1
|
Ferlito JV, Ferlito MV, Rolnick N, Ferreira DM, Leal-Junior EP, De Marchi T, Branco CS. Photobiomodulation before blood flow restriction exercises: a randomized clinical trial. Int J Sports Med 2025. [PMID: 40250416 DOI: 10.1055/a-2564-8876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
This study investigate the effects of photobiomodulation therapy applied before exercises with blood flow restriction during low-load or high-load exercises on muscle adaptations, muscle damage, and redox status. Forty-five untrained men were randomly assigned to four groups: photobiomodulation therapy-blood flow restriction (30% of maximal isometric voluntary contraction), placebo-blood flow restriction (30% of maximal isometric voluntary contraction), photobiomodulation therapy-high-load exercise (80% of maximal isometric voluntary contraction), and placebo-high-load exercise (80% of maximal isometric voluntary contraction). Elbow flexion exercises were performed twice weekly for 8 weeks, followed by a 4-week detraining period. After 8 weeks, photobiomodulation therapy-blood flow restriction, photobiomodulation therapy-high-load exercises, and placebo-blood flow restriction groups significantly increased muscle strength (p<0.05) with non-significant increases in the placebo-high-load exercise group. The photobiomodulation therapy-blood flow restriction group demonstrated a superior magnitude of effects compared to the placebo-high-load exercise (+10.2%) and placebo-blood flow restriction (+7%; p<0.008) groups. Only the placebo-blood flow restriction group reduced the fatigue index post-intervention. During the detraining period, both blood flow restriction groups maintained superior muscle strength compared to baseline levels. The placebo-high-load exercise group exhibited higher creatine kinase activity post-exercise compared to the other groups. No significant changes were observed in nitric oxide, thiobarbituric acid reactive substances, carbonylated proteins, or total antioxidant capacity immediately post-exercise. However, the total antioxidant capacity levels were increased in all groups after 8 weeks of exercise and following a 4-week detraining period. Overall, the photobiomodulation therapy-blood flow restriction group promoted greater gains in muscle strength compared to the placebo-high-load exercise and placebo-blood flow restriction groups.
Collapse
Affiliation(s)
- Joao Vitor Ferlito
- Laboratory of Oxidative Stress and Antioxidants, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Marcos Vinicius Ferlito
- Laboratory of Oxidative Stress and Antioxidants, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, Brazil
| | | | - Daniel Mauer Ferreira
- Laboratory of Oxidative Stress and Antioxidants, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Ernesto P Leal-Junior
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Universidade Nove de Julho, São Paulo, Brazil
| | - Thiago De Marchi
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Universidade Nove de Julho, São Paulo, Brazil
| | - Catia Santos Branco
- Laboratory of Oxidative Stress and Antioxidants, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, Brazil
| |
Collapse
|
2
|
Turkel I, Kubat GB, Fatsa T, Acet O, Ozerklig B, Yazgan B, Simsek G, Singh KK, Kosar SN. Acute treadmill exercise induces mitochondrial unfolded protein response in skeletal muscle of male rats. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149532. [PMID: 39675514 DOI: 10.1016/j.bbabio.2024.149532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/24/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Mitochondria are often referred to as the energy centers of the cell and are recognized as key players in signal transduction, sensing, and responding to internal and external stimuli. Under stress conditions, the mitochondrial unfolded protein response (UPRmt), a conserved mitochondrial quality control mechanism, is activated to maintain mitochondrial and cellular homeostasis. As a physiological stimulus, exercise-induced mitochondrial perturbations trigger UPRmt, coordinating mitochondria-to-nucleus communication and initiating a transcriptional program to restore mitochondrial function. The aim of this study was to evaluate the UPRmt signaling response to acute exercise in skeletal muscle. Male rats were subjected to acute treadmill exercise at 25 m/min for 60 min on a 0 % grade. Plantaris muscles were collected from both sedentary and exercise groups at various times: immediately (0), and at 1, 3, 6, 12, and 24 h post-exercise. Reactive oxygen species (ROS) production was assessed using hydrogen peroxide assay and dihydroethidium staining. Additionally, the mRNA and protein expression of UPRmt markers were measured using ELISA and real-time PCR. Mitochondrial activity was assessed using succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) staining. Our results demonstrated that acute exercise increased ROS production and upregulated UPRmt markers at both gene and protein levels. Moreover, skeletal muscle exhibited an increase in mitochondrial activity in response to exercise, as indicated by SDH and COX staining. These findings suggest that acute treadmill exercise is sufficient to induce ROS production, activate UPRmt signaling, and enhance mitochondrial activity in skeletal muscle, expanding our understanding of mitochondrial adaptations to exercise.
Collapse
Affiliation(s)
- Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey.
| | - Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey; Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey.
| | - Tugba Fatsa
- Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Ozgu Acet
- Department of Pathology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Canada; Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, Canada
| | - Burak Yazgan
- Department of Medical Services and Techniques, Sabuncuoglu Serefeddin Health Services Vocational School, Amasya University, Amasya, Turkey
| | - Gulcin Simsek
- Department of Pathology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Keshav K Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sukran Nazan Kosar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Liu R, Qin J, Zhang X, Wang F, Xue W. Cardiopulmonary endurance-training responsiveness of metabolic syndrome patients to individualized and standardized exercise prescriptions: a randomized controlled trial. Front Physiol 2025; 16:1427629. [PMID: 40161971 PMCID: PMC11949888 DOI: 10.3389/fphys.2025.1427629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Objective This investigation compares the effects of two exercise prescriptions with equal energy consumption but different exercise intensity-determination methods on cardiopulmonary endurance in a population with metabolic syndrome (MetS). This investigation verified the effectiveness of individualized methods in patients with MetS undergoing moderate-intensity exercises. Methods The participants were randomized into a standardized group or individualized group. Exercise intensity was determined based on the heart rate reserve method in the standardized group and ventilatory threshold model in the individualized group. The two groups completed 12 weeks of an exercise prescription with equal exercise frequency and energy consumption. Using cardiopulmonary exercise testing (CPET), primary and secondary cardiovascular endurance indicators were measured. The percentage change of PeakVO2 was used to classify participants as responders and non-responders. Other markers were used in auxiliary analysis of individual training responses. Results A total of 40 MetS participants (75% male; mean age: 43.58 ± 11.73; body mass index: 30.39 ± 4.26) completed all exercise interventions. The PeakVO2 increased significantly (P < 0.05) in both the standardized and individualized groups. Significant improvements in peak heart rate and maximum voluntary ventilation were observed in the individualized group. Differences in training responsiveness were also observed between the standardized and individualized groups, with 70% and 90%, respectively, being classified as responders, and improvements in PeakVO2 experienced by 14.6% and 22.1%, respectively. During the training period (weeks 4-12), a significant difference in responsiveness was observed between the groups. Similar adverse changes were present in the CPET markers of adverse responders. Conclusion The ventilatory threshold model-based individualized method has advantages in the MetS population. However, the responsiveness to the individualized method did not reach 100% in patients with MetS.
Collapse
Affiliation(s)
- Ruojiang Liu
- Physical Education College, North University of China, Taiyuan, China
| | - Jinmei Qin
- Heart Rehabilitation Center, Peking University First Hospital Taiyuan Hospital, Taiyuan, China
| | - Xiang Zhang
- Physical Education College, North University of China, Taiyuan, China
| | - Feng Wang
- The Ninth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Weizhen Xue
- The Ninth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Xu J, Song Z. The role of different physical exercises as an anti-aging factor in different stem cells. Biogerontology 2025; 26:63. [PMID: 40009244 DOI: 10.1007/s10522-025-10205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
The senescence process is connected to the characteristics of cellular aging. Understanding their causal network helps develop a framework for creating new treatments to slow down the senescence process. A growing body of research indicates that aging may adversely affect stem cells (SCs). SCs change their capability to differentiate into different cell types and decrease their potential for renewal as they age. Research has indicated that consistent physical exercise offers several health advantages, including a reduced risk of age-associated ailments like tumors, heart disease, diabetes, and neurological disorders. Exercise is a potent physiological stressor linked to higher red blood cell counts and an enhanced immune system, promoting disease resistance. Sports impact mesenchymal SCs (MSCs), hematopoietic SCs (HSCs), neuronal SCs (NuSCs), and muscular SCs (MuSCs), among other aged SCs types. These changes to the niche will probably affect the amount and capability of adult SCs after exercise. In this work, we looked into how different types of SCs age. The impact of physical activity on the aging process has been studied. Additionally, there has been discussion and study on the impact of different sports and physical activities on SCs as an anti-aging component.
Collapse
Affiliation(s)
- Jia Xu
- College of Physical Education, North-West Normal University, Lanzhou, 730070, China
| | - Zhe Song
- Cangzhou Medical College, Cangzhou, 061001, China.
| |
Collapse
|
5
|
Lillis JB, Willmott AGB, Chichger H, Roberts JD. The Application of Olive-Derived Polyphenols on Exercise-Induced Inflammation: A Scoping Review. Nutrients 2025; 17:223. [PMID: 39861354 PMCID: PMC11767577 DOI: 10.3390/nu17020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES There is current scientific interest pertaining to the therapeutic effects of olive-derived polyphenols (ODPs), in particular their associated anti-inflammatory properties, following the wealth of research surrounding the physiological impact of the Mediterranean Diet (MD). Despite this association, the majority of the current literature investigates ODPs in conjunction with metabolic diseases. There is limited research focusing on ODPs and acute inflammation following exercise, regardless of the knowledge surrounding the elevated inflammatory response during this time. Therefore, the aim of this scoping review is to understand the impact ODPs may have on exercise-induced inflammation. METHODS This scoping review was undertaken in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScRs). The literature searches were conducted in PubMed and EBSCOhost and considered for review if records reported original data, examined olives, olive-derived nutrients, food sources, or ODPs in conjunction with exercise-induced inflammation (including known causes, associations, and proxy measures). RESULTS Seven studies investigated ODPs and exercise-induced inflammation, providing commentary on reduced oxidative stress, inflammatory biomarkers, and immune biomarkers, enhanced antioxidant defenses and modulations in mitochondrial function, albeit in low numbers. An average of 100.9 mg∙d-1 ODPs were supplemented for an average of 40 days, with hydroxytyrosol (HT) being the primary ODP investigated. Six studies employed individual aerobic exercise as their stimulus, whilst one study investigated the impact of an acute dose of ODP. CONCLUSIONS There is a limited consensus on the direction of isolated HT in human models, whereas animal models suggest a reduced inflammatory response following ≥2 weeks HT supplementation in conjunction with chronic exercise. Future research should initially investigate the inflammatory response of ODP, with particular focus on HT, and aim to identify an optimum dose and time course for supplementation surrounding exercise to support acute recovery and exercise adaptations.
Collapse
Affiliation(s)
- Joseph B. Lillis
- Cambridge Centre for Sport and Exercise Sciences (CCSES), Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK; (A.G.B.W.); (J.D.R.)
| | - Ashley G. B. Willmott
- Cambridge Centre for Sport and Exercise Sciences (CCSES), Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK; (A.G.B.W.); (J.D.R.)
| | - Havovi Chichger
- School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| | - Justin D. Roberts
- Cambridge Centre for Sport and Exercise Sciences (CCSES), Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK; (A.G.B.W.); (J.D.R.)
| |
Collapse
|
6
|
Willems MET, Blacker SD, Montanari S, Cook MD. Anthocyanin-Rich Blackcurrant Supplementation as a Nutraceutical Ergogenic Aid for Exercise Performance and Recovery: A Narrative Review. Curr Dev Nutr 2025; 9:104523. [PMID: 39896729 PMCID: PMC11782858 DOI: 10.1016/j.cdnut.2024.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 02/04/2025] Open
Abstract
Athletes and physically active individuals consume sport nutrition supplements to enhance competitive sport performance and exercise recovery. Polyphenols have emerged as a promising area of research with application for sport and exercise nutrition owing to affecting physiologic mechanisms for exercise performance and recovery. The anthocyanin is a polyphenol that can be abundantly present in dark-colored fruits, berries, and vegetables. Anthocyanins and anthocyanin-induced metabolites will provide antioxidant and anti-inflammatory effects. The focus of this narrative review was on the observations with intake of anthocyanin-rich blackcurrant supplements on whole-body exercise performance and exercise recovery. This review included 17 studies with a randomized placebo-controlled crossover design (10 studies on performance and 8 on recovery effects) and 1 with a randomized placebo-controlled parallel group design (recovery effects). Among the performance studies, 6 studies (60%) reported positive effects, 3 studies (30%) reported no significant effects, and 1 study (10%) reported a mixed outcome. Among the recovery studies, 7 studies (78%) reported positive effects, 1 study (11%) reported no significant effects, and 1 study (11%) reported a negative effect. Studies with intake of supplements made from New Zealand blackcurrants (dose: 1.8-3.2 mg/kg and 105-315 mg anthocyanins, acute to 7-d intake) provided meaningful (but not always consistent) effects on continuous and intermittent exercise performance tasks (i.e. rowing, cycling, and running) and markers for exercise recovery. A mechanistic understanding for the beneficial exercise effects of anthocyanins for athletes and physically active individuals is still limited. Future work requires a better understanding of the specific types of anthocyanins and anthocyanin-induced metabolites and their effects on altering cell function that can enhance exercise performance and recovery.
