1
|
Kuźniar-Pałka A. The Role of Oxidative Stress in Autism Spectrum Disorder Pathophysiology, Diagnosis and Treatment. Biomedicines 2025; 13:388. [PMID: 40002801 PMCID: PMC11852718 DOI: 10.3390/biomedicines13020388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Autism spectrum disorder (ASD) is a significant health problem with no known single cause. There is a vast number of evidence to suggest that oxidative stress plays an important role in this disorder. The author of this article reviewed the current literature in order to summarise the knowledge on the subject. In this paper, the role of oxidative stress is investigated in the context of its influence on pathogenesis, the use of oxidative stress biomarkers as diagnostic tools and the use of antioxidants in ASD treatment. Given the heterogeneity of ASD aetiology and inadequate treatment approaches, the search for common metabolic traits is essential to find more efficient diagnostic tools and treatment methods. There are increasing data to suggest that oxidative stress is involved in the pathogenesis of ASD, both directly and through its interplay with inflammation and mitochondrial dysfunction. Oxidative stress biomarkers appear to have good potential to be used as diagnostic tools to aid early diagnosis of ASD. The results are most promising for glutathione and its derivatives and also for isoprostanses. Probably, complex dedicated multi-parametric metabolic panels may be used in the future. Antioxidants show good potential in ASD-supportive treatment. In all described fields, the data support the importance of oxidative stress but also a need for further research, especially in the context of sample size and, preferably, with a multicentre approach.
Collapse
Affiliation(s)
- Aleksandra Kuźniar-Pałka
- Clinic of Pediatric and Adolescent Neurology, Institute of Mother and Child, 01-211 Warsaw, Poland
| |
Collapse
|
2
|
Kabthymer RH, Saadati S, Lee M, Hariharan R, Feehan J, Mousa A, de Courten B. Carnosine/histidine-containing dipeptide supplementation improves depression and quality of life: systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2025; 83:e54-e64. [PMID: 38545720 PMCID: PMC12013809 DOI: 10.1093/nutrit/nuae021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
CONTEXT Mental ill-health is a common and growing issue, affecting 1 in 8 individuals or 970 million people worldwide in 2019. Histidine-containing dipeptides (HCDs) have been suggested to mitigate some aspects of mental ill-health, but a quantitative synthesis of the evidence is lacking. Therefore, a systematic review and meta-analysis of randomized controlled trials was conducted. OBJECTIVE To summarize the evidence on the effects of HCDs on mental health outcomes. DATA SOURCE A systematic literature search was performed using electronic databases (Medline via Ovid, Embase via Ovid, Scopus, Google Scholar, and Cochrane) from inception to October, 2022. DATA EXTRACTION Two authors independently extracted data using a structured extraction format. DATA ANALYSIS Data analysis was performed using STATA version 17. Random-effects models were used, and heterogeneity was assessed using the I2 test. Quality appraisal was performed using the Cochrane risk-of-bias 2.0 tool and the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach. CONCLUSION 5507 studies were identified, with 20 studies fulfilling the inclusion criteria. Eighteen studies comprising 776 participants were included in the meta-analysis. HCD supplementation (anserine/carnosine, l-carnosine, β-alanine) caused a significant reduction in depression scores measured with the Becks Depression Inventory (-0.79; 95% CI: -1.24, -0.35; moderate certainty on GRADE) when compared with placebo. An increase in quality-of-life scores measured with the 36-item Short-Form survey (SF-36) (0.65; 95% CI: 0.00, 1.30) and low certainty on GRADE in HCDs (anserine/carnosine, l-carnosine, β-alanine) when compared with placebo were found. However, the rest of the outcomes did not show a significant change between HCD supplementation and placebo. Although the number of studies included in the meta-analysis was modest, a significant mean reduction was observed in depression score as well as an increase in quality-of-life score for the HCD group when compared with placebo. Most of the studies included had small sample sizes with short follow-up periods and moderate to high risk of bias, highlighting the need for further, well-designed studies to improve the evidence base. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42017075354.
Collapse
Affiliation(s)
- Robel Hussen Kabthymer
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Mark Lee
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Rohit Hariharan
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), Monash University, Melbourne, Australia
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| |
Collapse
|
3
|
Al-Beltagi M. Nutritional management and autism spectrum disorder: A systematic review. World J Clin Pediatr 2024; 13:99649. [PMID: 39654662 PMCID: PMC11572612 DOI: 10.5409/wjcp.v13.i4.99649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/21/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) presents unique challenges related to feeding and nutritional management. Children with ASD often experience feeding difficulties, including food selectivity, refusal, and gastrointestinal issues. Various interventions have been explored to address these challenges, including dietary modifications, vitamin supplementation, feeding therapy, and behavioral interventions. AIM To provide a comprehensive overview of the current evidence on nutritional management in ASD. We examine the effectiveness of dietary interventions, vitamin supplements, feeding therapy, behavioral interventions, and mealtime practices in addressing the feeding challenges and nutritional needs of children with ASD. METHODS We systematically searched relevant literature up to June 2024, using databases such as PubMed, PsycINFO, and Scopus. Studies were included if they investigated dietary interventions, nutritional supplements, or behavioral strategies to improve feeding behaviors in children with ASD. We assessed the quality of the studies and synthesized findings on the impact of various interventions on feeding difficulties and nutritional outcomes. Data extraction focused on intervention types, study designs, participant characteristics, outcomes measured, and intervention effectiveness. RESULTS The review identified 316 studies that met the inclusion criteria. The evidence indicates that while dietary interventions and nutritional supplements may offer benefits in managing specific symptoms or deficiencies, the effectiveness of these approaches varies. Feeding therapy and behavioral interventions, including gradual exposure and positive reinforcement, promise to improve food acceptance and mealtime behaviors. The findings also highlight the importance of creating supportive mealtime environments tailored to the sensory and behavioral needs of children with ASD. CONCLUSION Nutritional management for children with ASD requires a multifaceted approach that includes dietary modifications, supplementation, feeding therapy, and behavioral strategies. The review underscores the need for personalized interventions and further research to refine treatment protocols and improve outcomes. Collaborative efforts among healthcare providers, educators, and families are essential to optimize this population's nutritional health and feeding practices. Enhancing our understanding of intervention sustainability and long-term outcomes is essential for optimizing care and improving the quality of life for children with ASD and their families.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| |
Collapse
|
4
|
Nova L, Poínhos R, Teixeira B. Diet and special educational needs (SENs) among children and adolescents: a systematic review. Porto Biomed J 2024; 9:276. [PMID: 39633961 PMCID: PMC11608746 DOI: 10.1097/j.pbj.0000000000000276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Special educational needs (SENs) refer to children and adolescents needing additional educational support. Diet during pregnancy and pediatric age can influence the prevalence/severity of symptoms in SEN-related conditions/disabilities. This review aims to summarize associations between (i) pregnant women's diet and the prevalence of SEN-related conditions/disabilities among children/adolescents and (ii) the diet of children/adolescents with SEN-related conditions/disabilities and their symptomatology/well-being. A literature search was performed on Medline and Scopus, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The following inclusion criteria were considered, for each aim: (i) children/adolescents aged 19 years and younger, pregnant women's diet/nutrition, and diagnosis of SEN-related conditions/disabilities in children/adolescents; (ii) children/adolescents aged 19 years and younger, children/adolescents' diet/nutrition, and symptomatology/well-being of children/adolescents with SEN-related conditions/disabilities. 87 articles were included, referring to 10 different SEN-related conditions/disabilities, from which attention-deficit/hyperactivity disorder (ADHD) (41 articles) and autism spectrum disorder (ASD) (34 articles) stand out. Noteworthy results were seen regarding maternal caffeine consumption; pregnant woman multivitamin supplementation, high-sugar foods, and beverage intake during childhood/adolescence; maternal breastfeeding; and vitamin D supplementation. Despite the notable associations, further research using more standardized and homogeneous methodologies is needed to strengthen these findings. PROSPERO registration number: CRD42022313235.
Collapse
Affiliation(s)
- Lúcia Nova
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Rui Poínhos
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Beatriz Teixeira
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
- EPIUnit—Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR)], Porto, Portugal
| |
Collapse
|
5
|
Abraham DA, Narasimhan U, Mahalingam VT, Krishnan M, Ganesan RM, Goh KW, Tan CS, Ming LC, Ardianto C. Estimation of Plasma Concentration of L-Carnosine and its Correlation with Core Symptoms of Autism Spectrum Disorder Children: A Pilot Clinical Trial. FRONT BIOSCI-LANDMRK 2024; 29:365. [PMID: 39473402 DOI: 10.31083/j.fbl2910365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 03/30/2025]
Abstract
BACKGROUND Literature indicates that L-carnosine may be deficient in autism spectrum disorder (ASD) children. The aim of the present study was to estimate the level of L-carnosine in plasma and correlate it with the Autism Treatment Evaluation Checklist (ATEC) and Childhood Autism Rating Scale 2nd Edition, Standard Version (CARS2-ST) scores. To measure L-carnosine level, a bio-analytical method was developed using reverse phase high- liquid chromatography and validated as per International Conference on Harmonization guidelines. METHOD Children were supplemented with L-carnosine (10-15 mg/kg) along with standard care therapies for 2 months. Before and after supplementation, scores on the ATEC, CARS2-ST, BEARS sleep screening tool, 6-item Gastrointestinal Severity Index, and Parental Stress Scale were evaluated, and L-carnosine was measured at the end of the trial. RESULTS The calibration curve was linear in the range of 100-600 ng/mL (R2 = 0.998). The level of L-carnosine quantified was 33.7 ± 0.2 ng/mL. There was no significant difference found in any of the outcome measures (p > 0.05). CONCLUSIONS Despite the fact that L-carnosine is detectable in the blood, it was found to be ineffective in the management of ASD in children. CLINICAL TRIAL REGISTRATION The study was registered in the Clinical Trial Registry-India, registration number: CTRI/2019/07/020102.
