1
|
Ji RL, Tao YX. Biased signaling in drug discovery and precision medicine. Pharmacol Ther 2025; 268:108804. [PMID: 39904401 DOI: 10.1016/j.pharmthera.2025.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Receptors are crucial for converting chemical and environmental signals into cellular responses, making them prime targets in drug discovery, with about 70% of drugs targeting these receptors. Biased signaling, or functional selectivity, has revolutionized drug development by enabling precise modulation of receptor signaling pathways. This concept is more firmly established in G protein-coupled receptor and has now been applied to other receptor types, including ion channels, receptor tyrosine kinases, and nuclear receptors. Advances in structural biology have further refined our understanding of biased signaling. This targeted approach enhances therapeutic efficacy and potentially reduces side effects. Numerous biased drugs have been developed and approved as therapeutics to treat various diseases, demonstrating their significant therapeutic potential. This review provides a comprehensive overview of biased signaling in drug discovery and disease treatment, highlighting recent advancements and exploring the therapeutic potential of these innovative modulators across various diseases.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
2
|
Ma Y, Patterson B, Zhu L. Biased signaling in GPCRs: Structural insights and implications for drug development. Pharmacol Ther 2025; 266:108786. [PMID: 39719175 DOI: 10.1016/j.pharmthera.2024.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans, playing a crucial role in regulating diverse cellular processes and serving as primary drug targets. Traditional drug design has primarily focused on ligands that uniformly activate or inhibit GPCRs. However, the concept of biased agonism-where ligands selectively stabilize distinct receptor conformations, leading to unique signaling outcomes-has introduced a paradigm shift in therapeutic development. Despite the promise of biased agonists to enhance drug efficacy and minimize side effects, a comprehensive understanding of the structural and biophysical mechanisms underlying biased signaling is essential. Recent advancements in GPCR structural biology have provided unprecedented insights into ligand binding, conformational dynamics, and the molecular basis of biased signaling. These insights, combined with improved techniques for characterizing ligand efficacy, have driven the development of biased ligands for several GPCRs, including opioid, angiotensin, and adrenergic receptors. This review synthesizes these developments, from mechanisms to drug discovery in biased signaling, emphasizing the role of structural insights in the rational design of next-generation biased agonists with superior therapeutic profiles. Ultimately, these advances hold the potential to revolutionize GPCR-targeted drug discovery, paving the way for more precise and effective treatments.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Brandon Patterson
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States.
| |
Collapse
|
3
|
Bircan A, Kuru N, Dereli O, Selçuk B, Adebali O. Evolutionary history of calcium-sensing receptors unveils hyper/hypocalcemia-causing mutations. PLoS Comput Biol 2024; 20:e1012591. [PMID: 39531485 PMCID: PMC11584096 DOI: 10.1371/journal.pcbi.1012591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 11/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Despite advancements in understanding the structure and functions of the Calcium Sensing Receptor (CaSR), gaps persist in our knowledge of the specific functions of its residues. In this study, we used phylogeny-based techniques to identify functionally equivalent orthologs of CaSR, predict residue significance, and compute specificity-determining position (SDP) scores to understand its evolutionary basis. The analysis revealed exceptional conservation of the CaSR subfamily, emphasizing the critical role of residues with high SDP scores in receptor activation and pathogenicity. To further enhance the findings, gradient-boosting trees were applied to differentiate between gain- and loss-of-function mutations responsible for hypocalcemia and hypercalcemia. Lastly, we investigated the importance of these mutations in the context of receptor activation dynamics. In summary, through comprehensive exploration of the evolutionary history of the CaSR subfamily, coupled with innovative phylogenetic methodologies, we identified activating and inactivating residues, providing valuable insights into the regulation of calcium homeostasis and its connections to associated disorders.
Collapse
Affiliation(s)
- Aylin Bircan
- Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Türkiye
| | - Nurdan Kuru
- Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Türkiye
| | - Onur Dereli
- Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Türkiye
| | - Berkay Selçuk
- Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Türkiye
| | - Ogün Adebali
- Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Türkiye
- TÜBİTAK Research Institute for Fundamental Sciences, Gebze, Türkiye
| |
Collapse
|
4
|
Liu F, Wu CG, Tu CL, Glenn I, Meyerowitz J, Kaplan AL, Lyu J, Cheng Z, Tarkhanova OO, Moroz YS, Irwin JJ, Chang W, Shoichet BK, Skiniotis G. Large library docking identifies positive allosteric modulators of the calcium-sensing receptor. Science 2024; 385:eado1868. [PMID: 39298584 PMCID: PMC11629082 DOI: 10.1126/science.ado1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/17/2024] [Indexed: 09/22/2024]
Abstract
Positive allosteric modulator (PAM) drugs enhance the activation of the calcium-sensing receptor (CaSR) and suppress parathyroid hormone (PTH) secretion. Unfortunately, these hyperparathyroidism-treating drugs can induce hypocalcemia and arrhythmias. Seeking improved modulators, we docked libraries of 2.7 million and 1.2 billion molecules against the CaSR structure. The billion-molecule docking found PAMs with a 2.7-fold higher hit rate than the million-molecule library, with hits up to 37-fold more potent. Structure-based optimization led to nanomolar leads. In ex vivo organ assays, one of these PAMs was 100-fold more potent than the standard of care, cinacalcet, and reduced serum PTH levels in mice without the hypocalcemia typical of CaSR drugs. As determined from cryo-electron microscopy structures, the PAMs identified here promote CaSR conformations that more closely resemble the activated state than those induced by the established drugs.
Collapse
Affiliation(s)
- Fangyu Liu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cheng-Guo Wu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chia-Ling Tu
- San Francisco VA Medical Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Isabella Glenn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Justin Meyerowitz
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anat Levit Kaplan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zhiqiang Cheng
- San Francisco VA Medical Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Yurii S. Moroz
- Chemspace LLC, 02094 Kyiv, Ukraine
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
- Enamine Ltd., 02094 Kyiv, Ukraine
| | - John J. Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Wenhan Chang
- San Francisco VA Medical Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Wu KC, Leong IL, Leung YM. Ca 2+-sensing receptor-TRP channel-mediated Ca 2+ signaling: Functional diversity and pharmacological complexity. Eur J Pharmacol 2024; 977:176717. [PMID: 38857682 DOI: 10.1016/j.ejphar.2024.176717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
The Ca2+-sensing receptor (CaSR) is a G-protein-coupled receptor activated by elevated concentrations of extracellular Ca2+, and was initially known for its regulation of parathyroid hormone (PTH) release. Ubiquitous expression of CaSR in different tissues and organs was later noted and CaSR participation in various physiological functions was demonstrated. Accumulating evidence has suggested that CaSR functionally interacts with transient receptor potential (TRP) channels, which are mostly non-selective cation channels involved in sensing temperature, pain and stress. This review describes the interactions of CaSR with TRP channels in diverse cell types to trigger a variety of biological responses. CaSR has been known to interact with different types of G proteins. Possible involvements of G proteins, other signaling and scaffolding protein intermediates in CaSR-TRP interaction are discussed. In addition, an attempt will be made to extend the current understanding of biased agonism of CaSR.
Collapse
Affiliation(s)
- King-Chuen Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Chang Gung University of Science and Technology, Chiayi, Taiwan; Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Iat-Lon Leong
- Division of Cardiology, University Hospital, Macau University of Science and Technology, Macau
| | - Yuk-Man Leung
- Department of Physiology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
6
|
Chuinsiri N, Siraboriphantakul N, Kendall L, Yarova P, Nile CJ, Song B, Obara I, Durham J, Telezhkin V. Calcium-sensing receptor regulates Kv7 channels via G i/o protein signalling and modulates excitability of human induced pluripotent stem cell-derived nociceptive-like neurons. Br J Pharmacol 2024; 181:2676-2696. [PMID: 38627101 DOI: 10.1111/bph.16349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Neuropathic pain, a debilitating condition with unmet medical needs, can be characterised as hyperexcitability of nociceptive neurons caused by dysfunction of ion channels. Voltage-gated potassium channels type 7 (Kv7), responsible for maintaining neuronal resting membrane potential and thus excitability, reside under tight control of G protein-coupled receptors (GPCRs). Calcium-sensing receptor (CaSR) is a GPCR that regulates the activity of numerous ion channels, but whether CaSR can control Kv7 channel function has been unexplored until now. EXPERIMENTAL APPROACH Experiments were conducted in recombinant cell models, mouse dorsal root ganglia (DRG) neurons and human induced pluripotent stem cell (hiPSC)-derived nociceptive-like neurons using patch-clamp electrophysiology and molecular biology techniques. KEY RESULTS Our results demonstrate that CaSR is expressed in recombinant cell models, hiPSC-derived nociceptive-like neurons and mouse DRG neurons, and its activation induced depolarisation via Kv7.2/7.3 channel inhibition. The CaSR-Kv7.2/7.3 channel crosslink was mediated via the Gi/o protein-adenylate cyclase-cyclicAMP-protein kinase A signalling cascade. Suppression of CaSR function demonstrated a potential to rescue hiPSC-derived nociceptive-like neurons from algogenic cocktail-induced hyperexcitability. CONCLUSION AND IMPLICATIONS This study demonstrates that the CaSR-Kv7.2/7.3 channel crosslink, via a Gi/o protein signalling pathway, effectively regulates neuronal excitability, providing a feasible pharmacological target for neuronal hyperexcitability management in neuropathic pain.
Collapse
Affiliation(s)
- Nontawat Chuinsiri
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Oral Health Center, Suranaree University of TechnologyHospital, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | | - Luke Kendall
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Polina Yarova
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J Nile
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Bing Song
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Ilona Obara
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Justin Durham
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Vsevolod Telezhkin
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
7
|
Cheng L, Xia F, Li Z, Shen C, Yang Z, Hou H, Sun S, Feng Y, Yong X, Tian X, Qin H, Yan W, Shao Z. Structure, function and drug discovery of GPCR signaling. MOLECULAR BIOMEDICINE 2023; 4:46. [PMID: 38047990 PMCID: PMC10695916 DOI: 10.1186/s43556-023-00156-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are versatile and vital proteins involved in a wide array of physiological processes and responses, such as sensory perception (e.g., vision, taste, and smell), immune response, hormone regulation, and neurotransmission. Their diverse and essential roles in the body make them a significant focus for pharmaceutical research and drug development. Currently, approximately 35% of marketed drugs directly target GPCRs, underscoring their prominence as therapeutic targets. Recent advances in structural biology have substantially deepened our understanding of GPCR activation mechanisms and interactions with G-protein and arrestin signaling pathways. This review offers an in-depth exploration of both traditional and recent methods in GPCR structure analysis. It presents structure-based insights into ligand recognition and receptor activation mechanisms and delves deeper into the mechanisms of canonical and noncanonical signaling pathways downstream of GPCRs. Furthermore, it highlights recent advancements in GPCR-related drug discovery and development. Particular emphasis is placed on GPCR selective drugs, allosteric and biased signaling, polyphamarcology, and antibody drugs. Our goal is to provide researchers with a thorough and updated understanding of GPCR structure determination, signaling pathway investigation, and drug development. This foundation aims to propel forward-thinking therapeutic approaches that target GPCRs, drawing upon the latest insights into GPCR ligand selectivity, activation, and biased signaling mechanisms.