Collapse
Affiliation(s)
- Mark ET Willems
- Institute of Applied Sciences, University of Chichester, Chichester, United Kingdom
| | - Sam D Blacker
- Institute of Applied Sciences, University of Chichester, Chichester, United Kingdom
| | - Stefano Montanari
- Faculty of Arts, Science and Technology, University of Northampton, Northampton, United Kingdom
| | - Matthew D Cook
- School of Sport and Exercise Science, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
7
|
Seiler S. It's about the long game, not epic workouts: unpacking HIIT for endurance athletes. Appl Physiol Nutr Metab 2024; 49:1585-1599. [PMID: 39079169 DOI: 10.1139/apnm-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
High-intensity interval training (HIIT) prescriptions manipulate intensity, duration, and recovery variables in multiple combinations. Researchers often compare different HIIT variable combinations and treat HIIT prescription as a "maximization problem", seeking to identify the prescription(s) that induce the largest acute VO2/HR/RPE response. However, studies connecting the magnitude of specific acute HIIT response variables like work time >90% of VO2max and resulting cellular signalling and/or translation to protein upregulation and performance enhancement are lacking. This is also not how successful endurance athletes train. First, HIIT training cannot be seen in isolation. Successful endurance athletes perform most of their training volume below the first lactate turn point (
Collapse
Affiliation(s)
- Stephen Seiler
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| |
Collapse
|
8
|
Castro A, Ferreira AG, Catai AM, Amaral MAB, Cavaglieri CR, Chacon-Mikahil MPT. Metabolic Predictors of Cardiorespiratory Fitness Responsiveness to Continuous Endurance and High-Intensity Interval Training Programs: The TIMES Study-A Randomized Controlled Trial. Metabolites 2024; 14:512. [PMID: 39330519 PMCID: PMC11433752 DOI: 10.3390/metabo14090512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Background/Objectives: Cardiorespiratory fitness (CRF) levels significantly modulate the risk of cardiometabolic diseases, aging, and mortality. Nevertheless, there is a substantial interindividual variability in CRF responsiveness to a given standardized exercise dose despite the type of training. Predicting the responsiveness to regular exercise has the potential to contribute to personalized exercise medicine applications. This study aimed to identify predictive biomarkers for the classification of CRF responsiveness based on serum and intramuscular metabolic levels before continuous endurance training (ET) or high-intensity interval training (HIIT) programs using a randomized controlled trial. Methods: Forty-three serum and seventy intramuscular (vastus lateralis) metabolites were characterized and quantified via proton nuclear magnetic resonance (1H NMR), and CRF levels (expressed in METs) were measured in 70 sedentary young men (age: 23.7 ± 3.0 years; BMI: 24.8 ± 2.5 kg·m-2), at baseline and post 8 weeks of the ET, HIIT, and control (CO) periods. A multivariate binary logistic regression model was used to classify individuals at baseline as Responders or Non-responders to CRF gains after the training programs. Results: CRF responses ranged from 0.9 to 3.9 METs for ET, 1.1 to 4.7 METs for HIIT, and -0.9 to 0.2 METs for CO. The frequency of Responder/Non-responder individuals between ET (76.7%/23.3%) and HIIT (90.0%/10.0%) programs was similar (p = 0.166). The model based on serum O-acetylcarnitine levels [OR (odds ratio) = 4.72, p = 0.012] classified Responder/Non-responders individuals to changes in CRF regardless of the training program with 78.0% accuracy (p = 0.006), while the intramuscular model based on creatinine levels (OR = 4.53, p = 0.0137) presented 72.3% accuracy (p = 0.028). Conclusions: These results highlight the potential value of serum and intramuscular metabolites as biomarkers for the classification of CRF responsiveness previous to different aerobic training programs.
Collapse
Affiliation(s)
- Alex Castro
- Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas 13083-100, SP, Brazil
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas (UNICAMP), Campinas 13083-851, SP, Brazil; (M.A.B.A.); (C.R.C.)
- Laboratory of Nuclear Magnetic Resonance, Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil;
| | - Antonio Gilberto Ferreira
- Laboratory of Nuclear Magnetic Resonance, Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil;
| | - Aparecida Maria Catai
- Laboratory of Cardiovascular Physiotherapy, Department of Physiotherapy, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil;
| | - Matheus Alejandro Bolina Amaral
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas (UNICAMP), Campinas 13083-851, SP, Brazil; (M.A.B.A.); (C.R.C.)
| | - Claudia Regina Cavaglieri
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas (UNICAMP), Campinas 13083-851, SP, Brazil; (M.A.B.A.); (C.R.C.)
| | - Mara Patrícia Traina Chacon-Mikahil
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas (UNICAMP), Campinas 13083-851, SP, Brazil; (M.A.B.A.); (C.R.C.)
| |
Collapse
|
9
|
Cobley JN, Margaritelis NV, Chatzinikolaou PN, Nikolaidis MG, Davison GW. Ten "Cheat Codes" for Measuring Oxidative Stress in Humans. Antioxidants (Basel) 2024; 13:877. [PMID: 39061945 PMCID: PMC11273696 DOI: 10.3390/antiox13070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Formidable and often seemingly insurmountable conceptual, technical, and methodological challenges hamper the measurement of oxidative stress in humans. For instance, fraught and flawed methods, such as the thiobarbituric acid reactive substances assay kits for lipid peroxidation, rate-limit progress. To advance translational redox research, we present ten comprehensive "cheat codes" for measuring oxidative stress in humans. The cheat codes include analytical approaches to assess reactive oxygen species, antioxidants, oxidative damage, and redox regulation. They provide essential conceptual, technical, and methodological information inclusive of curated "do" and "don't" guidelines. Given the biochemical complexity of oxidative stress, we present a research question-grounded decision tree guide for selecting the most appropriate cheat code(s) to implement in a prospective human experiment. Worked examples demonstrate the benefits of the decision tree-based cheat code selection tool. The ten cheat codes define an invaluable resource for measuring oxidative stress in humans.
Collapse
Affiliation(s)
- James N. Cobley
- The University of Dundee, Dundee DD1 4HN, UK
- Ulster University, Belfast BT15 1ED, Northern Ireland, UK;
| | - Nikos V. Margaritelis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | | - Michalis G. Nikolaidis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | |
Collapse
|
10
|
Radulescu D, Mihai FD, Trasca MET, Caluianu EI, Calafeteanu CDM, Radulescu PM, Mercut R, Ciupeanu-Calugaru ED, Marinescu GA, Siloşi CA, Nistor CCE, Danoiu S. Oxidative Stress in Military Missions-Impact and Management Strategies: A Narrative Analysis. Life (Basel) 2024; 14:567. [PMID: 38792589 PMCID: PMC11121804 DOI: 10.3390/life14050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This narrative review comprehensively examines the impact of oxidative stress on military personnel, highlighting the crucial role of physical exercise and tailored diets, particularly the ketogenic diet, in minimizing this stress. Through a meticulous analysis of the recent literature, the study emphasizes how regular physical exercise not only enhances cardiovascular, cognitive, and musculoskeletal health but is also essential in neutralizing the effects of oxidative stress, thereby improving endurance and performance during long-term missions. Furthermore, the implementation of the ketogenic diet provides an efficient and consistent energy source through ketone bodies, tailored to the specific energy requirements of military activities, and significantly contributes to the reduction in reactive oxygen species production, thus protecting against cellular deterioration under extreme stress. The study also underlines the importance of integrating advanced technologies, such as wearable devices and smart sensors that allow for the precise and real-time monitoring of oxidative stress and physiological responses, thus facilitating the customization of training and nutritional regimes. Observations from this review emphasize significant variability among individuals in responses to oxidative stress, highlighting the need for a personalized approach in formulating intervention strategies. It is crucial to develop and implement well-monitored, personalized supplementation protocols to ensure that each member of the military personnel receives a regimen tailored to their specific needs, thereby maximizing the effectiveness of measures to combat oxidative stress. This analysis makes a valuable contribution to the specialized literature, proposing a detailed framework for addressing oxidative stress in the armed forces and opening new directions for future research with the aim of optimizing clinical practices and improving the health and performance of military personnel under stress and specific challenges of the military field.
Collapse
Affiliation(s)
- Dumitru Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Florina-Diana Mihai
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | - Major Emil-Tiberius Trasca
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Elena-Irina Caluianu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Captain Dan Marian Calafeteanu
- Department of Ortopedics, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania;
| | - Patricia-Mihaela Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Razvan Mercut
- Department of Plastic and Reconstructive Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | | | - Georgiana-Andreea Marinescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Cristian-Adrian Siloşi
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | | | - Suzana Danoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
11
|
Chatzinikolaou PN, Margaritelis NV, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, D'Alessandro A, Nikolaidis MG. Erythrocyte metabolism. Acta Physiol (Oxf) 2024; 240:e14081. [PMID: 38270467 DOI: 10.1111/apha.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Our aim is to present an updated overview of the erythrocyte metabolism highlighting its richness and complexity. We have manually collected and connected the available biochemical pathways and integrated them into a functional metabolic map. The focus of this map is on the main biochemical pathways consisting of glycolysis, the pentose phosphate pathway, redox metabolism, oxygen metabolism, purine/nucleoside metabolism, and membrane transport. Other recently emerging pathways are also curated, like the methionine salvage pathway, the glyoxalase system, carnitine metabolism, and the lands cycle, as well as remnants of the carboxylic acid metabolism. An additional goal of this review is to present the dynamics of erythrocyte metabolism, providing key numbers used to perform basic quantitative analyses. By synthesizing experimental and computational data, we conclude that glycolysis, pentose phosphate pathway, and redox metabolism are the foundations of erythrocyte metabolism. Additionally, the erythrocyte can sense oxygen levels and oxidative stress adjusting its mechanics, metabolism, and function. In conclusion, fine-tuning of erythrocyte metabolism controls one of the most important biological processes, that is, oxygen loading, transport, and delivery.
Collapse
Affiliation(s)
- Panagiotis N Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Ioannis S Vrabas
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
12
|
Thorley J, Thomas C, Thon N, Nuttall H, Martin NRW, Bishop N, Bailey SJ, Clifford T. Combined effects of green tea supplementation and eccentric exercise on nuclear factor erythroid 2-related factor 2 activity. Eur J Appl Physiol 2024; 124:245-256. [PMID: 37439906 PMCID: PMC10786739 DOI: 10.1007/s00421-023-05271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE This study investigated whether combining eccentric exercise and green tea supplementation synergistically increased nuclear factor erythroid 2-related factor 2 (NRF2) activity, a transcription factor responsible for coordinating endogenous antioxidant expression. METHODS In a double-blinded, randomized, between-subjects design, 24 males (mean [SD]; 23 [3] years, 179.6 [6.1] cm, 78.8 [10.6] kg) performed 100 drop jumps following a 6 days supplementation period with either green tea (poly)phenols (n = 12; 500 mg·d-1) or a placebo (n = 12; inulin). NRF2/antioxidant response element (ARE) binding in peripheral blood mononuclear cells (PBMCs), catalase (CAT) and glutathione reductase (GR) activity, 8-hydroxy-2'-deoxyguanosine (8-OHdG) excretion, and differential leukocyte counts were measured pre-, post-, 1 h and 24 h post-exercise. RESULTS Exercise did not increase NRF2/ARE binding (p = 0.12) (fold change vs rest: green tea = [post] 0.78 ± 0.45, [1 h] 1.17 ± 0.54, [24 h] 1.06 ± 0.56; placebo = [post] 1.40 ± 1.50, [1 h] 2.98 ± 3.70, [24 h] 1.04 ± 0.45). Furthermore, CAT activity (p = 0.12) and 8-OHdG excretion (p = 0.42) were unchanged in response to exercise and were not augmented by green tea supplementation (p > 0.05 for all). Exercise increased GR activity by 30% (p = 0.01), however no differences were found between supplement groups (p = 0.51). Leukocyte and neutrophil concentrations were only elevated post-exercise (p < 0.001 for all). CONCLUSION Eccentric exercise, either performed alone or in conjunction with green tea supplementation, did not significantly increase NRF2 activity in PBMCs. TRIAL REGISTRATION NUMBER osf.io/kz37g (registered: 15/09/21).
Collapse
Affiliation(s)
- Josh Thorley
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Craig Thomas
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Nicolas Thon
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Hannah Nuttall
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Nicolette Bishop
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.
| |
Collapse
|
13
|
Flockhart M, Nilsson LC, Tillqvist EN, Vinge F, Millbert F, Lännerström J, Nilsson PH, Samyn D, Apró W, Sundqvist ML, Larsen FJ. Glucosinolate-rich broccoli sprouts protect against oxidative stress and improve adaptations to intense exercise training. Redox Biol 2023; 67:102873. [PMID: 37688976 PMCID: PMC10493800 DOI: 10.1016/j.redox.2023.102873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
Oxidative stress plays a vital role for the adaptive responses to physical training. However, excessive oxidative stress can precipitate cellular damage, necessitating protective mechanisms to mitigate this effect. Glucosinolates, found predominantly in cruciferous vegetables, can be converted into isothiocyanates, known for their antioxidative properties. These compounds activate crucial antioxidant defence pathways and support mitochondrial function and protein integrity under oxidative stress, in both Nrf2-dependent and independent manners. We here administered glucosinolate-rich broccoli sprouts (GRS), in a randomized double-blinded cross-over fashion to 9 healthy subjects in combination with daily intense exercise training for 7 days. We found that exercise in combination with GRS significantly decreased the levels of carbonylated proteins in skeletal muscle and the release of myeloperoxidase into blood. Moreover, it lowered lactate accumulation during submaximal exercise, and attenuated the severe nocturnal hypoglycaemic episodes seen during the placebo condition. Furthermore, GRS in combination with exercise improved physical performance, which was unchanged in the placebo condition.
