1
|
Zhong D, Yang X, Yang J, Luo Z, Feng Z, Ma M, Liao Y, Tang Y, Wen Y, Liu J, Hu S. Oxygen vacancy-engineered bimetallic nanozymes for disrupting electron transport chain and synergistic multi-enzyme activity to reverse oxaliplatin resistance in colorectal cancer. J Nanobiotechnology 2025; 23:352. [PMID: 40380190 PMCID: PMC12082870 DOI: 10.1186/s12951-025-03417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/26/2025] [Indexed: 05/19/2025] Open
Abstract
In colorectal cancer treatment, chemotherapeutic agents induce reactive oxygen species (ROS) production, which promotes NAD+ accumulation in tumor cells, reducing treatment sensitivity and worsening patient prognosis. Targeted depletion of NAD+ presents a promising strategy to overcome tumor resistance and improve patient prognosis. Here, we designed a dual-metallic nanozyme (CuMnOx-V@Oxa@SP) with defect engineering, modified by soy phospholipids (SP) and loaded with oxaliplatin (Oxa). This nanozyme uses its oxygen-deficient active sites to rapidly and irreversibly degrade NAD⁺ and NADH into nicotinamide and ADP-ribose derivatives, disrupting the electron transport chain (ETC) and compromising tumor antioxidant defenses. It also inhibits the glutathione S-transferase P1 (GSTP1) pathway, weakening tumor detoxification and enhancing chemotherapy sensitivity. Density functional theory calculations revealed that the synergistic effect among multi-enzyme active centers endows the CuMnOx-V nanozymes with excellent catalytic activity. In the tumor microenvironment (TME), CuMnOx-V nanozymes exhibit peroxidase, oxidase, and NAD+ oxidase-mimicking activities. CuMnOx-V generates multiple ROS and depletes NAD+ while preventing their regeneration thereby triggering a cascade amplification of oxidative stress. This, coupled with targeted chemotherapy drug delivery, restores chemosensitivity in refractory tumors and exposes the vulnerabilities of resistant colorectal cancer cells to ROS.
Collapse
Affiliation(s)
- Dong Zhong
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Xiaoxin Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, 139 Renming Middle Road Changsha, Changsha, Hunan, China.
| | - Jinhui Yang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Zhisheng Luo
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Zhichao Feng
- SJTU-Ruijin-UIH Institute for Medical Imaging Technology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengtian Ma
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yunjie Liao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Yu Wen
- Furong Laboratory, Central South University, Changsha, Hunan, 410008, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, 139 Renming Middle Road Changsha, Changsha, Hunan, China.
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Domagalski M, Olszańska J, Pietraszek‐Gremplewicz K, Nowak D. The role of adipogenic niche resident cells in colorectal cancer progression in relation to obesity. Obes Rev 2025; 26:e13873. [PMID: 39763022 PMCID: PMC11884973 DOI: 10.1111/obr.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/03/2024] [Accepted: 11/05/2024] [Indexed: 03/08/2025]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and has one of the highest mortality rates. Considering its nonlinear etiology, many risk factors are associated with CRC formation and development, with obesity at the forefront. Obesity is regarded as one of the key environmental risk determinants for the pathogenesis of CRC. Excessive food intake and a sedentary lifestyle, together with genetic predispositions, lead to the overgrowth of adipose tissue along with a disruption in the number and function of its building cells. Adipose tissue-resident cells may constitute part of the CRC microenvironment. Alterations in their physiology and secretory profiles observed in obesity may further contribute to CRC progression, and despite similar localization, their contributions are not equivalent. They can interact with CRC cells, either directly or indirectly, influencing various processes that contribute to tumorigenesis. The main aim of this review is to provide insights into the diversity of adipose tissue resident cells, namely, adipocytes, adipose stromal cells, and immunological cells, regarding the role of particular cell types in co-forming the CRC microenvironment. The scope of this study was also devoted to the abnormalities in adipose tissue physiology observed in obesity states and their impact on CRC development.
Collapse
Affiliation(s)
- Mikołaj Domagalski
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | - Joanna Olszańska
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | | | - Dorota Nowak
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| |
Collapse
|
3
|
Du P, Li Y, Han A, Wang M, Liu J, Piao Y, Chen L. β-lapachone suppresses carcinogenesis of cervical cancer via interaction with AKT1. Front Pharmacol 2025; 16:1509568. [PMID: 40051559 PMCID: PMC11882534 DOI: 10.3389/fphar.2025.1509568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction Cervical cancer is one of the most prevalent malignant tumors affecting women worldwide, and affected patients often face a poor prognosis due to its high drug resistance and recurrence rates. β-lapachone, a quinone compound originally extracted from natural plants, is an antitumor agent that specifically targets NQO1. Methods CC cells were treated with varying concentrations of β-lapachone to examine its effects on glucose metabolism, proliferation, metastasis, angiogenesis, and EMT in vitro. The targets and action pathways of β-lapachone were identified using network pharmacology and molecular docking, with KEGG pathway enrichment analysis. Its effects and toxicity were verified in vivo using a nude mouse xenograft model. Results β-lapachone significantly inhibited the proliferation and metastasis of cervical cancer cells by regulating glucose metabolism, reducing tumor angiogenesis, and suppressing epithelial-mesenchymal transition (EMT) in cells with high NQO1 expression. Furthermore, we identified the inactivation of the PI3K/AKT/mTOR pathway as the key mechanism underlying these effects. AKT1 was identified as a potential target of β-lapachone in modulating glucose metabolism and EMT in cervical cancer cells. Conclusion These findings suggest that β-lapachone inhibits the malignant progression of cervical cancer by targeting AKT1 to regulate glucose metabolism in NQO1-overexpressing cells, providing a theoretical basis for developing novel therapeutic strategies for cervical cancer.
Collapse
Affiliation(s)
- Pan Du
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Yue Li
- Changchun Center for Disease Control and Prevention, Changchun, China
| | - Anna Han
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Mengying Wang
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Jiajing Liu
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Yingshi Piao
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
- Cancer Research Center, Yanbian University, Yanji, China
| | - Liyan Chen
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
- Cancer Research Center, Yanbian University, Yanji, China
| |
Collapse
|
4
|
Xiong Z, Fang G, Mondal RK, Liao Y, Nie N, Chen YC, Kim M. On-Chip NADH Detection in Multicellular Models Using an AlGaN/GaN Photodetector Array with Enhanced Sensitivity. NANO LETTERS 2024; 24:14993-15000. [PMID: 39475050 DOI: 10.1021/acs.nanolett.4c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a pivotal coenzyme, existing in its oxidized form (NAD+) and reduced form (NADH). Both are essential in cellular redox reactions and are implicated in energy production and cancer. Current NADH detection methods often involve complex optical measurements. We propose a miniaturized, on-chip photoelectric sensor array using AlGaN/GaN two-dimensional electron gas (2DEG) photodetectors for NADH quantification. The device exhibits an ultralow dark current and ultrahigh UV light responsivity, enabling sensitive NADH detection. By exploiting the absorbance disparity between NADH and NAD+, our sensor achieves rapid, sensitive detection, surpassing commercial assays. It effectively detects NADH levels in 3D multicellular models, promising cancer screening and monitoring. This sensor platform offers a significant advancement in NADH quantification, with the potential for high-throughput testing and point-of-care diagnostics. Our study presents an efficient approach for NADH sensing, addressing the need for rapid and sensitive detection methods in biomedical research and clinical practice.
Collapse
Affiliation(s)
- Zhongshu Xiong
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Guocheng Fang
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Ramit Kumar Mondal
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Yikai Liao
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Ningyuan Nie
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Yu-Cheng Chen
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Munho Kim
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| |
Collapse
|
5
|
Wang MY, Mo XY, Yi MX, Lu HY. Visualization of the relationship between metabolism and lung diseases from the perspective of bibliometric analysis: research trends and future prospects. Front Med (Lausanne) 2024; 11:1443926. [PMID: 39664315 PMCID: PMC11631585 DOI: 10.3389/fmed.2024.1443926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024] Open
Abstract
Background Extensive research has examined the role of metabolism in lung disease development, yet a comprehensive literature review remains absent despite numerous publications. Objective This study aims to visualize and assess the advancements in research on metabolism and its role in lung diseases. Methods Publications from January 1, 1991, to April 30, 2024, related to lung diseases and metabolism were sourced from the Web of Science Core Collection and analyzed using CiteSpace 6.2.R4, VOSviewer 1.6.19, Bibliometrix, R Studio, and various online tools. Results A total of 1,542 studies were collected and processed through these platforms for literature analysis and data visualization. The analysis revealed a sharp increase in annual publications on metabolism and lung diseases, with the United States and China emerging as leading contributors. Current research trends highlight a shift toward investigating metabolic reprogramming of immune cells in the context of lung diseases. Moreover, genes such as TNF, DIF, AKT1, INS, IL-6, CXCL8, IL-1β, TP53, NF-κB1, MTOR, IFNG, TGF-β1, HIF1α, VEGFA, IL-10, NFE2L2, PPARG, AKT, CRP, STAT3, and CD4 have received significant attention in this research domain. Employing a bibliometric approach, this study offers a comprehensive and objective examination of the knowledge landscape, shedding light on the evolving trends in this field. The findings serve as a valuable resource for researchers, offering a clearer perspective on the advancements in metabolism-related lung disease studies.
Collapse
Affiliation(s)
| | | | | | - Hong-Yan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Lee HT, Lin CS, Liu CY, Chen P, Tsai CY, Wei YH. Mitochondrial Plasticity and Glucose Metabolic Alterations in Human Cancer under Oxidative Stress-From Viewpoints of Chronic Inflammation and Neutrophil Extracellular Traps (NETs). Int J Mol Sci 2024; 25:9458. [PMID: 39273403 PMCID: PMC11395599 DOI: 10.3390/ijms25179458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Oxidative stress elicited by reactive oxygen species (ROS) and chronic inflammation are involved both in deterring and the generation/progression of human cancers. Exogenous ROS can injure mitochondria and induce them to generate more endogenous mitochondrial ROS to further perpetuate the deteriorating condition in the affected cells. Dysfunction of these cancer mitochondria may possibly be offset by the Warburg effect, which is characterized by amplified glycolysis and metabolic reprogramming. ROS from neutrophil extracellular traps (NETs) are an essential element for neutrophils to defend against invading pathogens or to kill cancer cells. A chronic inflammation typically includes consecutive NET activation and tissue damage, as well as tissue repair, and together with NETs, ROS would participate in both the destruction and progression of cancers. This review discusses human mitochondrial plasticity and the glucose metabolic reprogramming of cancer cells confronting oxidative stress by the means of chronic inflammation and neutrophil extracellular traps (NETs).