Collapse
Affiliation(s)
- Lin Cheng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyan Li
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenglong Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhiqian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hanlin Hou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Suyue Sun
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuying Feng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xihao Yong
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongxi Qin
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Tianfu Jincheng Laboratory, Frontiers Medical Center, Chengdu, 610212, China.
| |
Collapse
|
8
|
Eiger DS, Hicks C, Gardner J, Pham U, Rajagopal S. Location bias: A "Hidden Variable" in GPCR pharmacology. Bioessays 2023; 45:e2300123. [PMID: 37625014 PMCID: PMC11900906 DOI: 10.1002/bies.202300123] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and primarily signal through two main effector proteins: G proteins and β-arrestins. Many agonists of GPCRs promote "biased" responses, in which different cellular signaling pathways are activated with varying efficacies. The mechanisms underlying biased signaling have not been fully elucidated, with many potential "hidden variables" that regulate this behavior. One contributor is "location bias," which refers to the generation of unique signaling cascades from a given GPCR depending upon the cellular location at which the receptor is signaling. Here, we review evidence that GPCRs are expressed at and traffic to various subcellular locations and discuss how location bias can impact the pharmacologic properties and characterization of GPCR agonists. We also evaluate how differences in subcellular environments can modulate GPCR signaling, highlight the physiological significance of subcellular GPCR signaling, and discuss the therapeutic potential of exploiting GPCR location bias.
Collapse
Affiliation(s)
- Dylan Scott Eiger
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Chloe Hicks
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Julia Gardner
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
9
|
Jörg M, van der Westhuizen ET, Lu Y, Christopher Choy KH, Shackleford DM, Khajehali E, Tobin AB, Thal DM, Capuano B, Christopoulos A, Valant C, Scammells PJ. Design, synthesis and evaluation of novel 2-phenyl-3-(1H-pyrazol-4-yl)pyridine positive allosteric modulators for the M 4 mAChR. Eur J Med Chem 2023; 258:115588. [PMID: 37423123 PMCID: PMC7616163 DOI: 10.1016/j.ejmech.2023.115588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
Translation of muscarinic acetylcholine receptor (mAChR) agonists into clinically used therapeutic agents has been difficult due to their poor subtype selectivity. M4 mAChR subtype-selective positive allosteric modulators (PAMs) may provide better therapeutic outcomes, hence investigating their detailed pharmacological properties is crucial to advancing them into the clinic. Herein, we report the synthesis and comprehensive pharmacological evaluation of M4 mAChR PAMs structurally related to 1e, Me-C-c, [11C]MK-6884 and [18F]12. Our results show that small structural changes to the PAMs can result in pronounced differences to baseline, potency (pEC50) and maximum effect (Emax) measures in cAMP assays when compared to the endogenous ligand acetylcholine (ACh) without the addition of the PAMs. Eight selected PAMs were further assessed to determine their binding affinity and potential signalling bias profile between cAMP and β-arrestin 2 recruitment. These rigorous analyses resulted in the discovery of the novel PAMs, 6k and 6l, which exhibit improved allosteric properties compared to the lead compound, and probative in vivo exposure studies in mice confirmed that they maintain the ability to cross the blood-brain barrier, making them more suitable for future preclinical assessment.
Collapse
Affiliation(s)
- Manuela Jörg
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Emma T van der Westhuizen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Yao Lu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia; ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - K H Christopher Choy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Elham Khajehali
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia; ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia; ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia; Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia.
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia.
| |
Collapse
|
10
|
Pallareti L, Rath TF, Trapkov B, Tsonkov T, Nielsen AT, Harpsøe K, Gentry PR, Bräuner-Osborne H, Gloriam DE, Foster SR. Pharmacological characterization of novel small molecule agonists and antagonists for the orphan receptor GPR139. Eur J Pharmacol 2023; 943:175553. [PMID: 36736525 DOI: 10.1016/j.ejphar.2023.175553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
The orphan G protein-coupled receptor GPR139 is predominantly expressed in the central nervous system and has attracted considerable interest as a therapeutic target. However, the biological role of this receptor remains somewhat elusive, in part due to the lack of quality pharmacological tools to investigate GPR139 function. In an effort to understand GPR139 signaling and to identify improved compounds, in this study we performed virtual screening and analog searches, in combination with multiple pharmacological assays. We characterized GPR139-dependent signaling using previously published reference agonists in Ca2+ mobilization and inositol monophosphate accumulation assays, as well as a novel real-time GPR139 internalization assay. For the four reference agonists tested, the rank order of potency was conserved across signaling and internalization assays: JNJ-63533054 > Compound 1a » Takeda > AC4 > DL43, consistent with previously reported values. We noted an increased efficacy of JNJ-63533054-mediated inositol monophosphate signaling and internalization, relative to Compound 1a. We then performed virtual screening for GPR139 agonist and antagonist compounds that were screened and validated in GPR139 functional assays. We identified four GPR139 agonists that were active in all assays, with similar or reduced potency relative to known compounds. Likewise, compound analogs selected based on GPR139 agonist and antagonist substructure searches behaved similarly to their parent compounds. Thus, we have characterized GPR139 signaling for multiple new ligands using G protein-dependent assays and a new real-time internalization assay. These data add to the GPR139 tool compound repertoire, which could be optimized in future medical chemistry campaigns.
Collapse
Affiliation(s)
- Lisa Pallareti
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Tine F Rath
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Boris Trapkov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Tsonko Tsonkov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Thorup Nielsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Patrick R Gentry
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Simon R Foster
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Monash Biomedicine Discovery Institute, Cardiovascular Disease Program, Department of Pharmacology, Monash University, Clayton, VIC, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
11
|
Shen S, Zhao C, Wu C, Sun S, Li Z, Yan W, Shao Z. Allosteric modulation of G protein-coupled receptor signaling. Front Endocrinol (Lausanne) 2023; 14:1137604. [PMID: 36875468 PMCID: PMC9978769 DOI: 10.3389/fendo.2023.1137604] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of transmembrane proteins, regulate a wide array of physiological processes in response to extracellular signals. Although these receptors have proven to be the most successful class of drug targets, their complicated signal transduction pathways (including different effector G proteins and β-arrestins) and mediation by orthosteric ligands often cause difficulties for drug development, such as on- or off-target effects. Interestingly, identification of ligands that engage allosteric binding sites, which are different from classic orthosteric sites, can promote pathway-specific effects in cooperation with orthosteric ligands. Such pharmacological properties of allosteric modulators offer new strategies to design safer GPCR-targeted therapeutics for various diseases. Here, we explore recent structural studies of GPCRs bound to allosteric modulators. Our inspection of all GPCR families reveals recognition mechanisms of allosteric regulation. More importantly, this review highlights the diversity of allosteric sites and presents how allosteric modulators control specific GPCR pathways to provide opportunities for the development of new valuable agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Cherkashin AP, Rogachevskaja OA, Kabanova NV, Kotova PD, Bystrova MF, Kolesnikov SS. Taste Cells of the Type III Employ CASR to Maintain Steady Serotonin Exocytosis at Variable Ca 2+ in the Extracellular Medium. Cells 2022; 11:1369. [PMID: 35456048 PMCID: PMC9030112 DOI: 10.3390/cells11081369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/17/2022] Open
Abstract
Type III taste cells are the only taste bud cells which express voltage-gated (VG) Ca2+ channels and employ Ca2+-dependent exocytosis to release neurotransmitters, particularly serotonin. The taste bud is a tightly packed cell population, wherein extracellular Ca2+ is expected to fluctuate markedly due to the electrical activity of taste cells. It is currently unclear whether the Ca2+ entry-driven synapse in type III cells could be reliable enough at unsteady extracellular Ca2. Here we assayed depolarization-induced Ca2+ signals and associated serotonin release in isolated type III cells at varied extracellular Ca2+. It turned out that the same depolarizing stimulus elicited invariant Ca2+ signals in type III cells irrespective of bath Ca2+ varied within 0.5-5 mM. The serotonin release from type III cells was assayed with the biosensor approach by using HEK-293 cells co-expressing the recombinant 5-HT4 receptor and genetically encoded cAMP sensor Pink Flamindo. Consistently with the weak Ca2+ dependence of intracellular Ca2+ transients produced by VG Ca2+ entry, depolarization-triggered serotonin secretion varied negligibly with bath Ca2+. The evidence implicated the extracellular Ca2+-sensing receptor in mediating the negative feedback mechanism that regulates VG Ca2+ entry and levels off serotonin release in type III cells at deviating Ca2+ in the extracellular medium.
Collapse
Affiliation(s)
| | | | | | | | | | - Stanislav S. Kolesnikov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia; (A.P.C.); (O.A.R.); (N.V.K.); (P.D.K.); (M.F.B.)
| |
Collapse
|
13
|
Gonçalves-Alves E, Garcia M, Rodríguez-Hernández CJ, Gómez-González S, Ecker RC, Suñol M, Muñoz-Aznar O, Carcaboso AM, Mora J, Lavarino C, Mateo-Lozano S. AC-265347 Inhibits Neuroblastoma Tumor Growth by Induction of Differentiation without Causing Hypocalcemia. Int J Mol Sci 2022; 23:ijms23084323. [PMID: 35457141 PMCID: PMC9027928 DOI: 10.3390/ijms23084323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood, with heterogeneous clinical manifestations ranging from spontaneous regression to aggressive metastatic disease. The calcium-sensing receptor (CaSR) is a G protein-coupled receptor (GPCR) that senses plasmatic fluctuation in the extracellular concentration of calcium and plays a key role in maintaining calcium homeostasis. We have previously reported that this receptor exhibits tumor suppressor properties in neuroblastoma. The activation of CaSR with cinacalcet, a positive allosteric modulator of CaSR, reduces neuroblastoma tumor growth by promoting differentiation, endoplasmic reticulum (ER) stress and apoptosis. However, cinacalcet treatment results in unmanageable hypocalcemia in patients. Based on the bias signaling shown by calcimimetics, we aimed to identify a new drug that might exert tumor-growth inhibition similar to cinacalcet, without affecting plasma calcium levels. We identified a structurally different calcimimetic, AC-265347, as a promising therapeutic agent for neuroblastoma, since it reduced tumor growth by induction of differentiation, without affecting plasma calcium levels. Microarray analysis suggested biased allosteric modulation of the CaSR signaling by AC-265347 and cinacalcet towards distinct intracellular pathways. No upregulation of genes involved in calcium signaling and ER stress were observed in patient-derived xenografts (PDX) models exposed to AC-265347. Moreover, the most significant upregulated biological pathways promoted by AC-265347 were linked to RHO GTPases signaling. AC-265347 upregulated cancer testis antigens (CTAs), providing new opportunities for CTA-based immunotherapies. Taken together, this study highlights the importance of the biased allosteric modulation when targeting GPCRs in cancer. More importantly, the capacity of AC-265347 to promote differentiation of malignant neuroblastoma cells provides new opportunities, alone or in combination with other drugs, to treat high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Eliana Gonçalves-Alves
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (E.G.-A.); (M.G.); (C.J.R.-H.); (S.G.-G.); (O.M.-A.); (A.M.C.); (J.M.); (C.L.)
| | - Marta Garcia
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (E.G.-A.); (M.G.); (C.J.R.-H.); (S.G.-G.); (O.M.-A.); (A.M.C.); (J.M.); (C.L.)