Collapse
Affiliation(s)
- Debi Ann Abraham
- Periyar College of Pharmaceutical Sciences, 620021 Tiruchirappalli, Tamil Nadu, India
| | - Udayakumar Narasimhan
- Karthikeyan Child Development Unit, Sri Ramachandra Institute of Higher Education and Research, 600116 Chennai, Tamil Nadu, India
| | | | - Manikandan Krishnan
- SRM College of Pharmacy, SRM Institute of Science and Technology, 603203 Kattankulathur, Chennai, Tamil Nadu, India
| | | | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, 71800 Nilai, Malaysia
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University, 71800 Nilai, Malaysia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, BE1410 Gadong, Brunei Darussalam
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
| |
Collapse
|
6
|
Pérez-Cabral ID, Bernal-Mercado AT, Islas-Rubio AR, Suárez-Jiménez GM, Robles-García MÁ, Puebla-Duarte AL, Del-Toro-Sánchez CL. Exploring Dietary Interventions in Autism Spectrum Disorder. Foods 2024; 13:3010. [PMID: 39335937 PMCID: PMC11431671 DOI: 10.3390/foods13183010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Autism spectrum disorder (ASD) involves social communication difficulties and repetitive behaviors, and it has a growing prevalence worldwide. Symptoms include cognitive impairments, gastrointestinal (GI) issues, feeding difficulties, and psychological problems. A significant concern in ASD is food selectivity, leading to nutrient deficiencies. Common GI issues in ASD, such as constipation and irritable bowel syndrome, stem from abnormal gut flora and immune system dysregulation. Sensory sensitivities and behavioral challenges exacerbate these problems, correlating with neurological symptom severity. Children with ASD also exhibit higher oxidative stress due to low antioxidant levels like glutathione. Therapeutic diets, including ketogenic, high-antioxidant, gluten-free and casein-free, and probiotic-rich diets, show potential in managing ASD symptoms like behavior, communication, GI issues, and oxidative stress, though the evidence is limited. Various studies have focused on different populations, but there is increasing concern about the impact among children. This review aims to highlight the food preferences of the ASD population, analyze the effect of the physicochemical and nutritional properties of foods on the selectivity in its consumption, GI problems, and antioxidant deficiencies in individuals with ASD, and evaluate the effectiveness of therapeutic diets, including diets rich in antioxidants, gluten-free and casein-free, ketogenic and essential fatty acids, and probiotic-rich diets in managing these challenges.
Collapse
Affiliation(s)
- Ingrid Daniela Pérez-Cabral
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo 83000, SO, Mexico; (I.D.P.-C.); (A.T.B.-M.); (G.M.S.-J.); (A.L.P.-D.)
| | - Ariadna Thalía Bernal-Mercado
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo 83000, SO, Mexico; (I.D.P.-C.); (A.T.B.-M.); (G.M.S.-J.); (A.L.P.-D.)
| | - Alma Rosa Islas-Rubio
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo 83304, SO, Mexico;
| | - Guadalupe Miroslava Suárez-Jiménez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo 83000, SO, Mexico; (I.D.P.-C.); (A.T.B.-M.); (G.M.S.-J.); (A.L.P.-D.)
| | - Miguel Ángel Robles-García
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), University of Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, JA, Mexico;
| | - Andrés Leobardo Puebla-Duarte
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo 83000, SO, Mexico; (I.D.P.-C.); (A.T.B.-M.); (G.M.S.-J.); (A.L.P.-D.)
| | - Carmen Lizette Del-Toro-Sánchez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo 83000, SO, Mexico; (I.D.P.-C.); (A.T.B.-M.); (G.M.S.-J.); (A.L.P.-D.)
| |
Collapse
|
7
|
Rivi V, Caruso G, Caraci F, Alboni S, Pani L, Tascedda F, Lukowiak K, Blom JMC, Benatti C. Behavioral and transcriptional effects of carnosine in the central ring ganglia of the pond snail Lymnaea stagnalis. J Neurosci Res 2024; 102:e25371. [PMID: 39078068 DOI: 10.1002/jnr.25371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Carnosine is a naturally occurring endogenous dipeptide with well-recognized anti-inflammatory, antioxidant, and neuroprotective effects at the central nervous system level. To date, very few studies have been focused on the ability of carnosine to rescue and/or enhance memory. Here, we used a well-known invertebrate model system, the pond snail Lymnaea stagnalis, and a well-studied associative learning procedure, operant conditioning of aerial respiration, to investigate the ability of carnosine to enhance long-term memory (LTM) formation and reverse memory obstruction caused by an immune challenge (i.e., lipopolysaccharide [LPS] injection). Exposing snails to 1 mM carnosine for 1 h before training in addition to enhancing memory formation resulted in a significant upregulation of the expression levels of key neuroplasticity genes (i.e., glutamate ionotropic receptor N-methyl-d-aspartate [NMDA]-type subunit 1-LymGRIN1, and the transcription factor cAMP-response element-binding protein 1-LymCREB1) in snails' central ring ganglia. Moreover, pre-exposure to 1 mM carnosine before an LPS injection reversed the memory deficit brought about by inflammation, by preventing the upregulation of key targets for immune and stress response (i.e., Toll-like receptor 4-LymTLR4, molluscan defense molecule-LymMDM, heat shock protein 70-LymHSP70). Our data are thus consistent with the hypothesis that carnosine can have positive benefits on cognitive ability and be able to reverse memory aversive states induced by neuroinflammation.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Silvia Alboni
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Pani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Deparment of Psychiatry and Behavioral Sciences, University of Miami, Miami, Florida, USA
| | - Fabio Tascedda
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- CIB, Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Johanna M C Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
8
|
Galion AW, Farmer JG, Connolly HV, Allhusen VD, Bennett A, Coury DL, Lam J, Neumeyer AM, Sohl K, Witmans M, Malow BA. A Practice Pathway for the Treatment of Night Wakings in Children with Autism Spectrum Disorder. J Autism Dev Disord 2024; 54:2926-2945. [PMID: 37358787 PMCID: PMC11300650 DOI: 10.1007/s10803-023-06026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/27/2023]
Abstract
Children with autism spectrum disorder (ASD) report high rates of sleep problems. In 2012, the Autism Treatment Network/ Autism Intervention Research Network on Physical Health (ATN/AIR-P) Sleep Committee developed a pathway to address these concerns. Since its publication, ATN/AIR-P clinicians and parents have identified night wakings as a refractory problem unaddressed by the pathway. We reviewed the existing literature and identified 76 scholarly articles that provided data on night waking in children with ASD. Based on the available literature, we propose an updated practice pathway to identify and treat night wakings in children with ASD.
Collapse
Affiliation(s)
- Anjalee W Galion
- Division of Neurology, Children's Hospital of Orange County, 1201 W. La Veta Avenue, Orange, CA, 92868, USA.
| | - Justin G Farmer
- Massachusetts General Hospital for Children, Boston, MA, USA
| | | | - Virginia D Allhusen
- Division of Neurology, Children's Hospital of Orange County, 1201 W. La Veta Avenue, Orange, CA, 92868, USA
| | - Amanda Bennett
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Janet Lam
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Ann M Neumeyer
- Massachusetts General Hospital for Children, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kristin Sohl
- University of Missouri School of Medicine, Columbia, MO, USA
| | | | - Beth A Malow
- Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
9
|
Doherty M, Foley KR, Schloss J. Complementary and Alternative Medicine for Autism - A Systematic Review. J Autism Dev Disord 2024:10.1007/s10803-024-06449-5. [PMID: 38972931 DOI: 10.1007/s10803-024-06449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Complementary and Alternative Medicine (CAM) is a therapeutic option currently used by autistic people with continued interest and uptake. There remains limited evidence regarding the efficacy of CAM use in autism. The aim of this systematic review is to comprehensively review published clinical trials to explore the efficacy of CAM in autism. A systematic literature review of available research published from June 2013 to March 2023 was conducted. Our literature search identified 1826 eligible citations, and duplications removed (n = 694) with 102 articles eligible for title/abstract screening. After full text review, 39 studies were included. The results of this systematic review identified that for autistic people, vitamin and mineral supplements may only be of benefit if there is a deficiency. The results also found that the main interventions used were dietary interventions and nutraceuticals, including targeted supplements, vitamins and minerals, omega 3 s and prebiotics, probiotics and digestive enzymes. The evidence does not support some of the most frequently utilised dietary interventions, such as a Gluten Free Casein Free (GFCF) diet, and the use of targeted nutraceutical supplements may be of benefit, but more conclusive research is still required to direct safe and effective treatment.
