1
|
Sanghvi K, Shandilya S, Brown A, Todorova B, Jahn M, Gascoigne SJL, Camilleri TL, Pizzari T, Sepil I. Reproductive output of old males is limited by seminal fluid, not sperm number. Evol Lett 2025; 9:282-291. [PMID: 40191416 PMCID: PMC11968187 DOI: 10.1093/evlett/qrae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 04/09/2025] Open
Abstract
Male reproductive senescence is typically characterized by a decline in the number of sperm produced and transferred by old males, a phenomenon that may be exacerbated in polygynous species where males mate multiply. However, males also transfer seminal fluid to females, and little is known about its role in modulating male reproductive senescence. Here, we explore the contributions of sperm and seminal fluid towards male reproductive senescence in a series of sequential matings, using Drosophila melanogaster. As expected, old males produce fewer offspring than young males. However, this pattern is not driven by sperm limitation: old males have more sperm and transfer similar numbers to females, compared to young males. Instead, females storing fewer sperm of old males compared to that of young males, over a long term, drives male reproductive senescence. We are able to mitigate the age-related decline in male reproductive output by supplementing females with the seminal fluid of a young male, before she mates with an old male. Similarly, we alleviate the reduction in reproductive output across sequential matings by supplementing females with seminal fluid. Our findings highlight that seminal fluid, rather than sperm number, limits reproductive success in old or multiply mating males, highlighting its underappreciated role in reproductive aging.
Collapse
Affiliation(s)
- Krish Sanghvi
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | | | - Alana Brown
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Biliana Todorova
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Martin Jahn
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | | | | | - Tommaso Pizzari
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Irem Sepil
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Winder LA, Simons MJP, Burke T. No evidence for a trade-off between reproduction and survival in a meta-analysis across birds. eLife 2025; 12:RP87018. [PMID: 40163367 PMCID: PMC11957541 DOI: 10.7554/elife.87018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Life-history theory, central to our understanding of diversity in morphology, behaviour, and senescence, describes how traits evolve through the optimisation of trade-offs in investment. Despite considerable study, there is only minimal support for trade-offs within species between the two traits most closely linked to fitness - reproductive effort and survival - questioning the theory's general validity. We used a meta-analysis to separate the effects of individual quality (positive survival/reproduction correlation) from the costs of reproduction (negative survival/reproduction correlation) using studies of reproductive effort and parental survival in birds. Experimental enlargement of brood size caused reduced parental survival. However, the effect size of brood size manipulation was small and opposite to the effect of phenotypic quality, as we found that individuals that naturally produced larger clutches also survived better. The opposite effects on parental survival in experimental and observational studies of reproductive effort provide the first meta-analytic evidence for theory suggesting that quality differences mask trade-offs. Fitness projections using the overall effect size revealed that reproduction presented negligible costs, except when reproductive effort was forced beyond the maximum level observed within species, to that seen between species. We conclude that there is little support for the most fundamental life-history trade-off, between reproductive effort and survival, operating within a population. We suggest that within species the fitness landscape of the reproduction-survival trade-off is flat until it reaches the boundaries of the between-species fast-slow life-history continuum. Our results provide a quantitative explanation as to why the costs of reproduction are not apparent and why variation in reproductive effort persists within species.
Collapse
Affiliation(s)
- Lucy A Winder
- Ecology & Evolutionary Biology, School of Biosciences, The University of SheffieldSheffieldUnited Kingdom
| | - Mirre JP Simons
- Ecology & Evolutionary Biology, School of Biosciences, The University of SheffieldSheffieldUnited Kingdom
| | - Terry Burke
- Ecology & Evolutionary Biology, School of Biosciences, The University of SheffieldSheffieldUnited Kingdom
| |
Collapse
|
3
|
Payne AR, Czapanskiy MF, Kilpatrick AM, Robinson PW, Munro CMO, Ong K, Bastidas A, Negrete AO, Theders B, Stillwell B, Coffey D, Schweitzer E, Baugh E, Salazar J, Chau‐Pech K, Rodrigues M, Chavez M, Wright S, Rivas S, Reiter J, Costa DP, Beltran RS. Reproductive success and offspring survival decline for female elephant seals past prime age. J Anim Ecol 2025; 94:423-435. [PMID: 39562521 PMCID: PMC11880645 DOI: 10.1111/1365-2656.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
Maternal age can influence reproductive success and offspring fitness, but the timing, magnitude and direction of those impacts are not well understood. Evolutionary theory predicts that selection on fertility senescence is stronger than maternal effect senescence, and therefore, the rate of maternal effect senescence will be faster than fertility senescence. We used a 36-year study of northern elephant seals (Mirounga angustirostris) to investigate reproductive senescence. Our dataset included 103,746 sightings of 1203 known-age female northern elephant seals. We hypothesized that fertility (maternal reproductive success), offspring survival and recruitment into the breeding population, and male offspring production would decline with advanced maternal age. Furthermore, we hypothesized that older females would shorten their moulting haul out to allow for more time spent foraging. We found evidence for both fertility and maternal effect senescence, but no evidence for senescence impacting offspring recruitment or sex ratio. Breeding probability declined from 96.4% (95% CI: 94.8%-97.5%) at 11 years old to 89.7% (81.9%-94.3%) at 19 years old, and the probability of offspring survival declined from 30.3% (23.6%-38.0%) at 11 years old to 9.1% (3.2%-22.9%) at 19 years old. The rates of decline for fertility and maternal effect senescence were not different from each other. However, maternal effect senescence had a substantially greater impact on the number of offspring surviving to age 1 compared to fertility senescence. Compared to a hypothetical non-senescent population, maternal effect senescence resulted in 5.3% fewer surviving pups, whereas fertility senescence resulted in only 0.3% fewer pups produced per year. These results are consistent with evolutionary theory predicting weaker selection on maternal effect than fertility senescence. Maternal effect senescence may therefore be more influential on population dynamics than fertility senescence in some systems.
Collapse
Affiliation(s)
- Allison R. Payne
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Max F. Czapanskiy
- Department of Ocean SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
- Bren School of Environmental Science and ManagementUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
- College of Creative Studies, University of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - A. Marm Kilpatrick
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Patrick W. Robinson
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Cara M. O. Munro
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Kelli Ong
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Adrien Bastidas
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Alegra O. Negrete
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Brecken Theders
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Bryn Stillwell
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Danissa Coffey
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Elijah Schweitzer
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Elise Baugh
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Jasmine Salazar
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Keenan Chau‐Pech
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Mason Rodrigues
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Mimi Chavez
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Savanna Wright
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Sofia Rivas
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Joanne Reiter
- Institute of Marine Sciences, Long Marine LaboratoryUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Daniel P. Costa
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
- College of Creative Studies, University of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Roxanne S. Beltran
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| |
Collapse
|
4
|
LaSharr TN, Dwinnell SPH, Jakopak RP, Rafferty RT, Randall J, Stewart C, Kaiser R, Thonhoff M, Scurlock B, Fieseler T, Fralick G, Monteith KL. Nutrition regulates reproductive senescence and terminal investment across the reproductive cycle of a long-lived mammal. Sci Rep 2025; 15:4888. [PMID: 39929898 PMCID: PMC11811141 DOI: 10.1038/s41598-025-86807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Deterioration in nutritional condition with aging could reduce reproductive success but coincides with declines in residual reproductive potential, thus invoking opposing expectations for late-life reproduction. Yet, the mechanisms regulating energy accrual and allocation to reproduction and survival throughout the lifetime of long-lived, iteroparous animals have remained elusive owing to variation in energetic costs across their extended reproductive cycle (from conception to juvenile independence). Using 10 years of repeated measures of both nutrition (i.e., body fat and food availability) and reproductive allocation across the reproductive cycle of 232 free-ranging, adult, female mule deer, we revealed that nutrition is a critical piece in understanding patterns of reproductive senescence and terminal investment. From conception to weaning, age-related patterns of reproduction were influenced by both body fat and environmental conditions. Reproductive senescence was clear across the entire reproductive cycle, although allocation to offspring was partly mediated by nutrition. Terminal investment, however, was most evident towards the end of the annual reproductive cycle and unveiled only when considering nutritional condition and food availability; during years with poor resource availability, older mothers raised larger juveniles (i.e., 6-months old). Our work evokes nutrition as a lurking variable in end-of-life reproductive tactics for long-lived animals, while demonstrating the necessity of accounting for energy when considering patterns of reproductive senescence and terminal investment in wild animals.
Collapse
Affiliation(s)
- Tayler N LaSharr
- Haub School of Environment and Natural Resources, University of Wyoming, Bim Kendall House, 804 E Fremont St., Laramie, WY, 82072, USA.
| | - Samantha P H Dwinnell
- Department of Arctic Biology, The University Centre in Svalbard, P.O. Box 156, Longyearbyen, 9171, Norway
- The Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, Ås, 1432, Norway
| | - Rhiannon P Jakopak
- Haub School of Environment and Natural Resources, University of Wyoming, Bim Kendall House, 804 E Fremont St., Laramie, WY, 82072, USA
| | - Rebekah T Rafferty
- Haub School of Environment and Natural Resources, University of Wyoming, Bim Kendall House, 804 E Fremont St., Laramie, WY, 82072, USA
| | - Jill Randall
- Wyoming Game and Fish Department, Pinedale Regional Office, 432 Mill St., Pinedale, WY, 82941, USA
| | - Cheyenne Stewart
- Wyoming Game and Fish Department, Jackson Regional Office, 420 North Cache, Jackson, WY, 83001, USA
| | - Rusty Kaiser
- U.S. Forest Service, Big Piney Ranger District, 10418 South US Highway 189, Big Piney, WY, 83113, USA
| | - Mark Thonhoff
- Bureau of Land Management, Pinedale Field Office, 1625 West Pine St., Pinedale, WY, 82941, USA
| | - Brandon Scurlock
- Wyoming Game and Fish Department, Pinedale Regional Office, 432 Mill St., Pinedale, WY, 82941, USA
| | - Troy Fieseler
- Wyoming Game and Fish Department, Pinedale Regional Office, 432 Mill St., Pinedale, WY, 82941, USA
| | - Gary Fralick
- Wyoming Game and Fish Department, Jackson Regional Office, 420 North Cache, Jackson, WY, 83001, USA
| | - Kevin L Monteith
- Haub School of Environment and Natural Resources, University of Wyoming, Bim Kendall House, 804 E Fremont St., Laramie, WY, 82072, USA
| |
Collapse
|
5
|
Lemaître JF, Voituron Y, Herpe L, Veyrunes F. X*Y females exhibit steeper reproductive senescence in the African pygmy mouse. Proc Natl Acad Sci U S A 2025; 122:e2412609121. [PMID: 39739810 PMCID: PMC11725917 DOI: 10.1073/pnas.2412609121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/08/2024] [Indexed: 01/02/2025] Open
Abstract
A wave of studies has recently emphasized the influence of sex chromosomes on both lifespan and actuarial senescence patterns across vertebrates and invertebrates. Basically, the heterogametic sex (XY males in XX/XY systems or ZW females in ZW/ZZ systems) typically displays a lower lifespan and a steeper rate of actuarial senescence than the homogametic sex. However, whether these effects extend to the senescence patterns of other phenotypic traits or physiological functions is yet to be determined. Here, we investigated whether sex chromosomes modulate reproductive senescence using females from the African pygmy mouse (Mus minutoides). This biological model exhibits an odd sex determining system with a third, feminizing sex chromosome, X*, resulting in three distinct female genotypes (XX, X*X, or X*Y) that coexist in natural populations. We found that the rate of senescence in litter size at birth is much more pronounced in heterogametic X*Y females than in homogametic XX or X*X females that may support the unguarded X or toxic Y hypotheses and can be directly linked to the complex and unique X*Y phenotype. A decrease in neonatal survival with mother's age has also been found, but this decline is not different between the three female genotypes.