Collapse
Affiliation(s)
- M Flockhart
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden.
| | - L C Nilsson
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - E N Tillqvist
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - F Vinge
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - F Millbert
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - J Lännerström
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - P H Nilsson
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden; Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - D Samyn
- Department of Laboratory Medicine, Clinical Chemistry, Örebro University Hospital, Örebro, Sweden; School of Medicine, Faculty of Medicine, Örebro University, Örebro, Sweden
| | - W Apró
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - M L Sundqvist
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - F J Larsen
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden.
| |
Collapse
|
14
|
Gandouzi I, Fekih S, Selmi O, Chalghaf N, Turki M, Ayedi F, Guelmami N, Azaiez F, Souissi N, Marsigliante S, Muscella A. Oxidative status alteration during aerobic-dominant mixed and anaerobic-dominant mixed effort in judokas. Heliyon 2023; 9:e20442. [PMID: 37829795 PMCID: PMC10565691 DOI: 10.1016/j.heliyon.2023.e20442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
This study aimed to depict the oxidative status variation in judokas during aerobic-dominant mixed effort (AeDME) and anaerobic-dominant mixed effort (AnDME). It is to be expected that the sporting commitment of Judo is a stimulus of oxidative stress leading to the recruitment of antioxidant responses. Blood samples were collected from 17 athletes at rest, immediately after a training session (AeDME) and after a 5-min bout (AnDME). AeDME and AnDME caused significant increases in malondialdehyde (MDA) (p < 0.01 and p < 0.001 respectively) and glutathione (GSH) (p = 0.018 and p < 0.001 respectively). Blood thiol concentrations decreased following AeDME and AnDME (p < 0.001) whilst catalase decreased significantly after AnDME (p = 0.026) only. Uric acid increased significantly after AnDME than after AeDME (p = 0.047) while, conversely, total bilirubin was higher after AnDME than after AeDME (p = 0.02). We may ultimately summarize that AeDME and AnDME caused oxidative stress, higher in AnDME, and some antioxidant response slightly higher in AnDME compared to AeDME. In sports, monitoring of oxidative stress status is recommended as part of the training regimen.
Collapse
Affiliation(s)
- Imed Gandouzi
- Molecular Basis of Human Pathology Laboratory, Faculty of Medicine of Sfax, Tunisia
- Higher Institute of Sport and Physical Education of Gafsa ISSEP, Gafsa, Tunisia
- RU: Physical Activity, Sport & Health, The National Observatory of Sport, Tunisia
| | - Soufien Fekih
- Higher Institute of Sport and Physical Education of Gafsa ISSEP, Gafsa, Tunisia
| | - Okba Selmi
- Higher Institute of Sport and Physical Education of Kef ISSEP, Kef, Tunisia
| | - Nasr Chalghaf
- Higher Institute of Sport and Physical Education of Gafsa ISSEP, Gafsa, Tunisia
- Group for the Study of Development and Social Environment (GEDES), Faculty of Human and Social Science of Sfax, Sfax, Tunisia
| | - Mouna Turki
- Molecular Basis of Human Pathology Laboratory, Faculty of Medicine of Sfax, Tunisia
- Biochemistry Laboratory, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Fatma Ayedi
- Biochemistry Laboratory, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Noomen Guelmami
- Higher Institute of Sport and Physical Education of Kef ISSEP, Kef, Tunisia
| | - Fairouz Azaiez
- Higher Institute of Sport and Physical Education of Gafsa ISSEP, Gafsa, Tunisia
- Group for the Study of Development and Social Environment (GEDES), Faculty of Human and Social Science of Sfax, Sfax, Tunisia
| | - Nizar Souissi
- RU: Physical Activity, Sport & Health, The National Observatory of Sport, Tunisia
| | - Santo Marsigliante
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Antonella Muscella
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| |
Collapse
|
15
|
Vasileiadou O, Nastos GG, Chatzinikolaou PN, Papoutsis D, Vrampa DI, Methenitis S, Margaritelis NV. Redox Profile of Skeletal Muscles: Implications for Research Design and Interpretation. Antioxidants (Basel) 2023; 12:1738. [PMID: 37760040 PMCID: PMC10525275 DOI: 10.3390/antiox12091738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Mammalian skeletal muscles contain varying proportions of Type I and II fibers, which feature different structural, metabolic and functional properties. According to these properties, skeletal muscles are labeled as 'red' or 'white', 'oxidative' or 'glycolytic', 'slow-twitch' or 'fast-twitch', respectively. Redox processes (i.e., redox signaling and oxidative stress) are increasingly recognized as a fundamental part of skeletal muscle metabolism at rest, during and after exercise. The aim of the present review was to investigate the potential redox differences between slow- (composed mainly of Type I fibers) and fast-twitch (composed mainly of Type IIa and IIb fibers) muscles at rest and after a training protocol. Slow-twitch muscles were almost exclusively represented in the literature by the soleus muscle, whereas a wide variety of fast-twitch muscles were used. Based on our analysis, we argue that slow-twitch muscles exhibit higher antioxidant enzyme activity compared to fast-twitch muscles in both pre- and post-exercise training. This is also the case between heads or regions of fast-twitch muscles that belong to different subcategories, namely Type IIa (oxidative) versus Type IIb (glycolytic), in favor of the former. No safe conclusion could be drawn regarding the mRNA levels of antioxidant enzymes either pre- or post-training. Moreover, slow-twitch skeletal muscles presented higher glutathione and thiol content as well as higher lipid peroxidation levels compared to fast-twitch. Finally, mitochondrial hydrogen peroxide production was higher in fast-twitch muscles compared to slow-twitch muscles at rest. This redox heterogeneity between different muscle types may have ramifications in the analysis of muscle function and health and should be taken into account when designing exercise studies using specific muscle groups (e.g., on an isokinetic dynamometer) or isolated muscle fibers (e.g., electrical stimulation) and may deliver a plausible explanation for the conflicting results about the ergogenic potential of antioxidant supplements.
Collapse
Affiliation(s)
- Olga Vasileiadou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - George G. Nastos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - Panagiotis N. Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - Dimitrios Papoutsis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - Dimitra I. Vrampa
- Department of Nutrition Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57001 Thessaloniki, Greece;
| | - Spyridon Methenitis
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Nikos V. Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| |
Collapse
|
16
|
Thomas HJ, Ang T, Morrison DJ, Keske MA, Parker L. Acute exercise and high-glucose ingestion elicit dynamic and individualized responses in systemic markers of redox homeostasis. Front Immunol 2023; 14:1127088. [PMID: 37063903 PMCID: PMC10102861 DOI: 10.3389/fimmu.2023.1127088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundBiomarkers of oxidation-reduction (redox) homeostasis are commonly measured in human blood to assess whether certain stimuli (e.g., high-glucose ingestion or acute exercise) lead to a state of oxidative distress (detrimental to health) or oxidative eustress (beneficial to health). Emerging research indicates that redox responses are likely to be highly individualized, yet few studies report individual responses. Furthermore, the effects of complex redox stimuli (e.g., high-glucose-ingestion after exercise) on redox homeostasis remains unclear. We investigated the effect of acute exercise (oxidative eustress), high-glucose ingestion (oxidative distress), and high-glucose ingestion after exercise (both oxidative eu/distress), on commonly measured redox biomarkers in serum/plasma.MethodsIn a randomized crossover fashion, eight healthy men (age: 28 ± 4 years; BMI: 24.5 ± 1.5 kg/m2 [mean ± SD]) completed two separate testing conditions; 1) consumption of a high-glucose mixed-nutrient meal (45% carbohydrate [1.1 g glucose.kg-1], 20% protein, and 35% fat) at rest (control trial), and 2) consumption of the same meal 3 h and 24 h after 1 h of moderate-intensity cycling exercise (exercise trial). Plasma and serum were analyzed for an array of commonly studied redox biomarkers.ResultsOxidative stress and antioxidant defense markers (hydrogen peroxide, 8-isoprostanes, catalase, superoxide dismutase, and nitrate levels) increased immediately after exercise (p < 0.05), whereas nitric oxide activity and thiobarbituric acid reactive substances (TBARS) remained similar to baseline (p > 0.118). Nitric oxide activity and nitrate levels decreased at 3 h post-exercise compared to pre-exercise baseline levels. Depending on when the high-glucose mixed nutrient meal was ingested and the postprandial timepoint investigated, oxidative stress and antioxidant defense biomarkers either increased (hydrogen peroxide, TBARS, and superoxide dismutase), decreased (hydrogen peroxide, 8-isoprostanes, superoxide dismutase, nitric oxide activity, nitrate, and nitrite), or remained similar to pre-meal baseline levels (hydrogen peroxide, 8-isoprostanes, TBARS, catalase, superoxide dismutase and nitrite). Redox responses exhibited large inter-individual variability in the magnitude and/or direction of responses.ConclusionFindings highlight the necessity to interpret redox biomarkers in the context of the individual, biomarker measured, and stimuli observed. Individual redox responsiveness may be of physiological relevance and should be explored as a potential means to inform personalized redox intervention.
Collapse
Affiliation(s)
- Hannah J. Thomas
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Teddy Ang
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Dale J. Morrison
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Michelle A. Keske
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
- *Correspondence: Lewan Parker,
| |
Collapse
|
17
|
Rajan S, Terman JR, Reisler E. MICAL-mediated oxidation of actin and its effects on cytoskeletal and cellular dynamics. Front Cell Dev Biol 2023; 11:1124202. [PMID: 36875759 PMCID: PMC9982024 DOI: 10.3389/fcell.2023.1124202] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Actin and its dynamic structural remodelings are involved in multiple cellular functions, including maintaining cell shape and integrity, cytokinesis, motility, navigation, and muscle contraction. Many actin-binding proteins regulate the cytoskeleton to facilitate these functions. Recently, actin's post-translational modifications (PTMs) and their importance to actin functions have gained increasing recognition. The MICAL family of proteins has emerged as important actin regulatory oxidation-reduction (Redox) enzymes, influencing actin's properties both in vitro and in vivo. MICALs specifically bind to actin filaments and selectively oxidize actin's methionine residues 44 and 47, which perturbs filaments' structure and leads to their disassembly. This review provides an overview of the MICALs and the impact of MICAL-mediated oxidation on actin's properties, including its assembly and disassembly, effects on other actin-binding proteins, and on cells and tissue systems.
Collapse
Affiliation(s)
- Sudeepa Rajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jonathan R. Terman
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
The Effect of a Hydroxytyrosol-Rich, Olive-Derived Phytocomplex on Aerobic Exercise and Acute Recovery. Nutrients 2023; 15:nu15020421. [PMID: 36678293 PMCID: PMC9864860 DOI: 10.3390/nu15020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
There is current scientific interest in naturally sourced phenolic compounds and their potential benefits to health, as well as the effective role polyphenols may provide in an exercise setting. This study investigated the chronic effects of supplementation with a biodynamic and organic olive fruit water phytocomplex (OliPhenolia® [OliP]), rich in hydroxytyrosol (HT), on submaximal and exhaustive exercise performance and respiratory markers of recovery. Twenty-nine recreationally active participants (42 ± 2 yrs; 71.1 ± 2.1 kg; 1.76 ± 0.02 m) consumed 2 × 28 mL∙d−1 of OliP or a taste- and appearance-matched placebo (PL) over 16 consecutive days. Participants completed a demanding, aerobic exercise protocol at ~75% maximal oxygen uptake (V˙O2max) for 65 min 24 h before sub- and maximal performance exercise tests prior to and following the 16-day consumption period. OliP reduced the time constant (τ) (p = 0.005) at the onset of exercise, running economy (p = 0.015) at lactate threshold 1 (LT1), as well as the rating of perceived exertion (p = 0.003) at lactate turnpoint (LT2). Additionally, OliP led to modest improvements in acute recovery based upon a shorter time to achieve 50% of the end of exercise V˙O2 value (p = 0.02). Whilst OliP increased time to exhaustion (+4.1 ± 1.8%), this was not significantly different to PL (p > 0.05). Phenolic compounds present in OliP, including HT and related metabolites, may provide benefits for aerobic exercise and acute recovery in recreationally active individuals. Further research is needed to determine whether dose-response or adjunct use of OliP alongside longer-term training programs can further modulate exercise-associated adaptations in recreationally active individuals, or indeed support athletic performance.