Collapse
Affiliation(s)
- Monica Doherty
- Faculty of Health, National Centre for Naturopathic Medicine, Southern Cross University, 1 Military Road, Lismore, NSW, 2480, Australia.
| | - Kitty-Rose Foley
- Faculty of Health, Southern Cross University, Gold Coast, Qld, 4225, Australia
| | - Janet Schloss
- Faculty of Health, National Centre for Naturopathic Medicine, Southern Cross University, 1 Military Road, Lismore, NSW, 2480, Australia
| |
Collapse
|
10
|
Cesak O, Vostalova J, Vidlar A, Bastlova P, Student V. Carnosine and Beta-Alanine Supplementation in Human Medicine: Narrative Review and Critical Assessment. Nutrients 2023; 15:nu15071770. [PMID: 37049610 PMCID: PMC10096773 DOI: 10.3390/nu15071770] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
The dipeptide carnosine is a physiologically important molecule in the human body, commonly found in skeletal muscle and brain tissue. Beta-alanine is a limiting precursor of carnosine and is among the most used sports supplements for improving athletic performance. However, carnosine, its metabolite N-acetylcarnosine, and the synthetic derivative zinc-L-carnosine have recently been gaining popularity as supplements in human medicine. These molecules have a wide range of effects—principally with anti-inflammatory, antioxidant, antiglycation, anticarbonylation, calcium-regulatory, immunomodulatory and chelating properties. This review discusses results from recent studies focusing on the impact of this supplementation in several areas of human medicine. We queried PubMed, Web of Science, the National Library of Medicine and the Cochrane Library, employing a search strategy using database-specific keywords. Evidence showed that the supplementation had a beneficial impact in the prevention of sarcopenia, the preservation of cognitive abilities and the improvement of neurodegenerative disorders. Furthermore, the improvement of diabetes mellitus parameters and symptoms of oral mucositis was seen, as well as the regression of esophagitis and taste disorders after chemotherapy, the protection of the gastrointestinal mucosa and the support of Helicobacter pylori eradication treatment. However, in the areas of senile cataracts, cardiovascular disease, schizophrenia and autistic disorders, the results are inconclusive.
Collapse
Affiliation(s)
- Ondrej Cesak
- Department of Urology, University Hospital Olomouc, 775 20 Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Palacky University, 775 15 Olomouc, Czech Republic
| | - Jitka Vostalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, 775 15 Olomouc, Czech Republic
| | - Ales Vidlar
- Department of Urology, University Hospital Olomouc, 775 20 Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Palacky University, 775 15 Olomouc, Czech Republic
| | - Petra Bastlova
- Department of Rehabilitaion, University Hospital Olomouc, 775 20 Olomouc, Czech Republic
| | - Vladimir Student
- Department of Urology, University Hospital Olomouc, 775 20 Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Palacky University, 775 15 Olomouc, Czech Republic
| |
Collapse
|
11
|
Poudineh M, Parvin S, Omidali M, Nikzad F, Mohammadyari F, Sadeghi Poor Ranjbar F, Rasouli F, Nanbakhsh S, Olangian-Tehrani S. The Effects of Vitamin Therapy on ASD and ADHD: A Narrative Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:711-735. [PMID: 35585808 DOI: 10.2174/1871527321666220517205813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
Abstract
The effects of a sufficient amount of vitamins and nutrients on the proper function of the nervous system have always been regarded by scientists. In recent years, many studies have been done on controlling or improving the symptoms of neurological and behavioral disorders created by changes in the level of vitamins and other nutrition, such as omega-3 and iron supplements. Autism spectrum disorder (ASD) is a neurodevelopmental disorder that disrupts individual communication, especially in social interactions. Its symptoms include anxiety, violence, depression, self-injury, trouble with social contact and pervasive, stereotyped, and repetitive behavior. ASD is most noticeable in early childhood. Attention Deficit Hyperactivity Disorder (ADHD) is a lasting pattern of inattention with or without hyperactivity that causes functional disruption in daily life. ADHD symptoms included; impulsivity, hyperactivity, inattention, restlessness, talkativeness, excessive fidgeting in situations such as sitting, meetings, lectures, or at the movies, boredom, inability to make decisions, and procrastination. The exact etiology of ADHD has not yet been found, but several observations have assumed the reduced function of the brain leads to deficits in motor planning and cognitive processing. It has been shown that Pro-inflammatory cytokines and oxidative stress biomarkers could be increased in both ASD and ADHD. Several studies have been done to illustrate if vitamins and other dietary supplements are effective in treating and preventing ASD and ADHD. In this review, we aim to evaluate the effects of vitamins and other dietary supplements (e.g., melatonin, zinc supplements, magnesium supplements) on ASD and ADHD.
Collapse
Affiliation(s)
| | - Sadaf Parvin
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrnia Omidali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Nikzad
- Student Research Committee, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Avicennet, Tehran, Iran
| | | | | | - Fayaz Rasouli
- Department of Medicine, Mashhad Islamic Azad University, Mashhad, Iran
| | - Sepehr Nanbakhsh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Avicennet, Tehran, Iran
| | - Sepehr Olangian-Tehrani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Avicennet, Tehran, Iran
| |
Collapse
|
12
|
Brister D, Rose S, Delhey L, Tippett M, Jin Y, Gu H, Frye RE. Metabolomic Signatures of Autism Spectrum Disorder. J Pers Med 2022; 12:1727. [PMID: 36294866 PMCID: PMC9604590 DOI: 10.3390/jpm12101727] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 09/10/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is associated with many variations in metabolism, but the ex-act correlates of these metabolic disturbances with behavior and development and their links to other core metabolic disruptions are understudied. In this study, large-scale targeted LC-MS/MS metabolomic analysis was conducted on fasting morning plasma samples from 57 children with ASD (29 with neurodevelopmental regression, NDR) and 37 healthy controls of similar age and gender. Linear model determined the metabolic signatures of ASD with and without NDR, measures of behavior and neurodevelopment, as well as markers of oxidative stress, inflammation, redox, methylation, and mitochondrial metabolism. MetaboAnalyst ver 5.0 (the Wishart Research Group at the University of Alberta, Edmonton, Canada) identified the pathways associated with altered metabolic signatures. Differences in histidine and glutathione metabolism as well as aromatic amino acid (AAA) biosynthesis differentiated ASD from controls. NDR was associated with disruption in nicotinamide and energy metabolism. Sleep and neurodevelopment were associated with energy metabolism while neurodevelopment was also associated with purine metabolism and aminoacyl-tRNA biosynthesis. While behavior was as-sociated with some of the same pathways as neurodevelopment, it was also associated with alternations in neurotransmitter metabolism. Alterations in methylation was associated with aminoacyl-tRNA biosynthesis and branched chain amino acid (BCAA) and nicotinamide metabolism. Alterations in glutathione metabolism was associated with changes in glycine, serine and threonine, BCAA and AAA metabolism. Markers of oxidative stress and inflammation were as-sociated with energy metabolism and aminoacyl-tRNA biosynthesis. Alterations in mitochondrial metabolism was associated with alterations in energy metabolism and L-glutamine. Using behavioral and biochemical markers, this study finds convergent disturbances in specific metabolic pathways with ASD, particularly changes in energy, nicotinamide, neurotransmitters, and BCAA, as well as aminoacyl-tRNA biosynthesis.
Collapse
Affiliation(s)
- Danielle Brister
- College of Liberal Arts and Sciences, School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Shannon Rose
- Arkansas Children’s Research Institute and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Leanna Delhey
- Arkansas Children’s Research Institute and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Marie Tippett
- Arkansas Children’s Research Institute and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | | |
Collapse
|
13
|
Duan D, He L, Chen H, Lei Y, Wu W, Li T. Efficacy of auricular plaster therapy for sleep disorders in preschool children with autism spectrum disorders: Study protocol for a randomized controlled trial. Front Neurol 2022; 13:973609. [PMID: 36262834 PMCID: PMC9574001 DOI: 10.3389/fneur.2022.973609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background Children with autism spectrum disorders (ASDs) suffer from sleep disorders to a considerable degree; however, there is no safe and effective treatment available in clinical practice. The objective of the trial is to assess the clinical effectiveness of auricular plaster therapy (APT) in treating sleep disorders in children with ASD. Method This is a single-center, patient-assessor blind, randomized controlled trial. A total of 44 preschool children with sleep disorders with ASD will be included in this study. Eligible participants will be randomly assigned to either the auricular plaster group or the sham auricular plaster group in a 1:1 ratio. Participants in the different groups will receive APT or sham APT, respectively, for a total of 30 sessions over 30 days. The primary outcome includes the Children's Sleep Habits Questionnaire (CSHQ), while secondary outcomes include the Autism Behavior Checklist (ABC) and polysomnography (PSG) for total sleep time, sleep latency, awakening duration, and sleep structures. The CSHQ and ABC will be assessed at baseline, 10, 20, 30, 60, 90, and 120 days after randomization, whereas PSG will be assessed at baseline and 30 days after randomization. The follow-up period will be scheduled to be 60, 90, and 120 days after randomization. Discussion The results of this study may provide evidence of the efficacy of APT, as well as offer new alternatives for the treatment of sleep disorders in children with ASD. Trial registration CHiCTR.org.cn (ChiCTR2100048257). Registered on July 5, 2021.
