1
|
Kellingray L, Savva GM, Garcia-Gutierrez E, Snell J, Romano S, Yara DA, Altera A, de Oliveira Martins L, Hutchins C, Baker D, Hayhoe A, Hacon C, Elumogo N, Narbad A, Sayavedra L. Temporal dynamics of SARS-CoV-2 shedding in feces and saliva: a longitudinal study in Norfolk, United Kingdom during the 2021-2022 COVID-19 waves. Microbiol Spectr 2025; 13:e0319524. [PMID: 40131871 PMCID: PMC12053912 DOI: 10.1128/spectrum.03195-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was originally described as a respiratory illness; however, it is now known that the infection can spread to the gastrointestinal tract, leading to shedding in feces potentially being a source of infection through wastewater. We aimed to assess the prevalence and persistence of SARS-CoV-2 in fecal and saliva samples for up to 7 weeks post-detection in a cohort of 98 participants from Norfolk, United Kingdom using RT-qPCR. Secondary goals included sequencing the viral isolates present in fecal samples and comparing the genetic sequence with isolates in the saliva of the same participant. Furthermore, we sought to identify factors associated with the presence of detectable virus in feces or saliva after a positive SARS-CoV-2 test. Saliva remained SARS-CoV-2-positive for longer periods compared to fecal samples, with all positive fecal samples occurring within 4 weeks of the initial positive test. Detectable virus in fecal samples was positively associated with the number of symptoms experienced by the individuals. Based on the genome sequencing and taxonomic classification of the virus, one donor had a distinct strain in feces compared to saliva on the same collection date, which suggests that different isolates could dominate different tissues. Our results underscore the importance of considering multiple biological samples, such as feces, in the detection and characterization of SARS-CoV-2, particularly in clinical procedures involving patient fecal material transplant. Such insights could contribute to enhancing the safety protocols surrounding the handling of patient samples and aid in devising effective strategies for mitigating the spread of coronavirus disease. IMPORTANCE This study provides critical insights into the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shedding in fecal and saliva samples, demonstrating that while viral RNA is detectable shortly after diagnosis, its prevalence declines rapidly over the course of infection. Detection was more common among individuals with more concurrent symptoms, emphasizing the potential influence of symptom burden on viral persistence. By analyzing a United Kingdom-based cohort, this study fills a significant gap in the literature, which has largely focused on Asian and North American populations, offering a geographically unique perspective on viral shedding dynamics. Our findings contribute to a globally relevant understanding of SARS-CoV-2 shedding by revealing differences in shedding durations compared to studies from other regions. These differences highlight the need for geographically diverse research to account for variations in genetic background, immune response, and healthcare practices.
Collapse
Affiliation(s)
- Lee Kellingray
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - George M. Savva
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Enriqueta Garcia-Gutierrez
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Department of Agronomic Engineering-ETSIA, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, Cartagena, Region of Murcia, Spain
| | - Jemma Snell
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Stefano Romano
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | | | - Annalisa Altera
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | | | - Chloe Hutchins
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - David Baker
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Antonietta Hayhoe
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Christian Hacon
- James Paget University Hospitals NHS Foundation Trust, Great Yarmouth, England, United Kingdom
| | - Ngozi Elumogo
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, United Kingdom
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Lizbeth Sayavedra
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
2
|
Alzayer HA, Hunasemarada BC, Alumran A, Aldossary S, Al Dossary RA. In-Utero Maternal-to-Fetal Transmission of COVID-19: An Immunological and Virological Study in the Eastern Province of Saudi Arabia. Infect Drug Resist 2025; 18:1393-1403. [PMID: 40092847 PMCID: PMC11910909 DOI: 10.2147/idr.s501533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is a respiratory illness caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). The pandemic potential of the virus along with its severity posed a threat to all individuals particularly pregnant women. Multiple studies suggested the possibility of vertical transmission of COVID-19 with variable findings. Aim This study aims to assess the frequency of COVID-19 vertical transmission and identify maternal and neonatal complications. Materials and Methods A retrospective study of 17 months for all pregnant women attending for delivery who tested positive using SARS-CoV-2 polymerase chain reaction (PCR) (n = 80) and their neonates (n = 81) who were tested by both SARS-CoV2 PCR and viral IgG and IgM antibodies detection using immunochromatography. A matched control group of PCR negative mothers (n = 51) was included. All testing was done within 24-48 hours, and the neonates of positive mothers were immediately and completely separated from their mothers as per the hospital policy. Results A total of 263 individuals were included in the study. Out of 80 SARS-CoV2 PCR positive mothers, 4 (5%) had PCR positive neonates and one (1.3%) had SARS-CoV2 IgM positive neonates. The commonest presentation of COVID-19 in mothers were cough (11.4%) and dyspnea (10%). In addition, the need for ICU admission and antibiotics usage was significantly higher in SARS-CoV2 PCR positive mothers (p value 0.042, 0.003 respectively). On the other hand, neonates of SARS-CoV2 PCR positive mothers had a higher risk of low birth weight and NICU admission (p value < 0.001). Conclusion This study, with its unique infection control protocol for managing SARS-CoV2 PCR-positive mothers and the use of immunological testing for neonates, provides evidence for in-utero SARS-CoV2 transmission, and interpretation of the results should be in conjunction with the WHO categorization of the timing of mother-to-fetal transmission. Further studies are needed to assess the impact of viral genetic evolution on the risk of maternal-fetal transmission.
Collapse
Affiliation(s)
- Hibah A Alzayer
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
- Clinical Laboratory Services, Dammam Medical Complex, Dammam, Saudi Arabia
| | - Basavaraja C Hunasemarada
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Arwa Alumran
- Department of Health Information Management and Technology, College of Public Health, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Shaikha Aldossary
- Department of Pediatrics, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Reem A Al Dossary
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| |
Collapse
|
3
|
Tian L, Wan E, Celine Chui SL, Li S, Chan E, Luo H, Wong ICK, Zhang Q. Deciphering the molecular mechanism of post-acute sequelae of COVID-19 through comorbidity network analysis. CHAOS (WOODBURY, N.Y.) 2025; 35:021102. [PMID: 39977305 DOI: 10.1063/5.0250923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/11/2025] [Indexed: 02/22/2025]
Abstract
The post-acute sequelae of COVID-19 (PASC) poses a significant health challenge in the post-pandemic world. However, the underlying biological mechanisms of PASC remain intricate and elusive. Network-based methods can leverage electronic health record data and biological knowledge to investigate the impact of COVID-19 on PASC and uncover the underlying biological mechanisms. This study analyzed territory-wide longitudinal electronic health records (from January 1, 2020 to August 31, 2022) of 50 296 COVID-19 patients and a healthy non-exposed group of 100 592 individuals to determine the impact of COVID-19 on disease progression, provide molecular insights, and identify associated biomarkers. We constructed a comorbidity network and performed disease-protein mapping and protein-protein interaction network analysis to reveal the impact of COVID-19 on disease trajectories. Results showed disparities in prevalent disease comorbidity patterns, with certain patterns exhibiting a more pronounced influence by COVID-19. Overlapping proteins elucidate the biological mechanisms of COVID-19's impact on each comorbidity pattern, and essential proteins can be identified based on their weights. Our findings can help clarify the biological mechanisms of COVID-19, discover intervention methods, and decode the molecular basis of comorbidity associations, while also yielding potential biomarkers and corresponding treatments for specific disease progression patterns.
Collapse
Affiliation(s)
- Lue Tian
- School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Eric Wan
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Family Medicine and Primary Care, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health, Hong Kong, China
| | - Sze Ling Celine Chui
- Laboratory of Data Discovery for Health, Hong Kong, China
- School of Nursing, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shirely Li
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health, Hong Kong, China
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Esther Chan
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health, Hong Kong, China
| | - Hao Luo
- Department of Social Work and Social Administration, The University of Hong Kong, Hong Kong, China
- School of Public Health Sciences, The University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Ian C K Wong
- School of Data Science, City University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health, Hong Kong, China
- School of Pharmacy, Aston University, Birmingham B4 7ET, United Kingdom
| | - Qingpeng Zhang
- School of Data Science, City University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health, Hong Kong, China
| |
Collapse
|
4
|
Salomè S, D’Acunzo I, Fanelli F, Perniciaro S, Capasso L, Raimondi F, Tzialla C. How to Manage a Neonate Born from a SARS-CoV-2-Positive Mother: A Narrative Review. Pathogens 2024; 13:977. [PMID: 39599530 PMCID: PMC11597680 DOI: 10.3390/pathogens13110977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
From 2020 to today, considerable knowledge on SARS-CoV-2 has been collected, even on pregnant women and their fetuses and newborns, and clinical guidelines have been written and implemented worldwide. Vaccination has considerably improved outcomes, but hesitancy amongst pregnant patients and the emergence of variants remain challenging, and SARS-CoV-2 positivity during pregnancy continues to be associated with an increased risk of maternal complications, premature delivery, and higher neonatal mortality and morbidity. A body of data now exists on the effect of SARS-CoV-2 during pregnancy on early neonatal outcomes, medical education in obstetrics and pediatrics, and longer-term developmental outcomes. This review aimed to present important findings on clinical outcomes and health recommendations for neonate born from a SARS-CoV-2-positive mother in order to summarize effective preventive healthcare guidelines.
Collapse
Affiliation(s)
- Serena Salomè
- Division of Neonatology, Department of Translational Medical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (I.D.); (F.F.); (L.C.); (F.R.)
| | - Ida D’Acunzo
- Division of Neonatology, Department of Translational Medical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (I.D.); (F.F.); (L.C.); (F.R.)
| | - Federica Fanelli
- Division of Neonatology, Department of Translational Medical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (I.D.); (F.F.); (L.C.); (F.R.)
| | - Simona Perniciaro
- Neonatal Intensive Care Unit, “Filippo del Ponte” Hospital, ASST Settelaghi, 21100 Varese, Italy;
| | - Letizia Capasso
- Division of Neonatology, Department of Translational Medical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (I.D.); (F.F.); (L.C.); (F.R.)
| | - Francesco Raimondi
- Division of Neonatology, Department of Translational Medical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (I.D.); (F.F.); (L.C.); (F.R.)
| | - Chryssoula Tzialla
- Neonatal and Pediatric Unit, Polo Ospedaliero Oltrepò, ASST Pavia, 27058 Voghera, Italy;
| | | |
Collapse
|
5
|
Muthukutty P, MacDonald J, Yoo SY. Combating Emerging Respiratory Viruses: Lessons and Future Antiviral Strategies. Vaccines (Basel) 2024; 12:1220. [PMID: 39591123 PMCID: PMC11598775 DOI: 10.3390/vaccines12111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Emerging viral diseases, including seasonal illnesses and pandemics, pose significant global public health risks. Respiratory viruses, particularly coronaviruses and influenza viruses, are associated with high morbidity and mortality, imposing substantial socioeconomic burdens. This review focuses on the current landscape of respiratory viruses, particularly influenza and SARS-CoV-2, and their antiviral treatments. It also discusses the potential for pandemics and the development of new antiviral vaccines and therapies, drawing lessons from past outbreaks to inform future strategies for managing viral threats.
Collapse
Affiliation(s)
| | | | - So Young Yoo
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea; (P.M.); (J.M.)
| |
Collapse
|
6
|
Stave GM, Nabeel I, Durand-Moreau Q. Long COVID-ACOEM Guidance Statement. J Occup Environ Med 2024; 66:349-357. [PMID: 38588073 DOI: 10.1097/jom.0000000000003059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
ABSTRACT Persistent symptoms are common after acute COVID-19, often referred to as long COVID. Long COVID may affect the ability to perform activities of daily living, including work. Long COVID occurs more frequently in those with severe acute COVID-19. This guidance statement reviews the pathophysiology of severe acute COVID-19 and long COVID and provides pragmatic approaches to long COVID symptoms, syndromes, and conditions in the occupational setting. Disability laws and workers' compensation are also addressed.
Collapse
Affiliation(s)
- Gregg M Stave
- From the Division of Occupational and Environmental Medicine, Duke University, Durham, NC (G.M.S.); Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY (I.N.); and Division of Preventive Medicine, University of Alberta, Edmonton, Canada (Q.D.-M.)
| | | | | |
Collapse
|
7
|
Pace RM, King-Nakaoka EA, Morse AG, Pascoe KJ, Winquist A, Caffé B, Navarrete AD, Lackey KA, Pace CD, Fehrenkamp BD, Smith CB, Martin MA, Barbosa-Leiker C, Ley SH, McGuire MA, Meehan CL, Williams JE, McGuire MK. Prevalence and duration of SARS-CoV-2 fecal shedding in breastfeeding dyads following maternal COVID-19 diagnosis. Front Immunol 2024; 15:1329092. [PMID: 38585272 PMCID: PMC10996396 DOI: 10.3389/fimmu.2024.1329092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Background There is a paucity of data on the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in feces of lactating women with coronavirus disease 2019 (COVID-19) and their breastfed infants as well as associations between fecal shedding and symptomatology. Objective We examined whether and to what extent SARS-CoV-2 is detectable in the feces of lactating women and their breastfed infants following maternal COVID-19 diagnosis. Methods This was a longitudinal study carried out from April 2020 to December 2021 involving 57 breastfeeding maternal-infant dyads: 33 dyads were enrolled within 7 d of maternal COVID-19 diagnosis, and 24 healthy dyads served as controls. Maternal/infant fecal samples were collected by participants, and surveys were administered via telephone over an 8-wk period. Feces were analyzed for SARS-CoV-2 RNA. Results Signs/symptoms related to ears, eyes, nose, and throat (EENT); general fatigue/malaise; and cardiopulmonary signs/symptoms were commonly reported among mothers with COVID-19. In infants of mothers with COVID-19, EENT, immunologic, and cardiopulmonary signs/symptoms were most common, but prevalence did not differ from that of infants of control mothers. SARS-CoV-2 RNA was detected in feces of 7 (25%) women with COVID-19 and 10 (30%) of their infants. Duration of fecal shedding ranged from 1-4 wk for both mothers and infants. SARS-CoV-2 RNA was sparsely detected in feces of healthy dyads, with only one mother's and two infants' fecal samples testing positive. There was no relationship between frequencies of maternal and infant SARS-CoV-2 fecal shedding (P=0.36), although presence of maternal or infant fever was related to increased likelihood (7-9 times greater, P≤0.04) of fecal shedding in infants of mothers with COVID-19.
