1
|
Tordrup EK, Gadgaard S, Windeløv J, Holst JJ, Gasbjerg LS, Hartmann B, Rosenkilde MM. Development of a long-acting unbiased GIP receptor agonist for studies of GIP's role in bone metabolism. Biochem Pharmacol 2025; 236:116893. [PMID: 40132763 DOI: 10.1016/j.bcp.2025.116893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/26/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
The incretin hormone glucose-dependent insulinotropic polypeptide (GIP) stimulates bone remodeling postprandially. Species variations complicate the development of long-acting agonists with similar effects on rodent and human GIP receptors (GIPR). We created a series of long-acting molecules suitable for rat studies based on human GIP, stabilized with Aib insertion in position 2, lipidations in the middle region (compounds 1-4: positions 14/16/17/20) or the C-terminus (compound 5: position 40), and elongation with an exendin-4 tail in the C-terminus (Cex). The compounds were tested in vitro on the human and rat GIPR for cAMP accumulation, beta-arrestin recruitment and internalization. Pharmacokinetic profiling in rats was completed for two compounds, and one was selected for bone remodeling studies in rats (measurements of C-terminal telopeptide (CTX) and procollagen type 1 N-propeptide). All five compounds retained the potency and efficacy of native (human and rat) GIP in cAMP accumulation and arrestin recruitment on human and rat GIPR with no differences in relative activities from native GIP. Only compound 3 induced internalization like species-matched GIP on respective receptors and was chosen for in vivo assessments in rats. Mean T1/2 was 9.1 h, and it decreased plasma levels of CTX compared to vehicle treatment following 1000 µg·kg-1 injections. In conclusion, the long-acting, unbiased compound 3 (hGIP(1-30-Cex)/Aib2/C16-diacid moiety in position 17), with retained activity for the human and rat GIPR, is suitable for bone remodeling studies in rats; hence, a useful tool compound for future research of GIP's therapeutic potential in bone-related diseases.
Collapse
Affiliation(s)
- Esther Karen Tordrup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | | | - Johanne Windeløv
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Bainan Biotech ApS, Copenhagen, Denmark.
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Lærke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
2
|
Müller TD, Adriaenssens A, Ahrén B, Blüher M, Birkenfeld AL, Campbell JE, Coghlan MP, D'Alessio D, Deacon CF, DelPrato S, Douros JD, Drucker DJ, Figueredo Burgos NS, Flatt PR, Finan B, Gimeno RE, Gribble FM, Hayes MR, Hölscher C, Holst JJ, Knerr PJ, Knop FK, Kusminski CM, Liskiewicz A, Mabilleau G, Mowery SA, Nauck MA, Novikoff A, Reimann F, Roberts AG, Rosenkilde MM, Samms RJ, Scherer PE, Seeley RJ, Sloop KW, Wolfrum C, Wootten D, DiMarchi RD, Tschöp MH. Glucose-dependent insulinotropic polypeptide (GIP). Mol Metab 2025; 95:102118. [PMID: 40024571 PMCID: PMC11931254 DOI: 10.1016/j.molmet.2025.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases. MAJOR CONCLUSIONS Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany.
| | - Alice Adriaenssens
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Bo Ahrén
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Matthew P Coghlan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David D'Alessio
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Carolyn F Deacon
- School of Biomedical Sciences, Ulster University, Coleraine, UK; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefano DelPrato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie S Figueredo Burgos
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Brian Finan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Fiona M Gribble
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick J Knerr
- Indianapolis Biosciences Research Institute, Indianapolis, IN, USA
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France; CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France
| | | | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany
| | - Frank Reimann
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Anna G Roberts
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
3
|
Jensen MN, Israelsen IME, Wardman JH, Jensen DB, Andersen DB, Toft-Bertelsen TL, Rath MF, Holst JJ, Rosenkilde MM, MacAulay N. Glucagon-like peptide-1 receptor modulates cerebrospinal fluid secretion and intracranial pressure in rats. Fluids Barriers CNS 2025; 22:41. [PMID: 40275284 PMCID: PMC12020230 DOI: 10.1186/s12987-025-00652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) is produced and absorbed at a balanced rate to maintain a constant intracranial pressure (ICP). The CSF dynamics are, however, disturbed in several pathological conditions, leading to elevated ICP, which may have fatal outcomes if left untreated. Treatment options for these conditions are limited to invasive neurosurgery, and novel pharmacological approaches to manage ICP in pathology are sought. Here, we aimed to demonstrate the potential of the glucagon-like peptide-1 receptor (GLP-1R) as such a target. METHODS We administered male rats with intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) GLP-1R agonist (exendin-4) or antagonist (exendin-9-39) followed by in vivo determination of CSF dynamics. GLP-1R expression in the CSF-secreting choroid plexus was demonstrated with RNAScope in situ hybridization and western blotting and transporter activity with radio-isotope flux assays. RESULTS GLP-1R activation increased the CSF secretion rate with an associated elevation of the ICP, whereas inhibition of the receptor reduced the rate of CSF secretion. These effects were observed with central, but not peripheral, administration of the agonist and antagonist, suggesting receptor expression on the luminal, CSF-facing side of the choroid plexus, which aligned with GLP-1R-mediated modulation of luminally-expressed transporters in excised choroid plexus. Low level GLP-1R expression was demonstrated in the choroid plexus at mRNA and protein levels. CONCLUSION Modulation of GLP-1R affects CSF production, which suggests that GLP-1R-mediated signalling may have the potential to control ICP in pathological conditions with disturbed CSF homeostasis.
Collapse
Affiliation(s)
- Mette N Jensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, DK-2200, Denmark
| | - Ida M E Israelsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, DK-2200, Denmark
| | - Jonathan H Wardman
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, DK-2200, Denmark
| | - Dennis B Jensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, DK-2200, Denmark
| | - Daniel B Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine L Toft-Bertelsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, DK-2200, Denmark
| | - Martin F Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, DK-2200, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
4
|
Jensen MH, Gasbjerg LS, Skov-Jeppesen K, Jacobsen JCB, Poulsen SS, Zhou C, Jakubauskaite R, Poulsen FR, Bonde C, Albarazi M, Halle B, Christiansen CB, Sanni SJ, Byberg S, Hoe B, Holst JJ, Dela F, Rasmussen AK, Knop FK, Arlien-Søborg MC, Melmed S, Jørgensen JOL, Andersen MS, Hartmann B, Klose MC, Feldt-Rasmussen U, Sparre-Ulrich AH, Rosenkilde MM. GIP Receptor Antagonism Eliminates Paradoxical Growth Hormone Secretion in Some Patients With Acromegaly. J Clin Endocrinol Metab 2025; 110:715-729. [PMID: 39172542 PMCID: PMC11834721 DOI: 10.1210/clinem/dgae583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
CONTEXT About 30% of patients with active acromegaly experience paradoxically increased growth hormone (GH) secretion during the diagnostic oral glucose tolerance test (OGTT). Endogenous glucose-dependent insulinotropic polypeptide (GIP) is implicated in this paradoxical secretion. OBJECTIVE We used the GIP receptor (GIPR) antagonist GIP(3-30)NH2 to test the hypothesis that GIP mediates this paradoxical response when GIPR is abundantly expressed in somatotropinomas. METHODS A total of 25 treatment-naive patients with acromegaly were enrolled. Each patient underwent one OGTT during simultaneous placebo infusion and one OGTT during a GIP(3-30)NH2 infusion. Blood samples were drawn at baseline and regularly after infusions to measure GH. We assessed pituitary adenoma size by magnetic resonance imaging and GIPR expression by immunohistochemistry on resected somatotropinomas. For mechanistic confirmation, we applied in vitro and ex vivo approaches. The main outcome measure was the effect of GIP(3-30)NH2 on paradoxical GH secretion during OGTT as a measure of GIP involvement. RESULTS In 4 of 7 patients with paradoxical GH secretion, GIP(3-30)NH2 infusion completely abolished the paradoxical response (P = .0003). Somatotrophs were available from 3 of 4 of these patients, all showing abundant GIPR expression. Adenoma size did not differ between patients with and without paradoxical GH secretion. CONCLUSION Of 25 patients with acromegaly, 7 had paradoxical GH secretion during OGTT, and pharmaceutical GIPR blockade abolished this secretion in 4. Corresponding somatotroph adenomas abundantly expressed GIPR, suggesting a therapeutic target in this subpopulation of patients. In vitro and ex vivo analyses confirmed the role of GIP and the effects of the antagonist.
Collapse
Affiliation(s)
- Mette H Jensen
- Antag Therapeutics Aps, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kirsa Skov-Jeppesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens C B Jacobsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Steen S Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Cuiqi Zhou
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ruta Jakubauskaite
- Department of Radiology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Frantz R Poulsen
- Department of Neurosurgery, Odense University Hospital, 5000 Odense, Denmark
| | - Christian Bonde
- Department of Neurosurgery, Odense University Hospital, 5000 Odense, Denmark
| | - Mahmoud Albarazi
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Bo Halle
- Department of Neurosurgery, Odense University Hospital, 5000 Odense, Denmark
| | - Charlotte B Christiansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Sarah Byberg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bjørn Hoe
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Flemming Dela
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Human Physiology and Biochemistry, Riga Stradiņš University, Riga LV-1007, Latvia
| | - Aase K Rasmussen
- Department of Endocrinology and Metabolism, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mai C Arlien-Søborg
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jens Otto L Jørgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Marianne S Andersen
- Department of Endocrinology, Odense University Hospital, 5000 Odense, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marianne C Klose
- Department of Endocrinology and Metabolism, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Ulla Feldt-Rasmussen
- Department of Endocrinology and Metabolism, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Rees TA, Buttle BJ, Tasma Z, Yang SH, Harris PWR, Walker CS. Tirzepatide, GIP(1-42) and GIP(1-30) display unique signaling profiles at two common GIP receptor variants, E354 and Q354. Front Pharmacol 2024; 15:1463313. [PMID: 39464637 PMCID: PMC11502443 DOI: 10.3389/fphar.2024.1463313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024] Open
Abstract
Type 2 diabetes (T2D) and obesity are prevalent metabolic disorders affecting millions of individuals worldwide. A new effective therapeutic drug called tirzepatide for the treatment of obesity and T2D is a dual agonist of the GIP receptor and GLP-1 receptor. Tirzepatide is clinically more effective than GLP-1 receptor agonists but the reasons why are not well understood. Tirzepatide reportedly stimulates the GIP receptor more potently than the GLP-1 receptor. However, tirzepatide signaling has not been thoroughly investigated at the E354 (wildtype) or Q354 (E354Q) GIP receptor variants. The E354Q variant is associated increased risk of T2D and lower body mass index. To better understand GIP receptor signaling we characterized the activity of endogenous agonists and tirzepatide at both GIP receptor variants. Using Cos7 cells we examined wildtype and E354Q GIP receptor signaling, analyzing cAMP and IP1 accumulation as well as AKT, ERK1/2 and CREB phosphorylation. GIP(1-42) and GIP(1-30)NH2 displayed equipotent effects on these pathways excluding CREB phosphorylation where GIP(1-30)NH2 was more potent than GIP(1-42) at the E354Q GIP receptor. Tirzepatide favored cAMP signaling at both variants. These findings indicate that tirzepatide is a biased agonist towards Gαs signaling and suggests it equally activates the wildtype and E354Q GIP receptor variants. We also observed differences between the pharmacology of the GIP receptor variants with endogenous peptides, which may help to explain differences in phenotype. These findings contribute to a comprehensive understanding of GIP receptor signaling, and will aid development of therapies combating T2D and obesity.
Collapse
Affiliation(s)
- Tayla A. Rees
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Headache Group, Wolfson Sensory Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Benjamin J. Buttle
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Zoe Tasma
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Sung-Hyun Yang
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Paul W. R. Harris
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Jensen MH, Sanni SJ, Riber D, Holst JJ, Rosenkilde MM, Sparre-Ulrich AH. AT-7687, a novel GIPR peptide antagonist, combined with a GLP-1 agonist, leads to enhanced weight loss and metabolic improvements in cynomolgus monkeys. Mol Metab 2024; 88:102006. [PMID: 39128651 PMCID: PMC11382121 DOI: 10.1016/j.molmet.2024.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
OBJECTIVES Obesity represents a global health crisis with significant patient burdens and healthcare costs. Despite the advances with glucagon-like peptide-1 (GLP-1) receptor agonists in treating obesity, unmet needs remain. This study characterizes a novel glucose-dependent insulinotropic polypeptide receptor (GIPR) peptide antagonist, AT-7687, evaluating its potential to enhance obesity treatment. METHODS We assessed the in vitro potency and pharmacokinetics of AT-7687, alongside its therapeutic effects when administered subcutaneously (SC) alone and in combination with liraglutide to high-fat-diet-fed obese non-human primates (NHP). The study spanned a 42-day treatment period and a 15-day washout period. RESULTS AT-7687 demonstrated a subnanomolar cAMP antagonistic potency (pKB of 9.5) in HEK-293 cells and a 27.4 h half-life in NHPs. It effectively maintained weight stability in obese monkeys, whereas placebo recipients had an 8.6% weight increase by day 42 (P = 0.01). Monotherapy with liraglutide resulted in a 12.4% weight reduction compared to placebo (P = 0.03) and combining AT-7687 with liraglutide led to a 16.3% weight reduction (P = 0.0002). The combination therapy significantly improved metabolic markers, reducing insulin levels by 52% (P = 0.008), glucose by 30% (P = 0.02), triglycerides by 39% (P = 0.05), total cholesterol by 29% (P = 0.03), and LDL cholesterol by 48% (P = 0.003) compared to placebo. AT-7687 treatment was well tolerated and not associated with any side effects. CONCLUSIONS This study underscores the potential of AT-7687 as a promising addition to current obesity treatments.