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Carlos J. Rodríguez-Hernández
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (E.G.-A.); (M.G.); (C.J.R.-H.); (S.G.-G.); (O.M.-A.); (A.M.C.); (J.M.); (C.L.)
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Soledad Gómez-González
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (E.G.-A.); (M.G.); (C.J.R.-H.); (S.G.-G.); (O.M.-A.); (A.M.C.); (J.M.); (C.L.)
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | | | - Mariona Suñol
- Department of Pathology, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain;
| | - Oscar Muñoz-Aznar
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (E.G.-A.); (M.G.); (C.J.R.-H.); (S.G.-G.); (O.M.-A.); (A.M.C.); (J.M.); (C.L.)
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Angel M. Carcaboso
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (E.G.-A.); (M.G.); (C.J.R.-H.); (S.G.-G.); (O.M.-A.); (A.M.C.); (J.M.); (C.L.)
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (E.G.-A.); (M.G.); (C.J.R.-H.); (S.G.-G.); (O.M.-A.); (A.M.C.); (J.M.); (C.L.)
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (E.G.-A.); (M.G.); (C.J.R.-H.); (S.G.-G.); (O.M.-A.); (A.M.C.); (J.M.); (C.L.)
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Silvia Mateo-Lozano
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (E.G.-A.); (M.G.); (C.J.R.-H.); (S.G.-G.); (O.M.-A.); (A.M.C.); (J.M.); (C.L.)
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Correspondence:
| |
Collapse
|
14
|
Dinh LV, DeBono A, Keller AN, Josephs TM, Gregory KJ, Leach K, Capuano B. Development of AC265347-Inspired Calcium-Sensing Receptor Ago-Positive Allosteric Modulators. ChemMedChem 2021; 16:3451-3462. [PMID: 34216111 DOI: 10.1002/cmdc.202100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 11/07/2022]
Abstract
The calcium-sensing receptor (CaSR) is a clinical target in the treatment of hyperparathyroidism and related diseases. However, clinical use of approved CaSR-targeting drugs such as cinacalcet is limited due to adverse side effects including hypocalcaemia, nausea and vomiting, and in some instances, a lack of efficacy. The CaSR agonist and positive allosteric modulator (ago-PAM), AC265347, is chemically distinct from clinically-approved CaSR PAMs. AC265347 potently suppressed parathyroid hormone (PTH) release in rats with a lower propensity to cause hypocalcaemia compared to cinacalcet and may therefore offer benefits over current CaSR PAMs. Here we report a structure activity relationship (SAR) study seeking to optimise AC265347 as a drug candidate and disclose the discovery of AC265347-like compounds with diverse pharmacology and improved physicochemical and drug-like properties.
Collapse
Affiliation(s)
- Le Vi Dinh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
| | - Aaron DeBono
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
- Department of Pharmacology, Monash University, 9 Ancora Imparo Way, Clayton, VIC 3800, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
- Department of Pharmacology, Monash University, 9 Ancora Imparo Way, Clayton, VIC 3800, Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
15
|
Kalinkovich A, Livshits G. Biased and allosteric modulation of bone cell-expressing G protein-coupled receptors as a novel approach to osteoporosis therapy. Pharmacol Res 2021; 171:105794. [PMID: 34329703 DOI: 10.1016/j.phrs.2021.105794] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/16/2022]
Abstract
On the cellular level, osteoporosis (OP) is a result of imbalanced bone remodeling, in which osteoclastic bone resorption outcompetes osteoblastic bone formation. Currently available OP medications include both antiresorptive and bone-forming drugs. However, their long-term use in OP patients, mainly in postmenopausal women, is accompanied by severe side effects. Notably, the fundamental coupling between bone resorption and formation processes underlies the existence of an undesirable secondary outcome that bone anabolic or anti-resorptive drugs also reduce bone formation. This drawback requires the development of anti-OP drugs capable of selectively stimulating osteoblastogenesis and concomitantly reducing osteoclastogenesis. We propose that the application of small synthetic biased and allosteric modulators of bone cell receptors, which belong to the G-protein coupled receptors (GPCR) family, could be the key to resolving the undesired anti-OP drug selectivity. This approach is based on the capacity of these GPCR modulators, unlike the natural ligands, to trigger signaling pathways that promote beneficial effects on bone remodeling while blocking potentially deleterious effects. Under the settings of OP, an optimal anti-OP drug should provide fine-tuned regulation of downstream effects, for example, intermittent cyclic AMP (cAMP) elevation, preservation of Ca2+ balance, stimulation of osteoprotegerin (OPG) and estrogen production, suppression of sclerostin secretion, and/or preserved/enhanced canonical β-catenin/Wnt signaling pathway. As such, selective modulation of GPCRs involved in bone remodeling presents a promising approach in OP treatment. This review focuses on the evidence for the validity of our hypothesis.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel; Adelson School of Medicine, Ariel University, Ariel 4077625, Israel.
| |
Collapse
|
16
|
Garai S, Leo LM, Szczesniak AM, Hurst DP, Schaffer PC, Zagzoog A, Black T, Deschamps JR, Miess E, Schulz S, Janero DR, Straiker A, Pertwee RG, Abood ME, Kelly MEM, Reggio PH, Laprairie RB, Thakur GA. Discovery of a Biased Allosteric Modulator for Cannabinoid 1 Receptor: Preclinical Anti-Glaucoma Efficacy. J Med Chem 2021; 64:8104-8126. [PMID: 33826336 DOI: 10.1021/acs.jmedchem.1c00040] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We apply the magic methyl effect to improve the potency/efficacy of GAT211, the prototypic 2-phenylindole-based cannabinoid type-1 receptor (CB1R) agonist-positive allosteric modulator (ago-PAM). Introducing a methyl group at the α-position of nitro group generated two diastereomers, the greater potency and efficacy of erythro, (±)-9 vs threo, (±)-10 constitutes the first demonstration of diastereoselective CB1R-allosteric modulator interaction. Of the (±)-9 enantiomers, (-)-(S,R)-13 evidenced improved potency over GAT211 as a CB1R ago-PAM, whereas (+)-(R,S)-14 was a CB1R allosteric agonist biased toward G protein- vs β-arrestin1/2-dependent signaling. (-)-(S,R)-13 and (+)-(R,S)-14 were devoid of undesirable side effects (triad test), and (+)-(R,S)-14 reduced intraocular pressure with an unprecedentedly long duration of action in a murine glaucoma model. (-)-(S,R)-13 docked into both a CB1R extracellular PAM and intracellular allosteric-agonist site(s), whereas (+)-(R,S)-14 preferentially engaged only the latter. Exploiting G-protein biased CB1R-allosteric modulation can offer safer therapeutic candidates for glaucoma and, potentially, other diseases.
Collapse
Affiliation(s)
- Sumanta Garai
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Luciana M Leo
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Anna-Maria Szczesniak
- Department of Pharmacology and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Dow P Hurst
- Center for Drug Discovery, University of North Carolina Greensboro, Greensboro, North Carolina 27402, United States
| | - Peter C Schaffer
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Pl, Saskatoon, Saskatchewan S7N2Z4, Canada
| | - Tallan Black
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Pl, Saskatoon, Saskatchewan S7N2Z4, Canada
| | - Jeffrey R Deschamps
- Naval Research Laboratory, Code 6930, 4555 Overlook Avenue, Washington, District of Columbia 20375, United States
| | - Elke Miess
- Department of Pharmacology and Toxicology, Jena University Hospital-Friedrich Schiller University Jena, D-07747 Jena, Germany
| | - Stefan Schulz
- Department of Pharmacology and Toxicology, Jena University Hospital-Friedrich Schiller University Jena, D-07747 Jena, Germany
| | - David R Janero
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alex Straiker
- The Gill Center and the Department of Psychological & Brain Sciences, Indiana University, 1101 E. 10th St, Bloomington, Indiana 47405, United States
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Melanie E M Kelly
- Department of Pharmacology and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Patricia H Reggio
- Center for Drug Discovery, University of North Carolina Greensboro, Greensboro, North Carolina 27402, United States
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Pl, Saskatoon, Saskatchewan S7N2Z4, Canada
- Department of Pharmacology and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
17
|
Corelli F. Has a "Chemical Magic" Opened up New Prospects for Glaucoma? J Med Chem 2021; 64:8101-8103. [PMID: 34019766 DOI: 10.1021/acs.jmedchem.1c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chemical modification of the prototype CB1R ago-PAM, GAT211, yielded new CB1R allosteric modulators (-)-(S,R)-13 and (+)-(R,S)-14, which showed significant bias for CB1R signaling pathways, as supported by docking studies. Compound 14 efficiently lowered elevated intraocular pressure when it is due to an increase in endocannabinoid tone. This article may open new avenues to meet the therapeutic needs presented by glaucoma.
Collapse
Affiliation(s)
- Federico Corelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
18
|
Slosky LM, Caron MG, Barak LS. Biased Allosteric Modulators: New Frontiers in GPCR Drug Discovery. Trends Pharmacol Sci 2021; 42:283-299. [PMID: 33581873 PMCID: PMC9797227 DOI: 10.1016/j.tips.2020.12.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors in the genome and the most successful family of targets of FDA-approved drugs. New frontiers in GPCR drug discovery remain, however, as achieving receptor subtype selectivity and controlling off- and on-target side effects are not always possible with classic agonist and antagonist ligands. These challenges may be overcome by focusing development efforts on allosteric ligands that confer signaling bias. Biased allosteric modulators (BAMs) are an emerging class of GPCR ligands that engage less well-conserved regulatory motifs outside the orthosteric pocket and exert pathway-specific effects on receptor signaling. The unique ways that BAMs texturize receptor signaling present opportunities to fine-tune physiology and develop safer, more selective therapeutics. Here, we provide a conceptual framework for understanding the pharmacology of BAMs, explore their therapeutic potential, and discuss strategies for their discovery.
