3%) (P=.001). Maternal deaths occurred in 3.7% of those who had a positive SARS-CoV-2 test result compared with 0.1% of those who tested negative (adjusted relative risk [aRR] 31.6, 95% CI 15.4-64.7). Maternal mortality did not differ by HIV status. The offspring of individuals with SARS-CoV-2 infection experienced more overall adverse birth outcomes (34.5% vs 26.6%; aRR 1.2, 95% CI 1.1-1.4), severe adverse birth outcomes (13.6% vs 9.8%; aRR 1.2, 95% CI 1.0-1.5), preterm delivery (21.4% vs 13.4%; aRR 1.4, 95% CI 1.2-1.7), and stillbirth (5.6% vs 2.7%; aRR 1.7 95% CI 1.2-2.5). Neonates exposed to SARS-CoV-2 and HIV infection had the highest prevalence of adverse birth outcomes (43.1% vs 22.6%; aRR 1.7, 95% CI 1.4-2.0). CONCLUSION Infection with SARS-CoV-2 at the time of delivery was associated with 3.7% maternal mortality and 5.6% stillbirth in Botswana. Most adverse birth outcomes were worse among neonates exposed to both SARS-CoV-2 and HIV infection.
Collapse
Affiliation(s)
| | - Modiegi Diseko
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | | | - Gloria Mayondi
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Judith Mabuta
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Rebecca Luckett
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Internal Medicine, University of Botswana, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Internal Medicine, University of Botswana, Gaborone, Botswana
| | - Pamela Lawrence
- Department of Internal Medicine, University of Botswana, Gaborone, Botswana
| | - Mogomotsi Matshaba
- Ministry of Health and Wellness, Gaborone, Botswana
- Botswana-Baylor Children’s Clinical Centre of Excellence, Gaborone, Botswana
| | | | - Mompati Mmalane
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Jaspreet Banga
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Shahin Lockman
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Joseph Makhema
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Rebecca Zash
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Roger L. Shapiro
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Carvajal J, Casanello P, Toso A, Farías M, Carrasco-Negue K, Araujo K, Valero P, Fuenzalida J, Solari C, Sobrevia L. Functional consequences of SARS-CoV-2 infection in pregnant women, fetoplacental unit, and neonate. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166582. [PMID: 36273675 PMCID: PMC9581789 DOI: 10.1016/j.bbadis.2022.166582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022]
Abstract
The SARS-CoV-2 infection causes COVID-19 disease, characterized by acute respiratory distress syndrome, bilateral pneumonia, and organ failure. The consequences of maternal SARS-CoV-2 infection for the pregnant woman, fetus, and neonate are controversial. Thus, it is required to determine whether there is viral and non-viral vertical transmission in COVID-19. The disease caused by SARS-CoV-2 leads to functional alterations in asymptomatic and symptomatic pregnant women, the fetoplacental unit and the neonate. Several diseases of pregnancy, including COVID-19, affect the fetoplacental function, which causes in utero programming for young and adult diseases. A generalized inflammatory state and a higher risk of infection are seen in pregnant women with COVID-19. Obesity, diabetes mellitus, and hypertension may increase the vulnerability of pregnant women to infection by SARS-CoV-2. Alpha, Delta, and Omicron variants of SARS-CoV-2 show specific mutations that seem to increase the capacity of the virus to infect the pregnant woman, likely due to increasing its interaction via the virus S protein and angiotensin-converting enzyme 2 receptors. This review shows the literature addressing to what extent COVID-19 in pregnancy affects the pregnant woman, fetoplacental unit, and neonate. Prospective studies that are key in managing SARS-CoV-2 infection in pregnancy are discussed.