Collapse
Affiliation(s)
- Jean-François Lemaître
- Universite Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Villeurbanne, France
| | - Yann Voituron
- Universite Claude Bernard Lyon 1, CNRS, Ecole de l’aménagement durable des territoires (ENTPE), Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR 5023, VilleurbanneF-69622, France
| | - Léa Herpe
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NBE1A 3E9, Canada
| | - Frédéric Veyrunes
- Institut des Sciences de l’Evolution de Montpellier, UMR 5554 (CNRS, Université Montpellier, Institut de recherche pour le développement), Montpellier34090, France
| |
Collapse
|
6
|
Kopf RK, Banks S, Brent LJN, Humphries P, Jolly CJ, Lee PC, Luiz OJ, Nimmo D, Winemiller KO. Loss of Earth's old, wise, and large animals. Science 2025; 387:eado2705. [PMID: 39571003 DOI: 10.1126/science.ado2705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025]
Abstract
Earth's old animals are in decline. Despite this, emerging research is revealing the vital contributions of older individuals to cultural transmission, population dynamics, and ecosystem processes and services. Often the largest and most experienced, old individuals are most valued by humans and make important contributions to reproduction, information acquisition and cultural transmission, trophic dynamics, and resistance and resilience to natural and anthropogenic disturbance. These observations contrast with the senescence-focused paradigm of old age that has dominated the literature for more than a century yet are consistent with findings from behavioral ecology and life history theory. In this work, we review why the global loss of old individuals can be particularly detrimental to long-lived animals with indeterminate growth; those with increasing reproductive output with age; and those dependent on migration, sociality, and cultural transmission for survival. Longevity conservation is needed to protect the important ecological roles and ecosystem services provided by old animals.
Collapse
Affiliation(s)
- R Keller Kopf
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Sam Banks
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Paul Humphries
- School of Agricultural, Environmental and Veterinary Sciences and Gulbali Institute, Charles Sturt University, Albury, NSW, Australia
| | - Chris J Jolly
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Phyllis C Lee
- Amboseli Trust for Elephants, Langata, Nairobi, Kenya
- Behaviour and Evolution Research Group, Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Osmar J Luiz
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Dale Nimmo
- School of Agricultural, Environmental and Veterinary Sciences and Gulbali Institute, Charles Sturt University, Albury, NSW, Australia
| | - Kirk O Winemiller
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
7
|
Feder JA, Schneider-Crease IA, Beehner JC, Bergman TJ, Seyfarth RM, Silk JB, Snyder-Mackler N, Lu A. Female reproductive ageing persists despite high infanticide risk in chacma baboons and geladas. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241210. [PMID: 39816739 PMCID: PMC11732408 DOI: 10.1098/rsos.241210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/08/2024] [Accepted: 12/01/2024] [Indexed: 01/18/2025]
Abstract
Across mammals, fertility and offspring survival are often lowest at the beginning and end of females' reproductive careers. However, extrinsic drivers of reproductive success-including infanticide by males-could stochastically obscure these expected age-related trends. Here, we modelled reproductive ageing trajectories in two cercopithecine primates that experience high rates of male infanticide: the chacma baboon (Papio ursinus) and the gelada (Theropithecus gelada). We found that middle-aged mothers generally achieved the shortest interbirth intervals in chacma baboons. By contrast, old gelada females often showed shorter interbirth intervals than their younger group-mates with one exception: the oldest females typically failed to produce additional offspring before their deaths. Infant survival peaked in middle-aged mothers in chacma baboons but in young mothers in geladas. While infant mortality linked with maternal death increased as mothers aged in both species, infanticide risk did not predictably shift with maternal age. Thus, infanticide patterns cannot explain the surprising young mother advantage observed in geladas. Instead, we argue that this could be a product of their graminivorous diets, which might remove some energetic constraints on early reproduction. In sum, our data suggest that reproductive ageing is widespread but may be differentially shaped by ecological pressures.
Collapse
Affiliation(s)
- Jacob A. Feder
- Institute of Human Origins, Arizona State University, Tempe, AZ, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - India A. Schneider-Crease
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Jacinta C. Beehner
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| | - Thore J. Bergman
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Robert M. Seyfarth
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joan B. Silk
- Institute of Human Origins, Arizona State University, Tempe, AZ, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Noah Snyder-Mackler
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
8
|
Bonamour S, Chevin LM, de Franceschi C, Charmantier A, Teplitsky C. Age-Specific Phenology and Reproductive Success Senescence Vary with Environmental Age in a Wild Bird. Am Nat 2025; 205:76-89. [PMID: 39718795 DOI: 10.1086/733182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
AbstractSenescence is ubiquitous yet highly variable among species, populations, and individuals, for reasons that are poorly understood. It is not clear how environmental conditions affect senescence, especially in the wild. We explored the influence of environment on the degree of laying date age-specific variation and reproductive success senescence in wild blue tits. We disentangled the effects of age from those of previously encountered environmental conditions by introducing two complementary estimates of "relative environmental age." These estimates quantify the cumulative past environment experienced by an individual through two population-level metrics: average breeding failure and adult mortality. Results confirmed that laying date first advanced and annual reproductive success first increased with age up until about 3 years old, when these trends were reversed, consistent with a senescent decline. Both proxies for environmental conditions influenced laying date age-specific rates, such that females experiencing a more favorable environment had faster phenological decline. Conversely, environmental age did not affect reproductive success and its senescence. This study demonstrates that past environment can shape phenological age-specific change beyond the effects of chronological age and suggests that senescence will be best understood by investigating the deterioration of performances with accumulating exposure to detrimental conditions across a variety of traits.
Collapse
|
9
|
Woodman JP, Gokcekus S, Beck KB, Green JP, Nussey DH, Firth JA. The ecology of ageing in wild societies: linking age structure and social behaviour. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220464. [PMID: 39463244 PMCID: PMC11513650 DOI: 10.1098/rstb.2022.0464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 10/29/2024] Open
Abstract
The age of individuals has consequences not only for their fitness and behaviour but also for the functioning of the groups they form. Because social behaviour often changes with age, population age structure is expected to shape the social organization, the social environments individuals experience and the operation of social processes within populations. Although research has explored changes in individual social behaviour with age, particularly in controlled settings, there is limited understanding of how age structure governs sociality in wild populations. Here, we synthesize previous research into age-related effects on social processes in natural populations, and discuss the links between age structure, sociality and ecology, specifically focusing on how population age structure might influence social structure and functioning. We highlight the potential for using empirical data from natural populations in combination with social network approaches to uncover pathways linking individual social ageing, population age structure and societal functioning. We discuss the broader implications of these insights for understanding the social impacts of anthropogenic effects on animal population demography and for building a deeper understanding of societal ageing in general.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Joe P. Woodman
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
| | - Samin Gokcekus
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
| | - Kristina B. Beck
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Jonathan P. Green
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
| | - Dan H. Nussey
- Institute of Ecology & Evolution, The University of Edinburgh, EdinburghEH9 3JT, UK
| | - Josh A. Firth
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
- School of Biology, University of Leeds, Leeds, UK
| |
Collapse
|
10
|
Cook PA, Costello RA, Brodie III ED, Formica V. Population age structure shapes selection on social behaviour in a long-lived insect. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230331. [PMID: 39463252 PMCID: PMC11513641 DOI: 10.1098/rstb.2023.0331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 10/29/2024] Open
Abstract
Social traits are expected to experience highly context-dependent selection, but we know little about the contextual factors that shape selection on social behaviours. We hypothesized that the fitness consequences of social interactions will depend on the age of social partners, and therefore that population age structure will shape evolutionary pressures on sociality. Here, we investigate the consequences of age variation at multiple levels of social organization for both individual fitness and sexual selection on social network traits. We experimentally manipulated the age composition of populations of the forked fungus beetle Bolitotherus cornutus, creating 12 replicate populations with either young or old age structures. We found that fitness is associated with variance in age at three different levels of organization: the individual, interacting social partners, and the population. Older individuals have higher reproductive success, males pay a fitness cost when they interact with old males and females achieve lower fitness in older populations. In addition to influencing fitness, population age structure also altered the selection acting on social network position in females. Female sociality is under positive selection only in old populations. Our results highlight age structure as an understudied demographic variable shaping the landscape of selection on social behaviour.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Phoebe A. Cook
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Mountain Lake Biological Station, University of Virginia, Pembroke, VA, USA
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Robin A. Costello
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Mountain Lake Biological Station, University of Virginia, Pembroke, VA, USA
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Edmund D. Brodie III
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Mountain Lake Biological Station, University of Virginia, Pembroke, VA, USA
| | - Vincent Formica
- Mountain Lake Biological Station, University of Virginia, Pembroke, VA, USA
- Biology Department, Swarthmore College, Swarthmore, PA, USA
| |
Collapse
|
11
|
Suryadevara V, Hudgins AD, Rajesh A, Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A, Soygur B, Schilling B, Carver CM, Aguayo-Mazzucato C, Baker DJ, Bernlohr DA, Jurk D, Mangarova DB, Quardokus EM, Enninga EAL, Schmidt EL, Chen F, Duncan FE, Cambuli F, Kaur G, Kuchel GA, Lee G, Daldrup-Link HE, Martini H, Phatnani H, Al-Naggar IM, Rahman I, Nie J, Passos JF, Silverstein JC, Campisi J, Wang J, Iwasaki K, Barbosa K, Metis K, Nernekli K, Niedernhofer LJ, Ding L, Wang L, Adams LC, Ruiyang L, Doolittle ML, Teneche MG, Schafer MJ, Xu M, Hajipour M, Boroumand M, Basisty N, Sloan N, Slavov N, Kuksenko O, Robson P, Gomez PT, Vasilikos P, Adams PD, Carapeto P, Zhu Q, Ramasamy R, Perez-Lorenzo R, Fan R, Dong R, Montgomery RR, Shaikh S, Vickovic S, Yin S, Kang S, Suvakov S, Khosla S, Garovic VD, Menon V, Xu Y, Song Y, Suh Y, Dou Z, Neretti N. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol 2024; 25:1001-1023. [PMID: 38831121 PMCID: PMC11578798 DOI: 10.1038/s41580-024-00738-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Adarsh Rajesh
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | | | - Alla Karpova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit K Dey
- National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ann Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Anthony Agudelo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Azucena Rocha
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Bikem Soygur
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Cristina Aguayo-Mazzucato
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dilyana B Mangarova
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Ellen M Quardokus
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth L Schmidt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Feng Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca E Duncan
- The Buck Institute for Research on Aging, Novato, CA, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Gung Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Helene Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Iman M Al-Naggar
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Julia Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kanako Iwasaki
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Karina Barbosa
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Kay Metis
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lichao Wang
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Lisa C Adams
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Liu Ruiyang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Madison L Doolittle
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ming Xu
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mohammadjavad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | | | | | - Nicholas Sloan
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nikolai Slavov
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Olena Kuksenko
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Paul T Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Periklis Vasilikos
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Priscila Carapeto
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Quan Zhu
- Center for Epigenomics, University of California, San Diego, CA, USA
| | | | | | - Rong Fan
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Runze Dong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Ruth R Montgomery
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| | - Shanshan Yin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Shoukai Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sonja Suvakov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Vesna D Garovic
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yizhe Song
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
12
|
Le Coeur C, Berger V, Lummaa V, Wistbacka R, Selonen V. No evidence of early life resource pulse effects on age-specific variation in survival, reproduction and body mass of female Siberian flying squirrels. J Anim Ecol 2024; 93:2024-2037. [PMID: 39529264 PMCID: PMC11615270 DOI: 10.1111/1365-2656.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Understanding the diversity and causes of senescence patterns in the wild remains a challenging task, in particular among fast-living species for which senescence patterns have been poorly studied. Early life environmental conditions can shape senescence by influencing trade-offs between early and late life performance (disposable soma theory) or individual fitness through lifelong positive effects (silver spoon effects). Using a 23-year-long monitoring dataset of two populations of Siberian flying squirrels (Pteromys volans L.) in western Finland, we analysed the occurrence, onset and rate of senescence in female survival, body mass and reproductive performance. We also examined how early life pulsed resources (tree masting during the year of birth) influence age-specific variations in these traits. Our results indicate that survival senescence occurs after sexual maturity from 3 years of age. Females experiencing high resource availability at birth tended to survive better, but the age-specific trend was not affected by early life resource conditions. Maternal body mass declined slightly with age, starting at 4 years, regardless of early resource conditions. Similarly, among reproductive traits, we showed late-onset senescence in both litter size and annual reproductive probability, with no evidence supporting an effect of early life resources on these trends. We found no decline in juvenile body mass or in the juvenile size-number trade-off with maternal age. Our findings suggest that pulsed resources experienced at birth have a limited long-lasting impact on the life-history traits of this fast-living rodent, with no significant effect on senescence patterns.