Collapse
Affiliation(s)
- Ryan M. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
- College of Nursing, University of South Florida, Tampa, FL, United States
| | - Elana A. King-Nakaoka
- University of Washington School of Medicine, Seattle, WA, United States
- WWAMI Medical Education, University of Idaho, Moscow, ID, United States
| | - Andrew G. Morse
- University of Washington School of Medicine, Seattle, WA, United States
- WWAMI Medical Education, University of Idaho, Moscow, ID, United States
| | - Kelsey J. Pascoe
- College of Nursing, Washington State University, Spokane, WA, United States
| | - Anna Winquist
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Beatrice Caffé
- Department of Anthropology, Washington State University, Pullman, WA, United States
| | - Alexandra D. Navarrete
- Department of Medicine, Oregon Health and Sciences University, Portland, OR, United States
| | - Kimberly A. Lackey
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Christina D.W. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Bethaney D. Fehrenkamp
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
- University of Washington School of Medicine, Seattle, WA, United States
- WWAMI Medical Education, University of Idaho, Moscow, ID, United States
| | - Caroline B. Smith
- Department of Anthropology, Washington State University, Pullman, WA, United States
| | - Melanie A. Martin
- Department of Anthropology, University of Washington, Seattle, WA, United States
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, United States
| | | | - Sylvia H. Ley
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Mark A. McGuire
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Courtney L. Meehan
- Department of Anthropology, Washington State University, Pullman, WA, United States
| | - Janet E. Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
8
|
Cheng LD, Li P, Lin YC, Hu HX, Zhang Y, Li HF, Huang J, Tan L, Ma N, Xia DY. Monoclonal neutralizing antibodies against SARS-COV-2 S protein. Am J Transl Res 2024; 16:681-689. [PMID: 38463597 PMCID: PMC10918147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/17/2023] [Indexed: 03/12/2024]
Abstract
Novel coronavirus pneumonia, also known as coronavirus disease 2019 (COVID-19), is caused by sub-severe acute respiratory syndrome type 2 coronavirus (SARS-CoV-2) infection. The spike (S) protein of SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) receptors widely expressed on the surface of human cells leading to life-threatening respiratory infections. A serious hazard to human health is posed by the lack of particular treatment medications for this virus infection. We advocate the creation of high-affinity antibodies using the receptor binding domain (RBD) of S protein as a specific antigenic epitope to develop a drug that can precisely target therapy COVID-19 because SARS-CoV-2 infection of the host cells is dependent on S protein binding to ACE2. Finally, we obtained high-affinity antibodies 14F4HL and 14E3HL that have high affinity with RBD and well-drug-forming properties, suitable for further humanization studies. Thus, monoclonal antibodies that neutralize the S protein were identified in our study, which may provide new insights for the development of COVID-19 therapeutic drugs.
Collapse
Affiliation(s)
- Lin-Dong Cheng
- Graduate School, Hebei North UniversityZhangjiakou 075000, Hebei, China
| | - Ping Li
- Graduate School, Wannan Medical CollegeWuhu 241000, Anhui, China
| | - Yan-Chen Lin
- Graduate School, Hebei North UniversityZhangjiakou 075000, Hebei, China
| | - Hui-Xiu Hu
- Graduate School, Hebei North UniversityZhangjiakou 075000, Hebei, China
| | - Ying Zhang
- Graduate School, Hebei North UniversityZhangjiakou 075000, Hebei, China
| | - Hou-Feng Li
- Graduate School, Hebei North UniversityZhangjiakou 075000, Hebei, China
| | - Jing Huang
- Graduate School, Wannan Medical CollegeWuhu 241000, Anhui, China
| | - Li Tan
- Department of Anesthesiology, Chongqing University Cancer HospitalChongqing 400030, China
| | - Ning Ma
- Department of Clinical Laboratory, 905th Hospital of PLAShanghai 200052, China
| | - Deng-Yun Xia
- Department of Anesthesiology, The First Affiliated Hospital of Hebei North UniversityZhangjiakou 075000, Hebei, China
| |
Collapse
|
9
|
STOKES CALEB, J. MELVIN ANN. Viral Infections of the Fetus and Newborn. AVERY'S DISEASES OF THE NEWBORN 2024:450-486.e24. [DOI: 10.1016/b978-0-323-82823-9.00034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Choi BJ, Hoselton S, Njau GN, Idamawatta I, Carson P, McEvoy J. Estimating the prevalence of COVID-19 cases through the analysis of SARS-CoV-2 RNA copies derived from wastewater samples from North Dakota. GLOBAL EPIDEMIOLOGY 2023; 6:100124. [PMID: 37881481 PMCID: PMC10594563 DOI: 10.1016/j.gloepi.2023.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
The SARS-CoV-2 virus was first detected in December 2019, which prompted many researchers to investigate how the virus spreads. SARS-CoV-2 is mainly transmitted through respiratory droplets. Symptoms of the SARS-CoV-2 virus appear after an incubation period. Moreover, the asymptomatic infected individuals unknowingly spread the virus. Detecting infected people requires daily tests and contact tracing, which are expensive. The early detection of infectious diseases, including COVID-19, can be achieved with wastewater-based epidemiology, which is timely and cost-effective. In this study, we collected wastewater samples from wastewater treatment plants in several cities in North Dakota and then extracted viral RNA copies. We used log-RNA copies in the model to predict the number of infected cases using Quantile Regression (QR) and K-Nearest Neighbor (KNN) Regression. The model's performance was evaluated by comparing the Mean Absolute Percentage Error (MAPE). The QR model performs well in cities where the population is >10000 . In addition, the model predictions were compared with the basic Susceptible-Infected-Recovered (SIR) model which is the golden standard model for infectious diseases.
Collapse
Affiliation(s)
- Bong-Jin Choi
- Department of Statistics and Department of Public Health, North Dakota State University, United States of America
| | - Scott Hoselton
- Department of Microbiological Sciences, North Dakota State University, United States of America
| | - Grace N. Njau
- North Dakota Department of Health, United States of America
| | - I.G.C.G. Idamawatta
- Department of Statistics, North Dakota State University, United States of America
| | - Paul Carson
- Center for Immunization Research and Education (CIRE), Department of Public Health, North Dakota State University, United States of America
| | - John McEvoy
- Department of Microbiological Sciences, North Dakota State University, United States of America
| |
Collapse
|
11
|
Dye K. Developing scientific literacy with a cyclic independent study assisted CURE detecting SARS-CoV-2 in wastewater. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2023; 24:e00147-23. [PMID: 38107999 PMCID: PMC10720503 DOI: 10.1128/jmbe.00147-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The COVID-19 pandemic has exposed a high level of scientific illiteracy and mistrust that pervades the scientific and medical communities. This finding has proven the necessity of updating current methods used to expose undergraduates to research. The research in traditional course-based undergraduate research experiences (CUREs) is limited by undergraduate time constraints, skill level, and course structure, and consequently it does not attain the learning objectives or the high-impact, relevant studies achieved in graduate-level laboratories using a cyclic trainee/trainer model. Although undergraduate independent study (ISY) research more closely matches the structure and learning objectives of graduate-level research, they are uncommon as professors and universities typically view them as a significant time and resource burden with limited return. Cyclic independent study-assisted CUREs (CIS-CUREs) combine many positive aspects of ISY graduate-level research, and CUREs by pre-training ISY research lead to facilitate CURE proposal and project semesters in a cyclic model. The CIS-CURE approach allowed undergraduate students at Stetson University to perform and disseminate more rigorous, involved, long-term, and challenging research projects, such as the surveillance of SARS-CoV-2 in wastewater. In doing so, all students would have the opportunity to participate in a high-impact research project and consequently gain a more comprehensive training, reach higher levels of research dissemination, and increase their competitiveness after graduating. Together, CIS-CUREs generate graduates with higher scientific literacy and thus combat scientific mistrust in communities.
Collapse
Affiliation(s)
- Kristine Dye
- Department of Health Sciences, Stetson University, DeLand, Florida, USA
- Department of Biology, Stetson University, DeLand, Florida, USA
| |
Collapse
|
12
|
Sanchez Jimenez B, Sterling T, Brown A, Modica B, Gibson K, Collins H, Koch C, Schwarz T, Dye KN. Wastewater surveillance in the COVID-19 post-emergency pandemic period: A promising approach to monitor and predict SARS-CoV-2 surges and evolution. Heliyon 2023; 9:e22356. [PMID: 38045160 PMCID: PMC10689941 DOI: 10.1016/j.heliyon.2023.e22356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/17/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
On May 24, 2023, approximately 3.5 years into the pandemic, the World Health Organization (WHO) declared the end of the COVID-19 global health emergency. However, as there are still ∼3000 COVID-19 deaths per day in May 2023, robust surveillance systems are still warranted to return to normalcy in times of low risk and respond appropriately in times of high risk. The different phases of the pandemic have been defined by infection numbers and variants, both of which have been determined through clinical tests that are subject to many biases. Unfortunately, the end of the COVID-19 emergency threatens to exasperate these biases, thereby warranting alternative tracking methods. We hypothesized that wastewater surveillance could be used as a more accurate and comprehensive method to track SARS-CoV-2 in the post-emergency pandemic period (PEPP). SARS-CoV-2 was quantified and sequenced from wastewater between June 2022 and March 2023 to research the anticipated 2022/23 winter surge. However, in the 2022/23 winter, there was lower-than-expected SARS-CoV-2 circulation, which was hypothesized to be due to diagnostic testing biases but was confirmed by our wastewater analysis, thereby emphasizing the unpredictable nature of SARS-CoV-2 surges while also questioning its winter seasonality. Even in times of low baseline circulation, we found wastewater surveillance to be sensitive enough to detect minor changes in circulation levels ∼30-46 days prior to diagnostic tests, suggesting that wastewater surveillance may be a more appropriate early warning system to prepare for unpredictable surges in the PEPP. Furthermore, sequencing of wastewater detected variants of concern that were positively correlated with clinical samples and also provided a method to identify mutations with a high likelihood of appearing in future variants, necessary for updating vaccines and therapeutics prior to novel variant circulation. Together, these data highlight the effectiveness of wastewater surveillance in the PEPP to limit the global health burden of SARS-CoV-2 due to increases in circulation and/or viral evolution.
Collapse
Affiliation(s)
| | - Trinity Sterling
- Department of Health Sciences, Stetson University, DeLand, FL, 32723, USA
| | - Austin Brown
- Department of Health Sciences, Stetson University, DeLand, FL, 32723, USA
| | - Brian Modica
- Department of Health Sciences, Stetson University, DeLand, FL, 32723, USA
| | - Kaylee Gibson
- Department of Health Sciences, Stetson University, DeLand, FL, 32723, USA
| | - Hannah Collins
- Department of Health Sciences, Stetson University, DeLand, FL, 32723, USA
| | - Carolyn Koch
- Department of Health Sciences, Stetson University, DeLand, FL, 32723, USA
| | - Tyler Schwarz
- Department of Health Sciences, Stetson University, DeLand, FL, 32723, USA
| | - Kristine N. Dye
- Department of Health Sciences, Stetson University, DeLand, FL, 32723, USA
- Department of Biology, Stetson University, DeLand, FL, 32723, USA
| |
Collapse
|
13
|
Mehta D, Kelkar R, Patel N, Trivedi PD, Dawoodi S, Patel D, Solanki D, Hussain A, Nagaraj S, Khayat A, Samala Venkata V, Mansuri U, Patel UK, Sacks H, Atreja A. Gastrointestinal Manifestations and Outcomes of COVID-19: A Comprehensive Systematic Review and Meta-analysis. Cureus 2023; 15:e47028. [PMID: 37965386 PMCID: PMC10642711 DOI: 10.7759/cureus.47028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/04/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Pulmonary symptoms are the most prominent manifestations of Coronavirus disease 2019 (COVID-19). However, gastrointestinal (GI) symptoms have been reported widely as well. Literature describing the relation of these symptoms with outcomes of COVID-19 patients is limited in terms of sample size, geographic diversity, and the spectrum of GI symptoms included. We aim to evaluate the association of GI symptoms with outcomes of hospitalized COVID-19 patients. Methods A systematic review and meta-analysis of observational studies assessing GI symptoms and outcomes in COVID-19 patients were undertaken using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria and the Meta-analysis of Observational Studies in Epidemiology (MOOSE) checklist. Details on outcomes included ICU vs. non-ICU admission, severe vs. non-severe disease, invasive mechanical ventilation (IMV) vs. no-IMV use, oxygen saturation <90% vs. >90%, in-hospital mortality vs. discharged alive and survivors. We obtained the odds ratio (OR), 95% confidence interval (95%CI), and forest plots. Sensitivity analysis was used to analyze publication bias and heterogeneity. Results In 35 studies with 7931 confirmed COVID-19 patients, we found that anorexia (pooled OR:2.05; 95%CI: 1.36-3.09, p=0.0006) and abdominal pain (OR 2.80; 95%CI: 1.41-5.54, p=0.003) were associated with a higher risk of poor outcomes and no such association was found for diarrhea (OR 1.04; 95%CI: 0.85-1.26, p=0.71), nausea (OR 0.73; 95%CI: 0.38-1.39, p=0.34) and vomiting (OR 1.24; 95%CI 0.86-1.79, p=0.25). Conclusion The meta-analysis concludes that anorexia and abdominal pain are associated with poor outcomes in hospitalized COVID-19 patients, while diarrhea, nausea, and vomiting have no association. Future research should focus on whether detecting GI invasion in conjunction with fecal polymerase chain reaction (PCR) testing can aid in the early triage of high-risk individuals and improve outcomes.