Collapse
Affiliation(s)
- Mette H Jensen
- Antag Therapeutics Aps, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Samra J Sanni
- Antag Therapeutics Aps, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Ditte Riber
- Antag Therapeutics Aps, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 14, 2200 Copenhagen N, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 14, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
7
|
Lyu X, Yan K, Hu W, Xu H, Guo X, Zhou Z, Zhu H, Pan H, Wang L, Yang H, Gong F. Safflower yellow and its main component hydroxysafflor yellow A alleviate hyperleptinemia in diet-induced obesity mice through a dual inhibition of the GIP-GIPR signaling axis. Phytother Res 2024; 38:4940-4956. [PMID: 36943416 DOI: 10.1002/ptr.7788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 03/23/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone secreted by K cells in the small intestine and is considered an obesity-promoting factor. In this study, we systematically investigated the anti-obesity effects of intragastric safflower yellow (SY)/hydroxysafflor yellow A (HSYA) and the underlying mechanism for the first time. Our results showed that intragastric SY/HSYA, rather than an intraperitoneal injection, notably decreased serum GIP levels and GIP staining in the small intestine in diet-induced obese (DIO) mice. Moreover, intragastric SY/HSYA was also first found to significantly suppress GIP receptor (GIPR) signaling in both the hypothalamus and subcutaneous White adipose tissue. Our study is the first to show that intragastric SY/HSYA obviously reduced food intake and body weight gain in leptin sensitivity experiments and decreased serum leptin levels in DIO mice. Further experiments demonstrated that SY treatment also significantly reduced leptin levels, whereas the inhibitory effect of SY on leptin levels was reversed by activating GIPR in 3 T3-L1 adipocytes. In addition, intragastric SY/HSYA had already significantly reduced serum GIP levels and GIPR expression before the serum leptin levels were notably changed in high-fat-diet-fed mice. These findings suggested that intragastric SY/HSYA may alleviate diet-induced obesity in mice by ameliorating hyperleptinemia via dual inhibition of the GIP-GIPR axis.
Collapse
Affiliation(s)
- Xiaorui Lyu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Kemin Yan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - WenJing Hu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hanyuan Xu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaonan Guo
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhibo Zhou
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Lafferty RA, Flatt PR, Gault VA, Irwin N. Does glucose-dependent insulinotropic polypeptide receptor blockade as well as agonism have a role to play in management of obesity and diabetes? J Endocrinol 2024; 262:e230339. [PMID: 38861364 PMCID: PMC11301427 DOI: 10.1530/joe-23-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Recent approval of the dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist, tirzepatide, for the management of type 2 diabetes mellitus (T2DM) has reinvigorated interest in exploitation of GIP receptor (GIPR) pathways as a means of metabolic disease management. However, debate has long surrounded the use of the GIPR as a therapeutic target and whether agonism or antagonism is of most benefit in management of obesity/diabetes. This controversy appears to be partly resolved by the success of tirzepatide. However, emerging studies indicate that prolonged GIPR agonism may desensitise the GIPR to essentially induce receptor antagonism, with this phenomenon suggested to be more pronounced in the human than rodent setting. Thus, deliberation continues to rage in relation to benefits of GIPR agonism vs antagonism. That said, as with GIPR agonism, it is clear that the metabolic advantages of sustained GIPR antagonism in obesity and obesity-driven forms of diabetes can be enhanced by concurrent GLP-1 receptor (GLP-1R) activation. This narrative review discusses various approaches of pharmacological GIPR antagonism including small molecule, peptide, monoclonal antibody and peptide-antibody conjugates, indicating stage of development and significance to the field. Taken together, there is little doubt that interesting times lie ahead for GIPR agonism and antagonism, either alone or when combined with GLP-1R agonists, as a therapeutic intervention for the management of obesity and associated metabolic disease.
Collapse
Affiliation(s)
- Ryan A Lafferty
- Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Victor A Gault
- Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- Diabetes Research Centre, Schools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
9
|
Gaffey RH, Takyi AK, Shukla A. Investigational and emerging gastric inhibitory polypeptide (GIP) receptor-based therapies for the treatment of obesity. Expert Opin Investig Drugs 2024; 33:757-773. [PMID: 38984950 DOI: 10.1080/13543784.2024.2377319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION One billion people live with obesity. The most promising medications for its treatment are incretin-based therapies, based on enteroendocrine peptides released in response to oral nutrients, specifically glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). The mechanisms by which GLP-1 receptor agonism cause weight reduction are becoming increasingly understood. However, the mechanisms by which GIP receptor-modulating medications cause weight loss remain to be clarified. AREAS COVERED This review describes GLP-1 and GIP physiology and explores the conflicting data regarding GIP and weight management. It details examples of how to reconcile the contradictory findings that both GIP receptor agonism and antagonism cause weight reduction. Specifically, it discusses the concept of 'biased agonism' wherein exogenous peptides cause different post-receptor signaling patterns than native ligands. It discusses how GIP effects in adipose tissue and the central nervous system may cause weight reduction. It describes GIP receptor-modulating compounds and their most current trials regarding weight reduction. EXPERT OPINION Effects of GIP receptor-modulating compounds on different tissues have implications for both weight reduction and other cardiometabolic diseases. Further study is needed to understand the implications of GIP agonism on not just weight reduction, but also cardiovascular disease, liver disease, bone health and fat storage.
Collapse
Affiliation(s)
- Robert H Gaffey
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Afua K Takyi
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alpana Shukla
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
10
|
Gasbjerg LS, Rasmussen RS, Dragan A, Lindquist P, Melchiorsen JU, Stepniewski TM, Schiellerup S, Tordrup EK, Gadgaard S, Kizilkaya HS, Willems S, Zhong Y, Wang Y, Wright SC, Lauschke VM, Hartmann B, Holst JJ, Selent J, Rosenkilde MM. Altered desensitization and internalization patterns of rodent versus human glucose-dependent insulinotropic polypeptide (GIP) receptors. An important drug discovery challenge. Br J Pharmacol 2024. [PMID: 38952084 DOI: 10.1111/bph.16478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE The gut hormone glucose-dependent insulinotropic polypeptide (GIP) signals via the GIP receptor (GIPR), resulting in postprandial potentiation of glucose-stimulated insulin secretion. The translation of results from rodent studies to human studies has been challenged by the unexpected effects of GIPR-targeting compounds. We, therefore, investigated the variation between species, focusing on GIPR desensitization and the role of the receptor C-terminus. EXPERIMENTAL APPROACH The GIPR from humans, mice, rats, pigs, dogs and cats was studied in vitro for cognate ligand affinity, G protein activation (cAMP accumulation), recruitment of beta-arrestin and internalization. Variants of the mouse, rat and human GIPRs with swapped C-terminal tails were studied in parallel. KEY RESULTS The human GIPR is more prone to internalization than rodent GIPRs. Despite similar agonist affinities and potencies for Gαs activation, especially, the mouse GIPR shows reduced receptor desensitization, internalization and beta-arrestin recruitment. Using an enzyme-stabilized, long-acting GIP analogue, the species differences were even more pronounced. 'Tail-swapped' human, rat and mouse GIPRs were all fully functional in their Gαs coupling, and the mouse GIPR regained internalization and beta-arrestin 2 recruitment properties with the human tail. The human GIPR lost the ability to recruit beta-arrestin 2 when its own C-terminus was replaced by the rat or mouse tail. CONCLUSIONS AND IMPLICATIONS Desensitization of the human GIPR is dependent on the C-terminal tail. The species-dependent functionality of the C-terminal tail and the different species-dependent internalization patterns, especially between human and mouse GIPRs, are important factors influencing the preclinical evaluation of GIPR-targeting therapeutic compounds.
Collapse
Affiliation(s)
- Lærke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Syberg Rasmussen
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adrian Dragan
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Lindquist
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Josefine Ulrikke Melchiorsen
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute and Pompeu Fabra University, Barcelona, Spain
- InterAx Biotech AG, Villigen, Switzerland
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Sine Schiellerup
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Esther Karen Tordrup
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Bainan Biotech, Copenhagen, Denmark
| | - Hüsün Sheyma Kizilkaya
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sabine Willems
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Yi Zhong
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Shane C Wright
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute and Pompeu Fabra University, Barcelona, Spain
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Rosenkilde MM, Lindquist P, Kizilkaya HS, Gasbjerg LS. GIP-derived GIP receptor antagonists - a review of their role in GIP receptor pharmacology. Peptides 2024; 177:171212. [PMID: 38608836 DOI: 10.1016/j.peptides.2024.171212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Surprisingly, agonists, as well as antagonists of the glucose-dependent insulinotropic polypeptide receptor (GIPR), are currently being used or investigated as treatment options for type 2 diabetes and obesity - and both, when combined with glucagon-like peptide 1 receptor (GLP-1R) agonism, enhance GLP-1-induced glycemia and weight loss further. This paradox raises several questions regarding not only the mechanisms of actions of GIP but also the processes engaged during the activation of both the GIP and GLP-1 receptors. Here, we provide an overview of studies of the properties and actions of peptide-derived GIPR antagonists, focusing on GIP(3-30)NH2, a naturally occurring N- and C-terminal truncation of GIP(1-42). GIP(3-30)NH2 was the first GIPR antagonist administered to humans. GIP(3-30)NH2 and a few additional antagonists, like Pro3-GIP, have been used in both in vitro and in vivo studies to elucidate the molecular and cellular consequences of GIPR inhibition, desensitization, and internalization and, at a larger scale, the role of the GIP system in health and disease. We provide an overview of these studies combined with recent knowledge regarding the effects of naturally occurring variants of the GIPR system and species differences within the GIP system to enhance our understanding of the GIPR as a drug target.
Collapse
Affiliation(s)
- Mette Marie Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Peter Lindquist
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hüsün Sheyma Kizilkaya
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Smidt Gasbjerg
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Takayama K, Mori K, Sasaki Y, Taguchi A, Taniguchi A, Miyazato M, Hayashi Y. Discovery of a Pentapeptide Antagonist to Human Neuromedin U Receptor 1. ACS Med Chem Lett 2024; 15:885-891. [PMID: 38894927 PMCID: PMC11181499 DOI: 10.1021/acsmedchemlett.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Neuromedin U (NMU) activates two types of receptors (NMUR1 and NMUR2), and the former is mainly expressed in the peripheral tissues, including the intestinal tract and lung tissues. Since NMUR1 contributes to the promotion of type 2 inflammation in these tissues, it is a potential target to suppress inflammatory responses. However, promising antagonist candidates for human NMUR1 have not yet been developed. Here we successfully identified pentapeptide antagonist 9a through a structure-activity relationship study based on hexapeptide lead 1. Its antagonistic activity against human NMUR1 was 10 times greater than that against NMUR2. This is a breakthrough in the development of NMUR1-selective antagonists. Although 9a was relatively stable in the plasma, the C-terminal amide was rapidly degraded to the carboxylic acid by the serum endopeptidase thrombin, which acted as an amidase. This basic information would aid in sample handling in future biological evaluations.