Collapse
Affiliation(s)
- Lauren M. Slosky
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Marc G. Caron
- Departments of Cell Biology, Neurobiology and Medicine, Duke University, Durham, NC 27710, USA,Correspondence: (L.S.B.); (M.G.C.)
| | - Lawrence S. Barak
- Department of Cell Biology, Duke University, Durham, NC 27710, USA,Correspondence: (L.S.B.); (M.G.C.)
| |
Collapse
|
19
|
Diao J, DeBono A, Josephs TM, Bourke JE, Capuano B, Gregory KJ, Leach K. Therapeutic Opportunities of Targeting Allosteric Binding Sites on the Calcium-Sensing Receptor. ACS Pharmacol Transl Sci 2021; 4:666-679. [PMID: 33860192 DOI: 10.1021/acsptsci.1c00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 01/24/2023]
Abstract
The CaSR is a class C G protein-coupled receptor (GPCR) that acts as a multimodal chemosensor to maintain diverse homeostatic functions. The CaSR is a clinical therapeutic target in hyperparathyroidism and has emerged as a putative target in several other diseases. These include hyper- and hypocalcaemia caused either by mutations in the CASR gene or in genes that regulate CaSR signaling and expression, and more recently in asthma. The development of CaSR-targeting drugs is complicated by the fact that the CaSR possesses many different binding sites for endogenous and exogenous agonists and allosteric modulators. Binding sites for endogenous and exogenous ligands are located throughout the large CaSR protein and are interconnected in ways that we do not yet fully understand. This review summarizes our current understanding of CaSR physiology, signaling, and structure and how the many different binding sites of the CaSR may be targeted to treat disease.
Collapse
Affiliation(s)
- Jiayin Diao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Aaron DeBono
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jane E Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, 9 Ancora Imparo Way, Clayton, Victoria 3800, Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Biomedicine Discovery Institute, Monash University, 9 Ancora Imparo Way, Clayton, Victoria 3800, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Biomedicine Discovery Institute, Monash University, 9 Ancora Imparo Way, Clayton, Victoria 3800, Australia
| |
Collapse
|
20
|
|
21
|
Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D, Conigrave AD, Bräuner-Osborne H. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol Rev 2020; 72:558-604. [PMID: 32467152 PMCID: PMC7116503 DOI: 10.1124/pr.119.018531] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor that responds to multiple endogenous agonists and allosteric modulators, including divalent and trivalent cations, L-amino acids, γ-glutamyl peptides, polyamines, polycationic peptides, and protons. The CaSR plays a critical role in extracellular calcium (Ca2+ o) homeostasis, as demonstrated by the many naturally occurring mutations in the CaSR or its signaling partners that cause Ca2+ o homeostasis disorders. However, CaSR tissue expression in mammals is broad and includes tissues unrelated to Ca2+ o homeostasis, in which it, for example, regulates the secretion of digestive hormones, airway constriction, cardiovascular effects, cellular differentiation, and proliferation. Thus, although the CaSR is targeted clinically by the positive allosteric modulators (PAMs) cinacalcet, evocalcet, and etelcalcetide in hyperparathyroidism, it is also a putative therapeutic target in diabetes, asthma, cardiovascular disease, and cancer. The CaSR is somewhat unique in possessing multiple ligand binding sites, including at least five putative sites for the "orthosteric" agonist Ca2+ o, an allosteric site for endogenous L-amino acids, two further allosteric sites for small molecules and the peptide PAM, etelcalcetide, and additional sites for other cations and anions. The CaSR is promiscuous in its G protein-coupling preferences, and signals via Gq/11, Gi/o, potentially G12/13, and even Gs in some cell types. Not surprisingly, the CaSR is subject to biased agonism, in which distinct ligands preferentially stimulate a subset of the CaSR's possible signaling responses, to the exclusion of others. The CaSR thus serves as a model receptor to study natural bias and allostery. SIGNIFICANCE STATEMENT: The calcium-sensing receptor (CaSR) is a complex G protein-coupled receptor that possesses multiple orthosteric and allosteric binding sites, is subject to biased signaling via several different G proteins, and has numerous (patho)physiological roles. Understanding the complexities of CaSR structure, function, and biology will aid future drug discovery efforts seeking to target this receptor for a diversity of diseases. This review summarizes what is known to date regarding key structural, pharmacological, and physiological features of the CaSR.
Collapse
Affiliation(s)
- Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Fadil M Hannan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Thor C Møller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Donald T Ward
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Enikö Kallay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rebecca S Mason
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rajesh V Thakker
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Daniela Riccardi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Arthur D Conigrave
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Hans Bräuner-Osborne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| |
Collapse
|
22
|
Probe dependence and biased potentiation of metabotropic glutamate receptor 5 is mediated by differential ligand interactions in the common allosteric binding site. Biochem Pharmacol 2020; 177:114013. [DOI: 10.1016/j.bcp.2020.114013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023]
|
23
|
Josephs TM, Keller AN, Khajehali E, DeBono A, Langmead CJ, Conigrave AD, Capuano B, Kufareva I, Gregory KJ, Leach K. Negative allosteric modulators of the human calcium-sensing receptor bind to overlapping and distinct sites within the 7-transmembrane domain. Br J Pharmacol 2020; 177:1917-1930. [PMID: 31881094 PMCID: PMC7070164 DOI: 10.1111/bph.14961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Negative allosteric modulators (NAMs) that target the calcium-sensing receptor (CaS receptor) were originally developed for the treatment of osteoporosis by stimulating the release of endogenous parathyroid hormone, but failed in human clinical trials. Several chemically and structurally distinct NAM scaffolds have been described, but it is not known how these different scaffolds interact with the CaS receptor to inhibit receptor signalling in response to agonists. EXPERIMENTAL APPROACH In the present study, we used a mutagenesis approach combined with analytical pharmacology and computational modelling to probe the binding sites of four distinct NAM scaffolds. KEY RESULTS Although all four scaffolds bind to the 7-transmembrane and/or extracellular or intracellular loops, they occupy distinct regions, as previously shown for positive allosteric modulators of the CaS receptor. Furthermore, different NAM scaffolds mediate negative allosteric modulation via distinct amino acid networks. CONCLUSION AND IMPLICATIONS These findings aid our understanding of how different NAMs bind to and inhibit the CaS receptor. Elucidation of allosteric binding sites in the CaS receptor has implications for the discovery of novel allosteric modulators.
Collapse
Affiliation(s)
- Tracy M. Josephs
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Andrew N. Keller
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Elham Khajehali
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Aaron DeBono
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Christopher J. Langmead
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Arthur D. Conigrave
- School of Life and Environmental SciencesUniversity of SydneySydneyNSWAustralia
| | - Ben Capuano
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Irina Kufareva
- Skaggs School of Pharmacy & Pharmaceutical SciencesUniversity of CaliforniaSan DiegoCAUSA
| | - Karen J. Gregory
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Katie Leach
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| |
Collapse
|
24
|
Park J, Langmead CJ, Riddy DM. New Advances in Targeting the Resolution of Inflammation: Implications for Specialized Pro-Resolving Mediator GPCR Drug Discovery. ACS Pharmacol Transl Sci 2020; 3:88-106. [PMID: 32259091 DOI: 10.1021/acsptsci.9b00075] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 12/19/2022]
Abstract
Chronic inflammation is a component of numerous diseases including autoimmune, metabolic, neurodegenerative, and cancer. The discovery and characterization of specialized pro-resolving mediators (SPMs) critical to the resolution of inflammation, and their cognate G protein-coupled receptors (GPCRs) has led to a significant increase in the understanding of this physiological process. Approximately 20 ligands, including lipoxins, resolvins, maresins, and protectins, and 6 receptors (FPR2/ALX, GPR32, GPR18, chemerin1, BLT1, and GPR37) have been identified highlighting the complex and multilayered nature of resolution. Therapeutic efforts in targeting these receptors have proved challenging, with very few ligands apparently progressing through to preclinical or clinical development. To date, some knowledge gaps remain in the understanding of how the activation of these receptors, and their downstream signaling, results in efficient resolution via apoptosis, phagocytosis, and efferocytosis of polymorphonuclear leukocytes (mainly neutrophils) and macrophages. SPMs bind and activate multiple receptors (ligand poly-pharmacology), while most receptors are activated by multiple ligands (receptor pleiotropy). In addition, allosteric binding sites have been identified signifying the capacity of more than one ligand to bind simultaneously. These fundamental characteristics of SPM receptors enable alternative targeting strategies to be considered, including biased signaling and allosteric modulation. This review describes those ligands and receptors involved in the resolution of inflammation, and highlights the most recent clinical trial results. Furthermore, we describe alternative mechanisms by which these SPM receptors could be targeted, paving the way for the identification of new therapeutics, perhaps with greater efficacy and fidelity.
Collapse
Affiliation(s)
- Julia Park
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Darren M Riddy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
25
|
Sensing Extracellular Calcium - An Insight into the Structure and Function of the Calcium-Sensing Receptor (CaSR). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:1031-1063. [PMID: 31646544 DOI: 10.1007/978-3-030-12457-1_41] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The calcium-sensing receptor (CaSR) is a G protein-coupled receptor that plays a key role in calcium homeostasis, by sensing free calcium levels in blood and regulating parathyroid hormone secretion in response. The CaSR is highly expressed in parathyroid gland and kidney where its role is well characterised, but also in other tissues where its function remains to be determined. The CaSR can be activated by a variety of endogenous ligands, as well as by synthetic modulators such as Cinacalcet, used in the clinic to treat secondary hyperparathyroidism in patients with chronic kidney disease. The CaSR couples to multiple G proteins, in a tissue-specific manner, activating several signalling pathways and thus regulating diverse intracellular events. The multifaceted nature of this receptor makes it a valuable therapeutic target for calciotropic and non-calciotropic diseases. It is therefore essential to understand the complexity behind the pharmacology, trafficking, and signalling characteristics of this receptor. This review provides an overview of the latest knowledge about the CaSR and discusses future hot topics in this field.
