1
|
Chhibber T, Scherzer MT, Prokofyeva A, Becker C, Zitnay RG, Smith E, Khurana N, Skliar M, Deacon DC, VanBrocklin MW, Ghandehari H, Judson-Torres RL, Jafari P. Transdermal delivery of ultradeformable cationic liposomes complexed with miR211-5p (UCL-211) stabilizes BRAFV600E+ melanocytic nevi. J Control Release 2025; 381:113586. [PMID: 40032011 PMCID: PMC12016659 DOI: 10.1016/j.jconrel.2025.113586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Small non-coding RNAs (e.g., siRNA, miRNA) are involved in a variety of melanocyte-associated skin conditions and act as drivers for alterations in gene expression within melanocytes. These molecular changes can potentially affect the cellular stability of melanocytes and promote their oncogenic transformation. Thus, small RNAs can be considered as therapeutic targets for these conditions, however, their transdermal delivery to the melanocytes through the epidermal barrier is challenging. We synthesized and extensively evaluated ultradeformable cationic liposome (UCLs) carriers complexed with synthetic microRNAs (miR211-5p; UCL-211) for transdermal delivery to melanocytes. UCL-211 complexes were characterized for their physicochemical properties, encapsulation efficiency, and deformability, which revealed a significant advantage over conventional liposomal carriers. Increased expression of miR211-5p stabilizes melanocytic nevi and keeps them in a growth-arrested state. We did a comprehensive assessment of cellular delivery, and biological activity of the miR211-5p carried by UCL-211 in vitro and their permeation through the epidermis of intact skin using ex vivo human skin tissue explants. We also demonstrated, in vivo, that transdermal delivery of miR211-5p by topical application of UCL-211 stabilized BRAFV600E+ nevi melanocytes in a benign nevi state.
Collapse
Affiliation(s)
- Tanya Chhibber
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | - Carly Becker
- Huntsman Cancer Institute, Salt Lake City, UT, USA; Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | | | - Eric Smith
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Nitish Khurana
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Mikhail Skliar
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Dekker C Deacon
- Huntsman Cancer Institute, Salt Lake City, UT, USA; Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Matthew W VanBrocklin
- Huntsman Cancer Institute, Salt Lake City, UT, USA; Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| | - Robert L Judson-Torres
- Huntsman Cancer Institute, Salt Lake City, UT, USA; Department of Dermatology, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Paris Jafari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Poonia M, Witte SA, Woodward M, Yadav P, Puri S, Santhanam R, Jacob NK, Schultz ZD. Raman investigation of in vivo radiation exposure on melanin in murine hair. PNAS NEXUS 2025; 4:pgaf108. [PMID: 40255323 PMCID: PMC12007448 DOI: 10.1093/pnasnexus/pgaf108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/25/2025] [Indexed: 04/22/2025]
Abstract
Determining the effects of ionizing radiation from unintended exposure in a nuclear event requires the identification of relevant biomarkers and development of methods to retrospectively estimate the absorbed dose. Melanin, a biologically important natural pigment found in hair, shows promise as a biomarker to assess potential radiation exposure. We investigated Raman spectroscopy as a rapid and noninvasive technique to assess changes in melanin from the hair of C57BL/6 mice to gamma radiation between 0 and 4 Gy. Two excitation wavelengths (532 and 785 nm) were employed to probe the melanin response for changes with radiation exposure. Excitation wavelength-dependent variation in Raman features indicates resonance Raman effects, where a 785-nm excitation is more sensitive to the effects of gamma radiation. Melanin-specific Raman features were identified as potential biomarkers for gamma-radiation exposure and used to distinguish between irradiated and nonirradiated mice. Partial least square discriminant analysis models of exposure exhibited enhanced sensitivity to irradiation at 785 nm excitation and yielded a sensitivity of 88% and a specificity of 83%. Mice were classified with 100% sensitivity and specificity up to day 7 at a known time point. A decline in specificity and classification accuracy correlated with alterations in melanin's spectra after >7 days following irradiation. Regression models of the Raman spectrum determined the exposed dose with a precision of <1 Gy at a known exposure time point. This noninvasive approach offers promising applications in radiation biodosimetry and medical monitoring, providing retrospective detection of gamma-radiation exposure at clinically relevant doses.
Collapse
Affiliation(s)
- Monika Poonia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Spencer A Witte
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Mallard Woodward
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Prasant Yadav
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Sapna Puri
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ramasamy Santhanam
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Naduparambil K Jacob
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
OréMaldonado KA, Cuesta SA, Mora JR, Loroño MA, Paz JL. Discovering New Tyrosinase Inhibitors by Using In Silico Modelling, Molecular Docking, and Molecular Dynamics. Pharmaceuticals (Basel) 2025; 18:418. [PMID: 40143194 PMCID: PMC11946302 DOI: 10.3390/ph18030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: This study was used in silico modelling to search for potential tyrosinase protein inhibitors from a database of different core structures for IC50 prediction. Methods: Four machine learning algorithms and topographical descriptors were tested for model construction. Results: A model based on multiple linear regression was the most robust, with only six descriptors, and validated by the Tropsha test with statistical parameters R2 = 0.8687, Q2LOO = 0.8030, and Q2ext = 0.9151. From the screening of FDA-approved drugs and natural products, the pIC50 values for 15,424 structures were calculated. The applicability domain analysis covered 100% of the external dataset and 71.22% and 73.26% of the two screening datasets. Fifteen candidates with pIC50 above 7.6 were identified, with five structures proposed as potential tyrosinase enzyme inhibitors, which underwent ADME analysis. Conclusions: The molecular docking analysis was performed for the dataset used in the training-test process and for the fifteen structures from the screening dataset with potential pharmaceutical tyrosinase inhibition, followed by molecular dynamics studies for the top five candidates with the highest predicted pIC50 values. The new use of these five candidates in tyrosinase inhibition is highlighted based on their promising application in melanoma treatment.
Collapse
Affiliation(s)
- Kevin A. OréMaldonado
- Departamento Académico de Química Fisicoquímica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| | - Sebastián A. Cuesta
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador;
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester M17DN, UK
| | - José R. Mora
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador;
| | - Marcos A. Loroño
- Departamento Académico de Química Fisicoquímica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| | - José L. Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| |
Collapse
|
4
|
Choi BM, Park TJ, Lee HH, Hong H, Chi WJ, Kim SY. Inhibition of Melanin Synthesis and Inflammation by Exosomes Derived from Leuconostoc mesenteroides DB-14 Isolated from Camellia japonica Flower. J Microbiol Biotechnol 2025; 35:e2411080. [PMID: 39809510 PMCID: PMC11813340 DOI: 10.4014/jmb.2411.11080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
Leuconostoc mesenteroides is a lactic acid bacteria found in fermented products. In our previous study, L. mesenteroides was isolated from Camellia japonica flowers, and its acid tolerance and antibacterial properties were thoroughly investigated. This study focuses on the inhibition of melanin synthesis and inflammation of exosomes derived from L. mesenteroides. Moreover, L. mesenteroides exosomes (DB-14 exosome) exhibited significant inhibitory effects on inflammation and melanogenesis. At concentrations of 4.44 × 108, 8.88 × 108, and 1.78 × 109 particles/ml, the exosomes reduced nitric oxide and prostaglandin E2 activity while maintaining the growth of RAW 264.7 macrophages. In addition, proinflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha, were rarely expressed, and western blot revealed that L. mesenteroides DB-14 derived exosomes inhibited inducible nitric oxide synthase and cyclooxygenase-2 expression. Moreover, the exosomes had no toxic effects on B16F10 melanoma cells at concentrations of 1.78 × 109, 3.55 × 109, and 7.10 × 109 particles/ml, and they suppressed melanogenesis by reducing tyrosinase activity. Furthermore, western blot analysis demonstrated that microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase related protein (TRP)-1, and TRP-2 were evidently reduced, ultimately repressing melanin production. Moreover, MITF expression was inhibited by reduced mitogen-activated protein kinase and protein kinase B phosphorylation levels. Overall, this study proves the efficacy of the novel DB-14 exosome as a strong lightening and anti-inflammatory agent.
Collapse
Affiliation(s)
- Byeong Min Choi
- Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Republic of Korea
| | - Tae-Jin Park
- Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Republic of Korea
| | | | - Hyehyun Hong
- Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Republic of Korea
| | - Won-Jae Chi
- Biodiversity Research Department, Species Diversity Research Division, Incheon 22689, Republic of Korea
| | - Seung-Young Kim
- Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Republic of Korea
| |
Collapse
|
5
|
Goenka S. Comparative evaluation of six commercial adult toothpaste formulations reveals cytotoxicity and altered functions in a human oral melanocyte model: an in vitro study. Odontology 2025; 113:163-179. [PMID: 38822982 DOI: 10.1007/s10266-024-00957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
This study aims to compare six commercial adult toothpaste (labeled as A, B, C, D, E, and F) for cytotoxicity and melanocyte function alterations in vitro using primary human epidermal melanocytes from a Caucasian donor (HEMn-LP cells) as a model of oral melanocytes. Cells were incubated with toothpaste extracts (50% w/v) in culture media at dilutions (1:25, 1:50, 1:100, 1:200, 1:500, 1:800, and 1:1000) for 24 h. MTS and LDH assays were used to assess cytotoxicity. The effects of noncytotoxic toothpaste concentrations on melanocyte functional endpoints were then examined using spectrophotometric methods. All toothpaste showed concentration-dependent cytotoxicity that was heterogeneous across toothpaste containing SLS detergent. IC50 values of cytotoxicity followed the order: A = E > C > B > D > F. To compare toothpaste, they were tested at 1:800 and 1:1000 dilutions that were noncytotoxic after 24 h. None of the toothpaste affected cellular melanin production. However, toothpaste A, C, and D suppressed tyrosinase activity at both dilutions, while toothpaste B suppressed tyrosinase activity only at 1:800 dilution. Toothpaste A, C, E, and F elevated ROS production at 1:800 dilution, with no change at 1:1000 dilution. Toothpaste has a heterogeneous effect on melanocytes. Toothpaste B, E, and F at 1:1000 dilution were the safest as they did not alter melanocyte functions at this dilution, although toothpaste F is the least cytotoxic of these. Future studies are necessary to expand these results in a physiological environment of oral tissue. The findings of this study provide novel insight into the biocompatibility studies of toothpaste on oral melanocytes. They can aid dental practitioners and consumers in selecting noncytotoxic toothpaste that do not contribute to ROS generation by melanocytes in the oral cavity or lead to cytotoxicity and impaired cellular function.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5281, USA.
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
6
|
Urbaniak MM, Rudnicka K, Płociński P, Chmiela M. Exploring the Osteoinductive Potential of Bacterial Pyomelanin Derived from Pseudomonas aeruginosa in a Human Osteoblast Model. Int J Mol Sci 2024; 25:13406. [PMID: 39769171 PMCID: PMC11678243 DOI: 10.3390/ijms252413406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Alkaptonuria (AKU) is a genetically determined disease associated with disorders of tyrosine metabolism. In AKU, the deposition of homogentisic acid polymers contributes to the pathological ossification of cartilage tissue. The controlled use of biomimetics similar to deposits observed in cartilage during AKU potentially may serve the development of new bone regeneration therapy based on the activation of osteoblasts. The proposed biomimetic is pyomelanin (PyoM), a polymeric biomacromolecule synthesized by Pseudomonas aeruginosa. This work presents comprehensive data on the osteoinductive, pro-regenerative, and antibacterial properties, as well as the cytocompatibility, of water-soluble (PyoMsol) or water-insoluble (PyoMinsol) PyoM. Both variants of PyoM support osteoinductive processes as well as the maturation of osteoblasts in cell cultures in vitro due to the upregulation of bone-formation markers, osteocalcin (OC), and alkaline phosphatase (ALP). Furthermore, the cytokines involved in these processes were elevated in cell cultures of osteoblasts exposed to PyoM: tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10. The PyoM variants are cytocompatible in a wide concentration range and limit the doxorubicin-induced apoptosis of osteoblasts. This cytoprotective PyoM activity is correlated with an increased migration of osteoblasts. Moreover, PyoMsol and PyoMinsol exhibit antibacterial activity against staphylococci isolated from infected bones. The osteoinductive, pro-regenerative, and antiapoptotic effects achieved through PyoM stimulation prompt the development of new biocomposites modified with this bacterial biopolymer for medical use.