Collapse
Affiliation(s)
- Deep Mehta
- Internal Medicine, Capital Health Regional Medical Center, Trenton, USA
- Clinical Research, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Raveena Kelkar
- Internal Medicine, Cleveland Clinic Akron General, Akron, USA
- Clinical Research, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Neel Patel
- Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Parth D Trivedi
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sameer Dawoodi
- Gastroenterology, State University of New York Downstate Medical Center, New York, USA
- Internal Medicine, Yale New Haven Hospital, New Haven, USA
| | - Dhruvan Patel
- Gastroenterology, Mercy Fitzgerald Hospital, Darby, USA
- Gastroenterology, University of Pennsylvania, Philadelphia, USA
| | | | - Akbar Hussain
- Internal Medicine, Appalachian Regional Healthcare, Hazard, USA
| | | | - Azadeh Khayat
- Pathology and Laboratory Medicine, Brown University, Providence, USA
| | | | - Uvesh Mansuri
- Medicine, MedStar Union Memorial Hospital, Baltimore, USA
| | - Urvish K Patel
- Public Health and Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Henry Sacks
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ashish Atreja
- Internal Medicine (Division of Gastroenterology), Icahn School of Medicine at Mount Sinai, New York, USA
- Digital Health, University of California Davis Health, Sacramento, USA
| |
Collapse
|
14
|
Arts PJ, Kelly JD, Midgley CM, Anglin K, Lu S, Abedi GR, Andino R, Bakker KM, Banman B, Boehm AB, Briggs-Hagen M, Brouwer AF, Davidson MC, Eisenberg MC, Garcia-Knight M, Knight S, Peluso MJ, Pineda-Ramirez J, Diaz Sanchez R, Saydah S, Tassetto M, Martin JN, Wigginton KR. Longitudinal and quantitative fecal shedding dynamics of SARS-CoV-2, pepper mild mottle virus, and crAssphage. mSphere 2023; 8:e0013223. [PMID: 37338211 PMCID: PMC10506459 DOI: 10.1128/msphere.00132-23] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 06/21/2023] Open
Abstract
Wastewater-based epidemiology (WBE) emerged during the coronavirus disease 2019 (COVID-19) pandemic as a scalable and broadly applicable method for community-level monitoring of infectious disease burden. The lack of high-resolution fecal shedding data for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) limits our ability to link WBE measurements to disease burden. In this study, we present longitudinal, quantitative fecal shedding data for SARS-CoV-2 RNA, as well as for the commonly used fecal indicators pepper mild mottle virus (PMMoV) RNA and crAss-like phage (crAssphage) DNA. The shedding trajectories from 48 SARS-CoV-2-infected individuals suggest a highly individualized, dynamic course of SARS-CoV-2 RNA fecal shedding. Of the individuals that provided at least three stool samples spanning more than 14 days, 77% had one or more samples that tested positive for SARS-CoV-2 RNA. We detected PMMoV RNA in at least one sample from all individuals and in 96% (352/367) of samples overall. CrAssphage DNA was detected in at least one sample from 80% (38/48) of individuals and was detected in 48% (179/371) of all samples. The geometric mean concentrations of PMMoV and crAssphage in stool across all individuals were 8.7 × 104 and 1.4 × 104 gene copies/milligram-dry weight, respectively, and crAssphage shedding was more consistent for individuals than PMMoV shedding. These results provide us with a missing link needed to connect laboratory WBE results with mechanistic models, and this will aid in more accurate estimates of COVID-19 burden in sewersheds. Additionally, the PMMoV and crAssphage data are critical for evaluating their utility as fecal strength normalizing measures and for source-tracking applications. IMPORTANCE This research represents a critical step in the advancement of wastewater monitoring for public health. To date, mechanistic materials balance modeling of wastewater-based epidemiology has relied on SARS-CoV-2 fecal shedding estimates from small-scale clinical reports or meta-analyses of research using a wide range of analytical methodologies. Additionally, previous SARS-CoV-2 fecal shedding data have not contained sufficient methodological information for building accurate materials balance models. Like SARS-CoV-2, fecal shedding of PMMoV and crAssphage has been understudied to date. The data presented here provide externally valid and longitudinal fecal shedding data for SARS-CoV-2, PMMoV, and crAssphage which can be directly applied to WBE models and ultimately increase the utility of WBE.
Collapse
Affiliation(s)
- Peter J. Arts
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Institute for Global Health Sciences, University of California, San Francisco, California, USA
- Division of Hospital Medicine, UCSF, San Francisco, California, USA
- F.I. Proctor Foundation, University of California, San Francisco, California, USA
| | - Claire M. Midgley
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Khamal Anglin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Institute for Global Health Sciences, University of California, San Francisco, California, USA
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Institute for Global Health Sciences, University of California, San Francisco, California, USA
| | - Glen R. Abedi
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Raul Andino
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
| | - Kevin M. Bakker
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bryon Banman
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexandria B. Boehm
- Department of Civil & Environmental Engineering, Stanford University, Stanford, California, USA
| | - Melissa Briggs-Hagen
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andrew F. Brouwer
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Marisa C. Eisenberg
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Sterling Knight
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J. Peluso
- Division of HIV, Infectious Disease, and Global Medicine, UCSF, San Francisco, California, USA
| | - Jesus Pineda-Ramirez
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Institute for Global Health Sciences, University of California, San Francisco, California, USA
| | - Ruth Diaz Sanchez
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Institute for Global Health Sciences, University of California, San Francisco, California, USA
| | - Sharon Saydah
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michel Tassetto
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Krista R. Wigginton
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Atoui A, Cordevant C, Chesnot T, Gassilloud B. SARS-CoV-2 in the environment: Contamination routes, detection methods, persistence and removal in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163453. [PMID: 37059142 PMCID: PMC10091716 DOI: 10.1016/j.scitotenv.2023.163453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
The present study reviewed the occurrence of SARS-CoV-2 RNA and the evaluation of virus infectivity in feces and environmental matrices. The detection of SARS-CoV-2 RNA in feces and wastewater samples, reported in several studies, has generated interest and concern regarding the possible fecal-oral route of SARS-CoV-2 transmission. To date, the presence of viable SARS-CoV-2 in feces of COVID-19 infected people is not clearly confirmed although its isolation from feces of six different patients. Further, there is no documented evidence on the infectivity of SARS-CoV-2 in wastewater, sludge and environmental water samples, although the viral genome has been detected in these matrices. Decay data revealed that SARS-CoV-2 RNA persisted longer than infectious particle in all aquatic environment, indicating that genome quantification of SARS-CoV-2 does not imply the presence of infective viral particles. In addition, this review also outlined the fate of SARS-CoV-2 RNA during the different steps in the wastewater treatment plant and focusing on the virus elimination along the sludge treatment line. Studies showed complete removal of SARS-CoV-2 during the tertiary treatment. Moreover, thermophilic sludge treatments present high efficiency in SARS-CoV-2 inactivation. Further studies are required to provide more evidence with respect to the inactivation behavior of infectious SARS-CoV-2 in different environmental matrices and to examine factors affecting SARS-CoV-2 persistence.
Collapse
Affiliation(s)
- Ali Atoui
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France.
| | - Christophe Cordevant
- ANSES, Strategy and Programs Department, Research and Reference Division, Maisons-Alfort F-94 700, France
| | - Thierry Chesnot
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France
| | - Benoît Gassilloud
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France
| |
Collapse
|
16
|
Shinde M, Lavania M, Rawal J, Chavan N, Shinde P. Evaluation of droplet digital qRT-PCR (dd qRT-PCR) for quantification of SARS CoV-2 RNA in stool and urine specimens of COVID-19 patients. Front Med (Lausanne) 2023; 10:1148688. [PMID: 37469662 PMCID: PMC10352106 DOI: 10.3389/fmed.2023.1148688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction There have been a few reports of viral load detection in stool and urine samples of patients with coronavirus disease 2019 (COVID-19), and the transmission of the virus through faecal oral route. For clinical diagnosis and treatment, the widely used reverse transcription-polymerase chain reaction (qRT-PCR) method has some limitations. Methods The aim of our study to assess the presence and concentration of SARS CoV-2 RNA in stool and urine samples from COVID-19 patients with mild, moderate, and severe disease, we compared a traditional qRT-PCR approach with a ddPCR. ddPCR and qRT-PCR-based target gene analysis were performed on 107 COVID-19-confirmed patients paired samples (N1 and N2). The MagMax magnetic beads base method was used to isolate RNA. Real-time qRT-PCR and dd PCR were performed on all patients. Results and Discussion The average cycle threshold (Ct) of qRT-PCR was highly correlated with the average copy number of 327.10 copies/l analyzed in ddPCR. In ddPCR, urine samples showed 27.1% positivity while for stool it was 100%. Conclusion This study's findings not only show that SARS CoV-2 is present in urine and faeces, but also suggest that low concentrations of the viral target ddPCR make it easier to identify positive samples and help resolve for cases of inconclusive diagnosis.
Collapse
|
17
|
Sha A, Liu Y, Zhao X. SARS-CoV-2 and gastrointestinal diseases. Front Microbiol 2023; 14:1177741. [PMID: 37323898 PMCID: PMC10267706 DOI: 10.3389/fmicb.2023.1177741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/21/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the novel coronavirus disease (COVID-19) pandemic, which has caused serious challenges for public health systems worldwide. LITERATURE REVIEW SARS-CoV-2 invades not only the respiratory system, but also the digestive system, causing a variety of gastrointestinal diseases. SIGNIFICANCE Understanding the gastrointestinal diseases caused by SARS-CoV-2, and the damage mechanisms of SARS-CoV-2 to the gastrointestinal tracts and gastrointestinal glands are crucial to treating the gastrointestinal diseases caused by SARS-CoV-2. CONCLUSION This review summarizes the gastrointestinal diseases caused by SARS-CoV-2, including gastrointestinal inflammatory disorders, gastrointestinal ulcer diseases, gastrointestinal bleeding, and gastrointestinal thrombotic diseases, etc. Furthermore, the mechanisms of gastrointestinal injury induced by SARS-COV-2 were analyzed and summarized, and the suggestions for drug prevention and treatment were put forward for the reference of clinical workers.
Collapse
Affiliation(s)
- Ailong Sha
- School of Teacher Education, Chongqing Three Gorges University, Chongqing, China
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yi Liu
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Xuewen Zhao
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| |
Collapse
|
18
|
Grinevich VB, Lazebnik LB, Kravchuk YA, Radchenko VG, Tkachenko EI, Pershko AM, Seliverstov PV, Salikova CP, Zhdanov KV, Kozlov KV, Makienko VV, Potapova IV, Ivanyuk ES, Egorov DV, Sas EI, Korzheva MD, Kozlova NM, Ratnikova AK, Ratnikov VA, Sitkin SI, Bolieva LZ, Turkina CV, Abdulganieva DI, Ermolova TV, Kozhevnikova SA, Tarasova LV, Myazin RG, Khomeriki NM, Pilat TL, Kuzmina LP, Khanferyan RA, Novikova VP, Polunina AV, Khavkin AI. Gastrointestinal disorders in post-COVID syndrome. Clinical guidelines. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2023:4-68. [DOI: 10.31146/1682-8658-ecg-208-12-4-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Summary Post- COVID syndrome refers to the long-term consequences of a new coronavirus infection COVID-19, which includes a set of symptoms that develop or persist after COVID-19. Symptoms of gastrointestinal disorders in post- COVID syndrome, due to chronic infl ammation, the consequences of organ damage, prolonged hospitalization, social isolation, and other causes, can be persistent and require a multidisciplinary approach. The presented clinical practice guidelines consider the main preventive and therapeutic and diagnostic approaches to the management of patients with gastroenterological manifestations of postCOVID syndrome. The Guidelines were approved by the 17th National Congress of Internal Medicine and the 25th Congress of Gastroenterological Scientifi c Society of Russia.
Collapse
Affiliation(s)
| | - L. B. Lazebnik
- A. I. Yevdokimov Moscow State University of Medicine and Dentistry
| | | | | | | | | | | | | | | | - K. V. Kozlov
- Military Medical Academy named after S. M. Kirov
| | | | | | | | - D. V. Egorov
- Military Medical Academy named after S. M. Kirov
| | - E. I. Sas
- Military Medical Academy named after S. M. Kirov
| | | | | | - A. K. Ratnikova
- North-West District Scientifi c and Clinical Center named after L. G. Sokolov Federal Medical and Biological Agency
| | - V. A. Ratnikov
- North-West District Scientifi c and Clinical Center named after L. G. Sokolov Federal Medical and Biological Agency
| | - S. I. Sitkin
- North-Western state medical University named after I. I. Mechnikov;
Almazov National Medical Research Centre
| | | | | | | | - T. V. Ermolova
- North-Western state medical University named after I. I. Mechnikov
| | | | | | | | - N. M. Khomeriki
- Moscow Regional Research Clinical Institute n. a. M. F. Vladimirsky”
| | - T. L. Pilat
- Scientifi c Research Institute of labour medicine named after academician N. F. Izmerov
| | - L. P. Kuzmina
- Scientifi c Research Institute of labour medicine named after academician N. F. Izmerov;
I. M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | | - A. I. Khavkin
- Russian National Research Medical University named after N. I. Pirogov
| |
Collapse
|
19
|
Corchis-Scott R, Geng Q, Al Riahi AM, Labak A, Podadera A, Ng KKS, Porter LA, Tong Y, Dixon JC, Menard SL, Seth R, McKay RM. Actionable wastewater surveillance: application to a university residence hall during the transition between Delta and Omicron resurgences of COVID-19. Front Public Health 2023; 11:1139423. [PMID: 37265515 PMCID: PMC10230041 DOI: 10.3389/fpubh.2023.1139423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Wastewater surveillance has gained traction during the COVID-19 pandemic as an effective and non-biased means to track community infection. While most surveillance relies on samples collected at municipal wastewater treatment plants, surveillance is more actionable when samples are collected "upstream" where mitigation of transmission is tractable. This report describes the results of wastewater surveillance for SARS-CoV-2 at residence halls on a university campus aimed at preventing outbreak escalation by mitigating community spread. Another goal was to estimate fecal shedding rates of SARS-CoV-2 in a non-clinical setting. Passive sampling devices were deployed in sewer laterals originating from residence halls at a frequency of twice weekly during fall 2021 as the Delta variant of concern continued to circulate across North America. A positive detection as part of routine sampling in late November 2021 triggered daily monitoring and further isolated the signal to a single wing of one residence hall. Detection of SARS-CoV-2 within the wastewater over a period of 3 consecutive days led to a coordinated rapid antigen testing campaign targeting the residence hall occupants and the identification and isolation of infected individuals. With knowledge of the number of individuals testing positive for COVID-19, fecal shedding rates were estimated to range from 3.70 log10 gc ‧ g feces-1 to 5.94 log10 gc ‧ g feces-1. These results reinforce the efficacy of wastewater surveillance as an early indicator of infection in congregate living settings. Detections can trigger public health measures ranging from enhanced communications to targeted coordinated testing and quarantine.