Collapse
Affiliation(s)
- Jorge Carvajal
- Department of Obstetrics, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Paola Casanello
- Department of Obstetrics, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Neonatology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen (UMCG), 9713GZ, Groningen, the Netherlands
| | - Alberto Toso
- Department of Neonatology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Marcelo Farías
- Department of Obstetrics, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Karina Carrasco-Negue
- Department of Obstetrics, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Kenny Araujo
- Department of Obstetrics, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Paola Valero
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile
| | - Javiera Fuenzalida
- Department of Obstetrics, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Caterina Solari
- Department of Obstetrics, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Luis Sobrevia
- Department of Obstetrics, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Brazil; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland, Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston 4029, Queensland, Australia; Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen (UMCG), 9713GZ, Groningen, the Netherlands; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
33
|
Emerging Effects of IL-33 on COVID-19. Int J Mol Sci 2022; 23:ijms232113656. [PMID: 36362440 PMCID: PMC9658128 DOI: 10.3390/ijms232113656] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Since the start of COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more than 6 million people have lost their lives worldwide directly or indirectly. Despite intensified efforts to clarify the immunopathology of COVID-19, the key factors and processes that trigger an inflammatory storm and lead to severe clinical outcomes in patients remain unclear. As an inflammatory storm factor, IL-33 is an alarmin cytokine, which plays an important role in cell damage or infection. Recent studies have shown that serum IL-33 is upregulated in COVID-19 patients and is strongly associated with poor outcomes. Increased IL-33 levels in severe infections may result from an inflammatory storm caused by strong interactions between activated immune cells. However, the effects of IL-33 in COVID-19 and the underlying mechanisms remain to be fully elucidated. In this review, we systematically discuss the biological properties of IL-33 under pathophysiological conditions and its regulation of immune cells, including neutrophils, innate lymphocytes (ILCs), dendritic cells, macrophages, CD4+ T cells, Th17/Treg cells, and CD8+ T cells, in COVID-19 phagocytosis. The aim of this review is to explore the potential value of the IL-33/immune cell pathway as a new target for early diagnosis, monitoring of severe cases, and clinical treatment of COVID-19.
Collapse
|
34
|
Jasim SA, Mahdi RS, Bokov DO, Najm MAA, Sobirova GN, Bafoyeva ZO, Taifi A, Alkadir OKA, Mustafa YF, Mirzaei R, Karampoor S. The deciphering of the immune cells and marker signature in COVID-19 pathogenesis: An update. J Med Virol 2022; 94:5128-5148. [PMID: 35835586 PMCID: PMC9350195 DOI: 10.1002/jmv.28000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
The precise interaction between the immune system and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical in deciphering the pathogenesis of coronavirus disease 2019 (COVID-19) and is also vital for developing novel therapeutic tools, including monoclonal antibodies, antivirals drugs, and vaccines. Viral infections need innate and adaptive immune reactions since the various immune components, such as neutrophils, macrophages, CD4+ T, CD8+ T, and B lymphocytes, play different roles in various infections. Consequently, the characterization of innate and adaptive immune reactions toward SARS-CoV-2 is crucial for defining the pathogenicity of COVID-19. In this study, we explain what is currently understood concerning the conventional immune reactions to SARS-CoV-2 infection to shed light on the protective and pathogenic role of immune response in this case. Also, in particular, we investigate the in-depth roles of other immune mediators, including neutrophil elastase, serum amyloid A, and syndecan, in the immunopathogenesis of COVID-19.
Collapse
Affiliation(s)
| | - Roaa Salih Mahdi
- Department of Pathology, College of MedicineUniversity of BabylonHillaIraq
| | - Dmitry Olegovich Bokov
- Institute of PharmacySechenov First Moscow State Medical UniversityMoscowRussian Federation
- Laboratory of Food ChemistryFederal Research Center of Nutrition, Biotechnology and Food SafetyMoscowRussian Federation
| | - Mazin A. A. Najm
- Pharmaceutical Chemistry Department, College of PharmacyAl‐Ayen UniversityThi‐QarIraq
| | - Guzal N. Sobirova
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | - Zarnigor O. Bafoyeva
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of PharmacyUniversity of MosulMosulIraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
35
|
Kudryavtsev I, Matyushenko V, Stepanova E, Vasilyev K, Rudenko L, Isakova-Sivak I. In Vitro Stimulation with Live SARS-CoV-2 Suggests Th17 Dominance In Virus-Specific CD4+ T Cell Response after COVID-19. Vaccines (Basel) 2022; 10:1544. [PMID: 36146622 PMCID: PMC9502469 DOI: 10.3390/vaccines10091544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The SARS-CoV-2 and influenza viruses are the main causes of human respiratory tract infections with similar disease manifestation but distinct mechanisms of immunopathology and host response to the infection. In this study, we investigated the SARS-CoV-2-specific CD4+ T cell phenotype in comparison with H1N1 influenza-specific CD4+ T cells. We determined the levels of SARS-CoV-2- and H1N1-specific CD4+ T cell responses in subjects recovered from COVID-19 one to 15 months ago by stimulating PBMCs with live SARS-CoV-2 or H1N1 influenza viruses. We investigated phenotypes and frequencies of main CD4+ T cell subsets specific for SARS-CoV-2 using an activation induced cell marker assay and multicolor flow cytometry, and compared the magnitude of SARS-CoV-2- and H1N1-specific CD4+ T cells. SARS-CoV-2-specific CD4+ T cells were detected 1-15 months post infection and the frequency of SARS-CoV-2-specific central memory CD4+ T cells was increased with the time post-symptom onset. Next, SARS-CoV-2-specific CD4+ T cells predominantly expressed the Th17 phenotype, but the level of Th17 cells in this group was lower than in H1N1-specific CD4+ T cells. Finally, we found that the lower level of total Th17 subset within total SARS-CoV-2-specific CD4+ T cells was linked with the low level of CCR4+CXCR3- 'classical' Th17 cells if compared with H1N1-specific Th17 cells. Taken together, our data suggest the involvement of Th17 cells and their separate subsets in the pathogenesis of SARS-CoV-2- and influenza-induced pneumonia; and a better understanding of Th17 mediated antiviral immune responses may lead to the development of new therapeutic strategies.