Collapse
Affiliation(s)
- Duoxi Duan
- Department of Integrated Traditional Chinese and Western Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Lin He
- Foreign Language School, Southwest Medical University, Luzhou, China
| | - Hong Chen
- Department of Integrated Traditional Chinese and Western Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Ying Lei
- Department of Integrated Traditional Chinese and Western Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Wei Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Tao Li
- Department of Integrated Traditional Chinese and Western Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- *Correspondence: Tao Li
| |
Collapse
|
14
|
Maniram J, Karrim SBS, Oosthuizen F, Wiafe E. Pharmacological Management of Core Symptoms and Comorbidities of Autism Spectrum Disorder in Children and Adolescents: A Systematic Review. Neuropsychiatr Dis Treat 2022; 18:1629-1644. [PMID: 35968512 PMCID: PMC9371468 DOI: 10.2147/ndt.s371013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The pharmacological management of Autism Spectrum Disorder (ASD) in children remains a challenge due to limited effective management options and the absence of approved drugs to manage the core symptoms. This review aims to describe and highlight effective pharmacological management options employed in managing the core symptoms and comorbidities of ASD from eligible studies over the past decade. Methods A search of databases; PubMed, Scopus, Science Direct, and PsychInfo for pharmacotherapeutic options for ASD was conducted in this systematic review. Duplicate studies were removed by utilizing the EndNote citation manager. The studies were subsequently screened independently by two authors. Eligible studies from 01 January 2012 to 01 January 2022 were included based on established eligibility criteria. A narrative synthesis was used for data analysis. Results The systematic review provides a comprehensive list of effective management options for ASD comorbidities and core symptoms from 33 included studies. The management options for ASD comorbidities; insomnia, hyperactivity, irritability and aggression, gastrointestinal disturbances, and subclinical epileptiform discharges, were reviewed. Risperidone, aripiprazole, methylphenidate, guanfacine, levetiracetam, and atomoxetine are examples of effective pharmacological drugs against ASD comorbidities. Additionally, this review identified various drugs that improve the core symptoms of ASD and include but are not limited to, bumetanide, buspirone, intranasal oxytocin, intranasal vasopressin, and prednisolone. Conclusion This review has successfully summarized the pharmacological advancements made in the past decade to manage ASD. Although there is still no pharmacological cure for ASD core symptoms or additional drugs that have obtained regulatory approval for use in ASD, the availability of promising pharmacological agents are under evaluation and study.
Collapse
Affiliation(s)
- Jennal Maniram
- School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Saira B S Karrim
- School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Frasia Oosthuizen
- School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ebenezer Wiafe
- School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Clinical Pharmacy Services Unit, Directorate of Pharmacy, Ho Teaching Hospital, Ho, Ghana
| |
Collapse
|
15
|
Viability of Glioblastoma Cells and Fibroblasts in the Presence of Imidazole-Containing Compounds. Int J Mol Sci 2022; 23:ijms23105834. [PMID: 35628643 PMCID: PMC9146156 DOI: 10.3390/ijms23105834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
The naturally occurring dipeptide carnosine (β-alanyl-L-histidine) specifically attenuates tumor growth. Here, we ask whether other small imidazole-containing compounds also affect the viability of tumor cells without affecting non-malignant cells and whether the formation of histamine is involved. Patient-derived fibroblasts and glioblastoma cells were treated with carnosine, L-alanyl-L-histidine (LA-LH), β-alanyl-L-alanine, L-histidine, histamine, imidazole, β-alanine, and L-alanine. Cell viability was assessed by cell-based assays and microscopy. The intracellular release of L-histidine and formation of histamine was investigated by high-performance liquid chromatography coupled to mass spectrometry. Carnosine and LA-LH inhibited tumor cell growth with minor effects on fibroblasts, and L-histidine, histamine, and imidazole affected viability in both cell types. Compounds without the imidazole moiety did not diminish viability. In the presence of LA-LH but not in the presence of carnosine, a significant rise in intracellular amounts of histidine was detected in all cells. The formation of histamine was not detectable in the presence of carnosine, LA-LH, or histidine. In conclusion, the imidazole moiety of carnosine contributes to its anti-neoplastic effect, which is also seen in the presence of histidine and LA-LH. Despite the fact that histamine has a strong effect on cell viability, the formation of histamine is not responsible for the effects on the cell viability of carnosine, LA-LH, and histidine.
Collapse
|
16
|
van der Wurff I, Oenema A, de Ruijter D, Vingerhoets C, van Amelsvoort T, Rutten B, Mulkens S, Köhler S, Schols A, de Groot R. A Scoping Literature Review of the Relation between Nutrition and ASD Symptoms in Children. Nutrients 2022; 14:1389. [PMID: 35406004 PMCID: PMC9003544 DOI: 10.3390/nu14071389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impairments in social interaction, communication skills, and repetitive and restrictive behaviors and interests. Even though there is a biological basis for an effect of specific nutrition factors on ASD symptoms and there is scientific literature available on this relationship, whether nutrition factors could play a role in ASD treatment is unclear. The goal of the current literature review was to summarize the available scientific literature on the relation between nutrition and autism spectrum disorder (ASD) symptoms in childhood, and to formulate practical dietary guidelines. A comprehensive search strategy including terms for ASD, nutrition factors (therapeutic diets, dietary patterns, specific food products, fatty acids and micronutrients) and childhood was developed and executed in six literature databases (Cinahl, Cochrane, Ovid Embase, PsycInfo, PubMed and Web of Science). Data from meta-analyses, systematic reviews and original studies were qualitatively summarized. A total of 5 meta-analyses, 29 systematic reviews and 27 original studies were retrieved that focused on therapeutic diets, specific food products, fatty acids and micronutrients and ASD symptoms during childhood. Results of the available studies were sparse and inconclusive, and hence, no firm conclusions could be drawn. There is currently insufficient evidence for a relation between nutrition and ASD symptoms in childhood, making it impossible to provide practical nutrition guidelines; more methodological sound research is needed.
Collapse
Affiliation(s)
- Inge van der Wurff
- Health Psychology, Faculty of Psychology, Open University of the Netherlands, 6419 AT Heerlen, The Netherlands
- Conditions for Lifelong Learning, Faculty of Educational Sciences, Open University of the Netherlands, 6419 AT Heerlen, The Netherlands;
| | - Anke Oenema
- Department of Health Promotion, Maastricht University, 6200 MD Maastricht, The Netherlands; (A.O.); (D.d.R.)
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Dennis de Ruijter
- Department of Health Promotion, Maastricht University, 6200 MD Maastricht, The Netherlands; (A.O.); (D.d.R.)
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Claudia Vingerhoets
- Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands; (C.V.); (T.v.A.); (B.R.); (S.M.); (S.K.)
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands; (C.V.); (T.v.A.); (B.R.); (S.M.); (S.K.)
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Bart Rutten
- Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands; (C.V.); (T.v.A.); (B.R.); (S.M.); (S.K.)
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Sandra Mulkens
- Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands; (C.V.); (T.v.A.); (B.R.); (S.M.); (S.K.)
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Clinical Psychological Science, Maastricht University, 6200 MD Maastricht, The Netherlands
- SeysCentra, 6581 TE Malden, The Netherlands
| | - Sebastian Köhler
- Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands; (C.V.); (T.v.A.); (B.R.); (S.M.); (S.K.)