Collapse
Affiliation(s)
- Ryland Corchis-Scott
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Qiudi Geng
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Abdul Monem Al Riahi
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Amr Labak
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Ana Podadera
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Kenneth K. S. Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Lisa A. Porter
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Jess C. Dixon
- Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| | | | - Rajesh Seth
- Civil and Environmental Engineering, University of Windsor, Windsor, ON, Canada
| | - R. Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
20
|
Akingbola S, Fernandes R, Borden S, Gilbride K, Oswald C, Straus S, Tehrani A, Thomas J, Stuart R. Early identification of a COVID-19 outbreak detected by wastewater surveillance at a large homeless shelter in Toronto, Ontario. CANADIAN JOURNAL OF PUBLIC HEALTH = REVUE CANADIENNE DE SANTE PUBLIQUE 2023; 114:72-79. [PMID: 36156197 PMCID: PMC9512955 DOI: 10.17269/s41997-022-00696-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 09/01/2022] [Indexed: 01/21/2023]
Abstract
SETTING Toronto (Ontario, Canada) is a large urban centre with a significant population of underhoused residents and several dozen shelters for this population with known medical and social vulnerabilities. A sizeable men's homeless shelter piloted a facility-level SARS-CoV-2 wastewater surveillance program. INTERVENTION Wastewater surveillance was initiated at the shelter in January 2021. One-hour composite wastewater samples were collected twice weekly from a terminal sanitary clean-out pipe. The genetic material of the SARS-CoV-2 virus was extracted from the solid phase of each sample and analyzed using real-time qPCR to estimate the viral level. Wastewater results were reported to facility managers and Toronto Public Health within 4 days. OUTCOMES There were 169 clients on-site at the time of the investigation. Wastewater surveillance alerted to the presence of COVID-19 activity at the site, prior to clinical detection. This notification acted as an early warning signal, which allowed for timely symptom screening and case finding for shelter managers and the local health unit, in preparation for the declaration of an outbreak. IMPLICATIONS Wastewater surveillance acted as an advanced notification leading to the timely deployment of enhanced testing prior to clinical presentation in a population with known vulnerabilities. Wastewater surveillance at the facility level is beneficial, particularly in high-risk congregate living settings such as shelters that house transient populations where clinical testing and vaccination can be challenging. Open communication, established individual facility response plans, and a balanced threshold for action are essential to an effective wastewater surveillance program.
Collapse
Affiliation(s)
| | | | - Susan Borden
- Toronto Public Health, Toronto, ON, Canada
- Department of Family Medicine, McMaster University, Hamilton, ON, Canada
| | - Kimberley Gilbride
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Claire Oswald
- Department of Geography and Environmental Studies, Toronto Metropolitan University, Toronto, ON, Canada
| | - Sharon Straus
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Amir Tehrani
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Janis Thomas
- Ontario Ministry of the Environment and Parks, Toronto, ON, Canada
| | | |
Collapse
|
21
|
Li X, Zhang S, Sherchan S, Orive G, Lertxundi U, Haramoto E, Honda R, Kumar M, Arora S, Kitajima M, Jiang G. Correlation between SARS-CoV-2 RNA concentration in wastewater and COVID-19 cases in community: A systematic review and meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129848. [PMID: 36067562 PMCID: PMC9420035 DOI: 10.1016/j.jhazmat.2022.129848] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/26/2023]
Abstract
Wastewater-based epidemiology (WBE) has been considered as a promising approach for population-wide surveillance of coronavirus disease 2019 (COVID-19). Many studies have successfully quantified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentration in wastewater (CRNA). However, the correlation between the CRNA and the COVID-19 clinically confirmed cases in the corresponding wastewater catchments varies and the impacts of environmental and other factors remain unclear. A systematic review and meta-analysis were conducted to identify the correlation between CRNA and various types of clinically confirmed case numbers, including prevalence and incidence rates. The impacts of environmental factors, WBE sampling design, and epidemiological conditions on the correlation were assessed for the same datasets. The systematic review identified 133 correlation coefficients, ranging from -0.38 to 0.99. The correlation between CRNA and new cases (either daily new, weekly new, or future cases) was stronger than that of active cases and cumulative cases. These correlation coefficients were potentially affected by environmental and epidemiological conditions and WBE sampling design. Larger variations of air temperature and clinical testing coverage, and the increase of catchment size showed strong negative impacts on the correlation between CRNA and COVID-19 case numbers. Interestingly, the sampling technique had negligible impact although increasing the sampling frequency improved the correlation. These findings highlight the importance of viral shedding dynamics, in-sewer decay, WBE sampling design and clinical testing on the accurate back-estimation of COVID-19 case numbers through the WBE approach.
Collapse
Affiliation(s)
- Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shuxin Zhang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Samendrdra Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Unax Lertxundi
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, Vitoria-Gasteiz, Spain
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Kofu, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, Jaipur, India
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Hokkaido, Japan
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
22
|
Gedda MR, Danaher P, Shao L, Ongkeko M, Chen L, Dinh A, Thioye Sall M, Reddy OL, Bailey C, Wahba A, Dzekunova I, Somerville R, De Giorgi V, Jin P, West K, Panch SR, Stroncek DF. Longitudinal transcriptional analysis of peripheral blood leukocytes in COVID-19 convalescent donors. J Transl Med 2022; 20:587. [PMID: 36510222 PMCID: PMC9742656 DOI: 10.1186/s12967-022-03751-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND SARS-CoV2 can induce a strong host immune response. Many studies have evaluated antibody response following SARS-CoV2 infections. This study investigated the immune response and T cell receptor diversity in people who had recovered from SARS-CoV2 infection (COVID-19). METHODS Using the nCounter platform, we compared transcriptomic profiles of 162 COVID-19 convalescent donors (CCD) and 40 healthy donors (HD). 69 of the 162 CCDs had two or more time points sampled. RESULTS After eliminating the effects of demographic factors, we found extensive differential gene expression up to 241 days into the convalescent period. The differentially expressed genes were involved in several pathways, including virus-host interaction, interleukin and JAK-STAT signaling, T-cell co-stimulation, and immune exhaustion. A subset of 21 CCD samples was found to be highly "perturbed," characterized by overexpression of PLAU, IL1B, NFKB1, PLEK, LCP2, IRF3, MTOR, IL18BP, RACK1, TGFB1, and others. In addition, one of the clusters, P1 (n = 8) CCD samples, showed enhanced TCR diversity in 7 VJ pairs (TRAV9.1_TCRVA_014.1, TRBV6.8_TCRVB_016.1, TRAV7_TCRVA_008.1, TRGV9_ENST00000444775.1, TRAV18_TCRVA_026.1, TRGV4_ENST00000390345.1, TRAV11_TCRVA_017.1). Multiplexed cytokine analysis revealed anomalies in SCF, SCGF-b, and MCP-1 expression in this subset. CONCLUSIONS Persistent alterations in inflammatory pathways and T-cell activation/exhaustion markers for months after active infection may help shed light on the pathophysiology of a prolonged post-viral syndrome observed following recovery from COVID-19 infection. Future studies may inform the ability to identify druggable targets involving these pathways to mitigate the long-term effects of COVID-19 infection. TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT04360278 Registered April 24, 2020.
Collapse
Affiliation(s)
- Mallikarjuna R. Gedda
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA ,grid.280030.90000 0001 2150 6316Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Patrick Danaher
- grid.510973.90000 0004 5375 2863NanoString Technologies, Seattle, WA 98109 USA
| | - Lipei Shao
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Martin Ongkeko
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Leonard Chen
- grid.94365.3d0000 0001 2297 5165Blood Services Section, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Anh Dinh
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Mame Thioye Sall
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Opal L. Reddy
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Christina Bailey
- grid.510973.90000 0004 5375 2863NanoString Technologies, Seattle, WA 98109 USA
| | - Amy Wahba
- grid.510973.90000 0004 5375 2863NanoString Technologies, Seattle, WA 98109 USA
| | - Inna Dzekunova
- grid.510973.90000 0004 5375 2863NanoString Technologies, Seattle, WA 98109 USA
| | - Robert Somerville
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Valeria De Giorgi
- grid.94365.3d0000 0001 2297 5165Infectious Disease Section, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ping Jin
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Kamille West
- grid.94365.3d0000 0001 2297 5165Blood Services Section, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Sandhya R. Panch
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA ,grid.34477.330000000122986657Department of Medicine (Hematology Division), University of Washington/Fred Hutchinson Cancer Center, Seattle, WA 98109 USA
| | - David F. Stroncek
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
23
|
Bonanno Ferraro G, Veneri C, Mancini P, Iaconelli M, Suffredini E, Bonadonna L, Lucentini L, Bowo-Ngandji A, Kengne-Nde C, Mbaga DS, Mahamat G, Tazokong HR, Ebogo-Belobo JT, Njouom R, Kenmoe S, La Rosa G. A State-of-the-Art Scoping Review on SARS-CoV-2 in Sewage Focusing on the Potential of Wastewater Surveillance for the Monitoring of the COVID-19 Pandemic. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:315-354. [PMID: 34727334 PMCID: PMC8561373 DOI: 10.1007/s12560-021-09498-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/21/2021] [Indexed: 05/07/2023]
Abstract
The outbreak of coronavirus infectious disease-2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has rapidly spread throughout the world. Several studies have shown that detecting SARS-CoV-2 in untreated wastewater can be a useful tool to identify new outbreaks, establish outbreak trends, and assess the prevalence of infections. On 06 May 2021, over a year into the pandemic, we conducted a scoping review aiming to summarize research data on SARS-CoV-2 in sewage. Papers dealing with raw sewage collected at wastewater treatment plants, sewer networks, septic tanks, and sludge treatment facilities were included in this review. We also reviewed studies on sewage collected in community settings such as private or municipal hospitals, healthcare facilities, nursing homes, dormitories, campuses, airports, aircraft, and cruise ships. The literature search was conducted using the electronic databases PubMed, EMBASE, and Web Science Core Collection. This comprehensive research yielded 1090 results, 66 of which met the inclusion criteria and are discussed in this review. Studies from 26 countries worldwide have investigated the occurrence of SARS-CoV-2 in sewage of different origin. The percentage of positive samples in sewage ranged from 11.6 to 100%, with viral concentrations ranging from ˂LOD to 4.6 × 108 genome copies/L. This review outlines the evidence currently available on wastewater surveillance: (i) as an early warning system capable of predicting COVID-19 outbreaks days or weeks before clinical cases; (ii) as a tool capable of establishing trends in current outbreaks; (iii) estimating the prevalence of infections; and (iv) studying SARS-CoV-2 genetic diversity. In conclusion, as a cost-effective, rapid, and reliable source of information on the spread of SARS-CoV-2 and its variants in the population, wastewater surveillance can enhance genomic and epidemiological surveillance with independent and complementary data to inform public health decision-making during the ongoing pandemic.
Collapse
Affiliation(s)
- G Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - P Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - L Bonadonna
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - L Lucentini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - A Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - C Kengne-Nde
- Research Monitoring and Planning Unit, National Aids Control Committee, Douala, Cameroon
| | - D S Mbaga
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - G Mahamat
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - H R Tazokong
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - J T Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - R Njouom
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| | - S Kenmoe
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
24
|
Nashed L, Mani J, Hazrati S, Stern DB, Subramanian P, Mattei L, Bittinger K, Hu W, Levy S, Maxwell GL, Hourigan SK. Gut microbiota changes are detected in asymptomatic very young children with SARS-CoV-2 infection. Gut 2022; 71:2371-2373. [PMID: 35135843 PMCID: PMC9357857 DOI: 10.1136/gutjnl-2021-326599] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Lydia Nashed
- Inova Children's Hospital, Inova Health System, Falls Church, Virginia, USA
| | - Jyoti Mani
- Pediatric Gastroenterology, Children's National Health System, Washington, District of Columbia, USA
| | - Sahel Hazrati
- Women's Service Line, Inova Health System, Falls Church, Virginia, USA
| | - David B Stern
- Bioinformatics and Computational Biosciences Branch, NIAID, Bethesda, Maryland, USA
| | - Poorani Subramanian
- Bioinformatics and Computational Biosciences Branch, NIAID, Bethesda, Maryland, USA
| | - Lisa Mattei
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia Pediatrics Residency Program, Philadelphia, Pennsylvania, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia Pediatrics Residency Program, Philadelphia, Pennsylvania, USA
| | - Weiming Hu
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia Pediatrics Residency Program, Philadelphia, Pennsylvania, USA
| | - Shira Levy
- Inova Children's Hospital, Inova Health System, Falls Church, Virginia, USA
- Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - George L Maxwell
- Women's Service Line, Inova Health System, Falls Church, Virginia, USA
| | - Suchitra K Hourigan
- Inova Children's Hospital, Inova Health System, Falls Church, Virginia, USA
- Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Borczuk AC, Yantiss RK. The pathogenesis of coronavirus-19 disease. J Biomed Sci 2022; 29:87. [PMID: 36289507 PMCID: PMC9597981 DOI: 10.1186/s12929-022-00872-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/20/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome-associated coronavirus-2 (SARS-CoV-2) is the causal agent of coronavirus disease-2019 (COVID-19), a systemic illness characterized by variably severe pulmonary symptoms, cardiac conduction abnormalities, diarrhea, and gastrointestinal bleeding, as well as neurologic deficits, renal insufficiency, myalgias, endocrine abnormalities, and other perturbations that reflect widespread microvascular injury and a pro-inflammatory state. The mechanisms underlying the various manifestations of viral infection are incompletely understood but most data suggest that severe COVID-19 results from virus-driven perturbations in the immune system and resultant tissue injury. Aberrant interferon-related responses lead to alterations in cytokine elaboration that deplete resident immune cells while simultaneously recruiting hyperactive macrophages and functionally altered neutrophils, thereby tipping the balance from adaptive immunity to innate immunity. Disproportionate activation of these macrophages and neutrophils further depletes normal activity of B-cells, T-cells, and natural killer (NK) cells. In addition, this pro-inflammatory state stimulates uncontrolled complement activation and development of neutrophil extracellular traps (NETS), both of which promote the coagulation cascade and induce a state of “thrombo-inflammation”. These perturbations have similar manifestations in multiple organ systems, which frequently show pathologic findings related to microvascular injury and thrombosis of large and small vessels. However, the pulmonary findings in patients with severe COVID-19 are generally more pronounced than those of other organs. Not only do they feature inflammatory thromboses and endothelial injury, but much of the parenchymal damage stems from failed maturation of alveolar pneumocytes, interactions between type 2 pneumocytes and non-resident macrophages, and a greater degree of NET formation. The purpose of this review is to discuss the pathogenesis underlying organ damage that can occur in patients with SARS-CoV-2 infection. Understanding these mechanisms of injury is important to development of future therapies for patients with COVID-19, many of which will likely target specific components of the immune system, particularly NET induction, pro-inflammatory cytokines, and subpopulations of immune cells.