Collapse
Affiliation(s)
- Kentaro Takayama
- Laboratory
of Environmental Biochemistry, Kyoto Pharmaceutical
University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kenji Mori
- Department of Cardiac
Physiology and Department of Biochemistry, National Cerebral
and Cardiovascular Center Research
Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Yu Sasaki
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Taguchi
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Atsuhiko Taniguchi
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mikiya Miyazato
- Department of Cardiac
Physiology and Department of Biochemistry, National Cerebral
and Cardiovascular Center Research
Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Yoshio Hayashi
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
13
|
Zheng Y, Lao Z, Liu R, Xu J, Guo L, Lin Z, Yang X. Customizable Click Biochemistry Strategy for the Design and Preparation of Glucagon-like Peptide-1 Conjugates and Coagonists. Bioconjug Chem 2024; 35:693-702. [PMID: 38700695 DOI: 10.1021/acs.bioconjchem.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The development of oligomeric glucagon-like peptide-1 (GLP-1) and GLP-1-containing coagonists holds promise for enhancing the therapeutic potential of the GLP-1-based drugs for treating type 2 diabetes mellitus (T2DM). Here, we report a facile, efficient, and customizable strategy based on genetically encoded SpyCatcher-SpyTag chemistry and an inducible, cleavable self-aggregating tag (icSAT) scheme. icSAT-tagged SpyTag-fused GLP-1 and the dimeric or trimeric SpyCatcher scaffold were designed for dimeric or trimeric GLP-1, while icSAT-tagged SpyCatcher-fused GLP-1 and the icSAT-tagged SpyTag-fused GIP were designed for dual GLP-1/GIP (glucose-dependent insulinotropic polypeptide) receptor agonist. These SpyCatcher- and SpyTag-fused protein pairs were spontaneously ligated directly from the cell lysates. The subsequent icSAT scheme, coupled with a two-step standard column purification, resulted in target proteins with authentic N-termini, with yields ranging from 35 to 65 mg/L and purities exceeding 99%. In vitro assays revealed 3.0- to 4.1-fold increased activities for dimeric and trimeric GLP-1 compared to mono-GLP-1. The dual GLP-1/GIP receptor agonist exhibited balanced activity toward the GLP-1 receptor or the GIP receptor. All the proteins exhibited 1.8- to 3.0-fold prolonged half-lives in human serum compared to mono-GLP-1 or GIP. This study provides a generally applicable click biochemistry strategy for developing oligomeric or dual peptide/protein-based drug candidates.
Collapse
Affiliation(s)
- Yunchun Zheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zisha Lao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Run Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jun Xu
- Dongguan HEC Biopharmaceutical R&D Co., Ltd., 368 Middle Zhenan Road, Changan, Dongguan 523871, China
| | - Linfeng Guo
- Dongguan HEC Biopharmaceutical R&D Co., Ltd., 368 Middle Zhenan Road, Changan, Dongguan 523871, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
14
|
Liu H, Xiao H, Lin S, Zhou H, Cheng Y, Xie B, Xu D. Effect of gut hormones on bone metabolism and their possible mechanisms in the treatment of osteoporosis. Front Pharmacol 2024; 15:1372399. [PMID: 38725663 PMCID: PMC11079205 DOI: 10.3389/fphar.2024.1372399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Bone is a highly dynamic organ that changes with the daily circadian rhythm. During the day, bone resorption is suppressed due to eating, while it increases at night. This circadian rhythm of the skeleton is regulated by gut hormones. Until now, gut hormones that have been found to affect skeletal homeostasis include glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic polypeptide (GIP), and peptide YY (PYY), which exerts its effects by binding to its cognate receptors (GLP-1R, GLP-2R, GIPR, and Y1R). Several studies have shown that GLP-1, GLP-2, and GIP all inhibit bone resorption, while GIP also promotes bone formation. Notably, PYY has a strong bone resorption-promoting effect. In addition, gut microbiota (GM) plays an important role in maintaining bone homeostasis. This review outlines the roles of GLP-1, GLP-2, GIP, and PYY in bone metabolism and discusses the roles of gut hormones and the GM in regulating bone homeostasis and their potential mechanisms.
Collapse
Affiliation(s)
- Hongyu Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huimin Xiao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Sufen Lin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huan Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Yizhao Cheng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Baocheng Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Department of Pharmacy, The 10th Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, China
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| |
Collapse
|
15
|
Mohseni Sani N, Talaee M, Akbari A, Ashoori F, Zamani J, Kermani AA, Shahbani Zahiri H, Presley J, Vali H, Akbari Noghabi K. Unveiling the structure-emulsifying function relationship of truncated recombinant forms of the SA01-OmpA protein opens up a new vista in bioemulsifiers. Microbiol Spectr 2024; 12:e0346523. [PMID: 38206002 PMCID: PMC10846152 DOI: 10.1128/spectrum.03465-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024] Open
Abstract
The emulsifying ability of SA01-OmpA (outer membrane protein A from Acinetobacter sp. SA01) was found to be constrained by challenges like low production efficiency and high costs associated with protein recovery from E. coli inclusion bodies, as described in our previous study. The present study sought to benefit from the advantages of the targeted truncating of SA01-OmpA protein, taking into account the reduced propensity of protein expression as inclusion bodies and cytotoxicity. Here, the structure and activity relationship of two truncated recombinant forms of SA01-OmpA protein was unraveled through a hybrid approach based on experimental data and computational methodologies, representing an innovative bioemulsifier with advantageous emulsifying activity. The recombinant truncated SA01-OmpA variants were cloned and heterologously expressed in E. coli host cells and subsequently purified. The results showed increased emulsifying activity of N-terminally truncated SA01-OmpA (NT-OmpA) compared to full-length SA01-OmpA. Molecular dynamics (MD) simulations analysis demonstrated a direct correlation between the C-terminally truncated SA01-OmpA (CT-OmpA) and its expression as inclusion bodies. Analysis of the structure-activity relationship of truncated variants of SA01-OmpA revealed that, compared to the full-length protein, deletion of the β-barrel portion from the N-terminal of SA01-OmpA increased the emulsifying activity of NT-OmpA while lowering its expression as inclusion bodies. Contrary to the full-length protein, the N-terminally truncated SA01-OmpA was not as cytotoxic, according to the MTT assay, FCM analysis, and AO/EB staining. The findings of this extensive study advance our knowledge of SA01-OmpA at the molecular level as well as the design and development of efficient bioemulsifiers.IMPORTANCEPrevious research (Shahryari et al. 2021, mSystems 6: e01175-20) introduced and characterized the SA01-OmpA protein as a multifaceted protein with a variety of functions, including maintaining cellular homeostasis under oxidative stress conditions, biofilm formation, outer membrane vesicles (OMV) biogenesis, and beneficial emulsifying capacity. By truncating the SA01-OmpA protein, the current study presents a unique method for developing protein-type bioemulsifiers. The findings indicate that the N-terminally truncated SA01-OmpA (NT-OmpA) has the potential to fully replace full-length SA01-OmpA as a novel bioemulsifier with significant emulsifying activity. This study opens up a new frontier in bioemulsifiers, shedding light on a possible relationship between the structure and activity of SA01-OmpA truncated forms.
Collapse
Affiliation(s)
- Naeema Mohseni Sani
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahbubeh Talaee
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Akbari
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Faranak Ashoori
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Javad Zamani
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali A. Kermani
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Hossein Shahbani Zahiri
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - John Presley
- Department of Anatomy & Cell Biology, McGill University, Montreal, Québec, Canada
| | - Hojatollah Vali
- Department of Anatomy & Cell Biology, McGill University, Montreal, Québec, Canada
| | - Kambiz Akbari Noghabi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
16
|
Jiang N, Su D, Chen D, Huang S, Tang C, Jing L, Yang C, Zhou Z, Yan Z, Han J. Discovery of a Novel Glucagon-like Peptide-1 (GLP-1) Analogue from Bullfrog and Investigation of Its Potential for Designing GLP-1-Based Multiagonists. J Med Chem 2024; 67:180-198. [PMID: 38117235 DOI: 10.1021/acs.jmedchem.3c01049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In this study, we aimed to discover novel GLP-1 analogues from natural sources. We investigated GLP-1 analogues from fish and amphibians, and bullfrog GLP-1 (bGLP-1) showed the highest potency. Starting with bGLP-1, we explored the structure-activity relationship and performed optimization and long-acting modifications, resulting in a potent analogue called 2f. Notably, 2f exhibited superior effects on food intake, glycemic control, and body weight compared to semaglutide. Furthermore, we explored the usefulness of bGLP-1 in designing GLP-1-based multiagonists. Using the bGLP-1 sequence, we designed novel dual GLP-1/glucagon receptor agonists and triple GLP-1/GIP/glucagon receptor agonists. The selected dual GLP-1/glucagon receptor agonist 3o and triple GLP-1/GIP/glucagon receptor agonist 4b exhibited significant therapeutic effects on lipid regulation, glycemic control, and body weight. Overall, our study highlights the potential of discovering potent GLP-1 receptor agonists from natural sources. Additionally, utilizing natural GLP-1 analogues for designing multiagonists presents a practical approach for developing antiobesity and antidiabetic agents.
Collapse
Affiliation(s)
- Neng Jiang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Di Su
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - De Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Shutong Huang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Chunli Tang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Lin Jing
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Caiyan Yang
- School of Pharmacy, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Baise, Guangxi 533000, PR China
| | - Zhongbo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Baise, Guangxi 533000, PR China
| | - Zhiming Yan
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Jing Han
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| |
Collapse
|
17
|
Gasbjerg LS, Rosenkilde MM, Meier JJ, Holst JJ, Knop FK. The importance of glucose-dependent insulinotropic polypeptide receptor activation for the effects of tirzepatide. Diabetes Obes Metab 2023; 25:3079-3092. [PMID: 37551549 DOI: 10.1111/dom.15216] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/22/2023] [Accepted: 07/02/2023] [Indexed: 08/09/2023]
Abstract
Tirzepatide is a unimolecular co-agonist of the glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptors recently approved for the treatment of type 2 diabetes by the US Food and Drug Administration and the European Medicine Agency. Tirzepatide treatment results in an unprecedented improvement of glycaemic control and lowering of body weight, but the contribution of the GIP receptor-activating component of tirzepatide to these effects is uncertain. In this review, we present the current knowledge about the physiological roles of the incretin hormones GLP-1 and GIP, their receptors, and previous results of co-targeting the two incretin hormone receptors in humans. We also analyse the molecular pharmacological, preclinical and clinical effects of tirzepatide to discuss the role of GIP receptor activation for the clinical effects of tirzepatide. Based on the available literature on the combination of GLP-1 and GIP receptor activation, tirzepatide does not seem to have a classical co-activating mode of action in humans. Rather, in vitro studies of the human GLP-1 and GIP receptors reveal a biased GLP-1 receptor activation profile and GIP receptor downregulation. Therefore, we propose three hypotheses for the mode of action of tirzepatide, which can be addressed in future, elaborate clinical trials.
Collapse
Affiliation(s)
- Laerke S Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juris J Meier
- Department of Internal Medicine, Gastroenterology and Diabetology, Augusta Clinic, Bochum, Germany
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Gadgaard S, Windeløv JA, Schiellerup SP, Holst JJ, Hartmann B, Rosenkilde MM. Long-acting agonists of human and rodent GLP-2 receptors for studies of the physiology and pharmacological potential of the GLP-2 system. Biomed Pharmacother 2023; 160:114383. [PMID: 36780786 DOI: 10.1016/j.biopha.2023.114383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide-2 (GLP-2) is secreted postprandially from enteroendocrine Lcells and has anabolic action on gut and bone. Short-acting teduglutide is the only approved GLP-2 analog for the treatment of short-bowel syndrome (SBS). To improve the therapeutic effect, we created a series of lipidated GLP-2R agonists. EXPERIMENTAL APPROACH Six GLP-2 analogs were studied in vitro for cAMP accumulation, β-arrestin 1 and 2 recruitment, affinity, and internalization. The trophic actions on intestine and bone were examined in vivo in rodents. KEY RESULTS Lipidations at lysines introduced at position 12, 16, and 20 of hGLP-2(1-33) were well-tolerated with less than 2.2-fold impaired potency and full efficacy at the hGLP-2R in cAMP accumulation. In contrast, N- and C-terminal (His1 and Lys30) lipidations impaired potency by 4.2- and 45-fold and lowered efficacy to 77% and 85% of hGLP-2, respectively. All variants were similarly active on the rat and mouse GLP-2Rs and the three most active variants displayed increased selectivity for hGLP-2R over hGLP-1R activation, compared to native hGLP-2. Impact on arrestin recruitment and receptor internalization followed that of Gαs-coupling, except for lipidation in position 20, where internalization was more impaired, suggesting desensitization protection. A highly active variant (C16 at position 20) with low internalization and a half-life of 9.5 h in rats showed improved gut and bone tropism with increased weight of small intestine in mice and decreased CTX levels in rats. CONCLUSION AND IMPLICATION We present novel hGLP-2 agonists suitable for in vivo studies of the GLP-2 system to uncover its pharmacological potential.