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Annemie Schols
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
- Department of Respiratory Medicine, Maastricht University, 6202 AZ Maastricht, The Netherlands
| | - Renate de Groot
- Conditions for Lifelong Learning, Faculty of Educational Sciences, Open University of the Netherlands, 6419 AT Heerlen, The Netherlands;
| |
Collapse
|
17
|
Nogay NH, Nahikian-Nelms M. Effects of nutritional interventions in children and adolescents with autism spectrum disorder: an overview based on a literature review. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2022; 69:811-824. [PMID: 37885847 PMCID: PMC10599198 DOI: 10.1080/20473869.2022.2036921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 10/28/2023]
Abstract
Background: Nutrition is important in autism spectrum disorder (ASD). Because nutritional problems of children with ASD can lead to nutritional deficiencies and this can also directly or indirectly affect symptoms related to autism. We investigated the effect of diet and supplementation treatments on gastrointestinal, behavioral or sleep problems based on the results of literature review. Methods: We generated four questions based on literature. We carried out title and abstract-based search using the Web of Science database. Of 4580 abstracts were identified, 192 papers were reviewed and 55 papers precisely meeting the inclusion criteria. Results: The studies examining the effects of vitamins, minerals, probiotics, and other supplements on ASD symptoms had different dosages, different treatment durations, small sample sizes and used different scales for evaluation. The results of the studies of the effectiveness of Gluten-Free and Casein-Free (GFCF) and ketogenic diet to reduce gastrointestinal, behavioral and sleeping problems in children and adolescents were contradictory. Conclusions: It is not possible to suggest the GFCF and/or ketogenic diet, vitamins, minerals and probiotics to individual with ASD based on the available evidence. By planning a sufficient and balanced diet, it should be aimed to prevent nutrient deficiency and to ensure growth in accordance with the age in children with ASD.
Collapse
Affiliation(s)
- Nalan Hakime Nogay
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Erciyes University, Kayseri, Turkey
| | - Marcia Nahikian-Nelms
- School of Health and Rehabilitation Sciences, College of Medicine, the Ohio State University, Columbus, OH, USA
| |
Collapse
|
18
|
Metabolomic and pharmacologic analyses of brain substances associated with sleep pressure in mice. Neurosci Res 2021; 177:16-24. [PMID: 34856199 DOI: 10.1016/j.neures.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022]
Abstract
Sleep pressure, the driving force of the homeostatic sleep regulation, is accumulated during wakefulness and dissipated during sleep. Sleep deprivation (SD) has been used as a method to acutely increase animal's sleep pressure for investigating the molecular changes under high sleep pressure. However, SD induces changes not only reflecting increased sleep pressure but also inevitable stresses and prolonged wake state itself. The Sik3Sleepy mutant mice (Sleepy) exhibit constitutively high sleep pressure despite sleeping longer, and have been useful as a model of increased sleep pressure. Here we conducted a cross-comparison of brain metabolomic profiles between SD versus ad lib slept mice, as well as Sleepy mutant versus littermate wild-type mice. Targeted metabolome analyses of whole brains quantified 203 metabolites in total, of which 43 metabolites showed significant changes in SD, whereas three did in Sleepy mutant mice. The large difference in the number of differential metabolites highlighted limitations of SD as methodology. The cross-comparison revealed that a decrease in betaine and an increase in imidazole dipeptides are associated with high sleep pressure in both models. These metabolites may be novel markers of sleep pressure at the whole-brain level. Furthermore, we found that intracerebroventricular injection of imidazole dipeptides increased subsequent NREM sleep time, suggesting the possibility that imidazole dipeptides may participate in the regulation of sleep in mice.
Collapse
|
19
|
Erythrocytes Prevent Degradation of Carnosine by Human Serum Carnosinase. Int J Mol Sci 2021; 22:ijms222312802. [PMID: 34884603 PMCID: PMC8657436 DOI: 10.3390/ijms222312802] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
The naturally occurring dipeptide carnosine (β-alanyl-l-histidine) has beneficial effects in different diseases. It is also frequently used as a food supplement to improve exercise performance and because of its anti-aging effects. Nevertheless, after oral ingestion, the dipeptide is not detectable in human serum because of rapid degradation by serum carnosinase. At the same time, intact carnosine is excreted in urine up to five hours after intake. Therefore, an unknown compartment protecting the dipeptide from degradation has long been hypothesized. Considering that erythrocytes may constitute this compartment, we investigated the uptake and intracellular amounts of carnosine in human erythrocytes cultivated in the presence of the dipeptide and human serum using liquid chromatography–mass spectrometry. In addition, we studied carnosine’s effect on ATP production in red blood cells and on their response to oxidative stress. Our experiments revealed uptake of carnosine into erythrocytes and protection from carnosinase degradation. In addition, no negative effect on ATP production or defense against oxidative stress was observed. In conclusion, our results for the first time demonstrate that erythrocytes can take up carnosine, and, most importantly, thereby prevent its degradation by human serum carnosinase.
Collapse
|
20
|
Effect of L-Carnosine in children with autism spectrum disorders: a systematic review and meta-analysis of randomised controlled trials. Amino Acids 2021; 53:575-585. [PMID: 33704575 DOI: 10.1007/s00726-021-02960-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/09/2021] [Indexed: 12/25/2022]
Abstract
Autism spectrum disorders (ASD) are an emerging health problem worldwide. So far, no definite cure for ASD exists. L-Carnosine is an amino acid containing β-alanine and L-histidine which has been proposed to have neuroprotective, antioxidant and anti-convulsive properties that may benefit affected children with this disorder. This review aimed to assess the effect of L-Carnosine in the management of ASD in children. We systematically reviewed randomised controlled trials (RCTs) which documented the effect of L-Carnosine in children with ASD. A literature search was performed in PubMed, Cochrane Library, Google Scholar, ClinicalTrials.gov, Clinical Trial Registry-India databases from inception to December 20, 2020. Articles were selected based on pre-set inclusion/exclusion criteria. The primary outcomes were changes in social, communication and behavioural responses and the secondary outcomes were improvement in sleep disorders, gastrointestinal problems, oxidative stress markers and adverse effects. Jadad scale was used to assess the quality of RCTs and modified Cochrane risk of bias tool was used to check the risk of bias of the included studies. The meta-analysis was reported based on the fixed-effects model. Four double-blinded, placebo-controlled, RCTs and one open label trial with a total of 215 participants were selected for the review. All the trials were methodological of high quality according to the Jadad scale. The modified Cochrane risk of bias tool showed a low to high risk of bias. Results from the meta-analysis of three studies showed no significant difference between L-Carnosine and placebo groups in the Gilliam autism rating scale (GARS) (MD = - 2.57; 95% CI - 10.30, 5.16, p = 0.52) and in its socialisation (MD = - 1.51; 95% CI - 6.16, 3.14, p = 0.53), behaviour (MD = - 0.48; 95% CI - 4.82, 3.87, p = 0.83) and communication (MD = - 3.94; 95% CI - 10.00, 2.11, p = 0.20) subscales as well as the childhood autism rating scale (CARS) (MD = - 0.88; 95% CI - 6.96, 5.20; p = 0.78). Current data do not support the use of L-Carnosine in the management of children with ASD due to a low number of studies and sample size available. Further studies are warranted to know the effect of L-Carnosine for ASD management.
Collapse
|
21
|
Chen L, Shi XJ, Liu H, Mao X, Gui LN, Wang H, Cheng Y. Oxidative stress marker aberrations in children with autism spectrum disorder: a systematic review and meta-analysis of 87 studies (N = 9109). Transl Psychiatry 2021; 11:15. [PMID: 33414386 PMCID: PMC7791110 DOI: 10.1038/s41398-020-01135-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
There is increasing awareness that oxidative stress may be implicated in the pathophysiology of autism spectrum disorder (ASD). Here we aimed to investigate blood oxidative stress marker profile in ASD children by a meta-analysis. Two independent investigators systematically searched Web of Science, PubMed, and Cochrane Library and extracted data from 87 studies with 4928 ASD children and 4181 healthy control (HC) children. The meta-analysis showed that blood concentrations of oxidative glutathione (GSSG), malondialdehyde, homocysteine, S-adenosylhomocysteine, nitric oxide, and copper were higher in children with ASD than that of HC children. In contrast, blood reduced glutathione (GSH), total glutathione (tGSH), GSH/GSSG, tGSH/GSSG, methionine, cysteine, vitamin B9, vitamin D, vitamin B12, vitamin E, S-adenosylmethionine/S-adenosylhomocysteine, and calcium concentrations were significantly reduced in children with ASD relative to HC children. However, there were no significance differences between ASD children and HC children for the other 17 potential markers. Heterogeneities among studies were found for most markers, and meta-regressions indicated that age and publication year may influence the meta-analysis results. These results therefore clarified blood oxidative stress profile in children with ASD, strengthening clinical evidence of increased oxidative stress implicating in pathogenesis of ASD. Additionally, given the consistent and large effective size, glutathione metabolism biomarkers have the potential to inform early diagnosis of ASD.