Collapse
Affiliation(s)
- C. Le Coeur
- Department of BiologyUniversity of TurkuTurkuFinland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of BiosciencesUniversity of OsloOsloNorway
| | - V. Berger
- Department of BiologyUniversity of TurkuTurkuFinland
| | - V. Lummaa
- Department of BiologyUniversity of TurkuTurkuFinland
| | - R. Wistbacka
- Department of BiologyUniversity of OuluOuluFinland
| | - V. Selonen
- Department of BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
13
|
Jacobs PJ, Vos S, Bishop CE, Hart DW, Bennett NC, Waterman JM. Oxidative Stress in an African Ground Squirrel, a Case of Healthy Aging and Reproduction. Antioxidants (Basel) 2024; 13:1401. [PMID: 39594543 PMCID: PMC11591065 DOI: 10.3390/antiox13111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress plays a crucial role in mediating life-history processes, where it can compromise survival and reproduction through harmful alterations to DNA, lipids, and proteins. In this study, we investigated oxidative stress in Cape ground squirrels (Xerus inauris), a longer-lived African ground squirrel species with a high reproductive skew and unique life history strategies. We measured oxidative stress as total antioxidant capacity (TAC), total oxidant status (TOS), and an oxidative stress index (OSI) in blood plasma from individuals of approximately known ages. Our results reveal a distinct pattern of decreasing oxidative stress with age, consistent across both sexes. Females exhibited lower OSI and TOS levels than males. Males employing different life-history strategies, namely natal (staying at home), had significantly lower oxidative stress compared to the band (roaming male groups), likely due to variations in metabolic rate, activity, and feeding rates. However, both strategies exhibited reduced oxidative stress with age, though the underlying mechanisms require further investigation. We propose that selection pressures favoring survival contributed to the observed reduction in oxidative stress with age, potentially maximizing lifetime reproductive success in this species.
Collapse
Affiliation(s)
- Paul Juan Jacobs
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa; (D.W.H.); (N.C.B.); (J.M.W.)
| | - Sjoerd Vos
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (S.V.); (C.E.B.)
| | - Chelsea E. Bishop
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (S.V.); (C.E.B.)
| | - Daniel William Hart
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa; (D.W.H.); (N.C.B.); (J.M.W.)
| | - Nigel Charles Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa; (D.W.H.); (N.C.B.); (J.M.W.)
| | - Jane M. Waterman
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa; (D.W.H.); (N.C.B.); (J.M.W.)
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (S.V.); (C.E.B.)
| |
Collapse
|
14
|
Martín J, Rodríguez-Ruiz G, Navarro-Castilla Á, Barja I, López P. Blind date: female fossorial amphisbaenians prefer scent marks of large and healthy males. Integr Zool 2024; 19:1018-1033. [PMID: 38247017 DOI: 10.1111/1749-4877.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Selecting a good mate is a decision with important fitness consequences. For this reason, mate choice has promoted the evolution of sexual ornaments signaling the quality of an individual. In fossorial animals, inhabiting visually restricted underground environments, chemical senses should be very important for mate choice. We examined whether sexual chemical signals (substrate scent marks) produced by males of the Iberian worm lizard, Blanus cinereus, a strictly fossorial blind amphisbaenian, provide information to females on morphological traits and health state. We administered corticosterone (CORT) to males simulating a continuous stressor affecting their health. Females preferred settling at sites scent-marked by males in comparison with similar sites with female scent or unmarked sites, but the attractiveness of males' scent differed between individuals. Females preferred scent marks of larger/older males and with a higher immune response, while their body condition and CORT treatment were unrelated to female preferences. Chemical analyses showed that proportions of some compounds in precloacal secretions of males (used to produce scent marks) were correlated with the morphological (body size) and health state (immune response and body condition, but not CORT treatment) of these males. These results suggest that females may make site-selection decisions based on assessing the chemical characteristics of males' scent marks, which were reliably related to some of the traits of the male that produced the scent. Therefore, females might use chemical senses to increase the opportunities to find and mate with males of high quality, coping with the restrictions of the subterranean environment.
Collapse
Affiliation(s)
- José Martín
- Departmento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Gonzalo Rodríguez-Ruiz
- Departmento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Álvaro Navarro-Castilla
- Etho-Physiology Group, Unit of Zoology, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Autonomous University of Madrid, Madrid, Spain
| | - Isabel Barja
- Etho-Physiology Group, Unit of Zoology, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Autonomous University of Madrid, Madrid, Spain
| | - Pilar López
- Departmento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
15
|
Santema P, Forstmeier W, Kempenaers B. Variance partitioning of nest provisioning rates in blue tits: individual repeatability, heritability, and partner interactions. Evolution 2024; 78:1751-1760. [PMID: 39271183 DOI: 10.1093/evolut/qpae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
In many animal species, including most birds, parental care is performed by both parents, which has important implications for mate choice (good parent hypothesis) and parental investment strategies. Partitioning the variance in measures of parental care into heritable and nonheritable components is important to understand the evolvability of parental investment and its potential role in mate choice. We employed an automated system to monitor provisioning behavior at 817 blue tit nests over 10 years (totaling ~3 million visits). Daily provisioning rates of males and females were moderately repeatable between years (Radj = 0.16 and 0.15, respectively), which was almost entirely explained by additive genetic effects. While this degree of heritability is sufficient for parental investment to respond to selection, we argue that the modest level of repeatability provides limited potential for a "provisioning phenotype" to be used as a criterion in mate choice. Daily visit rates were positively correlated between pair members, but after accounting for shared environmental factors, this relationship became clearly negative, thereby providing support for models of partial compensation. Visit rates also differed substantially between years, and between days within a year. Thus, it is important to account for these variables when comparing the parental investment between individuals. Our results highlight the interplay between genetic, social, and environmental influences on provisioning behavior.
Collapse
Affiliation(s)
- Peter Santema
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
- Edward Grey Institute, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Wolfgang Forstmeier
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Bart Kempenaers
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| |
Collapse
|
16
|
Dupoué A, Koechlin H, Huber M, Merrien P, Le Grand J, Corporeau C, Fleury E, Bernay B, de Villemereuil P, Morga B, Le Luyer J. Reproductive aging weakens offspring survival and constrains the telomerase response to herpesvirus in Pacific oysters. SCIENCE ADVANCES 2024; 10:eadq2311. [PMID: 39259784 PMCID: PMC11389786 DOI: 10.1126/sciadv.adq2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
Telomere length (TL) is increasingly recognized as a molecular marker that reflects how reproductive aging affects intergenerational transmissions. Here, we investigated the effects of parental age on offspring survival and the regulation of TL by examining the telomere-elongating activity of telomerase in the Pacific oyster. We assessed the classical hallmarks of aging in parents at three age classes (young, middle-aged, and old) and crossbred them using a split-brood design to examine the consequences of the nine maternal-by-paternal age combinations on their offspring. Reproductive aging leads to increased larval mortality and accelerated telomere shortening in spats, rendering them more susceptible to infection by the Ostreid herpesvirus. Viral exposure stimulates telomerase activity, a response that we identified as adaptive, but weakened by parental aging. While telomerase lengthens a spat's telomere, paradoxically, longer individual TL predicts higher mortality in adults. The telomerase-telomere complex appeared as a conservative biomarker for distinguishing survivors and losers upon exposure to polymicrobial diseases.
Collapse
Affiliation(s)
- Andréaz Dupoué
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Hugo Koechlin
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Matthias Huber
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Pauline Merrien
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | | | | | - Elodie Fleury
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Benoît Bernay
- Plateforme Proteogen US EMerode, Université de Caen Normandie, Caen, France
| | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études, PSL, MNHN, CNRS, SU, UA, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Benjamin Morga
- Ifremer, ASIM, Adaptation Santé des Invertébrés Marins, La Tremblade, France
| | - Jérémy Le Luyer
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| |
Collapse
|
17
|
Álvarez-Quintero N, Kim SY. Effects of maternal age and environmental enrichment on learning ability and brain size. Behav Ecol 2024; 35:arae049. [PMID: 38952837 PMCID: PMC11215699 DOI: 10.1093/beheco/arae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
It is well known that maternal age at reproduction affects offspring lifespan and some other fitness-related traits, but it remains understudied whether maternal senescence affects how offspring respond to their environments. Early environment often plays a significant role in the development of an animal's behavioral phenotype. For example, complex environments can promote changes in cognitive ability and brain morphology in young animals. Here, we study whether and how maternal effect senescence influences offspring plasticity in cognition, group behavior, and brain morphology in response to environmental complexity. For this, juvenile 3-spined sticklebacks from young and old mothers (i.e. 1-yr and 2-yr-old) were exposed to different levels of environmental enrichment and complexity (i.e. none, simple, and complex), and their behavior, cognitive ability, and brain size were measured. Exposing fish to enriched conditions improved individual learning ability assessed by a repeated detour-reaching task, increased the size of the whole brain, and decreased aggressive interactions in the shoal. Maternal age did not influence the inhibitory control, learning ability, and group behavioral responses of offspring to the experimental environmental change. However, maternal age affected how some brain regions of offspring changed in response to environmental complexity. In offspring from old mothers, those exposed to the complex environment had larger telencephalons and cerebellums than those who experienced simpler environments. Our results suggest that maternal effect senescence may influence how offspring invest in brain functions related to cognition in response to environmental complexity.