Collapse
Affiliation(s)
- Mateusz M. Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka St, 91-403 Łódź, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
| | - Przemysław Płociński
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
| |
Collapse
|
7
|
Banach K, Kowalska J, Maszczyk M, Rzepka Z, Rok J, Wrześniok D. An In Vitro Strategy to Evaluate Ketoprofen Phototoxicity at the Molecular and Cellular Levels. Int J Mol Sci 2024; 25:12647. [PMID: 39684359 DOI: 10.3390/ijms252312647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Phototoxicity is a significant problem that occurs in a large part of the population and is often caused by commonly used pharmaceuticals, including over-the-counter drugs. Therefore, testing drugs with photosensitizing potential is very important. The aim of this study is to analyze the cytotoxicity and phototoxicity of ketoprofen towards human melanocytes and fibroblasts in three different treatment schemes in order to optimize the study. Cytometric tests (studies of viability, proliferation, intracellular thiol levels, mitochondrial potential, cell cycle, and DNA fragmentation), Western blot analysis (cytochrome c and p44/p42 protein levels), and confocal microscopy imaging were performed to assess the impact of the developed treatments on skin cells. Research on experimental schemes may help reduce or eliminate the risk of phototoxic reactions. In the case of ketoprofen, we found that the strongest phototoxic potential was exhibited in the treatment where the drug was present in the solution during the irradiation of cells, both pigmented and non-pigmented cells. These results indicate that the greatest risk of photosensitivity reactions related to ketoprofen occurs after direct contact with the drug and UV exposure.
Collapse
Affiliation(s)
- Klaudia Banach
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Justyna Kowalska
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Mateusz Maszczyk
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
8
|
Chhibber T, Scherzer MT, Prokofyeva A, Becker C, Zitnay RG, Smith E, Khurana N, Skliar M, Deacon DC, VanBrocklin MW, Ghandehari H, Judson-Torres RL, Jafari P. Transdermal Delivery of Ultradeformable Cationic Liposomes Complexed with miR211-5p (UCL-211) Stabilizes BRAFV600E+ Melanocytic Nevi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618694. [PMID: 39484595 PMCID: PMC11527197 DOI: 10.1101/2024.10.17.618694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Small non-coding RNAs (e.g. siRNA, miRNA) are involved in a variety of melanocyte-associated skin conditions and act as drivers for alterations in gene expression within melanocytes. These molecular changes can potentially affect the cellular stability of melanocytes and promote their oncogenic transformation. Thus, small RNAs can be considered as therapeutic targets for these conditions, however, their topical delivery to the melanocytes through the epidermal barrier is challenging. We synthesized and extensively evaluated ultradeformable cationic liposome (UCLs) carriers complexed with synthetic microRNAs (miR211-5p; UCL-211) for transdermal delivery to melanocytes. UCL-211 complexes were characterized for their physicochemical properties, encapsulation efficiency, and deformability, which revealed a significant advantage over conventional liposomal carriers. Increased expression of miR211-5p stabilizes melanocytic nevi and keeps them in growth-arrested state. We did a comprehensive assessment of cellular delivery, and biological activity of the miR211-5p carried by UCL-211 in vitro and their permeation through the epidermis of intact skin using ex vivo human skin tissue explants. We also demonstrated, in vivo, that topical delivery of miR211-5p by UCL-211 stabilized BRAFV600E+ nevi melanocytes in a benign nevi state.
Collapse
Affiliation(s)
- Tanya Chhibber
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | - Carly Becker
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | | | - Eric Smith
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Nitish Khurana
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Mikhail Skliar
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Dekker C Deacon
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Matthew W VanBrocklin
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Robert L Judson-Torres
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Paris Jafari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
9
|
Liu J, Xu T, Ding J, Wen H, Meng J, Liu Q, Liu X, Zhang W, Zhu GY, Jiang ZH, Gao J, Bai LP. Discovery of anti-melanogenic components in persimmon (Diospyros kaki) leaf using LC-MS/MS-MN, AlphaFold2-enabled virtual screening and biological validation. Food Chem 2024; 455:139814. [PMID: 38824735 DOI: 10.1016/j.foodchem.2024.139814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
Persimmon (Diospyros kaki) leaf is widely used as a tea substitute in East Asia, offering potential health benefits. Although studies have highlighted their effects on hyperpigmentation disorders, the active components remain unidentified. This study introduces a novel approach combining LC-MS/MS-based molecular networking with AlphaFold2-enabled virtual screening to expedite the identification of bioactive components in persimmon leaf. A total of 105 compounds were identified by MS/MS analysis. Further, virtual screening identified five flavonoids with potential anti-melanogenic properties. Bioassays confirmed myricetin, quercetin, and kaempferol inhibited melanogenesis in human melanocytes in a dose-dependent manner. Biolayer interferometry assays revealed strong binding affinity between these flavonols and hsTYR, with KD values of 23.26 ± 11.77 for myricetin, 12.43 ± 0.37 for quercetin, and 14.99 ± 3.80 μM for kaempferol. Molecular dynamics simulations provided insights into the binding interactions of these flavonols with hsTYR, particularly highlighting the essential role of the 3-OH group on the C-ring. This study elucidates the bioactive components responsible for the anti-melanogenic effects of persimmon leaf, supporting their use in product development.
Collapse
Affiliation(s)
- Jiazheng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Ting Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianjun Ding
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Haoyue Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Jieru Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Qing Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Xiaomei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China.
| | - Jin Gao
- Increasepharm (Hengqin) Institute Co., Ltd., Zhuhai, Guangdong, China.
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China.
| |
Collapse
|
10
|
El-Saadony MT, Yang T, Saad AM, Alkafaas SS, Elkafas SS, Eldeeb GS, Mohammed DM, Salem HM, Korma SA, Loutfy SA, Alshahran MY, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Ahmed AF, Fahmy MA, El-Tarabily MK, Mahmoud RM, AbuQamar SF, El-Tarabily KA, Lorenzo JM. Polyphenols: Chemistry, bioavailability, bioactivity, nutritional aspects and human health benefits: A review. Int J Biol Macromol 2024; 277:134223. [PMID: 39084416 DOI: 10.1016/j.ijbiomac.2024.134223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 06/17/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Polyphenols, including phenolics, alkaloids, and terpenes, are secondary metabolites that are commonly found in fruits, vegetables, and beverages, such as tea, coffee, wine, chocolate, and beer. These compounds have gained considerable attention and market demand because of their potential health benefits. However, their application is limited due to their low absorption rates and reduced tissue distribution efficiency. Engineering polyphenol-protein complexes or conjugates can enhance the antioxidant properties, bioavailability, and stability of polyphenols and improve digestive enzyme hydrolysis, target-specific delivery, and overall biological functions. Complex polyphenols, such as melanin, tannins, and ellagitannins, can promote gut microbiota balance, bolster antioxidant defense, and improve overall human health. Despite these benefits, the safety of polyphenol complexes must be thoroughly evaluated before their use as functional food additives or supplements. This review provides a detailed overview of the types of macromolecular polyphenols, their chemical composition, and their role in food enrichment. The mechanisms by which complex polyphenols act as antioxidative, anti-inflammatory, and anticancer agents have also been discussed.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg, Russia
| | - Gehad S Eldeeb
- Department of Food Technology, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 12211, Egypt
| | - Mohammad Y Alshahran
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 9088, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Atef F Ahmed
- Department of Biology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Reda M Mahmoud
- Dr Nutrition Pharmaceuticals (DNP), Dubai, 48685, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, W.A., Australia
| | - José M Lorenzo
- Centro Tecnologico´ de La Carne de Galicia, Rúa Galicia No. 4, Parque Tecnologico de Galicia, San Cibrao das Vinas, Ourense, 32900, Spain; Universidad de Vigo, Area´ de Tecnología de Los Alimentos, Facultad de Ciencias de Ourense, Ourense, 32004, Spain
| |
Collapse
|
11
|
Minibayeva FV, Rassabina AE, Zakirjanova GF, Fedorov NS, Khabibrakhmanova VR, Galeeva EI, Kuznetsova EA, Malomouzh AI, Petrov AM. Protective properties of melanin from lichen Lobaria pulmonaria (L.) HOFFM. In models of oxidative stress in skeletal muscle. Fitoterapia 2024; 177:106127. [PMID: 39019238 DOI: 10.1016/j.fitote.2024.106127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/16/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Melanin is a dark pigment from the group of phenolic or indole polymers with inherent biocompatibility and antioxidant capacity. In extremophilic lichen Lobaria pulmonaria, melanin is responsible for protective properties against hostile environments. Herein, the ability of melanin extracted from L. pulmonaria to counteract oxidative stress and related damages was studied in the mouse diaphragm, the main respiratory muscle. Initial in vitro experiments demonstrated ultraviolet (UV)-absorbing, antioxidant and metal chelating activities of melanin. This melanin can form nanoparticles and stabile colloidal system at concentration of 5 μg/ml. Pretreatment of the muscle with melanin (5 μg/ml) markedly reduced UV-induced increase in intracellular and extracellular reactive oxygen species (ROS) as well as antimycin A-mediated enhancement in mitochondrial ROS production accompanied by lipid peroxidation and membrane asymmetry loss. In addition, melanin attenuated suppression of neuromuscular transmission and alterations of contractile responses provoked by hydrogen peroxide. Thus, this study shed the light on the perspectives of the application of a lichen melanin as a protective component for treatment of skeletal muscle disorders, which are accompanied with an increased ROS production.
Collapse
Affiliation(s)
- Farida V Minibayeva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia.
| | - Anna E Rassabina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Guzalia F Zakirjanova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Nikita S Fedorov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Venera R Khabibrakhmanova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Ekaterina I Galeeva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Eva A Kuznetsova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Artem I Malomouzh
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia; Kazan National Research Technical University, 10, K. Marx St., Kazan 420111, Russia
| | - Alexey M Petrov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia; Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; Kazan State Mediсal University, 49 Butlerova Street, Kazan 420012, Russia.
| |
Collapse
|
12
|
Jin Jung H, Jin Kim H, Soo Park H, Young Kim G, Jung Park Y, Lee J, Kyung Kang M, Yoon D, Kang D, Park Y, Chun P, Young Chung H, Ryong Moon H. Highly potent anti-melanogenic effect of 2-thiobenzothiazole derivatives through nanomolar tyrosinase activity inhibition. Bioorg Chem 2024; 150:107586. [PMID: 38955001 DOI: 10.1016/j.bioorg.2024.107586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Compounds with sulfhydryl substituents and azole compounds exhibit potent anti-tyrosinase potency. 2-Thiobenzothiazole (2-TBT), a hybrid structure of sulfhydryl and azole, exists in two tautomeric forms, with the thione form being predominant according to several studies. 2-TBT derivatives were synthesized as potential tyrosinase inhibitors as the thione tautomeric form has the same N-CS moiety as phenylthiourea (PTU), which is suitable for chelation with the copper ions present in the tyrosinase active site. Eight of the ten 2-TBT derivatives inhibited the monophenolase and diphenolase activities of mushroom tyrosinase, with IC50 values of 0.02-0.83 μM. Kinetic studies and molecular dynamics simulations were performed to determine their mode of action and confirm that the 2-TBT derivatives bind to the tyrosinase active site with high stability. Derivatives 3, 4, 8, and 10 strongly inhibited melanogenesis in B16F10 cells in a pattern similar to the results of cellular tyrosinase inhibition, thereby suggesting that their ability to inhibit melanogenesis was due to their tyrosinase inhibitory activity. In a depigmentation experiment using zebrafish embryos, all 2-TBT derivatives showed better potency than kojic acid, even at 400 to 2000 times lower concentration, and 1 and 10 reduced zebrafish larva pigmentation more strongly than PTU even at 20 times lower concentration. Experiments investigating the changes in tyrosinase inhibitory activity of 2-TBT derivatives in the presence and absence of CuSO4 and their copper chelating ability supported that these derivatives exert their anti-melanogenic effect by chelating the copper ions of tyrosinase. These results suggest that 2-TBT derivatives are promising candidates for the treatment of hyperpigmentation-related disorders.