Collapse
Affiliation(s)
- Hui-Ting Lee
- Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei 104, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
| | - Chen-Sung Lin
- Division of Thoracic Surgery, Department of Surgery, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Center for General Education, Kainan University, Taoyuan City 338, Taiwan
| | - Chao-Yu Liu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Po Chen
- Cancer Free Biotech, Taipei 114, Taiwan
| | - Chang-Youh Tsai
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Clinical Trial Center, Division of Immunology & Rheumatology, Fu Jen Catholic University Hospital, New Taipei City 243, Taiwan
- Faculty of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yau-Huei Wei
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| |
Collapse
|
7
|
Zhu X, Li Y, Liu H, Wang Y, Sun R, Jiang Z, Hou C, Hou X, Huang S, Zhang H, Wang H, Jiang B, Yang X, Xu B, Fan G. NAMPT-targeting PROTAC and nicotinic acid co-administration elicit safe and robust anti-tumor efficacy in NAPRT-deficient pan-cancers. Cell Chem Biol 2024; 31:1203-1218.e17. [PMID: 38906111 DOI: 10.1016/j.chembiol.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 06/23/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the biosynthesis of nicotinamide adenine dinucleotide (NAD+), making it a potential target for cancer therapy. Two challenges hinder its translation in the clinic: targeting the extracellular form of NAMPT (eNAMPT) remains insufficient, and side effects are observed in normal tissues. We previously utilized proteolysis-targeting chimera (PROTAC) to develop two compounds capable of simultaneously degrading iNAMPT and eNAMPT. Unfortunately, the pharmacokinetic properties were inadequate, and toxicities similar to those associated with traditional inhibitors arose. We have developed a next-generation PROTAC molecule 632005 to address these challenges, demonstrating exceptional target selectivity and bioavailability, improved in vivo exposure, extended half-life, and reduced clearance rate. When combined with nicotinic acid, 632005 exhibits safety and robust efficacy in treating NAPRT-deficient pan-cancers, including xenograft models with hematologic malignancy and prostate cancer and patient-derived xenograft (PDX) models with liver cancer. Our findings provide clinical references for patient selection and treatment strategies involving NAMPT-targeting PROTACs.
Collapse
Affiliation(s)
- Xiaotong Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ye Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haixia Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuetong Wang
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Renhong Sun
- Gluetacs Therapeutics (Shanghai) Co, Ltd, Building 20, Lane 218, Haiji Road 6, Pudong District, Shanghai 201306, China
| | - Zhenzhou Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chun Hou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xianyu Hou
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Suming Huang
- The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Huijuan Zhang
- The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Biao Jiang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaobao Yang
- Gluetacs Therapeutics (Shanghai) Co, Ltd, Building 20, Lane 218, Haiji Road 6, Pudong District, Shanghai 201306, China.
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| |
Collapse
|
8
|
Freitas RB, Rodrigues MJLF, Pimenta S, Belsley M, Correia JH, Maciel MJ. Highly-selective optical filter for NADH fluorescence detection in multiphoton microscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:3317-3328. [PMID: 38855678 PMCID: PMC11161364 DOI: 10.1364/boe.506777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 06/11/2024]
Abstract
Colorectal cancer (CRC) is a pressing global health concern, emphasizing the need for early detection tools. In this study an optical filter for precise detection of nicotinamide adenine dinucleotide (NADH) fluorescence via two-photon excitation fluorescence (TPEF) was developed. Fabricated with silicon dioxide and titanium dioxide thin films in a Fabry-Perot structure, the filter achieved a peak transmittance of about 95% at 483 nm, with a 12 nm full-width at half maximum. TPEF measurements using a tailored setup and NADH liquid phantoms underscored the filter's significance in selectively capturing NADH fluorescence while mitigating interference from other fluorophores. This work marks a substantial stride towards integrating multiphoton microscopy into conventional colonoscopy, enabling non-invasive, objective optical biopsy for colorectal tissue analysis. Further refinements of the experimental setup are imperative to advance tissue differentiation and enhance CRC diagnosis.
Collapse
Affiliation(s)
- R. B. Freitas
- CMEMS-UMinho, University of Minho, 4800-058, Guimarães, Portugal
| | - M. J. L. F. Rodrigues
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Laboratory for Materials and Emergent Technologies (LAPMET), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - S. Pimenta
- CMEMS-UMinho, University of Minho, 4800-058, Guimarães, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - M. Belsley
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Laboratory for Materials and Emergent Technologies (LAPMET), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - J. H. Correia
- CMEMS-UMinho, University of Minho, 4800-058, Guimarães, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - M. J. Maciel
- CMEMS-UMinho, University of Minho, 4800-058, Guimarães, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
9
|
Song A, Zhao N, Hilpert DC, Perry C, Baur JA, Wallace DC, Schaefer PM. Visualizing subcellular changes in the NAD(H) pool size versus redox state using fluorescence lifetime imaging microscopy of NADH. Commun Biol 2024; 7:428. [PMID: 38594590 PMCID: PMC11004000 DOI: 10.1038/s42003-024-06123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
NADH autofluorescence imaging is a promising approach for visualizing energy metabolism at the single-cell level. However, it is sensitive to the redox ratio and the total NAD(H) amount, which can change independently from each other, for example with aging. Here, we evaluate the potential of fluorescence lifetime imaging microscopy (FLIM) of NADH to differentiate between these modalities.We perform targeted modifications of the NAD(H) pool size and ratio in cells and mice and assess the impact on NADH FLIM. We show that NADH FLIM is sensitive to NAD(H) pool size, mimicking the effect of redox alterations. However, individual components of the fluorescence lifetime are differently impacted by redox versus pool size changes, allowing us to distinguish both modalities using only FLIM. Our results emphasize NADH FLIM's potential for evaluating cellular metabolism and relative NAD(H) levels with high spatial resolution, providing a crucial tool for our understanding of aging and metabolism.
Collapse
Affiliation(s)
- Angela Song
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Zhao
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Diana C Hilpert
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Caroline Perry
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Patrick M Schaefer
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Hong SM, Lee A, Kim B, Lee J, Seon S, Ha Y, Ng JT, Yoon G, Lim SB, Morgan MJ, Cha J, Lee D, Kim Y. NAMPT-Driven M2 Polarization of Tumor-Associated Macrophages Leads to an Immunosuppressive Microenvironment in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303177. [PMID: 38308188 PMCID: PMC11005718 DOI: 10.1002/advs.202303177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/16/2023] [Indexed: 02/04/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a metabolic enzyme with key roles in inflammation. Previous studies have examined the consequences of its upregulated expression in cancer cells themselves, but studies are limited with respect to its role in the other cells within the tumor microenvironment (TME) during colorectal cancer (CRC) progression. Using single-cell RNA sequencing (scRNA-seq) data, it is founded that NAMPT is highly expressed in SPP1+ tumor-associated macrophages (TAMs), a unique subset of TAMs associated with immunosuppressive activity. A NAMPThigh gene signature in SPP1+ TAMs correlated with worse prognostic outcomes in CRC patients. The effect of Nampt deletion in the myeloid compartment of mice during CRC development is explored. NAMPT deficiency in macrophages resulted in HIF-1α destabilization, leading to reduction in M2-like TAM polarization. NAMPT deficiency caused significant decreases in the efferocytosis activity of macrophages, which enhanced STING signaling and the induction of type I IFN-response genes. Expression of these genes contributed to anti-tumoral immunity via potentiation of cytotoxic T cell activity in the TME. Overall, these findings suggest that NAMPT-initiated TAM-specific genes can be useful in predicting poor CRC patient outcomes; strategies aimed at targeting NAMPT may provide a promising therapeutic approach for building an immunostimulatory TME in CRC progression.
Collapse
Affiliation(s)
- Sun Mi Hong
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - A‐Yeon Lee
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Byeong‐Ju Kim
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Jeong‐Eun Lee
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Su‐Yeon Seon
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Yu‐Jin Ha
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Jestlin Tianthing Ng
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Gyesoon Yoon
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Su Bin Lim
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Michael J. Morgan
- Department of Natural SciencesNortheastern State UniversityTahlequahOK74464USA
| | - Jong‐Ho Cha
- Department of Biomedical SciencesCollege of MedicineInha UniversityIncheon22212South Korea
- Department of Biomedical Science and EngineeringGraduate SchoolInha UniversityIncheon22212South Korea
| | - Dakeun Lee
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of PathologyAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - You‐Sun Kim
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| |
Collapse
|
11
|
Bosso M, Haddad D, Al Madhoun A, Al-Mulla F. Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines 2024; 12:211. [PMID: 38255314 PMCID: PMC10813379 DOI: 10.3390/biomedicines12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.
Collapse
Affiliation(s)
- Mira Bosso
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| |
Collapse
|
12
|
Kwao-Zigah G, Bediako-Bowan A, Boateng PA, Aryee GK, Abbang SM, Atampugbire G, Quaye O, Tagoe EA. Microbiome Dysbiosis, Dietary Intake and Lifestyle-Associated Factors Involve in Epigenetic Modulations in Colorectal Cancer: A Narrative Review. Cancer Control 2024; 31:10732748241263650. [PMID: 38889965 PMCID: PMC11186396 DOI: 10.1177/10732748241263650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Background: Colorectal cancer is the second cause of cancer mortality and the third most commonly diagnosed cancer worldwide. Current data available implicate epigenetic modulations in colorectal cancer development. The health of the large bowel is impacted by gut microbiome dysbiosis, which may lead to colon and rectum cancers. The release of microbial metabolites and toxins by these microbiotas has been shown to activate epigenetic processes leading to colorectal cancer development. Increased consumption of a 'Westernized diet' and certain lifestyle factors such as excessive consumption of alcohol have been associated with colorectal cancer.Purpose: In this review, we seek to examine current knowledge on the involvement of gut microbiota, dietary factors, and alcohol consumption in colorectal cancer development through epigenetic modulations.Methods: A review of several published articles focusing on the mechanism of how changes in the gut microbiome, diet, and excessive alcohol consumption contribute to colorectal cancer development and the potential of using these factors as biomarkers for colorectal cancer diagnosis.Conclusions: This review presents scientific findings that provide a hopeful future for manipulating gut microbiome, diet, and alcohol consumption in colorectal cancer patients' management and care.
Collapse
Affiliation(s)
- Genevieve Kwao-Zigah
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Antionette Bediako-Bowan
- Department of Surgery, University of Ghana Medical School, Accra, Ghana
- Department of Surgery, Korle Bu Teaching Hospital, Accra, Ghana
| | - Pius Agyenim Boateng
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Gloria Kezia Aryee
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| | - Stacy Magdalene Abbang
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Gabriel Atampugbire
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Emmanuel A. Tagoe
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
13
|
Yong J, Cai S, Zeng Z. Targeting NAD + metabolism: dual roles in cancer treatment. Front Immunol 2023; 14:1269896. [PMID: 38116009 PMCID: PMC10728650 DOI: 10.3389/fimmu.2023.1269896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is indispensable for various oxidation-reduction reactions in mammalian cells, particularly during energy production. Malignant cells increase the expression levels of NAD+ biosynthesis enzymes for rapid proliferation and biomass production. Furthermore, mounting proof has indicated that NAD-degrading enzymes (NADases) play a role in creating the immunosuppressive tumor microenvironment (TME). Interestingly, both inhibiting NAD+ synthesis and targeting NADase have positive implications for cancer treatment. Here we summarize the detrimental outcomes of increased NAD+ production, the functions of NAD+ metabolic enzymes in creating an immunosuppressive TME, and discuss the progress and clinical translational potential of inhibitors for NAD+ synthesis and therapies targeting NADase.