Collapse
Affiliation(s)
- Náyade Álvarez-Quintero
- Grupo de Ecoloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Fonte das Abelleiras, s/n, Vigo, 36310 Pontevedra, Spain
- Dipartimento di Biologia, Complesso Interdepartamentale A. Vallisneri, Università di Padova, Via Ugo Bassi, 58b, 35121 Padova PD, Italy
| | - Sin-Yeon Kim
- Grupo de Ecoloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Fonte das Abelleiras, s/n, Vigo, 36310 Pontevedra, Spain
| |
Collapse
|
18
|
Aubier TG, Galipaud M. Senescence evolution under the catastrophic accumulation of deleterious mutations. Evol Lett 2024; 8:212-221. [PMID: 38525026 PMCID: PMC10959475 DOI: 10.1093/evlett/qrad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 03/26/2024] Open
Abstract
For aging to evolve, selection against mortality must decrease with age. This prevailing view in the evolutionary theory of senescence posits that mutations with deleterious effects happening late in life-when purging selection is weak-may become fixed via genetic drift in the germline, and produce a senescent phenotype. Theory, however, has focused primarily on growing populations and the fate of single deleterious mutations. In a mathematical model, we demonstrate that relaxing both of these simplifying assumptions leads to unrealistic outcomes. In density-regulated populations, previously fixed deleterious mutations should promote the fixation of other deleterious mutations that lead to senescence at ever younger ages, until death necessarily occurs at sexual maturity. This sequential fixation of deleterious mutations is not promoted by a decrease in population size, but is due to a change in the strength of selection. In an individual-based model, we also show that such evolutionary dynamics should lead to the extinction of most populations. Our models therefore make rather unrealistic predictions, underlining the need for a reappraisal of current theories. In this respect, we have further assumed in our models that the deleterious effects of mutations can only occur at certain ages, marked, for instance, by somatic or physiological changes. Under this condition, we show that the catastrophic accumulation of deleterious mutations in the germline can stop. This new finding emphasizes the importance of investigating somatic factors, as well as other mechanisms underlying the deleterious effects of mutations, to understand senescence evolution. More generally, our model therefore establishes that patterns of senescence in nature depend not only on the decrease in selection strength with age but also on any mechanism that stops the catastrophic accumulation of mutations.
Collapse
Affiliation(s)
- Thomas G Aubier
- Laboratoire Évolution and Diversification Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, 31077 Toulouse, France
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Matthias Galipaud
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Data Science Center, ETH, Zurich, Switzerland
| |
Collapse
|
19
|
Henske J, Eltz T. Age-dependent perfume development in male orchid bees, Euglossa imperialis. J Exp Biol 2024; 227:jeb246995. [PMID: 38511547 PMCID: PMC11006377 DOI: 10.1242/jeb.246995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/24/2024] [Indexed: 03/22/2024]
Abstract
Male neotropical orchid bees concoct complex perfume blends by collecting exogenous volatiles from various sources, including orchids. These perfumes, stored in specialized hind-leg pouches and released during courtship, serve as inter-sexual signals. It has been hypothesized that male perfumes honestly indicate aspects of male fitness. If perfume traits such as quantity or complexity increase over individual lifetime, perfumes could reflect age (survival) and cumulative foraging success of males. We conducted a two-season mark-recapture study with Euglossa imperialis in Costa Rica, monitoring the balance of perfume uptake and expenditure over individual male lifetime. We sealed one hind-leg pouch upon initial capture, 'freezing' the perfume status on one side, and compared it with the other side at recapture to assess changes in perfume traits over time. Additionally, we used a novel method to estimate individual age by combining two parameters of wing degradation. Contrary to predictions, young to intermediate-aged bees had the highest quantities of perfume and the highest diversity of detected compounds. At the same time, the change in perfume between recaptures was positive (increase in amount and complexity) in young bees, whereas it was neutral to negative in older bees. Although these findings do not disprove an indicator function of male perfume, they shift the emphasis to non-cumulative fitness components such as sensory acuteness or cognitive capacity as likely targets of selection. Females preferring strong perfume signals in mates would maximize speed of foraging in offspring rather than their lifetime cumulative yield.
Collapse
Affiliation(s)
- Jonas Henske
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Thomas Eltz
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
20
|
Grosiak M, Koteja P, Hambly C, Speakman JR, Sadowska ET. Limits to sustained energy intake. XXXIV. Can the heat dissipation limit (HDL) theory explain reproductive aging? J Exp Biol 2024; 227:jeb246592. [PMID: 38264846 DOI: 10.1242/jeb.246592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
According to the heat dissipation limit (HDL) theory, reproductive performance is limited by the capacity to dissipate excess heat. We tested the novel hypotheses that (1) the age-related decline in reproductive performance is due to an age-related decrease of heat dissipation capacity and (2) the limiting mechanism is more severe in animals with high metabolic rates. We used bank voles (Myodes glareolus) from lines selected for high swim-induced aerobic metabolic rate, which have also increased basal metabolic rate, and unselected control lines. Adult females from three age classes - young (4 months), middle-aged (9 months) and old (16 months) - were maintained at room temperature (20°C), and half of the lactating females were shaved to increase heat dissipation capacity. Old females from both selection lines had a decreased litter size, mass and growth rate. The peak-lactation average daily metabolic rate was higher in shaved than in unshaved mothers, and this difference was more profound among old than young and middle-aged voles (P=0.02). In females with large litters, milk production tended to be higher in shaved (least squares mean, LSM±s.e.: 73.0±4.74 kJ day-1) than in unshaved voles (61.8±4.78 kJ day-1; P=0.05), but there was no significan"t effect of fur removal on the growth rate [4.47±2.29 g (4 days-1); P=0.45]. The results provide mixed support of the HDL theory and no support for the hypotheses linking the differences in reproductive aging with either a deterioration in thermoregulatory capability or genetically based differences in metabolic rate.
Collapse
Affiliation(s)
- Marta Grosiak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
21
|
Sanghvi K, Vega-Trejo R, Nakagawa S, Gascoigne SJL, Johnson SL, Salguero-Gómez R, Pizzari T, Sepil I. Meta-analysis shows no consistent evidence for senescence in ejaculate traits across animals. Nat Commun 2024; 15:558. [PMID: 38228708 PMCID: PMC10791739 DOI: 10.1038/s41467-024-44768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Male reproductive traits such as ejaculate size and quality, are expected to decline with advancing age due to senescence. It is however unclear whether this expectation is upheld across taxa. We perform a meta-analysis on 379 studies, to quantify the effects of advancing male age on ejaculate traits across 157 species of non-human animals. Contrary to predictions, we find no consistent pattern of age-dependent changes in ejaculate traits. This result partly reflects methodological limitations, such as studies sampling a low proportion of adult lifespan, or the inability of meta-analytical approaches to document non-linear ageing trajectories of ejaculate traits; which could potentially lead to an underestimation of senescence. Yet, we find taxon-specific differences in patterns of ejaculate senescence. For instance, older males produce less motile and slower sperm in ray-finned fishes, but larger ejaculates in insects, compared to younger males. Notably, lab rodents show senescence in most ejaculate traits measured. Our study challenges the notion of universal reproductive senescence, highlighting the need for controlled methodologies and a more nuanced understanding of reproductive senescence, cognisant of taxon-specific biology, experimental design, selection pressures, and life-history.
Collapse
Affiliation(s)
- Krish Sanghvi
- Department of Biology, University of Oxford, Oxford, UK.
| | | | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | | | - Sheri L Johnson
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | | | - Irem Sepil
- Department of Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Scieszka D, Bolt AM, McCormick MA, Brigman JL, Campen MJ. Aging, longevity, and the role of environmental stressors: a focus on wildfire smoke and air quality. FRONTIERS IN TOXICOLOGY 2023; 5:1267667. [PMID: 37900096 PMCID: PMC10600394 DOI: 10.3389/ftox.2023.1267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Aging is a complex biological process involving multiple interacting mechanisms and is being increasingly linked to environmental exposures such as wildfire smoke. In this review, we detail the hallmarks of aging, emphasizing the role of telomere attrition, cellular senescence, epigenetic alterations, proteostasis, genomic instability, and mitochondrial dysfunction, while also exploring integrative hallmarks - altered intercellular communication and stem cell exhaustion. Within each hallmark of aging, our review explores how environmental disasters like wildfires, and their resultant inhaled toxicants, interact with these aging mechanisms. The intersection between aging and environmental exposures, especially high-concentration insults from wildfires, remains under-studied. Preliminary evidence, from our group and others, suggests that inhaled wildfire smoke can accelerate markers of neurological aging and reduce learning capabilities. This is likely mediated by the augmentation of circulatory factors that compromise vascular and blood-brain barrier integrity, induce chronic neuroinflammation, and promote age-associated proteinopathy-related outcomes. Moreover, wildfire smoke may induce a reduced metabolic, senescent cellular phenotype. Future interventions could potentially leverage combined anti-inflammatory and NAD + boosting compounds to counter these effects. This review underscores the critical need to study the intricate interplay between environmental factors and the biological mechanisms of aging to pave the way for effective interventions.
Collapse
Affiliation(s)
- David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Alicia M. Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Jonathan L. Brigman
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
23
|
Martyka R, Arct A, Kotowska D, Gustafsson L. Age- and trait-dependent breeding responses to environmental variation in a short-lived songbird. Sci Rep 2023; 13:14967. [PMID: 37696936 PMCID: PMC10495331 DOI: 10.1038/s41598-023-42166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
Breeding responses of organisms to environmental changes may profoundly depend on an individual's age, as an age-environment interaction may be expected to affect the expression of reproductive traits. However, little is known about how this interaction affects short-lived species that experience various environmental conditions in adulthood. Here, we used a 32-year dataset from the collared flycatcher, Ficedula albicollis, population to test whether and how the environment interacts with age to shape female age-specific reproduction. To characterise environmental variation, we applied the remotely sensed normalised difference vegetation index (NDVI), estimating vegetation productivity, and used it as a surrogate for habitat quality. Then, we analysed how within-individual age and NDVI determine patterns in laying date, clutch size, offspring production, and recruitment. We found that young and old females, but not middle-aged females, breeding under low NDVI started to lay eggs later and produced smaller clutches than females of the same age breeding under higher NDVI. No such effects were observed for offspring production or recruitment. Our study provides evidence that both an individual's age and the environmental variation experienced during adulthood may be crucial for shaping reproductive patterns in short-lived avian species, as has been found in long-lived birds.
Collapse
Affiliation(s)
- Rafał Martyka
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland.
| | - Aneta Arct
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016, Kraków, Poland
| | - Dorota Kotowska
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland
| | - Lars Gustafsson
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| |
Collapse
|
24
|
Morland F, Ewen JG, Simons MJP, Brekke P, Hemmings N. Early-life telomere length predicts life-history strategy and reproductive senescence in a threatened wild songbird. Mol Ecol 2023; 32:4031-4043. [PMID: 37173827 PMCID: PMC10947174 DOI: 10.1111/mec.16981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Telomeres are well known for their associations with lifespan and ageing across diverse taxa. Early-life telomere length can be influenced by developmental conditions and has been shown positively affect lifetime reproductive success in a limited number of studies. Whether these effects are caused by a change in lifespan, reproductive rate or perhaps most importantly reproductive senescence is unclear. Using long-term data on female breeding success from a threatened songbird (the hihi, Notiomystis cincta), we show that the early-life telomere length of individuals predicts the presence and rate of future senescence of key reproductive traits: clutch size and hatching success. In contrast, senescence of fledging success is not associated with early-life telomere length, which may be due to the added influence of biparental care at this stage. Early-life telomere length does not predict lifespan or lifetime reproductive success in this species. Females may therefore change their reproductive allocation strategy depending on their early developmental conditions, which we hypothesise are reflected in their early-life telomere length. Our results offer new insights on the role that telomeres play in reproductive senescence and individual fitness and suggest telomere length can be used as a predictor for future life history in threatened species.