Collapse
Affiliation(s)
- Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Bainan Biotech, Copenhagen, Denmark
| | | | - Sine P Schiellerup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
19
|
Hindsø M, Hedbäck N, Svane MS, Møller A, Martinussen C, Jørgensen NB, Dirksen C, Gasbjerg LS, Kristiansen VB, Hartmann B, Rosenkilde MM, Holst JJ, Madsbad S, Bojsen-Møller KN. The Importance of Endogenously Secreted GLP-1 and GIP for Postprandial Glucose Tolerance and β-Cell Function After Roux-en-Y Gastric Bypass and Sleeve Gastrectomy Surgery. Diabetes 2023; 72:336-347. [PMID: 36478039 DOI: 10.2337/db22-0568] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Enhanced secretion of glucagon-like peptide 1 (GLP-1) seems to be essential for improved postprandial β-cell function after Roux-en-Y gastric bypass (RYGB) but is less studied after sleeve gastrectomy (SG). Moreover, the role of the other major incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), is relatively unexplored after bariatric surgery. We studied the effects of separate and combined GLP-1 receptor (GLP-1R) and GIP receptor (GIPR) blockade during mixed-meal tests in unoperated (CON), SG-operated, and RYGB-operated people with no history of diabetes. Postprandial GLP-1 concentrations were highest after RYGB but also higher after SG compared with CON. In contrast, postprandial GIP concentrations were lowest after RYGB. The effect of GLP-1R versus GIPR blockade differed between groups. GLP-1R blockade reduced β-cell glucose sensitivity and increased or tended to increase postprandial glucose responses in the surgical groups but had no effect in CON. GIPR blockade reduced β-cell glucose sensitivity and increased or tended to increase postprandial glucose responses in the CON and SG groups but had no effect in the RYGB group. Our results support that GIP is the most important incretin hormone in unoperated people, whereas GLP-1 and GIP are equally important after SG, and GLP-1 is the most important incretin hormone after RYGB.
Collapse
Affiliation(s)
- Morten Hindsø
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Nora Hedbäck
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Maria S Svane
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Andreas Møller
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Nils B Jørgensen
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Carsten Dirksen
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Viggo B Kristiansen
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | | |
Collapse
|
20
|
Gobron B, Couchot M, Irwin N, Legrand E, Bouvard B, Mabilleau G. Development of a First-in-Class Unimolecular Dual GIP/GLP-2 Analogue, GL-0001, for the Treatment of Bone Fragility. J Bone Miner Res 2023; 38:733-748. [PMID: 36850034 DOI: 10.1002/jbmr.4792] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/01/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Due to aging of the population, bone frailty is dramatically increasing worldwide. Although some therapeutic options exist, they do not fully protect or prevent against the occurrence of new fractures. All current drugs approved for the treatment of bone fragility target bone mass. However, bone resistance to fracture is not solely due to bone mass but relies also on bone extracellular matrix (ECM) material properties, i.e., the quality of the bone matrix component. Here, we introduce the first-in-class unimolecular dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-2 (GIP/GLP-2) analogue, GL-0001, that activates simultaneously the glucose-dependent insulinotropic polypeptide receptor (GIPr) and the glucagon-like peptide-2 receptor (GLP-2r). GL-0001 acts synergistically through a cyclic adenosine monophosphate-lysyl oxidase pathway to enhance collagen maturity. Furthermore, bilateral ovariectomy was performed in 32 BALB/c mice at 12 weeks of age prior to random allocation to either saline, dual GIP/GLP-2 analogues (GL-0001 or GL-0007) or zoledronic acid groups (n = 8/group). Treatment with dual GIP/GLP-2 analogues was initiated 4 weeks later for 8 weeks. At the organ level, GL-0001 modified biomechanical parameters by increasing ultimate load, postyield displacement, and energy-to-fracture of cortical bone. GL-0001 also prevented excess trabecular bone degradation at the appendicular skeleton and enhanced bone ECM material properties in cortical bone through a reduction of the mineral-to-matrix ratio and augmentation in enzymatic collagen cross-linking. These results demonstrate that targeting bone ECM material properties is a viable option to enhance bone strength and opens an innovative pathway for the treatment of patients suffering from bone fragility. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Benoit Gobron
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,CHU Angers, Service de Rhumatologie, Angers, France
| | - Malory Couchot
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,SATT Ouest Valorisation, Nantes, France
| | - Nigel Irwin
- Ulster University, School of Pharmacy and Pharmaceutical Sciences, Coleraine, UK
| | - Erick Legrand
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,CHU Angers, Service de Rhumatologie, Angers, France
| | - Béatrice Bouvard
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,CHU Angers, Service de Rhumatologie, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, UF de Pathologie osseuse, Angers, France
| |
Collapse
|
21
|
Gabe MBN, von Voss L, Hunt JE, Gadgaard S, Gasbjerg LS, Holst JJ, Kissow H, Hartmann B, Rosenkilde MM. Biased GLP-2 agonist with strong G protein-coupling but impaired arrestin recruitment and receptor desensitization enhances intestinal growth in mice. Br J Pharmacol 2023. [PMID: 36683195 DOI: 10.1111/bph.16040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/04/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide-2 (GLP-2) is secreted postprandially by enteroendocrine L-cells and stimulates growth of the gut and bone. One GLP-2 analogue is approved for short bowel syndrome (SBS). To improve therapeutic efficacy, we developed biased GLP-2 receptor (GLP-2R) agonists through N-terminal modifications. EXPERIMENTAL APPROACH Variants with Ala and Trp substitutions of the first seven positions of GLP-2(1-33) were studied in vitro for affinity, G protein activation (cAMP accumulation), recruitment of β-arrestin 1 and 2, and internalization of the human and mouse GLP-2R. The intestinotrophic actions of the most efficacious (cAMP) biased variant were examined in mice. KEY RESULTS Ala substitutions had more profound effects than Trp substitutions. For both, alterations at positions 1, 3 and 6 most severely impaired activity. β-arrestin recruitment was more affected than cAMP accumulation. Among Ala substitutions, [H1A], [D3A] and [F6A] impaired potency (EC50 ) for cAMP-accumulation >20-fold and efficacy (Emax ) to 48%-87%, and were unable to recruit arrestins. The Trp substitutions, [A2W], [D3W] and [G4W] were partial agonists (Emax of 46%-59%) with 1.7-12-fold decreased potencies in cAMP and diminished β-arrestin recruitment. The biased variants, [F6A], [F6W] and [S7W] induced less GLP-2R internalization compared with GLP-2, which induced internalization in a partly arrestin-independent manner. In mice, [S7W] enhanced gut trophic actions with increased weight of the small intestine, increased villus height and crypt depth compared with GLP-2. CONCLUSION AND IMPLICATIONS G protein-biased GLP-2R agonists with diminished receptor desensitization have superior intestinotrophic effects and may represent improved treatment of intestinal insufficiency including SBS.
Collapse
Affiliation(s)
- Maria Buur Nordskov Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Liv von Voss
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna Elizabeth Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laerke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Krogh LSL, Henriksen K, Stensen S, Skov-Jeppesen K, Bergmann NC, Størling J, Rosenkilde MM, Hartmann B, Holst JJ, Gasbjerg LS, Knop FK. The naturally occurring GIP(1-30)NH2 is a GIP receptor agonist in humans. Eur J Endocrinol 2023; 188:6979719. [PMID: 36651162 DOI: 10.1093/ejendo/lvac015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The gut hormone glucose-dependent insulinotropic polypeptide (GIP) is an important regulator of glucose and bone metabolism. In rodents, the naturally occurring GIP variant, GIP(1-30)NH2, has shown similar effects as full-length GIP (GIP(1-42)), but its effects in humans are unsettled. Here, we investigated the actions of GIP(1-30)NH2 compared to GIP(1-42) on glucose and bone metabolism in healthy men and in isolated human pancreatic islets. METHODS Nine healthy men completed three separate three-step glucose clamps (0-60 minutes at fasting plasma glucose (FPG) level, 60-120 minutes at 1.5× FPG, and 120-180 minutes at 2× FPG) with infusion of GIP(1-42) (4 pmol/kg/min), GIP(1-30)NH2 (4 pmol/kg/min), and saline (9 mg/mL) in randomised order. Blood was sampled for measurement of relevant hormones and bone turnover markers. Human islets were incubated with low (2 mmol/L) or high (20 mmol/L) d-glucose with or without GIP(1-42) or GIP(1-30)NH2 in three different concentrations for 30 minutes, and secreted insulin and glucagon were measured. RESULTS Plasma glucose (PG) levels at FPG, 1.5× FPG, and 2× FPG were obtained by infusion of 1.45 g/kg, 0.97 g/kg, and 0.6 g/kg of glucose during GIP(1-42), GIP(1-30)NH2, and saline, respectively (P = .18), and were similar on the three experimental days. Compared to placebo, GIP(1-30)NH2 resulted in similar glucagonotropic, insulinotropic, and carboxy-terminal type 1 collagen crosslinks-suppressing effects as GIP(1-42). In vitro experiments on human islets showed similar insulinotropic and glucagonotropic effects of the two GIP variants. CONCLUSIONS GIP(1-30)NH2 has similar effects on glucose and bone metabolism in healthy individuals and in human islets in vitro as GIP(1-42).
Collapse
Affiliation(s)
- Liva S L Krogh
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Kristine Henriksen
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Kirsa Skov-Jeppesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Natasha C Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Joachim Størling
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Hansen MS, Søe K, Christensen LL, Fernandez-Guerra P, Hansen NW, Wyatt RA, Martin C, Hardy RS, Andersen TL, Olesen JB, Hartmann B, Rosenkilde MM, Kassem M, Rauch A, Gorvin CM, Frost M. GIP reduces osteoclast activity and improves osteoblast survival in primary human bone cells. Eur J Endocrinol 2023; 188:6987865. [PMID: 36747334 DOI: 10.1093/ejendo/lvac004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Drugs targeting the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) are emerging as treatments for type-2 diabetes and obesity. GIP acutely decreases serum markers of bone resorption and transiently increases bone formation markers in short-term clinical investigations. However, it is unknown whether GIP acts directly on bone cells to mediate these effects. Using a GIPR-specific antagonist, we aimed to assess whether GIP acts directly on primary human osteoclasts and osteoblasts. METHODS Osteoclasts were differentiated from human CD14+ monocytes and osteoblasts from human bone. GIPR expression was determined using RNA-seq in primary human osteoclasts and in situ hybridization in human femoral bone. Osteoclastic resorptive activity was assessed using microscopy. GIPR signaling pathways in osteoclasts and osteoblasts were assessed using LANCE cAMP and AlphaLISA phosphorylation assays, intracellular calcium imaging and confocal microscopy. The bioenergetic profile of osteoclasts was evaluated using Seahorse XF-96. RESULTS GIPR is robustly expressed in mature human osteoclasts. GIP inhibits osteoclastogenesis, delays bone resorption, and increases osteoclast apoptosis by acting upon multiple signaling pathways (Src, cAMP, Akt, p38, Akt, NFκB) to impair nuclear translocation of nuclear factor of activated T cells-1 (NFATc1) and nuclear factor-κB (NFκB). Osteoblasts also expressed GIPR, and GIP improved osteoblast survival. Decreased bone resorption and improved osteoblast survival were also observed after GIP treatment of osteoclast-osteoblast co-cultures. Antagonizing GIPR with GIP(3-30)NH2 abolished the effects of GIP on osteoclasts and osteoblasts. CONCLUSIONS GIP inhibits bone resorption and improves survival of human osteoblasts, indicating that drugs targeting GIPR may impair bone resorption, whilst preserving bone formation.
Collapse
Affiliation(s)
- Morten S Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C DK-5000, Denmark
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham B15 2TT, United Kingdom
| | - Kent Søe
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C DK-5000, Denmark
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense C DK-5000, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense C DK-5000, Denmark
| | - Line L Christensen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
| | - Paula Fernandez-Guerra
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
| | - Nina W Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
| | - Rachael A Wyatt
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham B15 2TT, United Kingdom
| | - Claire Martin
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Rowan S Hardy
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Thomas L Andersen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C DK-5000, Denmark
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense C DK-5000, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense C DK-5000, Denmark
| | - Jacob B Olesen
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense C DK-5000, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Moustapha Kassem
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C DK-5000, Denmark
| | - Alexander Rauch
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C DK-5000, Denmark
- Steno Diabetes Centre Odense, Odense University Hospital, Odense C DK-5000, Denmark
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham B15 2TT, United Kingdom
| | - Morten Frost
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C DK-5000, Denmark
- Steno Diabetes Centre Odense, Odense University Hospital, Odense C DK-5000, Denmark
| |
Collapse
|
24
|
Discovery of a potent GIPR peptide antagonist that is effective in rodent and human systems. Mol Metab 2022; 66:101638. [PMID: 36400403 PMCID: PMC9719863 DOI: 10.1016/j.molmet.2022.101638] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Glucose-dependent insulinotropic polypeptide (GIP) is one of the two major incretin factors that regulate metabolic homeostasis. Genetic ablation of its receptor (GIPR) in mice confers protection against diet-induced obesity (DIO), while GIPR neutralizing antibodies produce additive weight reduction when combined with GLP-1R agonists in preclinical models and clinical trials. Conversely, GIPR agonists have been shown to promote weight loss in rodents, while dual GLP-1R/GIPR agonists have proven superior to GLP-1R monoagonists for weight reduction in clinical trials. We sought to develop a long-acting, specific GIPR peptide antagonist as a tool compound suitable for investigating GIPR pharmacology in both rodent and human systems. METHODS We report a structure-activity relationship of GIPR peptide antagonists based on the human and mouse GIP sequences with fatty acid-based protraction. We assessed these compounds in vitro, in vivo in DIO mice, and ex vivo in islets from human donors. RESULTS We report the discovery of a GIP(5-31) palmitoylated analogue, [Nα-Ac, L14, R18, E21] hGIP(5-31)-K11 (γE-C16), which potently inhibits in vitro GIP-mediated cAMP generation at both the hGIPR and mGIPR. In vivo, this peptide effectively blocks GIP-mediated reductions in glycemia in response to exogenous and endogenous GIP and displays a circulating pharmacokinetic profile amenable for once-daily dosing in rodents. Co-administration with the GLP-1R agonist semaglutide and this GIPR peptide antagonist potentiates weight loss compared to semaglutide alone. Finally, this antagonist inhibits GIP- but not GLP-1-stimulated insulin secretion in intact human islets. CONCLUSIONS Our work demonstrates the discovery of a potent, specific, and long-acting GIPR peptide antagonist that effectively blocks GIP action in vitro, ex vivo in human islets, and in vivo in mice while producing additive weight-loss when combined with a GLP-1R agonist in DIO mice.