Collapse
Affiliation(s)
- Alain C. Borczuk
- grid.512756.20000 0004 0370 4759Department of Pathology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Greenvale, NY USA
| | - Rhonda K. Yantiss
- grid.5386.8000000041936877XDepartment of Pathology and Laboratory Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, NY 10065 USA
| |
Collapse
|
26
|
Visvabharathy L, Hanson BA, Orban ZS, Lim PH, Palacio NM, Jimenez M, Clark JR, Graham EL, Liotta EM, Tachas G, Penaloza-MacMaster P, Koralnik IJ. T cell responses to SARS-CoV-2 in people with and without neurologic symptoms of long COVID. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2021.08.08.21261763. [PMID: 34401886 PMCID: PMC8366804 DOI: 10.1101/2021.08.08.21261763] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many people experiencing long COVID syndrome, or post-acute sequelae of SARS-CoV-2 infection (PASC), suffer from debilitating neurologic symptoms (Neuro-PASC). However, whether virus-specific adaptive immunity is affected in Neuro-PASC patients remains poorly understood. We report that Neuro-PASC patients exhibit distinct immunological signatures composed of elevated humoral and cellular responses toward SARS-CoV-2 Nucleocapsid protein at an average of 6 months post-infection compared to healthy COVID convalescents. Neuro-PASC patients also had enhanced virus-specific production of IL-6 from and diminished activation of CD8+ T cells. Furthermore, the severity of cognitive deficits or quality of life disturbances in Neuro-PASC patients were associated with a reduced diversity of effector molecule expression in T cells but elevated IFN-γ production to the C-terminal domain of Nucleocapsid protein. Proteomics analysis showed enhanced plasma immunoregulatory proteins and reduced pro-inflammatory and antiviral response proteins in Neuro-PASC patients compared with healthy COVID convalescents, which were also correlated with worse neurocognitive dysfunction. These data provide new insight into the pathogenesis of long COVID syndrome and a framework for the rational design of predictive biomarkers and therapeutic interventions.
Collapse
Affiliation(s)
- Lavanya Visvabharathy
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Barbara A. Hanson
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Zachary S. Orban
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Patrick H. Lim
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Nicole M. Palacio
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Millenia Jimenez
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Jeffrey R. Clark
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Edith L. Graham
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Eric M. Liotta
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - George Tachas
- Director, Drug Discovery & Patents, Antisense Therapeutics Ltd., Melbourne, Australia
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Igor J. Koralnik
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| |
Collapse
|
27
|
Ramezani Ziarani F, Tahamtan A, Safari H, Tabarraei A, Dadban Shahamat Y. Detection of SARS-CoV-2 genome in the air, surfaces, and wastewater of the referral hospitals, Gorgan, north of Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:617-623. [PMID: 36531809 PMCID: PMC9723430 DOI: 10.18502/ijm.v14i5.10954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
BACKGROUND AND OBJECTIVES Coronavirus disease 2019 (COVID-19) is a pandemic caused by the novel virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Knowing the virus's behavior and its persistence in different environments are crucial and will lead to the proper management of the disease. In this study, air, surface, and sewage samples were taken from different parts of referral hospitals for COVID-19. MATERIALS AND METHODS Air samples were taken with impinger, surface samples with swabs, and sewage samples were taken from the hospital wastewater treatment plant. After viral genome extraction, a real-time RT-PCR test was applied to confirm the presence of SARS-CoV-2 RNA in the collected samples. RESULTS The virus genome could be traced in the wards and wastewater related to hospitalized COVID-19 patients. Overally, 29%, 16%, and 37.5% of air, surface, and sewage samples were positive for the SARS-CoV-2 genome, respectively. CONCLUSION Findings of such studies provide valuable results regarding the degree of contamination of hospital environments and the risk of virus transmission in different environments and among hospital staff and patients.
Collapse
Affiliation(s)
- Farzad Ramezani Ziarani
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Tahamtan
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hasan Safari
- Department of Environmental Health Engineering, Faculty of Health, Environmental Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabarraei
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Yousef Dadban Shahamat
- Department of Environmental Health Engineering, Faculty of Health, Environmental Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
28
|
Reno U, Regaldo L, Ojeda G, Schmuck J, Romero N, Polla W, Kergaravat SV, Gagneten AM. Wastewater-Based Epidemiology: Detection of SARS-CoV-2 RNA in Different Stages of Domestic Wastewater Treatment in Santa Fe, Argentina. WATER, AIR, AND SOIL POLLUTION 2022; 233:372. [PMID: 36090741 PMCID: PMC9440651 DOI: 10.1007/s11270-022-05772-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The COVID-19 pandemic affected human life at every level. In this study, we analyzed genetic markers (N and ORF1ab, RNA genes) of SARS-CoV-2 in domestic wastewaters (DWW) in San Justo City (Santa Fe, Argentina), using reverse transcription-quantitative real-time PCR. Out of the 30 analyzed samples, 30% were positive for SARS-CoV-2 RNA. Of the total positive samples, 77% correspond to untreated DWW, 23% to pre-chlorination, and no SARS-CoV-2 RNA was registered at the post-chlorination sampling site. The viral loads of N and OFR1ab genes decreased significantly along the treatment process, and the increase in the number of viral copies of the N gene could anticipate, by 6 days, the number of clinical cases in the population. The concentration of chlorine recommended by the WHO (≥ 0.5 mg L-1 after at least 30 min of contact time at pH 8.0) successfully removed SARS-CoV-2 RNA from DWW. The efficiency of wastewater-based epidemiology (WBE) confirms the need to control and increase DWW treatment systems on a regional and global scale. This work could contribute to building a network for WBE to monitor SARS-CoV-2 in wastewaters during the pandemic waves and the epidemic remission phase. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11270-022-05772-w.
Collapse
Affiliation(s)
- Ulises Reno
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
- National Council for Scientific and Technological Research (CONICET), 3000 Santa Fe, Argentina
| | - Luciana Regaldo
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
- National Council for Scientific and Technological Research (CONICET), 3000 Santa Fe, Argentina
| | - Guillermo Ojeda
- Central Laboratory, Ministry of Health, 3000 Santa Fe, Argentina
| | - Josefina Schmuck
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
- National Council for Scientific and Technological Research (CONICET), 3000 Santa Fe, Argentina
| | - Natalí Romero
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
- National Council for Scientific and Technological Research (CONICET), 3000 Santa Fe, Argentina
| | - Wanda Polla
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
| | - Silvina V. Kergaravat
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
- National Council for Scientific and Technological Research (CONICET), 3000 Santa Fe, Argentina
| | - Ana María Gagneten
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
| |
Collapse
|
29
|
He Q, Wang G, He J, Wang Y, Zhang J, Luo B, Chen P, Luo X, Ren J. Knowledge, attitude and practice regarding occupational protection against COVID-19 among midwives in China: A nationwide cross-sectional study. INTERNATIONAL JOURNAL OF DISASTER RISK REDUCTION : IJDRR 2022; 79:103184. [PMID: 35859908 PMCID: PMC9283191 DOI: 10.1016/j.ijdrr.2022.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Midwives assume the roles in protecting perinatal women and newborns, meanwhile defending their own safety during the epidemic of COVID-19. Since there is currently no specific treatment available that targets the disease, strictly compliance with various infection prevention and control measures appears utmost important to achieve their occupational safety. We then explored the status quo and influencing factors of the knowledge, attitude and practice (KAP) of occupational protection against the COVID-19 among midwives in China. This online cross-sectional survey was conducted on 2663 midwives across the China during the early stages of the pandemic with a self-reported structured questionnaire. 97.4% and 92.9% of them were identified with positive attitude and appropriate practice, respectively, whereas only 6.4% showed good level of knowledge about the occupational protection toward the COVID-19. Midwives with older age, keeping on working during the breakout period, completing the training programs, caring the confirmed COVID-19 cases and having family members with cold-like symptoms were significantly associated with their KAP status. This study could provide valuable information not only for policy makers and administrators to optimize resource allocation and design education programs on targeted midwives, but also serve as a baseline for measuring changes in subsequent, post-intervention KAP studies.
Collapse
Affiliation(s)
- Qiuyang He
- Department of Obstetric Nursing, West China Second University Hospital, Sichuan University / West China School of Nursing, Sichuan University, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Guoyu Wang
- Department of Obstetric Nursing, West China Second University Hospital, Sichuan University / West China School of Nursing, Sichuan University, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jingjing He
- Department of Obstetric Nursing, West China Second University Hospital, Sichuan University / West China School of Nursing, Sichuan University, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yonghong Wang
- Department of Obstetric Nursing, West China Second University Hospital, Sichuan University / West China School of Nursing, Sichuan University, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jinling Zhang
- Department of Obstetric Nursing, West China Second University Hospital, Sichuan University / West China School of Nursing, Sichuan University, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Biru Luo
- Department of Obstetric Nursing, West China Second University Hospital, Sichuan University / West China School of Nursing, Sichuan University, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | | | - Xiaoju Luo
- Sichuan Provincial Maternity and Child Health Care Hospital, China
| | - Jianhua Ren
- Department of Obstetric Nursing, West China Second University Hospital, Sichuan University / West China School of Nursing, Sichuan University, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Wurtzer S, Lacote S, Murri S, Marianneau P, Monchatre-Leroy E, Boni M, Ferraris O, Maday Y, Kébé O, Dia N, Peyrefitte C, Sokol H, Moulin L, Maréchal V. Reduction in SARS-CoV-2 Virus Infectivity in Human and Hamster Feces. Viruses 2022; 14:1777. [PMID: 36016399 PMCID: PMC9415851 DOI: 10.3390/v14081777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE There is extensive evidence that SARS-CoV-2 replicates in the gastrointestinal tract. However, the infectivity of virions in feces is poorly documented. Although the primary mode of transmission is airborne, the risk of transmission from contaminated feces remains to be assessed. DESIGN The persistence of SARS-CoV-2 (infectivity and RNA) in human and animal feces was evaluated by virus isolation on cell culture and RT-qPCR, respectively. The exposure of golden Syrian hamsters to experimentally contaminated feces through intranasal inoculation has also been tested to assess the fecal-oral transmission route. RESULTS For periods that are compatible with average intestinal transit, the SARS-CoV-2 genome was noticeably stable in human and animal feces, contrary to the virus infectivity that was reduced in a time- and temperature-dependent manner. In human stools, this reduction was variable depending on the donors. Viral RNA was excreted in the feces of infected hamsters, but exposure of naïve hamsters to feces of infected animals did not lead to any productive infection. Conversely, hamsters could be experimentally infected following exposure to spiked fresh feces. CONCLUSION Infection following exposure to naturally contaminated feces has been suspected but has not been established so far. The present work demonstrates that SARS-CoV-2 rapidly lost infectivity in spiked or naturally infected feces. Although the possibility of persistent viral particles in human or animal feces cannot be fully ruled out, SARS-CoV-2 transmission after exposure to contaminated feces is unlikely.
Collapse
Affiliation(s)
- Sébastien Wurtzer
- Research and Development Department, Eau de Paris, 33 Avenue Jean Jaurès, 94200 Ivry-sur-Seine, France
| | - Sandra Lacote
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France
| | - Severine Murri
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France
| | | | | | - Mickaël Boni
- French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France
| | - Olivier Ferraris
- French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France
| | - Yvon Maday
- Laboratoire Jacques-Louis Lions (LJLL), CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
- Institut Universitaire de France, 75005 Paris, France
| | | | - Ndongo Dia
- Institut Pasteur de Dakar, Dakar 12900, Senegal
| | - Christophe Peyrefitte
- Institut Pasteur de Dakar, Dakar 12900, Senegal
- Institut Pasteur de la Guyane, 97300 Cayenne, France
| | - Harry Sokol
- INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Sorbonne Université, 75571 Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, 75571 Paris, France
- INRAe, UMR1319 Micalis and AgroParisTech, 78350 Jouy en Josas, France
| | | | - Laurent Moulin
- Research and Development Department, Eau de Paris, 33 Avenue Jean Jaurès, 94200 Ivry-sur-Seine, France
| | - Vincent Maréchal
- INSERM U938, Centre de Recherche Saint-Antoine, Sorbonne Université, 75012 Paris, France
| |
Collapse
|
31
|
Kumar M, Jiang G, Kumar Thakur A, Chatterjee S, Bhattacharya T, Mohapatra S, Chaminda T, Kumar Tyagi V, Vithanage M, Bhattacharya P, Nghiem LD, Sarkar D, Sonne C, Mahlknecht J. Lead time of early warning by wastewater surveillance for COVID-19: Geographical variations and impacting factors. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 441:135936. [PMID: 35345777 PMCID: PMC8942437 DOI: 10.1016/j.cej.2022.135936] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 05/05/2023]
Abstract
The global data on the temporal tracking of the COVID-19 through wastewater surveillance needs to be comparatively evaluated to generate a proper and precise understanding of the robustness, advantages, and sensitivity of the wastewater-based epidemiological (WBE) approach. We reviewed the current state of knowledge based on several scientific articles pertaining to temporal variations in COVID-19 cases captured via viral RNA predictions in wastewater. This paper primarily focuses on analyzing the WBE-based temporal variation reported globally to check if the reported early warning lead-time generated through environmental surveillance is pragmatic or latent. We have compiled the geographical variations reported as lead time in various WBE reports to strike a precise correlation between COVID-19 cases and genome copies detected through wastewater surveillance, with respect to the sampling dates, separately for WASH and non-WASH countries. We highlighted sampling methods, climatic and weather conditions that significantly affected the concentration of viral SARS-CoV-2 RNA detected in wastewater, and thus the lead time reported from the various climatic zones with diverse WASH situations were different. Our major findings are: i) WBE reports around the world are not comparable, especially in terms of gene copies detected, lag-time gained between monitored RNA peak and outbreak/peak of reported case, as well as per capita RNA concentrations; ii) Varying sanitation facility and climatic conditions that impact virus degradation rate are two major interfering features limiting the comparability of WBE results, and iii) WBE is better applicable to WASH countries having well-connected sewerage system.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| | - Alok Kumar Thakur
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Shreya Chatterjee
- Encore Insoltech Pvt Ltd, Randesan, Gandhinagar, Gujarat 382 307, India
| | - Tanushree Bhattacharya
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra 835215, India
| | - Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Tushara Chaminda
- Department of Civil and Environmental Engineering, University of Ruhuna, Sri Lanka
| | - Vinay Kumar Tyagi
- Environmental BioTechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Meththika Vithanage
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Prosun Bhattacharya
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology,SE-100 44, Stockholm, Sweden
| | - Long D Nghiem
- Centre for Technology in Water & Wastewater, University of Technology Sydney, Ultimo 2007, Australia
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, NJ 07030, USA
| | - Christian Sonne
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
- Department of Ecoscience, Aarhus University, Roskilde DK-4000, Denmark
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
32
|
Boateng JO, Wachman EM, Turcinovic J, Devera J, Jain M, Jean-Sicard S, Woodard E, Cruikshank A, Sinha B, Bartolome R, Barnett ED, Parker MG, Yarrington C, Connor JH, Taglauer E, Sabharwal V. SARS-CoV-2 in infant urine and fecal samples after in utero COVID-19 exposure. Pediatr Res 2022; 92:536-540. [PMID: 34718351 PMCID: PMC8556813 DOI: 10.1038/s41390-021-01822-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a pandemic that has and will continue to affect many pregnant women. Knowledge regarding the risk of vertical transmission is limited. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of nasopharyngeal swabs typically have been used to confirm the diagnosis among infants, but whether the virus can be detected in other biological specimens, and therefore potentially transmitted in other ways, is unknown. Positive SARS-CoV-2 RT-PCR has been reported from feces and urine from adult patients. We hypothesize that the presence of SARS-CoV-2 in infant urine and fecal samples after prenatal COVID-19 exposure is low. METHODS We examined the presence of SARS-CoV-2 RNA using RT-PCR in urine and fecal samples among 42 infants born to SARS-CoV-2-infected mothers during different stages of pregnancy. RESULTS A urine sample was collected from 39 of 42 infants and fecal samples from all 42 infants shortly after birth. Although the majority of the women had the symptomatic disease (85.6%), we were unable to detect the presence of SARS-CoV-2 virus from any infant urine or fecal samples. CONCLUSIONS SARS-CoV-2 was not detected in infant urine or feces after maternal infection during pregnancy, providing further evidence for low rates of perinatal transmission. IMPACT SARS-CoV-2 was not detected in the urine or feces of infants of mothers with COVID-19 during various time points in pregnancy. This study provides further evidence for low rates of perinatal transmission of SARS-CoV-2. Results help to provide guidance on perinatal care practices for infants exposed to COVID-19 in utero.