Collapse
Affiliation(s)
- Fay Morland
- Department of BiosciencesUniversity of SheffieldSheffieldUK
- Institute of Zoology, Zoological Society of LondonLondonUK
- Department of AnatomyUniversity of OtagoDunedinNew Zealand
| | - John G. Ewen
- Institute of Zoology, Zoological Society of LondonLondonUK
| | | | | | | |
Collapse
|
25
|
McKenna-Ell C, Ravindran S, Pilkington JG, Pemberton JM, Nussey DH, Froy H. Trait-dependent associations between early- and late-life reproduction in a wild mammal. Biol Lett 2023; 19:20230050. [PMID: 37433328 DOI: 10.1098/rsbl.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Early- versus late-life trade-offs are a central prediction of life-history theory that are expected to shape the evolution of ageing. While ageing is widely observed in wild vertebrates, evidence that early-late trade-offs influence ageing rates remains limited. Vertebrate reproduction is a complex, multi-stage process, yet few studies have examined how different aspects of early-life reproductive allocation shape late-life performance and ageing. Here, we use longitudinal data from a 36-year study of wild Soay sheep to show that early-life reproduction predicts late-life reproductive performance in a trait-dependent manner. Females that started breeding earlier showed more rapid declines in annual breeding probability with age, consistent with a trade-off. However, age-related declines in offspring first-year survival and birth weight were not associated with early-life reproduction. Selective disappearance was evident in all three late-life reproductive measures, with longer-lived females having higher average performance. Our results provide mixed support for early-late reproductive trade-offs and show that the way early-life reproduction shapes late-life performance and ageing can differ among reproductive traits.
Collapse
Affiliation(s)
- Chris McKenna-Ell
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sanjana Ravindran
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Jill G Pilkington
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Josephine M Pemberton
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Daniel H Nussey
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Hannah Froy
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
26
|
English S, Barreaux AM, Leyland R, Lord JS, Hargrove JW, Vale GA, Haines LR. Investigating the unaccounted ones: insights on age-dependent reproductive loss in a viviparous fly. Front Ecol Evol 2023; 11:1057474. [PMID: 39534876 PMCID: PMC7616795 DOI: 10.3389/fevo.2023.1057474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Most empirical and theoretical studies on reproductive senescence focus on observable attributes of offspring produced, such as size or postnatal survival. While harder to study, an important outcome of reproduction for a breeding individual is whether a viable offspring is produced at all. While prenatal mortality can sometimes be directly observed, this can also be indicated through an increase in the interval between offspring production. Both direct reproductive loss and presumed losses have been found to increase in older females across several species. Here, we study such reproductive loss (or "abortion") in tsetse, a viviparous and relatively long-lived fly with high maternal allocation. We consider how age-dependent patterns of abortion depend on the developmental stage of offspring and find that, as per previous laboratory studies, older females have higher rates of abortion at the late-larval stage, while egg-stage abortions are high both for very young and older females. We track the reproductive output of individual females and find little evidence that experiencing an abortion is an adaptive strategy to improve future reproductive outcomes. After an abortion, females do not generally take less time to produce their next offspring, these offspring are not larger, and there is no sex bias towards females, the sex with presumed higher fitness returns (being slightly larger and longer-lived than males, and with high insemination rates). Abortion rates are higher for breeding females experiencing stress, measured as nutritional deprivation, which echoes previous work in tsetse and other viviparous species, i.e., humans and baboons. We discuss our results in the context of studies on reproductive loss across taxa and argue that this is an important yet often overlooked reproductive trait which can vary with maternal age and can also depend on environmental stressors.
Collapse
Affiliation(s)
- Sinead English
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Antoine M.G. Barreaux
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- Intertryp, Université Montpellier, CIRAD, IRD, Montpellier, France
- Animal Health Theme, ICIPE, Nairobi, Kenya
| | - Robert Leyland
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jennifer S. Lord
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - John W. Hargrove
- South African Centre for Epidemiological Modelling and Analysis, Stellenbosch University, Stellenbosch, South Africa
| | - Glyn A. Vale
- National Resources Institute, University of Greenwich, Chatham, United Kingdom
| | - Lee R. Haines
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
27
|
McKee JL, Tompkins EM, Estela FA, Anderson DJ. Age effects on Nazca booby foraging performance are largely constant across variation in the marine environment: Results from a 5-year study in Galápagos. Ecol Evol 2023; 13:e10138. [PMID: 37304365 PMCID: PMC10253949 DOI: 10.1002/ece3.10138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Foraging outcomes dictate the nutritional resources available to an organism and may vary with intrinsic factors, like age. Thus, understanding how age affects foraging performance, alone or in interaction with extrinsic factors (like environmental quality), improves our understanding of aging processes in the wild. We examined how foraging traits, measured across five breeding seasons, change with age, environmental variation, and their interaction in Nazca boobies (Sula granti), a pelagic seabird in Galápagos. We evaluated the hypotheses that (1) foraging performance is better in middle-aged birds than in young ones, and that (2) foraging performance is better in middle-aged birds than in old ones. Furthermore, favorable environmental conditions will either (3) attenuate age differences in foraging performance (by relieving constraints on young, inexperienced and old, senescent age classes), or (4) accentuate age differences (if middle-aged birds can exploit abundant resources better than other age classes can). Incubating birds tagged with GPS loggers (N = 815) provided data on foraging performance (e.g., total distance traveled, mass gained) to evaluate interactions between age and environmental variation (e.g., sea surface temperature). Poor environmental conditions associated with the cool phase of the El Niño-Southern Oscillation increased foraging effort, including foraging distance and duration, for example. Across age classes, foraging boobies responded similarly to environmental variation except for female mass gain rate: age-related declines in mass gain rate were reduced under favorable environmental conditions. Birds of different ages also searched in somewhat distinct areas in the poor conditions of 2016, but not in other years. In several foraging traits, including foraging duration and distance, female boobies showed predicted early-life improvement and late-life decline, following the established pattern for reproductive traits in this species. Thus, deficits in resource acquisition (this study) may contribute to the poor survival and reproductive outcomes previously observed in old Nazca boobies, particularly in females.
Collapse
Affiliation(s)
- Jennifer L. McKee
- Department of BiologyWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Emily M. Tompkins
- Department of BiologyWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Felipe A. Estela
- Department of BiologyWake Forest UniversityWinston‐SalemNorth CarolinaUSA
- Departamento de Ciencias Naturales y MatemáticasPontificia Universidad Javeriana – CaliValle del CaucaColombia
| | - David J. Anderson
- Department of BiologyWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
28
|
Sorci G, Hussein HA, Levêque G, Saint Jalme M, Lacroix F, Hingrat Y, Lesobre L. Ranking parameters driving siring success during sperm competition in the North African houbara bustard. Commun Biol 2023; 6:305. [PMID: 36949210 PMCID: PMC10033649 DOI: 10.1038/s42003-023-04698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
Sperm competition is a powerful force driving the evolution of ejaculate and sperm traits. However, the outcome of sperm competition depends on many traits that extend beyond ejaculate quality. Here, we study male North African houbara bustards (Chlamydotis undulata undulata) competing for egg fertilization, after artificial insemination, with the aim to rank the importance of 14 parameters as drivers of siring success. Using a machine learning approach, we show that traits independent of male quality (i.e., insemination order, delay between insemination and egg laying) are the most important predictors of siring success. Traits describing intrinsic male quality (i.e., number of sperm in the ejaculate, mass motility index) are also positively associated with siring success, but their contribution to explaining the outcome of sperm competition is much lower than for insemination order. Overall, this analysis shows that males mating at the last position in the mating sequence have the best chance to win the competition for egg fertilization. This raises the question of the importance of female behavior as determinant of mating order.
Collapse
Affiliation(s)
- Gabriele Sorci
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France.
| | - Hiba Abi Hussein
- Reneco International Wildlife Consultants LLC, Abu Dhabi, United Arab Emirates
| | | | - Michel Saint Jalme
- Centre d'Ecologie et des Sciences de la Conservation, CESCO, Museum National d'Histoire Naturelle, CNRS, Ménagerie le zoo du Jardin des Plantes, Sorbonne Université, Paris, France
| | - Frédéric Lacroix
- Reneco International Wildlife Consultants LLC, Abu Dhabi, United Arab Emirates
| | - Yves Hingrat
- Reneco International Wildlife Consultants LLC, Abu Dhabi, United Arab Emirates
| | - Loïc Lesobre
- Reneco International Wildlife Consultants LLC, Abu Dhabi, United Arab Emirates
| |
Collapse
|
29
|
Rotella JJ. Patterns, sources, and consequences of variation in age-specific vital rates: Insights from a long-term study of Weddell seals. J Anim Ecol 2023; 92:552-567. [PMID: 36495476 DOI: 10.1111/1365-2656.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Variations in the reproductive and survival abilities of individuals within a population are ubiquitous in nature, key to individual fitness, and affect population dynamics, which leads to strong interest in understanding causes and consequences of vital-rate variation. For long-lived species, long-term studies of large samples of known-age individuals are ideal for evaluating vital-rate variation. A population of Weddell seals in Erebus Bay, Antarctica, has been studied each Austral spring since the 1960s. Since 1982, all newborns have been tagged each year and multiple capture-mark-recapture (CMR) surveys have been conducted annually. Over the past 20 years, a series of analyses have built on results of earlier research by taking advantage of steady improvements in the project's long-term CMR data and available analytical methods. Here, I summarize progress made on four major topics related to variation in age-specific vital rates for females: early-life survival and age at first reproduction, costs of reproduction, demographic buffering, and demographic senescence. Multistate modelling found that age at first reproduction varies widely (4-14 years of age) and identified contrasting influences of maternal age on survival and recruitment rates of offspring. Subsequent analyses of data for females after recruitment revealed costs of reproduction to both survival and future reproduction and provided strong evidence of demographic buffering. Recent results indicated that important levels of among-individual variation exist in vital rates and revealed contrasting patterns for senescence in reproduction and survival. Sources of variation in vital rates include age, reproductive state, year, and individual. The combination of luck and individual quality results in strong variation in individual fitness outcomes: ~80% of females born in the population produce no offspring, and the remaining 20% vary strongly in lifetime reproductive output (range: 1-23 pups). Further research is needed to identify the specific environmental conditions that lead to annual variation in vital rates and to better understand the origins of individual heterogeneity. Work is also needed to better quantify the relative roles of luck, maternal effects, and environmental conditions on variation in vital rates and to learn the importance of such variation to demographic performance of offspring and on overall population dynamics.