Collapse
Affiliation(s)
- Jiaxin Yong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Songqing Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Zhaolei Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
14
|
Yang C, Jiang C, Yang M, Bai Q, Zhen Y, Zhang Y, Yin W, Wang J, Zhou X, Li G, Wu M, Qin Y, Wang Q, Ji H, Wu L. NAD(P)H Activated Fluorescent Probe for Rapid Intraoperative Pathological Diagnosis and Tumor Histological Grading. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:738-749. [PMID: 39474306 PMCID: PMC11503956 DOI: 10.1021/cbmi.3c00076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 05/18/2025]
Abstract
Rapid and accurate intraoperative pathological diagnosis (IOPD) is essential for intraoperative decision-making to improve patients' outcomes and avoid reoperations. In this study, using a NAD(P)H-activated fluorescent probe, a multifunctional fluorescent indicator has been developed to selectively identify tumor cells from normal tissue and to achieve cancer grading identification. This rapid response probe, CyQ-1, features unprecedented sensitivity and rapid response toward NADH at low nanomolar levels under physiological conditions. Moreover, this indicator allows both colorimetric and fluorescent NADH detection in HeLa, A549, MDA-MB-231, 4T1, MCF-7, HePG2, HUVEC, and HL-7702 cells. Expanding the use of this indicator to advanced tissue models, its ability to visualize NADH in 120 paraffin-embedded colorectal sections and 20 cases of intraoperative frozen sections of lung cancer was further verified. CyQ-1-based cancer grading identification shows an overall 92.5 and 100% agreement with the "gold standard test" of histologic grading toward paraffin and frozen sections, respectively. The sensitivity and specificity for discriminating poorly, moderately, and well-differentiated tumor sections were all above 90%. In a word, the rapid and accurate NADH detection ability for clinical sections makes this proposed indicator a potential candidate for clinical IOPD quantification and tumor differentiation grade recognition.
Collapse
Affiliation(s)
- Chaojie Yang
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Chenxia Jiang
- Department
of Pathology, The Affiliated Hospital of
Nantong University, 226001 Nantong, P. R. China
| | - Majun Yang
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Qingqing Bai
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Yaya Zhen
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Yuxue Zhang
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Weiyi Yin
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Jian Wang
- School
of Data Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaobo Zhou
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Guo Li
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Mingmin Wu
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Yuling Qin
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Qi Wang
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Haiwei Ji
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| | - Li Wu
- School
of Public Health, Nantong Key Laboratory of Public Health and Medical
Analysis, Nantong University, Nantong, 226019, P. R. China
| |
Collapse
|
15
|
Wei F, Tuong ZK, Omer M, Ngo C, Asiatico J, Kinzel M, Pugazhendhi AS, Khaled AR, Ghosh R, Coathup M. A novel multifunctional radioprotective strategy using P7C3 as a countermeasure against ionizing radiation-induced bone loss. Bone Res 2023; 11:34. [PMID: 37385982 DOI: 10.1038/s41413-023-00273-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 07/01/2023] Open
Abstract
Radiotherapy is a critical component of cancer care but can cause osteoporosis and pathological insufficiency fractures in surrounding and otherwise healthy bone. Presently, no effective countermeasure exists, and ionizing radiation-induced bone damage continues to be a substantial source of pain and morbidity. The purpose of this study was to investigate a small molecule aminopropyl carbazole named P7C3 as a novel radioprotective strategy. Our studies revealed that P7C3 repressed ionizing radiation (IR)-induced osteoclastic activity, inhibited adipogenesis, and promoted osteoblastogenesis and mineral deposition in vitro. We also demonstrated that rodents exposed to clinically equivalent hypofractionated levels of IR in vivo develop weakened, osteoporotic bone. However, the administration of P7C3 significantly inhibited osteoclastic activity, lipid formation and bone marrow adiposity and mitigated tissue loss such that bone maintained its area, architecture, and mechanical strength. Our findings revealed significant enhancement of cellular macromolecule metabolic processes, myeloid cell differentiation, and the proteins LRP-4, TAGLN, ILK, and Tollip, with downregulation of GDF-3, SH2B1, and CD200. These proteins are key in favoring osteoblast over adipogenic progenitor differentiation, cell matrix interactions, and shape and motility, facilitating inflammatory resolution, and suppressing osteoclastogenesis, potentially via Wnt/β-catenin signaling. A concern was whether P7C3 afforded similar protection to cancer cells. Preliminarily, and remarkably, at the same protective P7C3 dose, a significant reduction in triple-negative breast cancer and osteosarcoma cell metabolic activity was found in vitro. Together, these results indicate that P7C3 is a previously undiscovered key regulator of adipo-osteogenic progenitor lineage commitment and may serve as a novel multifunctional therapeutic strategy, leaving IR an effective clinical tool while diminishing the risk of adverse post-IR complications. Our data uncover a new approach for the prevention of radiation-induced bone damage, and further work is needed to investigate its ability to selectively drive cancer cell death.
Collapse
Affiliation(s)
- Fei Wei
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Mahmoud Omer
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jackson Asiatico
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Michael Kinzel
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Annette R Khaled
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Melanie Coathup
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
16
|
Groth B, Lee YC, Huang CC, McDaniel M, Huang K, Lee LH, Lin SJ. The Histone Deacetylases Hst1 and Rpd3 Integrate De Novo NAD + Metabolism with Phosphate Sensing in Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:ijms24098047. [PMID: 37175754 PMCID: PMC10179157 DOI: 10.3390/ijms24098047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a critical cofactor essential for various cellular processes. Abnormalities in NAD+ metabolism have also been associated with a number of metabolic disorders. The regulation and interconnection of NAD+ metabolic pathways are not yet completely understood. By employing an NAD+ intermediate-specific genetic system established in the model organism S. cerevisiae, we show that histone deacetylases (HDACs) Hst1 and Rpd3 link the regulation of the de novo NAD+ metabolism-mediating BNA genes with certain aspects of the phosphate (Pi)-sensing PHO pathway. Our genetic and gene expression studies suggest that the Bas1-Pho2 and Pho2-Pho4 transcription activator complexes play a role in this co-regulation. Our results suggest a model in which competition for Pho2 usage between the BNA-activating Bas1-Pho2 complex and the PHO-activating Pho2-Pho4 complex helps balance de novo activity with PHO activity in response to NAD+ or phosphate depletion. Interestingly, both the Bas1-Pho2 and Pho2-Pho4 complexes appear to also regulate the expression of the salvage-mediating PNC1 gene negatively. These results suggest a mechanism for the inverse regulation between the NAD+ salvage pathways and the de novo pathway observed in our genetic models. Our findings help provide a molecular basis for the complex interplay of two different aspects of cellular metabolism.
Collapse
Affiliation(s)
- Benjamin Groth
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Yi-Ching Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Chi-Chun Huang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Matilda McDaniel
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Katie Huang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Lan-Hsuan Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
17
|
Das C, Adhikari S, Bhattacharya A, Chakraborty S, Mondal P, Yadav SS, Adhikary S, Hunt CR, Yadav K, Pandita S, Roy S, Tainer JA, Ahmed Z, Pandita TK. Epigenetic-Metabolic Interplay in the DNA Damage Response and Therapeutic Resistance of Breast Cancer. Cancer Res 2023; 83:657-666. [PMID: 36661847 PMCID: PMC11285093 DOI: 10.1158/0008-5472.can-22-3015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
Therapy resistance is imposing a daunting challenge on effective clinical management of breast cancer. Although the development of resistance to drugs is multifaceted, reprogramming of energy metabolism pathways is emerging as a central but heterogenous regulator of this therapeutic challenge. Metabolic heterogeneity in cancer cells is intricately associated with alterations of different signaling networks and activation of DNA damage response pathways. Here we consider how the dynamic metabolic milieu of cancer cells regulates their DNA damage repair ability to ultimately contribute to development of therapy resistance. Diverse epigenetic regulators are crucial in remodeling the metabolic landscape of cancer. This epigenetic-metabolic interplay profoundly affects genomic stability of the cancer cells as well as their resistance to genotoxic therapies. These observations identify defining mechanisms of cancer epigenetics-metabolism-DNA repair axis that can be critical for devising novel, targeted therapeutic approaches that could sensitize cancer cells to conventional treatment strategies.
Collapse
Affiliation(s)
- Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Apoorva Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | | | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Shalini S. Yadav
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Clayton R Hunt
- Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Kamlesh Yadav
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, 77030, USA
| | - Shruti Pandita
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, Texas, 78229, USA
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - John A Tainer
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zamal Ahmed
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tej K. Pandita
- Houston Methodist Research Institute, Houston, TX, 77030, USA
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, 77030, USA
| |
Collapse
|
18
|
Jiao YT, Jiang H, Wu WT, Qi YT, Wen MY, Yang XK, Kang YR, Zhang XW, Amatore C, Huang WH. Dual-channel nanoelectrochemical sensor for monitoring intracellular ROS and NADH kinetic variations of their concentrations. Biosens Bioelectron 2023; 222:114928. [PMID: 36450163 DOI: 10.1016/j.bios.2022.114928] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Reactive oxygen species (ROS) and nicotinamide adenine dinucleotide (NADH) are important intracellular redox-active molecules involved in various pathological processes including inflammation, neurodegenerative diseases, and cancer. However, the fast dynamic changes and mutual regulatory kinetic relationship between intracellular ROS and NADH in these biological processes are still hard to simultaneously investigate. A dual-channel nanowire electrode (DC-NWE) integrating two conductive nanowires, one functionalized with platinum nanoparticles and the other with conductive polymer, was nanofabricated for the selective and simultaneous real-time monitoring of intracellular ROS and NADH release by mitochondria in single living MCF-7 tumoral cells stimulated by resveratrol. The production of ROS was observed to occur tenths of a second before the release of NADH, a significant new piece of information suggesting a mechanism of action of resveratrol. Beyond the importance of the specific data gathered in this study, this work established the feasibility of simultaneously monitoring multiple species and analyzing their kinetics relationships over sub-second time scales thanks to dual-channel nanowire electrodes. It is believed that this concept and its associated nanoelectrochemical tools might benefit to a deeper understanding of mutual regulatory relationship between intracellular crucial molecular markers during physiological and pathological processes as well as for evaluating medical treatments.
Collapse
Affiliation(s)
- Yu-Ting Jiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hong Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen-Tao Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ming-Yong Wen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiao-Ke Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi-Ran Kang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin-Wei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China; PASTEUR, Départment de Chimie, École Normale Supérieure, PSL Research University, Sorbonne University, Paris, 75005, France.
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
19
|
Sulukan E, Baran A, Şenol O, Kankaynar M, Yıldırım S, Bolat İ, Ceyhun HA, Toraman E, Ceyhun SB. Global warming and glyphosate toxicity (I): Adult zebrafish modelling with behavioural, immunohistochemical and metabolomic approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160086. [PMID: 36356745 DOI: 10.1016/j.scitotenv.2022.160086] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/24/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Global warming further increases the toxic threat of environmental pollutants on organisms. In order to reveal the dimensions of this threat more clearly, it is of great importance that the studies be carried out with temperature differences as close as possible to the temperature values that will represent the global climate projection. In our study, how the toxicity of glyphosate, which is widely used around the world, on zebrafish changes with temperature increases of 0.5° was investigated on behavioral and molecular basis. For this purpose, adult zebrafish were exposed to glyphosate at concentrations of 1 ppm and 5 ppm for 96 h in four environments with a temperature difference of 0.5° (28.5; 29.0; 29.5; 30.0 °C). At the end of the exposure, half of the zebrafish were sampled and remaining half were left for a 10-day recovery process. At the end of the trials, zebrafish were subjected to circadian rhythm and anxiety tests. In addition, histopathological, immunohistochemical and metabolome analyses were performed on brain tissues. As a result, it has been detected that anxiety and circadian rhythm were disrupted in parallel with the increased temperature and glyphosate concentration, and increased histopathological findings and 5-HT4R and GNAT2 immunopositivity in the brain. As a result of metabolome analysis, more than thirty annotated metabolites have been determined due to the synergistic effect of temperature increase and glyphosate exposure. As a conclusion, it was concluded that even a temperature increase of 0.5° caused an increasing effect of glyphosate toxicity in the zebrafish model.