Collapse
Affiliation(s)
- Hee Jin Jung
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Jin Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Soo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Ga Young Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Yu Jung Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Jieun Lee
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Min Kyung Kang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Dahye Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Dongwan Kang
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, South Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
13
|
Chen M, Guo B, Cheng H, Wang W, Jin J, Zhang Y, Deng X, Yang W, Wu C, Gao X, Yu D, Feng W, Chen Y. Genetic Engineering Bacillus thuringiensis Enable Melanin Biosynthesis for Anti-Tumor and Anti-Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308506. [PMID: 38943265 PMCID: PMC11423088 DOI: 10.1002/advs.202308506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/19/2024] [Indexed: 07/01/2024]
Abstract
Collaboration between cancer treatment and inflammation management has emerged as an integral facet of comprehensive cancer care. Nevertheless, the development of interventions concurrently targeting both inflammation and cancer has encountered significant challenges stemming from various external factors. Herein, a bioactive agent synthesized by genetically engineering melanin-producing Bacillus thuringiensis (B. thuringiensis) bacteria, simultaneously achieves eco-friendly photothermal agent and efficient reactive oxygen/nitrogen species (RONS) scavenger benefits, perfectly tackling present toughies from inflammation to cancer therapies. The biologically derived melanin exhibits exceptional photothermal-conversion performance, facilitating potent photonic hyperthermia that effectively eradicates tumor cells and tissues, thereby impeding tumor growth. Additionally, the RONS-scavenging properties of melanin produced by B. thuringiensis bacteria contribute to inflammation reduction, augmenting the efficacy of photothermal tumor repression. This study presents a representative paradigm of genetic engineering in B. thuringiensis bacteria to produce functional agents tailored for diverse biomedical applications, encompassing inflammation and cancer therapy.
Collapse
Affiliation(s)
- Meng Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Bingbing Guo
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Hui Cheng
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Weiyi Wang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Junyi Jin
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yingyi Zhang
- School of MedicineShenzhen Campus of SunYat‐Sen UniversityShenzhen518107P. R. China
- Center for Materials Synthetic BiologyCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518000P. R. China
| | - Xiaolian Deng
- School of MedicineShenzhen Campus of SunYat‐Sen UniversityShenzhen518107P. R. China
- Center for Materials Synthetic BiologyCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518000P. R. China
| | - Wenjun Yang
- Center for Materials Synthetic BiologyCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518000P. R. China
| | - Chenyao Wu
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Xiang Gao
- Center for Materials Synthetic BiologyCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518000P. R. China
| | - Dehong Yu
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Wei Feng
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- School of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health) Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- School of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health) Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
| |
Collapse
|
14
|
Shang J, Feng X, Chen Y, Gu Z, Liu Y. Human lip vermilion: Physiology and age-related changes. J Cosmet Dermatol 2024; 23:2676-2680. [PMID: 38590116 DOI: 10.1111/jocd.16317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/06/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND The human lip vermilion, also known as the red lip, is important to the quality of life and has long attracted the attention of cosmetic researchers. However, there is limited existing literature on the physiological characteristics and age-related alterations in the human vermilion. OBJECTIVE We aim to provide an overview of the physiological characteristics and age-related alterations in the human vermilion. METHODS This article is a result of previous research. We conducted a literature search using various academic databases such as Google Scholar, Web of Science, and PubMed. Our findings provided a comprehensive understanding of the physiological characteristics and age-related changes of the human lip vermilion. RESULTS The human lip vermilion has a unique structure and physiological characteristics, and during the aging process, a few changes may occur in the human lip vermilion. CONCLUSION Understanding the human lip vermilion's physiological characteristics and age-related changes can provide key information for the future innovation of lip vermilion care products. Further investigations are necessary to reach a consensus on the physiological characteristics and age-related alterations in the human vermilion.
Collapse
Affiliation(s)
- Jianli Shang
- Beijing Underproved Medical Technology Co., LTD, Beijing, China
| | - Xiaoyue Feng
- Beijing Underproved Medical Technology Co., LTD, Beijing, China
| | - Yong Chen
- Beijing Underproved Medical Technology Co., LTD, Beijing, China
| | - Zhengping Gu
- Beijing Underproved Medical Technology Co., LTD, Beijing, China
| | - Youting Liu
- Beijing Underproved Medical Technology Co., LTD, Beijing, China
| |
Collapse
|
15
|
Motovilov KA, Mostert AB. Melanin: Nature's 4th bioorganic polymer. SOFT MATTER 2024; 20:5635-5651. [PMID: 39012013 DOI: 10.1039/d4sm00491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The pigments known as the melanins are widely recognized for their responsibility in the coloration of human skin, eyes, hair, and minimising the harmful effects of solar ultraviolet radiation. But specialists are aware that the melanins are present in all living kingdoms, barring viruses, and have functionality that extends beyond neutralizing ionising radiation. The ubiquitous presence of melanin in almost all human organs, recognized in recent years, as well as the presence of melanin in organisms that are evolutionarily distant from each other, indicate the fundamental importance of this class of material for all life forms. In this review, we argue for the need to accept melanins as the fourth primordial class of biological polymers, along with nucleic acids, proteins and polysaccharides. We consistently compare the properties of these canonical biological polymers with the properties of melanin and highlight key features that fundamentally distinguish melanins, their function and its mysteries.
Collapse
Affiliation(s)
- K A Motovilov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny 141701, Moscow Region, Russia.
| | - A B Mostert
- Department of Physics and Centre for Integrative Semiconductor Materials, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN, UK
| |
Collapse
|
16
|
Silva FALS, Chang HP, Incorvia JAC, Oliveira MJ, Sarmento B, Santos SG, Magalhães FD, Pinto AM. 2D Nanomaterials and Their Drug Conjugates for Phototherapy and Magnetic Hyperthermia Therapy of Cancer and Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306137. [PMID: 37963826 DOI: 10.1002/smll.202306137] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Indexed: 11/16/2023]
Abstract
Photothermal therapy (PTT) and magnetic hyperthermia therapy (MHT) using 2D nanomaterials (2DnMat) have recently emerged as promising alternative treatments for cancer and bacterial infections, both important global health challenges. The present review intends to provide not only a comprehensive overview, but also an integrative approach of the state-of-the-art knowledge on 2DnMat for PTT and MHT of cancer and infections. High surface area, high extinction coefficient in near-infra-red (NIR) region, responsiveness to external stimuli like magnetic fields, and the endless possibilities of surface functionalization, make 2DnMat ideal platforms for PTT and MHT. Most of these materials are biocompatible with mammalian cells, presenting some cytotoxicity against bacteria. However, each material must be comprehensively characterized physiochemically and biologically, since small variations can have significant biological impact. Highly efficient and selective in vitro and in vivo PTTs for the treatment of cancer and infections are reported, using a wide range of 2DnMat concentrations and incubation times. MHT is described to be more effective against bacterial infections than against cancer therapy. Despite the promising results attained, some challenges remain, such as improving 2DnMat conjugation with drugs, understanding their in vivo biodegradation, and refining the evaluation criteria to measure PTT or MHT effects.
Collapse
Affiliation(s)
- Filipa A L S Silva
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Hui-Ping Chang
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jean Anne C Incorvia
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- IUCS - CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
| | - Artur M Pinto
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| |
Collapse
|
17
|
Abd-El-Aziz AS, Abed NN, Mahfouz AY, Fathy RM. Production and characterization of melanin pigment from black fungus Curvularia soli AS21 ON076460 assisted gamma rays for promising medical uses. Microb Cell Fact 2024; 23:68. [PMID: 38408972 PMCID: PMC10895916 DOI: 10.1186/s12934-024-02335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
Owing to the growing need for natural materials in different fields, studying melanin production from biological sources is imperative. In the current study, the extracellular melanin pigment was produced by the fungus Curvularia soli AS21 ON076460. The factors that affect the production of melanin were optimized by the Plackett-Burman design (P-BD). The effect of gamma irradiation on melanin productivity was investigated. The maximum melanin yield (3.376 mg/L) was elicited by a stimulus of gamma irradiation at 1.0 kGy. The results evoked that, Curvularia soli AS21 ON076460 melanin exhibited excellent antimicrobial activity against all tested bacteria and fungi. Klebsiella pneumoniae ATCC 13883 and P. digitatum were mostly affected by melanin registering the inhibition zone diameters of 37.51 ± 0.012 and 44.25 ± 0.214 mm, respectively. Moreover, Curvularia soli AS21 ON076460 melanin indicated a significant antiviral efficacy (77% inhibition) of Herpes simplex virus (HSV1). The melanin pigment showed antioxidant activities with IC50 of 42 ± 0.021 and 17 ± 0.02 µg/mL against DPPH and NO, respectively. Melanin had cytotoxic action against human breast cancer and skin cancer cell lines (Mcf7and A431) as well as exerting a low percentage of cell death against normal skin cell lines (Hfb4). Melanin was effective in wound management of human skin cells by 63.04 ± 1.83% compared with control (68.67 ± 1.10%). The novelty in the study is attributed to the possibility of using gamma rays as a safe method in small economic doses to stimulate melanin production from the fungi that have been isolated. In summary, melanin produced from fungi has significant biological activities that encourage its usage as a supportive medical route.
Collapse
Affiliation(s)
- Amira S Abd-El-Aziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Nermine N Abed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Amira Y Mahfouz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt.
| | - Rasha Mohammad Fathy
- Drug Radiation Research Department, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology (NCRRT), Cairo, Egypt.
| |
Collapse
|
18
|
Rammali S, Rahim A, El Aalaoui M, Bencharki B, Dari K, Habach A, Abdeslam L, Khattabi A. Antimicrobial potential of Streptomyces coeruleofuscus SCJ isolated from microbiologically unexplored garden soil in Northwest Morocco. Sci Rep 2024; 14:3359. [PMID: 38336871 PMCID: PMC10858231 DOI: 10.1038/s41598-024-53801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Research on microorganisms in various biotopes is required to identify new, natural potent molecules. These molecules are essential to control the development of multi-drug resistance (MDR). In the present study, a Streptomyces sp., namely SCJ, was isolated from a soil sample collected from a Moroccan garden. SCJ isolate was identified on the basis of a polyphasic approach, which included cultural, micro-morphological, biochemical, and physiological characteristics. The sequence of the 16S rRNA gene of the SCJ strain showed 99.78% similarity to strains of Streptomyces coeruleofuscus YR-T (KY753282.1). The preliminary screening indicated that the SCJ isolate exhibited activity against Candida albicans ATCC 60,193, Escherichia coli ATCC 25,922, Staphylococcus aureus CECT 976, Staphylococcus aureus ATCC 25,923, Bacillus cereus ATCC 14,579, Pseudomonas aeruginosa ATCC 27,853, as well as various other clinical MDR bacteria and five phytopathogenic fungi. The ethyl acetate extract of the isolated strain demonstrated highly significant (p < 0.05) antimicrobial activity against multi-resistant bacteria and phytopathogenic fungi. The absorption spectral analysis of the ethyl acetate extract of the SCJ isolate obtained showed no absorption peaks characteristic of polyene molecules. Moreover, no hemolytic activity against erythrocytes was observed in this extract. GC-MS analysis of the ethyl acetate extract of the SCJ isolate revealed the presence of 9 volatile compounds including 3,5-Dimethylpyrazole, and pyrrolizidine derivatives (Pyrrolo[1,2-a]pyrazine 1,4-dione, hexahydro-3-(2-methylpropyl)), which could potentially explain the antimicrobial activity demonstrated in this study.