Collapse
|
36
|
Wang J, Li Q, Qiu Y, Lu H. COVID-19: imbalanced cell-mediated immune response drives to immunopathology. Emerg Microbes Infect 2022; 11:2393-2404. [PMID: 36069182 PMCID: PMC9553190 DOI: 10.1080/22221751.2022.2122579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses an imminent threat to humanity. SARS-CoV-2 invades host cells, causing a failure of host immune recognition. Instead of an effective antiviral immunological response after SARS-CoV-2 invasion, the cascading pathological syndrome of COVID-19, especially in severe disease, is exacerbated by an overt inflammatory response and the suppression of SARS-CoV-2–specific immune responses. As is known, excessive inflammation leads to pathophysiological changes in virus-infected tissues or organs, manifested by imbalanced immune responses, cytokine storm, and aggressive neutrophil activation, ultimately leading to lung damage, such as alveolar damage, endotheliitis, and fluid overload. However, the triggers and consequences of a disruption to immune system homeostasis and the underlying mechanisms of uncontrolled immunopathology following viral infection remain unclear. Here, we review the dynamic and systemic immune progression from an imbalance in cell-mediated immune responses to COVID-19 lung injury. Our understanding of key mechanisms involved in pathogenesis is critical for the development of therapeutic agents and to optimize therapeutic strategies.
Collapse
Affiliation(s)
- Jun Wang
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen 518112, Guangdong Province, China.,Clinical Laboratory, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
| | - Qian Li
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen 518112, Guangdong Province, China
| | - YuanWang Qiu
- Department of hepatology, The Fifth People's Hospital of Wuxi, Jiangnan University, No. 1314 Guangrui Road, Wuxi 215006, Jiangsu, China
| | - Hongzhou Lu
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen 518112, Guangdong Province, China
| |
Collapse
|
37
|
Zeinali T, Faraji N, Joukar F, Khan Mirzaei M, Kafshdar Jalali H, Shenagari M, Mansour-Ghanaei F. Gut bacteria, bacteriophages, and probiotics: Tripartite mutualism to quench the SARS-CoV2 storm. Microb Pathog 2022; 170:105704. [PMID: 35948266 PMCID: PMC9357283 DOI: 10.1016/j.micpath.2022.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Patients with SARS-CoV-2 infection, exhibit various clinical manifestations and severity including respiratory and enteric involvements. One of the main reasons for death among covid-19 patients is excessive immune responses directed toward cytokine storm with a low chance of recovery. Since the balanced gut microbiota could prepare health benefits by protecting against pathogens and regulating immune homeostasis, dysbiosis or disruption of gut microbiota could promote severe complications including autoimmune disorders; we surveyed the association between the imbalanced gut bacteria and the development of cytokine storm among COVID-19 patients, also the impact of probiotics and bacteriophages on the gut bacteria community to alleviate cytokine storm in COVID-19 patients. In present review, we will scrutinize the mechanism of immunological signaling pathways which may trigger a cytokine storm in SARS-CoV2 infections. Moreover, we are explaining in detail the possible immunological signaling pathway-directing by the gut bacterial community. Consequently, the specific manipulation of gut bacteria by using probiotics and bacteriophages for alleviation of the cytokine storm will be investigated. The tripartite mutualistic cooperation of gut bacteria, probiotics, and phages as a candidate prophylactic or therapeutic approach in SARS-CoV-2 cytokine storm episodes will be discussed at last.