Collapse
Affiliation(s)
- Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Alper Baran
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Food Quality Control and Analysis, Technical Vocational School, Atatürk University, Erzurum, Turkey
| | - Onur Şenol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Meryem Kankaynar
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Hacer Akgül Ceyhun
- Department of Psychiatry, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Emine Toraman
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey; Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
20
|
Zhu C, Liang S, Zan G, Wang X, Gao C, Yan H, Wang X, Zhou J. Selenomethionine Alleviates DON-Induced Oxidative Stress via Modulating Keap1/Nrf2 Signaling in the Small Intestinal Epithelium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:895-904. [PMID: 36535023 DOI: 10.1021/acs.jafc.2c07885] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The small intestinal epithelium is regulated in response to various beneficial or harmful environmental information. Deoxynivalenol (DON), a mycotoxin widely distributed in cereal-based feeds, induces oxidative stress damage in the intestine due to the mitochondrial stress. As a functional nutrient, selenomethionine (Se-Met) is involved in synthesizing several antioxidant enzymes, yet whether it can replenish the intestinal epithelium upon DON exposure remains unknown. Therefore, the in vivo model C57BL/6 mice and the in vitro model MODE-K cells were treated with l-Se-Met and DON alone or in combination to confirm the status of intestinal stem cell (ISC)-driven epithelial regeneration. The results showed that 0.1 mg/kg body weight (BW) Se-Met reinstated the growth performance and integrity of jejunal structure and barrier function in DON-challenged mice. Moreover, Lgr5+ ISCs and PCNA+ mitotic cells in crypts were prominently increased by Se-Met in the presence of DON, concomitant with a significant increase in absorptive cells, goblet cells, and Paneth cells. Simultaneously, crypt-derived jejunal organoids from the Se-Met + DON group exhibited more significant growth advantages ex vivo. Furthermore, Se-Met-stimulated Keap1/Nrf2-dependent antioxidant system (T-AOC and GSH-Px) to inhibit the accumulation of ROS and MDA in the jejunum and serum. Moreover, Se-Met failed to rescue the DON-triggered impairment of cell antioxidant function after Nrf2 perturbation using its specific inhibitor ML385 in MODE-K cells. In conclusion, Se-Met protects ISC-driven intestinal epithelial integrity against DON-induced oxidative stress damage by modulating Keap1/Nrf2 signaling.
Collapse
Affiliation(s)
- Chao Zhu
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Shaojie Liang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Gengxiu Zan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Xiaofan Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Chunqi Gao
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Huichao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Xiuqi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Jiayi Zhou
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
- HenryFok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
21
|
Panwar S, Kumari A, Kumar H, Tiwari AK, Tripathi P, Asthana S. Structure-based virtual screening, molecular dynamics simulation and in vitro evaluation to identify inhibitors against NAMPT. J Biomol Struct Dyn 2022; 40:10332-10344. [PMID: 34229568 DOI: 10.1080/07391102.2021.1943526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a bottleneck enzyme that plays a key role in recycling nicotinamide to maintain the adequate NAD + level inside the cell. It involves maintaining the cellular bioenergetics and providing a necessary substrate for functions essential to rapidly proliferating the cancer cells. Therefore, inhibition of NAMPT appears as a therapeutic potential for cancer treatment. Here, the vast virtual screening followed by focused docking and in-vitro analysis was carried out to identify the promising hits of NAMPT. We have identified two potential hits from the filtered molecules, which are chemically diverse and have shown comparable quantitative values with reported co-crystal '1QS' as their binding pattern matched nicely. These two compounds are further explored through molecular dynamics simulations (MD) combined with pharmacokinetics profiling and thermodynamic analysis demonstrating their suitability as novel NAMPT inhibitors that can be used as starting points for a hit-to-lead campaign.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Panwar
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Anita Kumari
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Hitesh Kumar
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.,Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Anoop Kumar Tiwari
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.,Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Prabhanshu Tripathi
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.,CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| |
Collapse
|
22
|
Zhu X, Liu H, Chen L, Wu C, Liu X, Cang Y, Jiang B, Yang X, Fan G. Addressing the Enzyme-independent tumor-promoting function of NAMPT via PROTAC-mediated degradation. Cell Chem Biol 2022; 29:1616-1629.e12. [PMID: 36323324 DOI: 10.1016/j.chembiol.2022.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Aberrant overexpression of nicotinamide phosphoribosyltransferase (NAMPT) has been reported in a variety of tumor cells and is a poor prognosis factor for patient survival. It plays an important role in tumor cell proliferation, acting concurrently as an nicotinamide adenine dinucleotide (NAD+) synthase and, unexpectedly, as an extracellular signaling molecule for several tumor-promoting pathways. Although previous efforts to modulate NAMPT activity were limited to enzymatic inhibitors with low success in clinical studies, protein degradation offers the possibility to simultaneously disrupt NAMPT's enzyme activity and ligand capabilities. Here we report the development of two highly selective proteolysis-targeting chimeras (PROTACs) that promote NAMPT degradation in a cereblon-dependent manner. Both PROTAC degraders outperform a clinical candidate, FK866, in killing effect on hematological tumor cells. These results emphasize the importance and feasibility of applying PROTACs as a superior strategy for targeting proteins with multiple tumor-promoting functions like NAMPT, which is not easily achieved by conventional enzymatic inhibitors.
Collapse
Affiliation(s)
- Xiaotong Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haixia Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Li Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chenxu Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xuesong Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yong Cang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Biao Jiang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Xiaobao Yang
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Zhangjiang Hi-Tech Park, Shanghai 201210, China.
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
23
|
Wei Y, Xiang H, Zhang W. Review of various NAMPT inhibitors for the treatment of cancer. Front Pharmacol 2022; 13:970553. [PMID: 36160449 PMCID: PMC9490061 DOI: 10.3389/fphar.2022.970553] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the NAD salvage pathway of mammalian cells and is overexpressed in numerous types of cancers. These include breast cancer, ovarian cancer, prostate cancer, gastric cancer, colorectal cancer, glioma, and b-cell lymphoma. NAMPT is also known to impact the NAD and NADPH pool. Research has demonstrated that NAMPT can be inhibited. NAMPT inhibitors are diverse anticancer medicines with significant anti-tumor efficacy in ex vivo tumor models. A few notable NAMPT specific inhibitors which have been produced include FK866, CHS828, and OT-82. Despite encouraging preclinical evidence of the potential utility of NAMPT inhibitors in cancer models, early clinical trials have yielded only modest results, necessitating the adaptation of additional tactics to boost efficacy. This paper examines a number of cancer treatment methods which target NAMPT, including the usage of individual inhibitors, pharmacological combinations, dual inhibitors, and ADCs, all of which have demonstrated promising experimental or clinical results. We intend to contribute further ideas regarding the usage and development of NAMPT inhibitors in clinical therapy to advance the field of research on this intriguing target.
Collapse
Affiliation(s)
- Yichen Wei
- West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haotian Xiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wenqiu Zhang,
| |
Collapse
|
24
|
Chang MC, Mahar R, McLeod MA, Giacalone AG, Huang X, Boothman DA, Merritt ME. Synergistic Effect of β-Lapachone and Aminooxyacetic Acid on Central Metabolism in Breast Cancer. Nutrients 2022; 14:3020. [PMID: 35893874 PMCID: PMC9331106 DOI: 10.3390/nu14153020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
The compound β-lapachone, a naturally derived naphthoquinone, has been utilized as a potent medicinal nutrient to improve health. Over the last twelve years, numerous reports have demonstrated distinct associations of β-lapachone and NAD(P)H: quinone oxidoreductase 1 (NQO1) protein in the amelioration of various diseases. Comprehensive research of NQO1 bioactivity has clearly confirmed the tumoricidal effects of β-lapachone action through NAD+-keresis, in which severe DNA damage from reactive oxygen species (ROS) production triggers a poly-ADP-ribose polymerase-I (PARP1) hyperactivation cascade, culminating in NAD+/ATP depletion. Here, we report a novel combination strategy with aminooxyacetic acid (AOA), an aspartate aminotransferase inhibitor that blocks the malate-aspartate shuttle (MAS) and synergistically enhances the efficacy of β-lapachone metabolic perturbation in NQO1+ breast cancer. We evaluated metabolic turnover in MDA-MB-231 NQO1+, MDA-MB-231 NQO1-, MDA-MB-468, and T47D cancer cells by measuring the isotopic labeling of metabolites from a [U-13C]glucose tracer. We show that β-lapachone treatment significantly hampers lactate secretion by ~85% in NQO1+ cells. Our data demonstrate that combinatorial treatment decreases citrate, glutamate, and succinate enrichment by ~14%, ~50%, and ~65%, respectively. Differences in citrate, glutamate, and succinate fractional enrichments indicate synergistic effects on central metabolism based on the coefficient of drug interaction. Metabolic modeling suggests that increased glutamine anaplerosis is protective in the case of MAS inhibition.
Collapse
Affiliation(s)
- Mario C. Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| | - Rohit Mahar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| | - Marc A. McLeod
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| | - Anthony G. Giacalone
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| | - Xiumei Huang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - David A. Boothman
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| |
Collapse
|
25
|
Chrzanowska M, Katafias A, van Eldik R, Conradie J. Electronic effects on the mechanism of the NAD + coenzyme reduction catalysed by a non-organometallic ruthenium(ii) polypyridyl amine complex in the presence of formate. RSC Adv 2022; 12:21191-21202. [PMID: 35975079 PMCID: PMC9341502 DOI: 10.1039/d2ra01890j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
In the present study, electronic effects on the mechanism of the NAD+ coenzyme reduction in the presence of formate, catalysed by a non-organometallic ruthenium(ii) polypyridyl amine complex, were investigated. The [RuII(terpy)(ampy)Cl]Cl (terpy = 2,2′:6′,2′′-terpyridine, ampy = 2-(aminomethyl)pyridine) complex was employed as the catalyst. The reactions were studied in a water/ethanol mixture as a function of formate, catalyst, and NAD+ concentrations at 37 °C. The overall process was found to be 11 to 18 times slower than for the corresponding ethylenediamine (en) complex as the result of π-back bonding effects of the ampy ligand. The mechanistic studies revealed a complete set of reactions that accounted for the overall catalytic cycle based on a formate-induced hydride transfer reaction to form the reduced coenzyme, NADH. The geometries of the ruthenium(ii)-ampy complexes involved in the catalytic cycle and free energy changes for the main steps were predicted by DFT calculations. Similar calculations were also performed for the analogues ruthenium(ii)-en and ruthenium(ii)-bipy complexes (bipy = 2,2′-bipyridine). The DFT calculated energies show that both the solvent-formato exchange and the formato-hydrido conversion reactions have negative (favourable) energies to proceed spontaneously. The reactions involving the en complex have the more negative (favourable) reaction energies, followed by the ampy complex, in agreement with faster reactions for en complexes and slower reactions for bipy complexes than for ampy complexes. The graphical abstract represents the overall catalytic cycle in which the non-organometallic Ru(ii) formato complex releases CO2 and transfers hydride to NAD+ to form NADH coenzyme.![]()
Collapse
Affiliation(s)
- Marta Chrzanowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń Gagarina 7 87-100 Toruń Poland
| | - Anna Katafias
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń Gagarina 7 87-100 Toruń Poland
| | - Rudi van Eldik
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń Gagarina 7 87-100 Toruń Poland .,Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg Egerlandstr. 1 91058 Erlangen Germany
| | - Jeanet Conradie
- Faculty of Natural and Agricultural Sciences, University of the Free State Bloemfontein 9300 Republic of South Africa .,Department of Chemistry, UiT - The Arctic University of Norway N-9037 Tromsø Norway
| |
Collapse
|
26
|
Vallejo FA, Sanchez A, Cuglievan B, Walters WM, De Angulo G, Vanni S, Graham RM. NAMPT Inhibition Induces Neuroblastoma Cell Death and Blocks Tumor Growth. Front Oncol 2022; 12:883318. [PMID: 35814452 PMCID: PMC9261286 DOI: 10.3389/fonc.2022.883318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
High-risk neuroblastoma (NB) portends very poor prognoses in children. Targeting tumor metabolism has emerged as a novel therapeutic strategy. High levels of nicotinamide-adenine-dinucleotide (NAD+) are required for rapid cell proliferation. Nicotinamide phosphoribosyl transferase (NAMPT) is the rate-limiting enzyme for NAD+ salvage and is overexpressed in several cancers. Here, we determine the potential of NAMPT as a therapeutic target for NB treatment. NAMPT inhibition cytotoxicity was determined by trypan blue exclusion and LDH assays. Neuroblastoma stem cell self-renewal was evaluated by neurosphere assay. Protein expression was evaluated via Western blot. The effect of targeting NAMPT in vivo was determined using an NB1691-xenografted mouse model. Robust NAMPT expression was demonstrated in multiple N-MYC amplified, high-risk neuroblastoma cell lines. NAMPT inhibition with STF-118804 (STF) decreased ATP, induced apoptosis, and reduced NB stem cell neurosphere formation. STF treatment down-regulated N-MYC levels and abrogated AKT activation. AKT and glycolytic pathway inhibitors in combination with NAMPT inhibition induced robust, greater-than-additive neuroblastoma cell death. Lastly, STF treatment blocked neuroblastoma tumor growth in mouse xenograft models. NAMPT is a valid therapeutic target as inhibition promoted neuroblastoma cell death in vitro and prevented tumor growth in vivo. Further investigation is warranted to establish this therapy’s role as an adjunctive modality.