Collapse
|
19
|
Mason SA, Parker L, van der Pligt P, Wadley GD. Vitamin C supplementation for diabetes management: A comprehensive narrative review. Free Radic Biol Med 2023; 194:255-283. [PMID: 36526243 DOI: 10.1016/j.freeradbiomed.2022.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Growing evidence suggests that vitamin C supplementation may be an effective adjunct therapy in the management of people with diabetes. This paper critically reviews the current evidence on effects of vitamin C supplementation and its potential mechanisms in diabetes management. Evidence from meta-analyses of randomized controlled trials (RCTs) show favourable effects of vitamin C on glycaemic control and blood pressure that may be clinically meaningful, and mixed effects on blood lipids and endothelial function. However, evidence is mostly of low evidence certainty. Emerging evidence is promising for effects of vitamin C supplementation on some diabetes complications, particularly diabetic foot ulcers. However, there is a notable lack of robust and well-designed studies exploring effects of vitamin C as a single compound supplement on diabetes prevention and patient-important outcomes (i.e. prevention and amelioration of diabetes complications). RCTs are also required to investigate potential preventative or ameliorative effects of vitamin C on gestational diabetes outcomes. Oral vitamin C doses of 500-1000 mg per day are potentially effective, safe, and affordable for many individuals with diabetes. However, personalisation of supplementation regimens that consider factors such as vitamin C status, disease status, current glycaemic control, vitamin C intake, redox status, and genotype is important to optimize vitamin C's therapeutic effects safely. Finally, given a high prevalence of vitamin C deficiency in patients with complications, it is recommended that plasma vitamin C concentration be measured and monitored in the clinic setting.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paige van der Pligt
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Nutrition and Dietetics, Western Health, Footscray, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
20
|
Effects of Prolonged Exposure to Hypobaric Hypoxia on Oxidative Stress: Overwintering in Antarctic Concordia Station. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4430032. [PMID: 35535360 PMCID: PMC9078816 DOI: 10.1155/2022/4430032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/25/2022] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
Abstract
Concordia Station is the permanent, research station on the Antarctic Plateau at 3230 m. During the eleventh winter-over campaign (DC11-2015; February 2015 to November 2015) at Antarctic Concordia Station, 13 healthy team members were studied and blood samples were collected at six different time points: baseline measurements (T0), performed at sea level before the departure, and during the campaign at 3, 7, 20, 90, and 300 days after arrival at Concordia Station. Reducing the partial pressure of O2 as barometric pressure falls, hypobaric hypoxia (HH) triggers several physiological adaptations. Among the others, increased oxidative stress and enhanced generation of reactive oxygen/nitrogen species (ROS/RNS), resulting in severe oxidative damage, were observed, which can share potential physiopathological mechanisms associated with many diseases. This study characterized the extent and time-course changes after acute and chronic HH exposure, elucidating possible fundamental mechanisms of adaptation. ROS, oxidative stress biomarkers, nitric oxide, and proinflammatory cytokines significantly increased (range 24-135%) during acute and chronic hypoxia exposure (peak 20th day) with a decrease in antioxidant capacity (peak 90th day: -52%). Results suggest that the adaptive response of oxidative stress balance to HH requires a relatively long time, more than 300th days, as all the observed variables do not return to the preexposition level. These findings may also be relevant to patients in whom oxygen availability is limited through disease (i.e., chronic heart and lung and/or kidney disease) and/or during long-duration space missions.
Collapse
|
21
|
di Corcia M, Tartaglia N, Polito R, Ambrosi A, Messina G, Francavilla VC, Cincione RI, della Malva A, Ciliberti MG, Sevi A, Messina G, Albenzio M. Functional Properties of Meat in Athletes' Performance and Recovery. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5145. [PMID: 35564540 PMCID: PMC9102337 DOI: 10.3390/ijerph19095145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022]
Abstract
Physical activity (PA) and sport play an essential role in promoting body development and maintaining optimal health status both in the short and long term. Despite the benefits, a long-lasting heavy training can promote several detrimental physiological changes, including transitory immune system malfunction, increased inflammation, and oxidative stress, which manifest as exercise-induced muscle damages (EIMDs). Meat and derived products represent a very good source of bioactive molecules such as proteins, lipids, amino acids, vitamins, and minerals. Bioactive molecules represent dietary compounds that can interact with one or more components of live tissue, resulting in a wide range of possible health consequences such as immune-modulating, antihypertensive, antimicrobial, and antioxidative activities. The health benefits of meat have been well established and have been extensively reviewed elsewhere, although a growing number of studies found a significant positive effect of meat molecules on exercise performance and recovery of muscle function. Based on the limited research, meat could be an effective post-exercise food that results in favorable muscle protein synthesis and metabolic performance.
Collapse
Affiliation(s)
- Martina di Corcia
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| | - Nicola Tartaglia
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (N.T.); (A.A.)
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (R.P.); (R.I.C.)
| | - Antonio Ambrosi
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (N.T.); (A.A.)
| | - Gaetana Messina
- Department of Translational Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | | | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (R.P.); (R.I.C.)
| | - Antonella della Malva
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| | - Maria Giovanna Ciliberti
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| | - Agostino Sevi
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (R.P.); (R.I.C.)
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy; (M.d.C.); (A.d.M.); (M.G.C.); (A.S.)
| |
Collapse
|
22
|
Willems MET, Blacker SD. Anthocyanin-Rich Supplementation: Emerging Evidence of Strong Potential for Sport and Exercise Nutrition. Front Nutr 2022; 9:864323. [PMID: 35433792 PMCID: PMC9009509 DOI: 10.3389/fnut.2022.864323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Dark-colored fruits, especially berries, have abundant presence of the polyphenol anthocyanin which have been show to provide health benefits. Studies with the berry blackcurrant have provided notable observations with application for athletes and physically active individuals. Alterations in exercise-induced substrate oxidation, exercise performance of repeated high-intensity running and cycling time-trial and cardiovascular function at rest and during exercise were observed with intake of New Zealand blackcurrant. The dynamic plasma bioavailability of the blackcurrant anthocyanins and the anthocyanin-derived metabolites must have changed cell function to provide meaningful in-vivo physiological effects. This perspective will reflect on the research studies for obtaining the applied in-vivo effects by intake of anthocyanin-rich supplementation, the issue of individual responses, and the emerging strong potential of anthocyanins for sport and exercise nutrition. Future work with repeated intake of known amount and type of anthocyanins, gut microbiota handling of anthocyanins, and coinciding measurements of plasma anthocyanin and anthocyanin-derived metabolites and in-vivo cell function will be required to inform our understanding for the unique potential of anthocyanins as a nutritional ergogenic aid for delivering meaningful effects for a wide range of athletes and physically active individuals.
Collapse
|
23
|
de França E, dos Santos RVT, Baptista LC, Da Silva MAR, Fukushima AR, Hirota VB, Martins RA, Caperuto EC. Potential Role of Chronic Physical Exercise as a Treatment in the Development of Vitiligo. Front Physiol 2022; 13:843784. [PMID: 35360245 PMCID: PMC8960951 DOI: 10.3389/fphys.2022.843784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Vitiligo is an autoimmune disease characterized by progressive skin depigmentation and the appearance of white patches throughout the body caused by significant apoptosis of epidermal melanocytes. Despite not causing any physical pain, vitiligo can originate several psychosocial disorders, drastically reducing patients' quality of life. Emerging evidence has shown that vitiligo is associated with several genetic polymorphisms related to auto-reactivity from the immune system to melanocytes. Melanocytes from vitiligo patients suffer from excess reactive oxygen species (ROS) produced by defective mitochondria besides a poor endogenous antioxidant system (EAS). This redox imbalance results in dramatic melanocyte oxidative stress (OS), causing significant damage in proteins, lipid membranes, and DNA. The damaged melanocytes secret damage-associated molecular pattern (DAMPs), inducing and increasing inflammatory gene expression response that ultimately leads to melanocytes apoptosis. Vitiligo severity has been also associated with increasing the prevalence and incidence of metabolic syndrome (MetS) or associated disorders such as insulin resistance and hypercholesterolemia. Thus, suggesting that in genetically predisposed individuals, the environmental context that triggers MetS (i.e., sedentary lifestyle) may also be an important trigger for the development and severity of vitiligo disease. This paper will discuss the relationship between the immune system and epidermal melanocytes and their interplay with the redox system. Based on state-of-the-art evidence from the vitiligo research, physical exercise (PE) immunology, and redox system literature, we will also propose chronic PE as a potential therapeutic strategy to treat and prevent vitiligo disease progression. We will present evidence that chronic PE can change the balance of inflammatory to an anti-inflammatory state, improve both EAS and the mitochondrial structure and function (resulting in the decrease of OS). Finally, we will highlight clinically relevant markers that can be analyzed in a new research avenue to test the potential applicability of chronic PE in vitiligo disease.
Collapse
Affiliation(s)
- Elias de França
- Human Movement Laboratory, São Judas University, São Paulo, Brazil
- Departamento de Biociências, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Liliana C. Baptista
- Faculty of Sport, Research Centre in Physical Activity, Health and Leisure, University of Porto, Porto, Portugal
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL United States
- Targeted Exercise, Microbiome and Aging Laboratory, University of Alabama, Birmingham, AL United States
| | - Marco A. R. Da Silva
- Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
- Department of Physical Education, Universidade da Amazônia, Belém, Brazil
| | - André R. Fukushima
- Centro Universitário das Américas – FAM, São Paulo, Brazil
- Faculdade de Ciências da Saúde – IGESP – FASIG, São Paulo, Brazil
| | | | - Raul A. Martins
- Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | | |
Collapse
|
24
|
Fovet T, Guilhot C, Delobel P, Chopard A, Py G, Brioche T. Ergothioneine Improves Aerobic Performance Without Any Negative Effect on Early Muscle Recovery Signaling in Response to Acute Exercise. Front Physiol 2022; 13:834597. [PMID: 35222093 PMCID: PMC8864143 DOI: 10.3389/fphys.2022.834597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/19/2022] [Indexed: 11/14/2022] Open
Abstract
Physical activity is now recognized as an essential element of healthy lifestyles. However, intensive and repeated exercise practice produces a high level of stress that must be managed, particularly oxidative damage and inflammation. Many studies investigated the effect of antioxidants, but reported only few positive effects, or even muscle recovery impairment. Secondary antioxidants are frequently highlighted as a way to optimize these interactions. Ergothioneine is a potential nutritional supplement and a secondary antioxidant that activates the cellular NRF2 pathway, leading to antioxidant response gene activation. Here, we hypothesized that ergothioneine could improve performance during aerobic exercise up to exhaustion and reduce exercise-related stress without impairing early muscle recovery signaling. To test this hypothesis, 5-month-old C56B6J female mice were divided in two groups matched for maximal aerobic speed (MAS): control group (Ctrl; n = 9) and group supplemented with 70 mg ergothioneine/kg/day (ET; n = 9). After 1 week of supplementation (or not), mice performed a maximum time-to-exhaustion test by running on a treadmill at 70% of their MAS, and gastrocnemius and soleus muscles were collected 2 h after exercise. Time to exhaustion was longer in the ET than Ctrl group (+41.22%, p < 0.01). Two hours after exercise, the ET group showed higher activation of protein synthesis and satellite cells, despite their longer effort. Conversely, expression in muscles of metabolic stress and inflammation markers was decreased, as well as oxidative damage markers in the ET group. Moreover, ergothioneine did not seem to impair mitochondrial recovery. These results suggest an important effect of ergothioneine on time-to-exhaustion performance and improved muscle recovery after exercise.
Collapse
Affiliation(s)
- Théo Fovet
- DMEM, INRAE, Montpellier University, Montpellier, France
| | | | - Pierre Delobel
- DMEM, INRAE, Montpellier University, Montpellier, France
| | - Angèle Chopard
- DMEM, INRAE, Montpellier University, Montpellier, France
| | - Guillaume Py
- DMEM, INRAE, Montpellier University, Montpellier, France
| | - Thomas Brioche
- DMEM, INRAE, Montpellier University, Montpellier, France
| |
Collapse
|
25
|
Jordan AC, Perry CGR, Cheng AJ. Promoting a pro-oxidant state in skeletal muscle: Potential dietary, environmental, and exercise interventions for enhancing endurance-training adaptations. Free Radic Biol Med 2021; 176:189-202. [PMID: 34560246 DOI: 10.1016/j.freeradbiomed.2021.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022]
Abstract
Accumulating evidence now shows that supplemental antioxidants including vitamin C, vitamin E and N-Acetylcysteine consumption can suppress adaptations to endurance-type exercise by attenuating reactive oxygen and nitrogen species (RONS) formation within skeletal muscle. This emerging evidence points to the importance of pro-oxidation as an important stimulus for endurance-training adaptations, including mitochondrial biogenesis, endogenous antioxidant production, insulin signalling, angiogenesis and growth factor signaling. Although sustained oxidative distress is associated with many chronic diseases, athletes have, on average, elevated levels of certain endogenous antioxidants to maintain redox homeostasis. As a result, trained athletes may have a better capacity to buffer oxidants during and after exercise, resulting in a reduced oxidative eustress stimulus for adaptations. Thus, higher levels of RONS input and exercise-induced oxidative stress may benefit athletes in the pursuit of continuous endurance training redox adaptations. This review addresses why athletes should be looking to enhance exercise-induced oxidative stress and how it can be accomplished. Methods covered include high-intensity interval training, hyperthermia and heat stress, dietary antioxidant restriction and modified antioxidant timing, dietary antioxidants and polyphenols as adjuncts to exercise, and vitamin C as a pro-oxidant.