Collapse
Affiliation(s)
- Jay J Rotella
- Ecology Department, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
30
|
Míčková K, Tomášek O, Jelínek V, Šulc M, Pazdera L, Albrechtová J, Albrecht T. Age-related changes in sperm traits and evidence for aging costs of sperm production in a sexually promiscuous passerine. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
In many animal species, organismal performance declines with age in a process known as aging or senescence. Senescence typically leads to a deterioration of physiological functionality and can impact the development of primary sexual phenotypes. Sperm production is a complex and costly process that is sensitive to changes in individual physiological state, yet remarkably little is known about age-related changes in sperm performance and aging costs of sperm production. Here we use a non-linear generalized additive mixed models (GAMM) modelling to evaluate age-related changes in postcopulatory sexual traits in the European barn swallow (Hirundo rustica rustica), a relatively short lived sexually promiscuous passerine species, where male extra-pair fertilization success has been shown to increase with age. We confirmed a positive relationship between sperm midpiece length and sperm velocity in this species. Within-male changes in sperm morphology and sperm velocity were in general absent, with only sperm length decreasing linearly with increasing age, although this change was negligible compared to the overall variation in sperm size among males. In contrast, the cloacal protuberance (CP) size changed nonlinearly with age, with an initial increase between the first and third year of life followed by a plateau. The results further indicate the existence of a trade-off between investments in sperm production and survival as males with large CP tended to have a reduced lifespan. This seems consistent with the idea of expensive sperm production and survival aging costs associated with investments in post-copulatory traits in this sexually promiscuous species.
Collapse
|
31
|
Riecke TV, Hegelbach J, Schaub M. Reproductive senescence and mating tactic interact and conflict to drive reproductive success in a passerine. J Anim Ecol 2023; 92:838-849. [PMID: 36708046 DOI: 10.1111/1365-2656.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/10/2023] [Indexed: 01/29/2023]
Abstract
An understanding of the drivers of individual fitness is a fundamental component of evolutionary ecology and life-history theory. Reproductive senescence, mate and mating tactic choice and latent heterogeneity in individual quality interact to affect individual fitness. We sought to disentangle the effects of these fitness drivers, where longitudinal data are required to understand their respective impacts. We used reproductive allocation and success data from a long-term (1989-2018) study of white-throated dippers Cinclus cinclus in Switzerland to simultaneously examine the effects of female and male age, mating tactic, nest initiation date and individual heterogeneity on reproductive performance. We modelled quadratic and categorical effects of age on reproductive parameters. The probability of polygyny increased with age in both sexes before declining in older age classes. Similarly, hatching probability in monogamous pairs and the number of nestlings hatched in both monogamous and polygynous pairs increased with female age before declining later in life. As predicted, offspring survival in monogamous pairs increased with male age before declining in older age classes, but male age had no effect on offspring survival in polygynous nesting attempts. Our results demonstrate that parental age, mating tactic and individual heterogeneity all affect reproductive success, and that the impacts of senescent decline are expressed across different demographic components as a function of sex-specific senescent decline and mating tactic.
Collapse
Affiliation(s)
| | - Johann Hegelbach
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
32
|
Vrtílek M, Žák J, Reichard M. Evidence for reproductive senescence across ray-finned fishes: A review. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.982915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The origin, incidence, and consequences of reproductive senescence vary greatly across the tree of life. In vertebrates, research on reproductive senescence has been mainly focused on mammals and birds, demonstrating that its variation is largely linked to critical life history traits, such as growth patterns, juvenile, and adult mortality, and reproductive strategy. Fishes represent half of the vertebrate taxonomic diversity and display remarkable variation in life history. Based on a thorough literature review, we summarize current evidence on reproductive senescence in ray-finned fishes (Actinopterygii). While survival and physiological senescence are acknowledged in fish, their potential age-related reproductive decline has often been disregarded due to the prevalence of indeterminate growth. We demonstrate that age-related reproductive decline is reported across fish phylogeny, environments, and traits. An important point of our review is that the incidence of reproductive senescence in a species depends on both the number of studies for that species and the coverage of its maximum lifespan by the study. Reproductive senescence was documented for one-third of the studied fish species, with females suffering an age-related decline in reproductive traits less often than males or both parents combined. Neither parental care nor migratory strategy corresponded with the occurrence of reproductive senescence in fish. The traits that were affected by reproductive senescence most often were sex-specific, with pre-mating and mating categories of traits declining in females and sperm quality and quantity in males. We also demonstrate that reproductive senescence can be buffered by indeterminate growth. We provide rich evidence of reproductive senescence across ray-finned fishes, but we highlight the need for better data on age-related reproduction in fishes.
Collapse
|
33
|
Meunier L, Sorci G, Abi Hussein H, Hingrat Y, Rehspringer N, Saint-Jalme M, Lesobre L, Torres Carreira J. Pre-but not post-meiotic senescence affects sperm quality and reproductive success in the North African houbara bustard. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.977184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Age-dependent reduction in reproductive success can arise due to multiple factors including a deterioration of reproductive physiology. Senescing males have been shown to produce ejaculates with poor sperm quality, which impinges on male reproductive success. In addition to individual age, gamete age can also affect male reproductive success. Accordingly, variance in male reproductive success can be due to pre-meiotic (referring to individual age) and post-meiotic senescence (sperm age). Here, we tested whether male senescence and sperm cell aging have additive or interactive effects on male reproductive success in a bird with a promiscuous mating system, the North African houbara bustard. To assess the effect of pre-meiotic aging, we compared male reproductive success between two age classes (3-6- and 12–16-year-old). To infer the effect of post-meiotic aging, male ejaculates were collected at three-time intervals following a common initial collection (day 1, 5, and 10). Therefore, day 1 ejaculates are supposed to contain younger sperm than day 5 and 10 ejaculates. Following controlled artificial inseminations, reproductive success was assessed using three fitness-linked traits (hatching success, chick growth rate and survival). In addition to reproductive output, we also assessed whether pre- and post-meiotic aging affected a wide range of sperm and ejaculate traits. In agreement with previous reports, we found that males in the older age class produced less sperm with poorer motility compared to young individuals. However, contrary to the prediction, we found that ejaculates collected at day 5 and 10 tended to have better sperm traits such as motility and velocity. The results on sperm traits were generally mirrored in the effect on reproductive success since young males produced offspring that grew faster and had better survival during the first month of life, and eggs fertilized by sperm collected at day 5 had the highest hatching success. In any of the models, there was evidence for interactive effects of male and sperm age. Overall, these results confirm the role of pre-meiotic aging on male reproductive success. The lack of evidence for sperm aging could come from the experimental design but might also reflect the pattern of mating frequency in a species with a lek-based mating system.
Collapse
|
34
|
Cope H, Ivimey-Cook ER, Moorad J. Triparental ageing in a laboratory population of an insect with maternal care. Behav Ecol 2022; 33:1123-1132. [PMID: 36518633 PMCID: PMC9735237 DOI: 10.1093/beheco/arac078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 09/10/2024] Open
Abstract
Parental age at reproduction influences offspring size and survival by affecting prenatal and postnatal conditions in a wide variety of species, including humans. However, most investigations into this manifestation of ageing focus upon maternal age effects; the effects of paternal age and interactions between maternal and paternal age are often neglected. Furthermore, even when maternal age effects are studied, pre- and post-natal effects are often confounded. Using a cross-fostered experimental design, we investigated the joint effects of pre-natal paternal and maternal and post-natal maternal ages on five traits related to offspring outcomes in a laboratory population of a species of burying beetle, Nicrophorus vespilloides. We found a significant positive effect of the age of the egg producer on larval survival to dispersal. We found more statistical evidence for interaction effects, which acted on larval survival and egg length. Both interaction effects were negative and involved the age of the egg-producer, indicating that age-related pre-natal maternal improvements were mitigated by increasing age in fathers and foster mothers. These results agree with an early study that found little evidence for maternal senescence, but it emphasizes that parental age interactions may be an important contributor to ageing patterns. We discuss how the peculiar life history of this species may promote selection to resist the evolution of parental age effects, and how this might have influenced our ability to detect senescence.
Collapse
Affiliation(s)
- Hilary Cope
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Edward R Ivimey-Cook
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jacob Moorad
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
35
|
Park YH, Shin D, Han CS. Polyandrous females but not monogamous females vary in reproductive ageing patterns in the bean bug Riptortus pedestris. BMC Ecol Evol 2022; 22:115. [PMID: 36217117 PMCID: PMC9549660 DOI: 10.1186/s12862-022-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In general, reproductive performance exhibits nonlinear changes with age. Specifically, reproductive performance increases early in life, reaches a peak, and then declines later in life. Reproductive ageing patterns can also differ among individuals if they are influenced by individual-specific strategies of resource allocation between early-life reproduction and maintenance. In addition, the social environment, such as the number of available mates, can influence individual-specific resource allocation strategies and consequently alter the extent of individual differences in reproductive ageing patterns. That is, females that interact with more partners are expected to vary their copulation frequency, adopt a more flexible reproductive strategy and exhibit greater individual differences in reproductive ageing patterns. METHODS In this study, we evaluated the effect of mating with multiple males on both group- and individual-level reproductive ageing patterns in females of the bean bug Riptortus pedestris by ensuring that females experienced monogamous (one female with one male) or polyandrous conditions (one female with two males). RESULTS We found that group-level reproductive ageing patterns did not differ between monogamy-treatment and polyandry-treatment females. However, polyandry-treatment females exhibited among-individual variation in reproductive ageing patterns, while monogamy-treatment females did not. CONCLUSION Our findings provide the first empirical evidence regarding the influence of the social environment on individual variation in reproductive ageing patterns. We further suggest that the number of potential mates influences group- and individual-level reproductive ageing patterns, depending on which sex controls mating. We encourage future studies to consider interactions between species-specific mating systems and the social environment when evaluating group- and individual-level reproductive ageing patterns.
Collapse
Affiliation(s)
- Yi Hang Park
- grid.289247.20000 0001 2171 7818Department of Biology, Kyung Hee University, Seoul, Korea
| | - Donggyun Shin
- grid.289247.20000 0001 2171 7818Department of Biology, Kyung Hee University, Seoul, Korea
| | - Chang S. Han
- grid.289247.20000 0001 2171 7818Department of Biology, Kyung Hee University, Seoul, Korea
| |
Collapse
|
36
|
Naciri M, Aars J, Blanchet MA, Gimenez O, Cubaynes S. Reproductive senescence in polar bears in a variable environment. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.920481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reproductive senescence is ubiquitous in mammals. However, patterns of senescence vary across reproductive traits, even within populations, perhaps because of differences in selection pressures, physiological constraints, and responses to environmental conditions. We investigated reproductive senescence in wild female polar bears (Ursus maritimus), using 31 years of capture-recapture data from the Svalbard area. We studied the influence of environmental conditions on age-specific litter production and litter size using generalized linear mixed models. Further, using a capture-recapture model that handles the dependency between vital rates of individuals belonging to the same family unit, we assessed maternal-age-related changes in first year cub and litter survival. We provide clear evidence for reproductive senescence in female polar bears. Litter production and litter size peaked in middle-aged females and declined sharply afterward. By contrast cub and litter survival did not decline after prime age. We found no evidence of terminal investment. The reproductive output of all females was affected by sea-ice conditions during the previous year and the Arctic Oscillation, with some effects differing greatly between age groups. Old females were affected the most by environmental conditions. Our results suggest that the decline in reproductive output is a combination of fertility and body-condition senescence, with a weak contribution of maternal-effect senescence, possibly due to benefits of experience. Further, as predicted by evolutionary theory, senescence appears to be a consequence of failures in early stages of the reproductive cycle rather than in late stages, and environmental variation affected old females more than prime-aged females. Our study emphasizes the need to study several reproductive traits and account for environmental variation when investigating reproductive senescence. Differences in senescence patterns across reproductive traits should be interpreted in light of evolutionary theory and while considering underlying physiological drivers.