Collapse
Affiliation(s)
- Frederic A. Vallejo
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anthony Sanchez
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Radiology and Imaging Sciences, University of Utah Hospital, Salt Lake City, UT, United States
| | - Branko Cuglievan
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Pediatrics Patient Care, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Winston M. Walters
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Guillermo De Angulo
- Department of Hematology/Oncology and Immunology, Nicklaus Children’s Hospital, Miami, FL, United States
| | - Steven Vanni
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurosurgery, HCA Florida University Hospital, Davie, FL, United States
- Dr. Kiran C. Patel College of Allopathic Medicine, Davie, FL, United States
| | - Regina M. Graham
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, United States
- *Correspondence: Regina M. Graham,
| |
Collapse
|
27
|
Deng Y, Hu B, Miao Y, Wang J, Zhang S, Wan H, Wu Z, Lv Y, Feng J, Ji N, Park D, Hao S. A Nicotinamide Phosphoribosyltransferase Inhibitor, FK866, Suppresses the Growth of Anaplastic Meningiomas and Inhibits Immune Checkpoint Expression by Regulating STAT1. Front Oncol 2022; 12:836257. [PMID: 35515130 PMCID: PMC9065474 DOI: 10.3389/fonc.2022.836257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
Anaplastic meningioma is classified as a World Health Organization (WHO) grade III tumor and shows a strong tendency to recur. Although the incidence of anaplastic meningioma is low, the high rate of recurrence and death still makes treatment a challenge. A proteomics analysis was performed to investigate the differentially expressed proteins between anaplastic meningiomas and fibrous meningiomas by micro-LC-MS/MS. The key metabolic enzyme nicotinamide phosphoribosyltransferase (NAMPT) showed upregulated expression in anaplastic meningiomas. However, targeting NAMPT to treat anaplastic meningiomas has not been reported. In vitro, NAMPT inhibitor -FK866 reduced the viability of anaplastic meningiomas by inducing cell cycle arrest at the G2/M phase. Intriguingly, the NAMPT inhibitor -FK866 decreased the protein expression of immune checkpoints PD-L1 and B7-H3 by down-regulating the STAT1 and p-STAT1 expression in vitro. Furthermore, FK866 suppressed the growth of anaplastic meningiomas in an in vivo xenograft model. The expression of Ki-67 and immune checkpoint proteins (PD-L1 and B7-H3) showed significant differences between the group treated with FK866 and the control group treated with DMSO. In conclusion, the expression of NAMPT, which plays a crucial role in energy metabolism, was upregulated in anaplastic meningiomas. The NAMPT inhibitor -FK866 significantly suppressed the growth of anaplastic meningiomas in vitro and in vivo. More strikingly, FK866 potently inhibited immune checkpoint protein (PD-L1 and B7-H3) expression by regulating STAT1 in vitro and in vivo. Our results demonstrated that NAMPT inhibitors could potentially be an effective treatment method for patients suffering from anaplastic meningiomas.
Collapse
Affiliation(s)
- Yuxuan Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Boyi Hu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yazhou Miao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shaodong Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hong Wan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifan Lv
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Feng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Deric Park
- Department of Neurology, University of Chicago Medical Center, Chicago, IL, United States
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Updated Functional Roles of NAMPT in Carcinogenesis and Therapeutic Niches. Cancers (Basel) 2022; 14:cancers14092059. [PMID: 35565188 PMCID: PMC9103253 DOI: 10.3390/cancers14092059] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The advantages and applications of using the non-invasive way to detect serum biomarkers for assessing cancer diagnosis and prognosis have been explored. Nicotinamide phosphoribosyltransferase (NAMPT), also designated as pre-B-cell colony-enhancing factor (PBEF) or visfatin, is a secreted adipokine known to modulate tumor malignancies. Its significance in predicting cancer patient’s survival outcome further renders the implementation of NAMPT in clinical practice. In this review, recent discoveries of NAMPT in cancer studies were focused and integrated. We aim to provide updates for researchers who are proposing relevant objectives. Abstract Nicotinamide phosphoribosyltransferase (NAMPT) is notable for its regulatory roles in tumor development and progression. Emerging evidence regarding NAMPT somatic mutations in cancer patients, NAMPT expressional signatures in normal tissues and cancers, and the prognostic significance of NAMPT in many cancer types has attracted attention, and NAMPT is considered a potential biomarker of cancer. Recent discoveries have demonstrated the indirect association and direct biological functions of NAMPT in modulating cancer metastasis, proliferation, angiogenesis, cancer stemness, and chemoresistance to anticancer drugs. These findings warrant further investigation of the underlying mechanisms to provide knowledge for developing novel cancer therapeutics. In this review article, we explore recent research developments involving the oncogenic activities of NAMPT by summarizing current knowledge regarding NAMPT somatic mutations, clinical trials, transcriptome data, and clinical information and discoveries related to the NAMPT-induced signaling pathway in modulating hallmarks of cancer. Furthermore, the comprehensive representation of NAMPT RNA expression in a pancancer panel as well as in specific normal cell types at single-cell level are demonstrated. The results suggest potential sites and cell types that could facilitate NAMPT-related tumorigenesis. With this review, we aim to shed light on the regulatory roles of NAMPT in tumor development and progression, and provide information to guide future research directions in this field.
Collapse
|
29
|
Gasparrini M, Audrito V. NAMPT: A critical driver and therapeutic target for cancer. Int J Biochem Cell Biol 2022; 145:106189. [PMID: 35219878 DOI: 10.1016/j.biocel.2022.106189] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) possesses a vital role in mammalian cells due to its activity as a rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD) from nicotinamide. NAD is an essential redox cofactor, but it also functions as a substrate for NAD-consuming enzymes, regulating multiple cellular processes such as DNA repair and gene expression, fundamental to sustain tumor growth and survival and energetic needs. A common strategy that several tumor types adopt to sustain NAD synthesis is to over-express NAMPT. However, beside its intracellular functions, this enzyme has a second life outside of cells exerting cytokine-like functions and mediating pro-inflammatory conditions activating signaling pathways. While the effects of NAMPT/NAD axis on energetic metabolism in tumors has been well-established, increasing evidence demonstrated the impact of NAMPT over-expression (intra-/extra-cellular) on several tumor cellular processes, including DNA repair, gene expression, signaling pathways, proliferation, invasion, stemness, phenotype plasticity, metastatization, angiogenesis, immune regulation, and drug resistance. For all these reasons, NAMPT targeting has emerged as promising anti-cancer strategy to deplete NAD and impair cellular metabolism, but also to counteract the other NAMPT-related functions. In this review, we summarize the key role of NAMPT in multiple biological processes implicated in cancer biology and the impact of NAMPT inhibition as therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Massimiliano Gasparrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Valentina Audrito
- Department of Molecular Biotechnology and Health Sciences & Molecular Biotechnology Center, University of Torino, Torino, Italy.
| |
Collapse
|
30
|
Chewing the Fat with Microbes: Lipid Crosstalk in the Gut. Nutrients 2022; 14:nu14030573. [PMID: 35276931 PMCID: PMC8840455 DOI: 10.3390/nu14030573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
It is becoming increasingly important for any project aimed at understanding the effects of diet on human health, to also consider the combined effect of the trillions of microbes within the gut which modify and are modified by dietary nutrients. A healthy microbiome is diverse and contributes to host health, partly via the production and subsequent host absorption of secondary metabolites. Many of the beneficial bacteria in the gut rely on specific nutrients, such as dietary fiber, to survive and thrive. In the absence of those nutrients, the relative proportion of good commensal bacteria dwindles while communities of opportunistic, and potentially pathogenic, bacteria expand. Therefore, it is unsurprising that both diet and the gut microbiome have been associated with numerous human diseases. Inflammatory bowel diseases and colorectal cancer are associated with the presence of certain pathogenic bacteria and risk increases with consumption of a Western diet, which is typically high in fat, protein, and refined carbohydrates, but low in plant-based fibers. Indeed, despite increased screening and better care, colorectal cancer is still the 2nd leading cause of cancer death in the US and is the 3rd most diagnosed cancer among US men and women. Rates are rising worldwide as diets are becoming more westernized, alongside rising rates of metabolic diseases like obesity and diabetes. Understanding how a modern diet influences the microbiota and how subsequent microbial alterations effect human health will become essential in guiding personalized nutrition and healthcare in the future. Herein, we will summarize some of the latest advances in understanding of the three-way interaction between the human host, the gut microbiome, and the specific class of dietary nutrients, lipids.
Collapse
|
31
|
Al Abdulsalam EA, Al Harithy RN. Visfatin and global histone H3K9me levels in colon cancer. Ann Med 2021; 53:647-652. [PMID: 34008459 PMCID: PMC8143622 DOI: 10.1080/07853890.2021.1925737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/29/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Visfatin is considered to be a biomarker in various types of cancers, including colon cancer. Moreover, evidence for epigenetic mechanism must be reported for an association between visfatin level and colon cancer. Therefore, this study was designed to investigate the status of visfatin expression and the global histone three modifications in colon cancerous tissue. METHODS Colon cancerous tissue and paired adjacent non-cancerous tissue from 30 patients were used to determine the global histone three modifications using Western blot. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess visfatin's expression level in tissues. RESULTS The visfatin and the global H3K9me expression levels were significantly higher in colon cancerous tissue than in the paired adjacent non-cancerous tissue. CONCLUSION The present study makes a crucial noteworthy contribution to visfatin effect on colon cancer development via H3K9me.