Collapse
|
25
|
Hu ZG, Dong ZQ, Miao JH, Li KJ, Wang J, Chen P, Lu C, Pan MH. Identification of the Key Functional Domains of Bombyx mori Nucleopolyhedrovirus IE1 Protein. Int J Mol Sci 2022; 23:ijms231810276. [PMID: 36142194 PMCID: PMC9499007 DOI: 10.3390/ijms231810276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
The immediate early protein 1 (IE1) acts as a transcriptional activator and is essential for viral gene transcription and viral DNA replication. However, the key regulatory domains of IE1 remain poorly understood. Here, we analyzed the sequence characteristics of Bombyx mori nucleopolyhedrovirus (BmNPV) IE1 and identified the key functional domains of BmNPV IE1 by stepwise truncation. Our results showed that BmNPV IE1 was highly similar to Autographa californica nucleopolyhedrovirus (AcMNPV) IE1, but was less conserved with IE1 of other baculoviruses, the C-terminus of IE1 was more conserved than the N-terminus, and BmNPV IE1 was also necessary for BmNPV proliferation. Moreover, we found that IE1158–208 was a major nuclear localization element, and IE11–157 and IE1539–559 were minor nuclear localization elements, but the combination of these two minor elements was equally sufficient to fully mediate the nuclear entry of IE1. Meanwhile, IE11–258, IE1560–584, and the association of amino acids 258 and 259 were indispensable for the transactivation activity of BmNPV IE1. These results systematically resolve the functional domains of BmNPV IE1, which contribute to the understanding of the mechanism of baculovirus infection and provide a possibility to synthesize a small molecule IE1-truncated mutant as an agonist or antagonist.
Collapse
Affiliation(s)
- Zhi-Gang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Key Laboratory for Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Jiang-Hao Miao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ke-Jie Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jie Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Key Laboratory for Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Key Laboratory for Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Correspondence: (C.L.); (M.-H.P.); Tel.: +86-023-68250076 (M.-H.P.)
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Key Laboratory for Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Correspondence: (C.L.); (M.-H.P.); Tel.: +86-023-68250076 (M.-H.P.)
| |
Collapse
|
26
|
Boer GA, Hunt JE, Gabe MBN, Windeløv JA, Sparre-Ulrich AH, Hartmann B, Holst JJ, Rosenkilde MM. GIP receptor antagonist treatment causes a reduction in weight gain in ovariectomised high fat diet-fed mice. Br J Pharmacol 2022; 179:4486-4499. [PMID: 35710141 PMCID: PMC9544171 DOI: 10.1111/bph.15894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 04/04/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background and purpose The incretin hormone, gastric inhibitory peptide/glucose‐dependent insulinotropic polypeptide (GIP), secreted by the enteroendocrine K‐cells in the proximal intestine, may regulate lipid metabolism and adiposity, but its exact role in these processes is unclear. Experimental approach We characterized in vitro and in vivo antagonistic properties of a novel GIP analogue, mGIPAnt‐1. We further assessed the in vivo pharmacokinetic profile of this antagonist, as well as its ability to affect high‐fat diet (HFD)‐induced body weight gain in ovariectomised mice during an 8‐week treatment period. Key results mGIPAnt‐1 showed competitive antagonistic properties to the GIP receptor in vitro as it inhibited GIP‐induced cAMP accumulation in COS‐7 cells. Furthermore, mGIPAnt‐1 was capable of inhibiting GIP‐induced glucoregulatory and insulinotropic effects in vivo and has a favourable pharmacokinetic profile with a half‐life of 7.2 h in C57Bl6 female mice. Finally, sub‐chronic treatment with mGIPAnt‐1 in ovariectomised HFD mice resulted in a reduction of body weight and fat mass. Conclusion and Implications mGIPAnt‐1 successfully inhibited acute GIP‐induced effects in vitro and in vivo and sub‐chronically induces resistance to HFD‐induced weight gain in ovariectomised mice. Our results support the development of GIP antagonists for the therapy of obesity.
Collapse
Affiliation(s)
- Geke Aline Boer
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna Elizabeth Hunt
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Buur Nordskov Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Agerlin Windeløv
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Wang L. Designing a Dual GLP-1R/GIPR Agonist from Tirzepatide: Comparing Residues Between Tirzepatide, GLP-1, and GIP. Drug Des Devel Ther 2022; 16:1547-1559. [PMID: 35651477 PMCID: PMC9149770 DOI: 10.2147/dddt.s358989] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
Improving type 2 diabetes using incretin analogues is becoming increasingly plausible. Currently, tirzepatide is the most promising listed incretin analogue. Here, I briefly explain the evolution of drugs of this kind, analyze the residue discrepancies between tirzepatide and endogenous incretins, summarize some existing strategies for prolonging half-life, and present suggestions for future research, mainly involving biased functions. This review aims to present some useful information for designing a dual glucagon like peptide-1 receptor/glucose-dependent insulinotropic polypeptide receptor agonist. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/yo_lgebnhRo
Collapse
Affiliation(s)
- Lijing Wang
- College of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
28
|
Gabe MBN, Gasbjerg LS, Gadgaard S, Lindquist P, Holst JJ, Rosenkilde MM. N-terminal alterations turn the gut hormone GLP-2 into an antagonist with gradual loss of GLP-2 receptor selectivity towards more GLP-1 receptor interaction. Br J Pharmacol 2022; 179:4473-4485. [PMID: 35523760 PMCID: PMC9541843 DOI: 10.1111/bph.15866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE To fully elucidate the regulatory role of the GLP-2 system in the gut and the bones, potent and selective GLP-2 receptor (GLP-2R) antagonists are needed. Searching for antagonist activity, we performed systematic N-terminal truncations of human GLP-2(1-33). EXPERIMENTAL APPROACH COS-7 cells were transfected with the human GLP-2R and assessed for cAMP accumulation or competition binding using 125 I-GLP-2(1-33)[M10Y]. To examine selectivity, human GLP-1 or GIP receptor expressing COS-7 cells were assessed for cAMP accumulation. KEY RESULTS The affinity for the GLP-2R of the N-terminally truncated GLP-2 peptides decreased with reduced N-terminal peptide length (Ki 6.5-871 nM), while increasing antagonism appeared with inhibitory potencies (IC50 ) values from 79 to 204 nM for truncation up to GLP-2(4-33) and then declined. In contrast, truncation-dependent increases in intrinsic activity were observed from an Emax of only 20% for GLP-(2-33) up to 46% for GLP-2(6-33) at 1 μM, followed by a decline. GLP-2(9-33) had the highest intrinsic efficacy (Emax 65%) and no antagonistic properties. Moreover, with truncations up to GLP-2(8-33) a gradual loss in selectivity for the GLP-2R appeared with increasing GLP-1 receptor (GLP-1R) inhibition (up to 73% at 1 μM). Lipidation of the peptides improved antagonism (IC50 down to 7.9 nM) for both the GLP-2R and the GLP-1R. CONCLUSION AND IMPLICATIONS The N-terminus of GLP-2 is crucial for GLP-2R activity and selectivity. Our observations form the basis for the development of tool compounds for further characterization of the GLP-2 system.
Collapse
Affiliation(s)
- Maria Buur Nordskov Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Laerke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Peter Lindquist
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
29
|
Mayendraraj A, Rosenkilde MM, Gasbjerg LS. GLP-1 and GIP receptor signaling in beta cells - A review of receptor interactions and co-stimulation. Peptides 2022; 151:170749. [PMID: 35065096 DOI: 10.1016/j.peptides.2022.170749] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide 1 receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR) are two class B1 G protein-coupled receptors, which are stimulated by the gastrointestinal hormones GLP-1 and GIP, respectively. In the pancreatic beta cells, activation of both receptors lead to increased cyclic adenosine monophosphate (cAMP) and glucose-dependent insulin secretion. Marketed GLP-1R agonists such as dulaglutide, liraglutide, exenatide and semaglutide constitute an expanding drug class with beneficial effects for persons suffering from type 2 diabetes and/or obesity. In recent years another drug class, the GLP-1R-GIPR co-agonists, has emerged. Especially the peptide-based, co-agonist tirzepatide is a promising candidate for a better treatment of type 2 diabetes by improving glycemic control and weight reduction. The mechanism of action for tirzepatide include biased signaling of the GLP-1R as well as potent GIPR signaling. Since the implications of co-targeting these closely related receptors concomitantly are challenging to study in vivo, the pharmacodynamic mechanisms and downstream signaling pathways of the GLP-1R-GIPR co-agonists in general, are not fully elucidated. In this review, we present the individual signaling pathways for GLP-1R and GIPR in the pancreatic beta cell with a focus on the shared signaling pathways of the two receptors and interpret the implications of GLP-1R-GIPR co-activation in the light of recent co-activating therapeutic compounds.
Collapse
Affiliation(s)
- Ashok Mayendraraj
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
30
|
Abstract
Tirzepatide is a dual agonist of the glucose-dependent insulinotropic polypeptide receptor (GIPR) and the glucagon-like peptide-1 receptor (GLP-1R), which are incretin receptors that regulate carbohydrate metabolism. This investigational agent has proven superior to selective GLP-1R agonists in clinical trials in subjects with type 2 diabetes mellitus. Intriguingly, although tirzepatide closely resembles native GIP in how it activates the GIPR, it differs markedly from GLP-1 in its activation of the GLP-1R, resulting in less agonist-induced receptor desensitization. We report how cryogenic electron microscopy and molecular dynamics simulations inform the structural basis for the unique pharmacology of tirzepatide. These studies reveal the extent to which fatty acid modification, combined with amino acid sequence, determines the mode of action of a multireceptor agonist. Tirzepatide (LY3298176) is a fatty-acid-modified, dual incretin receptor agonist that exhibits pharmacology similar to native GIP at the glucose-dependent insulinotropic polypeptide receptor (GIPR) but shows bias toward cyclic adenosine monophosphate signaling at the glucagon-like peptide-1 receptor (GLP-1R). In addition to GIPR signaling, the pathway bias at the GLP-1R may contribute to the efficacy of tirzepatide at improving glucose control and body weight regulation in type 2 diabetes mellitus. To investigate the structural basis for the differential signaling of tirzepatide, mechanistic pharmacology studies were allied with cryogenic electron microscopy. Here, we report high-resolution structures of tirzepatide in complex with the GIPR and GLP-1R. Similar to the native ligands, tirzepatide adopts an α-helical conformation with the N terminus reaching deep within the transmembrane core of both receptors. Analyses of the N-terminal tyrosine (Tyr1Tzp) of tirzepatide revealed a weak interaction with the GLP-1R. Molecular dynamics simulations indicated a greater propensity of intermittent hydrogen bonding between the lipid moiety of tirzepatide and the GIPR versus the GLP-1R, consistent with a more compact tirzepatide–GIPR complex. Informed by these analyses, tirzepatide was deconstructed, revealing a peptide structure–activity relationship that is influenced by acylation-dependent signal transduction. For the GIPR, Tyr1Tzp and other residues making strong interactions within the receptor core allow tirzepatide to tolerate fatty acid modification, yielding an affinity equaling that of GIP. Conversely, high-affinity binding with the extracellular domain of the GLP-1R, coupled with decreased stability from the Tyr1Tzp and the lipid moiety, foster biased signaling and reduced receptor desensitization. Together, these studies inform the structural determinants underlying the function of tirzepatide.