Collapse
Affiliation(s)
- Said Rammali
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco.
| | - Abdellatif Rahim
- Laboratory of Biochemistry, Neurosciences, Natural Ressources and Environment, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Mohamed El Aalaoui
- Regional Center of Agronomic Research of Settat, Tertiary Road 1406, At 5 Km From Settat, 26400, Settat, Morocco
| | - Bouchaib Bencharki
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Khadija Dari
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Aicha Habach
- Biotechnology Unit, National Institute of Agronomic Research of Rabat, Av. Annasr, 10000, Rabat, Morocco
| | - Lamiri Abdeslam
- Applied Chemistry & Environment Laboratory, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Abdelkrim Khattabi
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| |
Collapse
|
19
|
Song W, Xing R, Yang H, Liu S, Yu H, Li P. Therapeutic potential of enzymatically extracted eumelanin from squid ink in type 2 diabetes mellitus ICR mice: Multifaceted intervention against hyperglycemia, oxidative stress and depression. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:993-1007. [PMID: 37715565 DOI: 10.1002/jsfa.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/03/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disease that poses significant health risks due to its numerous complications. However, the effects of eumelanin on oxidative stress, hyperglycemia and depression in diabetic mice have not been extensively studied. RESULTS Our study employed an enzymatic approach to extract eumelanin from squid ink and characterized it using spectroscopic techniques. Remarkably, eumelanin extracted with alkaline-neutral-flavor protease (ANF) displayed superior inhibitory activity against α-glucosidase and α-amylase, while enhancing glucose utilization and hepatic glycogen synthesis in human hepatocellular carcinoma cell line (HepG2) insulin resistance model. Further evaluation of ANF in a T2DM ICR mouse model demonstrated its significant potential in alleviating hyperglycemia, reducing glycosylated serum protein levels, improving glucose tolerance and modulating total cholesterol and low-density lipoprotein levels, as well as antioxidant indices at a dosage of 0.04 g kg-1 . Additionally, ANF exhibited positive effects on energy levels and reduced immobility time in antidepressant behavioral experiments. Moreover, ANF positively influenced the density and infiltration state of renal cells, while mitigating inflammatory enlargement and deformation of liver cells, without inducing any adverse effects in mice. CONCLUSION Overall, these findings underscore the significant therapeutic potential of ANF in the treatment of T2DM and its associated complications. By augmenting lipid and glucose metabolism, mitigating oxidative stress and alleviating depression, ANF emerges as a promising candidate for multifaceted intervention. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen Song
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ronge Xing
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Haoyue Yang
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Song Liu
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Huahua Yu
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Pengcheng Li
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
20
|
Roulin A, Dubey S, Ito S, Wakamatsu K. Melanin-based plumage coloration and melanin content in organs in the barn owl. JOURNAL OF ORNITHOLOGY 2023; 165:429-438. [PMID: 38496038 PMCID: PMC10940376 DOI: 10.1007/s10336-023-02137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 03/19/2024]
Abstract
Although the evolutionary ecology of melanin pigments and melanin-based coloration has been studied in great details, particularly in birds, little is known about the function of melanin stored inside the body. In the barn owl Tyto alba, in which individuals vary in the degree of reddish pheomelanin-based coloration and in the size of black eumelanic feather spots, we measured the concentration in melanin pigments in seven organs. The eyes had by far the most melanin then the skin, pectoral muscle, heart, liver, trachea, and uropygial gland. The concentration in eumelanin was not necessarily correlated with the concentration in pheomelanin suggesting that their production can be regulated independently from each other. Redder barn owls had more pheomelanin in the skin and uropygial gland than white owls, while owls displaying larger black feather spots had more eumelanin in the skin than small-spotted owls. More data are required to evaluate whether melanin-based traits can evolve as an indirect response to selection exerted on melanin deposition in organs.
Collapse
Affiliation(s)
- Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Sylvain Dubey
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
- HW Romandie SA, Avenue Des Alpes 25, CH-1820 Montreux, Switzerland
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| |
Collapse
|
21
|
Oh JH, Karadeniz F, Seo Y, Kong CS. Dietary flavonoid myricetin 3- O-galactoside suppresses α-melanocyte stimulating hormone-induced melanogenesis in B16F10 melanoma cells by regulating PKA and ERK1/2 activation. Z NATURFORSCH C 2023; 78:399-407. [PMID: 37703186 DOI: 10.1515/znc-2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Melanogenesis is the process where skin pigment melanin is produced through tyrosinase activity. Overproduction of melanin causes skin disorders such as freckles, spots, and hyperpigmentation. Myricetin 3-O-galactoside (M3G) is a dietary flavonoid with reported bioactivities. M3G was isolated from Limonium tetragonum and its anti-melanogenic properties were investigated in α-melanocyte stimulating hormone-stimulated B16F10 melanoma cells. The in vitro anti-melanogenic capacity of M3G was confirmed by inhibited tyrosinase and melanin production. M3G-mediated suppression of melanogenic proteins, tyrosinase, microphthalmia-associated transcription factor (MITF), and tyrosinase-related proteins (TRP)-1 and TRP-2, were confirmed by mRNA and protein levels, analyzed by RT-qPCR and Western blot, respectively. Furthermore, M3G suppressed Wnt signaling through the inhibition of PKA phosphorylation. M3G also suppressed the consequent phosphorylation of CREB and nuclear levels of MITF. Analysis of MAPK activation further revealed that M3G increased the activation of ERK1/2 while p38 and JNK activation remained unaffected. Results showed that M3G suppressed melanogenesis in B16F10 cells by decreasing tyrosinase production and therefore inhibiting melanin formation. A possible action mechanism was the suppression of CREB activation and upregulation of ERK phosphorylation which might cause the decreased nuclear levels of MITF. In conclusion, M3G was suggested to be a potential nutraceutical with anti-melanogenic properties.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
- Nutritional Education, Graduate School of Education, Silla University, Busan 46958, Korea
| | - Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Youngwan Seo
- Division of Convergence on Marine Science, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| |
Collapse
|
22
|
Berg SZ, Berg J. Melanin: a unifying theory of disease as exemplified by Parkinson's, Alzheimer's, and Lewy body dementia. Front Immunol 2023; 14:1228530. [PMID: 37841274 PMCID: PMC10570809 DOI: 10.3389/fimmu.2023.1228530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Melanin, a ubiquitous dark pigment, plays important roles in the immune system, including scavenging reactive oxygen species formed in response to ultraviolet radiation absorption, absorbing metals, thermal regulation, drug uptake, innate immune system functions, redox, and energy transduction. Many tissue types, including brain, heart, arteries, ovaries, and others, contain melanin. Almost all cells contain precursors to melanin. A growing number of diseases in which there is a loss of melanin and/or neuromelanin are increasingly thought to have infectious etiologies, for example, Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body Dementia (LBD), and vitiligo. AD, PD, LBD, and vitiligo have been linked with herpesvirus, which enters melanosomes and causes apoptosis, and with gut dysbiosis and inflammation. Herpesvirus is also linked with gut dysbiosis and inflammation. We theorize that under normal healthy states, melanin retains some of the energy it absorbs from electromagnetic radiation, which is then used to fuel cells, and energy from ATP is used to compliment that energy supply. We further theorize that loss of melanin reduces the energy supply of cells, which in the case of AD, PD, and LBD results in an inability to sustain immune system defenses and remove the plaques associated with the disease, which appear to be part of the immune system's attempt to eradicate the pathogens seen in these neurodegenerative diseases. In addition, in an attempt to explain why removing these plaques does not result in improvements in cognition and mood and why cognitions and moods in these individuals have ebbs and flows, we postulate that it is not the plaques that cause the cognitive symptoms but, rather, inflammation in the brain resulting from the immune system's response to pathogens. Our theory that energy retained in melanin fuels cells in an inverse relationship with ATP is supported by studies showing alterations in ATP production in relationship to melanin levels in melanomas, vitiligo, and healthy cells. Therefore, alteration of melanin levels may be at the core of many diseases. We propose regulating melanin levels may offer new avenues for treatment development.
Collapse
Affiliation(s)
- Stacie Z. Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| | - Jonathan Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| |
Collapse
|
23
|
Urbaniak MM, Rudnicka K, Gościniak G, Chmiela M. Can Pyomelanin Produced by Pseudomonas aeruginosa Promote the Regeneration of Gastric Epithelial Cells and Enhance Helicobacter pylori Phagocytosis? Int J Mol Sci 2023; 24:13911. [PMID: 37762213 PMCID: PMC10530801 DOI: 10.3390/ijms241813911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is the most common cause of chronic gastritis, peptic ulcers and gastric cancer. Successful colonization of the stomach by H. pylori is related to the complex interactions of these bacteria and its components with host cells. The growing antibiotic resistance of H. pylori and various mechanisms of evading the immune response have forced the search for new biologically active substances that exhibit antibacterial properties and limit the harmful effects of these bacteria on gastric epithelial cells and immune cells. In this study, the usefulness of pyomelanin (PyoM) produced by Pseudomonas aeruginosa for inhibiting the metabolic activity of H. pylori was evaluated using the resazurin reduction assay, as well as in vitro cell studies used to verify the cytoprotective, anti-apoptotic and pro-regenerative effects of PyoM in the H. pylori LPS environment. We have shown that both water-soluble (PyoMsol) and water-insoluble (PyoMinsol) PyoM exhibit similar antibacterial properties against selected reference and clinical strains of H. pylori. This study showed that PyoM at a 1 μg/mL concentration reduced H. pylori-driven apoptosis and reactive oxygen species (ROS) production in fibroblasts, monocytes or gastric epithelial cells. In addition, PyoM enhanced the phagocytosis of H. pylori. PyoMsol showed better pro-regenerative and immunomodulatory activities than PyoMinsol.
Collapse
Affiliation(s)
- Mateusz M. Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland;
- Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Łódź, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland;
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, 50-368 Wrocław, Poland;
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland;
| |
Collapse
|
24
|
Song W, Yang H, Liu S, Yu H, Li D, Li P, Xing R. Melanin: insights into structure, analysis, and biological activities for future development. J Mater Chem B 2023; 11:7528-7543. [PMID: 37432655 DOI: 10.1039/d3tb01132a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Melanin, a widely distributed pigment found in various organisms, possesses distinct structures that can be classified into five main types: eumelanin (found in animals and plants), pheomelanin (found in animals and plants), allomelanin (found in plants), neuromelanin (found in animals), and pyomelanin (found in fungi and bacteria). In this review, we present an overview of the structure and composition of melanin, as well as the various spectroscopic identification methods that can be used, such as Fourier transform infrared (FTIR) spectroscopy, electron spin resonance (ESR) spectroscopy, and thermogravimetric analysis (TGA). We also provide a summary of the extraction methods of melanin and its diverse biological activities, including antibacterial properties, anti-radiation effects, and photothermal effects. The current state of research on natural melanin and its potential for further development is discussed. In particular, the review provides a comprehensive summary of the analysis methods used to determine melanin species, offering valuable insights and references for future research. Overall, this review aims to provide a thorough understanding of the concept and classification of melanin, its structure, physicochemical properties, and structural identification methods, as well as its various applications in the field of biology.