Collapse
|
26
|
Gregory KJ, Giraldo J, Diao J, Christopoulos A, Leach K. Evaluation of Operational Models of Agonism and Allosterism at Receptors with Multiple Orthosteric Binding Sites. Mol Pharmacol 2020; 97:35-45. [PMID: 31704718 DOI: 10.1124/mol.119.118091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/04/2019] [Indexed: 02/14/2025] Open
Abstract
Current operational models of agonism and allosterism quantify ligand actions at receptors where agonist concentration-response relationships are nonhyperbolic by introduction of a transducer slope that relates receptor occupancy to response. However, for some receptors nonhyperbolic concentration-response relationships arise from multiple endogenous agonist molecules binding to a receptor in a cooperative manner. Thus, we developed operational models of agonism in systems with cooperative agonist binding and evaluated the models by simulating data describing agonist effects. The models were validated by analyzing experimental data demonstrating the effects of agonists and allosteric modulators at receptors where agonist binding follows hyperbolic (M4 muscarinic acetylcholine receptors) or nonhyperbolic relationships (metabotropic glutamate receptor 5 and calcium-sensing receptor). For hyperbolic agonist concentration-response relationships, no differences in estimates of ligand affinity, efficacy, or cooperativity were observed when the slope was assigned to either a transducer slope or agonist binding slope. In contrast, for receptors with nonhyperbolic agonist concentration-response relationships, estimates of ligand affinity, efficacy, or cooperativity varied depending on the assignment of the slope. The extent of this variation depended on the magnitude of the slope value and agonist efficacy, and for allosteric modulators on the magnitude of cooperativity. The modified operational models described herein are well suited to analyzing agonist and modulator interactions at receptors that bind multiple orthosteric agonists in a cooperative manner. Accounting for cooperative agonist binding is essential to accurately quantify agonist and drug actions. SIGNIFICANCE STATEMENT: Some orthosteric agonists bind to multiple sites on a receptor, but current analytical methods to characterize such interactions are limited. Herein, we develop and validate operational models of agonism and allosterism for receptors with multiple orthosteric binding sites, and demonstrate that such models are essential to accurately quantify agonist and drug actions. These findings have important implications for the discovery and development of drugs targeting receptors such as the calcium-sensing receptor, which binds at least five calcium ions.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Binding Sites/drug effects
- Calcium/metabolism
- Calcium Ionophores/pharmacology
- Computer Simulation
- Dose-Response Relationship, Drug
- Drug Agonism
- Drug Synergism
- HEK293 Cells
- Humans
- Ligands
- Models, Biological
- Receptor, Metabotropic Glutamate 5/agonists
- Receptor, Metabotropic Glutamate 5/chemistry
- Receptor, Metabotropic Glutamate 5/metabolism
- Receptor, Muscarinic M4/agonists
- Receptor, Muscarinic M4/chemistry
- Receptor, Muscarinic M4/metabolism
- Receptors, Calcium-Sensing/agonists
- Receptors, Calcium-Sensing/chemistry
- Receptors, Calcium-Sensing/metabolism
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Australia (K.J.G., J.D., A.C., K.L.); Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain (J.G.); Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, Bellaterra, Spain (J.G.); and Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain (J.G.)
| | - Jesús Giraldo
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Australia (K.J.G., J.D., A.C., K.L.); Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain (J.G.); Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, Bellaterra, Spain (J.G.); and Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain (J.G.)
| | - Jiayin Diao
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Australia (K.J.G., J.D., A.C., K.L.); Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain (J.G.); Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, Bellaterra, Spain (J.G.); and Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain (J.G.)
| | - Arthur Christopoulos
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Australia (K.J.G., J.D., A.C., K.L.); Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain (J.G.); Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, Bellaterra, Spain (J.G.); and Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain (J.G.)
| | - Katie Leach
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Australia (K.J.G., J.D., A.C., K.L.); Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain (J.G.); Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, Bellaterra, Spain (J.G.); and Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain (J.G.)
| |
Collapse
|
27
|
Wongdee K, Rodrat M, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N. Factors inhibiting intestinal calcium absorption: hormones and luminal factors that prevent excessive calcium uptake. J Physiol Sci 2019; 69:683-696. [PMID: 31222614 PMCID: PMC10717634 DOI: 10.1007/s12576-019-00688-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/09/2019] [Indexed: 12/11/2022]
Abstract
Besides the two canonical calciotropic hormones, namely parathyroid hormone and 1,25-dihydroxyvitamin D [1,25(OH)2D3], there are several other endocrine and paracrine factors, such as prolactin, estrogen, and insulin-like growth factor that have been known to directly stimulate intestinal calcium absorption. Generally, to maintain an optimal plasma calcium level, these positive regulators enhance calcium absorption, which is indirectly counterbalanced by a long-loop negative feedback mechanism, i.e., through calcium-sensing receptor in the parathyroid chief cells. However, several lines of recent evidence have revealed the presence of calcium absorption inhibitors present in the intestinal lumen and extracellular fluid in close vicinity to enterocytes, which could also directly compromise calcium absorption. For example, luminal iron, circulating fibroblast growth factor (FGF)-23, and stanniocalcin can decrease calcium absorption, thereby preventing excessive calcium uptake under certain conditions. Interestingly, the intestinal epithelial cells themselves could lower their rate of calcium uptake after exposure to high luminal calcium concentration, suggesting a presence of an ultra-short negative feedback loop independent of systemic hormones. The existence of neural regulation is also plausible but this requires more supporting evidence. In the present review, we elaborate on the physiological significance of these negative feedback regulators of calcium absorption, and provide evidence to show how our body can efficiently restrict a flood of calcium influx in order to maintain calcium homeostasis.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Mayuree Rodrat
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Nateetip Krishnamra
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand.
| |
Collapse
|
28
|
Xu WX, Dai XQ, Weng JQ. K 2S 2O 8-Mediated Hydroxyalkylation of Benzothiazoles with Alcohols in Aqueous Solution. ACS OMEGA 2019; 4:11285-11292. [PMID: 31460231 PMCID: PMC6648524 DOI: 10.1021/acsomega.9b01695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
The K2S2O8-mediated hydroxyalkylation of 2H-benzothiazoles with aliphatic alcohols in aqueous solution was described. The mild and convenient protocol generated a series of hydroxyalkylated benzothiazoles in moderate to good yields. Besides, benzimidazole and ethers were also compatible in this reaction, leading to corresponding C2 ether-substituted heteroarenes.
Collapse
Affiliation(s)
- Wen-Xiu Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Xiao-Qiang Dai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Jian-Quan Weng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| |
Collapse
|
29
|
Kenakin T. Prescient Indices of Activity: The Application of Functional System Sensitivity to Measurement of Drug Effect. Trends Pharmacol Sci 2019; 40:529-539. [PMID: 31109799 DOI: 10.1016/j.tips.2019.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 01/06/2023]
Abstract
Through pharmacological procedures, indices of drug activity can be obtained that transcend the systems in which they are measured. If (i) affinity, (ii) efficacies, (iii) orthosteric versus allosteric interaction, and (iv) rate of receptor offset can be determined, activity can be predicted in all systems. This can yield more detailed profiles (fingerprints) of efficacy to better define the required activities of follow-up molecules should the original candidates fail in the clinic. The use of functional assays of varying sensitivity is a major tool in the lead optimization process and the observation of candidate molecule profiles in multiple functional assays can reveal all properties of candidate molecules. In this review, the different indices for agonists, antagonists, and allosteric modulators are defined while highlighting the application of functional assays in deriving these indices.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Road, Room 4042 Genetic Medicine Building, CB# 7365, Chapel Hill, NC 27599-7365, USA.
| |
Collapse
|
30
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
31
|
Chen ANY, Hellyer SD, Trinh PNH, Leach K, Gregory KJ. Identification of monellin as the first naturally derived proteinaceous allosteric agonist of metabotropic glutamate receptor 5. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:104-115. [DOI: 10.1111/bcpt.13239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Amy N. Y. Chen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology Monash University Parkville Victoria Australia
| | - Shane D. Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology Monash University Parkville Victoria Australia
| | - Phuc N. H. Trinh
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology Monash University Parkville Victoria Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology Monash University Parkville Victoria Australia
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology Monash University Parkville Victoria Australia
| |
Collapse
|
32
|
Makita N, Ando T, Sato J, Manaka K, Mitani K, Kikuchi Y, Niwa T, Ootaki M, Takeba Y, Matsumoto N, Kawakami A, Ogawa T, Nangaku M, Iiri T. Cinacalcet corrects biased allosteric modulation of CaSR by AHH autoantibody. JCI Insight 2019; 4:126449. [PMID: 30996138 DOI: 10.1172/jci.insight.126449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/12/2019] [Indexed: 12/13/2022] Open
Abstract
Biased agonism is a paradigm that may explain the selective activation of a signaling pathway via a GPCR that activates multiple signals. The autoantibody-induced inactivation of the calcium-sensing receptor (CaSR) causes acquired hypocalciuric hypercalcemia (AHH). Here, we describe an instructive case of AHH in which severe hypercalcemia was accompanied by an increased CaSR antibody titer. These autoantibodies operated as biased allosteric modulators of CaSR by targeting its Venus flytrap domain near the Ca2+-binding site. A positive allosteric modulator of CaSR, cinacalcet, which targets its transmembrane domain, overcame this autoantibody effect and successfully corrected the hypercalcemia in this patient. Hence, this is the first study to our knowledge that identifies the interaction site of a disease-causing GPCR autoantibody working as its biased allosteric modulator and demonstrates that cinacalcet can correct the AHH autoantibody effects both in vitro and in our AHH patient. Our observations provide potentially new insights into how biased agonism works and how to design a biased allosteric modulator of a GPCR. Our observations also indicate that the diagnosis of AHH is important because the severity of hypercalcemia may become fatal if the autoantibody titer increases. Calcimimetics may serve as good treatment options for some patients with severe AHH.
Collapse
Affiliation(s)
- Noriko Makita
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Takao Ando
- Division of Endocrinology and Metabolism, Nagasaki Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Junichiro Sato
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Katsunori Manaka
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Koji Mitani
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Yasuko Kikuchi
- Department of Breast and Endocrine Surgery, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Takayoshi Niwa
- Department of Breast and Endocrine Surgery, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Masanori Ootaki
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Naoki Matsumoto
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Atsushi Kawakami
- Division of Endocrinology and Metabolism, Nagasaki Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshihisa Ogawa
- Breast Center, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| | - Masaomi Nangaku
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Taroh Iiri
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan.,Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
33
|
Abstract
A great deal of experimental evidence suggests that ligands can stabilize different receptor active states that go on to interact with cellular signaling proteins to form a range of different complexes in varying quantities. In pleiotropically linked receptor systems, this leads to selective activation of some signaling pathways at the expense of others (biased signaling). This article summarizes the current knowledge about the complex components of receptor systems, the evidence that biased signaling is used in natural physiology to fine-tune signaling, and the current thoughts on how this mechanism may be applied to the design of better drugs. Although this is a fairly newly discovered phenomenon, theoretical and experimental data suggest that it is a ubiquitous behavior of ligands and receptors and to be expected. Biased signaling is simple to detect in vitro and there are numerous methods to quantify the effect with scales that can be used to optimize this activity in structure-activity medicinal chemistry studies. At present, the major hurdle in the application of this mechanism to therapeutics is the translation of in vitro bias to in vivo effect; this is because of the numerous factors that can modify measures of bias in natural physiologic systems. In spite of this, biased signaling still has the potential to justify revisiting of receptor targets previously thought to be intractable and also furnishes the means to pursue targets previously thought to be forbidden due to deleterious physiology (as these may be eliminated through biased signaling).