Collapse
|
31
|
Lindquist P, Gasbjerg LS, Mokrosinski J, Holst JJ, Hauser AS, Rosenkilde MM. The Location of Missense Variants in the Human GIP Gene Is Indicative for Natural Selection. Front Endocrinol (Lausanne) 2022; 13:891586. [PMID: 35846282 PMCID: PMC9277503 DOI: 10.3389/fendo.2022.891586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
The intestinal hormone, glucose-dependent insulinotropic polypeptide (GIP), is involved in important physiological functions, including postprandial blood glucose homeostasis, bone remodeling, and lipid metabolism. While mutations leading to physiological changes can be identified in large-scale sequencing, no systematic investigation of GIP missense variants has been performed. Here, we identified 168 naturally occurring missense variants in the human GIP genes from three independent cohorts comprising ~720,000 individuals. We examined amino acid changing variants scattered across the pre-pro-GIP peptide using in silico effect predictions, which revealed that the sequence of the fully processed GIP hormone is more protected against mutations than the rest of the precursor protein. Thus, we observed a highly species-orthologous and population-specific conservation of the GIP peptide sequence, suggestive of evolutionary constraints to preserve the GIP peptide sequence. Elucidating the mutational landscape of GIP variants and how they affect the structural and functional architecture of GIP can aid future biological characterization and clinical translation.
Collapse
Affiliation(s)
- Peter Lindquist
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Smidt Gasbjerg
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacek Mokrosinski
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, United States
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Sebastian Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Alexander Sebastian Hauser, ; Mette Marie Rosenkilde,
| | - Mette Marie Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Alexander Sebastian Hauser, ; Mette Marie Rosenkilde,
| |
Collapse
|
32
|
Kizilkaya HS, Sørensen KV, Kibsgaard CJ, Gasbjerg LS, Hauser AS, Sparre-Ulrich AH, Grarup N, Rosenkilde MM. Loss of Function Glucose-Dependent Insulinotropic Polypeptide Receptor Variants Are Associated With Alterations in BMI, Bone Strength and Cardiovascular Outcomes. Front Cell Dev Biol 2021; 9:749607. [PMID: 34760890 PMCID: PMC8573201 DOI: 10.3389/fcell.2021.749607] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and its receptor (GIPR) are involved in multiple physiological systems related to glucose metabolism, bone homeostasis and fat deposition. Recent research has surprisingly indicated that both agonists and antagonists of GIPR may be useful in the treatment of obesity and type 2 diabetes, as both result in weight loss when combined with GLP-1 receptor activation. To understand the receptor signaling related with weight loss, we examined the pharmacological properties of two rare missense GIPR variants, R190Q (rs139215588) and E288G (rs143430880) linked to lower body mass index (BMI) in carriers. At the molecular and cellular level, both variants displayed reduced G protein coupling, impaired arrestin recruitment and internalization, despite maintained high GIP affinity. The physiological phenotyping revealed an overall impaired bone strength, increased systolic blood pressure, altered lipid profile, altered fat distribution combined with increased body impedance in human carriers, thereby substantiating the role of GIP in these physiological processes.
Collapse
Affiliation(s)
- Hüsün Sheyma Kizilkaya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kimmie Vestergaard Sørensen
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Camilla J Kibsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laerke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Hovard Sparre-Ulrich
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Antag Therapeutics ApS, Copenhagen, Denmark
| | - Niels Grarup
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Holst JJ. Treatment of Type 2 Diabetes and Obesity on the Basis of the Incretin System: The 2021 Banting Medal for Scientific Achievement Award Lecture. Diabetes 2021; 70:2468-2475. [PMID: 34711671 PMCID: PMC8928930 DOI: 10.2337/dbi21-0026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In my lecture given on the occasion of the 2021 Banting Medal for Scientific Achievement, I briefly described the history of the incretin effect and summarized some of the developments leading to current therapies of obesity and diabetes based on the incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). In the text below, I discuss in further detail the role of these two hormones for postprandial insulin secretion in humans on the basis of recent studies with antagonists. Their direct and indirect actions on the β-cells are discussed next as well as their contrasting actions on glucagon secretion. After a brief discussion of their effect on insulin sensitivity, I describe their immediate actions in patients with type 2 diabetes and emphasize the actions of GLP-1 on β-cell glucose sensitivity, followed by a discussion of their extrapancreatic actions, including effects on appetite and food intake in humans. Finally, possible mechanisms of action of GIP-GLP-1 coagonists are discussed, and it is concluded that therapies based on incretin actions are likely to change the current hesitant therapy of both obesity and diabetes.
Collapse
Affiliation(s)
- Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Paternoster S, Simpson PV, Kokh E, Kizilkaya HS, Rosenkilde MM, Mancera RL, Keating DJ, Massi M, Falasca M. Pharmacological and structure-activity relationship studies of oleoyl-lysophosphatidylinositol synthetic mimetics. Pharmacol Res 2021; 172:105822. [PMID: 34411732 DOI: 10.1016/j.phrs.2021.105822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/01/2023]
Abstract
Metabolic diseases, such as obesity and type 2 diabetes, are relentlessly spreading worldwide. The beginning of the 21st century has seen the introduction of mechanistically novel types of drugs, aimed primarily at keeping these pathologies under control. In particular, an important family of therapeutics exploits the beneficial physiology of the gut-derived glucagon-like peptide-1 (GLP-1), with important clinical benefits, from glycaemic control to cardioprotection. Nonetheless, these protein-based drugs act systemically as exogenous GLP-1 mimetics and are not exempt from side effects. The food-derived lipid oleoyl-lysophosphatidylinositol (LPI) is a potent GPR119-dependent GLP-1 secreting agent. Here we present a structure-activity relationship (SAR) study of a synthetic library of oleoyl-LPI mimetics capable to induce the physiological release of GLP-1 from gastrointestinal enteroendocrine cells (EECs). The best lead compounds have shown potent and efficient release of GLP-1 in vitro from human and murine cells, and in vivo in diabetic db/db mice. We have also generated a molecular model of oleoyl-LPI, as well as its best performing analogues, interacting with the orthosteric site of GPR119, laying foundational evidence for their pharmacological activity.
Collapse
Affiliation(s)
- Silvano Paternoster
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Peter V Simpson
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Elena Kokh
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Hüsün Sheyma Kizilkaya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ricardo L Mancera
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, Flinders University, Adelaide 5042, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| |
Collapse
|
35
|
Deoxynivalenol (Vomitoxin)-Induced Anorexia Is Induced by the Release of Intestinal Hormones in Mice. Toxins (Basel) 2021; 13:toxins13080512. [PMID: 34437383 PMCID: PMC8402572 DOI: 10.3390/toxins13080512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 12/25/2022] Open
Abstract
Deoxynivalenol (DON), also known as vomitoxin, is a mycotoxin that can cause antifeeding and vomiting in animals. However, the mechanism of DON inducing anorexia is complicated. Studies have shown that intestinal hormones play a significant part in the anorexia caused by DON. We adopted the “modeling of acute antifeeding in mice” as the basic experimental model, and used two methods of gavage and intraperitoneal injection to explore the effect of intestinal hormones on the antifeedant response induced by DON in mice. We found that 1 and 2.5 mg/kg·bw of DON can acutely induce anorexia and increase the plasma intestinal hormones CCK, PYY, GIP, and GLP-1 in mice within 3 h. Direct injection of exogenous intestinal hormones CCK, PYY, GIP, and GLP-1 can trigger anorexia behavior in mice. Furthermore, the PYY receptor antagonist JNJ-31020028, GLP-1 receptor antagonist Exendin(9-39), CCK receptor antagonist Proglumide, GIP receptor antagonist GIP(3-30)NH2 attenuated both intestinal hormone and DON-induced anorectic responses. These results indicate that intestinal hormones play a critical role in the anorexia response induced by DON.
Collapse
|
36
|
Holst JJ, Gasbjerg LS, Rosenkilde MM. The Role of Incretins on Insulin Function and Glucose Homeostasis. Endocrinology 2021; 162:6199910. [PMID: 33782700 PMCID: PMC8168943 DOI: 10.1210/endocr/bqab065] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 12/14/2022]
Abstract
The incretin effect-the amplification of insulin secretion after oral vs intravenous administration of glucose as a mean to improve glucose tolerance-was suspected even before insulin was discovered, and today we know that the effect is due to the secretion of 2 insulinotropic peptides, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). But how important is it? Physiological experiments have shown that, because of the incretin effect, we can ingest increasing amounts of amounts of glucose (carbohydrates) without increasing postprandial glucose excursions, which otherwise might have severe consequences. The mechanism behind this is incretin-stimulated insulin secretion. The availability of antagonists for GLP-1 and most recently also for GIP has made it possible to directly estimate the individual contributions to postprandial insulin secretion of a) glucose itself: 26%; b) GIP: 45%; and c) GLP-1: 29%. Thus, in healthy individuals, GIP is the champion. When the action of both incretins is prevented, glucose tolerance is pathologically impaired. Thus, after 100 years of research, we now know that insulinotropic hormones from the gut are indispensable for normal glucose tolerance. The loss of the incretin effect in type 2 diabetes, therefore, contributes greatly to the impaired postprandial glucose control.
Collapse
Affiliation(s)
- Jens Juul Holst
- Department of Biomedical Sciences and the NovoNordisk Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, The Panum Institute, Copenhagen N, DK-2200 Denmark
- Correspondence: Jens Juul Holst, MD, University of Copenhagen, Department of Biomedical Sciences, The Panum Institute, 3 Blegdamsvej, Copenhagen, DK-2200 Denmark.
| | - Lærke Smidt Gasbjerg
- Department of Biomedical Sciences and the NovoNordisk Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, The Panum Institute, Copenhagen N, DK-2200 Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences and the NovoNordisk Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, The Panum Institute, Copenhagen N, DK-2200 Denmark
| |
Collapse
|
37
|
Petrov MS. Post-pancreatitis diabetes mellitus: investigational drugs in preclinical and clinical development and therapeutic implications. Expert Opin Investig Drugs 2021; 30:737-747. [PMID: 33993813 DOI: 10.1080/13543784.2021.1931118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Post-pancreatitis diabetes mellitus is one of the most common types of secondary diabetes. The pharmaceutical armamentarium in the field of diabetology can be broadened if the design of novel drugs is informed by pathogenetic insights from studies on post-pancreatitis diabetes mellitus.Areas covered: The article provides an overview of preclinical and clinical studies of compounds selectively antagonizing the gastric inhibitory peptide receptor, simultaneously stimulating both the glucagon-like peptide-1 and glucagon receptors, and activating ketogenesis.Expert opinion: The current pharmacotherapy for post-pancreatitis diabetes mellitus is relatively ineffective. This type of diabetes represents a unique platform for rigorous, efficient, and practical search for glucose-lowering therapeutic candidates. Various methods of gastric inhibitory peptide receptor (expressed in the pancreas) antagonism have undergone extensive preclinical testing in diabetes, with promising compounds being trialed in man. Molecular mimicry with oxyntomodulin ─ an extra-pancreatic hormone homologous with pancreatic hormone glucagon and involved in the regulation of exocrine pancreatic function ─ could be harnessed. The emerging findings of a salutary effect of ketosis mimetics in people with prediabetes set the stage for a novel approach to preventing diabetes.
Collapse
Affiliation(s)
- Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
38
|
Smit FX, van der Velden WJC, Kizilkaya HS, Nørskov A, Lückmann M, Hansen TN, Sparre-Ulrich AH, Qvotrup K, Frimurer TM, Rosenkilde MM. Investigating GIPR (ant)agonism: A structural analysis of GIP and its receptor. Structure 2021; 29:679-693.e6. [PMID: 33891864 DOI: 10.1016/j.str.2021.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/01/2021] [Accepted: 04/02/2021] [Indexed: 12/21/2022]
Abstract
The glucose-dependent insulinotropic polypeptide (GIP) is a 42-residue metabolic hormone that is actively being targeted for its regulatory role of glycemia and energy balance. Limited structural data of its receptor has made ligand design tedious. This study investigates the structure and function of the GIP receptor (GIPR), using a homology model based on the GLP-1 receptor. Molecular dynamics combined with in vitro mutational data were used to pinpoint residues involved in ligand binding and/or receptor activation. Significant differences in binding mode were identified for the naturally occurring agonists GIP(1-30)NH2 and GIP(1-42) compared with high potency antagonists GIP(3-30)NH2 and GIP(5-30)NH2. Residues R1832.60, R1902.67, and R3005.40 are shown to be key for activation of the GIPR, and evidence suggests that a disruption of the K293ECL2-E362ECL3 salt bridge by GIPR antagonists strongly reduces GIPR activation. Combinatorial use of these findings can benefit rational design of ligands targeting the GIPR.