Collapse
Affiliation(s)
- Tahereh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Faraji
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Center Munich and Technical University of Munich, 85764, Neuherberg, Germany
| | - Hossnieh Kafshdar Jalali
- Department of Microbiology, Faculty of Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Mohammad Shenagari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Caspian Digestive Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
38
|
Xu Z, Jiang X, Dai X, Li B. The Dynamic Role of FOXP3+ Tregs and Their Potential Therapeutic Applications During SARS-CoV-2 Infection. Front Immunol 2022; 13:916411. [PMID: 35874688 PMCID: PMC9305488 DOI: 10.3389/fimmu.2022.916411] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/03/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been raging all around the world since the beginning of 2020, and leads to acute respiratory distress syndrome (ARDS) with strong cytokine storm which contributes to widespread tissue damage and even death in severe patients. Over-activated immune response becomes one of the characteristics of severe COVID-19 patients. Regulatory T cells (Treg) play an essential role in maintaining the immune homeostasis, which restrain excessive inflammation response. So FOXP3+ Tregs might participate in the suppression of inflammation caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Besides suppressive function, tissue resident Tregs are also responsible for tissue repair. In this review, we mainly summarize the latest research focusing on the change of FOXP3+ Tregs in the COVID-19 patients, discuss the relationship between disease severity and number change of Tregs and speculate the potential role of FOXP3+ Tregs during SARS-CoV-2 infection. Furthermore, we introduce some potential Treg-based therapies to improve patients’ outcomes, which include small molecular drugs, antibody drugs, CAR-Treg and cytokine treatment. We hope to reduce tissue damage of severe COVID-19 patients and offer better prognosis through Treg-based therapy.
Collapse
Affiliation(s)
- Zhan Xu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Jiang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueyu Dai
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xueyu Dai, ; Bin Li,
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Clinical Translational Research Center, Shanghai Pulmonary Hospital, Department of Integrated TCM and Western Medicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Arthritis Research, Guanghua Integrative Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Shenzhen, China
- *Correspondence: Xueyu Dai, ; Bin Li,
| |
Collapse
|
39
|
Cervantes O, Talavera IC, Every E, Coler B, Li M, Li A, Li H, Adams Waldorf K. Role of hormones in the pregnancy and sex-specific outcomes to infections with respiratory viruses. Immunol Rev 2022; 308:123-148. [PMID: 35373371 PMCID: PMC9189035 DOI: 10.1111/imr.13078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/13/2023]
Abstract
Pregnant women infected with pathogenic respiratory viruses, such as influenza A viruses (IAV) and coronaviruses, are at higher risk for mortality, hospitalization, preterm birth, and stillbirth. Several factors are likely to contribute to the susceptibility of pregnant individuals to severe lung disease including changes in pulmonary physiology, immune defenses, and effector functions of some immune cells. Pregnancy is also a physiologic state characterized by higher levels of multiple hormones that may impact the effector functions of immune cells, such as progesterone, estrogen, human chorionic gonadotropin, prolactin, and relaxin. Each of these hormones acts to support a tolerogenic immune state of pregnancy, which helps prevent fetal rejection, but may also contribute to an impaired antiviral response. In this review, we address the unique role of adaptive and innate immune cells in the control of pathogenic respiratory viruses and how pregnancy and specific hormones can impact their effector actions. We highlight viruses with sex-specific differences in infection outcomes and why pregnancy hormones may contribute to fetal protection but aid the virus at the expense of the mother's health.
Collapse
Affiliation(s)
- Orlando Cervantes
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Irene Cruz Talavera
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Emma Every
- University of Washington School of Medicine, Spokane, Washington, United States of America
| | - Brahm Coler
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
| | - Miranda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Department of Biological Sciences, Columbia University, New York City, New York, United States of America
| | - Amanda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Case Western Reserve, Cleveland, Ohio, United States of America
| | - Hanning Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
40
|
Ceballos FC, Virseda-Berdices A, Resino S, Ryan P, Martínez-González O, Peréz-García F, Martin-Vicente M, Brochado-Kith O, Blancas R, Bartolome-Sánchez S, Vidal-Alcántara EJ, Albóniga-Díez OE, Cuadros-González J, Blanca-López N, Martínez I, Martinez-Acitores IR, Barbas C, Fernández-Rodríguez A, Jiménez-Sousa MÁ. Metabolic Profiling at COVID-19 Onset Shows Disease Severity and Sex-Specific Dysregulation. Front Immunol 2022; 13:925558. [PMID: 35844615 PMCID: PMC9280146 DOI: 10.3389/fimmu.2022.925558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Backgroundmetabolic changes through SARS-CoV-2 infection has been reported but not fully comprehended. This metabolic dysregulation affects multiple organs during COVID-19 and its early detection can be used as a prognosis marker of severity. Therefore, we aimed to characterize metabolic and cytokine profile at COVID-19 onset and its relationship with disease severity to identify metabolic profiles predicting disease progression.Material and Methodswe performed a retrospective cross-sectional study in 123 COVID-19 patients which were stratified as asymptomatic/mild, moderate and severe according to the highest COVID-19 severity status, and a group of healthy controls. We performed an untargeted plasma metabolic profiling (gas chromatography and capillary electrophoresis-mass spectrometry (GC and CE-MS)) and cytokine evaluation.ResultsAfter data filtering and identification we observed 105 metabolites dysregulated (66 GC-MS and 40 CE-MS) which shown different expression patterns for each COVID-19 severity status. These metabolites belonged to different metabolic pathways including amino acid, energy, and nitrogen metabolism among others. Severity-specific metabolic dysregulation was observed, as an increased transformation of L-tryptophan into L-kynurenine. Thus, metabolic profiling at hospital admission differentiate between severe and moderate patients in the later phase of worse evolution. Several plasma pro-inflammatory biomarkers showed significant correlation with deregulated metabolites, specially with L-kynurenine and L-tryptophan. Finally, we describe a strong sex-related dysregulation of metabolites, cytokines and chemokines between severe and moderate patients. In conclusion, metabolic profiling of COVID-19 patients at disease onset is a powerful tool to unravel the SARS-CoV-2 molecular pathogenesis.ConclusionsThis technique makes it possible to identify metabolic phenoconversion that predicts disease progression and explains the pronounced pathogenesis differences between sexes.