Collapse
Affiliation(s)
- Eman A. Al Abdulsalam
- Department of Biochemistry, College of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Rowyda N. Al Harithy
- Department of Biochemistry, College of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
32
|
Colombo G, Gelardi ELM, Balestrero FC, Moro M, Travelli C, Genazzani AA. Insight Into Nicotinamide Adenine Dinucleotide Homeostasis as a Targetable Metabolic Pathway in Colorectal Cancer. Front Pharmacol 2021; 12:758320. [PMID: 34880756 PMCID: PMC8645963 DOI: 10.3389/fphar.2021.758320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Tumour cells modify their cellular metabolism with the aim to sustain uncontrolled proliferation. Cancer cells necessitate adequate amounts of NAD and NADPH to support several enzymes that are usually overexpressed and/or overactivated. Nicotinamide adenine dinucleotide (NAD) is an essential cofactor and substrate of several NAD-consuming enzymes, such as PARPs and sirtuins, while NADPH is important in the regulation of the redox status in cells. The present review explores the rationale for targeting the key enzymes that maintain the cellular NAD/NADPH pool in colorectal cancer and the enzymes that consume or use NADP(H).
Collapse
Affiliation(s)
- Giorgia Colombo
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| | | | | | - Marianna Moro
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Cristina Travelli
- Department of Drug Sciences, Università Degli Studi di Pavia, Pavia, Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| |
Collapse
|
33
|
Interplay between Epigenetics and Cellular Metabolism in Colorectal Cancer. Biomolecules 2021; 11:biom11101406. [PMID: 34680038 PMCID: PMC8533383 DOI: 10.3390/biom11101406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/30/2023] Open
Abstract
Cellular metabolism alterations have been recognized as one of the most predominant hallmarks of colorectal cancers (CRCs). It is precisely regulated by many oncogenic signaling pathways in all kinds of regulatory levels, including transcriptional, post-transcriptional, translational and post-translational levels. Among these regulatory factors, epigenetics play an essential role in the modulation of cellular metabolism. On the one hand, epigenetics can regulate cellular metabolism via directly controlling the transcription of genes encoding metabolic enzymes of transporters. On the other hand, epigenetics can regulate major transcriptional factors and signaling pathways that control the transcription of genes encoding metabolic enzymes or transporters, or affecting the translation, activation, stabilization, or translocation of metabolic enzymes or transporters. Interestingly, epigenetics can also be controlled by cellular metabolism. Metabolites not only directly influence epigenetic processes, but also affect the activity of epigenetic enzymes. Actually, both cellular metabolism pathways and epigenetic processes are controlled by enzymes. They are highly intertwined and are essential for oncogenesis and tumor development of CRCs. Therefore, they are potential therapeutic targets for the treatment of CRCs. In recent years, both epigenetic and metabolism inhibitors are studied for clinical use to treat CRCs. In this review, we depict the interplay between epigenetics and cellular metabolism in CRCs and summarize the underlying molecular mechanisms and their potential applications for clinical therapy.
Collapse
|
34
|
Ershov P, Kaluzhskiy L, Mezentsev Y, Yablokov E, Gnedenko O, Ivanov A. Enzymes in the Cholesterol Synthesis Pathway: Interactomics in the Cancer Context. Biomedicines 2021; 9:biomedicines9080895. [PMID: 34440098 PMCID: PMC8389681 DOI: 10.3390/biomedicines9080895] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
A global protein interactome ensures the maintenance of regulatory, signaling and structural processes in cells, but at the same time, aberrations in the repertoire of protein-protein interactions usually cause a disease onset. Many metabolic enzymes catalyze multistage transformation of cholesterol precursors in the cholesterol biosynthesis pathway. Cancer-associated deregulation of these enzymes through various molecular mechanisms results in pathological cholesterol accumulation (its precursors) which can be disease risk factors. This work is aimed at systematization and bioinformatic analysis of the available interactomics data on seventeen enzymes in the cholesterol pathway, encoded by HMGCR, MVK, PMVK, MVD, FDPS, FDFT1, SQLE, LSS, DHCR24, CYP51A1, TM7SF2, MSMO1, NSDHL, HSD17B7, EBP, SC5D, DHCR7 genes. The spectrum of 165 unique and 21 common protein partners that physically interact with target enzymes was selected from several interatomic resources. Among them there were 47 modifying proteins from different protein kinases/phosphatases and ubiquitin-protein ligases/deubiquitinases families. A literature search, enrichment and gene co-expression analysis showed that about a quarter of the identified protein partners was associated with cancer hallmarks and over-represented in cancer pathways. Our results allow to update the current fundamental view on protein-protein interactions and regulatory aspects of the cholesterol synthesis enzymes and annotate of their sub-interactomes in term of possible involvement in cancers that will contribute to prioritization of protein targets for future drug development.
Collapse
|
35
|
Pîrvu AS, Andrei AM, Stănciulescu EC, Baniță IM, Pisoschi CG, Jurja S, Ciuluvica R. NAD + metabolism and retinal degeneration (Review). Exp Ther Med 2021; 22:670. [PMID: 33986835 PMCID: PMC8111861 DOI: 10.3892/etm.2021.10102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
The recent years has revealed an intense interest in the study of nicotinamide adenine dinucleotide (NAD+), particularly in regards to its intermediates, such as nicotinamide and nicotinic acid known as niacin, and also nicotinamide riboside. Besides its participation as a coenzyme in the redox transformations of nutrients during catabolism, NAD+ is also involved in DNA repair and epigenetic modification of gene expression and also plays an essential role in calcium homeostasis. Clinical and experimental data emphasize the age-dependent decline in NAD+ levels and its relation with the onset and progression of various age-related diseases. Maintaining optimal levels of NAD+ has aroused a therapeutic interest in such pathological conditions; NAD+ being currently regarded as an important target to extend health and lifespan. Based on a systematic exploration of the experimental data and literature surrounding the topic, this paper reviews some of the recent research studies related to the roles of the pyridine nucleotide family focusing on biosynthesis, NAD+ deficiency-associated diseases, pathobiochemistry related to retinal degeneration and potential therapeutic effects on human vision as well.
Collapse
Affiliation(s)
- Andreea Silvia Pîrvu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ana Marina Andrei
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Elena Camelia Stănciulescu
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ileana Monica Baniță
- Department of Histology, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cătălina Gabriela Pisoschi
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Sanda Jurja
- Department of Ophthalmology, Faculty of Medicine, ‘Ovidius’ University of Constanta, 900527 Constanta, Romania
| | - Radu Ciuluvica
- Faculty of Dentistry, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
36
|
Katayoshi T, Nakajo T, Tsuji-Naito K. Restoring NAD + by NAMPT is essential for the SIRT1/p53-mediated survival of UVA- and UVB-irradiated epidermal keratinocytes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112238. [PMID: 34130091 DOI: 10.1016/j.jphotobiol.2021.112238] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a crucial coenzyme in energy production. The imbalance of NAD+ synthesis has been found to trigger age-related diseases, such as metabolic disorders, cancer, and neurodegenerative diseases. Also, UV irradiation induces NAD+ depletion in the skin. In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the NAD+ salvage pathway and essential for NAD+ homeostasis. However, but few studies have focused on the role of NAMPT in response to UV irradiation. Here, we show that NAMPT prevents NAD+ depletion in epidermal keratinocytes to protect against the mild-dose UVA and UVB (UVA/B)-induced proliferation defects. We showed that poly(ADP-ribose) polymerase (PARP) inhibitor rescued the NAD+ depletion in UVA/B-irradiated human keratinocytes, confirming that PAPR transiently exhausts cellular NAD+ to repair DNA damage. Notably, the treatment with a NAMPT inhibitor exacerbated the UVA/B-induced loss of energy production and cell viability. Moreover, the NAMPT inhibitor abrogated the sirtuin-1 (SIRT1)-mediated deacetylation of p53 and significantly inhibited the proliferation of UVA/B-irradiated cells, suggesting that the NAMPT-NAD+-SIRT1 axis regulates p53 functions upon UVA/B stress. The supplementation with NAD+ intermediates, nicotinamide mononucleotide and nicotinamide riboside, rescued the UVA/B-induced phenotypes in the absence of NAMPT activity. Therefore, NAD+ homeostasis is likely essential for the protection of keratinocytes from UV stress in mild doses. Since the skin is continuously exposed to UVA/B irradiation, understanding the protective role of NAMPT in UV stress will help prevent and treat skin photoaging.
Collapse
Affiliation(s)
- Takeshi Katayoshi
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025, Japan.
| | - Takahisa Nakajo
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025, Japan
| | - Kentaro Tsuji-Naito
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025, Japan
| |
Collapse
|
37
|
Alonso-Lavin AJ, Bajić D, Poyatos JF. Tolerance to NADH/NAD + imbalance anticipates aging and anti-aging interventions. iScience 2021; 24:102697. [PMID: 34195572 PMCID: PMC8239738 DOI: 10.1016/j.isci.2021.102697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/26/2021] [Accepted: 06/04/2021] [Indexed: 12/31/2022] Open
Abstract
Redox couples coordinate cellular function, but the consequences of their imbalances are unclear. This is somewhat associated with the limitations of their experimental quantification. Here we circumvent these difficulties by presenting an approach that characterizes fitness-based tolerance profiles to redox couple imbalances using an in silico representation of metabolism. Focusing on the NADH/NAD+ redox couple in yeast, we demonstrate that reductive disequilibria generate metabolic syndromes comparable to those observed in cancer cells. The tolerance of yeast mutants to redox disequilibrium can also explain 30% of the variability in their experimentally measured chronological lifespan. Moreover, by predicting the significance of some metabolites to help stand imbalances, we correctly identify nutrients underlying mechanisms of pathology, lifespan-protecting molecules, or caloric restriction mimetics. Tolerance to redox imbalances becomes, in this way, a sound framework to recognize properties of the aging phenotype while providing a consistent biological rationale to assess anti-aging interventions. We simulate how imbalances in NADH/NAD+ ratio modify cellular metabolic behavior This reveals a mechanism to understand metabolic alterations at low growth rates Tolerance to imbalance explains experimentally measured lifespan in yeast We predict lifespan-protecting metabolites in yeast, animal, and human models
Collapse
Affiliation(s)
- Alvar J. Alonso-Lavin
- Logic of Genomic Systems Laboratory (CNB-CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Djordje Bajić
- Logic of Genomic Systems Laboratory (CNB-CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Juan F. Poyatos
- Logic of Genomic Systems Laboratory (CNB-CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, USA
- Corresponding author
| |
Collapse
|
38
|
Podsednik A, Jiang J, Jacob A, Li LZ, Xu HN. Optical Redox Imaging of Treatment Responses to Nampt Inhibition and Combination Therapy in Triple-Negative Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22115563. [PMID: 34070254 PMCID: PMC8197351 DOI: 10.3390/ijms22115563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/02/2023] Open
Abstract
We evaluated the utility of optical redox imaging (ORI) to identify the therapeutic response of triple-negative breast cancers (TNBC) under various drug treatments. Cultured HCC1806 and MDA-MB-231 cells treated with FK866 (nicotinamide phosphoribosyltransferase (Nampt) inhibitor), FX11 (lactate dehydrogenase A inhibitor), paclitaxel, and their combinations were subjected to ORI, followed by imaging fluorescently labeled reactive oxygen species (ROS). Cell growth inhibition was measured by a cell viability assay. We found that both cell lines experienced significant NADH decrease and redox ratio (Fp/(NADH+Fp)) increase due to FK866 treatment; however, HCC1806 was much more responsive than MDA-MB-231. We further studied HCC1806 with the main findings: (i) nicotinamide riboside (NR) partially restored NADH in FK866-treated cells; (ii) FX11 induced an over 3-fold NADH increase in FK866 or FK866+NR pretreated cells; (iii) FK866 combined with paclitaxel caused synergistic increases in both Fp and the redox ratio; (iv) FK866 sensitized cells to paclitaxel treatments, which agrees with the redox changes detected by ORI; (v) Fp and the redox ratio positively correlated with cell growth inhibition; and (vi) Fp and NADH positively correlated with ROS level. Our study supports the utility of ORI for detecting the treatment responses of TNBC to Nampt inhibition and the sensitization effects on standard chemotherapeutics.