Collapse
Affiliation(s)
- Florent X Smit
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark; Section for Metabolic Receptology, Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Wijnand J C van der Velden
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Hüsün S Kizilkaya
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Amalie Nørskov
- Department of Chemistry, Technical University of Denmark, Lyngby 2800, Denmark
| | - Michael Lückmann
- Section for Metabolic Receptology, Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Tobias N Hansen
- Department of Chemistry, Technical University of Denmark, Lyngby 2800, Denmark
| | - Alexander H Sparre-Ulrich
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Katrine Qvotrup
- Department of Chemistry, Technical University of Denmark, Lyngby 2800, Denmark
| | - Thomas M Frimurer
- Section for Metabolic Receptology, Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark.
| |
Collapse
|
39
|
West JA, Tsakmaki A, Ghosh SS, Parkes DG, Grønlund RV, Pedersen PJ, Maggs D, Rajagopalan H, Bewick GA. Chronic peptide-based GIP receptor inhibition exhibits modest glucose metabolic changes in mice when administered either alone or combined with GLP-1 agonism. PLoS One 2021; 16:e0249239. [PMID: 33788878 PMCID: PMC8011784 DOI: 10.1371/journal.pone.0249239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/13/2021] [Indexed: 12/04/2022] Open
Abstract
Combinatorial gut hormone therapy is one of the more promising strategies for identifying improved treatments for metabolic disease. Many approaches combine the established benefits of glucagon-like peptide-1 (GLP-1) agonism with one or more additional molecules with the aim of improving metabolic outcomes. Recent attention has been drawn to the glucose-dependent insulinotropic polypeptide (GIP) system due to compelling pre-clinical evidence describing the metabolic benefits of antagonising the GIP receptor (GIPR). We rationalised that benefit might be accrued from combining GIPR antagonism with GLP-1 agonism. Two GIPR peptide antagonists, GIPA-1 (mouse GIP(3–30)NH2) and GIPA-2 (NαAc-K10[γEγE-C16]-Arg18-hGIP(5–42)), were pharmacologically characterised and both exhibited potent antagonist properties. Acute in vivo administration of GIPA-1 during an oral glucose tolerance test (OGTT) had negligible effects on glucose tolerance and insulin in lean mice. In contrast, GIPA-2 impaired glucose tolerance and attenuated circulating insulin levels. A mouse model of diet-induced obesity (DIO) was used to investigate the potential metabolic benefits of chronic dosing of each antagonist, alone or in combination with liraglutide. Chronic administration studies showed expected effects of liraglutide, lowering food intake, body weight, fasting blood glucose and plasma insulin concentrations while improving glucose sensitivity, whereas delivery of either GIPR antagonist alone had negligible effects on these parameters. Interestingly, chronic dual therapy augmented insulin sensitizing effects and lowered plasma triglycerides and free-fatty acids, with more notable effects observed with GIPA-1 compared to GIPA-2. Thus, the co-administration of both a GIPR antagonist with a GLP1 agonist uncovers interesting beneficial effects on measures of insulin sensitivity, circulating lipids and certain adipose stores that seem influenced by the degree or nature of GIP receptor antagonism.
Collapse
Affiliation(s)
- Jason A. West
- Fractyl Laboratories Inc, Lexington, MA, United States of America
| | - Anastasia Tsakmaki
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, England, United Kingdom
| | | | | | | | | | - David Maggs
- Fractyl Laboratories Inc, Lexington, MA, United States of America
| | | | - Gavin A. Bewick
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, England, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Boer GA, Hartmann B, Holst JJ. Pharmacokinetics of exogenous GIP(1-42) in C57Bl/6 mice; Extremely rapid degradation but marked variation between available assays. Peptides 2021; 136:170457. [PMID: 33245951 PMCID: PMC7883216 DOI: 10.1016/j.peptides.2020.170457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
Like other peptide hormones, glucose-dependent insulinotropic polypeptide (GIP) is rapidly cleared from the circulation. Dipeptidyl peptidase-4 (DPP-4) is known to be involved. Information on the overall pharmacokinetics of GIP in rodents is, however, lacking. We investigated the pharmacokinetics of exogenous GIP after intravenous, subcutaneous and intraperitoneal injection with and without DPP-4 inhibition in conscious female C57Bl/6 mice. Secondly, we compared total and intact GIP levels measured by an in-house RIA and commercially available ELISA kits to determine the suitability of these methods for in vivo and in vitro measurements. GIP half-life following intravenous injection amounted to 93 ± 2 s, which was extended to 5 ± 0.6 min by inhibition of DPP-4. Intact GIP levels following subcutaneous and intraperitoneal GIP administration were approximately 15 % of total GIP. The area under the curve of intact GIP (GIP exposure) following GIP injection was significantly increased by DPP-4 inhibition, whereas total GIP levels remained unchanged. We found significant variation between measurements of total, but not intact GIP performed with our in-house RIA and ELISAs in samples obtained after in vivo administration of GIP. Different preanalytical sample preparation (EDTA plasma, heparin plasma, assay buffer and PBS) significantly influenced results for all ELISA kits used. Thus, in experiments involving exogenous GIP(1-42) administration in mice, it is important to consider that this will result in a very low ratio of intact:total peptide but co-administration of a DPP-4 inhibitor greatly elevates this ratio. Furthermore, for comparison of GIP levels, it is essential to maintain uniformity concerning assay methodology and sample preparation.
Collapse
Affiliation(s)
- Geke Aline Boer
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Bolette Hartmann
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jens Juul Holst
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
41
|
Gasbjerg LS, Bari EJ, Stensen S, Hoe B, Lanng AR, Mathiesen DS, Christensen MB, Hartmann B, Holst JJ, Rosenkilde MM, Knop FK. Dose-dependent efficacy of the glucose-dependent insulinotropic polypeptide (GIP) receptor antagonist GIP(3-30)NH 2 on GIP actions in humans. Diabetes Obes Metab 2021; 23:68-74. [PMID: 32886401 DOI: 10.1111/dom.14186] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
The glucose-dependent insulinotropic polypeptide (GIP) fragment GIP(3-30)NH2 is a selective, competitive GIP receptor antagonist, and doses of 800 to 1200 pmol/kg/min inhibit GIP-induced potentiation of glucose-stimulated insulin secretion by >80% in humans. We evaluated the effects of GIP(3-30)NH2 across a wider dose range in eight healthy men undergoing six separate and randomized 10-mmol/L hyperglycaemic clamps (A-F) with concomitant intravenous infusion of GIP (1.5 pmol/kg/min; A-E) or saline (F). Clamps A to E involved double-blinded, infusions of saline (A) and GIP(3-30)NH2 at four rates: 2 (B), 20 (C), 200 (D) and 2000 pmol/kg/min (E), respectively. Mean plasma concentrations of glucose (A-F) and GIP (A-E) were similar. GIP-induced potentiation of glucose-stimulated insulin secretion was reduced by 44 ± 10% and 84 ± 10% during clamps D and E, respectively. Correspondingly, the amounts of glucose required to maintain the clamp during D and E were not different from F. GIP-induced suppression of bone resorption and increase in heart rate were lowered by clamps D and E. In conclusion, GIP(3-30)NH2 provides extensive, dose-dependent inhibition of the GIP receptor in humans, with most pronounced effects of the doses 200 to 2000 pmol/kg/min within the tested range.
Collapse
Affiliation(s)
- Laerke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Emilie J Bari
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn Hoe
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amalie R Lanng
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David S Mathiesen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Centre Copenhagen, Gentofte, Denmark
| |
Collapse
|
42
|
Kuhre RE, Modvig IM, Jepsen SL, Kizilkaya HS, Bæch-Laursen C, Smith CA, Reimann F, Gribble FM, Rosenkilde MM, Holst JJ. L-Cell Expression of Melanocortin-4-Receptor Is Marginal in Most of the Small Intestine in Mice and Humans and Direct Stimulation of Small Intestinal Melanocortin-4-Receptors in Mice and Rats Does Not Affect GLP-1 Secretion. Front Endocrinol (Lausanne) 2021; 12:690387. [PMID: 34421821 PMCID: PMC8375664 DOI: 10.3389/fendo.2021.690387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
The molecular sensors underlying nutrient-stimulated GLP-1 secretion are currently being investigated. Peripheral administration of melanocortin-4 receptor (MC4R) agonists have been reported to increase GLP-1 plasma concentrations in mice and humans but it is unknown whether this effect results from a direct effect on the GLP-1 secreting L-cells in the intestine, from other effects in the intestine or from extra-intestinal effects. We investigated L-cell expression of MC4R in mouse and human L-cells by reanalyzing publicly available RNA sequencing databases (mouse and human) and by RT-qPCR (mouse), and assessed whether administration of MC4R agonists to a physiologically relevant gut model, isolated perfused mouse and rat small intestine, would stimulate GLP-1 secretion or potentiate glucose-stimulated secretion. L-cell MC4R expression was low in mouse duodenum and hardly detectable in the ileum and MC4R expression was hardly detectable in human L-cells. In isolated perfused mouse and rat intestine, neither intra-luminal nor intra-arterial administration of NDP-alpha-MSH, a potent MC4R agonist, had any effect on GLP-1 secretion (P ≥0.98, n = 5-6) from the upper or lower-half of the small intestine in mice or in the lower half in rats. Furthermore, HS014-an often used MC4R antagonist, which we found to be a partial agonist-did not affect the glucose-induced GLP-1 response in the rat, P = 0.62, n = 6). Studies on transfected COS7-cells confirmed bioactivity of the used compounds and that concentrations employed were well within in the effective range. Our combined data therefore suggest that MC4R-activated GLP-1 secretion in rodents either exclusively occurs in the colon or involves extra-intestinal signaling.
Collapse
Affiliation(s)
- Rune E. Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Obesity Pharmacology, Novo Nordisk, Måløv, Denmark
- *Correspondence: Rune E. Kuhre, ; Jens J. Holst,
| | - Ida M. Modvig
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara L. Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hüsün S. Kizilkaya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Bæch-Laursen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christopher A. Smith
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Frank Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Fiona M. Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Mette M. Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Rune E. Kuhre, ; Jens J. Holst,
| |
Collapse
|
43
|
Jones B, McGlone ER, Fang Z, Pickford P, Corrêa IR, Oishi A, Jockers R, Inoue A, Kumar S, Görlitz F, Dunsby C, French PMW, Rutter GA, Tan T, Tomas A, Bloom SR. Genetic and biased agonist-mediated reductions in β-arrestin recruitment prolong cAMP signaling at glucagon family receptors. J Biol Chem 2021; 296:100133. [PMID: 33268378 PMCID: PMC7948418 DOI: 10.1074/jbc.ra120.016334] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 01/20/2023] Open
Abstract
Receptors for the peptide hormones glucagon-like peptide-1 (GLP-1R), glucose-dependent insulinotropic polypeptide (GIPR), and glucagon (GCGR) are important regulators of insulin secretion and energy metabolism. GLP-1R agonists have been successfully deployed for the treatment of type 2 diabetes, but it has been suggested that their efficacy is limited by target receptor desensitization and downregulation due to recruitment of β-arrestins. Indeed, recently described GLP-1R agonists with reduced β-arrestin-2 recruitment have delivered promising results in preclinical and clinical studies. We therefore aimed to determine if the same phenomenon could apply to the closely related GIPR and GCGR. In HEK293 cells depleted of both β-arrestin isoforms the duration of G protein-dependent cAMP/PKA signaling was increased in response to the endogenous ligand for each receptor. Moreover, in wildtype cells, "biased" GLP-1, GCG, and GIP analogs with selective reductions in β-arrestin-2 recruitment led to reduced receptor endocytosis and increased insulin secretion over a prolonged stimulation period, although the latter effect was only seen at high agonist concentrations. Biased GCG analogs increased the duration of cAMP signaling, but this did not lead to increased glucose output from hepatocytes. Our study provides a rationale for the development of GLP-1R, GIPR, and GCGR agonists with reduced β-arrestin recruitment, but further work is needed to maximally exploit this strategy for therapeutic purposes.
Collapse
Affiliation(s)
- Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom.
| | - Emma Rose McGlone
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Zijian Fang
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Phil Pickford
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | | | - Atsuro Oishi
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Ralf Jockers
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sunil Kumar
- Department of Physics, Imperial College London, London, United Kingdom
| | - Frederik Görlitz
- Department of Physics, Imperial College London, London, United Kingdom
| | - Chris Dunsby
- Department of Physics, Imperial College London, London, United Kingdom
| | - Paul M W French
- Department of Physics, Imperial College London, London, United Kingdom
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Tricia Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom.
| | - Stephen R Bloom
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
44
|
Grespan E, Giorgino T, Natali A, Ferrannini E, Mari A. Different mechanisms of GIP and GLP-1 action explain their different therapeutic efficacy in type 2 diabetes. Metabolism 2021; 114:154415. [PMID: 33137379 DOI: 10.1016/j.metabol.2020.154415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/08/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS The reduced action of incretin hormones in type 2 diabetes (T2D) is mainly attributed to GIP insensitivity, but efficacy estimates of GIP and GLP-1 differ among studies, and the negligible effects of pharmacological GIP doses remain unexplained. We aimed to characterize incretin action in vivo in subjects with normal glucose tolerance (NGT) or T2D and provide an explanation for the different insulinotropic activity of GIP and GLP-1 in T2D subjects. METHODS We used in vivo data from ten studies employing hormone infusion or an oral glucose test (OGTT). To homogeneously interpret and compare the results of the studies we performed the analysis using a mathematical model of the β-cell incorporating the effects of incretins on the triggering and amplifying pathways. The effect on the amplifying pathway was quantified by a time-dependent factor that is greater than one when insulin secretion (ISR) is amplified by incretins. To validate the model results for GIP in NGT subjects, we performed an extensive literature search of the available data. RESULTS a) the stimulatory effects of GIP and GLP-1 differ markedly: ISR potentiation increases linearly with GLP-1 over the whole dose range, while with GIP infusion it reaches a plateau at ~100 pmol/L GIP, with ISR potentiation of ~2 fold; b) ISR potentiation in T2D is reduced by ~50% for GIP and by ~40% for GLP-1; c) the literature search of GIP in NGT subjects confirmed the saturative effect on insulin secretion. CONCLUSION We show that incretin potentiation of ISR is reduced in T2D, but not abolished, and that the lack of effects of pharmacological GIP doses is due to saturation of the GIP effect more than insensitivity to GIP in T2D.