Collapse
Affiliation(s)
- Francisco C. Ceballos
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Ana Virseda-Berdices
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Salvador Resino
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Ryan
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Oscar Martínez-González
- Critical Care Department, Hospital Universitario del Tajo, Aranjuez, Spain
- Universidad Alfonso X el Sabio, Villanueva de la Cañada, Madrid, Spain
| | - Felipe Peréz-García
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
- Department of Biomedicine and Biotecnology, Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, Spain
| | - María Martin-Vicente
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Brochado-Kith
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Blancas
- Critical Care Department, Hospital Universitario del Tajo, Aranjuez, Spain
- Universidad Alfonso X el Sabio, Villanueva de la Cañada, Madrid, Spain
| | - Sofía Bartolome-Sánchez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Erick Joan Vidal-Alcántara
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Oihane Elena Albóniga-Díez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Juan Cuadros-González
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
- Department of Biomedicine and Biotecnology, Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, Spain
| | | | - Isidoro Martínez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Amanda Fernández-Rodríguez, ; María Ángeles Jiménez-Sousa,
| | - María Ángeles Jiménez-Sousa
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Amanda Fernández-Rodríguez, ; María Ángeles Jiménez-Sousa,
| |
Collapse
|
41
|
COVID-19 infection and thyroid function. ENDOCRINE AND METABOLIC SCIENCE 2022; 7:100122. [PMID: 35971501 PMCID: PMC9365515 DOI: 10.1016/j.endmts.2022.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/23/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022] Open
Abstract
Context Patients and methods Results Conclusion
Collapse
|
42
|
Thyrotoxicosis occurrence in SARS-CoV-2 infection: A case report. Ann Med Surg (Lond) 2022; 78:103700. [PMID: 35505686 PMCID: PMC9050609 DOI: 10.1016/j.amsu.2022.103700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Coronavirus Disease 2019 (COVID-19) is predominantly manifested as respiratory distress. There are growing reports of extrapulmonary clinical manifestations of COVID-19 in addition to the respiratory symptoms. COVID-19 has been associated with the thyroid function through Angiotensin-converting enzyme 2 (ACE2), the central mechanism through Thyroid Stimulating Hormone (TSH), and direct replication of the virus. Case presentation A 26-year-old woman presented with complaints of palpitation and abdominal pain for three days. Because the symptoms were worsening, she was brought to the emergency room. Her temperature was 37.9 °C without any symptoms of cough, coryza, sneezing, nor headache. Physical examination revealed tremor, tachycardia with 162 beats per minute (bpm), excessive sweating, hyperreflexia of patellar reflex, and no prominent lump in the neck. Electrocardiography (ECG) showed supraventricular tachycardic rhythm (SVT) and 150 J cardioversions were performed. The ECG converted to sinus rhythm, regular, with 120 bpm. Thyroid function tests showed an elevated fT4 level (>7.77 ng/dL) and low TSH level (<0.005 μIU/mL). Chest X-ray showed slight cardiomegaly without prominent abnormality in the lungs that was confirmed with thoracic computerized tomography. The result of the rapid antigen test for COVID-19 was positive and confirmed with polymerase chain reaction testing. She was then treated in the intensive isolation room with remdesivir, anti-hyperthyroid, and supportive therapy. As her condition improved, she was shifted to a non-intensive isolation room and was discharged from the hospital at day 7. Discussion COVID-19 could present as a thyroid crisis as the initial clinical manifestation. Clinicians should be aware that presentation of thyroid dysfunction in a patient without previous endocrine disease could be due to COVID-19 infection. Early recognition, anti-hyperthyroid therapy, and following isolation procedures for COVID-19 are required in the emergency condition. Thyroid crisis could be associated with COVID-19 infection. Extra-respiratory manifestations of COVID-19 infection vary among patients. Clinicians should be aware of thyroid crisis as a COVID-19 infection manifestation.