Collapse
|
39
|
Ratnayake D, Nguyen PD, Rossello FJ, Wimmer VC, Tan JL, Galvis LA, Julier Z, Wood AJ, Boudier T, Isiaku AI, Berger S, Oorschot V, Sonntag C, Rogers KL, Marcelle C, Lieschke GJ, Martino MM, Bakkers J, Currie PD. Macrophages provide a transient muscle stem cell niche via NAMPT secretion. Nature 2021; 591:281-287. [PMID: 33568815 DOI: 10.1038/s41586-021-03199-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
Skeletal muscle regenerates through the activation of resident stem cells. Termed satellite cells, these normally quiescent cells are induced to proliferate by wound-derived signals1. Identifying the source and nature of these cues has been hampered by an inability to visualize the complex cell interactions that occur within the wound. Here we use muscle injury models in zebrafish to systematically capture the interactions between satellite cells and the innate immune system after injury, in real time, throughout the repair process. This analysis revealed that a specific subset of macrophages 'dwell' within the injury, establishing a transient but obligate niche for stem cell proliferation. Single-cell profiling identified proliferative signals that are secreted by dwelling macrophages, which include the cytokine nicotinamide phosphoribosyltransferase (Nampt, which is also known as visfatin or PBEF in humans). Nampt secretion from the macrophage niche is required for muscle regeneration, acting through the C-C motif chemokine receptor type 5 (Ccr5), which is expressed on muscle stem cells. This analysis shows that in addition to their ability to modulate the immune response, specific macrophage populations also provide a transient stem-cell-activating niche, directly supplying proliferation-inducing cues that govern the repair process that is mediated by muscle stem cells. This study demonstrates that macrophage-derived niche signals for muscle stem cells, such as NAMPT, can be applied as new therapeutic modalities for skeletal muscle injury and disease.
Collapse
Affiliation(s)
- Dhanushika Ratnayake
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Phong D Nguyen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fernando J Rossello
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,University of Melbourne Centre for Cancer Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Verena C Wimmer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jean L Tan
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Laura A Galvis
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,Institut NeuroMyoGène (INMG), University Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Ziad Julier
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Alasdair J Wood
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Thomas Boudier
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdulsalam I Isiaku
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Silke Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Viola Oorschot
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Melbourne, Victoria, Australia.,European Molecular Biology Laboratory, Electron Microscopy Core Facility, Heidelberg, Germany
| | - Carmen Sonntag
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Kelly L Rogers
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Christophe Marcelle
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,Institut NeuroMyoGène (INMG), University Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Mikaël M Martino
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Jeroen Bakkers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia. .,EMBL Australia, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
40
|
Shi X, Zhang W, Gu C, Ren H, Wang C, Yin N, Wang Z, Yu J, Liu F, Zhang H. NAD+ depletion radiosensitizes 2-DG-treated glioma cells by abolishing metabolic adaptation. Free Radic Biol Med 2021; 162:514-522. [PMID: 33197538 DOI: 10.1016/j.freeradbiomed.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 11/17/2022]
Abstract
Two-deoxy-d-glucose (2-DG) mediated glucose restriction (GR) has been applied as a potential therapeutic strategy for tumor clinical treatments. However, increasing evidences have indicated that 2-DG alone is inefficient in killing tumor cells, and the effect of 2-DG on modifying tumor radio-responses also remains controversial. In this study, we found that 2-DG triggered metabolic adaption in U87 glioma cells by up-regulating nicotinamide phosphoribosyltransferase (NAMPT) and cellular NAD+ content, which abolished 2-DG-induced potential radiosensitizing effect in glioma cells. Strikingly, NAD+ depletion evoked notable oxidative stress by NADPH reduction and hence re-radiosensitized 2-DG-treated glioma cells. Furthermore, isocitrate dehydrogenase-1 (IDH1) mutant U87 glioma cells with deficiency in the rate-limiting enzyme of Preiss-Handler pathway nicotinate phosphoribosyltransferase (Naprt1) revealed notable 2-DG-induced oxidative stress and radiosensitization. Our findings implied that targeting NAD+ could radiosensitize gliomas with GR, and 2-DG administration could be benefit for tumor patients with IDH1 mutation.
Collapse
Affiliation(s)
- Xiaolin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Cheng Gu
- Department of Radiation Oncology, Changzhou No.4 People's Hospital, Soochow University, Changzhou, 213001, China
| | - Huangge Ren
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Chen Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Narui Yin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Zhongmin Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiahua Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Fenju Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China.
| | - Haowen Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China.
| |
Collapse
|
41
|
Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) with OT-82 induces DNA damage, cell death, and suppression of tumor growth in preclinical models of Ewing sarcoma. Oncogenesis 2020; 9:80. [PMID: 32908120 PMCID: PMC7481307 DOI: 10.1038/s41389-020-00264-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/29/2022] Open
Abstract
NAMPT mediates the rate-limiting step of the NAD salvage pathway, which maintains cellular bioenergetics and provides a necessary substrate for functions essential to rapidly proliferating cancer cells. In this study, we evaluated the efficacy and mechanisms of action of OT-82, a novel, high-potency NAMPT inhibitor with a favorable toxicity profile, in preclinical models of Ewing sarcoma (EWS), an aggressive pediatric malignancy with previously reported selective sensitivity to NAMPT inhibition. We show that OT-82 decreased NAD concentration and impaired proliferation of EWS cells in a dose-dependent manner, with IC50 values in the single-digit nanomolar range. Notably, genetic depletion of NAMPT phenocopied pharmacological inhibition. On-target activity of OT-82 was confirmed with the addition of NMN, the product of NAMPT, which rescued NAD concentration and EWS cellular viability. Mechanistically, OT-82 treatment resulted in impaired DNA damage repair through loss of PARP activity, G2 cell-cycle arrest, and apoptosis in EWS cells. Additional consequences of OT-82 treatment included reduction of glycolytic and mitochondrial activity. In vivo, OT-82 impaired tumor growth and prolonged survival in mice bearing EWS xenografts. Importantly, antitumor effect correlated with pharmacodynamic markers of target engagement. Furthermore, combining low-dose OT-82 with low doses of agents augmenting DNA damage demonstrated enhanced antitumor activity in vitro and in vivo. Thus, OT-82 treatment represents a potential novel targeted approach for the clinical treatment of EWS.
Collapse
|
42
|
Interplay between Cellular Metabolism and the DNA Damage Response in Cancer. Cancers (Basel) 2020; 12:cancers12082051. [PMID: 32722390 PMCID: PMC7463900 DOI: 10.3390/cancers12082051] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolism is a fundamental cellular process that can become harmful for cells by leading to DNA damage, for instance by an increase in oxidative stress or through the generation of toxic byproducts. To deal with such insults, cells have evolved sophisticated DNA damage response (DDR) pathways that allow for the maintenance of genome integrity. Recent years have seen remarkable progress in our understanding of the diverse DDR mechanisms, and, through such work, it has emerged that cellular metabolic regulation not only generates DNA damage but also impacts on DNA repair. Cancer cells show an alteration of the DDR coupled with modifications in cellular metabolism, further emphasizing links between these two fundamental processes. Taken together, these compelling findings indicate that metabolic enzymes and metabolites represent a key group of factors within the DDR. Here, we will compile the current knowledge on the dynamic interplay between metabolic factors and the DDR, with a specific focus on cancer. We will also discuss how recently developed high-throughput technologies allow for the identification of novel crosstalk between the DDR and metabolism, which is of crucial importance to better design efficient cancer treatments.
Collapse
|
43
|
Tan X, Tang H, Gong L, Xie L, Lei Y, Luo Z, He C, Ma J, Han S. Integrating Genome-Wide Association Studies and Gene Expression Profiles With Chemical-Genes Interaction Networks to Identify Chemicals Associated With Colorectal Cancer. Front Genet 2020; 11:385. [PMID: 32391058 PMCID: PMC7193025 DOI: 10.3389/fgene.2020.00385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and has the second highest mortality rate in global cancer. Exploring the associations between chemicals and CRC has great significance in prophylaxis and therapy of tumor diseases. This study aims to explore the relationships between CRC and environmental chemicals on genetic basis by bioinformatics analysis. The genome-wide association study (GWAS) datasets for CRC were obtained from the UK Biobank. The GWAS data for colon cancer (category C18) includes 2,581 individuals and 449,683 controls, while that of rectal cancer (category C20) includes 1,244 individuals and 451,020 controls. In addition, we derived CRC gene expression datasets from the NCBI-GEO (GSE106582). The chemicals related gene sets were acquired from the comparative toxicogenomics database (CTD). Transcriptome-wide association study (TWAS) analysis was applied to CRC GWAS summary data and calculated the expression association testing statistics by FUSION software. We performed chemicals related gene set enrichment analysis (GSEA) by integrating GWAS summary data, mRNA expression profiles of CRC and the CTD chemical-gene interaction networks to identify relationships between chemicals and genes of CRC. We observed several significant correlations between chemicals and CRC. Meanwhile, we also detected 5 common chemicals between colon and rectal cancer, including methylnitronitrosoguanidine, isoniazid, PD 0325901, sulindac sulfide, and importazole. Our study performed TWAS and GSEA analysis, linked prior knowledge to newly generated data and thereby helped identifying chemicals related to tumor genes, which provides new clues for revealing the associations between environmental chemicals and cancer.
Collapse
Affiliation(s)
- Xinyue Tan
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hanmin Tang
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liuyun Gong
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lina Xie
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yutiantian Lei
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhenzhen Luo
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chenchen He
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jinlu Ma
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Suxia Han
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
44
|
Shats I, Williams JG, Liu J, Makarov MV, Wu X, Lih FB, Deterding LJ, Lim C, Xu X, Randall TA, Lee E, Li W, Fan W, Li JL, Sokolsky M, Kabanov AV, Li L, Migaud ME, Locasale JW, Li X. Bacteria Boost Mammalian Host NAD Metabolism by Engaging the Deamidated Biosynthesis Pathway. Cell Metab 2020; 31:564-579.e7. [PMID: 32130883 PMCID: PMC7194078 DOI: 10.1016/j.cmet.2020.02.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/07/2019] [Accepted: 01/31/2020] [Indexed: 12/31/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD), a cofactor for hundreds of metabolic reactions in all cell types, plays an essential role in metabolism, DNA repair, and aging. However, how NAD metabolism is impacted by the environment remains unclear. Here, we report an unexpected trans-kingdom cooperation between bacteria and mammalian cells wherein bacteria contribute to host NAD biosynthesis. Bacteria confer resistance to inhibitors of NAMPT, the rate-limiting enzyme in the amidated NAD salvage pathway, in cancer cells and xenograft tumors. Mechanistically, a microbial nicotinamidase (PncA) that converts nicotinamide to nicotinic acid, a precursor in the alternative deamidated NAD salvage pathway, is necessary and sufficient for this protective effect. Using stable isotope tracing and microbiota-depleted mice, we demonstrate that this bacteria-mediated deamidation contributes substantially to the NAD-boosting effect of oral nicotinamide and nicotinamide riboside supplementation in several tissues. Collectively, our findings reveal an important role of bacteria-enabled deamidated pathway in host NAD metabolism.