Collapse
Affiliation(s)
- Adam C Jordan
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada
| | - Christopher G R Perry
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada
| | - Arthur J Cheng
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada.
| |
Collapse
|
26
|
Margaritelis NV, Chatzinikolaou PN, Chatzinikolaou AN, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, Nikolaidis MG. The redox signal: A physiological perspective. IUBMB Life 2021; 74:29-40. [PMID: 34477294 DOI: 10.1002/iub.2550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
A signal in biology is any kind of coded message sent from one place in an organism to another place. Biology is rich in claims that reactive oxygen and nitrogen species transmit signals. Therefore, we define a "redox signal as an increase/decrease in the level of reactive species". First, as in most biology disciplines, to analyze a redox signal you need first to deconstruct it. The essential components that constitute a redox signal and should be characterized are: (i) the reactivity of the specific reactive species, (ii) the magnitude of change, (iii) the temporal pattern of change, and (iv) the antioxidant condition. Second, to be able to translate the physiological fate of a redox signal you need to apply novel and bioplausible methodological strategies. Important considerations that should be taken into account when designing an experiment is to (i) assure that redox and physiological measurements are at the same or similar level of biological organization and (ii) focus on molecules that are at the highest level of the redox hierarchy. Third, to reconstruct the redox signal and make sense of the chaotic nature of redox processes, it is essential to apply mathematical and computational modeling. The aim of the present study was to collectively present, for the first time, those elements that essentially affect the redox signal as well as to emphasize that the deconstructing, decoding and reconstructing of a redox signal should be acknowledged as central to design better studies and to advance our understanding on its physiological effects.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Dialysis Unit, 424 General Military Training Hospital, Thessaloniki, Greece
| | - Panagiotis N Chatzinikolaou
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Ioannis S Vrabas
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
27
|
Exercise-Induced Hyperhomocysteinemia Is Not Related to Oxidative Damage or Impaired Vascular Function in Amateur Middle-Aged Runners under Controlled Nutritional Intake. Nutrients 2021; 13:nu13093033. [PMID: 34578910 PMCID: PMC8471188 DOI: 10.3390/nu13093033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
To determine the influence of different doses of maximal acute exercise on the kinetics of plasma homocysteine (tHcy) and its relationship with oxidative status and vascular function, nine recreational runners completed a 10 km race (10K) and a marathon (M). Blood samples were collected before (Basal), immediately post-exercise (Post0), and after 24 h (Post24). Nutritional intake was controlled at each sample point. A significant increase in tHcy was observed after both races, higher after M. Basal levels were recovered at Post24 after 10K, but remained elevated at Post 24 for M. A significant decrease in GSH/GSSG ratio was observed in Post0, especially marked after M. Furthermore, this increase in pro-oxidant status remained at Post24 only after M. Other oxidative status markers failed to confirm this exercise-induced pro-oxidant status except glutathione peroxidase activity that was lower in Post24 compared to Basal in 10K and in Post0 and Post24 in M. No statistical correlation was found between oxidative markers and tHcy. No significant changes were observed in the concentration of endothelial cell adhesion molecules (VCAM-1 and E-Selectin) and VEGF. In conclusion, tHcy increases in an exercise–dose–response fashion but is not related to endothelial dysfunction mediated by oxidative stress mechanisms.
Collapse
|
28
|
Ostrom EL, Valencia AP, Marcinek DJ, Traustadóttir T. High intensity muscle stimulation activates a systemic Nrf2-mediated redox stress response. Free Radic Biol Med 2021; 172:82-89. [PMID: 34089788 PMCID: PMC8355059 DOI: 10.1016/j.freeradbiomed.2021.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/19/2021] [Accepted: 05/30/2021] [Indexed: 12/21/2022]
Abstract
High intensity exercise is a popular mode of exercise to elicit similar or greater adaptive responses compared to traditional moderate intensity continuous exercise. However, the molecular mechanisms underlying these adaptive responses are still unclear. The purpose of this pilot study was to compare high and low intensity contractile stimulus on the Nrf2-mediated redox stress response in mouse skeletal muscle. An intra-animal design was used to control for variations in individual responses to muscle stimulation by comparing a stimulated limb (STIM) to the contralateral unstimulated control limb (CON). High Intensity (HI - 100Hz), Low Intensity (LI - 50Hz), and Naïve Control (NC - Mock stimulation vs CON) groups were used to compare these effects on Nrf2-ARE binding, Keap1 protein, and downstream gene and protein expression of Nrf2 target genes. Muscle stimulation significantly increased Nrf2-ARE binding in LI-STIM compared to LI-CON (p = 0.0098), while Nrf2-ARE binding was elevated in both HI-CON and HI-STIM compared to NC (p = 0.0007). The Nrf2-ARE results were mirrored in the downregulation of Keap1, where Keap1 expression in HI-CON and HI-STIM were both significantly lower than NC (p = 0.008) and decreased in LI-STIM compared to LI-CON (p = 0.015). In addition, stimulation increased NQO1 protein compared to contralateral control regardless of stimulation intensity (p = 0.019), and HO1 protein was significantly higher in high intensity compared to the Naïve control group (p = 0.002). Taken together, these data suggest a systemic redox signaling exerkine is activating Nrf2-ARE binding and is intensity gated, where Nrf2-ARE activation in contralateral control limbs were only seen in the HI group. Other research in exercise induced Nrf2 signaling support the general finding that Nrf2 is activated in peripheral tissues in response to exercise, however the specific exerkine responsible for the systemic signaling effects is not known. Future work should aim to delineate these redox sensitive systemic signaling mechanisms.
Collapse
Affiliation(s)
- Ethan L Ostrom
- Department of Biological Sciences, Northern Arizona University, United States
| | - Ana P Valencia
- Department of Radiology, University of Washington School of Medicine, United States
| | - David J Marcinek
- Department of Radiology, University of Washington School of Medicine, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, United States
| | - Tinna Traustadóttir
- Department of Biological Sciences, Northern Arizona University, United States.
| |
Collapse
|
29
|
Speer H, McKune AJ. Aging under Pressure: The Roles of Reactive Oxygen and Nitrogen Species (RONS) Production and Aging Skeletal Muscle in Endothelial Function and Hypertension-From Biological Processes to Potential Interventions. Antioxidants (Basel) 2021; 10:antiox10081247. [PMID: 34439495 PMCID: PMC8389268 DOI: 10.3390/antiox10081247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/25/2022] Open
Abstract
The proportion of adults living with hypertension increases significantly with advancing age. It is therefore important to consider how health and vitality can be maintained by the aging population until end of life. A primary risk factor for the progression of cardiovascular diseases (CVD) is hypertension, so exploring the factors and processes central to this burden of disease is essential for healthy aging. A loss of skeletal muscle quantity and quality is characteristic in normal aging, with a reduction of vasodilatory capacity caused by endothelial dysfunction, and subsequent increase in peripheral resistance and risk for hypertension. Reactive Oxygen and Nitrogen Species (RONS) encompass the reactive derivatives of NO and superoxide, which are continuously generated in contracting skeletal muscle and are essential mediators for cellular metabolism. They act together as intra and intercellular messengers, gene expression regulators, and induce programmed cell death. In excessive amounts RONS can inflict damage to endothelial and skeletal muscle cells, alter signaling pathways or prematurely promote stress responses and potentially speed up the aging process. The age-related increase in RONS by skeletal muscle and endothelial mitochondria leads to impaired production of NO, resulting in vascular changes and endothelial dysfunction. Changes in vascular morphology is an early occurrence in the etiology of CVDs and, while this is also a normal characteristic of aging, whether it is a cause or a consequence of aging in hypertension remains unclear. This review serves to focus on the roles and mechanisms of biological processes central to hypertension and CVD, with a specific focus on the effects of aging muscle and RONS production, as well as the influence of established and more novel interventions to mediate the increasing risk for hypertension and CVD and improve health outcomes as we age.
Collapse
Affiliation(s)
- Hollie Speer
- Faculty of Science and Technology, School of Science, University of Canberra, Bruce, ACT 2617, Australia
- Faculty of Health, School of Rehabilitation and Exercise Sciences, University of Canberra, Bruce, ACT 2617, Australia;
- Research Institute for Sport and Exercise (UC-RISE), University of Canberra, Bruce, ACT 2617, Australia
- Correspondence:
| | - Andrew J. McKune
- Faculty of Health, School of Rehabilitation and Exercise Sciences, University of Canberra, Bruce, ACT 2617, Australia;
- Research Institute for Sport and Exercise (UC-RISE), University of Canberra, Bruce, ACT 2617, Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Science, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
30
|
McKeegan K, Mason SA, Trewin AJ, Keske MA, Wadley GD, Della Gatta PA, Nikolaidis MG, Parker L. Reactive oxygen species in exercise and insulin resistance: Working towards personalized antioxidant treatment. Redox Biol 2021; 44:102005. [PMID: 34049222 PMCID: PMC8167146 DOI: 10.1016/j.redox.2021.102005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/25/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) are well known for their role in insulin resistance and the development of cardiometabolic disease including type 2 diabetes mellitus (T2D). Conversely, evidence supports the notion that ROS are a necessary component for glucose cell transport and adaptation to physiological stress including exercise and muscle contraction. Although genetic rodent models and cell culture studies indicate antioxidant treatment to be an effective strategy for targeting ROS to promote health, human findings are largely inconsistent. In this review we discuss human research that has investigated antioxidant treatment and glycemic control in the context of health (healthy individuals and during exercise) and disease (insulin resistance and T2D). We have identified key factors that are likely to influence the effectiveness of antioxidant treatment: 1) the context of treatment including whether oxidative distress or eustress is present (e.g., hyperglycemia/lipidaemia or during exercise and muscle contraction); 2) whether specific endogenous antioxidant deficiencies are identified (redox screening); 3) whether antioxidant treatment is specifically designed to target and restore identified deficiencies (antioxidant specificity); 4) and the bioavailability and bioactivity of the antioxidant which are influenced by treatment dose, duration, and method of administration. The majority of human research has failed to account for these factors, limiting their ability to robustly test the effectiveness of antioxidants for health promotion and disease prevention. We propose that a modern "redox screening" and "personalized antioxidant treatment" approach is required to robustly explore redox regulation of human physiology and to elicit more effective antioxidant treatment in humans.
Collapse
Affiliation(s)
- Kathryn McKeegan
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Michalis G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
31
|
Meyler S, Bottoms L, Muniz-Pumares D. Biological and methodological factors affecting V ̇ O 2 max response variability to endurance training and the influence of exercise intensity prescription. Exp Physiol 2021; 106:1410-1424. [PMID: 34036650 DOI: 10.1113/ep089565] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022]
Abstract
NEW FINDINGS What is the topic of this review? Biological and methodological factors associated with the variable changes in cardiorespiratory fitness in response to endurance training. What advances does it highlight? Several biological and methodological factors exist that each contribute, to a given extent, to response variability. Notably, prescribing exercise intensity relative to physiological thresholds reportedly increases cardiorespiratory fitness response rates compared to when prescribed relative to maximum physiological values. As threshold-based approaches elicit more homogeneous acute physiological responses among individuals, when repeated over time, these uniform responses may manifest as more homogeneous chronic adaptations thereby reducing response variability. ABSTRACT Changes in cardiorespiratory fitness (CRF) in response to endurance training (ET) exhibit large variations, possibly due to a multitude of biological and methodological factors. It is acknowledged that ∼20% of individuals may not achieve meaningful increases in CRF in response to ET. Genetics, the most potent biological contributor, has been shown to explain ∼50% of response variability, whilst age, sex and baseline CRF appear to explain a smaller proportion. Methodological factors represent the characteristics of the ET itself, including the type, volume and intensity of exercise, as well as the method used to prescribe and control exercise intensity. Notably, methodological factors are modifiable and, upon manipulation, alter response rates to ET, eliciting increases in CRF regardless of an individual's biological predisposition. Particularly, prescribing exercise intensity relative to a physiological threshold (e.g., ventilatory threshold) is shown to increase CRF response rates compared to when intensity is anchored relative to a maximum physiological value (e.g., maximum heart rate). It is, however, uncertain whether the increased response rates are primarily attributable to reduced response variability, greater mean changes in CRF or both. Future research is warranted to elucidate whether more homogeneous chronic adaptations manifest over time among individuals, as a result of exposure to more homogeneous exercise stimuli elicited by threshold-based practices.
Collapse
Affiliation(s)
- Samuel Meyler
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Lindsay Bottoms
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | | |
Collapse
|
32
|
Mallard AR, Hollekim-Strand SM, Ingul CB, Coombes JS. High day-to-day and diurnal variability of oxidative stress and inflammation biomarkers in people with type 2 diabetes mellitus and healthy individuals. Redox Rep 2021; 25:64-69. [PMID: 32693740 PMCID: PMC7480454 DOI: 10.1080/13510002.2020.1795587] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Objective: Assess the variability and differences in oxidative stress, antioxidant, and inflammatory biomarkers in people with type 2 diabetes mellitus (T2D) and healthy controls. Methods: Ten men and women diagnosed with T2D and ten healthy matched controls (CON) were recruited. Participants had venous blood taken at six different time points on different days, three in the morning (after overnight fast) and three in the afternoon. Inflammation (IL-6, 8, 10 and TNF-α), oxidative stress/antioxidant biomarkers (F2-isoprostanes, protein carbonyls, total antioxidant capacity (TAC), glutathione peroxidase activity, IL-6, 8 & 10 and TNF-α) were assessed. Results: Biomarker concentrations were similar between groups. There was large variability in nearly all biomarkers for both groups. For inflammatory measures, intra-individual coefficients of variation (CV) ranged from 64.0–92.1% and 100.9–259.0% for inter-individual differences. CVs for oxidative stress markers were lower (7.4–31.2% for intra-individual and 8.6–43.0% for inter-individual). TAC had the lowest intra-individual CV – 7% for T2D and 8% for CON. Protein carbonyls were more variable in the afternoon (34% CV) compared to morning (24% CV) in CON. IL-6 intra-individual CV was different between groups for afternoon measurements (93% T2D, 60% CON). Conclusion: Oxidative stress and inflammatory biomarkers show considerable variation in both T2D and healthy populations. Trial registration:ClinicalTrials.gov identifier: NCT01206725.