Collapse
|
43
|
Ghafoor H, Abdus Samad A, Bel Khair AOM, Ahmed O, Khan MNA. Critical Care Management of Severe COVID-19 in Pregnant Patients. Cureus 2022; 14:e24885. [PMID: 35572463 PMCID: PMC9097928 DOI: 10.7759/cureus.24885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Since December 2019, the coronavirus disease (COVID-19) pandemic has had a disastrous impact worldwide. COVID-19 is caused by the SARS-CoV-2 virus and was declared a pandemic by the WHO on March 11, 2020. The virus has been linked to a wide range of respiratory illnesses, ranging from mild symptoms to acute pneumonia and severe respiratory distress syndrome. Pregnant women are more vulnerable to COVID-19 complications owing to the physiological and immunological changes caused by pregnancy. According to the CDC, pregnant patients with COVID-19 are commonly hospitalized and often require admission to ICUs and ventilator support. Therefore, it is especially important for pregnant women to adhere to disease prevention measures to lower the risk of contracting the disease. In addition, the guidelines of several clinical societies and local health authorities should be followed when caring for pregnant women with suspected or confirmed COVID-19. In this review article, we discuss the epidemiology of COVID-19 during delivery, its effect on the physiological and immunological changes during pregnancy, the classification of COVID-19 severity, maternal and fetal risks, antenatal care, respiratory management, treatment/medication safety, timing and mode of delivery, anesthetic considerations, and the outcome of critically ill pregnant patients with COVID-19, as well as their post-delivery care and weaning from mechanical ventilation.
Collapse
Affiliation(s)
- Hashsaam Ghafoor
- Department of Anaesthesiology, Hamad Medical Corporation, Al Khor, QAT
| | - Aijaz Abdus Samad
- Department of Anaesthesiology, Latifa Women and Children Hospital, Dubai, ARE
| | | | - Osman Ahmed
- Department of Anaesthesiology, Hamad Medical Corporation, Al Khor, QAT
| | - Muhammad Nasir Ayub Khan
- Department of Anaesthesiology and Critical Care, Shifa International Hospital Islamabad, Islamabad, PAK
| |
Collapse
|
44
|
Modulating neuroinflammation in COVID-19 patients with obsessive-compulsive disorder. J Psychiatr Res 2022; 149:367-373. [PMID: 34809994 PMCID: PMC8594960 DOI: 10.1016/j.jpsychires.2021.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
Exacerbation of symptoms of obsessive-compulsive disorder (OCD) during COVID-19 or new onset of the OCD symptoms resulting from COVID-19 infection is an understudied area of research. It is possible that increased proinflammatory immune status is associated with the onset of obsessive-compulsive symptoms in patients with COVID-19 and that targeted anti-inflammatory treatments for COVID-19 infection can mitigate the new onset of Obsessive-Compulsive (OC) spectrum symptoms. In this review, we cover OCD pathogenesis as related to COVID-19, summarize the impact of cytokines on behavior, and suggest that anti-cytokine treatments can help mitigate post-COVID-19 and new onset of the OC symptoms.
Collapse
|
45
|
Saghafi N, Rezaee SA, Momtazi-Borojeni AA, Tavasolian F, Sathyapalan T, Abdollahi E, Sahebkar A. The therapeutic potential of regulatory T cells in reducing cardiovascular complications in patients with severe COVID-19. Life Sci 2022; 294:120392. [PMID: 35149115 PMCID: PMC8824166 DOI: 10.1016/j.lfs.2022.120392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 12/15/2022]
Abstract
The SARS coronavirus 2 (SARS CoV-2) causes Coronavirus Disease (COVID-19), is an emerging viral infection. SARS CoV-2 infects target cells by attaching to Angiotensin-Converting Enzyme (ACE2). SARS CoV-2 could cause cardiac damage in patients with severe COVID-19, as ACE2 is expressed in cardiac cells, including cardiomyocytes, pericytes, and fibroblasts, and coronavirus could directly infect these cells. Cardiovascular disorders are the most frequent comorbidity found in COVID-19 patients. Immune cells such as monocytes, macrophages, and T cells may produce inflammatory cytokines and chemokines that contribute to COVID-19 pathogenesis if their functions are uncontrolled. This causes a cytokine storm in COVID-19 patients, which has been associated with cardiac damage. Tregs are a subset of immune cells that regulate immune and inflammatory responses. Tregs suppress inflammation and improve cardiovascular function through a variety of mechanisms. This is an exciting research area to explore the cellular, molecular, and immunological mechanisms related to reducing risks of cardiovascular complications in severe COVID-19. This review evaluated whether Tregs can affect COVID-19-related cardiovascular complications, as well as the mechanisms through which Tregs act.