Collapse
Affiliation(s)
| | - Elisha M Wachman
- Department of Pediatrics, Boston Medical Center, Boston, MA, USA
| | | | - Jean Devera
- Boston University School of Medicine, Boston, MA, USA
| | - Mayuri Jain
- Boston University School of Public Health, Boston, MA, USA
| | | | | | - Alice Cruikshank
- Department of Pediatrics, Boston Medical Center, Boston, MA, USA
| | - Bharati Sinha
- Department of Pediatrics, Boston Medical Center, Boston, MA, USA
| | - Ruby Bartolome
- Department of Pediatrics, Boston Medical Center, Boston, MA, USA
| | | | | | | | - John H Connor
- Boston University Microbiology/NEIDL, Boston, MA, USA
| | | | | |
Collapse
|
33
|
Concas G, Barone M, Francavilla R, Cristofori F, Dargenio VN, Giorgio R, Dargenio C, Fanos V, Marcialis MA. Twelve Months with COVID-19: What Gastroenterologists Need to Know. Dig Dis Sci 2022; 67:2771-2791. [PMID: 34333726 PMCID: PMC8325547 DOI: 10.1007/s10620-021-07158-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Corona virus disease-19 (COVID-19) is the latest global pandemic. COVID-19 is mainly transmitted through respiratory droplets and, apart from respiratory symptoms, patients often present with gastrointestinal symptoms and liver involvement. Given the high percentage of COVID-19 patients that present with gastrointestinal symptoms (GIS), in this review, we report a practical up-to-date reference for the physician in their clinical practice with patients affected by chronic gastrointestinal (GI) diseases (inflammatory bowel disease, coeliac disease, chronic liver disease) at the time of COVID-19. First, we summarised data on the origin and pathogenetic mechanism of SARS-CoV-2. Then, we performed a literature search up to December 2020 examining clinical manifestations of GI involvement. Next, we illustrated and summarised the most recent guidelines on how to adhere to GI procedures (endoscopy, liver biopsy, faecal transplantation), maintaining social distance and how to deal with immunosuppressive treatment. Finally, we focussed on some special conditions such as faecal-oral transmission and gut microbiota. The rapid accumulation of information relating to this condition makes it particularly essential to revise the literature to take account of the most recent publications for medical consultation and patient care.
Collapse
Affiliation(s)
- Giulia Concas
- School of Paediatrics, University of Cagliari, 09124 Cagliari, Italy
| | - Michele Barone
- Gastroenterology Unit, Department of Emergency and Organ Transplantation, University of Bari, University Hospital “Policlinico”, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Ruggiero Francavilla
- Department of Biomedical Science and Human Oncology, Children’s Hospital “Giovanni XXIII”, University of Bari, 70126 Bari, Italy
| | - Fernanda Cristofori
- Department of Biomedical Science and Human Oncology, Children’s Hospital “Giovanni XXIII”, University of Bari, 70126 Bari, Italy
| | - Vanessa Nadia Dargenio
- Department of Biomedical Science and Human Oncology, Children’s Hospital “Giovanni XXIII”, University of Bari, 70126 Bari, Italy
| | - Rossella Giorgio
- Department of Biomedical Science and Human Oncology, Children’s Hospital “Giovanni XXIII”, University of Bari, 70126 Bari, Italy
| | - Costantino Dargenio
- Department of Biomedical Science and Human Oncology, Children’s Hospital “Giovanni XXIII”, University of Bari, 70126 Bari, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Azienda Ospedaliero Universitaria, University of Cagliari, Cagliari, 09124 Cagliari, Italy
| | - Maria Antonietta Marcialis
- Neonatal Intensive Care Unit, Azienda Ospedaliero Universitaria, University of Cagliari, Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
34
|
Jiang G, Wu J, Weidhaas J, Li X, Chen Y, Mueller J, Li J, Kumar M, Zhou X, Arora S, Haramoto E, Sherchan S, Orive G, Lertxundi U, Honda R, Kitajima M, Jackson G. Artificial neural network-based estimation of COVID-19 case numbers and effective reproduction rate using wastewater-based epidemiology. WATER RESEARCH 2022; 218:118451. [PMID: 35447417 PMCID: PMC9006161 DOI: 10.1016/j.watres.2022.118451] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/02/2022] [Accepted: 04/10/2022] [Indexed: 05/06/2023]
Abstract
As a cost-effective and objective population-wide surveillance tool, wastewater-based epidemiology (WBE) has been widely implemented worldwide to monitor the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentration in wastewater. However, viral concentrations or loads in wastewater often correlate poorly with clinical case numbers. To date, there is no reliable method to back-estimate the coronavirus disease 2019 (COVID-19) case numbers from SARS-CoV-2 concentrations in wastewater. This greatly limits WBE in achieving its full potential in monitoring the unfolding pandemic. The exponentially growing SARS-CoV-2 WBE dataset, on the other hand, offers an opportunity to develop data-driven models for the estimation of COVID-19 case numbers (both incidence and prevalence) and transmission dynamics (effective reproduction rate). This study developed artificial neural network (ANN) models by innovatively expanding a conventional WBE dataset to include catchment, weather, clinical testing coverage and vaccination rate. The ANN models were trained and evaluated with a comprehensive state-wide wastewater monitoring dataset from Utah, USA during May 2020 to December 2021. In diverse sewer catchments, ANN models were found to accurately estimate the COVID-19 prevalence and incidence rates, with excellent precision for prevalence rates. Also, an ANN model was developed to estimate the effective reproduction number from both wastewater data and other pertinent factors affecting viral transmission and pandemic dynamics. The established ANN model was successfully validated for its transferability to other states or countries using the WBE dataset from Wisconsin, USA.
Collapse
Affiliation(s)
- Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| | - Jiangping Wu
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Jennifer Weidhaas
- University of Utah, Civil and Environmental Engineering, 110 Central Campus Drive, Suite 2000, Salt Lake City, UT, USA
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Yan Chen
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Australia
| | - Jiaying Li
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Australia
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, Jaipur, India
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Kofu, Japan
| | - Samendra Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, USA
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Unax Lertxundi
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, Hokkaido 060-8628, Japan
| | - Greg Jackson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 4102, Brisbane, Australia
| |
Collapse
|
35
|
Li X, Kulandaivelu J, Guo Y, Zhang S, Shi J, O'Brien J, Arora S, Kumar M, Sherchan SP, Honda R, Jackson G, Luby SP, Jiang G. SARS-CoV-2 shedding sources in wastewater and implications for wastewater-based epidemiology. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128667. [PMID: 35339834 PMCID: PMC8908579 DOI: 10.1016/j.jhazmat.2022.128667] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 05/21/2023]
Abstract
Wastewater-based epidemiology (WBE) approach for COVID-19 surveillance is largely based on the assumption of SARS-CoV-2 RNA shedding into sewers by infected individuals. Recent studies found that SARS-CoV-2 RNA concentration in wastewater (CRNA) could not be accounted by the fecal shedding alone. This study aimed to determine potential major shedding sources based on literature data of CRNA, along with the COVID-19 prevalence in the catchment area through a systematic literature review. Theoretical CRNA under a certain prevalence was estimated using Monte Carlo simulations, with eight scenarios accommodating feces alone, and both feces and sputum as shedding sources. With feces alone, none of the WBE data was in the confidence interval of theoretical CRNA estimated with the mean feces shedding magnitude and probability, and 63% of CRNA in WBE reports were higher than the maximum theoretical concentration. With both sputum and feces, 91% of the WBE data were below the simulated maximum CRNA in wastewater. The inclusion of sputum as a major shedding source led to more comparable theoretical CRNA to the literature WBE data. Sputum discharging behavior of patients also resulted in great fluctuations of CRNA under a certain prevalence. Thus, sputum is a potential critical shedding source for COVID-19 WBE surveillance.
Collapse
Affiliation(s)
- Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | | | - Ying Guo
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Shuxin Zhang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Jiahua Shi
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| | - Jake O'Brien
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woollongabba, Queensland 4072, Australia
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, 6E, Malviya Industrial Area, Malviya Nagar, Jaipur 302017, India
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Samendra P Sherchan
- Department of Environmental health sciences, Tulane University, New Orleans, LA 70112, USA; Bioenvironmental Science Program, Morgan Staate University, Baltimore, MD 21251, USA
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Greg Jackson
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woollongabba, Queensland 4072, Australia
| | - Stephen P Luby
- Stanford Center for Innovation in Global Health, and Stanford Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
36
|
The Impact of COVID-19 Pandemic on Halting Sustainable Development in the Colca y Volcanes de Andagua UNESCO Global Geopark in Peru—Prospects and Future. SUSTAINABILITY 2022. [DOI: 10.3390/su14074043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Events, such as the COVID-19 pandemic, that rapidly impact global communication and travel have significant consequences for the tourism industry, which is one of the pillars of global development. We assess the impacts of the COVID-19 crisis on the Colca y Volcanes de Andagua UNESCO Global Geopark in Peru. The Colca y Volcanes de Andagua Geopark was established immediately prior to the pandemic in October 2019. The instability of the government in Peru during the pandemic and the difficult living conditions in the high Andes, such as the lack of drinking water, cleaning agents, medical care, and the high levels of poverty, particularly in the geopark region, has contributed to the significantly high COVID-19 infection rates. In addition, detrimental impacts faced by the local community are a direct result of a reduction in travellers to the area due to legislative restrictions, which have had negative consequences on the local tourism industry. There is an urgent need for the recovery of the local tourism industry to prevent the permanent closure of tourism facilities and to minimise poverty rates.
Collapse
|
37
|
Kiely P, Hoad VC, Seed CR, Gosbell IB. Severe Acute Respiratory Syndrome Coronavirus 2 and Blood Safety: An Updated Review. Transfus Med Hemother 2022; 5:1-11. [PMID: 35528142 PMCID: PMC9059091 DOI: 10.1159/000522264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel human coronavirus first identified in late 2019 and subsequently declared a worldwide pandemic in March 2020. In this review, we provide an overview of the implications of SARS-CoV-2 for blood safety and sufficiency. Summary Approximately one-third of SARS-CoV-2 infections are asymptomatic. The reported mean incubation period typically varies from 2 to 11 days, but longer periods up to 22 days have been reported. The blood phase of SARS-CoV-2 appears to be brief and low level, with RNAaemia detectable in only a small proportion of patients, typically associated with more severe disease and not demonstrated to be infectious virus. A small number of presymptomatic and asymptomatic blood phase cases have been reported. Transfusion-transmission (TT) of SARS-CoV-2 has not been reported. Therefore, the TT risk associated with SARS-CoV-2 is currently theoretical. To mitigate any potential TT risk, but more importantly to prevent respiratory transmission in donor centers, blood services can implement donor deferral policies based on travel, disease status, or potential risk of exposure and encourage staff vaccination. Key Messages The TT risk of SARS-CoV-2 appears to be low. The biggest risk to blood services in the current COVID-19 pandemic is to maintain the sufficiency of the blood supply while minimizing respiratory transmission of SARS-CoV-2 to donors and staff while donating blood.
Collapse
Affiliation(s)
- Philip Kiely
- Clinical Services and Research, Australian Red Cross Lifeblood, Melbourne, Victoria, Australia
- Transfusion Research Unit, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Veronica C. Hoad
- Clinical Services and Research, Australian Red Cross Lifeblood, Melbourne, Victoria, Australia
| | - Clive R. Seed
- Clinical Services and Research, Australian Red Cross Lifeblood, Melbourne, Victoria, Australia
| | - Iain B. Gosbell
- Clinical Services and Research, Australian Red Cross Lifeblood, Melbourne, Victoria, Australia
- Infectious Diseases & Microbiology, School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
38
|
Shi J, Li X, Zhang S, Sharma E, Sivakumar M, Sherchan SP, Jiang G. Enhanced decay of coronaviruses in sewers with domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151919. [PMID: 34826473 PMCID: PMC8610560 DOI: 10.1016/j.scitotenv.2021.151919] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 05/22/2023]
Abstract
Recent outbreaks caused by coronaviruses and their supposed potential fecal-oral transmission highlight the need for understanding the survival of infectious coronavirus in domestic sewers. To date, the survivability and decay of coronaviruses were predominately studied using small volumes of wastewater (normally 5-30 mL) in vials (in-vial tests). However, real sewers are more complicated than bulk wastewater (wastewater matrix only), in particular the presence of sewer biofilms and different operational conditions. This study investigated the decay of infectious human coronavirus 229E (HCoV-229E) and feline infectious peritonitis virus (FIPV), two typical surrogate coronaviruses, in laboratory-scale reactors mimicking the gravity (GS, gravity-driven sewers) and rising main sewers (RM, pressurized sewers) with and without sewer biofilms. The in-sewer decay of both coronaviruses was greatly enhanced in comparison to those reported in bulk wastewater through in-vial tests. 99% of HCoV-229E and FIPV decayed within 2 h under either GS or RM conditions with biofilms, in contrast to 6-10 h without biofilms. There is limited difference in the decay of HCoV and FIPV in reactors operated as RM or GS, with the T90 and T99 difference of 7-10 min and 14-20 min, respectively. The decay of both coronaviruses in sewer biofilm reactors can be simulated by biphasic first-order kinetic models, with the first-order rate constant 2-4 times higher during the first phase than the second phase. The decay of infectious HCoV and FIPV was significantly faster in the reactors with sewer biofilms than in the reactors without biofilms, suggesting an enhanced decay of these surrogate viruses due to the presence of biofilms and related processes. The mechanism of biofilms in virus adsorption and potential inactivation remains unclear and requires future investigations. The results indicate that the survivability of infectious coronaviruses detected using bulk wastewater overestimated the infectivity risk of coronavirus during wastewater transportations in sewers or the downstream treatment.