Collapse
Affiliation(s)
- Wen Song
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing 100000, China
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, 117546, Singapore.
| | - Haoyue Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, 117546, Singapore.
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| |
Collapse
|
25
|
El-Obeid A, Maashi Y, AlRoshody R, Alatar G, Aljudayi M, Al-Eidi H, AlGaith N, Khan AH, Hassib A, Matou-Nasri S. Herbal melanin modulates PGE2 and IL-6 gastroprotective markers through COX-2 and TLR4 signaling in the gastric cancer cell line AGS. BMC Complement Med Ther 2023; 23:305. [PMID: 37658354 PMCID: PMC10474668 DOI: 10.1186/s12906-023-04124-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/11/2023] [Indexed: 09/03/2023] Open
Abstract
We reported a gastric anti-ulcerogenic effect of the Nigella sativa (L.)-derived herbal melanin (HM) using rat models. However, the molecular mechanisms underlying this HM gastroprotective effect remain unknown. Cyclooxygenase-2 (COX-2)-catalyzed prostaglandin E2 (PGE2) and toll-like receptor 4 (TLR4)-mediated interleukin-6 (IL-6) production and secretion play major roles in gastric mucosal protection. In the current study, the human gastric carcinoma epithelial cell line AGS was used as a model to investigate the effect of HM on TLR4, COX-2, glycoprotein mucin 4 protein and gene expression using immuno-cyto-fluorescence staining, Western blot technology, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gastroprotective markers PGE2 and IL-6 production and secretion were also assessed using an enzyme-linked immunosorbent assay (ELISA). Bacterial lipopolysaccharides (LPS), well-known inducers of TLR4, COX-2, PGE2 and IL-6 expression, were used as a positive control. We showed that HM upregulated its main receptor TLR4 gene and protein expression in AGS cells. HM increased, in a dose- and time-dependent manner, the secretion of PGE2 and the expression of COX-2 mRNA and protein, which was detected in the nucleus, cytoplasm and predominantly at the intercellular junctions of the AGS cells. In addition, HM enhanced IL-6 production and secretion, and upregulated the mucin 4 gene expression, the hallmarks of gastroprotection. To check whether HM-induced PGE2 and IL-6 through TLR4 signaling and COX-2 generated, AGS cells were pre-treated with a TLR4 signaling inhibitor TAK242 and the COX-2 inhibitor NS-398. A loss of the stimulatory effects of HM on COX-2, PGE2 and IL-6 production and secretion was observed in TAK242 and NS-398-pre-treated AGS cells, confirming the role of TLR4 signaling and COX-2 generated in the HM gastroprotective effects. In conclusion, our results showed that HM enhances TLR4/COX-2-mediated secretion of gastroprotective markers PGE2 and IL-6, and upregulates mucin 4 gene expression in the human gastric epithelial cell line AGS, which may contribute to the promising beneficial gastroprotective effect of HM for human gastric prevention and treatment.
Collapse
Affiliation(s)
- Adila El-Obeid
- Department of Biobank, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia.
- Faculty of Pharmacology, Ahfad University for Women, Omdurman, Sudan.
| | - Yahya Maashi
- Cell and Gene Therapy Group, Medical Genomics Research Department, KAIMRC, KSAU-HS, Riyadh, Saudi Arabia
- King Faisal Medical City for Southern Region, Ministry of Health, Abha, Saudi Arabia
| | - Rehab AlRoshody
- Blood and Cancer Research Department, KAIMRC, KSAU-HS, Riyadh, Saudi Arabia
| | - Ghada Alatar
- Cell and Gene Therapy Group, Medical Genomics Research Department, KAIMRC, KSAU-HS, Riyadh, Saudi Arabia
| | - Modhi Aljudayi
- Department of Biobank, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, KAIMRC, KSAU-HS, Riyadh, Saudi Arabia
| | - Nouf AlGaith
- Cell and Gene Therapy Group, Medical Genomics Research Department, KAIMRC, KSAU-HS, Riyadh, Saudi Arabia
| | - Altaf Husain Khan
- Department of Biostatistics and Bioinformatics, KAIMRC, KSAU-HS, Riyadh, Saudi Arabia
| | - Adil Hassib
- Department of Physics, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, KAIMRC, KSAU-HS, Riyadh, Saudi Arabia.
- Blood and Cancer Research Department, KAIMRC, KSAU-HS, Riyadh, Saudi Arabia.
| |
Collapse
|
26
|
Michael HSR, Subiramanian SR, Thyagarajan D, Mohammed NB, Saravanakumar VK, Govindaraj M, Maheswari KM, Karthikeyan N, Ramesh Kumar C. Melanin biopolymers from microbial world with future perspectives-a review. Arch Microbiol 2023; 205:306. [PMID: 37580645 DOI: 10.1007/s00203-023-03642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Melanin is an amorphous polymer made of heterogeneous functional groups synthesized by diverse organisms including fungi, bacteria, animals, and plants. It was widely acknowledged for its biological processes and its key role in the protection of organisms from environmental stress. Recently, melanin clutches attention in the field of nanobiotechnology, drug delivery, organic semiconductors and bioelectronics, environmental bioremediation, photoprotection, etc., Furthermore, melanin from natural sources like microbial community shows antimicrobial, fighting cancer, radical scavenging, cosmeceuticals, and many therapeutic areas as well. Though the multipotentiality nature of melanin has been put forth, real-world applications still flag fall behind, which might be anticipated to the inadequate and high price essence of natural melanin. However, current bioprocess technologies have paved for the large-scale or industrial production of microbial melanin, which could help in the replacement of synthetic melanin. Thus, this review emphasizes the various sources for melanin, i.e., types-based on its pathways and its chemical structures, functional efficiency, physical properties, and conventional and modern methods of both extraction and characterization. Moreover, an outlook on how it works in the field of medicine, bioremediation, and other related areas provides perspectives on the complete exploitation of melanin in practical applications of medicine and the environment.
Collapse
Affiliation(s)
| | - Shri Ranjani Subiramanian
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| | - Divyavaahini Thyagarajan
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| | - Nazneen Bobby Mohammed
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur Dist, Andhra Pradesh, India
| | | | - Mageswari Govindaraj
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| | | | - Naresh Karthikeyan
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| | - Charu Ramesh Kumar
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| |
Collapse
|
27
|
Campanhol BS, Ribeiro BD, Casellato F, Medina KJD, Sponchiado SRP. Improvement of DOPA-Melanin Production by Aspergillus nidulans Using Eco-Friendly and Inexpensive Substrates. J Fungi (Basel) 2023; 9:714. [PMID: 37504703 PMCID: PMC10381910 DOI: 10.3390/jof9070714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 07/29/2023] Open
Abstract
Fungal pigments, including melanin, are recognized as promising materials for biomedical, environmental, and technological applications. In previous studies, we have demonstrated that the DOPA-melanin produced by the MEL1 mutant of Aspergillus nidulans exhibits antioxidant, anti-inflammatory, and antimicrobial activities without any cytotoxic or mutagenic effects, suggesting its potential use in pharmaceuticals. In order to increase the yield of this pigment and reduce the costs of its large-scale production, the present study aimed to evaluate agro-industrial by-products, sugarcane molasses, vinasse, and corn steep liquor as inexpensive substrates for fungal growth using experimental design methodology. According to the results obtained, the optimal composition of the culture medium was 0.81% (v/v) vinasse and 1.62% (w/v) glucose, which promoted a greater production of melanin (225.39 ± 4.52 mg g-1 of biomass), representing a 2.25-fold increase compared with the condition before optimization (100.32 mg.g-1 of biomass). Considering the amount of biomass obtained in the optimized condition, it was possible to obtain a total melanin production of 1 g L-1. Therefore, this formulation of a less complex and low-cost culture medium composition makes the large-scale process economically viable for future biotechnological applications of melanin produced by A. nidulans.
Collapse
Affiliation(s)
- Beatriz Silva Campanhol
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil; (B.S.C.); (B.D.R.); (F.C.)
| | - Beatriz Dias Ribeiro
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil; (B.S.C.); (B.D.R.); (F.C.)
| | - Fernando Casellato
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil; (B.S.C.); (B.D.R.); (F.C.)
| | - Kelly Johana Dussán Medina
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, Sao Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil;
- Bioenergy Research Institute (IPBEN), São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | - Sandra Regina Pombeiro Sponchiado
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil; (B.S.C.); (B.D.R.); (F.C.)
| |
Collapse
|
28
|
Shah FH, Eom YS, Kim SJ. Evaluation of phytochemicals of Poria cocos against tyrosinase protein: a virtual screening, pharmacoinformatics and molecular dynamics study. 3 Biotech 2023; 13:199. [PMID: 37215373 PMCID: PMC10195939 DOI: 10.1007/s13205-023-03626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Tyrosinase inhibitors are commonly used in the pharmaceutical and cosmetic industries for skin lightening and hypopigmentation. The current inhibitors of tyrosinase induce strong safety concerns which necessitate the discovery of new inhibitors. Natural compounds are a promising solution to discover potential candidate for anti-melanogenic activity as they possess less safety concerns and high therapeutic effect. The current study aimed to screen and identify potential phytochemicals from Poria cocos for tyrosinase inhibition. The phytochemicals were obtained from the Traditional Chinese Medicine System Pharmacology Database and screened for druglikeness score and toxicity class and then subjected to in-silico virtual screening and molecular dynamics. 7,9-(11)-Dehydropachymic acid established hydrogen interaction with the tyrosinase protein and was found to be highly stable as validated with MD simulations. The pharmacokinetic results showed that this compound has adequate toxicity and ADME profile that can be exploited for anti-melanogenic effects. Our study identified 7,9-(11)-dehydropachymic acid as an efficient candidate for tyrosinase inhibition. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03626-8.
Collapse
Affiliation(s)
- Fahad Hassan Shah
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588 Republic of Korea
| | - Young Seok Eom
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588 Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588 Republic of Korea
| |
Collapse
|
29
|
Mukherjee A, Pal S, Parhi S, Karki S, Ingole PG, Ghosh P. One-Pot Extraction of Bioresources from Human Hair via a Zero-Waste Green Route. ACS OMEGA 2023; 8:15759-15768. [PMID: 37151520 PMCID: PMC10157874 DOI: 10.1021/acsomega.3c01428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023]
Abstract
In recent years, the extraction of bioresources from biowaste via green chemistry and their utilization for the production of materials has gained global momentum due to growing awareness of the concepts of sustainability. Herein, we report a benign process using an ionic liquid (IL), 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), for the simultaneous extraction of keratin and melanin from human hair. Chemical characterization, secondary structure studies, and thermal analysis of the regenerated protein were performed thoroughly. Hemolytic potential assays demonstrated hemocompatibility of the keratin, and thus, it can be used in blood-contacting biomaterials such as sealants, catheters, hemostats, tissue engineering scaffolds, and so on. Scanning electron microscopy showed retention of the ellipsoidal morphology of melanin after the extraction procedure. The pigment demonstrated the ability to reduce 2,2-diphenyl-1-picrylhydrazyl indicative of its free-radical scavenging activity. Notably, the IL could be recovered and recycled from the dialysis remains which also exhibited conductivity and can be potentially used for bioelectronics. Altogether, this work investigates an extraction process of biopolymers using green chemistry from abundantly available biowaste for the production of biomaterials and does not produce any noxious waste matter.