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
34
|
Sengmany K, Hellyer SD, Albold S, Wang T, Conn PJ, May LT, Christopoulos A, Leach K, Gregory KJ. Kinetic and system bias as drivers of metabotropic glutamate receptor 5 allosteric modulator pharmacology. Neuropharmacology 2019; 149:83-96. [PMID: 30763654 DOI: 10.1016/j.neuropharm.2019.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/18/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
Allosteric modulators of the metabotropic glutamate receptor subtype 5 (mGlu5) have been proposed as potential therapies for various CNS disorders. These ligands bind to sites distinct from the orthosteric (or endogenous) ligand, often with improved subtype selectivity and spatio-temporal control over receptor responses. We recently revealed that mGlu5 allosteric agonists and positive allosteric modulators exhibit biased agonism and/or modulation. To establish whether negative allosteric modulators (NAMs) engender similar bias, we rigorously characterized the pharmacology of eight diverse mGlu5 NAMs. Radioligand inhibition binding studies revealed novel modes of interaction with mGlu5 for select NAMs, with biphasic or incomplete inhibition of the radiolabeled NAM, [3H]methoxy-PEPy. We assessed mGlu5-mediated intracellular Ca2+ (iCa2+) mobilization and inositol phosphate (IP1) accumulation in HEK293A cells stably expressing low levels of mGlu5 (HEK293A-rat mGlu5-low) and mouse embryonic cortical neurons. The apparent affinity of acetylenic NAMs, MPEP, MTEP and dipraglurant, was dependent on the signaling pathway measured, agonist used, and cell type (HEK293A-rat mGlu5-low versus mouse cortical neurons). In contrast, the acetylenic partial NAM, M-5MPEP, and structurally distinct NAMs (VU0366248, VU0366058, fenobam), had similar affinity estimates irrespective of the assay or cellular background. Biased modulation was evident for VU0366248 in mouse cortical neurons where it was a NAM for DHPG-mediated iCa2+ mobilization, but neutral with DHPG in IP1 accumulation assays. Overall, this study highlights the inherent complexity in mGlu5 NAM pharmacology that we hypothesize may influence interpretation when translating into preclinical models and beyond in the design and development of novel therapeutics for neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Kathy Sengmany
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Shane D Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Sabine Albold
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Taide Wang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
35
|
Gregory K, Kufareva I, Keller AN, Khajehali E, Mun HC, Goolam MA, Mason RS, Capuano B, Conigrave AD, Christopoulos A, Leach K. Dual Action Calcium-Sensing Receptor Modulator Unmasks Novel Mode-Switching Mechanism. ACS Pharmacol Transl Sci 2018; 1:96-109. [PMID: 32219206 PMCID: PMC7089027 DOI: 10.1021/acsptsci.8b00021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 12/17/2022]
Abstract
Negative allosteric modulators (NAMs) of the human calcium-sensing receptor (CaSR) have previously failed to show efficacy in human osteoporosis clinical trials, but there is now significant interest in repurposing these drugs for hypocalcemic disorders and inflammatory lung diseases. However, little is known about how CaSR NAMs inhibit the response to endogenous activators. An improved understanding of CaSR negative allosteric modulation may afford the opportunity to develop therapeutically superior CaSR-targeting drugs. In an attempt to elucidate the mechanistic and structural basis of allosteric modulation mediated by the previously reported NAM, calhex231, we herein demonstrate that calhex231 actually potentiates or inhibits the activity of multiple CaSR agonists depending on whether it occupies one or both protomers in a CaSR dimer. These findings reveal a novel mechanism of mode-switching at a Class C G protein-coupled receptor that has implications for drug discovery and potential clinical utility.
Collapse
Affiliation(s)
- Karen
J. Gregory
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Monash University, Parkville, Victoria 3052, Australia
| | - Irina Kufareva
- Skaggs
School of Pharmacy & Pharmaceutical Sciences, University of California, 9500 Gilman Drive, La Jolla, San Diego, California MC 0747, United States
| | - Andrew N. Keller
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Monash University, Parkville, Victoria 3052, Australia
| | - Elham Khajehali
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Monash University, Parkville, Victoria 3052, Australia
| | - Hee-Chang Mun
- School of Life and Environmental
Sciences, Charles Perkins Centre, and Physiology and
Bosch Institute, Building F13, University
of Sydney, Sidney, New South Wales 2006, Australia
| | - Mahvash A. Goolam
- School of Life and Environmental
Sciences, Charles Perkins Centre, and Physiology and
Bosch Institute, Building F13, University
of Sydney, Sidney, New South Wales 2006, Australia
| | - Rebecca S. Mason
- School of Life and Environmental
Sciences, Charles Perkins Centre, and Physiology and
Bosch Institute, Building F13, University
of Sydney, Sidney, New South Wales 2006, Australia
| | - Ben Capuano
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Monash University, Parkville, Victoria 3052, Australia
| | - Arthur D. Conigrave
- School of Life and Environmental
Sciences, Charles Perkins Centre, and Physiology and
Bosch Institute, Building F13, University
of Sydney, Sidney, New South Wales 2006, Australia
| | - Arthur Christopoulos
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Monash University, Parkville, Victoria 3052, Australia
| | - Katie Leach
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
36
|
Hannan FM, Olesen MK, Thakker RV. Calcimimetic and calcilytic therapies for inherited disorders of the calcium-sensing receptor signalling pathway. Br J Pharmacol 2018; 175:4083-4094. [PMID: 29127708 PMCID: PMC6177618 DOI: 10.1111/bph.14086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022] Open
Abstract
The calcium-sensing receptor (CaS receptor) plays a pivotal role in extracellular calcium homeostasis, and germline loss-of-function and gain-of-function mutations cause familial hypocalciuric hypercalcaemia (FHH) and autosomal dominant hypocalcaemia (ADH), respectively. CaS receptor signal transduction in the parathyroid glands is probably regulated by G-protein subunit α11 (Gα11 ) and adaptor-related protein complex-2 σ-subunit (AP2σ), and recent studies have identified germline mutations of these proteins as a cause of FHH and/or ADH. Calcimimetics and calcilytics are positive and negative allosteric modulators of the CaS receptor that have potential efficacy for symptomatic forms of FHH and ADH. Cellular studies have demonstrated that these compounds correct signalling and/or trafficking defects caused by mutant CaS receptor, Gα11 or AP2σ proteins. Moreover, mouse model studies indicate that calcilytics can rectify the hypocalcaemia and hypercalciuria associated with ADH, and patient-based studies reveal calcimimetics to ameliorate symptomatic hypercalcaemia caused by FHH. Thus, calcimimetics and calcilytics represent targeted therapies for inherited disorders of the CaS receptor signalling pathway. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Fadil M Hannan
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
- Academic Endocrine Unit, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Mie K Olesen
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
- Academic Endocrine Unit, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
37
|
Gorvin CM, Frost M, Malinauskas T, Cranston T, Boon H, Siebold C, Jones EY, Hannan FM, Thakker RV. Calcium-sensing receptor residues with loss- and gain-of-function mutations are located in regions of conformational change and cause signalling bias. Hum Mol Genet 2018; 27:3720-3733. [PMID: 30052933 PMCID: PMC6196656 DOI: 10.1093/hmg/ddy263] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a homodimeric G-protein-coupled receptor that signals via intracellular calcium (Ca2+i) mobilisation and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK) to regulate extracellular calcium (Ca2+e) homeostasis. The central importance of the CaSR in Ca2+e homeostasis has been demonstrated by the identification of loss- or gain-of-function CaSR mutations that lead to familial hypocalciuric hypercalcaemia (FHH) or autosomal dominant hypocalcaemia (ADH), respectively. However, the mechanisms determining whether the CaSR signals via Ca2+i or ERK have not been established, and we hypothesised that some CaSR residues, which are the site of both loss- and gain-of-function mutations, may act as molecular switches to direct signalling through these pathways. An analysis of CaSR mutations identified in >300 hypercalcaemic and hypocalcaemic probands revealed five 'disease-switch' residues (Gln27, Asn178, Ser657, Ser820 and Thr828) that are affected by FHH and ADH mutations. Functional expression studies using HEK293 cells showed disease-switch residue mutations to commonly display signalling bias. For example, two FHH-associated mutations (p.Asn178Asp and p.Ser820Ala) impaired Ca2+i signalling without altering ERK phosphorylation. In contrast, an ADH-associated p.Ser657Cys mutation uncoupled signalling by leading to increased Ca2+i mobilization while decreasing ERK phosphorylation. Structural analysis of these five CaSR disease-switch residues together with four reported disease-switch residues revealed these residues to be located at conformationally active regions of the CaSR such as the extracellular dimer interface and transmembrane domain. Thus, our findings indicate that disease-switch residues are located at sites critical for CaSR activation and play a role in mediating signalling bias.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford OX3 7LJ, UK
| | - Morten Frost
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford OX3 7LJ, UK
- University of Southern Denmark, Odense C, Denmark
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Treena Cranston
- Oxford Molecular Genetics Laboratory, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Hannah Boon
- Oxford Molecular Genetics Laboratory, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Fadil M Hannan
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford OX3 7LJ, UK
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford OX3 7LJ, UK
| |
Collapse
|
38
|
Iamartino L, Elajnaf T, Kallay E, Schepelmann M. Calcium-sensing receptor in colorectal inflammation and cancer: Current insights and future perspectives. World J Gastroenterol 2018; 24:4119-4131. [PMID: 30271078 PMCID: PMC6158479 DOI: 10.3748/wjg.v24.i36.4119] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/11/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
The extracellular calcium-sensing receptor (CaSR) is best known for its action in the parathyroid gland and kidneys where it controls body calcium homeostasis. However, the CaSR has different roles in the gastrointestinal tract, where it is ubiquitously expressed. In the colon, the CaSR is involved in controlling multiple mechanisms, including fluid transport, inflammation, cell proliferation and differentiation. Although the expression pattern and functions of the CaSR in the colonic microenvironment are far from being completely understood, evidence has been accumulating that the CaSR might play a protective role against both colonic inflammation and colorectal cancer. For example, CaSR agonists such as dipeptides have been suggested to reduce colonic inflammation, while dietary calcium was shown to reduce the risk of colorectal cancer. CaSR expression is lost in colonic malignancies, indicating that the CaSR is a biomarker for colonic cancer progression. This dual anti-inflammatory and anti-tumourigenic role of the CaSR makes it especially interesting in colitis-associated colorectal cancer. In this review, we describe the clinical and experimental evidence for the role of the CaSR in colonic inflammation and colorectal cancer, the intracellular signalling pathways which are putatively involved in these actions, and the possibilities to exploit these actions of the CaSR for future therapies of colonic inflammation and cancer.