Collapse
Affiliation(s)
- Eleonora Grespan
- Institute of Neuroscience, National Research Council, Padua 35127, Italy
| | - Toni Giorgino
- Biophysics Institute, National Research Council, Milan 20133, Italy; Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Ele Ferrannini
- Institute of Clinical Physiology, National Research Council, Pisa 56124, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua 35127, Italy.
| |
Collapse
|
45
|
Helsted MM, Gasbjerg LS, Lanng AR, Bergmann NC, Stensen S, Hartmann B, Christensen MB, Holst JJ, Vilsbøll T, Rosenkilde MM, Knop FK. The role of endogenous GIP and GLP-1 in postprandial bone homeostasis. Bone 2020; 140:115553. [PMID: 32730920 DOI: 10.1016/j.bone.2020.115553] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/24/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023]
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are well known for their insulinotropic effects and they are thought to affect bone homeostasis as mediators in the so-called entero-osseous axis. We examined the contributions of endogenous GIP and GLP-1, respectively, to postprandial bone homeostasis, in healthy subjects in two randomized and double-blind crossover studies. We included healthy men who received either four oral glucose tolerance tests (OGTTs) (n = 18, median age 27 (range 20-70), BMI 27.2 (22.4-37.0) kg/m2) or liquid mixed meal tests (MMTs) (n = 12, age 23 (19-65), BMI 23.7 (20.3-25.5) kg/m2) with infusions of 1) the GIP receptor antagonist GIP(3-30)NH2, 2) the GLP-1 receptor antagonist exendin(9-39)NH2, 3) both GIP(3-30)NH2 and exendin(9-39)NH2, or 4) placebo infusions (saline) on four separate visits. Bone resorption was evaluated from levels of circulating carboxy-terminal collagen crosslinks (CTX) and bone formation from levels of procollagen type 1 amino-terminal propeptide (P1NP). During placebo infusions, baseline-subtracted area under the curve values for CTX were -39 ± 5.0 (OGTT) and -57 ± 4.3 ng/ml × min (MMT). When GIP(3-30)NH2 was administered, CTX suppression was significantly diminished compared to placebo (-30 ± 4.8 (OGTT) and -45 ± 4.6 ng/ml × min (MMT), P = 0.0104 and P = 0.0288, respectively, compared to placebo. During exendin(9-39)NH2 infusion, CTX suppression after OGTT/MMT was similar to placebo (P = 0.28 (OGTT) and P = 0.93 (MMT)). The relative contribution of endogenous GIP to postprandial suppression of bone resorption during both OGTT and MMT was similar and reached 22-25%. There were no differences in P1NP concentrations between interventions. In conclusion, endogenous GIP contributes by up to 25% to postprandial suppression of bone resorption in humans whereas an effect of endogenous GLP-1 could not be demonstrated.
Collapse
Affiliation(s)
- Mads M Helsted
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amalie R Lanng
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Natasha C Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| |
Collapse
|
46
|
Lynggaard MB, Gasbjerg LS, Christensen MB, Knop FK. GIP(3-30)NH 2 - a tool for the study of GIP physiology. Curr Opin Pharmacol 2020; 55:31-40. [PMID: 33053504 DOI: 10.1016/j.coph.2020.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a gut hormone impacting glucose, lipid and bone metabolism through the GIP receptor (GIPR). The GIP system has key species differences complicating the translation of findings from rodent to human physiology. Furthermore, the effects of endogenous GIP in humans have been difficult to tease out due to the lack of a suitable GIPR antagonist. The naturally occurring GIP(3-30)NH2 has turned out to constitute a safe and efficacious GIPR antagonist for rodent and human use. To study GIP physiology, it is recommended to use the species-specific GIP(3-30)NH2 peptide sequence, and for human intravenous infusions, an antagonist:agonist ratio of a minimum of 600 with a 20min infusion time before the intervention of interest is recommended. Several studies using GIP(3-30)NH2 are coming, hopefully providing new insights into the physiology of GIP, the pathophysiologic involvement of GIP in several diseases and the therapeutic potential of the GIPR.
Collapse
Affiliation(s)
- Mads Bank Lynggaard
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lærke Smidt Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Bring Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
47
|
Holst JJ, Rosenkilde MM. GIP as a Therapeutic Target in Diabetes and Obesity: Insight From Incretin Co-agonists. J Clin Endocrinol Metab 2020; 105:dgaa327. [PMID: 32459834 PMCID: PMC7308078 DOI: 10.1210/clinem/dgaa327] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/23/2020] [Indexed: 12/21/2022]
Abstract
The 2 hormones responsible for the amplification of insulin secretion after oral as opposed to intravenous nutrient administration are the gut peptides, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). However, whereas GLP-1 also inhibits appetite and food intake and improves glucose regulation in patients with type 2 diabetes (T2DM), GIP seems to be devoid of these activities, although the 2 hormones as well as their receptors are highly related. In fact, numerous studies have suggested that GIP may promote obesity. However, chimeric peptides, combining elements of both peptides and capable of activating both receptors, have recently been demonstrated to have remarkable weight-losing and glucose-lowering efficacy in obese individuals with T2DM. At the same time, antagonists of the GIP receptor have been reported to reduce weight gain/cause weight loss in experimental animals including nonhuman primates. This suggests that both agonists and antagonist of the GIP receptor should be useful, at least for weight-losing therapy. How is this possible? We here review recent experimental evidence that agonist-induced internalization of the two receptors differs markedly and that modifications of the ligand structures, as in co-agonists, profoundly influence these cellular processes and may explain that an antagonist may activate while an agonist may block receptor signaling.
Collapse
Affiliation(s)
- Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
48
|
Gabe MBN, van der Velden WJC, Gadgaard S, Smit FX, Hartmann B, Bräuner‐Osborne H, Rosenkilde MM. Enhanced agonist residence time, internalization rate and signalling of the GIP receptor variant [E354Q] facilitate receptor desensitization and long-term impairment of the GIP system. Basic Clin Pharmacol Toxicol 2020; 126 Suppl 6:122-132. [PMID: 31299132 PMCID: PMC7317972 DOI: 10.1111/bcpt.13289] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022]
Abstract
In patients with type 2 diabetes mellitus (T2DM), the insulinotropic action of the GIP system is desensitized, whereas this is not the case for the GLP-1 system. This has raised an interesting discussion of whether GIP agonists or antagonists are most suitable for future treatment of T2DM together with GLP-1-based therapies. Homozygous carriers of the GIP receptor (GIPR) variant, [E354Q], display lower bone mineral density, increased bone fracture risk and slightly increased blood glucose. Here, we present an in-depth molecular pharmacological phenotyping of GIPR-[E354Q]. In silico modelling suggested similar interaction of the endogenous agonist GIP(1-42) to [E354Q] as to GIPR wt. This was supported by homologous competition binding in COS-7 cells revealing GIPR wt-like affinities of GIP(1-42) with Kd values of ~2 nmol/L and wt-like agonist association rates (Kon ). In contrast, the dissociation rates (Koff ) were slower, resulting in 25% higher agonist residence time for GIPR-[E354Q]. Moreover, in Gαs signalling (cAMP production) GIP(1-42) was ~2-fold more potent and more efficacious on GIPR-[E354Q] compared to wt with 17.5% higher basal activity. No difference from GIPR wt was found in the recruitment of β-arrestin 2, whereas the agonist-induced internalization rate was 2.1- to 2.3-fold faster for [E354Q]. Together with the previously described impaired recycling of [E354Q], our findings with enhanced signalling and internalization rate possibly explained by an altered ligand-binding kinetics will lead to receptor desensitization and down-regulation. This could explain the long-term functional impairment of the GIP system in bone metabolism and blood sugar maintenance for [E354Q] carriers and may shed light on the desensitization of the insulinotropic action of GIP in patients with T2DM.
Collapse
Affiliation(s)
- Maria Buur Nordskov Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Wijnand J. C. van der Velden
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Florent Xavier Smit
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Hans Bräuner‐Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
49
|
Pharmacological characterization of mono-, dual- and tri-peptidic agonists at GIP and GLP-1 receptors. Biochem Pharmacol 2020; 177:114001. [PMID: 32360365 DOI: 10.1016/j.bcp.2020.114001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Glucose-dependent insulinotropic peptide (GIP) is an incretin hormone with physiological roles in adipose tissue, the central nervous system and bone metabolism. While selective ligands for GIP receptor (GIPR) have not been advanced for disease treatment, dual and triple agonists of GIPR, in conjunction with that of glucagon-like peptide-1 (GLP-1) and glucagon receptors, are currently in clinical trials, with an expectation of enhanced efficacy beyond that of GLP-1 receptor (GLP-1R) agonist monotherapy for diabetic patients. Consequently, it is important to understand the pharmacological behavior of such drugs. In this study, we have explored signaling pathway specificity and the potential for biased agonism of mono-, dual- and tri-agonists of GIPR using human embryonic kidney 293 (HEK293) cells recombinantly expressing human GIPR or GLP-1R. Compared to GIP(1-42), the GIPR mono-agonists Pro3GIP and Lys3GIP are biased towards ERK1/2 phosphorylation (pERK1/2) relative to cAMP accumulation at GIPR, whereas the triple agonist at GLP-1R/GCGR/GIPR is biased towards pERK1/2 relative to β-arrestin2 recruitment. Moreover, the dual GIPR/GLP-1R agonist, LY3298176, is biased towards pERK1/2 relative to cAMP accumulation at both GIPR and GLP-1R compared to their respective endogenous ligands. These data reveal novel pharmacological properties of potential therapeutic agents that may impact on diversity in clinical responses.
Collapse
|
50
|
Nauck MA, Holle H, Kahle M, Tytko A, Deacon CF, Holst JJ, Meier JJ. No evidence of tachyphylaxis for insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) in subjects with type 2 diabetes, their first-degree relatives, or in healthy subjects. Peptides 2020; 125:170176. [PMID: 31669136 DOI: 10.1016/j.peptides.2019.170176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND, AIMS In patients with type 2 diabetes, the lost insulinotropic effect of the incretin hormone glucose-dependent insulinotropic polypeptide (GIP) is more apparent after continuous versus bolus administration. To test whether the difference might be explained by rapid tachyphylaxis in response to elevated concentrations of GIP, and whether patients with type 2 diabetes and their relatives are more susceptible to tachyphylaxis than healthy subjects. PATIENTS AND METHODS In a two-way crossover design, insulinotropic responses to repeated bolus injection (50 pmol/kg body weight at 30 and 120 min) and continuous infusion of GIP (2 pmol.kg-1.min-1 from 30 to 180 min) under hyperglycaemic clamp conditions (8.5 mmol/l) was compared in age- gender- and weight-matched patients with type 2 diabetes, first degree relatives of such patients, and healthy subjects. RESULTS Insulin secretory responses to the first and second GIP bolus were not significantly different in any of the subject groups. Subjects with type 2 diabetes had a significant relative impairment versus healthy subjects with continuous (C-peptide, -13.2 %, p < 0.05), but not with repeated bolus administration of GIP (+11.1 %, n.s.). First-degree relatives tended to hyper-secrete insulin with bolus or continuous administrations of GIP. CONCLUSIONS Rapid tachyphylaxis in response to continuous exposure to slightly supraphysiological concentrations of GIP does not explain the reduced insulinotropic response to GIP infusions in patients with type 2 diabetes or their first-degree relatives.
Collapse
Affiliation(s)
- M A Nauck
- Diabeteszentrum Bad Lauterberg, Bad Lauterberg im Harz, Germany; Diabetes Center Bochum-Hattingen, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany.
| | - H Holle
- Diabeteszentrum Bad Lauterberg, Bad Lauterberg im Harz, Germany
| | - M Kahle
- Diabeteszentrum Bad Lauterberg, Bad Lauterberg im Harz, Germany; Diabetes Center Bochum-Hattingen, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - A Tytko
- Diabeteszentrum Bad Lauterberg, Bad Lauterberg im Harz, Germany
| | - C F Deacon
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - J J Meier
- Diabetes Center Bochum-Hattingen, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|