Collapse
Affiliation(s)
- Ashmita Mukherjee
- CSIR-Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, 700032 Kolkata, India
- Academy
of Scientific and Innovative Research, Kamla Nehru Nagar, 201002 Ghaziabad, India
| | - Sreyasi Pal
- CSIR-Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, 700032 Kolkata, India
| | - Shivangi Parhi
- CSIR-Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, 700032 Kolkata, India
- Academy
of Scientific and Innovative Research, Kamla Nehru Nagar, 201002 Ghaziabad, India
| | - Sachin Karki
- Academy
of Scientific and Innovative Research, Kamla Nehru Nagar, 201002 Ghaziabad, India
- CSIR-North
East Institute of Science and Technology, NH-37, Pulibor, Jorhat, 785006 Assam, India
| | - Pravin G. Ingole
- Academy
of Scientific and Innovative Research, Kamla Nehru Nagar, 201002 Ghaziabad, India
- CSIR-North
East Institute of Science and Technology, NH-37, Pulibor, Jorhat, 785006 Assam, India
| | - Paulomi Ghosh
- Institute
of Health Sciences, Presidency University, Plot No. DG/02/02, Action Area 1D,
Newtown, Kolkata, 700156 West Bengal, India
- ,
| |
Collapse
|
30
|
Li Z, Bao X, Liu X, Wang W, Yang J. Gene network analyses of larvae under different egg-protecting behaviors provide novel insights into immune response mechanisms of Amphioctopus fangsiao. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108733. [PMID: 37028690 DOI: 10.1016/j.fsi.2023.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Amphioctopus fangsiao was a representative economic species in cephalopods, which was vulnerable to marine bacteria. Vibrio anguillarum was a highly infectious pathogen that have recently been found to infect A. fangsiao and inhibit its growth and development. There were significant differences in the immune response mechanisms between egg-protected and egg-unprotected larvae. To explore larval immunity under different egg-protecting behaviors, we infected A. fangsiao larvae with V. anguillarum for 24 h and analyzed the transcriptome data about egg-protected and egg-unprotected larvae infected with 0, 4, 12, and 24 h using weighted gene co-expression networks (WGCNA) and protein-protein interaction (PPI) networks. Network analyses revealed a series of immune response processes after infection, and identified six key modules and multiple immune-related hub genes. Meanwhile, we found that ZNF family, such as ZNF32, ZNF160, ZNF271, ZNF479, and ZNF493 might play significant roles in A. fangsiao immune response processes. We first creatively combined WGCNA and PPI network analysis to deeply explore the immune response mechanisms of A. fangsiao larvae with different egg-protecting behaviors. Our results provided further insights into the immunity of V. anguillarum infected invertebrates, and laid the foundation for exploring the immune differences among cephalopods with different egg protecting behaviors.
Collapse
Affiliation(s)
- Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
31
|
Urbaniak MM, Gazińska M, Rudnicka K, Płociński P, Nowak M, Chmiela M. In Vitro and In Vivo Biocompatibility of Natural and Synthetic Pseudomonas aeruginosa Pyomelanin for Potential Biomedical Applications. Int J Mol Sci 2023; 24:ijms24097846. [PMID: 37175552 PMCID: PMC10178424 DOI: 10.3390/ijms24097846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Bacteria are the source of many bioactive compounds, including polymers with various physiological functions and the potential for medical applications. Pyomelanin from Pseudomonas aeruginosa, a nonfermenting Gram-negative bacterium, is a black-brown negatively charged extracellular polymer of homogentisic acid produced during L-tyrosine catabolism. Due to its chemical properties and the presence of active functional groups, pyomelanin is a candidate for the development of new antioxidant, antimicrobial and immunomodulatory formulations. This work aimed to obtain bacterial water-soluble (Pyosol), water-insoluble (Pyoinsol) and synthetic (sPyo) pyomelanin variants and characterize their chemical structure, thermosensitivity and biosafety in vitro and in vivo (Galleria mallonella). FTIR analysis showed that aromatic ring connections in the polymer chains were dominant in Pyosol and sPyo, whereas Pyoinsol had fewer Car-Car links between rings. The differences in chemical structure influence the solubility of various forms of pyomelanins, their thermal stability and biological activity. Pyosol and Pyoinsol showed higher biological safety than sPyo. The obtained results qualify Pyosol and Pyoinsol for evaluation of their antimicrobial, immunomodulatory and proregenerative activities.
Collapse
Affiliation(s)
- Mateusz M Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
- The Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Łódź, Poland
| | - Małgorzata Gazińska
- Department of Engineering and Technology of Polymers, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), 50-370 Wrocław, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Przemysław Płociński
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Monika Nowak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| |
Collapse
|
32
|
Yoon D, Kang MK, Jung HJ, Ullah S, Lee J, Jeong Y, Noh SG, Kang D, Park Y, Chun P, Chung HY, Moon HR. Design, Synthesis, In Vitro, and In Silico Insights of 5-(Substituted benzylidene)-2-phenylthiazol-4(5 H)-one Derivatives: A Novel Class of Anti-Melanogenic Compounds. Molecules 2023; 28:molecules28083293. [PMID: 37110531 PMCID: PMC10144242 DOI: 10.3390/molecules28083293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
(Z)-5-Benzylidene-2-phenylthiazol-4(5H)-one ((Z)-BPT) derivatives were designed by combining the structural characteristics of two tyrosinase inhibitors. The double-bond geometry of trisubstituted alkenes, (Z)-BPTs 1-14, was determined based on the 3JC,Hβ coupling constant of 1H-coupled 13C NMR spectra. Three (Z)-BPT derivatives (1-3) showed stronger tyrosinase inhibitory activities than kojic acid; in particular, 2 was to be 189-fold more potent than kojic acid. Kinetic analysis using mushroom tyrosinase indicated that 1 and 2 were competitive inhibitors, whereas 3 was a mixed-type inhibitor. The in silico results revealed that 1-3 could strongly bind to the active sites of mushroom and human tyrosinases, supporting the kinetic results. Derivatives 1 and 2 decreased the intracellular melanin contents in a concentration-dependent manner in B16F10 cells, and their anti-melanogenic efficacy exceeded that of kojic acid. The anti-tyrosinase activity of 1 and 2 in B16F10 cells was similar to their anti-melanogenic effects, suggesting that their anti-melanogenic effects were primarily owing to their anti-tyrosinase activity. Western blotting of B16F10 cells revealed that the derivatives 1 and 2 inhibited tyrosinase expression, which partially contributes to their anti-melanogenic ability. Several derivatives, including 2 and 3, exhibited potent antioxidant activities against ABTS cation radicals, DPPH radicals, ROS, and peroxynitrite. These results suggest that (Z)-BPT derivatives 1 and 2 have promising potential as novel anti-melanogenic agents.
Collapse
Affiliation(s)
- Dahye Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Min Kyung Kang
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sultan Ullah
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Jieun Lee
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yeongmu Jeong
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sang Gyun Noh
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Dongwan Kang
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
33
|
Fasolino I, Carvalho ED, Raucci MG, Bonadies I, Soriente A, Pezzella A, Pêgo AP, Ambrosio L. Eumelanin decorated poly(lactic acid) electrospun substrates as a new strategy for spinal cord injury treatment. BIOMATERIALS ADVANCES 2023; 146:213312. [PMID: 36736264 DOI: 10.1016/j.bioadv.2023.213312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Spinal cord injury (SCI) is characterized by neuroinflammatory processes that are marked by an uncontrolled activation of microglia, which directly damages neurons. Natural and synthetic melanins represent an effective tool to treat neuroinflammation because they possess immunomodulatory properties. Here, the main objective was to evaluate the effect of eumelanin-coated poly(lactic acid) (EU@PLA) aligned microfibers on in vitro model of neuroinflammation related to spinal cord injury in terms of inflammatory mediators' modulation. Aligned fibers were chosen to provide physical cues to guide axonal growth in a specific direction thus restoring the synaptic connection. Eumelanin decorated PLA electrospun substrates were produced combining electrospinning, spin coating and solid-state polymerization processes (oxidative coupling under oxygen atmosphere). Biological response in terms of antioxidant and anti-inflammatory activity was analyzed on an in vitro model of neuroinflammation [microglial cells stimulated with lipopolysaccharide (LPS)]. Cell morphology and EU@PLA mechanism of action, in terms of toll-like receptor-4 (TLR-4) involvement were assessed. The results show that EU@PLA fibers were able to decrease reactive oxygen species, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-кB) expression >50 % compared to PLA + LPS and interleukin 6 (IL-6) secretion about 20 %. Finally, the mechanism of action of EU@PLA in microglia was found to be dependent on the TLR-4 signaling. Protein expression analysis revealed a decreased in TLR-4 production induced by LPS stimulation in presence of EU@PLA. Overall, our results show that EU@PLA represents an innovative and effective strategy for the control of inflammatory response in central nervous system.
Collapse
Affiliation(s)
- Ines Fasolino
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy.
| | - Eva Daniela Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy; Bioelectronics Task Force at University of Naples "Federico II", Italy.
| | - Irene Bonadies
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Alessandro Pezzella
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy; University of Naples "Federico II" Department of Physics "Ettore Pancini" Complesso Universitario Monte S. Angelo, Italy; Bioelectronics Task Force at University of Naples "Federico II", Italy
| | - Ana Paula Pêgo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; Faculdade de Engenharia da Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| |
Collapse
|
34
|
Rudrappa M, Nayaka S, Kumar RS. In Silico Molecular Docking Approach of Melanin Against Melanoma Causing MITF Proteins and Anticancer, Oxidation-Reduction, Photoprotection, and Drug-Binding Affinity Properties of Extracted Melanin from Streptomyces sp. strain MR28. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04358-4. [PMID: 36692647 DOI: 10.1007/s12010-023-04358-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Melanin is a biopolymer reported for diverse biological actions to secure organisms over adverse environmental factors. In the last decade, melanin attributed considerable attention for its use in bioelectronics, photoprotection, environmental bioremediation, and drug discovery. Molecular docking study is the emerging trend in drug discovery for drug designing by targeting proteins. Considering the therapeutic nature of the melanin, we extracted melanin from Streptomyces sp. strain MR28, and it was tested for various biological activities, viz., DPPH free radical scavenging potency, sun protection factor (SPF), drug likeness by SwissADME, molecular docking of melanin on melanocyte-inducing transcription factor (MITF) proteins, cytotoxic activity on A375 malignant melanoma with induction of apoptosis study by flow cytometry, and adsorption study of melanin on doxorubicin and camptothecin drug for drug uptake by melanin. The melanin showed good scavenging potency of DPPH free radicals in a concentration-dependent manner. SPF of 38.64 ± 0.63, 55.53 ± 0.53, and 67.07 ± 0.82 were recorded at 0.06, 0.08, and 0.1 µg/mL, concentrations, respectively. SwissADME screening confirms the drug likeness of melanin. Docking of melanin with MITF proteins exhibited a maximum of - 9.2 kcal/mol binding affinity for 4ATK protein. Cytotoxicity of the melanin drug exhibited good inhibition of melanoma cells in dose-dependent way with significant IC50 of 65.61 µg/mL; apoptotic study reveals melanin showed 64.02% apoptosis for melanin and 33.8% apoptosis for standard drug (doxorubicin). The maximum adsorptions for selected drugs camptothecin and doxorubicin to melanin were recorded at 90 min. In conclusion, the extracted melanin showed significant results over many biological applications and it can be used in the pharmaceutical field to avoid chemical-based drugs.
Collapse
Affiliation(s)
- Muthuraj Rudrappa
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, Karnataka, 580003, India.