Collapse
Affiliation(s)
- Alistair R Mallard
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Siri Marte Hollekim-Strand
- K. G. Jebsen Center for Exercise in Medicine at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Charlotte Björk Ingul
- K. G. Jebsen Center for Exercise in Medicine at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jeff S Coombes
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
33
|
Rothschild JA, Kilding AE, Broome SC, Stewart T, Cronin JB, Plews DJ. Pre-Exercise Carbohydrate or Protein Ingestion Influences Substrate Oxidation but Not Performance or Hunger Compared with Cycling in the Fasted State. Nutrients 2021; 13:nu13041291. [PMID: 33919779 PMCID: PMC8070691 DOI: 10.3390/nu13041291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/01/2023] Open
Abstract
Nutritional intake can influence exercise metabolism and performance, but there is a lack of research comparing protein-rich pre-exercise meals with endurance exercise performed both in the fasted state and following a carbohydrate-rich breakfast. The purpose of this study was to determine the effects of three pre-exercise nutrition strategies on metabolism and exercise capacity during cycling. On three occasions, seventeen trained male cyclists (VO2peak 62.2 ± 5.8 mL·kg−1·min−1, 31.2 ± 12.4 years, 74.8 ± 9.6 kg) performed twenty minutes of submaximal cycling (4 × 5 min stages at 60%, 80%, and 100% of ventilatory threshold (VT), and 20% of the difference between power at the VT and peak power), followed by 3 × 3 min intervals at 80% peak aerobic power and 3 × 3 min intervals at maximal effort, 30 min after consuming a carbohydrate-rich meal (CARB; 1 g/kg CHO), a protein-rich meal (PROTEIN; 0.45 g/kg protein + 0.24 g/kg fat), or water (FASTED), in a randomized and counter-balanced order. Fat oxidation was lower for CARB compared with FASTED at and below the VT, and compared with PROTEIN at 60% VT. There were no differences between trials for average power during high-intensity intervals (367 ± 51 W, p = 0.516). Oxidative stress (F2-Isoprostanes), perceived exertion, and hunger were not different between trials. Overall, exercising in the overnight-fasted state increased fat oxidation during submaximal exercise compared with exercise following a CHO-rich breakfast, and pre-exercise protein ingestion allowed similarly high levels of fat oxidation. There were no differences in perceived exertion, hunger, or performance, and we provide novel data showing no influence of pre-exercise nutrition ingestion on exercise-induced oxidative stress.
Collapse
Affiliation(s)
- Jeffrey A. Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
- Correspondence:
| | - Andrew E. Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
| | - Sophie C. Broome
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand;
| | - Tom Stewart
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
- Human Potential Centre, School of Sport and Recreation, Auckland University of Technology, Auckland 1010, New Zealand
| | - John B. Cronin
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
| | - Daniel J. Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
| |
Collapse
|
34
|
Valladares-Ide D, Bravo MJ, Carvajal A, Araneda OF, Tuesta M, Reyes A, Peñailillo R, Peñailillo L. Changes in pulmonary and plasma oxidative stress and inflammation following eccentric and concentric cycling in stable COPD patients. Eur J Appl Physiol 2021; 121:1677-1688. [PMID: 33675423 DOI: 10.1007/s00421-021-04652-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/23/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The purpose of this study was to compare pulmonary and plasma markers of oxidative stress and inflammation after concentric and eccentric cycling bouts in individuals with chronic obstructive pulmonary disease (COPD). METHODS Ten patients with moderate COPD level (68.3 ± 9.1 years; forced expiratory volume in 1 s = 68.6 ± 20.4% of predicted) performed 30 min of moderate-intensity concentric (CONC-M: 50% maximum concentric cycling power output; POmax) and eccentric cycling (ECC-M: 50% POmax), and high-intensity eccentric cycling (ECC-H: 100% POmax) in a randomised order. Cardiometabolic demand was monitored during cycling. Indirect markers of muscle damage were assessed before, immediately after, 24 and 48 h after cycling (muscle strength, muscle soreness and creatine kinase activity). Plasma oxidative stress (malondialdehyde: MDA), antioxidant (glutathione peroxidase activity: GPx) and inflammatory markers (IL-6, TNF-α) were measured before and 5 min after cycling. Exhaled breath condensate (EBC) samples were collected before and 15 min after cycling and analysed for hydrogen peroxide (H2O2), nitrites (NO2-) and pH. RESULTS Cardiometabolic demand was 40-50% lesser for ECC-M than CONC-M and ECC-H. Greater muscle damage was induced after ECC-H than ECC-M and CONC-M. MDA decreased immediately after CONC-M (- 28%), ECC-M (- 14%), and ECC-H (- 17%), while GPx remained unchanged. IL-6 increased only after ECC-H (28%), while TNF-α remained unchanged after exercise. Pulmonary H2O2, NO2- and pH remained unchanged after exercise. CONCLUSION These results suggest that only moderate muscle damage and inflammation were induced after high-intensity eccentric cycling, which did not induce pulmonary or plasmatic increases in markers of oxidative stress. TRIAL REGISTRATION NUMBER Trial registration number: DRKS00009755.
Collapse
Affiliation(s)
| | - Maria José Bravo
- Exercise Science Laboratory, Faculty of Medicine, School of Kinesiology, Universidad Finis Terrae, 1509 Pedro de Valdivia Av., Providencia, Santiago, Chile
| | - Ana Carvajal
- Exercise Science Laboratory, Faculty of Medicine, School of Kinesiology, Universidad Finis Terrae, 1509 Pedro de Valdivia Av., Providencia, Santiago, Chile
| | - Oscar F Araneda
- Laboratorio Integrativo de Biomecánica y Fisiologia del Esfuerzo (LIBFE), Escuela de Kinesiologia, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Marcelo Tuesta
- Escuela de Kinesiologia, Facultad de Ciencias de la Rehabilitación, Universidad Andres Bello, Vina del Mar, Chile
| | - Alvaro Reyes
- Escuela de Kinesiologia, Facultad de Ciencias de la Rehabilitación, Universidad Andres Bello, Vina del Mar, Chile
| | - Reyna Peñailillo
- Laboratory of Reproductive Biology, Faculty of Medicine, Centre for Biomedical Research, Universidad de los Andes, Santiago, Chile
| | - Luis Peñailillo
- Exercise Science Laboratory, Faculty of Medicine, School of Kinesiology, Universidad Finis Terrae, 1509 Pedro de Valdivia Av., Providencia, Santiago, Chile.
| |
Collapse
|
35
|
Martínez-Noguera FJ, Alcaraz PE, Ortolano-Ríos R, Dufour SP, Marín-Pagán C. Differences between Professional and Amateur Cyclists in Endogenous Antioxidant System Profile. Antioxidants (Basel) 2021; 10:antiox10020282. [PMID: 33673363 PMCID: PMC7918641 DOI: 10.3390/antiox10020282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Currently, no studies have examined the differences in endogenous antioxidant enzymes in professional and amateur cyclists and how these can influence sports performance. The aim of this study was to identify differences in endogenous antioxidants enzymes and hemogram between competitive levels of cycling and to see if differences found in these parameters could explain differences in performance. A comparative trial was carried out with 11 professional (PRO) and 15 amateur (AMA) cyclists. All cyclists performed an endogenous antioxidants analysis in the fasted state (visit 1) and an incremental test until exhaustion (visit 2). Higher values in catalase (CAT), oxidized glutathione (GSSG) and GSSG/GSH ratio and lower values in superoxide dismutase (SOD) were found in PRO compared to AMA (p < 0.05). Furthermore, an inverse correlation was found between power produced at ventilation thresholds 1 and 2 and GSSG/GSH (r = −0.657 and r = −0.635; p < 0.05, respectively) in PRO. Therefore, there is no well-defined endogenous antioxidant enzyme profile between the two competitive levels of cyclists. However, there was a relationship between GSSG/GSH ratio levels and moderate and submaximal exercise performance in the PRO cohort.
Collapse
Affiliation(s)
- Francisco Javier Martínez-Noguera
- Research Center for High Performance Sport, Campus de los Jerónimos, Catholic University of Murcia, 30107 Murcia, Spain; (P.E.A.); (R.O.-R.); (C.M.-P.)
- Correspondence: ; Tel.: +34-96-827-8566
| | - Pedro E. Alcaraz
- Research Center for High Performance Sport, Campus de los Jerónimos, Catholic University of Murcia, 30107 Murcia, Spain; (P.E.A.); (R.O.-R.); (C.M.-P.)
| | - Raquel Ortolano-Ríos
- Research Center for High Performance Sport, Campus de los Jerónimos, Catholic University of Murcia, 30107 Murcia, Spain; (P.E.A.); (R.O.-R.); (C.M.-P.)
| | - Stéphane P. Dufour
- Faculty of Medicine, Translational Medicine Federation (FMTS) UR 3072, University of Strasbourg, 67000 Strasbourg, France;
- Faculty of Sport Sciences, University of Strasbourg, 67084 Strasbourg, France
| | - Cristian Marín-Pagán
- Research Center for High Performance Sport, Campus de los Jerónimos, Catholic University of Murcia, 30107 Murcia, Spain; (P.E.A.); (R.O.-R.); (C.M.-P.)
| |
Collapse
|
36
|
Hillman AR, Gerchman A, O'Hora E. Ten Days of Curcumin Supplementation Attenuates Subjective Soreness and Maintains Muscular Power Following Plyometric Exercise. J Diet Suppl 2021; 19:303-317. [PMID: 33480271 DOI: 10.1080/19390211.2021.1875101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Curcumin has become a popular product used to decrease inflammation and enhance recovery from exercise. PURPOSE To determine the effects of curcumin supplementation on delayed onset muscle soreness and muscle power following plyometric exercise. METHODS Participants (n = 22; five females, 17 males) consumed either curcumin (500 mg) or placebo twice daily for 10 days (6 days pre, day of and 3 days post exercise). Participants completed 5 x 20 drop jumps on day 7. Blood sampling and recovery tests were assessed at pre-supplementation, 24-hours and immediately pre-exercise, and immediately post-, 24, 48 and 72-hours post-exercise. Blood markers included serum creatine kinase (CK) and erythrocyte sedimentation rate (ESR), while soreness was measured during a squat and post vertical jump. RESULTS Both groups experienced muscle damage post-exercise with elevated CK (403 ± 390 ul; p < 0.01), soreness with squatting (38 ± 29 mm; p < 0.01), and vertical jump (36 ± 30 mm; p < 0.01). Soreness was greater in placebo vs. curcumin 48 h and 72 h post-exercise (p < 0.01); however, CK was not significantly different between groups (p = 0.28) despite being >200 IU·L-1 greater 24 hr post exercise in placebo vs. curcumin. ESR was significantly greater immediately post-exercise (6.3 ± 5.6 vs. 3.4 ± 2.6 mm/hr; p = 0.03), however these were within the normal range for this test and not significantly different between groups (p = 0.25). Vertical jump decreased over time in the placebo, but not curcumin group (19.8 ± 4.8 vs. 21.4 ± 3.2 in; p = 0.01). CONCLUSION These data suggest curcumin reduces soreness and maintains muscular power following plyometric exercise.
Collapse
Affiliation(s)
- Angela R Hillman
- Athletic Training and Exercise Science, Marywood University, Scranton, PA, USA.,College of Health Sciences and Professions, School of Applied Health Science and Wellness, Division of Exercise Physiology, Ohio University, Athens, OH, USA
| | - Alexa Gerchman
- Athletic Training and Exercise Science, Marywood University, Scranton, PA, USA
| | - Erin O'Hora
- Nutrition and Dietetics, Marywood University, Scranton, PA, USA
| |
Collapse
|
37
|
Can Exercise-Induced Muscle Damage Be a Good Model for the Investigation of the Anti-Inflammatory Properties of Diet in Humans? Biomedicines 2021; 9:biomedicines9010036. [PMID: 33466327 PMCID: PMC7824757 DOI: 10.3390/biomedicines9010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022] Open
Abstract
Subclinical, low-grade, inflammation is one of the main pathophysiological mechanisms underlying the majority of chronic and non-communicable diseases. Several methodological approaches have been applied for the assessment of the anti-inflammatory properties of nutrition, however, their impact in human body remains uncertain, because of the fact that the majority of the studies reporting anti-inflammatory effect of dietary patterns, have been performed under laboratory settings and/or in animal models. Thus, the extrapolation of these results to humans is risky. It is therefore obvious that the development of an inflammatory model in humans, by which we could induce inflammatory responses to humans in a regulated, specific, and non-harmful way, could greatly facilitate the estimation of the anti-inflammatory properties of diet in a more physiological way and mechanistically relevant way. We believe that exercise-induced muscle damage (EIMD) could serve as such a model, either in studies investigating the homeostatic responses of individuals under inflammatory stimuli or for the estimation of the anti-inflammatory or pro-inflammatory potential of dietary patterns, foods, supplements, nutrients, or phytochemicals. Thus, in this review we discuss the possibility of exercise-induced muscle damage being an inflammation model suitable for the assessment of the anti-inflammatory properties of diet in humans.