Collapse
Affiliation(s)
- Luca Iamartino
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| | - Taha Elajnaf
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| | - Enikö Kallay
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| | - Martin Schepelmann
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
39
|
Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat Rev Mol Cell Biol 2018; 19:638-653. [DOI: 10.1038/s41580-018-0049-3] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Tan L, Yan W, McCorvy JD, Cheng J. Biased Ligands of G Protein-Coupled Receptors (GPCRs): Structure-Functional Selectivity Relationships (SFSRs) and Therapeutic Potential. J Med Chem 2018; 61:9841-9878. [PMID: 29939744 DOI: 10.1021/acs.jmedchem.8b00435] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) signal through both G-protein-dependent and G-protein-independent pathways, and β-arrestin recruitment is the most recognized one of the latter. Biased ligands selective for either pathway are expected to regulate biological functions of GPCRs in a more precise way, therefore providing new drug molecules with superior efficacy and/or reduced side effects. During the past decade, biased ligands have been discovered and developed for many GPCRs, such as the μ opioid receptor, the angiotensin II receptor type 1, the dopamine D2 receptor, and many others. In this Perspective, recent advances in this field are reviewed by discussing the structure-functional selectivity relationships (SFSRs) of GPCR biased ligands and the therapeutic potential of these molecules. Further understanding of the biological functions associated with each signaling pathway and structural basis for biased signaling will facilitate future drug design in this field.
Collapse
Affiliation(s)
- Liang Tan
- iHuman Institute , ShanghaiTech University , 393 Middle Huaxia Road , Pudong District, Shanghai 201210 , China
| | - Wenzhong Yan
- iHuman Institute , ShanghaiTech University , 393 Middle Huaxia Road , Pudong District, Shanghai 201210 , China
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy , Medical College of Wisconsin , 8701 W. Watertown Plank Road , Milwaukee , Wisconsin 53226 , United States
| | - Jianjun Cheng
- iHuman Institute , ShanghaiTech University , 393 Middle Huaxia Road , Pudong District, Shanghai 201210 , China
| |
Collapse
|
41
|
PAM-Antagonists: A Better Way to Block Pathological Receptor Signaling? Trends Pharmacol Sci 2018; 39:748-765. [PMID: 29885909 DOI: 10.1016/j.tips.2018.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022]
Abstract
Seven transmembrane receptor (7TMR) responses are modulated by orthosteric and allosteric ligands to great therapeutic advantage. Here we introduce a unique class of negative allosteric modulator (NAM) - the positive allosteric modulator (PAM)-antagonist - that increases the affinity of the receptor for the agonist but concomitantly decreases agonist efficacy when cobound. Notably, the reciprocation of allosteric energy causes the orthosteric agonist to increase the affinity of the receptor for the PAM-antagonist; thus, this modulator seeks out and destroys agonist-bound receptor complexes. When contrasted with standard orthosteric and allosteric antagonists it is clear that PAM-antagonists are uniquely well suited to reversing ongoing persistent agonism and provide favorable target coverage in vivo. Specifically, the therapeutic application of PAM-antagonists to reverse pathological overactivation (e.g., endothelin vasoconstriction) is emphasized.
Collapse
|
42
|
Diepenhorst NA, Leach K, Keller AN, Rueda P, Cook AE, Pierce TL, Nowell C, Pastoureau P, Sabatini M, Summers RJ, Charman WN, Sexton PM, Christopoulos A, Langmead CJ. Divergent effects of strontium and calcium-sensing receptor positive allosteric modulators (calcimimetics) on human osteoclast activity. Br J Pharmacol 2018; 175:4095-4108. [PMID: 29714810 DOI: 10.1111/bph.14344] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/06/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Strontium ranelate, a drug approved and until recently used for the treatment of osteoporosis, mediates its effects on bone at least in part via the calcium-sensing (CaS) receptor. However, it is not known whether bone-targeted CaS receptor positive allosteric modulators (PAMs; calcimimetics) represent an alternative (or adjunctive) therapy to strontium (Sr2+ o ). EXPERIMENTAL APPROACH We assessed three structurally distinct calcimimetics [cinacalcet, AC-265347 and a benzothiazole tri-substituted urea (BTU-compound 13)], alone and in combination with extracellular calcium (Ca2+ o ) or Sr2+ o , in G protein-dependent signalling assays and trafficking experiments in HEK293 cells and their effects on cell differentiation, tartrate-resistant acid phosphatase (TRAP) activity and hydroxyapatite resorption assays in human blood-derived osteoclasts. KEY RESULTS Sr2+ o activated CaS receptor-dependent signalling in HEK293 cells in a similar manner to Ca2+ o , and inhibited the maturation, TRAP expression and hydroxyapatite resorption capacity of human osteoclasts. Calcimimetics potentiated Ca2+ o - and Sr2+ o -mediated CaS receptor signalling in HEK293 cells with distinct biased profiles, and only cinacalcet chaperoned an endoplasmic reticulum-retained CaS mutant receptor to the cell surface in HEK293 cells, indicative of a conformational state different from that engendered by AC-265347 and BTU-compound 13. Intriguingly, only cinacalcet modulated human osteoclast function, reducing TRAP activity and profoundly inhibiting resorption. CONCLUSION AND IMPLICATIONS Although AC-265347 and BTU-compound 13 potentiated Ca2+ o - and Sr2+ o -induced CaS receptor activation, they neither replicated nor potentiated the ability of Sr2+ o to inhibit human osteoclast function. In contrast, the FDA-approved calcimimetic, cinacalcet, inhibited osteoclast TRAP activity and hydroxyapatite resorption, which may contribute to its clinical effects on bone mineral density LINKED ARTICLES: This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Natalie A Diepenhorst
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Patricia Rueda
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Anna E Cook
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Tracie L Pierce
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Cameron Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | | | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - William N Charman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
43
|
Keller AN, Kufareva I, Josephs TM, Diao J, Mai VT, Conigrave AD, Christopoulos A, Gregory KJ, Leach K. Identification of Global and Ligand-Specific Calcium Sensing Receptor Activation Mechanisms. Mol Pharmacol 2018; 93:619-630. [PMID: 29636377 PMCID: PMC5941188 DOI: 10.1124/mol.118.112086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Calcium sensing receptor (CaSR) positive allosteric modulators (PAMs) are therapeutically important. However, few are approved for clinical use, in part due to complexities in assessing allostery at a receptor where the endogenous agonist (extracellular calcium) is present in all biologic fluids. Such complexity impedes efforts to quantify and optimize allosteric drug parameters (affinity, cooperativity, and efficacy) that dictate PAM structure-activity relationships (SARs). Furthermore, an underappreciation of the structural mechanisms underlying CaSR activation hinders predictions of how PAM SAR relates to in vitro and in vivo activity. Herein, we combined site-directed mutagenesis and calcium mobilization assays with analytical pharmacology to compare modes of PAM binding, positive modulation, and agonism. We demonstrate that 3-(2-chlorophenyl)-N-((1R)-1-(3-methoxyphenyl)ethyl)-1-propanamine (NPS R568) binds to a 7 transmembrane domain (7TM) cavity common to class C G protein-coupled receptors and used by (αR)-(-)-α-methyl-N-[3-[3-[trifluoromethylphenyl]propyl]-1-napthalenemethanamine (cinacalcet) and 1-benzothiazol-2-yl-1-(2,4-dimethylphenyl)-ethanol (AC265347); however, there are subtle distinctions in the contribution of select residues to the binding and transmission of cooperativity by PAMs. Furthermore, we reveal some common activation mechanisms used by different CaSR activators, but also demonstrate some differential contributions of residues within the 7TM bundle and extracellular loops to the efficacy of the PAM-agonist, AC265347, versus cooperativity. Finally, we show that PAMS potentiate the affinity of divalent cations. Our results support the existence of both global and ligand-specific CaSR activation mechanisms and reveal that allosteric agonism is mediated in part via distinct mechanisms to positive modulation.
Collapse
Affiliation(s)
- Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.N.K., T.M.J., J.D., V.T.M., A.C., K.J.G., K.L.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California (I.K.); and School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, Australia (A.D.C.)
| | - Irina Kufareva
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.N.K., T.M.J., J.D., V.T.M., A.C., K.J.G., K.L.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California (I.K.); and School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, Australia (A.D.C.)
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.N.K., T.M.J., J.D., V.T.M., A.C., K.J.G., K.L.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California (I.K.); and School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, Australia (A.D.C.)
| | - Jiayin Diao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.N.K., T.M.J., J.D., V.T.M., A.C., K.J.G., K.L.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California (I.K.); and School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, Australia (A.D.C.)
| | - Vyvyan T Mai
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.N.K., T.M.J., J.D., V.T.M., A.C., K.J.G., K.L.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California (I.K.); and School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, Australia (A.D.C.)
| | - Arthur D Conigrave
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.N.K., T.M.J., J.D., V.T.M., A.C., K.J.G., K.L.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California (I.K.); and School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, Australia (A.D.C.)
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.N.K., T.M.J., J.D., V.T.M., A.C., K.J.G., K.L.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California (I.K.); and School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, Australia (A.D.C.)
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.N.K., T.M.J., J.D., V.T.M., A.C., K.J.G., K.L.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California (I.K.); and School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, Australia (A.D.C.)