Collapse
Affiliation(s)
- Lei Chen
- grid.411077.40000 0004 0369 0529Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xiao-Jie Shi
- grid.411077.40000 0004 0369 0529Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Hua Liu
- grid.411077.40000 0004 0369 0529Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xiao Mao
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment (Hunan Provincial Maternal and Child Health Care Hospital), Hunan, China
| | - Lue-Ning Gui
- grid.411077.40000 0004 0369 0529Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Hua Wang
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment (Hunan Provincial Maternal and Child Health Care Hospital), Hunan, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China. .,NHC Key Laboratory of Birth Defects Research, Prevention and Treatment (Hunan Provincial Maternal and Child Health Care Hospital), Hunan, China.
| |
Collapse
|
22
|
Zhou MS, Nasir M, Farhat LC, Kook M, Artukoglu BB, Bloch MH. Meta-analysis: Pharmacologic Treatment of Restricted and Repetitive Behaviors in Autism Spectrum Disorders. J Am Acad Child Adolesc Psychiatry 2021; 60:35-45. [PMID: 32387445 DOI: 10.1016/j.jaac.2020.03.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/14/2020] [Accepted: 04/22/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To examine the efficacy of pharmacological treatments for restricted and repetitive behaviors (RRB) in autism spectrum disorders (ASD). METHOD We searched PubMed, Embase, and CENTRAL to identify all double-blind, randomized, placebo-controlled trials that examined the efficacy of pharmacological agents in the treatment of ASD and measured RRB as an outcome. Our primary outcome was the standardized mean difference in rating scales of RRB. RESULTS We identified 64 randomized, placebo-controlled trials involving 3,499 participants with ASD. Antipsychotics significantly improved RRB outcomes compared to placebo (standardized mean difference [SMD] = 0.28, 95% CIs = 0.08-0.49), z = 2.77, p = .01) demonstrating a small effect size. Larger significant positive effects on RRB in ASD were seen in individual studies with fluvoxamine, buspirone, bumetanide, divalproex, guanfacine, and folinic acid that have not been replicated. Other frequently studied pharmacological treatments in ASD including oxytocin, omega-3 fatty acids, selective serotonin reuptake inhibitors (SSRI), and methylphenidate did not demonstrate significant benefit in reducing RRB compared to placebo (oxytocin: SMD = 0.23, 95% CI = -0.01 to 0.47, z = 1.85, p = .06; omega-3 fatty acids: SMD = 0.19, 95% CI = -0.05 to 0.43, z = 1.54, p = .12; SSRI: SMD = 0.09, 95% CI = -0.21 to 0.39, z = 0.60, p = .56; methylphenidate: SMD = 0.18, 95% CI = -0.11 to 0.46, z = 1.23, p = .22). CONCLUSION The results of the present meta-analysis suggest that currently available pharmacological agents have at best only a modest benefit for the treatment of RRB in ASD, with the most evidence supporting antipsychotic medications. Additional randomized controlled trials with standardized study designs and consistent and specific assessment tools for RRB are needed to further understand how we can best help ameliorate these behaviors in individuals with ASD.
Collapse
Affiliation(s)
- Melissa S Zhou
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut.
| | - Madeeha Nasir
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Luis C Farhat
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut; University of Sao Paulo School of Medicine, Brazil
| | - Minjee Kook
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Bekir B Artukoglu
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Michael H Bloch
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
23
|
Zambrelli E, Lividini A, Spadavecchia S, Turner K, Canevini MP. Effects of Supplementation With Antioxidant Agents on Sleep in Autism Spectrum Disorder: A Review. Front Psychiatry 2021; 12:689277. [PMID: 34262494 PMCID: PMC8273250 DOI: 10.3389/fpsyt.2021.689277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition, whose etiology remains poorly understood in most cases. Several genetic, epigenetic and environmental factors have been implicated in ASD pathogenesis and numerous studies have provided evidences for increased levels of oxidative stress and reduced antioxidant capacity in patients with ASD. Recent clinical trials explored supplementation with antioxidant agents as a potential therapeutic strategy for ASD, investigating the impact of this treatment on behavioral symptoms and on most common comorbidities of the disease, including sleep disturbances. Among all medical conditions associated to ASD, sleep problems are highly prevalent and are supposed to be positively related to the severity of the disease. Moreover, studies on animal models support the hypothesis of a relationship between oxidative stress and sleep deprivation. The aim of this review is to summarize the current state of the literature on the effect of antioxidant treatment on sleep disturbances in patients with ASD. Twenty-one articles were included in final synthesis. Of them, 15 studies involved Melatonin, 1 Tryptophan and 5 focused on supplementation with other antioxidant agents (namely Coenzyme Q10, L-Carnosine, Luteolin and Quercetin). Despite the high prevalence of comorbid sleep troubles in ASD, there is a paucity of data on the efficacy of antioxidant agents in those patients. Further research is needed to better define the role of antioxidants agents as adjunctive therapy in the management sleep disorders in children and adolescents affected with ASD.
Collapse
Affiliation(s)
- Elena Zambrelli
- Childhood and Adolescence Neuropsychiatry Unit, Epilepsy Center-Sleep Medicine Center, Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy
| | - Althea Lividini
- Childhood and Adolescence Neuropsychiatry Unit, Epilepsy Center-Sleep Medicine Center, Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy
| | - Sofia Spadavecchia
- Childhood and Adolescence Neuropsychiatry Unit, Epilepsy Center-Sleep Medicine Center, Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | - Katherine Turner
- Childhood and Adolescence Neuropsychiatry Unit, Epilepsy Center-Sleep Medicine Center, Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy
| | - Maria Paola Canevini
- Childhood and Adolescence Neuropsychiatry Unit, Epilepsy Center-Sleep Medicine Center, Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
24
|
Calabrese V, Scuto M, Salinaro AT, Dionisio G, Modafferi S, Ontario ML, Greco V, Sciuto S, Schmitt CP, Calabrese EJ, Peters V. Hydrogen Sulfide and Carnosine: Modulation of Oxidative Stress and Inflammation in Kidney and Brain Axis. Antioxidants (Basel) 2020; 9:antiox9121303. [PMID: 33353117 PMCID: PMC7767317 DOI: 10.3390/antiox9121303] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence indicates that the dysregulation of cellular redox homeostasis and chronic inflammatory processes are implicated in the pathogenesis of kidney and brain disorders. In this light, endogenous dipeptide carnosine (β-alanyl-L-histidine) and hydrogen sulfide (H2S) exert cytoprotective actions through the modulation of redox-dependent resilience pathways during oxidative stress and inflammation. Several recent studies have elucidated a functional crosstalk occurring between kidney and the brain. The pathophysiological link of this crosstalk is represented by oxidative stress and inflammatory processes which contribute to the high prevalence of neuropsychiatric disorders, cognitive impairment, and dementia during the natural history of chronic kidney disease. Herein, we provide an overview of the main pathophysiological mechanisms related to high levels of pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and neurotoxins, which play a critical role in the kidney–brain crosstalk. The present paper also explores the respective role of H2S and carnosine in the modulation of oxidative stress and inflammation in the kidney–brain axis. It suggests that these activities are likely mediated, at least in part, via hormetic processes, involving Nrf2 (Nuclear factor-like 2), Hsp 70 (heat shock protein 70), SIRT-1 (Sirtuin-1), Trx (Thioredoxin), and the glutathione system. Metabolic interactions at the kidney and brain axis level operate in controlling and reducing oxidant-induced inflammatory damage and therefore, can be a promising potential therapeutic target to reduce the severity of renal and brain injuries in humans.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
- Correspondence: (V.C.); (A.T.S.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
- Correspondence: (V.C.); (A.T.S.)
| | - Giuseppe Dionisio
- Department of Molecular Biology and Genetics, Research Center Flakkebjerg, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Valentina Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Claus Peter Schmitt
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (C.P.S.); (V.P.)
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - Verena Peters
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (C.P.S.); (V.P.)
| |
Collapse
|
25
|
Lipopolysaccharide exposure induces oxidative damage in Caenorhabditis elegans: protective effects of carnosine. BMC Pharmacol Toxicol 2020; 21:85. [PMID: 33272314 PMCID: PMC7713333 DOI: 10.1186/s40360-020-00455-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/27/2020] [Indexed: 01/17/2023] Open
Abstract
Background The present study was designed to investigate the protective effects and mechanisms of carnosine on lipopolysaccharide (LPS)-induced injury in Caenorhabditis elegans. Methods C. elegans individuals were stimulated for 24 h with LPS (100 μg/mL), with or without carnosine (0.1, 1, 10 mM). The survival rates and behaviors were determined. The activities of superoxide dismutase (SOD), glutathione reductase (GR), and catalase (CAT) and levels of malondialdehyde (MDA) and glutathione (GSH) were determined using the respective kits. Reverse transcription polymerase chain reaction (RT-PCR) was performed to validate the differential expression of sod-1, sod-2, sod-3, daf-16, ced-3, ced-9, sek-1, and pmk-1. Western blotting was used to determine the levels of SEK1, p38 mitogen-activated protein kinase (MAPK), cleaved caspase3, and Bcl-2. C. elegans sek-1 (km2) mutants and pmk-1 (km25) mutants were used to elucidate the role of the p38 MAPK signaling pathway. Results Carnosine improved the survival of LPS-treated C. elegans and rescued behavioral phenotypes. It also restrained oxidative stress by decreasing MDA levels and increasing SOD, GR, CAT, and GSH levels. RT-PCR results showed that carnosine treatment of wild-type C. elegans up-regulated the mRNA expression of the antioxidant-related genes sod-1, sod-2, sod-3, and daf-16. The expression of the anti-apoptosis-related gene ced-9 and apoptosis-related gene ced-3 was reversed by carnosine. In addition, carnosine treatment significantly decreased cleaved caspase3 levels and increased Bcl-2 levels in LPS-treated C. elegans. Apoptosis in the loss-of-function strains of the p38 MAPK signaling pathway was suppressed under LPS stress; however, the apoptotic effects of LPS were blocked in the sek-1 and pmk-1 mutants. The expression levels of sek-1 and pmk-1 mRNAs were up-regulated by LPS and reversed by carnosine. Finally, the expression of p-p38MAPK and SEK1 was significantly increased by LPS, which was reversed by carnosine. Conclusion Carnosine treatment protected against LPS injury by decreasing oxidative stress and inhibiting apoptosis through the p38 MAPK pathway.