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
35
|
Liu Y, Chen Y, Yu Z, Zhang Y. Biological control of melanin biosynthesis pathway on prolific and pleochromatic induction of Lasiodiplodia theobromae. Arch Microbiol 2023; 205:46. [PMID: 36592230 DOI: 10.1007/s00203-022-03396-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
To obtain a kind of microbial pigment with high yield and variety coloration by regulating the pigment synthesis pathway in this experiment, Lasiodiplodia theobromae was used to induce pigment secretion by prolific inducing factors (tyrosinase, Cu2+, stilbene glycoside) and pleochromatic inducing factors (L-tyrosine, L-cysteine, tricyclazole). The results showed that through single factor and compound culture, the most reasonable inducing formula was 150 ku/L tyrosinase, while tricyclazole at 10 mg/L for 30 days had a maximum color difference of 42.92 NBS with a reddish-brown color in 10 days. The melanin content increased gradually with the extension of culture time, and the pleochromatic inducing group was up to 3.47 mg/mL, higher than that of the prolific inducing group. However, the poor solubility of purified melanin with a diameter of 100-200 nm was observed in conventional solvents. Through effective induction, it is expected that L. theobromae can secrete melanin stably and be widely used in printing, dyeing, electronics, and the chemical industry.
Collapse
Affiliation(s)
- Yuansong Liu
- College of Design and Innovation, Wenzhou Polytechnic, Wenzhou, 325035, China. .,College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China. .,Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Yunyun Chen
- College of Design and Innovation, Wenzhou Polytechnic, Wenzhou, 325035, China
| | - Zhiming Yu
- College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China.,Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yang Zhang
- College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China.,Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
36
|
Khouqeer G, Alghrably M, Madkhali N, Dhahri M, Jaremko M, Emwas A. Preparation and characterization of natural melanin and its nanocomposite formed by copper doping. NANO SELECT 2022. [DOI: 10.1002/nano.202200095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ghada Khouqeer
- Department of Physics College of Science Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh Saudi Arabia
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE) King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Nawal Madkhali
- Department of Physics College of Science Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh Saudi Arabia
| | - Manel Dhahri
- Biology Department, Faculty of Science Yanbu Taibah University Yanbu El Bahr Saudi Arabia
| | - Mariusz Jaremko
- Smart‐Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE) King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi Arabia
| | - Abdul‐Hamid Emwas
- Core Labs King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| |
Collapse
|
37
|
Agrawal L, Vimal SK, Barzaghi P, Shiga T, Terenzio M. Biodegradable and Electrically Conductive Melanin-Poly (3-Hydroxybutyrate) 3D Fibrous Scaffolds for Neural Tissue Engineering Applications. Macromol Biosci 2022; 22:e2200315. [PMID: 36114714 DOI: 10.1002/mabi.202200315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/15/2023]
Abstract
Due to the severity of peripheral nerve injuries (PNI) and spinal cord injuries (SCI), treatment options for patients are limited. In this context, biomaterials designed to promote regeneration and reinstate the lost function are being explored. Such biomaterials should be able to mimic the biological, chemical, and physical cues of the extracellular matrix for maximum effectiveness as therapeutic agents. Development of biomaterials with desirable physical, chemical, and electrical properties, however, has proven challenging. Here a novel biomaterial formulation achieved by blending the pigment melanin and the natural polymer Poly-3-hydroxybutyrate (PHB) is proposed. Physio-chemical measurements of electrospun fibers reveal a feature rich surface nano-topography, a semiconducting-nature, and brain-tissue-like poroviscoelastic properties. Resulting fibers improve cell adhesion and growth of mouse sensory and motor neurons, without any observable toxicity. Further, the presence of polar functional groups positively affect the kinetics of fibers degradation at a pH (≈7.4) comparable to that of body fluids. Thus, melanin-PHB blended scaffolds are found to be physio-chemically, electrically, and biologically compatible with neural tissues and could be used as a regenerative modality for neural tissue injuries. A biomaterial for scaffolds intended to promote regeneration of nerve tissue after injury is developed. This biomaterial, obtained by mixing the pigment melanin and the natural polymer PHB, is biodegradable, electrically conductive, and beneficial to the growth of motor and sensory neurons. Thus, it is believed that this biomaterial can be used in the context of healthcare applications.
Collapse
Affiliation(s)
- Lokesh Agrawal
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0412, Japan.,Graduate School of Comprehensive Human Sciences Kansei, Behavioral and Brain Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan
| | - Sunil Kumar Vimal
- Department of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China.,Universidad Integral del Caribe y América Latina, Kaminda Cas Grandi #79, Willemstad, Curacao
| | - Paolo Barzaghi
- Scientific Imaging Section, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Takashi Shiga
- Graduate School of Comprehensive Human Sciences Kansei, Behavioral and Brain Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan.,Department of Neurobiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0412, Japan
| |
Collapse
|
38
|
Plants as Modulators of Melanogenesis: Role of Extracts, Pure Compounds and Patented Compositions in Therapy of Pigmentation Disorders. Int J Mol Sci 2022; 23:ijms232314787. [PMID: 36499134 PMCID: PMC9736547 DOI: 10.3390/ijms232314787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The kingdom of plants as a "green biofabric" of valuable bioactive molecules has long been used in many ailments. Currently, extracts and pure compounds of plant origin are used to aid in pigmentation skin problems by influencing the process of melanogenesis. Melanin is a very important pigment that protects human skin against ultraviolet radiation and oxidative stress. It is produced by a complex process called melanogenesis. However, disturbances in the melanogenesis mechanism may increase or decrease the level of melanin and generate essential skin problems, such as hyperpigmentation and hypopigmentation. Accordingly, inhibitors or activators of pigment formation are desirable for medical and cosmetic industry. Such properties may be exhibited by molecules of plant origin. Therefore, that literature review presents reports on plant extracts, pure compounds and compositions that may modulate melanin production in living organisms. The potential of plants in the therapy of pigmentation disorders has been highlighted.
Collapse
|
39
|
Are Plants Capable of Pheomelanin Synthesis? Gas Chromatography/Tandem Mass Spectrometry Characterization of Thermally Degraded Melanin Isolated from Echinacea purpurea. Processes (Basel) 2022. [DOI: 10.3390/pr10112465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Echinacea is a widely used plant medicine, valued especially for its well-documented ability to stimulate the immune system. It has been suggested that melanin could be one of the bioactive factors responsible for the immunostimulatory properties of the plant. The biological functions of melanin pigments are closely related to their chemical composition and structural features. The aim of this study was to characterize the melanin from Echinacea purpurea based on the analysis of thermal degradation products of the well-purified pigment extracted from the dried herb. The melanin was pyrolyzed, and the resulting products were separated by gas chromatography and identified using a triple quadrupole mass spectrometer operating in full scan and multiple reaction monitoring modes. Three groups of marker products were detected in the melanin pyrolysate: polyphenol derivatives, nitrogen-containing heterocycles devoid of sulfur, and benzothiazines/benzothiazoles. This suggests that E. purpurea produces three structurally different melanin pigments: allomelanin, eumelanin, and pheomelanin, which in turn may affect the biological activity of the herb. Our results provide the first-ever evidence that plants are capable of synthesizing pheomelanin, which until now, has only been described for representatives of the animal and fungal kingdoms.
Collapse
|
40
|
Kalegari P, Leme DM, Disner GR, Cestari MM, de Lima Bellan D, Meira WV, Mazepa E, Martinez GR. High Melanin Content in Melanoma Cells Contributes to Enhanced DNA Damage after Rose Bengal Photosensitization. Photochem Photobiol 2022; 98:1355-1364. [PMID: 35398885 DOI: 10.1111/php.13632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022]
Abstract
Melanoma is a type of tumor that originates from melanocytes. Irradiation of melanin with UVA and visible light can produce reactive oxygen species (ROS) such as singlet molecular oxygen (1 O2 ). The objective of this study was to examine DNA damage in melanoma cells (B16-F10) with different melanin contents, subjected to 1 O2 generation. To this end, we used the photosensitizer Rose Bengal acetate (RBAc) and irradiation with visible light (526 nm) (RBAc-PDT). We used the modified comet assay with the repair enzymes hOGG1 and T4 endonuclease V to detect the DNA damage associated with 8-oxo-7,8-dihydro-2'-deoxyguanosine and cyclobutane pyrimidine dimers lesions, respectively. We observed increased formation of hOGG1- and T4endoV-sensitive DNA lesions after light exposure (with or without RBAc). Furthermore, 18 h after irradiation, hOGG1-sensitive DNA lesions increased compared to that at the initial time point (0 h), which shows that a high melanin content contributes to post-irradiation formation of them, mainly via sustained oxidative stress, as confirmed by the measurement of ROS levels and activity of antioxidant enzymes. Contrastingly, the number of T4endoV-sensitive DNA lesions decreased over time (18 h). Our data indicate that in melanoma cells, a higher amount of melanin may affect DNA damage levels when subjected to RBAc-PDT.
Collapse
Affiliation(s)
- Paloma Kalegari
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências (Bioquímica), Setor de Ciências Biológicas, UFPR, Curitiba, Brazil
| | - Daniela Morais Leme
- Departamento de Genética, Setor de Ciências Biológicas, UFPR, Curitiba, Brazil
| | | | | | - Daniel de Lima Bellan
- Departamento de Biologia Celular, Setor de Ciências Biológicas, UFPR, Curitiba, Brazil
| | - Willian Vanderlei Meira
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências (Bioquímica), Setor de Ciências Biológicas, UFPR, Curitiba, Brazil
| | - Ester Mazepa
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências (Bioquímica), Setor de Ciências Biológicas, UFPR, Curitiba, Brazil
| | - Glaucia Regina Martinez
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências (Bioquímica), Setor de Ciências Biológicas, UFPR, Curitiba, Brazil
| |
Collapse
|
41
|
Chen YY, Liu LP, Zhou H, Zheng YW, Li YM. Recognition of Melanocytes in Immuno-Neuroendocrinology and Circadian Rhythms: Beyond the Conventional Melanin Synthesis. Cells 2022; 11:2082. [PMID: 35805166 PMCID: PMC9266247 DOI: 10.3390/cells11132082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Melanocytes produce melanin to protect the skin from UV-B radiation. Notwithstanding, the spectrum of their functions extends far beyond their well-known role as melanin production factories. Melanocytes have been considered as sensory and computational cells. The neurotransmitters, neuropeptides, and other hormones produced by melanocytes make them part of the skin's well-orchestrated and complex neuroendocrine network, counteracting environmental stressors. Melanocytes can also actively mediate the epidermal immune response. Melanocytes are equipped with ectopic sensory systems similar to the eye and nose and can sense light and odor. The ubiquitous inner circadian rhythm controls the body's basic physiological processes. Light not only affects skin photoaging, but also regulates inner circadian rhythms and communicates with the local neuroendocrine system. Do melanocytes "see" light and play a unique role in photoentrainment of the local circadian clock system? Why, then, are melanocytes responsible for so many mysterious functions? Do these complex functional devices work to maintain homeostasis locally and throughout the body? In addition, melanocytes have also been shown to be localized in internal sites such as the inner ear, brain, and heart, locations not stimulated by sunlight. Thus, what can the observation of extracutaneous melanocytes tell us about the "secret identity" of melanocytes? While the answers to some of these intriguing questions remain to be discovered, here we summarize and weave a thread around available data to explore the established and potential roles of melanocytes in the biological communication of skin and systemic homeostasis, and elaborate on important open issues and propose ways forward.