Collapse
Affiliation(s)
- Nafiseh Saghafi
- Department of Gynecology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Research Center for HIV/AIDS, HTLV and Viral Hepatitis, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch, Mashhad, Iran; Inflammation and Inflammatory Diseases Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, UK
| | - Elham Abdollahi
- Department of Gynecology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
46
|
Jerzak M, Szafarowska M. Preliminary Results for Personalized Therapy in Pregnant Women with Polycystic Ovary Syndrome During the COVID-19 Pandemic. Arch Immunol Ther Exp (Warsz) 2022; 70:13. [PMID: 35325391 PMCID: PMC8943102 DOI: 10.1007/s00005-022-00650-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
Abstract
Increased androgen level, hyperinsulinemia, diabetes, impaired fibrinolysis, obesity, hypertension, chronic inflammation, abnormal immune response to infections and hyperhomocysteinemia are the most common abnormalities related to polycystic ovary syndrome (PCOS) women and are the factors predisposing to the severe course of COVID-19. The SARS-Cov-2 infection during pregnancy is associated with an increased risk of complications (spontaneous abortion), similar to those in PCOS. The treatment of PCOS pregnant women with a history of fertility failures raises many doubts, especially during the COVID pandemic. However, due to the increasing incidence of infections among reproductive people and the potentially more serious course in pregnant women, numerous questions about the safety and effectiveness of the treatment are still very current. In our study we presented a series of cases of recurrent miscarriages or recurrent implantation failure PCOS pregnant women with confirmed COVID-19. The diagnosis of infertility confirmed the presence of plasminogen activator inhibitor type 1 and/or 5,10-methylenetetrahydrofolate reductase polymorphisms in each of them. Moreover, some of the women presented immune dysfunction associated with infertility. We have described the personalized treatments of each pregnant patient included: metformin, enoxaparin and tacrolimus. The treatment applied had the expected effect, supporting the implantation processes. Furthermore, despite the ambiguous data according to immunological therapy of infertile women during the COVID pandemic, we observed a mild or asymptomatic COVID-19 course and we noticed no pregnancy complications.
Collapse
Affiliation(s)
| | - Monika Szafarowska
- Department of Gynecology and Oncological Gynecology, Military Medical Institute, Warsaw, Poland.
| |
Collapse
|
47
|
Abdelazeem B, Awad AK, Elbadawy MA, Manasrah N, Malik B, Yousaf A, Alqasem S, Banour S, Abdelmohsen SM. The effects of curcumin as dietary supplement for patients with COVID-19: A systematic review of randomized clinical trials. Drug Discov Ther 2022; 16:14-22. [PMID: 35264470 DOI: 10.5582/ddt.2022.01017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accumulating evidence has been reported regarding the effect of curcumin as a dietary antiviral on patients with COVID-19; however, findings are controversial. Our systematic review aimed to evaluate the effects of curcumin in patients with COVID-19. Electronic databases (PubMed, EMBASE, Scopus, Web of Science, Cochrane Central, and Google Scholar) were systematically searched to identify only randomized clinical trials (RCTs) that assessed curcumin in patients with COVID-19 from inception to September 23, 2021 relevant keywords. The Cochrane risk-of-bias tool for randomized trials was used to evaluate the risk of bias. After a critical review of 1,098 search hits, only six RCTs were selected for discussion. A total of 480 patients were included, with 240 amongst the curcumin groups and 240 in the control group. The lymphocyte count was significantly higher in the curcumin group compared to the placebo group. Curcumin was found to decrease the number of T-helper 17 cells, downregulate T-helper-17 cell-related factors, reduce levels of T-helper-17 cell-related cytokines, yet increase the gene expression of Treg transcription factor forkhead box P3 (FOXP3), and decrease T-Box transcription factor 21 (TBX21). Our review revealed that curcumin might have a positive effect on relieving COVID-19 related inflammatory response due to its powerful immune-modulatory effects on cytokines production, T-cell responses, and gene expression. These findings suggest that curcumin confers clinical benefits in patients with COVID-19. However, due to the limited number of the included studies, further high-quality studies are needed to establish the clinical efficacy of the curcumin.