Collapse
Affiliation(s)
- Jiahua Shi
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Shuxin Zhang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Elipsha Sharma
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Muttucumaru Sivakumar
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
39
|
Roßmann K, Großmann G, Frangoulidis D, Clasen R, Münch M, Hasenknopf M, Wurzbacher C, Tiehm A, Stange C, Ho J, Woermann M, Drewes JE. [Innovative SARS-CoV-2 crisis management in the public health sector: Corona dashboard and wastewater surveillance using the example of Berchtesgadener Land, Germany]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2022; 65:367-377. [PMID: 34596701 PMCID: PMC8485315 DOI: 10.1007/s00103-021-03425-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND The rise of an infectious disease crisis such as the SARS-CoV‑2 pandemic posed significant challenges for the administrative structures of the public health service, which resulted in varying levels of efficiency in outbreak management as a function of staffing and digital resources. This substantially impeded the integration of innovative pandemic outbreak management tools. Innovative crisis management, such as cluster tracking, risk group testing, georeferencing, or the integration of wastewater surveillance recommended by the EU Commission, was made significantly more difficult. AIM In this case study in Berchtesgadener Land, we present the integration of an area-wide georeferenced wastewater surveillance system that captured 95% of the entire population since November 2020. METHODOLOGY Sampling occurred twice a week at nine municipal wastewater treatment plants and directly from the main sewer at three locations. Samples were pre-treated by centrifugation and subsequently analyzed by digital droplet polymerase chain reaction (PCR) targeting four specific genes of SARS-CoV‑2. RESULTS The integration of an area-wide georeferenced wastewater surveillance system was successful. Wastewater occurrences are plotted for each municipality against cumulative infections over seven days per 100,000 inhabitants. Changes in the infection pattern in individual communities are noticeable ten days ahead of the official case numbers with a sensitivity of approximately 20 in 100,000 inhabitants. DISCUSSION The integration of this innovative approach to provide a comprehensive overview of the situation by employing a digital dashboard and the use of an early warning system via quantitative wastewater surveillance resulted in very efficient, proactive management, which might serve as a blueprint for other municipalities in Germany.
Collapse
Affiliation(s)
- Katalyn Roßmann
- VI-2, Medical Intelligence & Information (MI2), Kommando Sanitätsdienst der Bundeswehr, München, Deutschland
| | - Gerd Großmann
- VI-2, Medical Intelligence & Information (MI2), Kommando Sanitätsdienst der Bundeswehr, München, Deutschland
| | - Dimitrios Frangoulidis
- VI-2, Medical Intelligence & Information (MI2), Kommando Sanitätsdienst der Bundeswehr, München, Deutschland
| | - Rüttger Clasen
- Landratsamt Berchtesgadener Land, Bad Reichenhall, Deutschland
| | - Manuel Münch
- Landratsamt Berchtesgadener Land, Bad Reichenhall, Deutschland
| | | | - Christian Wurzbacher
- Lehrstuhl für Siedlungswasserwirtschaft, Technische Universität München, Am Coulombwall 3, 85748, Garching, Deutschland
| | - Andreas Tiehm
- TZW: DVGW-Technologiezentrum Wasser, Karlsruhe, Deutschland
| | - Claudia Stange
- TZW: DVGW-Technologiezentrum Wasser, Karlsruhe, Deutschland
| | - Johannes Ho
- TZW: DVGW-Technologiezentrum Wasser, Karlsruhe, Deutschland
| | - Marion Woermann
- Lehrstuhl für Siedlungswasserwirtschaft, Technische Universität München, Am Coulombwall 3, 85748, Garching, Deutschland
| | - Jörg E Drewes
- Lehrstuhl für Siedlungswasserwirtschaft, Technische Universität München, Am Coulombwall 3, 85748, Garching, Deutschland.
| |
Collapse
|
40
|
Holm-Jacobsen JN, Bundgaard-Nielsen C, Rold LS, Jensen AM, Shakar S, Ludwig M, Kirk KF, Donneborg ML, Vonasek JH, Pedersen B, Arenholt LTS, Hagstrøm S, Leutscher P, Sørensen S. The Prevalence and Clinical Implications of Rectal SARS-CoV-2 Shedding in Danish COVID-19 Patients and the General Population. Front Med (Lausanne) 2022; 8:804804. [PMID: 35096894 PMCID: PMC8792906 DOI: 10.3389/fmed.2021.804804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Background: SARS-CoV-2 has resulted in a global pandemic since its outbreak in Wuhan, 2019. Virus transmission primarily occurs through close contact, respiratory droplets, and aerosol particles. However, since SARS-CoV-2 has been detected in fecal and rectal samples from infected individuals, the fecal-oral route has been suggested as another potential route of transmission. This study aimed to investigate the prevalence and clinical implications of rectal SARS-CoV-2 shedding in Danish COVID-19 patients. Methods: Hospitalized and non-hospitalized adults and children who were recently tested with a pharyngeal COVID-19 test, were included in the study. A rectal swab was collected from all participants. Hospitalized adults and COVID-19 positive children were followed with both pharyngeal and rectal swabs until two consecutive negative results were obtained. RT-qPCR targeting the envelope gene was used to detect SARS-CoV-2 in the samples. Demographic, medical, and biochemical information was obtained through questionnaires and medical records. Results: Twenty-eight of 52 (53.8%) COVID-19 positive adults and children were positive for SARS-CoV-2 in rectal swabs. Seven of the rectal positive participants were followed for more than 6 days. Two of these (28.6%) continued to test positive in their rectal swabs for up to 29 days after the pharyngeal swabs had turned negative. Hospitalized rectal positive and rectal negative adults were comparable regarding demographic, medical, and biochemical information. Furthermore, no difference was observed in the severity of the disease among the two groups. Conclusions: We provided evidence of rectal SARS-CoV-2 shedding in Danish COVID-19 patients. The clinical importance of rectal SARS-CoV-2 shedding appears to be minimal.
Collapse
Affiliation(s)
| | - Caspar Bundgaard-Nielsen
- Centre for Clinical Research, North Denmark Regional Hospital, Hjoerring, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Ann-Maria Jensen
- Centre for Clinical Research, North Denmark Regional Hospital, Hjoerring, Denmark
| | - Shakil Shakar
- Department of Emergency Medicine, Pandemic Unit, North Denmark Regional Hospital, Hjoerring, Denmark.,Department of Internal Medicine, North Denmark Regional Hospital, Hjoerring, Denmark
| | - Marc Ludwig
- Department of Emergency Medicine, North Denmark Regional Hospital, Hjoerring, Denmark
| | - Karina Frahm Kirk
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Mette Line Donneborg
- Centre for Clinical Research, North Denmark Regional Hospital, Hjoerring, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Pediatrics, North Denmark Regional Hospital, Hjoerring, Denmark
| | | | - Benjamin Pedersen
- Intensive Care Unit, North Denmark Regional Hospital, Hjoerring, Denmark
| | - Louise Thomsen Schmidt Arenholt
- Centre for Clinical Research, North Denmark Regional Hospital, Hjoerring, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Gynecology and Obstetrics, North Denmark Regional Hospital, Hjoerring, Denmark
| | - Søren Hagstrøm
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Pediatrics, Aalborg University Hospital, Aalborg, Denmark
| | - Peter Leutscher
- Centre for Clinical Research, North Denmark Regional Hospital, Hjoerring, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Suzette Sørensen
- Centre for Clinical Research, North Denmark Regional Hospital, Hjoerring, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
41
|
Validation of Two Commercial Multiplex Real-Time PCR Assays for Detection of SARS-CoV-2 in Stool Donors for Fecal Microbiota Transplantation. Microorganisms 2022; 10:microorganisms10020284. [PMID: 35208740 PMCID: PMC8879890 DOI: 10.3390/microorganisms10020284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/14/2022] Open
Abstract
Recurrent infection by Clostridioides difficile has recently been treated by fecal microbiota transplantation (FMT). As viable SARS-CoV-2 was recovered from stool of asymptomatic individuals, the FMT procedure could be a potential risk of SARS-CoV-2 transmission, thus underlying the need to reliably detect SARS-CoV-2 in stool. Here, we performed a multicentric study to explore performances of two commercially available assays for detection of SARS-CoV-2 RNA in stool of potential FMT donors. In three hospitals, 180 stool samples were spiked with serial 10-fold dilutions of a SARS-CoV-2 inactivated lysate to evaluate the Seegene Allplex™ SARS-CoV-2 (SC2) and SARS-CoV-2/FluA/FluB/RSV (SC2FABR) Assays for the detection of viral RNA in stool of FMT donors. The results revealed that both assays detected down to 2 TCID50/mL with comparable limit of detection values, SC2 showing more consistent target positivity rate than SC2FABR. Beyond high amplification efficiency, correlation between CT values and log concentrations of inactivated viral lysates showed R2 values ranging from 0.88 to 0.90 and from 0.87 to 0.91 for the SC2 and SC2FABR assay, respectively. The present results demonstrate that both methods are highly reproducible, sensitive, and accurate for SARS-CoV-2 RNA detection in stool, suggesting a potential use in FMT-donor screening.
Collapse
|
42
|
Howden CW, Loomba R. A Message from the Editors. Aliment Pharmacol Ther 2022; 55:4-5. [PMID: 34907571 DOI: 10.1111/apt.16701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Colin W Howden
- Division of Gastroenterology and Hepatology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Rohit Loomba
- Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
43
|
Ryan L, Plötz FB, van den Hoogen A, Latour JM, Degtyareva M, Keuning M, Klingenberg C, Reiss IKM, Giannoni E, Roehr C, Gale C, Molloy EJ. Neonates and COVID-19: state of the art : Neonatal Sepsis series. Pediatr Res 2022; 91:432-439. [PMID: 34961785 PMCID: PMC8712275 DOI: 10.1038/s41390-021-01875-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/20/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
The SARS-CoV-2 pandemic has had a significant impact worldwide, particularly in middle- and low-income countries. While this impact has been well-recognized in certain age groups, the effects, both direct and indirect, on the neonatal population remain largely unknown. There are placental changes associated, though the contributions to maternal and fetal illness have not been fully determined. The rate of premature delivery has increased and SARS-CoV-2 infection is proportionately higher in premature neonates, which appears to be related to premature delivery for maternal reasons rather than an increase in spontaneous preterm labor. There is much room for expansion, including long-term data on outcomes for affected babies. Though uncommon, there has been evidence of adverse events in neonates, including Multisystem Inflammatory Syndrome in Children, associated with COVID-19 (MIS-C). There are recommendations for reduction of viral transmission to neonates, though more research is required to determine the role of passive immunization of the fetus via maternal vaccination. There is now considerable evidence suggesting that the severe visitation restrictions implemented early in the pandemic have negatively impacted the care of the neonate and the experiences of both parents and healthcare professionals alike. Ongoing collaboration is required to determine the full impact, and guidelines for future management. IMPACT: Comprehensive review of current available evidence related to impact of the COVID-19 pandemic on neonates, effects on their health, impact on their quality of care and indirect influences on their clinical course, including comparisons with other age groups. Reference to current evidence for maternal experience of infection and how it impacts the fetus and then neonate. Outline of the need for ongoing research, including specific areas in which there are significant gaps in knowledge.
Collapse
Affiliation(s)
- L Ryan
- Neonatology, CHI at Crumlin, Dublin, Ireland
| | - Frans B Plötz
- Department of Paediatrics, Tergooi Hospital, Blaricum, The Netherlands
- Department of Paediatrics, Amsterdam UMC, University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Agnes van den Hoogen
- Division Woman and Baby, Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht & Utrecht University, Utrecht, The Netherlands
| | - Jos M Latour
- School of Nursing and Midwifery, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Marina Degtyareva
- Department of Neonatology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Maya Keuning
- Department of Paediatrics, Amsterdam UMC, University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Claus Klingenberg
- Department of Pediatrics and Adolescence Medicine, University Hospital of North Norway, Tromsø, Norway
- Paediatric Research Group, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Irwin K M Reiss
- Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Eric Giannoni
- Neonatology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Charles Roehr
- National Perinatal Epidemiology Unit, Clinical Trials Unit, Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Christopher Gale
- Neonatal Medicine, School of Public Health, Faculty of Medicine, Chelsea and Westminster Campus, Imperial College London, London, UK
| | - Eleanor J Molloy
- Neonatology, CHI at Crumlin, Dublin, Ireland.
- Discipline of Paediatrics, Trinity College Dublin, the University of Dublin & Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland.
- Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland.
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland.