Collapse
|
37
|
Sex-specific effects of capital resources on reproductive timing and success in red squirrels. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Genovart M, Klementisová K, Oro D, Fernández-López P, Bertolero A, Bartumeus F. Inferring the age of breeders from easily measurable variables. Sci Rep 2022; 12:15851. [PMID: 36151237 PMCID: PMC9508115 DOI: 10.1038/s41598-022-19381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Age drives differences in fitness components typically due to lower performances of younger and senescent individuals, and changes in breeding age structure influence population dynamics and persistence. However, determining age and age structure is challenging in most species, where distinctive age features are lacking and available methods require substantial efforts or invasive procedures. Here we explore the potential to assess the age of breeders, or at least to identify young and senescent individuals, by measuring some breeding parameters partially driven by age (e.g. egg volume in birds). Taking advantage of a long-term population monitored seabird, we first assessed whether age influenced egg volume, and identified other factors driving this trait by using general linear models. Secondly, we developed and evaluated a machine learning algorithm to assess the age of breeders using measurable variables. We confirmed that both younger and older individuals performed worse (less and smaller eggs) than middle-aged individuals. Our ensemble training algorithm was only able to distinguish young individuals, but not senescent breeders. We propose to test the combined use of field monitoring, classic regression analysis and machine learning methods in other wild populations were measurable breeding parameters are partially driven by age, as a possible tool for assessing age structure in the wild.
Collapse
Affiliation(s)
- Meritxell Genovart
- CEAB (CSIC), Carrer Accés Cala Sant Francesc, 14, 17300, Blanes, Catalonia, Spain. .,IMEDEA (CSIC-UIB), Miquel Marquès 21, 07190, Esporles, Balearic Islands, Spain.
| | | | - Daniel Oro
- CEAB (CSIC), Carrer Accés Cala Sant Francesc, 14, 17300, Blanes, Catalonia, Spain
| | - Pol Fernández-López
- CEAB (CSIC), Carrer Accés Cala Sant Francesc, 14, 17300, Blanes, Catalonia, Spain
| | - Albert Bertolero
- Associació Ornitològica Picampall de les Terres de l'Ebre, Amposta, Catalonia, Spain
| | - Frederic Bartumeus
- CEAB (CSIC), Carrer Accés Cala Sant Francesc, 14, 17300, Blanes, Catalonia, Spain.,CREAF, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain.,ICREA, Passeig Lluis Companys 23, 08010, Barcelona, Catalonia, Spain
| |
Collapse
|
39
|
Kappeler PM, Pethig L, Prox L, Fichtel C. Reproductive Senescence in Two Lemur Lineages. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.894344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The relationship between age and reproductive performance is highly variable across species. Humans and some cetaceans exhibit an extreme form of reproductive senescence in that female reproduction ceases years or even decades before average life expectancy is reached. However, neither the existence of reproductive senescence in some taxa nor its absence in others is fully understood. Comparative data from other long-lived mammals may contribute to a more comprehensive understanding of the evolution of menopause, but data from wild primates, in particular, are scarce. We therefore investigated age-related female reproductive performance in two wild sympatric populations of Malagasy primates: Verreaux’s sifakas (Propithecus verreauxi) and redfronted lemurs (Eulemur rufifrons), which have a maximal longevity of more than 20 years. Based on 25 years of long-term demographic data, we extracted information on reproductive output of 38 female Verreaux’s sifakas and 42 female redfronted lemurs. We modeled variation in female reproductive performance and interbirth intervals as a function of age, the number of adult females within a group to account for female competition, and rainfall as a proxy for annual variation in food availability. We also compared our results for these two species with data on captive populations of the same two genera that are buffered from fluctuations in environmental variables. Our analyses disclosed statistical evidence for reproductive senescence in three out of four populations (captive Coquerel’s sifakas, wild redfronted lemurs, and captive red lemurs) but not for wild Verreaux’s sifakas. Compared to wild populations, reproductive senescence was therefore not less pronounced in captive animals, even though the latter are buffered from environmental adversities. In wild redfronted lemurs, mothers were more likely to give birth in years with more rainfall, but neither the number of co-resident females, nor annual rainfall did predict variation in the probability of giving birth in wild Verreaux’s sifakas. Thus, our study contributes valuable comparative information on reproductive senescence in a basal group of primates, and offers insights into the modulating effects of environmental, social and phylogenetic factors on patterns and dynamics of age-specific female reproduction.
Collapse
|
40
|
Campos FA, Altmann J, Cords M, Fedigan LM, Lawler R, Lonsdorf EV, Stoinski TS, Strier KB, Bronikowski AM, Pusey AE, Alberts SC. Female reproductive aging in seven primate species: Patterns and consequences. Proc Natl Acad Sci U S A 2022; 119:e2117669119. [PMID: 35533284 PMCID: PMC9171789 DOI: 10.1073/pnas.2117669119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Age-related changes in fertility have increasingly been documented in wild animal populations: In many species the youngest and oldest reproducers are disadvantaged relative to prime adults. How do these effects evolve, and what explains their diversity across species? Tackling this question requires detailed data on patterns of age-related reproductive performance in multiple animal species. Here, we compare patterns and consequences of age-related changes in female reproductive performance in seven primate populations that have been subjects of long-term continuous study for 29 to 57 y. We document evidence of age effects on fertility and on offspring performance in most, but not all, of these primate species. Specifically, females of six species showed longer interbirth intervals in the oldest age classes, youngest age classes, or both, and the oldest females also showed relatively fewer completed interbirth intervals. In addition, five species showed markedly lower survival among offspring born to the oldest mothers, and two species showed reduced survival for offspring born to both the youngest and the oldest mothers. In contrast, we found mixed evidence that maternal age affects the age at which daughters first reproduce: Only in muriquis and to some extent in chimpanzees, the only two species with female-biased dispersal, did relatively young mothers produce daughters that tended to have earlier first reproduction. Our findings demonstrate shared patterns as well as contrasts in age-related changes in female fertility across species of nonhuman primates and highlight species-specific behavior and life-history patterns as possible explanations for species-level differences.
Collapse
Affiliation(s)
- Fernando A. Campos
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX 78249
| | - Jeanne Altmann
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Marina Cords
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027
| | - Linda M. Fedigan
- Department of Anthropology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Richard Lawler
- Department of Sociology and Anthropology, James Madison University, Harrisonburg, VA 22807
| | | | | | - Karen B. Strier
- Department of Anthropology, University of Wisconsin–Madison, Madison, WI 53706
| | - Anne M. Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011
| | - Anne E. Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27710
| | - Susan C. Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27710
- Department of Biology, Duke University, Durham, NC 27708
| |
Collapse
|
41
|
Dujon AM, Boutry J, Tissot S, Lemaître JF, Boddy AM, Gérard AL, Alvergne A, Arnal A, Vincze O, Nicolas D, Giraudeau M, Telonis-Scott M, Schultz A, Pujol P, Biro PA, Beckmann C, Hamede R, Roche B, Ujvari B, Thomas F. Cancer Susceptibility as a Cost of Reproduction and Contributor to Life History Evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.861103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reproduction is one of the most energetically demanding life-history stages. As a result, breeding individuals often experience trade-offs, where energy is diverted away from maintenance (cell repair, immune function) toward reproduction. While it is increasingly acknowledged that oncogenic processes are omnipresent, evolving and opportunistic entities in the bodies of metazoans, the associations among reproductive activities, energy expenditure, and the dynamics of malignant cells have rarely been studied. Here, we review the diverse ways in which age-specific reproductive performance (e.g., reproductive aging patterns) and cancer risks throughout the life course may be linked via trade-offs or other mechanisms, as well as discuss situations where trade-offs may not exist. We argue that the interactions between host–oncogenic processes should play a significant role in life-history theory, and suggest some avenues for future research.
Collapse
|
42
|
Raj Pant S, Versteegh MA, Hammers M, Burke T, Dugdale HL, Richardson DS, Komdeur J. The contribution of extra-pair paternity to the variation in lifetime and age-specific male reproductive success in a socially monogamous species. Evolution 2022; 76:915-930. [PMID: 35325482 PMCID: PMC9322416 DOI: 10.1111/evo.14473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/29/2022] [Accepted: 02/13/2022] [Indexed: 01/21/2023]
Abstract
In socially monogamous species, extra-pair paternity (EPP) is predicted to increase variance in male reproductive success (RS) beyond that resulting from genetic monogamy, thus, increasing the "opportunity for selection" (maximum strength of selection that can act on traits). This prediction is challenging to investigate in wild populations because lifetime reproduction data are often incomplete. Moreover, age-specific variances in reproduction have been rarely quantified. We analyzed 21 years of near-complete social and genetic reproduction data from an insular population of Seychelles warblers (Acrocephalus sechellensis). We quantified EPP's contribution to lifetime and age-specific opportunities for selection in males. We compared the variance in male genetic RS vs social ("apparent") RS (RSap ) to assess if EPP increased the opportunity for selection over that resulting from genetic monogamy. Despite not causing a statistically significant excess (19%) of the former over the latter, EPP contributed substantially (27%) to the variance in lifetime RS, similarly to within-pair paternity (WPP, 39%) and to the positive WPP-EPP covariance (34%). Partitioning the opportunity for selection into age-specific (co)variance components, showed that EPP also provided a substantial contribution at most ages, varying with age. Therefore, despite possibly not playing the main role in shaping sexual selection in Seychelles warblers, EPP provided a substantial contribution to the lifetime and age-specific opportunity for selection, which can influence evolutionary processes in age-structured populations.
Collapse
Affiliation(s)
- Sara Raj Pant
- Groningen Institute for Evolutionary Life Sciences, Faculty of Science and EngineeringUniversity of GroningenGroningenThe Netherlands,Centre for Ecology, Evolution and Conservation, School of Biological SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK,Department of BiologyLund UniversityLundSweden
| | - Maaike A. Versteegh
- Groningen Institute for Evolutionary Life Sciences, Faculty of Science and EngineeringUniversity of GroningenGroningenThe Netherlands
| | - Martijn Hammers
- Groningen Institute for Evolutionary Life Sciences, Faculty of Science and EngineeringUniversity of GroningenGroningenThe Netherlands,Aeres University of Applied SciencesAlmereThe Netherlands
| | - Terry Burke
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Hannah L. Dugdale
- Groningen Institute for Evolutionary Life Sciences, Faculty of Science and EngineeringUniversity of GroningenGroningenThe Netherlands
| | - David S. Richardson
- Centre for Ecology, Evolution and Conservation, School of Biological SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK,Nature SeychellesRoche CaimanMaheRepublic of Seychelles
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences, Faculty of Science and EngineeringUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
43
|
When Older Males Sire More Offspring—Increased Attractiveness or Higher Fertility? Behav Ecol Sociobiol 2022; 76:61. [PMID: 35535127 PMCID: PMC9034975 DOI: 10.1007/s00265-022-03170-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
Abstract
In birds with extrapair mating, older males usually have higher fertilization success than younger males. Two hypotheses can potentially explain this pattern: 1) females prefer older, and often more ornamented males, or 2) older males invest more in reproduction and fertility than younger males. Here we studied factors associated with age-related male fertilization success in a population of barn swallows Hirundo rustica in Canada. We document that male fertilization success increased gradually up to a minimum age of four-year old. The age effect was especially strong for the number of extrapair offspring obtained and the occurrence of a second brood. The higher fertilization success of older males was also associated with an early start of breeding in spring. The length of the elongated outermost tail feathers, a postulated male ornament preferred by females, also increased with age (in both sexes), but it was not a significant predictor of male fertilization success within age classes. Male fertility traits, especially testis size, but also sperm motility and sperm velocity, increased significantly across age groups. Our results suggest that the higher fertilization success by older males is due to their higher reproductive investments and that their longer tails are an adaptation to early arrival on the breeding grounds. Significance statement The barn swallow is a socially monogamous passerine with extensive extrapair mating. We found that males become more successful in siring both withinpair and extrapair offspring as they become older. Their increased fertilization success was associated with a higher reproductive effort as indicated by larger testes, more motile sperm, and an earlier start of breeding in spring. The length of the outer tail feathers increased with age in both sexes, but long tails did not enhance male fertilization success among males of the same age. Long tails are probably an adaptation to rapid migration and earlier arrival on the breeding grounds. Our findings suggest that the commonly observed age-related increase in male fertilization success in passerine birds is better explained by life history theory than by sexual selection theory. Supplementary Information The online version contains supplementary material available at 10.1007/s00265-022-03170-0.