Collapse
Affiliation(s)
- Basel Abdelazeem
- McLaren Health Care, Flint, Michigan, USA.,Michigan State University, East Lansing, Michigan, USA
| | - Ahmed K Awad
- Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | | | - Nouraldeen Manasrah
- Detroit Medical Center/Sinai Grace Hospital, Detroit, Michigan, USA.,Wayne State University, Detroit, Michigan, USA
| | - Bilal Malik
- McLaren Health Care, Flint, Michigan, USA.,Michigan State University, East Lansing, Michigan, USA
| | - Amman Yousaf
- McLaren Health Care, Flint, Michigan, USA.,Michigan State University, East Lansing, Michigan, USA
| | - Sarah Alqasem
- Jordan university of science and technology, Amman, Jordan
| | | | | |
Collapse
|
48
|
Kara B. Could Maternal COVID-19 Disease be a Risk Factor for Neurodevelopmental Disorders in the Child? Turk Arch Pediatr 2022; 56:542-544. [PMID: 35110050 PMCID: PMC8849317 DOI: 10.5152/turkarchpediatr.2021.21041021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Bülent Kara
- Division of Child Neurology, Department of Pediatrics, Kocaeli University School of Medicine, Kocaeli, Turkey
| |
Collapse
|
49
|
Usui N, Togawa S, Sumi T, Kobayashi Y, Koyama Y, Nakamura Y, Kondo M, Shinoda K, Kobayashi H, Shimada S. Si-Based Hydrogen-Producing Nanoagent Protects Fetuses From Miscarriage Caused by Mother-to-Child Transmission. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:665506. [PMID: 35047922 PMCID: PMC8757766 DOI: 10.3389/fmedt.2021.665506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Mother-to-child transmission of viruses and bacteria increases the risk of miscarriage and various diseases in children. Such transmissions can result in infections and diseases in infants or the induction of an inflammatory immune response through the placenta. Recently, we developed a silicon (Si)-based hydrogen-producing nanoagent (Si-based agent) that continuously and effectively produces hydrogen in the body. Since medical hydrogen has antioxidative, anti-inflammatory, antiallergic, and antiapoptotic effects, we investigated the effects of our Si-based agent on mother-to-child transmission, with a focus on the rate of miscarriage. In pregnant mice fed a diet containing the Si-based agent, lipopolysaccharide (LPS)-induced miscarriage due to mother-to-child transmission was reduced and inflammation and neutrophil infiltration in the placenta were suppressed. We also found that the Si-based agent suppressed IL-6 expression in the placenta and induced the expression of antioxidant and antiapoptotic genes, such as Hmox1 and Ptgs2. The observed anti-inflammatory effects of the Si-based agent suggest that it may be an effective preventative or therapeutic drug for miscarriage or threatened miscarriage during pregnancy by suppressing maternal inflammation caused by bacterial and viral infections.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,United Graduate School of Child Development, Osaka University, Suita, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan.,Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Shogo Togawa
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Takuya Sumi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuki Kobayashi
- Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Yukiko Nakamura
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Makoto Kondo
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hikaru Kobayashi
- Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,United Graduate School of Child Development, Osaka University, Suita, Japan.,Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| |
Collapse
|
50
|
The impact of COVID-19 on pregnancy outcomes in a diverse cohort in England. Sci Rep 2022; 12:942. [PMID: 35042979 PMCID: PMC8766432 DOI: 10.1038/s41598-022-04898-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
There is conflicting evidence regarding the effect of coronavirus disease (COVID-19) in pregnancy. Risk factors for COVID-19 overlap with risk factors for pregnancy complications. We aimed to assess the effects of the COVID-19 pandemic and confirmed SARS-CoV-2 infection on pregnancy outcomes. A retrospective interrupted time-series and matched cohort analysis was performed. Singleton pregnancies completed between 1st January 2016 and 31st January 2021 were included. Trends in outcomes were analysed over time. Modelled COVID-19 transmission data were applied to deliveries since 1st January 2020 to assign a risk of COVID-19 to each pregnancy, and incorporated into a regression model of birthweight. Confirmed COVID-19 cases were matched to controls delivered in the pre-pandemic period, and maternal and neonatal outcomes compared. 43,802 pregnancies were included, with 8343 in the model of birthweight. There was no increase in the risk of stillbirth (p = 0.26) or neonatal death (p = 0.64) during the pandemic. There was no association between modelled COVID-19 attack rate (%) in any trimester and birthweight (first trimester p = 0.50, second p = 0.15, third p = 0.16). 214 COVID-positive women were matched to controls. Preterm birth was more common in symptomatic cases (14/62, 22.6%) compared to asymptomatic cases (9/109, 8.3%, p = 0.008) and controls (5/62, 8.1%, p = 0.025). Iatrogenic preterm birth was more common in cases (21/214, 9.8%) than controls (9/214, 4.2%, p = 0.02). All other examined outcomes were similar between groups. There was no significant impact of COVID-19 on the examined birth outcomes available. Symptomatic COVID-19 should be considered a risk factor for preterm birth, possibly due to an increase in iatrogenic deliveries for maternal indications.
Collapse
|