- Paediatrics, Coombe Women's and Infant's University Hospital, Dublin, Ireland.
| |
Collapse
|
44
|
Robotto A, Lembo D, Quaglino P, Brizio E, Polato D, Civra A, Cusato J, Di Perri G. Wastewater-based SARS-CoV-2 environmental monitoring for Piedmont, Italy. ENVIRONMENTAL RESEARCH 2022; 203:111901. [PMID: 34419466 PMCID: PMC8603036 DOI: 10.1016/j.envres.2021.111901] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/06/2021] [Accepted: 08/15/2021] [Indexed: 05/06/2023]
Abstract
The experience gained over the last hundred years clearly indicates that two groups of viruses represent the main risk for the development of highly transmissible epidemics and pandemics in the human species: influenza viruses and coronaviruses (CoV). Although the search for viruses with pandemic potential in the environment may have an important predictive and monitoring role, it is still based on empirical methodologies, mostly resulting from the clinic and not fully validated for environmental matrices. As far as the SARS-CoV-2 pandemic, currently underway, is concerned, environmental monitoring activities aiming at checking the presence of SARS-CoV-2 in wastewater can be extremely useful to predict and check the diffusion of the disease. For this reason, the present study aims at evaluating the SARS-CoV-2 diffusion by means of a wastewater-based environmental monitoring developed in Piedmont, N-W Italy, during the second and third pandemic waves. Wastewater sampling strategies, sampling points sample pre-treatments and analytical methods, data processing and standardization, have been developed and discussed to give representative and reliable results. The following outcomes has been highlighted by the present study: i) a strong correlation between SARS-CoV-2 concentration in untreated wastewater and epidemic evolution in the considered areas can be observed as well as a predictive potential that could provide decision-makers with indications to implement effective policies, to mitigate the effects of the ongoing pandemic and to prepare response plans for future pandemics that could certainly arise in the decades to come; ii) moreover, the data at disposal from our monitoring campaign (almost 500 samples analysed in 11 months) confirm that SARS-CoV-2 concentrations in wastewater are strongly variable and site-specific across the region: the highest SARS-CoV-2 concentration values have been found in sewer networks serving the most populated areas of the region; iii) normalization of viral concentrations in wastewater through Pepper Mild Mottle Virus (a specific faecal marker) has been carried out and commented; iv) the study highlights the potential of wastewater treatment plants to degrade the genetic material referable to SARS-CoV-2 as well. In conclusion, the preliminary data reported in the present paper, although they need to be complemented by further studies considering also other geographical regions, are very promising.
Collapse
Affiliation(s)
- Angelo Robotto
- Environmental Protection Agency of Piedmont (Arpa Piemonte), Via Pio VII 9, 10135, Torino, Italy
| | - David Lembo
- Università degli Studi di Torino, Dept. of Clinical and Biological Sciences, Regione Gonzole 10, 10043, Torino, Orbassano, Italy
| | - Paola Quaglino
- Environmental Protection Agency of Piedmont (Arpa Piemonte), Via Pio VII 9, 10135, Torino, Italy
| | - Enrico Brizio
- Environmental Protection Agency of Piedmont (Arpa Piemonte), Via Pio VII 9, 10135, Torino, Italy.
| | - Denis Polato
- Environmental Protection Agency of Piedmont (Arpa Piemonte), Via Pio VII 9, 10135, Torino, Italy
| | - Andrea Civra
- Università degli Studi di Torino, Dept. of Clinical and Biological Sciences, Regione Gonzole 10, 10043, Torino, Orbassano, Italy
| | - Jessica Cusato
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Torino, Amedeo di Savoia Hospital, Torino, Italy
| | - Giovanni Di Perri
- Infectious Diseases Unit, Department of Medical Sciences, University of Torino, Amedeo di Savoia Hospital, Torino, Italy
| |
Collapse
|
45
|
Gastrointestinal viral shedding in children with SARS-CoV-2: a systematic review and meta-analysis. World J Pediatr 2022; 18:582-588. [PMID: 35665477 PMCID: PMC9166206 DOI: 10.1007/s12519-022-00553-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/12/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has different manifestations in pediatric cases. It is assumed that they might present more gastrointestinal symptoms with a different viral shedding pattern in gastrointestinal samples. In this systematic review and meta-analysis, we aimed to evaluate the viral shedding pattern in gastrointestinal specimens of children with COVID-19. METHODS We searched all published studies in English language in PubMed, Web of Science, and Scopus, up to date as of October 2021. Our search included the term "severe acute respiratory syndrome coronavirus 2, COVID-19, SARS-CoV-2, novel coronavirus, or coronavirus; and shed, excrete, secret, or carriage; and stool or rectal; and children or pediatrics". We included studies evaluating SARS-CoV-2 shedding in gastrointestinal specimens, including rectal swabs and stool samples of children with COVID-19 infection. We excluded duplicated data, case reports, and studies without original data. RESULTS Twelve studies met the eligibility criteria for the qualitative synthesis, 10 of which were included in the meta-analysis. The pooled prevalence of gastrointestinal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in children with COVID-19 was 86% (95% confidence interval 73%-96%, I2 = 62.28%). After respiratory specimen had become negative, 72% (43/60) had persistent shedding in gastrointestinal specimens. The gastrointestinal RNA had a positive test result for more than 70 days after symptoms onset. CONCLUSIONS Gastrointestinal shedding of SARS-CoV-2 might occur in a substantial portion of children and might persist long after negative respiratory testing. Further research is recommended to find the role of SARS-CoV-2 gastrointestinal shedding in transmission in children.
Collapse
|
46
|
Barrios ME, Díaz SM, Torres C, Costamagna DM, Blanco Fernández MD, Mbayed VA. Dynamics of SARS-CoV-2 in wastewater in three districts of the Buenos Aires metropolitan region, Argentina, throughout nine months of surveillance: A pilot study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149578. [PMID: 34426365 PMCID: PMC8359566 DOI: 10.1016/j.scitotenv.2021.149578] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 05/17/2023]
Abstract
In the current pandemic of COVID-19, sewage surveillance of SARS-CoV-2 genome has been used to complement viral epidemiology in different countries. The aim of this work was to introduce and evaluate this wastewater-based tool in the metropolitan region of Buenos Aires, Argentina. As a pilot study, surveillance of SARS-CoV-2 in wastewater from three districts of this area was performed for more than nine months from June 2020 to April 2021. Viruses present in the samples were concentrated using polyethylene glycol precipitation and quantified using RT-qPCR CDC N1 assay. Virus recovery for SARS-CoV-2 and a potential surrogate, bovine coronavirus Mebus strain, that shares the Betacoronavirus genus and structural characteristics with SARS-CoV-2, were evaluated after concentration and detection procedures. Recovery of both viruses did not differ significantly, with a median for SARS-CoV-2 and BCoV of 0.085 (95% CI: 0.021-0.179) and 0.262 (95% CI: 1.18 × 10-5-0.564) respectively. The concentration of SARS-CoV-2 genome in wastewater ranged from 10 -1 to 10 3 cg/ml, depending on the wastewater treatment plant, type of collection site, viral recovery of the concentration method and the epidemiological situation of the outbreaks. Significant correlations were observed between SARS-CoV-2 concentration in wastewater and reported clinical cases, reinforcing the utility of this approach to monitor the epidemiological status of populations.
Collapse
Affiliation(s)
- Melina Elizabeth Barrios
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Sofía Micaela Díaz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina; Ministerio de Ciencia, Tecnología e Innovación, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Godoy Cruz 2370 (C1425FQD), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Carolina Torres
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina.
| | | | - María Dolores Blanco Fernández
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Viviana Andrea Mbayed
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Ciudad Autónoma de Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBAVIM), Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
47
|
Zhang H, Shao B, Dang Q, Chen Z, Zhou Q, Luo H, Yuan W, Sun Z. Pathogenesis and Mechanism of Gastrointestinal Infection With COVID-19. Front Immunol 2021; 12:674074. [PMID: 34858386 PMCID: PMC8631495 DOI: 10.3389/fimmu.2021.674074] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
As a new infectious disease, COVID-19 is spread through the respiratory tract in most cases. Its source and pathological mechanism are not clear. The most common clinical feature is pulmonary infection. Also, a lot patients have gastrointestinal symptoms. Angiotensin-converting enzyme 2 (ACE2) is a functional cellular receptor for SARS-CoV-2, which is like SARS-CoV, a coronavirus associated with severe acute respiratory syndrome (SARS) outbreak in 2003. The tissues and cells expressing ACE2 are potential targets for SARS-CoV-2 infection, and the high expression of ACE2 in intestinal epithelial cells marks that SARS-CoV-2 may directly infect intestinal epithelial cells. Recent studies also suggest that SARS-CoV-2 existed and replicated in intestinal environment for a long time. The interaction between SARS-CoV-2 and RAS system leads to the decrease of local anti-inflammatory ability. The virus cycle leads to excessive imbalance of immune response and cytokine release. The downregulation of ACE2 after viral infection leads to gastrointestinal dysfunction. The above are the causes of gastrointestinal symptoms. Here, we reviewed the possible causes and mechanisms of gastrointestinal symptoms caused by COVID-19. Additionally, we discussed the influence of gastrointestinal symptoms on the prognosis of patients.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuang Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Luo
- Department of Hepatobiliary and Pancreatic Surgery, Guangshan County People's Hospital, Xinyang, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
48
|
Zahedi A, Monis P, Deere D, Ryan U. Wastewater-based epidemiology-surveillance and early detection of waterborne pathogens with a focus on SARS-CoV-2, Cryptosporidium and Giardia. Parasitol Res 2021; 120:4167-4188. [PMID: 33409629 PMCID: PMC7787619 DOI: 10.1007/s00436-020-07023-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Waterborne diseases are a major global problem, resulting in high morbidity and mortality, and massive economic costs. The ability to rapidly and reliably detect and monitor the spread of waterborne diseases is vital for early intervention and preventing more widespread disease outbreaks. Pathogens are, however, difficult to detect in water and are not practicably detectable at acceptable concentrations that need to be achieved in treated drinking water (which are of the order one per million litre). Furthermore, current clinical-based surveillance methods have many limitations such as the invasive nature of the testing and the challenges in testing large numbers of people. Wastewater-based epidemiology (WBE), which is based on the analysis of wastewater to monitor the emergence and spread of infectious disease at a population level, has received renewed attention in light of the current coronavirus disease 2019 (COVID-19) pandemic. The present review will focus on the application of WBE for the detection and surveillance of pathogens with a focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the waterborne protozoan parasites Cryptosporidium and Giardia. The review highlights the benefits and challenges of WBE and the future of this tool for community-wide infectious disease surveillance.
Collapse
Affiliation(s)
- Alireza Zahedi
- Harry Butler Institute, Murdoch University, Perth, Australia
| | - Paul Monis
- South Australian Water Corporation, Adelaide, Australia
| | - Daniel Deere
- Water Futures and Water Research Australia, Sydney, Australia
| | - Una Ryan
- Harry Butler Institute, Murdoch University, Perth, Australia.
| |
Collapse
|
49
|
Pepe Razzolini MT, Funada Barbosa MR, Silva de Araújo R, Freitas de Oliveira I, Mendes-Correa MC, Sabino EC, Garcia SC, de Paula AV, Villas-Boas LS, Costa SF, Dropa M, Brandão de Assis D, Levin BS, Pedroso de Lima AC, Levin AS. SARS-CoV-2 in a stream running through an underprivileged, underserved, urban settlement in São Paulo, Brazil: A 7-month follow-up. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118003. [PMID: 34425371 PMCID: PMC8373523 DOI: 10.1016/j.envpol.2021.118003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 05/11/2023]
Abstract
COVID-19 pandemic has led to concerns on the circulation of SARS-CoV-2 in the environment, its infectivity from the environment and, the relevance of transmission via environmental compartments. During 31 weeks, water samples were collected from a heavily contaminated stream going through an urban, underprivileged community without sewage collection. Our results showed a statistically significant correlation between cases of COVID-19 and SARS in the community, and SARS-CoV-2 concentrations in the water. Based on the model, if the concentrations of SARS-CoV-RNA (N1 and N2 target regions) increase 10 times, there is an expected increase of 104% [95%CI: (62-157%)] and 92% [95%CI: (51-143%)], respectively, in the number of cases of COVID-19 and SARS. We believe that differences in concentration of the virus in the environment reflect the epidemiological status in the community, which may be important information for surveillance and controlling dissemination in areas with vulnerable populations and poor sanitation. None of the samples were found infectious based cultures. Our results may be applicable globally as similar communities exist worldwide.
Collapse
Affiliation(s)
- Maria Tereza Pepe Razzolini
- School of Public Health of Universidade de São Paulo, Brazil; NARA - Center for Research in Environmental Risk Assessment, Brazil.
| | - Mikaela Renata Funada Barbosa
- NARA - Center for Research in Environmental Risk Assessment, Brazil; CETESB - Environmental Company of São Paulo State, Brazil
| | | | | | - Maria Cássia Mendes-Correa
- Department of Infectious Diseases and Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | - Ester C Sabino
- Department of Infectious Diseases and Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | | | - Anderson V de Paula
- Department of Infectious Diseases and Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | - Lucy S Villas-Boas
- Department of Infectious Diseases and Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | - Silvia Figueiredo Costa
- Department of Infectious Diseases and Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | - Milena Dropa
- School of Public Health of Universidade de São Paulo, Brazil
| | | | - Beatriz S Levin
- Guttman Community College, City University of New York, New York, USA
| | | | - Anna S Levin
- Department of Infectious Diseases and Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, Brazil
| |
Collapse
|
50
|
Holm-Jacobsen JN, Vonasek JH, Hagstrøm S, Donneborg ML, Sørensen S. Prolonged rectal shedding of SARS-CoV-2 in a 22-day-old-neonate: a case report. BMC Pediatr 2021; 21:506. [PMID: 34772377 PMCID: PMC8586617 DOI: 10.1186/s12887-021-02976-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the novel coronavirus disease 2019 (COVID-19), which is characterized by a diverse clinical picture. Children are often asymptomatic or experience mild symptoms and have a milder disease course compared to adults. Rectal shedding of SARS-CoV-2 has been observed in both adults and children, suggesting the fecal-oral route as a potential route of transmission. However, only a few studies have investigated this in neonates. We present a neonate with a mild disease course and prolonged rectal SARS-CoV-2 shedding. Case presentation A 22-day old neonate was admitted to the hospital with tachycardia and a family history of COVID-19. The boy later tested positive for COVID-19. His heart rate normalized overnight without intervention , but a grade 1/6 heart murmur on the left side of the sternum was found. After excluding signs of heart failure, the boy was discharged in a habitual state after three days of admission. During his admission, he was enrolled in a clinical study examining the rectal shedding of SARS-CoV-2. He was positive for SARS-CoV-2 in his pharyngeal swabs for 11 days after initial diagnosis and remained positive in his rectal swabs for 45 days. Thereby, the boy remained positive in his rectal swabs for 29 days after his first negative pharyngeal swab. Conclusions The presented case shows that neonates with a mild disease course can shed SARS-CoV-2 in the intestines for 45 days. In the current case, it was not possible to determine if fecal-oral transfer to the family occurred, and more research is needed to establish the potential risk of the fecal-oral transmission route.
Collapse
Affiliation(s)
| | | | - Søren Hagstrøm
- Department of Pediatrics, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Mette Line Donneborg
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, 9800, Hjoerring, Denmark.,Department of Pediatrics, North Denmark Regional Hospital, Hjoerring, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Suzette Sørensen
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, 9800, Hjoerring, Denmark. .,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|