Collapse
|
44
|
Vedder O, Bichet C, Tschirren B. The Effect of Manipulated Prenatal Conditions on Growth, Survival, and Reproduction Throughout the Complete Life Course of a Precocial Bird. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.834433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The quality of the environment individuals experience during development is commonly regarded as very influential on performance in later life. However, studies that have experimentally manipulated the early-life environment and subsequently measured individual performance in all components of fitness over the complete life course are scarce. In this study, we incubated fertile eggs of Japanese quail (Coturnix japonica) at substandard and standard incubation temperature, and monitored growth, survival, and reproduction throughout the complete life course. While embryonic development was slower and hatching success tended to be lower under substandard incubation temperature, the prenatal treatment had no effect on post-hatching growth, survival to sexual maturity, or age at first reproduction. In adulthood, body mass and investment in individual egg mass peaked at middle age, irrespective of the prenatal treatment. Individual reproduction rate declined soon after its onset, and was higher in females that lived longer. Yet, reproduction, and its senescence, were independent of the prenatal treatment. Similarly, adult survival over the complete lifespan was not affected. Hence, we did not find evidence for effects on performance beyond the developmental period that was manipulated. Our results suggest that effects of unfavorable developmental conditions on individual performance later in life could be negligible in some circumstances.
Collapse
|
45
|
Paterson JT, Proffitt KM, Rotella JJ. Incorporating vital rates and harvest into stochastic population models to forecast elk population dynamics. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Kelly M. Proffitt
- Montana Department of Fish, Wildlife, and Parks Bozeman 59718 MT USA
| | - Jay J. Rotella
- Montana State University 310 Lewis Hall Bozeman MT 59718 USA
| |
Collapse
|
46
|
Lemaître J, Rey B, Gaillard J, Régis C, Gilot‐Fromont E, Débias F, Duhayer J, Pardonnet S, Pellerin M, Haghani A, Zoller JA, Li CZ, Horvath S. DNA methylation as a tool to explore ageing in wild roe deer populations. Mol Ecol Resour 2022; 22:1002-1015. [PMID: 34665921 PMCID: PMC9297961 DOI: 10.1111/1755-0998.13533] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
DNA methylation-based biomarkers of ageing (epigenetic clocks) promise to lead to new insights into evolutionary biology of ageing. Relatively little is known about how the natural environment affects epigenetic ageing effects in wild species. In this study, we took advantage of a unique long-term (>40 years) longitudinal monitoring of individual roe deer (Capreolus capreolus) living in two wild populations (Chizé and Trois-Fontaines, France) facing different ecological contexts, to investigate the relationship between chronological age and levels of DNA methylation (DNAm). We generated novel DNA methylation data from n = 94 blood samples, from which we extracted leucocyte DNA, using a custom methylation array (HorvathMammalMethylChip40). We present three DNA methylation-based estimators of age (DNAm or epigenetic age), which were trained in males, females, and both sexes combined. We investigated how sex differences influenced the relationship between DNAm age and chronological age using sex-specific epigenetic clocks. Our results highlight that old females may display a lower degree of biological ageing than males. Further, we identify the main sites of epigenetic alteration that have distinct ageing patterns between the two sexes. These findings open the door to promising avenues of research at the crossroads of evolutionary biology and biogerontology.
Collapse
Affiliation(s)
- Jean‐François Lemaître
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Benjamin Rey
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Jean‐Michel Gaillard
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Corinne Régis
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Emmanuelle Gilot‐Fromont
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
- Université de LyonVetAgro SupMarcy‐l'EtoileFrance
| | - François Débias
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Jeanne Duhayer
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Sylvia Pardonnet
- Laboratoire de Biométrie et Biologie EvolutiveUMR5558Université de LyonUniversité Lyon 1CNRSVilleurbanneFrance
| | - Maryline Pellerin
- Direction de la Recherche et de l'Appui ScientifiqueOffice Français de la BiodiversitéUnité Ongulés SauvagesGapFrance
| | - Amin Haghani
- Human GeneticsDavid Geffen School of MedicineUniversity of CaliforniaLos Angeles CaliforniaUSA
| | - Joseph A. Zoller
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Caesar Z. Li
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Steve Horvath
- Human GeneticsDavid Geffen School of MedicineUniversity of CaliforniaLos Angeles CaliforniaUSA
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
47
|
Morosinotto C, Bensch S, Tarka M, Karell P. Heritability and parental effects in telomere length in a color polymorphic long-lived bird. Physiol Biochem Zool 2022; 95:350-364. [DOI: 10.1086/720161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Patrick SC, Réale D, Potts JR, Wilson AJ, Doutrelant C, Teplitsky C, Charmantier A. Differences in the temporal scale of reproductive investment across the slow-fast continuum in a passerine. Ecol Lett 2022; 25:1139-1151. [PMID: 35235709 PMCID: PMC9541748 DOI: 10.1111/ele.13982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
Life-history strategies differ with respect to investment in current versus 'future' reproduction, but when is this future? Under the novel 'temporality in reproductive investment hypothesis', we postulate variation should exist in the time frame over which reproductive costs are paid. Slow-paced individuals should pay reproductive costs over short (e.g. inter-annual) time scales to prevent reproductive costs accumulating, whereas fast-paced individuals should allow costs to accumulate (i.e. senescence). Using Fourier transforms, we quantify adjustments in clutch size with age, across four populations of blue tits (Cyanistes caeruleus). Fast populations had more prevalent and stronger long-term changes in reproductive investment, whereas slower populations had more prevalent short-term adjustments. Inter-annual environmental variation partly accounted for short-, but not long-term changes in reproductive investment. Our study reveals individuals differ in when they pay the cost of reproduction and that failure to partition this variation across different temporal scales and environments could underestimate reproductive trade-offs.
Collapse
Affiliation(s)
- Samantha C Patrick
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Denis Réale
- Département des Sciences Biologiques, Université du Québec A Montréal, Québec, Canada
| | - Jonathan R Potts
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall, UK
| | | | | | | |
Collapse
|
49
|
Barreaux AMG, Higginson AD, Bonsall MB, English S. Incorporating effects of age on energy dynamics predicts nonlinear maternal allocation patterns in iteroparous animals. Proc Biol Sci 2022; 289:20211884. [PMID: 35168397 PMCID: PMC8848239 DOI: 10.1098/rspb.2021.1884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Iteroparous parents face a trade-off between allocating current resources to reproduction versus maximizing survival to produce further offspring. Parental allocation varies across age and follows a hump-shaped pattern across diverse taxa, including mammals, birds and invertebrates. This nonlinear allocation pattern lacks a general theoretical explanation, potentially because most studies focus on offspring number rather than quality and do not incorporate uncertainty or age-dependence in energy intake or costs. Here, we develop a life-history model of maternal allocation in iteroparous animals. We identify the optimal allocation strategy in response to stochasticity when energetic costs, feeding success, energy intake and environmentally driven mortality risk are age-dependent. As a case study, we use tsetse, a viviparous insect that produces one offspring per reproductive attempt and relies on an uncertain food supply of vertebrate blood. Diverse scenarios generate a hump-shaped allocation when energetic costs and energy intake increase with age and also when energy intake decreases and energetic costs increase or decrease. Feeding success and environmentally driven mortality risk have little influence on age-dependence in allocation. We conclude that ubiquitous evidence for age-dependence in these influential traits can explain the prevalence of nonlinear maternal allocation across diverse taxonomic groups.
Collapse
Affiliation(s)
- Antoine M. G. Barreaux
- School of Biological sciences, University of Bristol, Bristol BS8 1TQ, UK
- CIRAD, UMR INTERTRYP, F-34398 Montpellier, France
- INTERTRYP, Univ Montpellier, CIRAD, IRD, 34000 Montpellier, France
| | - Andrew D. Higginson
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, UK
| | - Michael B. Bonsall
- Department of Zoology, Mathematical Ecology Research Group, University of Oxford, Oxford OX1 3PS, UK
- St Peters College, Oxford OX1 2DL, UK
| | - Sinead English
- School of Biological sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
50
|
Purchase CF, Rooke AC, Gaudry MJ, Treberg JR, Mittell EA, Morrissey MB, Rennie MD. A synthesis of senescence predictions for indeterminate growth, and support from multiple tests in wild lake trout. Proc Biol Sci 2022; 289:20212146. [PMID: 34982951 PMCID: PMC8727146 DOI: 10.1098/rspb.2021.2146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/06/2021] [Indexed: 01/14/2023] Open
Abstract
Senescence-the deterioration of functionality with age-varies widely across taxa in pattern and rate. Insights into why and how this variation occurs are hindered by the predominance of laboratory-focused research on short-lived model species with determinate growth. We synthesize evolutionary theories of senescence, highlight key information gaps and clarify predictions for species with low mortality and variable degrees of indeterminate growth. Lake trout are an ideal species to evaluate predictions in the wild. We monitored individual males from two populations (1976-2017) longitudinally for changes in adult mortality (actuarial senescence) and body condition (proxy for energy balance). A cross-sectional approach (2017) compared young (ages 4-10 years) and old (18-37 years) adults for (i) phenotypic performance in body condition, and semen quality-which is related to fertility under sperm competition (reproductive senescence)-and (ii) relative telomere length (potential proxy for cellular senescence). Adult growth in these particular populations is constrained by a simplified foodweb, and our data support predictions of negligible senescence when maximum size is only slightly larger than maturation size. Negative senescence (aka reverse senescence) may occur in other lake trout populations where diet shifts allow maximum sizes to greatly exceed maturation size.
Collapse
Affiliation(s)
- Craig F. Purchase
- Department of Biology, Memorial University of Newfoundland, St John's, Canada
| | - Anna C. Rooke
- Department of Biology, Memorial University of Newfoundland, St John's, Canada
| | - Michael J. Gaudry
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
| | - Jason R. Treberg
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Canada
| | | | | | - Michael D. Rennie
- Department of Biology, Lakehead University, Thunder Bay, Canada
- IISD Experimental Lakes Area, Canada
| |
Collapse
|