Collapse
Affiliation(s)
- Igor Shats
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - Jason G Williams
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mikhail V Makarov
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36606, USA
| | - Xiaoyue Wu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Fred B Lih
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Leesa J Deterding
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Chaemin Lim
- Center for Nanotechnology in Drug Delivery, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Xiaojiang Xu
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Thomas A Randall
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Ethan Lee
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Wenling Li
- Biostatistics and Computational Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Wei Fan
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Marina Sokolsky
- Center for Nanotechnology in Drug Delivery, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Leping Li
- Biostatistics and Computational Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36606, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
45
|
Podsednik A, Jacob A, Li LZ, Xu HN. Relationship between Optical Redox Status and Reactive Oxygen Species in Cancer Cells. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2020; 9:95-108. [PMID: 32066994 PMCID: PMC7025870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Shifted NAD(H) redox status and enhanced reactive oxygen species (ROS) scavenging systems have been observed in cancers. However, how such redox shift is related to the ROS level in cancer cells is less clear. Based on collecting the intrinsic fluorescence of oxidized flavoproteins (Fp containing flavin adenine dinucleotide) and reduced nicotinamide adenine dinucleotide (NADH), optical redox imaging (ORI) provides a quantitative measure of the mitochondrial redox state by the optical redox ratio, Fp/(NADH+Fp), a surrogate marker of the NAD+-coupled redox state NAD+/NADH. Our study aims to explore the relationship between NAD(H) redox status and ROS by imaging NADH, Fp, and ROS levels using cultured breast cancer cell models. By manipulating either ROS levels via application of exogenous H2O2 or redox status via metabolic perturbation compounds, we found that: (1) oxidation of NAD(H) redox status correlates with ROS levels at lower H2O2 concentrations (up to ~700 μM), but not necessarily at higher concentrations; (2) an elevated ROS level diminishes NADH and reduces redox ratio plasticity; (3) either more oxidized or more reduced status can correlate to an increased ROS level; and (4) sometimes, a more oxidized status can correlate to a decreased ROS level depending on cell lines. These observations indicated that cellular NAD(H) redox state and ROS are intricately related but can also change separately. This study can benefit cancer research as both NAD(H) redox status and ROS have been implicated in cancer transformation and progression.
Collapse
Affiliation(s)
- Allison Podsednik
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Annemarie Jacob
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lin Z Li
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - He N Xu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
46
|
Pramono AA, Rather GM, Herman H, Lestari K, Bertino JR. NAD- and NADPH-Contributing Enzymes as Therapeutic Targets in Cancer: An Overview. Biomolecules 2020; 10:biom10030358. [PMID: 32111066 PMCID: PMC7175141 DOI: 10.3390/biom10030358] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Actively proliferating cancer cells require sufficient amount of NADH and NADPH for biogenesis and to protect cells from the detrimental effect of reactive oxygen species. As both normal and cancer cells share the same NAD biosynthetic and metabolic pathways, selectively lowering levels of NAD(H) and NADPH would be a promising strategy for cancer treatment. Targeting nicotinamide phosphoribosyltransferase (NAMPT), a rate limiting enzyme of the NAD salvage pathway, affects the NAD and NADPH pool. Similarly, lowering NADPH by mutant isocitrate dehydrogenase 1/2 (IDH1/2) which produces D-2-hydroxyglutarate (D-2HG), an oncometabolite that downregulates nicotinate phosphoribosyltransferase (NAPRT) via hypermethylation on the promoter region, results in epigenetic regulation. NADPH is used to generate D-2HG, and is also needed to protect dihydrofolate reductase, the target for methotrexate, from degradation. NAD and NADPH pools in various cancer types are regulated by several metabolic enzymes, including methylenetetrahydrofolate dehydrogenase, serine hydroxymethyltransferase, and aldehyde dehydrogenase. Thus, targeting NAD and NADPH synthesis under special circumstances is a novel approach to treat some cancers. This article provides the rationale for targeting the key enzymes that maintain the NAD/NADPH pool, and reviews preclinical studies of targeting these enzymes in cancers.
Collapse
Affiliation(s)
- Alvinsyah Adhityo Pramono
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (A.A.P.); (G.M.R.)
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Gulam M. Rather
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (A.A.P.); (G.M.R.)
| | - Herry Herman
- Division of Oncology, Department of Orthopaedic Surgery, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia;
| | - Keri Lestari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Joseph R. Bertino
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (A.A.P.); (G.M.R.)
- Department of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Correspondence: ; Tel.: +1-(732)-235-8510
| |
Collapse
|
47
|
Heske CM. Beyond Energy Metabolism: Exploiting the Additional Roles of NAMPT for Cancer Therapy. Front Oncol 2020; 9:1514. [PMID: 32010616 PMCID: PMC6978772 DOI: 10.3389/fonc.2019.01514] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor cells have increased requirements for NAD+. Thus, many cancers exhibit an increased reliance on NAD+ production pathways. This dependence may be exploited therapeutically through pharmacological targeting of NAMPT, the rate-limiting enzyme in the NAD+ salvage pathway. Despite promising preclinical data using NAMPT inhibitors in cancer models, early NAMPT inhibitors showed limited efficacy in several early phase clinical trials, necessitating the identification of strategies, such as drug combinations, to enhance their efficacy. While the effect of NAMPT inhibitors on impairment of energy metabolism in cancer cells has been well-described, more recent insights have uncovered a number of additional targetable cellular processes that are impacted by inhibition of NAMPT. These include sirtuin function, DNA repair machinery, redox homeostasis, molecular signaling, cellular stemness, and immune processes. This review highlights the recent findings describing the effects of NAMPT inhibitors on the non-metabolic functions of malignant cells, with a focus on how this information can be leveraged clinically. Combining NAMPT inhibitors with other therapies that target NAD+-dependent processes or selecting tumors with specific vulnerabilities that can be co-targeted with NAMPT inhibitors may represent opportunities to exploit the multiple functions of this enzyme for greater therapeutic benefit.
Collapse
Affiliation(s)
- Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
48
|
Brandl L, Zhang Y, Kirstein N, Sendelhofert A, Boos SL, Jung P, Greten F, Rad R, Menssen A. Targeting c-MYC through Interference with NAMPT and SIRT1 and Their Association to Oncogenic Drivers in Murine Serrated Intestinal Tumorigenesis. Neoplasia 2019; 21:974-988. [PMID: 31442917 PMCID: PMC6710297 DOI: 10.1016/j.neo.2019.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
We recently described a positive feedback loop connecting c-MYC, NAMPT, DBC1 and SIRT1 that contributes to unrestricted cancer cell proliferation. Here we determine the relevance of the loop for serrated route intestinal tumorigenesis using genetically well-defined BrafV600E and K-rasG12D mouse models. In both models we show that c-MYC and SIRT1 protein expression increased through progression from hyperplasia to invasive carcinomas and metastases. It correlated with high NAMPT expression and was directly associated to activation of the oncogenic drivers. Assessing functional and molecular consequences of pharmacological interference with factors of the loop, we found that inhibition of NAMPT resulted in apoptosis and reduced clonogenic growth in human BRAF-mutant colorectal cancer cell lines and patient-derived tumoroids. Blocking SIRT1 activity was only effective when combined with a PI3K inhibitor, whereas the latter antagonized the effects of NAMPT inhibition. Interfering with the positive feedback loop was associated with down-regulation of c-MYC and temporary de-repression of TP53, explaining the anti-proliferative and pro-apoptotic effects. In conclusion we show that the c-MYC-NAMPT-DBC1-SIRT1 positive feedback loop contributes to murine serrated tumor progression. Targeting the feedback loop exerted a unique, dual therapeutic effect of oncoprotein inhibition and tumor suppressor activation. It may therefore represent a promissing target for serrated colorectal cancer, and presumably for other cancer types with deregulated c-MYC.
Collapse
Affiliation(s)
- Lydia Brandl
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany.
| | - Yina Zhang
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany; Research group "Signaling pathways in colorectal cancer"; German Cancer Consortium (DKTK), and German Cancer Research Center DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Nina Kirstein
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany; Research group "Signaling pathways in colorectal cancer".
| | - Andrea Sendelhofert
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany.
| | - Sophie Luise Boos
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany; German Cancer Consortium (DKTK), and German Cancer Research Center DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Peter Jung
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany; German Cancer Consortium (DKTK), and German Cancer Research Center DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Florian Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt/Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt/Main, Germany;and German Cancer Consortium (DKTK) and German Cancer Research Center DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Germany; Department of Medicine II, School of Medicine, Technical University of Munich, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Antje Menssen
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany; Research group "Signaling pathways in colorectal cancer"; German Cancer Consortium (DKTK), and German Cancer Research Center DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
49
|
Li XQ, Lei J, Mao LH, Wang QL, Xu F, Ran T, Zhou ZH, He S. NAMPT and NAPRT, Key Enzymes in NAD Salvage Synthesis Pathway, Are of Negative Prognostic Value in Colorectal Cancer. Front Oncol 2019; 9:736. [PMID: 31448236 PMCID: PMC6691178 DOI: 10.3389/fonc.2019.00736] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/22/2019] [Indexed: 12/28/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a profoundly important cofactor in redox reactions. Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT) are key enzymes for NAD salvage biosynthesis pathway, which reciprocally synthesize NAD to supply the main source of NAD biosythesis. However, the prognostic value of NAMPT and NAPRT in colorectal cancer (CRC) remains largely unknown. Our present study detected NAMPT and NAPRT protein expression in cancer and adjacent tissues from 261 CRC using immunohistochemical staining. We found that high expression of NAMPT or NAPRT was associated with vascular invasion, invasion depth and advanced TNM stage in CRC. High expression of NAMPT or NAPRT predicts short overall survival and disease-free survival time in CRC patients, which were further confirmed by public datasets. Furthermore, positive correlation between expression of NAMPT and NAPRT was revealed in CRC tissues and cell lines. NAPRThigh/NAMPThigh patients tended to have the shortest survival time. Using the TCGA RNA-sequencing data, we showed that gene amplification, mutation, and methylation of NAPRT are more common than NAMPT. On the other hand, NAMPT gene might be targeted by more miRNAs. Finally, genes that are correlated with NAPRT or NAMPT are enriched in different pathways. In conclusion, we found that high expression of NAMPT or NAPRT predicts poor prognosis of CRC patients, but the regulatory mechanism might be distinct from each other.
Collapse
Affiliation(s)
- Xiao-Qin Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Lei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Hong Mao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing-Liang Wang
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Ran
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Hang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
50
|
Lin TC. The role of visfatin in cancer proliferation, angiogenesis, metastasis, drug resistance and clinical prognosis. Cancer Manag Res 2019; 11:3481-3491. [PMID: 31114381 PMCID: PMC6497876 DOI: 10.2147/cmar.s199597] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/11/2019] [Indexed: 12/21/2022] Open
Abstract
Visfatin, also known as nicotinamide phosphoribosyltransferase or pre-B-cell colony-enhancing factor (PBEF), is an adipocytokine secreted by adipocytes, macrophages and inflamed endothelial tissue. Related reports have indicated a positive correlation between the visfatin level and obesity and cancer risk. In addition to its original function, visfatin is multifunctional and plays critical roles in the promotion of several processes relevant to cancer progression including cancer cell proliferation, angiogenesis, metastasis and drug resistance. The relative expression of visfatin and the potential visfatin receptor on a pan-cancer scale was determined based on the transcriptome analysis data in The Cancer Genome Atlas. We further show the clinical association of its signaling axis with the survival of cancer patients, which reveals its prognostic power for specific cancer types. This review illustrates visfatin’s biological functions related to cancer progression and demonstrates its clinical significance in predicting outcomes of cancer patients.
Collapse
Affiliation(s)
- Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|