Collapse
|
26
|
Ann Abraham D, Narasimhan U, Christy S, Muhasaparur Ganesan R. Effect of L-Carnosine as adjunctive therapy in the management of children with autism spectrum disorder: a randomized controlled study. Amino Acids 2020; 52:1521-1528. [PMID: 33170378 DOI: 10.1007/s00726-020-02909-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022]
Abstract
L-Carnosine is an amino acid that acts as an anti-oxidant, anti-toxic and neuroprotective agent. There is a paucity of data about the effectiveness of L-Carnosine in the management of autism spectrum disorder (ASD) in children. This study aimed at investigating the effectiveness of L-Carnosine as adjunctive therapy in the management of ASD. This was a randomized controlled trial. Children aged 3-6 years with a diagnosis of mild to moderate ASD were assigned to standard care arm (occupational and speech therapy) and intervention care arm (L-Carnosine, 10-15 mg/kg in 2 divided doses) plus standard care treatment. The children were assessed at the baseline and the end of 2 months for the scores of Childhood Autism Rating Scale, Second Edition-Standard Version (CARS2-ST), Autism Treatment Evaluation Checklist (ATEC), BEARS sleep screening tool and 6-item Gastrointestinal Severity Index (6-GSI). Of the sixty-seven children enrolled, sixty-three children had completed the study. No statistically significant difference (p > 0.05) was observed for any of the outcome measures assessed. Supplementation of L-Carnosine did not improve the total score of CARS2-ST, ATEC, BEARS sleep screening tool and 6-GSI scores of children with ASD. Further investigations are needed with more objective assessments to critically validate the effectiveness of L-Carnosine on ASD children for more decisive results.
Collapse
Affiliation(s)
- Debi Ann Abraham
- Department of Pharmacy Practice, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, 600 116, India
| | - Udayakumar Narasimhan
- Department of Paediatric Medicine, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Senta Christy
- Karthikeyan Child Development Unit, Sri Ramachandra Medical Centre, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Rajanandh Muhasaparur Ganesan
- Department of Pharmacy Practice, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, 600 116, India.
| |
Collapse
|
27
|
Esposito D, Belli A, Ferri R, Bruni O. Sleeping without Prescription: Management of Sleep Disorders in Children with Autism with Non-Pharmacological Interventions and Over-the-Counter Treatments. Brain Sci 2020; 10:brainsci10070441. [PMID: 32664572 PMCID: PMC7407189 DOI: 10.3390/brainsci10070441] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
Autism Spectrum Disorders (ASD) are lifelong neurodevelopmental conditions characterized by abnormal social interaction, communication, and behavior. Sleep disturbances represent a common comorbidity in children and adolescents with ASD, with prevalence ranging from 50 to 80%. It has been proved that sleep disruption worsens the symptoms of autism and results in challenging behaviors. Improving sleep should therefore be a primary therapeutic goal. Treatment options range from lifestyle modifications to pharmacological therapy. Several reviews have been written on pharmacological treatments, but very few on the beneficial effects of non-pharmacological interventions, over-the-counter drugs, and nutritional supplements. This study consists of a narrative review of the literature, presenting the available evidence on the following treatments: sleep education, behavioral interventions, complementary and alternative medicine (special mattresses and blankets, massage, aromatherapy, yoga, physical activity), and commonly used over-the-counter medications and supplements (antihistamines, melatonin, tryptophan, carnosine, iron, vitamins, and herbal remedies). For some treatments—such as melatonin and behavioral interventions—effectiveness in ASD is well established in the literature, while other interventions appear of benefit in clinical practice, even if specific studies in children and adolescents with ASD are lacking. Conversely, other treatments only seem to show anecdotal evidence supporting their use.
Collapse
Affiliation(s)
- Dario Esposito
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (D.E.); (A.B.)
| | - Arianna Belli
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (D.E.); (A.B.)
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute–IRCCS, 94018 Troina, Italy;
| | - Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
28
|
Cortese S, Wang F, Angriman M, Masi G, Bruni O. Sleep Disorders in Children and Adolescents with Autism Spectrum Disorder: Diagnosis, Epidemiology, and Management. CNS Drugs 2020; 34:415-423. [PMID: 32112261 DOI: 10.1007/s40263-020-00710-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sleep problems are a common complaint in children/adolescents with autism spectrum disorder (ASD). Correctly diagnosing and treating sleep problems in individuals with ASD is key, as they can add to the psychosocial burden of the disorder and exacerbate associated symptoms, such as inattention or irritability. Here, we provide an overview of the epidemiology, diagnosis, and management of sleep problems/disorders in children and adolescents with ASD. This narrative review is mainly informed by a systematic search in PubMed and PsycInfo (last search: 10 October 2019) of available pertinent meta-analyses. We also searched for randomized controlled trials (RCTs) published after the search date of available meta-analyses. As for the epidemiology of sleep disorders in ASD, recent meta-analytic evidence shows a pooled prevalence of 13% (95% confidence interval [CI] 9-17) in the ASD population, compared with 3.7% in the general population. In terms of diagnosis of sleep disorders, it should be based on standardized criteria [e.g., the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) or third edition of the International Classification of Sleep Disorders (ICSD)]; clinicians should bear in mind that the communication difficulties presented by individuals with ASD may make the diagnostic process more challenging. Regarding the treatment, a meta-analysis of behavioral interventions, including only three RCTs, found significant effects in terms of increase in total sleep time (24.41 min, 95% CI 5.71-43.11, P = 0.01), decrease in sleep-onset latency (- 18.31 min, 95% CI - 30.84 to - 5.77, P = 0.004), and a significant effect on sleep efficiency (5.59, 95% CI 0.87-10.31, P = 0.02), albeit the risk of bias of the included studies was rated "high" in relation to issues with the blinding. The bulk of the evidence for the pharmacological treatment is for melatonin, with a meta-analysis of five double-blind RCTs showing a large effect size, favoring melatonin, in sleep duration (44 min compared with placebo, Hedge's g 1.07 [95% CI 0.49-1.65]) and sleep-onset latency (39 min compared with placebo, Hedge's g - 2.46 [95% CI - 1.96 to - 2.98]). We conclude that additional RCTs are desperately needed to support the management of sleep disorders in ASD with an evidence-based, precision medicine approach.
Collapse
Affiliation(s)
- Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK. .,Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK. .,Solent NHS Trust, Southampton, UK. .,Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK. .,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, NIHR MindTech MedTech Co-operative, Nottingham, UK. .,New York University Child Study Center, New York, NY, USA.
| | - Fang Wang
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK.,Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK.,School of Social Development, Nanjing Normal University, Nanjing, China
| | - Marco Angriman
- Department of Pediatrics, Child Neurology and Neurorehabilitation Unit, Central Hospital of Bolzano, Bolzano, Italy
| | - Gabriele Masi
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Pisa, Italy
| | - Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University, Rome, Italy
| |
Collapse
|
29
|
Menon K, Marquina C, Liew D, Mousa A, de Courten B. Histidine-containing dipeptides reduce central obesity and improve glycaemic outcomes: A systematic review and meta-analysis of randomized controlled trials. Obes Rev 2020; 21:e12975. [PMID: 31828942 DOI: 10.1111/obr.12975] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/06/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022]
Abstract
Supplementation with histidine-containing dipeptides has been shown to improve obesity and glycaemic outcomes in animal and human studies. We conducted a systematic review and meta-analysis of randomized controlled trials to examine these effects. Electronic databases were searched investigating the effects of histidine-containing dipeptides supplementation on anthropometric and glycaemic outcomes. Meta-analyses were performed using random-effects models to calculate the weighted mean difference and 95% confidence interval. There were 30 studies for the systematic review and 23 studies pooled for meta-analysis. Histidine-containing dipeptide groups had a lower waist circumference (WMD [95% CI] = -3.53 cm [-5.65, -1.41], p = 0.001) and HbA1c level (WMD [95% CI] = -0.76% (8.5 mmol/mol) [-1.29% (14.3 mmol/mol), -0.24% (2.8 mmol/mol)], p = 0.004) at follow-up compared with controls. In sensitivity analyses of studies with low risk of bias, waist circumference, HbA1c, and fasting glucose levels (WMD [95% CI] = -0.63 mmol/L [-1.09, -0.18], p = 0.006) were significantly lower in intervention groups versus controls. There was also a trend toward lower fat mass (p = 0.09), insulin resistance (p = 0.07), and higher insulin secretion (p = 0.06) in intervention versus control groups. Supplementation with histidine-containing dipeptides may reduce central obesity and improve glycaemic outcomes. Further studies exploring histidine-containing dipeptide use in obesity and diabetes prevention and treatment are warranted.