Collapse
Affiliation(s)
- Yan-Yan Chen
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Li-Ping Liu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Hang Zhou
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- School of Medicine, Yokohama City University, Yokohama 234-0006, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
42
|
Assis BM, Queiroz PJB, de Oliveira Lima CR, Vulcani VAS, Rabelo RE, da Silva LAF. Microstructure of the hoof capsule of pigmented and partial albino buffaloes. Anat Histol Embryol 2022; 51:435-442. [PMID: 35485276 DOI: 10.1111/ahe.12805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Abstract
In this study, atomic force microscopy (AFM), microtomography (MCT-2D and MCT-3D) and energy-dispersive X-ray fluorescence spectrometry (EDXRF) were used to generate parameters of the microstructure of the hoof capsule of pigmented and partial albino buffaloes. Seventy-two digits of adult pigmented buffaloes and 16 of partial albino buffaloes were used and equally divided into thoracic and pelvic limbs and medial and lateral claws. Fragments of 10 mm × 10 mm of the dorsal wall, abaxial wall and pre-bulbar sole were collected. The parametric assumptions were tested using a Shapiro-Wilk test (normality). The independent t-test was used to compare the means at a 5% significance level. AFM demonstrated that the hoof surface of pigmented buffaloes presented with higher average surface roughness (Ra) and root mean square roughness (Rms) (p < 0.05) than the hoof surface of partial albino buffaloes. MCT-2D revealed that pigmented buffaloes had extra tubular keratin with a higher density than intratubular keratin. No pores were observed in the hoof capsule of the buffalo digits. MCT-3D demonstrated that pigmented buffaloes have a higher percentage of large and intermediate horn tubules than partial albino buffaloes. However, this difference was not statistically significant. Partial albino buffaloes showed a statistically higher number of horn tubules/mm2 than pigmented buffaloes (p < 0.05). EDXRF revealed a higher amount of sulphur (S) in the hoof capsule of pigmented buffaloes, and the partial albino buffaloes presented a higher number of minerals such as calcium (Ca), potassium (K), zinc (Zn) and copper (Cu).
Collapse
|
43
|
Alam MZ, Ramachandran T, Antony A, Hamed F, Ayyash M, Kamal-Eldin A. Melanin is a plenteous bioactive phenolic compound in date fruits (Phoenix dactylifera L.). Sci Rep 2022; 12:6614. [PMID: 35459886 PMCID: PMC9033825 DOI: 10.1038/s41598-022-10546-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
Date palm fruits (Phoenix dactylifera L.) were found to contain high levels of allomelanin (1.2-5.1%). The melanin is localized in the tanniferous cells between the inner and outer mesocarp tissues of the fruit. The melanin, extracted with 2 M sodium hydroxide, consisted of amorphous graphene-like granular structures of irregular shape and variable size. The date fruit melanin mainly comprises carbon (64.6%) and oxygen (30.6) but no nitrogen, and was thermally stable. It has radical scavenging (63.6-75.1 IC50, µg/mL), antimicrobial (250-1000 µg/mL), hypoglycemic (51.8-58.2%), and angiotensin-converting-enzyme inhibitory (65.8%) effects. The high level of melanin in date fruits highlights the importance of investigating its dietary intake and its impact on nutrition. This study also suggests that date fruit melanin can be a functional ingredient in foods, food packages, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Muneeba Zubair Alam
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Tholkappiyan Ramachandran
- Department of Physics, College of Science and National Water and Energy Center United Arab, Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Asha Antony
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Fathalla Hamed
- Department of Physics, College of Science and National Water and Energy Center United Arab, Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
44
|
Elsayis A, Hassan SWM, Ghanem KM, Khairy H. Optimization of melanin pigment production from the halotolerant black yeast Hortaea werneckii AS1 isolated from solar salter in Alexandria. BMC Microbiol 2022; 22:92. [PMID: 35395716 PMCID: PMC8991569 DOI: 10.1186/s12866-022-02505-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background Melanins are one of the magnificent natural pigments synthesized by a wide range of microorganisms including different species of fungi and bacteria. Marine black yeasts appear to be potential prospects for the synthesis of natural melanin pigment. As a result, the goal of this research was to isolate a marine black yeast melanin-producing strain and improve the culturing conditions in order to maximize the yield of such a valuable pigment. Results Among five locally isolated black yeast strains, the only one that demonstrated a potent remarkable melanin pigment production was identified using ITS rDNA as Hortaea werneckii AS1. The extracted pigment’s physiochemical characterization and analytical investigation with Ultraviolet-Visible (UV) spectrophotometry, Fourier Transform-Infrared spectroscopy (FTIR), and Scanning Electron Microscope (SEM) confirmed its nature as a melanin pigment. The data obtained from the polynomial model’s maximum point suggested that CaCl2, 1.125 g/L; trace element, 0.25 ml/L; and a culture volume 225 mL/500 mL at their optimal values were the critical three elements impacting melanin production. In comparison with the baseline settings, the response surface methodology (RSM) optimization approach resulted in a 2.0 - fold improvement in melanin output. Conclusions A maximum melanin yield of 0.938 g/L proved the halotolerant H. werneckii AS1 potentiality as a source for natural melanin pigment synthesis ‘when compared to some relevant black yeast strains’ and hence, facilitating its incorporation in a variety of pharmaceutical and environmental applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02505-1.
Collapse
Affiliation(s)
- Asmaa Elsayis
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Sahar W M Hassan
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Khaled M Ghanem
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Heba Khairy
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
45
|
Marcovici I, Coricovac D, Pinzaru I, Macasoi IG, Popescu R, Chioibas R, Zupko I, Dehelean CA. Melanin and Melanin-Functionalized Nanoparticles as Promising Tools in Cancer Research-A Review. Cancers (Basel) 2022; 14:1838. [PMID: 35406610 PMCID: PMC8998143 DOI: 10.3390/cancers14071838] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer poses an ongoing global challenge, despite the substantial progress made in the prevention, diagnosis, and treatment of the disease. The existing therapeutic methods remain limited by undesirable outcomes such as systemic toxicity and lack of specificity or long-term efficacy, although innovative alternatives are being continuously investigated. By offering a means for the targeted delivery of therapeutics, nanotechnology (NT) has emerged as a state-of-the-art solution for augmenting the efficiency of currently available cancer therapies while combating their drawbacks. Melanin, a polymeric pigment of natural origin that is widely spread among many living organisms, became a promising candidate for NT-based cancer treatment owing to its unique physicochemical properties (e.g., high biocompatibility, redox behavior, light absorption, chelating ability) and innate antioxidant, photoprotective, anti-inflammatory, and antitumor effects. The latest research on melanin and melanin-like nanoparticles has extended considerably on many fronts, allowing not only efficient cancer treatments via both traditional and modern methods, but also early disease detection and diagnosis. The current paper provides an updated insight into the applicability of melanin in cancer therapy as antitumor agent, molecular target, and delivery nanoplatform.
Collapse
Affiliation(s)
- Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Ioana Gabriela Macasoi
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Roxana Popescu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (R.P.); (R.C.)
- Research Center ANAPATMOL, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Raul Chioibas
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (R.P.); (R.C.)
| | - Istvan Zupko
- Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| |
Collapse
|
46
|
Natural Melanin: Current Trends, and Future Approaches, with Especial Reference to Microbial Source. Polymers (Basel) 2022; 14:polym14071339. [PMID: 35406213 PMCID: PMC9002885 DOI: 10.3390/polym14071339] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Melanin is a universal natural dark polymeric pigment, arising in microorganisms, animals, and plants. There is a couple of pieces of literature on melanin, each focusing on a different issue, the goal of the present review is to focus on microbial melanin. It has numerous benefits with very few drawbacks. The current situation and expected trends are discussed. Intriguing, numerous studies have provoked a serious necessity for a comprehensive assessment of microbial melanin pigments. So that, such review would help scholars from diverse backgrounds to realize the importance of melanin pigments isolated from microorganisms, with this aim in mind, information, and hypothesis from this review could be the paradigm for studies on melanin in the next era.
Collapse
|
47
|
Flavone-based hydrazones as new tyrosinase inhibitors: Synthetic imines with emerging biological potential, SAR, molecular docking and drug-likeness studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131933] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Malo ME, Frank C, Khokhoev E, Gorbunov A, Dontsov A, Garg R, Dadachova E. Mitigating effects of sublethal and lethal whole-body gamma irradiation in a mouse model with soluble melanin. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:011508. [PMID: 35037901 DOI: 10.1088/1361-6498/ac3dcf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/25/2021] [Indexed: 05/27/2023]
Abstract
The field of radiation countermeasures is growing, however, currently there are no effective and non-toxic compounds which could be administered orally to the individuals post exposure to high doses of ionising radiation. The pigment melanin is ubiquitous through all kingdoms of life and provides selective advantage under radiation stress through its role as a chemical and physical shield, and its capacity to respond and react to exposures. Soluble allomelanin was administered to mice following whole-body exposure to lethal or sublethal doses of gamma radiation to determine its capacity to mitigate the effects of acute radiation syndrome, and its utility as a radiation countermeasure. Allomelanin has shown a trend to improve survival post an 8 Gy sublethal radiation exposure when administered up to 48 h post-irradiation. Furthermore, it improved median and overall survival to a 10 Gy lethal radiation exposure, specifically when administered at 24 h post-irradiation. Histological analysis on the jejunum region of the small intestine of this treatment group indicated that alterations of the mucosal and submucosal architecture, and disruption of the lymphatic system associated with lethal radiation exposure were mitigated when allomelanin was administered at 24 h post-irradiation. Based on this work soluble allomelanin derived from a fungal source could serve as an easily sourced, cost-effective, and viable countermeasure to accidental radiation exposure and merits further investigation.
Collapse
Affiliation(s)
- Mackenzie E Malo
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Connor Frank
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | | | | | - Alexander Dontsov
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, Moscow, Russia
| | - Ravendra Garg
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
49
|
Rok J, Rzepka Z, Kowalska J, Banach K, Beberok A, Wrześniok D. The Anticancer Potential of Doxycycline and Minocycline-A Comparative Study on Amelanotic Melanoma Cell Lines. Int J Mol Sci 2022; 23:ijms23020831. [PMID: 35055021 PMCID: PMC8775630 DOI: 10.3390/ijms23020831] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 12/04/2022] Open
Abstract
Malignant melanoma is still a serious medical problem. Relatively high mortality, a still-growing number of newly diagnosed cases, and insufficiently effective methods of therapy necessitate melanoma research. Tetracyclines are compounds with pleiotropic pharmacological properties. Previously published studies on melanotic melanoma cells ascertained that minocycline and doxycycline exerted an anti-melanoma effect. The purpose of the study was to assess the anti-melanoma potential and mechanisms of action of minocycline and doxycycline using A375 and C32 human amelanotic melanoma cell lines. The obtained results indicate that the tested drugs inhibited proliferation, decreased cell viability, and induced apoptosis in amelanotic melanoma cells. The treatment caused changes in the cell cycle profile and decreased the intracellular level of reduced thiols and mitochondrial membrane potential. The exposure of A375 and C32 cells to minocycline and doxycycline triggered the release of cytochrome c and activated initiator and effector caspases. The anti-melanoma effect of analyzed drugs appeared to be related to the up-regulation of ERK1/2 and MITF. Moreover, it was noticed that minocycline and doxycycline increased the level of LC3A/B, an autophagy marker, in A375 cells. In summary, the study showed the pleiotropic anti-cancer action of minocycline and doxycycline against amelanotic melanoma cells. Considering all results, it could be concluded that doxycycline was a more potent drug than minocycline.
Collapse
Affiliation(s)
- Jakub Rok
- Correspondence: ; Tel.: +48-32-364-15-47
| | | | | | | | | | | |
Collapse
|
50
|
Zhao H, Zhang H, Chu M, Liu Y, Si Y, Yu H, Ye Y. Tyrosine hydroxylase-immunopositive cells and melanin in the mesencephalon of yugan black-bone fowl. J Microsc Ultrastruct 2022; 10:20-22. [PMID: 35433261 PMCID: PMC9012409 DOI: 10.4103/jmau.jmau_50_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 11/04/2022] Open
Abstract
Background: Aims and Objectives: Materials and Methods: Results: Conclusion:
Collapse
|