Collapse
|
38
|
Sadighi A, abdi A, Azarbayjani MA, barari A. Response of Some Apoptotic Indices to Six Weeks of Aerobic Training in Streptozotocin-Induced Diabetic Rats. MEDICAL LABORATORY JOURNAL 2021. [DOI: 10.29252/mlj.15.1.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
39
|
Papanikolaou K, Veskoukis AS, Draganidis D, Baloyiannis I, Deli CK, Poulios A, Jamurtas AZ, Fatouros IG. Redox-dependent regulation of satellite cells following aseptic muscle trauma: Implications for sports performance and nutrition. Free Radic Biol Med 2020; 161:125-138. [PMID: 33039652 DOI: 10.1016/j.freeradbiomed.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
Skeletal muscle satellite cells (SCs) are indispensable for tissue regeneration, remodeling and growth. Following myotrauma, SCs are activated, and assist in tissue repair. Exercise-induced muscle damage (EIMD) is characterized by a pronounced inflammatory response and the production of reactive oxygen species (ROS). Experimental evidence suggests that SCs kinetics (the propagation from a quiescent to an activated/proliferative state) following EIMD is redox-dependent and interconnected with changes in the SCs microenvironment (niche). Animal studies have shown that following aseptic myotrauma, antioxidant and/or anti-inflammatory supplementation leads to an improved recovery and skeletal muscle regeneration through enhanced SCs kinetics, suggesting a redox-dependent molecular mechanism. Although evidence suggests that antioxidant/anti-inflammatory compounds may prevent performance deterioration and enhance recovery, there is lack of information regarding the redox-dependent regulation of SCs responses following EIMD in humans. In this review, SCs kinetics following aseptic myotrauma, as well as the intrinsic redox-sensitive molecular mechanisms responsible for SCs responses are discussed. The role of redox status on SCs function should be further investigated in the future with human clinical trials in an attempt to elucidate the molecular pathways responsible for muscle recovery and provide information for potential nutritional strategies aiming at performance recovery.
Collapse
Affiliation(s)
- Konstantinos Papanikolaou
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Aristidis S Veskoukis
- Department of Nutrition and Dietetics, University of Thessaly, Argonafton 1, 42132, Trikala, Greece; Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Dimitrios Draganidis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Ioannis Baloyiannis
- Department of Surgery, University Hospital of Larissa, Mezourlo, 41110, Larissa, Greece
| | - Chariklia K Deli
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Athanasios Poulios
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Athanasios Z Jamurtas
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Ioannis G Fatouros
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece.
| |
Collapse
|
40
|
Yang MT, Lee XX, Huang BH, Chien LH, Wang CC, Chan KH. Effects of Two-Week Betaine Supplementation on Apoptosis, Oxidative Stress, and Aerobic Capacity after Exhaustive Endurance Exercise. Antioxidants (Basel) 2020; 9:E1189. [PMID: 33260915 PMCID: PMC7760816 DOI: 10.3390/antiox9121189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
This study evaluated the effects of 2 weeks of betaine supplementation on apoptosis, oxidative stress, and aerobic capacity after exhaustive endurance exercise (EEE). A double-blind, crossover, and counterbalanced design was adopted, with 10 healthy male participants asked to consume betaine (1.25 g of betaine mixed with 300 mL of sports beverage, twice per day for 2 weeks) or placebo (300 mL of sports beverage). All participants performed a graded exercise test on a treadmill to determine the maximal oxygen consumption (VO2max) before supplementation and then performed the EEE test at an intensity of 80% VO2max after 2 weeks of supplementation. The time to exhaustion, peak oxygen consumption, maximal heart rate, and average heart rate were recorded during the EEE test. Venous blood samples were drawn before, immediately after, and 3 h after the EEE test to assess apoptosis and the mitochondrial transmembrane potential (MTP) decline of lymphocytes as well as the concentrations of thiobarbituric acid reactive substance and protein carbonyl. The results indicated that lymphocyte apoptosis was significantly higher immediately after and 3 h after EEE than before exercise in participants in the placebo trial. However, lymphocyte apoptosis exhibited no significant differences among the three time points in participants in the betaine trial. Moreover, apoptosis in the betaine trial was significantly lower immediately after and 3 h after exercise compared with the placebo trial. No differences were noted for other variables. Thus, 2 weeks of betaine supplementation can effectively attenuate lymphocyte apoptosis, which is elevated by EEE. However, betaine supplementation exhibited no effects on MTP decline, oxidative stress, or aerobic capacity.
Collapse
Affiliation(s)
- Ming-Ta Yang
- Center for General Education, Taipei Medical University, Taipei 110301, Taiwan;
| | - Xiu-Xin Lee
- Department of Primary Care Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan;
| | - Bo-Huei Huang
- Charles Perkins Centre, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown 2006, Australia;
| | - Li-Hui Chien
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 333325, Taiwan;
| | - Chia-Chi Wang
- Office of Physical Education, National Taipei University of Business, Taipei 10051, Taiwan;
| | - Kuei-Hui Chan
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 333325, Taiwan;
| |
Collapse
|
41
|
Ostrom EL, Traustadóttir T. Aerobic exercise training partially reverses the impairment of Nrf2 activation in older humans. Free Radic Biol Med 2020; 160:418-432. [PMID: 32866619 PMCID: PMC7704731 DOI: 10.1016/j.freeradbiomed.2020.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/30/2022]
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2), is an inducible transcription factor that improves redox balance through stimulating antioxidant gene expression. In older humans the Nrf2 response to a single bout of acute exercise is blunted compared to young indicating impaired redox signaling. The purpose of this randomized controlled trial was to investigate if the signaling impairment could be reversed with exercise training in older men and women, while also comparing to young. Young (18-28y, n = 21) and older (≥60y, n = 19) men and women were randomized to 8-week aerobic exercise training (ET; 3 d/wk, 45 min/d) or a non-exercise control group (CON). Nrf2 nuclear localization, gene expression for NQO1, HO1, and GCLC, and GCLC protein were measured in PBMCs in response to acute exercise trial (AET; 30-min cycling at 70% VO2 peak pre- and post-intervention at 7 timepoints (Pre, +10 m, +30 m, +1 h, +4 h, +8 h, +24 h). Young had greater Nrf2 signaling response compared to older at pre-intervention (p = 0.05), whereas the older had significantly higher basal Nrf2 levels (p = 0.004). ET decreased basal Nrf2 expression compared to CON (p = 0.032) and improved the Nrf2 signaling response in both young and older (p < 0.05). The degree of restoration in Nrf2 signaling response was related to the degree of change in basal Nrf2 (p = 0.039), which was driven by older adults (p = 0.014). Lower basal nuclear Nrf2 levels were associated with changes seen in AET responses for Nrf2 and GCLC protein, as well as NQO1 and GCLC mRNA. Together these data demonstrate that exercise training improves Nrf2 signaling and downstream gene expression and that lower basal Nrf2 levels are associated with a more dynamic acute response. Our results provide evidence that the impaired Nrf2 signaling in sedentary older adults can be restored to a degree with moderate exercise training, albeit not to the level seen in young. CLINICALTRIALS.GOV ID: NCT03419988.
Collapse
Affiliation(s)
- Ethan L Ostrom
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Tinna Traustadóttir
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
42
|
Rothschild JA, Kilding AE, Plews DJ. What Should I Eat before Exercise? Pre-Exercise Nutrition and the Response to Endurance Exercise: Current Prospective and Future Directions. Nutrients 2020; 12:nu12113473. [PMID: 33198277 PMCID: PMC7696145 DOI: 10.3390/nu12113473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
The primary variables influencing the adaptive response to a bout of endurance training are exercise duration and exercise intensity. However, altering the availability of nutrients before and during exercise can also impact the training response by modulating the exercise stimulus and/or the physiological and molecular responses to the exercise-induced perturbations. The purpose of this review is to highlight the current knowledge of the influence of pre-exercise nutrition ingestion on the metabolic, physiological, and performance responses to endurance training and suggest directions for future research. Acutely, carbohydrate ingestion reduces fat oxidation, but there is little evidence showing enhanced fat burning capacity following long-term fasted-state training. Performance is improved following pre-exercise carbohydrate ingestion for longer but not shorter duration exercise, while training-induced performance improvements following nutrition strategies that modulate carbohydrate availability vary based on the type of nutrition protocol used. Contrasting findings related to the influence of acute carbohydrate ingestion on mitochondrial signaling may be related to the amount of carbohydrate consumed and the intensity of exercise. This review can help to guide athletes, coaches, and nutritionists in personalizing pre-exercise nutrition strategies, and for designing research studies to further elucidate the role of nutrition in endurance training adaptations.
Collapse
|
43
|
Hansen SL, Bojsen-Møller KN, Lundsgaard AM, Hendrich FL, Nilas L, Sjøberg KA, Hingst JR, Serup AK, Olguín CH, Carl CS, Wernblad LF, Henneberg M, Lustrup KM, Hansen C, Jensen TE, Madsbad S, Wojtaszewski JFP, Richter EA, Kiens B. Mechanisms Underlying Absent Training-Induced Improvement in Insulin Action in Lean, Hyperandrogenic Women With Polycystic Ovary Syndrome. Diabetes 2020; 69:2267-2280. [PMID: 32873590 DOI: 10.2337/db20-0062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022]
Abstract
Women with polycystic ovary syndrome (PCOS) have been shown to be less insulin sensitive compared with control (CON) women, independent of BMI. Training is associated with molecular adaptations in skeletal muscle, improving glucose uptake and metabolism in both healthy individuals and patients with type 2 diabetes. In the current study, lean hyperandrogenic women with PCOS (n = 9) and healthy CON women (n = 9) completed 14 weeks of controlled and supervised exercise training. In CON, the training intervention increased whole-body insulin action by 26% and insulin-stimulated leg glucose uptake by 53% together with increased insulin-stimulated leg blood flow and a more oxidative muscle fiber type distribution. In PCOS, no such changes were found, despite similar training intensity and improvements in VO2max In skeletal muscle of CON but not PCOS, training increased GLUT4 and HKII mRNA and protein expressions. These data suggest that the impaired increase in whole-body insulin action in women with PCOS with training is caused by an impaired ability to upregulate key glucose-handling proteins for insulin-stimulated glucose uptake in skeletal muscle and insulin-stimulated leg blood flow. Still, other important benefits of exercise training appeared in women with PCOS, including an improvement of the hyperandrogenic state.
Collapse
Affiliation(s)
- Solvejg L Hansen
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Anne-Marie Lundsgaard
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Frederikke L Hendrich
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Nilas
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Kim A Sjøberg
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne R Hingst
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Annette K Serup
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Henríquez Olguín
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian S Carl
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Louise F Wernblad
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marie Henneberg
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Katja M Lustrup
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christine Hansen
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jørgen F P Wojtaszewski
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Sohail MU, Al-Mansoori L, Al-Jaber H, Georgakopoulos C, Donati F, Botrè F, Sellami M, Elrayess MA. Assessment of Serum Cytokines and Oxidative Stress Markers in Elite Athletes Reveals Unique Profiles Associated With Different Sport Disciplines. Front Physiol 2020; 11:600888. [PMID: 33178053 PMCID: PMC7593763 DOI: 10.3389/fphys.2020.600888] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives Circulating cytokines and oxidative stress markers vary in response to different exercise regimens. This study aims to compare the immune-inflammatory and oxidative stress profiles of elite athletes from different sport disciplines as potential biomarkers of muscle damage, and cardiovascular demand. Methods Serum samples from 88 consented elite male athletes from different sports disciplines (aquatics, n = 11, athletics, n = 22, cycling, n = 19, football, n = 28 and weightlifting, n = 8) collected at the anti-doping lab in Italy were screened for 38 cytokines and oxidative stress markers. Comparisons were made between different level of power, cardiovascular demand (CD) and endurance, as well as among the sport types. Results The anti-inflammatory interleukin (IL)-10 was higher (p = 0.04) in moderate power compared with the high power group. Conversely, superoxide dismutase (SOD; p = 0.001) and malondialdehyde (MDA; p = 0.007) levels were greater in the higher power groups compared with the lower power counterpart. Among athletes who belong to different CD ranks, IL-1β and monocyte chemoattractant protein-1(MCP1) levels were higher (p = 0.03) in the low CD-rank group compared with high CD counterpart, whereas, SOD levels were higher (p = 0.001) in high and moderate CD-rank groups compared to low counterpart. For endurance groups, IL-10 and macrophage inflammatory protein (MIP)-1beta were increased (p = 0.03) in low/moderate endurance compared with the high endurance group. Finally, MIP1-beta, SOD and catalase varied significantly among the sports groups. Conclusion Specific markers of inflammation and oxidative stress are associated with different sports disciplines and could be utilized as potential biomarkers of athletes' health, performance, and recovery from injury.