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.N.K., T.M.J., J.D., V.T.M., A.C., K.J.G., K.L.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California (I.K.); and School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, Australia (A.D.C.)
| |
Collapse
|
44
|
Hellyer SD, Albold S, Wang T, Chen ANY, May LT, Leach K, Gregory KJ. "Selective" Class C G Protein-Coupled Receptor Modulators Are Neutral or Biased mGlu 5 Allosteric Ligands. Mol Pharmacol 2018; 93:504-514. [PMID: 29514854 DOI: 10.1124/mol.117.111518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/01/2018] [Indexed: 02/14/2025] Open
Abstract
Numerous positive and negative allosteric modulators (PAMs and NAMs) of class C G protein-coupled receptors (GPCRs) have been developed as valuable preclinical pharmacologic tools and therapeutic agents. Although many class C GPCR allosteric modulators have undergone subtype selectivity screening, most assay paradigms have failed to perform rigorous pharmacologic assessment. Using mGlu5 as a representative class C GPCR, we tested the hypothesis that allosteric modulator selectivity was based on cooperativity rather than affinity. Specifically, we aimed to identify ligands that bound to mGlu5 but exhibited neutral cooperativity with mGlu5 agonists. We additionally evaluated the potential for these ligands to exhibit biased pharmacology. Radioligand binding, intracellular calcium (iCa2+) mobilization, and inositol monophosphate (IP1) accumulation assays were undertaken in human embryonic kidney cells expressing low levels of rat mGlu5 (HEK293A-mGlu5-low) for diverse allosteric chemotypes. Numerous "non-mGlu5" class C GPCR allosteric modulators incompletely displaced allosteric mGlu5 radioligand [3H]methoxy-PEPy binding, consistent with a negative allosteric interaction. Affinity estimates for CPCCOEt (mGlu1 ligand), PHCCC (mGlu4 ligand), GS39783 (GABAB ligand), AZ12216052 (mGlu8 ligand), and CGP7930 (GABAB ligand) at mGlu5 were within 10-fold of their target receptor. Most class C GPCR allosteric modulators had neutral cooperativity with both orthosteric and allosteric mGlu5 agonists in functional assays; however, NPS2143 (calcium-sensing receptor (CaSR) NAM), cinacalcet (CaSR PAM), CGP7930, and AZ12216052 were partial mGlu5 agonists for IP1 accumulation, but not iCa2+ mobilization. By using mGlu5 as a model class C GPCR, we find that for many class C GPCR allosteric modulators, subtype selectivity is driven by cooperativity and misinterpreted owing to unappreciated bias.
Collapse
Affiliation(s)
- Shane D Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Sabine Albold
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Taide Wang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Amy N Y Chen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
45
|
Gerbino A, Colella M. The Different Facets of Extracellular Calcium Sensors: Old and New Concepts in Calcium-Sensing Receptor Signalling and Pharmacology. Int J Mol Sci 2018; 19:E999. [PMID: 29584660 PMCID: PMC5979557 DOI: 10.3390/ijms19040999] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
Abstract
The current interest of the scientific community for research in the field of calcium sensing in general and on the calcium-sensing Receptor (CaR) in particular is demonstrated by the still increasing number of papers published on this topic. The extracellular calcium-sensing receptor is the best-known G-protein-coupled receptor (GPCR) able to sense external Ca2+ changes. Widely recognized as a fundamental player in systemic Ca2+ homeostasis, the CaR is ubiquitously expressed in the human body where it activates multiple signalling pathways. In this review, old and new notions regarding the mechanisms by which extracellular Ca2+ microdomains are created and the tools available to measure them are analyzed. After a survey of the main signalling pathways triggered by the CaR, a special attention is reserved for the emerging concepts regarding CaR function in the heart, CaR trafficking and pharmacology. Finally, an overview on other Ca2+ sensors is provided.
Collapse
Affiliation(s)
- Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy.
| | - Matilde Colella
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy.
| |
Collapse
|
46
|
Nemeth EF, Van Wagenen BC, Balandrin MF. Discovery and Development of Calcimimetic and Calcilytic Compounds. PROGRESS IN MEDICINAL CHEMISTRY 2018; 57:1-86. [PMID: 29680147 DOI: 10.1016/bs.pmch.2017.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The extracellular calcium receptor (CaR) is a G protein-coupled receptor (GPCR) and the pivotal molecule regulating systemic Ca2+ homeostasis. The CaR was a challenging target for drug discovery because its physiological ligand is an inorganic ion (Ca2+) rather than a molecule so there was no structural template to guide medicinal chemistry. Nonetheless, small molecules targeting this receptor were discovered. Calcimimetics are agonists or positive allosteric modulators of the CaR, while calcilytics are antagonists and all to date are negative allosteric modulators. The calcimimetic cinacalcet was the first allosteric modulator of a GPCR to achieve regulatory approval and is a first-in-class treatment for secondary hyperparathyroidism in patients on dialysis, and for hypercalcemia in some forms of primary hyperparathyroidism. It is also useful in treating some rare genetic diseases that cause hypercalcemia. Two other calcimimetics are now on the market (etelcalcetide) or under regulatory review (evocalcet). Calcilytics stimulate the secretion of parathyroid hormone and were initially developed as treatments for osteoporosis. Three different calcilytics of two different chemotypes failed in clinical trials due to lack of efficacy. Calcilytics are now being repurposed and might be useful in treating hypoparathyroidism and several rare genetic diseases causing hypocalcemia. The challenges ahead for medicinal chemists are to design compounds that select conformations of the CaR that preferentially target a particular signalling pathway and/or that affect the CaR in a tissue-selective manner.
Collapse
|
47
|
Prolonged exposure to 1,25(OH) 2D 3 and high ionized calcium induces FGF-23 production in intestinal epithelium-like Caco-2 monolayer: A local negative feedback for preventing excessive calcium transport. Arch Biochem Biophys 2018; 640:10-16. [PMID: 29317227 DOI: 10.1016/j.abb.2017.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/19/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022]
Abstract
Overdose of oral calcium supplement and excessive intestinal calcium absorption can contribute pathophysiological conditions, e.g., nephrolithiasis, vascular calcification, dementia, and cardiovascular accident. Since our previous investigation has indicated that fibroblast growth factor (FGF)-23 could abolish the 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-enhanced calcium absorption, we further hypothesized that FGF-23 produced locally in the enterocytes might be part of a local negative feedback loop to regulate calcium absorption. Herein, 1,25(OH)2D3 was found to enhance the transcellular calcium transport across the epithelium-like Caco-2 monolayer, and this stimulatory effect was diminished by preceding prolonged exposure to high-dose 1,25(OH)2D3 or high concentration of apical ionized calcium. Pretreatment with a neutralizing antibody for FGF-23 prevented this negative feedback regulation of calcium hyperabsorption induced by 1,25(OH)2D3. FGF-23 exposure completely abolished the 1,25(OH)2D3-enhanced calcium transport. Western blot analysis revealed that FGF-23 expression was upregulated in a dose-dependent manner by 1,25(OH)2D3 or apical calcium exposure. Finally, calcium-sensing receptor (CaSR) inhibitors were found to prevent the apical calcium-induced suppression of calcium transport. In conclusion, prolonged exposure to high apical calcium and calcium hyperabsorption were sensed by CaSR, which, in turn, increased FGF-23 expression to suppress calcium transport. This local negative feedback loop can help prevent unnecessary calcium uptake and its detrimental consequences.
Collapse
|
48
|
Characterization of signalling and regulation of common calcitonin receptor splice variants and polymorphisms. Biochem Pharmacol 2017; 148:111-129. [PMID: 29277692 DOI: 10.1016/j.bcp.2017.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/19/2017] [Indexed: 01/27/2023]
Abstract
The calcitonin receptor (CTR) is a class B G protein-coupled receptor that is a therapeutic target for the treatment of hypercalcaemia of malignancy, Paget's disease and osteoporosis. In primates, the CTR is subject to alternative splicing, with a unique, primate-specific splice variant being preferentially expressed in reproductive organs, lung and kidney. In addition, humans possess a common non-synonymous single-nucleotide polymorphism (SNP) encoding a proline/leucine substitution in the C-terminal tail. In low power studies, the leucine polymorphism has been associated with increased risk of osteoporosis in East Asian populations and, independently, with increased risk of kidney stone disease in a central Asian population. The CTR is pleiotropically coupled, though the relative physiological importance of these pathways is poorly understood. Using both COS-7 and HEK293 cells recombinantly expressing human CTR, we have characterized both splice variant and polymorphism dependent response to CTs from several species in key signalling pathways and competition binding assays. These data indicate that the naturally occurring changes to the intracellular face of CTR alter ligand affinity and signalling, in a pathway and agonist dependent manner. These results further support the potential for these primate-specific CTR variants to engender different physiological responses. In addition, we report that the CTR exhibits constitutive internalization, independent of splice variant and polymorphism and this profile is unaltered by peptide binding.
Collapse
|
49
|
Diepenhorst N, Rueda P, Cook AE, Pastoureau P, Sabatini M, Langmead CJ. G protein-coupled receptors as anabolic drug targets in osteoporosis. Pharmacol Ther 2017; 184:1-12. [PMID: 29080701 DOI: 10.1016/j.pharmthera.2017.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteoporosis is a progressive bone disorder characterised by imbalance between bone building (anabolism) and resorption (catabolism). Most therapeutics target inhibition of osteoclast-mediated bone resorption, but more recent attention in early drug discovery has focussed on anabolic targets in osteoblasts or their precursors. Two marketed agents that display anabolic properties, strontium ranelate and teriparatide, mediate their actions via the G protein-coupled calcium-sensing and parathyroid hormone-1 receptors, respectively. This review explores their activity, the potential for improved therapeutics targeting these receptors and other putative anabolic GPCR targets, including Smoothened, Wnt/Frizzled, relaxin family peptide, adenosine, cannabinoid, prostaglandin and sphingosine-1-phosphate receptors.
Collapse
Affiliation(s)
- Natalie Diepenhorst
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, VIC 3052, Australia
| | - Patricia Rueda
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, VIC 3052, Australia
| | - Anna E Cook
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, VIC 3052, Australia
| | - Philippe Pastoureau
- Therapeutic Innovation Pole of Immuno-Inflammatory Diseases, Institut de Recherches Servier, Suresnes, France
| | - Massimo Sabatini
- Therapeutic Innovation Pole of Immuno-Inflammatory Diseases, Institut de Recherches Servier, Suresnes, France
| | - Christopher J Langmead
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, VIC 3052, Australia.
| |
Collapse
|
50
|
Harpsøe K, Boesgaard MW, Munk C, Bräuner-Osborne H, Gloriam DE. Structural insight to mutation effects uncover a common allosteric site in class C GPCRs. Bioinformatics 2017; 33:1116-1120. [PMID: 28011766 PMCID: PMC5408886 DOI: 10.1093/bioinformatics/btw784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023] Open
Abstract
Motivation Class C G protein-coupled receptors (GPCRs) regulate important physiological functions and allosteric modulators binding to the transmembrane domain constitute an attractive and, due to a lack of structural insight, a virtually unexplored potential for therapeutics and the food industry. Combining pharmacological site-directed mutagenesis data with the recent class C GPCR experimental structures will provide a foundation for rational design of new therapeutics. Results We uncover one common site for both positive and negative modulators with different amino acid layouts that can be utilized to obtain selectivity. Additionally, we show a large potential for structure-based modulator design, especially for four orphan receptors with high similarity to the crystal structures. Availability and Implementation All collated mutagenesis data is available in the GPCRdb mutation browser at http://gpcrdb.org/mutations/ and can be analyzed online or downloaded in excel format. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kasper Harpsøe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael W Boesgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Munk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- To whom correspondence should be addressed.
| |
Collapse
|