Collapse
Affiliation(s)
- Kirthi Menon
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Clara Marquina
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Danny Liew
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Schön M, Mousa A, Berk M, Chia WL, Ukropec J, Majid A, Ukropcová B, de Courten B. The Potential of Carnosine in Brain-Related Disorders: A Comprehensive Review of Current Evidence. Nutrients 2019; 11:nu11061196. [PMID: 31141890 PMCID: PMC6627134 DOI: 10.3390/nu11061196] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
Neurological, neurodegenerative, and psychiatric disorders represent a serious burden because of their increasing prevalence, risk of disability, and the lack of effective causal/disease-modifying treatments. There is a growing body of evidence indicating potentially favourable effects of carnosine, which is an over-the-counter food supplement, in peripheral tissues. Although most studies to date have focused on the role of carnosine in metabolic and cardiovascular disorders, the physiological presence of this di-peptide and its analogues in the brain together with their ability to cross the blood-brain barrier as well as evidence from in vitro, animal, and human studies suggest carnosine as a promising therapeutic target in brain disorders. In this review, we aim to provide a comprehensive overview of the role of carnosine in neurological, neurodevelopmental, neurodegenerative, and psychiatric disorders, summarizing current evidence from cell, animal, and human cross-sectional, longitudinal studies, and randomized controlled trials.
Collapse
Affiliation(s)
- Martin Schön
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 84215 Bratislava, Slovakia.
- Biomedical Research Center, Slovak Academy of Sciences, 81439 Bratislava, Slovakia.
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Victoria 3168, Australia.
| | - Michael Berk
- School of Medicine, IMPACT Strategic Research Centre, Barwon Health, Deakin University, Geelong, Victoria 3220, Australia.
- Orygen, The Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria 3052, Australia.
| | - Wern L Chia
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Victoria 3168, Australia.
| | - Jozef Ukropec
- Biomedical Research Center, Slovak Academy of Sciences, 81439 Bratislava, Slovakia.
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Barbara Ukropcová
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 84215 Bratislava, Slovakia.
- Biomedical Research Center, Slovak Academy of Sciences, 81439 Bratislava, Slovakia.
- Faculty of Physical Education and Sports, Comenius University, 81469 Bratislava, Slovakia.
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Victoria 3168, Australia.
| |
Collapse
|
31
|
Berezhnoy DS, Stvolinsky SL, Lopachev AV, Devyatov AA, Lopacheva OM, Kulikova OI, Abaimov DA, Fedorova TN. Carnosine as an effective neuroprotector in brain pathology and potential neuromodulator in normal conditions. Amino Acids 2018; 51:139-150. [PMID: 30353356 DOI: 10.1007/s00726-018-2667-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/12/2018] [Indexed: 11/28/2022]
Abstract
Carnosine (b-alanyl-L-histidine) is an endogenous dipeptide widely distributed in excitable tissues, such as muscle and neural tissues-though in minor concentrations in the latter. Multiple benefits have been attributed to carnosine: direct and indirect antioxidant effect, antiglycating, metal-chelating, chaperone and pH-buffering activity. Thus, carnosine turns out to be a multipotent protector against oxidative damage. However, the role of carnosine in the brain remains unclear. The key aspects concerning carnosine in the brain reviewed are as follows: its concentration and bioavailability, mechanisms of action in neuronal and glial cells, beneficial effects in human studies. Recent literature data and the results of our own research are summarized here. This review covers studies of carnosine effects on both in vitro and in vivo models of cerebral damage, such as neurodegenerative disorders and ischemic injuries and the data on its physiological actions on neuronal signaling and cerebral functions. Besides its antioxidant and homeostatic properties, new potential roles of carnosine in the brain are discussed.
Collapse
Affiliation(s)
- D S Berezhnoy
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia. .,Faculty of Biology, Moscow State University, Moscow, 119234, Russia.
| | - S L Stvolinsky
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia
| | - A V Lopachev
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia
| | - A A Devyatov
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia
| | - O M Lopacheva
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia
| | - O I Kulikova
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia.,Faculty of Ecology, Peoples' Friendship University of Russia, Moscow, 117198, Russia
| | - D A Abaimov
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia
| | - T N Fedorova
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoe Shosse, 80, Moscow, 125367, Russia
| |
Collapse
|
32
|
Development and validation of a sensitive LC-MS/MS assay for the quantification of anserine in human plasma and urine and its application to pharmacokinetic study. Amino Acids 2018; 51:103-114. [PMID: 30302566 DOI: 10.1007/s00726-018-2663-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022]
Abstract
Carnosine (beta-alanyl-L-histidine) and its methylated analogue anserine are present in relevant concentrations in the omnivore human diet. Several studies reported promising therapeutic potential for carnosine in various rodent models of oxidative stress and inflammation-related chronic diseases. Nevertheless, the poor serum stability of carnosine in humans makes the translation of rodent models hard. Even though anserine and carnosine have similar biochemical properties, anserine has better serum stability. Despite this interesting profile, the research on anserine is scarce. The aim of this study was to explore the bioavailability and stability of synthesized anserine by (1) performing in vitro stability experiments in human plasma and molecular modelling studies and by (2) evaluating the plasma and urinary pharmacokinetic profile in healthy volunteers following different doses of anserine (4-10-20 mg/kg body weight). A bio-analytical method for measuring anserine levels was developed and validated using liquid chromatography-electrospray mass spectrometry. Both plasma (CMAX: 0.54-1.10-3.12 µM) and urinary (CMAX: 0.09-0.41-0.72 mg/mg creatinine) anserine increased dose-dependently following ingestion of 4-10-20 anserine mg/kg BW, respectively. The inter-individual variation in plasma anserine was mainly explained by the activity (R2 = 0.75) and content (R2 = 0.77) of the enzyme serum carnosinase-1. Compared to carnosine, a lower interaction energy of anserine with carnosinase-1 was suggested by molecular modelling studies. Conversely, the two dipeptides seems to have similar interaction with the PEPT1 transporter. It can be concluded that nutritionally relevant doses of synthesized anserine are well-absorbed and that its degradation by serum carnosinase-1 is less pronounced compared to carnosine. This makes anserine a good candidate as a more stable carnosine-analogue to attenuate chronic diseases in humans.
Collapse
|
33
|
Ghodsi R, Kheirouri S, Nosrati R. Carnosine supplementation does not affect serum concentrations of advanced glycation and precursors of lipoxidation end products in autism: a randomized controlled clinical trial. Ann Clin Biochem 2018; 56:148-154. [PMID: 30089410 DOI: 10.1177/0004563218796860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Abundant evidence indicate the increased levels of oxidative stress in patients with autism. Advanced glycation end products and advanced lipoxidation end products and their precursors play a major role in increased oxidative stress in numerous metabolic and neurologic diseases. Carnosine is a natural dipeptide with antiglycation effects. The aim of this trial was to examine the effects of carnosine supplementation on the advanced glycation end products and the precursors of advanced lipoxidation end products in patients with autism. METHOD This randomized double-blind, placebo-controlled clinical trial was conducted on 36 autistic children, 18 in the carnosine group and 18 in the placebo group. The groups received a daily supplement of 500 mg carnosine or placebo for two months, respectively. Plasma concentrations of glycation and precursors of lipoxidation markers were evaluated by enzyme-linked immunosorbent assay method. RESULTS In all, 63.9% of the autistic children had normal nutritional status. Carnosine supplementation did not significantly alter plasma concentrations of advanced glycation end products and precursors of advanced lipoxidation end products in autistic children. CONCLUSION The findings indicate that supplementation of carnosine could not change advanced glycation end products and precursor of advanced lipoxidation end products in autistic children.
Collapse
Affiliation(s)
- Ramin Ghodsi
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, I. R. Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, I. R. Iran
| | - Rahmat Nosrati
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, I. R. Iran
| |
Collapse
|
34
|
Pereira NRM, Tufik S, Hachul H. Does L-Carnitine Supplementation Improve Sleep Quality in Children with Autism? Basic Clin Pharmacol Toxicol 2018; 123:229-230. [DOI: 10.1111/bcpt.13056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Sergio Tufik
- Department of Psychobiology; Federal University of Sao Paulo; São Paulo Brazil
| | - Helena Hachul
- Department of Psychobiology; Federal University of Sao Paulo; São Paulo Brazil
| |
Collapse
|
35
|
Kheirouri S, Alizadeh M. Response to ‘Does l
-Carnitine Supplementation Improve Sleep Quality in Children with Autism?’. Basic Clin Pharmacol Toxicol 2018; 123:231-232. [DOI: 10.1111/bcpt.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sorayya Kheirouri
- Department of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mohammad Alizadeh
- Department of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|