Collapse
Affiliation(s)
| | | | - Hend Al-Jaber
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Maha Sellami
- College of Art and Science, Sport Science Program, Qatar University, Doha, Qatar
| | | |
Collapse
|
45
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Antioxidant supplementation, redox deficiencies and exercise performance: A falsification design. Free Radic Biol Med 2020; 158:44-52. [PMID: 32682929 DOI: 10.1016/j.freeradbiomed.2020.06.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022]
Abstract
The aim of the present study was to validate the idea of personalized redox supplementation by subjecting individuals to targeted and non-targeted antioxidant supplementation schemes. Seventy-three volunteers were screened for plasma vitamin C and erythrocyte glutathione levels. Three groups were formed: i) the "low vitamin C″ group (12 individuals with the lowest vitamin C levels; Low VitC), ii) the "low glutathione" group (12 individuals with the lowest glutathione levels; Low GSH) and iii) a control group (12 individuals with moderate vitamin C and glutathione levels). The three groups received 1 g of vitamin C or 1.2 g of NAC daily for 30 days in a crossover design with a wash-out period of 30 days. Both antioxidant treatments reduced the increased resting systemic oxidative stress levels, assessed via urine F2-isoprostanes, in the Low VitC and Low GSH groups (P < .05). A significant group × time interaction (P < .05) was found for VO2max and isometric peak torque after both treatments, with the Low VitC and Low GSH groups exhibiting improved performance only after the targeted treatment (vitamin C and NAC, respectively). A significant group × time interaction (P < .05) was found for fatigue index after NAC treatment, but not after vitamin C treatment. No interaction was found for the Wingate test after both treatments. Most of the evidence verifies the idea that antioxidant supplementation increases performance when a particular deficiency is reversed. This indicates that the presence of oxidative stress per se does not rationalize the use of antioxidants and emphasizes the need to identify "responsive" phenotypes.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece; Dialysis Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece.
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece.
| | - Anastasios A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| | - Antonios Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| | - Michalis G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| |
Collapse
|
46
|
Varamenti E, Tod D, Pullinger SA. Redox Homeostasis and Inflammation Responses to Training in Adolescent Athletes: a Systematic Review and Meta-analysis. SPORTS MEDICINE-OPEN 2020; 6:34. [PMID: 32748060 PMCID: PMC7399016 DOI: 10.1186/s40798-020-00262-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/13/2020] [Indexed: 01/28/2023]
Abstract
Background Several studies have highlighted the substantial role of the athlete’s redox and inflammation status during the training process. However, many factors such as differences in testing protocols, assays, sample sizes, and fitness levels of the population are affecting findings and the understanding regarding how exercise affects related biomarkers in adolescent athletes. Objectives To search redox homeostasis variables’ and inflammatory mediators’ responses in juvenile athletes following short- or long-term training periods and examine the effect size of those variations to training paradigms. Methods A PRISMA-compliant systematic review and meta-analysis were conducted. The entire content of PubMed (MEDLINE), Scopus, and Science Direct were systematically searched until December 2019. Studies with outcomes including (1) a group of adolescent athletes from any individual or team sport, (2) the assessment of redox and/or inflammatory markers after a short- (training session or performance testing) or longer training period, and (3) variables measured in blood were retained. The literature search initially identified 346 potentially relevant records, of which 36 studies met the inclusion criteria for the qualitative synthesis. From those articles, 27 were included in the quantitative analysis (meta-analysis) as their results could be converted into common units. Results Following a short training session or performance test, an extremely large increase in protein carbonyls (PC) (ES 4.164; 95% CI 1.716 to 6.613; Z = 3.333, p = 0.001), a large increase in thiobarbituric acid reactive substances (TBARS) (ES 1.317; 95% CI 0.522 to 2.112; Z = 3.247, p = 0.001), a large decrease in glutathione (GSH) (ES − 1.701; 95% CI − 2.698 to − 0.705; Z = − 3.347, p = 0.001), and a moderate increase of total antioxidant capacity (TAC) level (ES 1.057; 95% CI − 0.044 to 2.158; Z = 1.882, p = 0.060) were observed. Following more extended training periods, GSH showed moderate increases (ES 1.131; 95% CI 0.350 to 1.913; Z = 2.839, p = 0.005) while TBARS displayed a small decrease (ES 0.568; 95% CI − 0.062 to 1.197; Z = 1.768, p = 0.077). Regarding cytokines, a very large and large increase were observed in IL-6 (ES 2.291; 95% CI 1.082 to 3.501; Z = 3.713, p = 0.000) and IL-1 receptor antagonist (ra) (ES 1.599; 95% CI 0.347 to 2.851; Z = 2.503, p = 0.012), respectively, following short-duration training modalities in juvenile athletes. Conclusions The results showed significant alterations in oxidative stress and cytokine levels after acute exercise, ranging from moderate to extremely large. In contrast, the variations after chronic exercise ranged from trivial to moderate. However, the observed publication bias and high heterogeneity in specific meta-analysis advocate the need for further exploration and consistency when we deal with the assessed variables to ascertain the implications of structured training regimes on measured variables in order to develop guidelines for training, nutritional advice, and wellbeing in young athletes. Trial Registration PROSPERO CRD42020152105
Collapse
Affiliation(s)
- Evdokia Varamenti
- Aspire Academy for Sports Excellence, Sports Science Departement, PO Box: 22287, Doha, Qatar.
| | - David Tod
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Samuel A Pullinger
- Aspire Academy for Sports Excellence, Sports Science Departement, PO Box: 22287, Doha, Qatar
| |
Collapse
|
47
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Redox basis of exercise physiology. Redox Biol 2020; 35:101499. [PMID: 32192916 PMCID: PMC7284946 DOI: 10.1016/j.redox.2020.101499] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Redox reactions control fundamental processes of human biology. Therefore, it is safe to assume that the responses and adaptations to exercise are, at least in part, mediated by redox reactions. In this review, we are trying to show that redox reactions are the basis of exercise physiology by outlining the redox signaling pathways that regulate four characteristic acute exercise-induced responses (muscle contractile function, glucose uptake, blood flow and bioenergetics) and four chronic exercise-induced adaptations (mitochondrial biogenesis, muscle hypertrophy, angiogenesis and redox homeostasis). Based on our analysis, we argue that redox regulation should be acknowledged as central to exercise physiology.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece; Dialysis Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece.
| | - V Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - A A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
48
|
Larsen EL, Poulsen HE, Michaelsen C, Kjær LK, Lyngbæk M, Andersen ES, Petersen-Bønding C, Lemoine C, Gillum M, Jørgensen NR, Ploug T, Vilsbøll T, Knop FK, Karstoft K. Differential time responses in inflammatory and oxidative stress markers after a marathon: An observational study. J Sports Sci 2020; 38:2080-2091. [PMID: 32530734 DOI: 10.1080/02640414.2020.1770918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute and adaptive changes in systemic markers of oxidatively generated nucleic acid modifications (i.e., 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo)) as well as inflammatory cytokines (i.e., C-reactive protein, interleukin-6, interleukin-10, and tumour necrosis factor alpha), a liver hormone (i.e., fibroblast growth factor 21 (FGF21)), and bone metabolism markers (sclerostin, osteocalcin, C-terminal telopeptide, and N-terminal propeptide of type 1 procollagen) were investigated following a marathon in 20 study participants. Immediate changes were observed in inflammatory cytokines, FGF21, and bone metabolism markers following the marathon. In contrast, no immediate changes in urinary excretion of 8-oxodG and 8-oxoGuo were evident. Four days after the marathon, decreased urinary excretion of 8-oxodG (-2.9 (95% CI -4.8;-1.1) nmol/24 h, P < 0.01) and 8-oxoGuo (-5.8 (95% CI -10.3;-1.3) nmol/24 h, P = 0.02) was observed. The excretion rate of 8-oxodG remained decreased 7 days after the marathon compared to baseline (-2.3 (95%CI -4.3;-0.4) nmol/24 h, P = 0.02), whereas the excretion rate of 8-oxoGuo was normalized. In conclusion marathon participation immediately induced a considerable inflammatory response, but did not increase excretion rates of oxidatively generated nucleic acid modifications. In fact, a delayed decrease in oxidatively generated nucleic acid modifications was observed suggesting adaptive antioxidative effects following exercise. ABBREVIATIONS 8-oxodG: 8-oxo-7,8-dihydro-2'-deoxyguanosine; 8-oxoGuo: 8-oxo-7,8-dihydroguanosine; CI: confidence interval; CTX: C-terminal telopeptide of type 1 collagen; DXA: dual-energy X-ray absorptiometry; ELISA: enzyme-linked immunosorbent assay; FGF21: Fibroblast growth factor 21; h: hour; hsCRP: high sensitivity C-reactive protein; IL: interleukin; IQR: interquartile range; MS: mass spectrometry: P1NP: N-terminal propeptide of type 1 procollagen; TNFα: tumour necrosis factor alpha; UPLC: ultra-performance liquid chromatography.
Collapse
Affiliation(s)
- Emil List Larsen
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen , Copenhagen, Denmark
| | - Henrik Enghusen Poulsen
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen , Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen , Copenhagen, Denmark
| | - Cristina Michaelsen
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen , Copenhagen, Denmark
| | - Laura Kofoed Kjær
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen , Copenhagen, Denmark
| | - Mark Lyngbæk
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen , Copenhagen, Denmark
| | - Emilie Skytte Andersen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen , Hellerup, Denmark.,Steno Diabetes Center Copenhagen , Gentofte, Denmark
| | - Christina Petersen-Bønding
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen , Copenhagen, Denmark
| | - Clara Lemoine
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen, Denmark
| | - Matthew Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen, Denmark
| | | | - Thorkil Ploug
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Tina Vilsbøll
- Department of Clinical Medicine, University of Copenhagen , Copenhagen, Denmark.,Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen , Hellerup, Denmark.,Steno Diabetes Center Copenhagen , Gentofte, Denmark
| | - Filip Krag Knop
- Department of Clinical Medicine, University of Copenhagen , Copenhagen, Denmark.,Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen , Hellerup, Denmark.,Steno Diabetes Center Copenhagen , Gentofte, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen, Denmark
| | - Kristian Karstoft
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen , Copenhagen, Denmark.,Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen , Copenhagen, Denmark
| |
Collapse
|
49
|
Nutrition and Altitude: Strategies to Enhance Adaptation, Improve Performance and Maintain Health: A Narrative Review. Sports Med 2020; 49:169-184. [PMID: 31691928 PMCID: PMC6901429 DOI: 10.1007/s40279-019-01159-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Training at low to moderate altitudes (~ 1600-2400 m) is a common approach used by endurance athletes to provide a distinctive environmental stressor to augment training stimulus in the anticipation of increasing subsequent altitude- and sea-level-based performance. Despite some scientific progress being made on the impact of various nutrition-related changes in physiology and associated interventions at mountaineering altitudes (> 3000 m), the impact of nutrition and/or supplements on further optimization of these hypoxic adaptations at low-moderate altitudes is only an emerging topic. Within this narrative review we have highlighted six major themes involving nutrition: altered energy availability, iron, carbohydrate, hydration, antioxidant requirements and various performance supplements. Of these issues, emerging data suggest that particular attention be given to the potential risk for poor energy availability and increased iron requirements at the altitudes typical of elite athlete training (~ 1600-2400 m) to interfere with optimal adaptations. Furthermore, the safest way to address the possible increase in oxidative stress associated with altitude exposure is via the consumption of antioxidant-rich foods rather than high-dose antioxidant supplements. Meanwhile, many other important questions regarding nutrition and altitude training remain to be answered. At the elite level of sport where the differences between winning and losing are incredibly small, the strategic use of nutritional interventions to enhance the adaptations to altitude training provides an important consideration in the search for optimal performance.
Collapse
|
50
|
Nikolaidis MG, Margaritelis NV, Matsakas A. Quantitative Redox Biology of Exercise. Int J Sports Med 2020; 41:633-645. [PMID: 32455453 DOI: 10.1055/a-1157-9043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biology is rich in claims that reactive oxygen and nitrogen species are involved in every biological process and disease. However, many quantitative aspects of redox biology remain elusive. The important quantitative parameters you need to address the feasibility of redox reactions in vivo are: rate of formation and consumption of a reactive oxygen and nitrogen species, half-life, diffusibility and membrane permeability. In the first part, we explain the basic chemical kinetics concepts and algebraic equations required to perform "street fighting" quantitative analysis. In the second part, we provide key numbers to help thinking about sizes, concentrations, rates and other important quantities that describe the major oxidants (superoxide, hydrogen peroxide, nitric oxide) and antioxidants (vitamin C, vitamin E, glutathione). In the third part, we present the quantitative effect of exercise on superoxide, hydrogen peroxide and nitric oxide concentration in mitochondria and whole muscle and calculate how much hydrogen peroxide concentration needs to increase to transduce signalling. By taking into consideration the quantitative aspects of redox biology we can: i) refine the broad understanding of this research area, ii) design better future studies and facilitate comparisons among studies, and iii) define more efficiently the "borders" between cellular signaling and stress.
Collapse
Affiliation(s)
- Michalis G Nikolaidis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece.,General Military Hospital of Thessaloniki, Dialysis Unit, Thessaloniki, Greece
| | - Antonios Matsakas
- Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, Hull, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|