1
|
Pincus AB, Pierce AB, Kappel N, Lebold KM, Drake MG, Fryer AD, Jacoby DB. Parasympathetic Airway Hyperreactivity Is Enhanced in Acute but Not Chronic Eosinophilic Asthma Mouse Models. Am J Respir Cell Mol Biol 2025; 72:698-707. [PMID: 39626221 DOI: 10.1165/rcmb.2024-0360oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/03/2024] [Indexed: 12/08/2024] Open
Abstract
Airway hyperreactivity in asthma is mediated by airway nerves, including sensory nerves in airway epithelium and parasympathetic nerves innervating airway smooth muscle. Isolating the function of these two nerve populations in vivo, to distinguish how each is affected by inflammatory processes and contributes to hyperreactivity in asthma, has been challenging. In this study, we used optogenetic activation of airway nerves in vivo to study parasympathetic contributions to airway hyperreactivity in two mouse models of asthma: 1) acute challenge with house dust mite antigen; and 2) chronic airway hypereosinophilia due to genetic IL-5 overexpression in airways. Overall airway hyperreactivity, as measured by bronchoconstriction to an inhaled agonist, was increased in both models. In contrast, optogenetic stimulation of isolated efferent parasympathetic nerves induced bronchoconstriction only in the acute house dust mite antigen challenge group. Using whole-mount tissue immunofluorescence and modeling software, we then measured, in three dimensions, the interactions between eosinophils and parasympathetic nerves in both models and found that eosinophils were more numerous and more proximal to airway parasympathetic nerves in antigen-challenged and IL-5-transgenic mice than in their respective controls but were not significantly different between the two asthma models. Thus, even though eosinophils were increased around nerves in both models, parasympathetic nerves only mediated airway hyperreactivity in the antigen-challenged mice. This study demonstrates divergent effects of acute versus chronic eosinophilia on parasympathetic airway nerve activity and points to eosinophil-nerve interactions as a key regulator of airway hyperreactivity in antigen challenged mice.
Collapse
Affiliation(s)
- Alexandra B Pincus
- Department of Pediatrics, University of California San Francisco, San Francisco, California; and
| | - Aubrey B Pierce
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health & Science University, Portland, Oregon
| | - Nicole Kappel
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health & Science University, Portland, Oregon
| | - Katie M Lebold
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health & Science University, Portland, Oregon
| | - Matthew G Drake
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health & Science University, Portland, Oregon
| | - Allison D Fryer
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health & Science University, Portland, Oregon
| | - David B Jacoby
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
2
|
Zhao L, Zhang S, Zhang Y, Liu Y, Guo Y, Li Y, Wang Q, Wang Z, Qu Z, Zhang N, Bachert C, Wang C, Zhang L, Lan F. Amphiregulin Mediates Epithelial Cell-Eosinophil Interactions and Amplifies Inflammation in Chronic Rhinosinusitis With Nasal Polyps. Allergy 2025; 80:1335-1347. [PMID: 40317745 DOI: 10.1111/all.16582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Eosinophils easily accumulate in the intra-epithelial layer and subepithelial regions in eosinophilic chronic rhinosinusitis with nasal polyps (ECRSwNP). While several factors influence the migration of eosinophils from peripheral blood to extravascular tissues, the triggers and role of eosinophils near the epithelial layer in CRSwNP remain unclear. METHODS We examined interactions between eosinophils and epithelial cells using co-culture systems. We assessed the expression of amphiregulin (AREG) in CRSwNP epithelial cells and investigated its impact on epithelial barrier function, eosinophil activation, and migration. These effects were further validated in a CRSwNP mouse model treated with an AREG-blocking antibody. RESULTS Co-culturing blood eosinophils and primary epithelial cells from CRSwNP patients decreased tight junction expression and increased eosinophil activation. Epithelial cells from ECRSwNP patients expressed higher levels of AREG than those from non-eosinophilic CRSwNP (non-ECRSwNP) patients, particularly in basal cells. As measured in the culture medium by ELISA, both blood eosinophils and primary epithelial cells automatically secreted AREG. Our in vitro experiments demonstrated that AREG impaired epithelial barrier function and facilitated eosinophil migration and activation. Confirmatory studies in a CRSwNP mouse model indicated that blocking AREG reduced the number of nasal polyp-like lesions, mucosal thickness, and eosinophil infiltration, while restoring the expression of tight junction proteins. CONCLUSION The upregulation of AREG triggers eosinophil migration and mediates the interaction between epithelial cells and eosinophils, thereby enhancing chronic inflammation in CRSwNP. Our study highlights the therapeutic potential of anti-AREG antibodies in CRSwNP, offering a promising strategy for treating human eosinophilic sinus diseases.
Collapse
Affiliation(s)
- Limin Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shujian Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuling Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yingyue Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yushi Guo
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of New Medicine and Diagnostic Technology Research for Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiqi Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of New Medicine and Diagnostic Technology Research for Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Zaichuan Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhennan Qu
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Nan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital of Münster, Münster, Germany
| | - Claus Bachert
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital of Münster, Münster, Germany
| | - Chengshuo Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of New Medicine and Diagnostic Technology Research for Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Luo Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of New Medicine and Diagnostic Technology Research for Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Lan
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of New Medicine and Diagnostic Technology Research for Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Dezoteux F, Marcant P, Dendooven A, Delaunay É, Esnault S, Trauet J, Lefèvre G, Staumont-Sallé D. Enhanced Siglec-8 and HLA-DR and reduced CRTH2 surface expression highlight a distinct phenotypic signature of circulating eosinophils in atopic dermatitis. J Leukoc Biol 2025; 117:qiaf023. [PMID: 39998842 DOI: 10.1093/jleuko/qiaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/27/2024] [Accepted: 02/24/2025] [Indexed: 02/27/2025] Open
Abstract
Atopic dermatitis and other type 2 immune response diseases are often linked to elevated eosinophil levels in the blood. Although the role of eosinophils in atopic dermatitis pathophysiology is suspected, it remains unclear. The development of new treatments targeting the type 2 response, particularly cytokines involved in eosinophil activation and chemotaxis, makes it necessary to identify potential eosinophil profiles in atopic dermatitis that may respond to these treatments. A prospective study was conducted comparing blood eosinophil phenotypes in patients with moderate to severe atopic dermatitis (n = 19) without recent systemic treatment to healthy individuals (n = 19). The primary outcome was the membranous phenotypic signature of eosinophils, assessed by flow cytometry. Most patients with atopic dermatitis (84%) had early onset in childhood, a severe disease (mean SCORing Atopic Dermatitis of 57.5), and elevated blood eosinophil counts (310 per µL in atopic dermatitis vs 120 in healthy individuals, P < 0.0001). Patients with atopic dermatitis exhibited lower CRTH2 on eosinophils but higher levels of human leukocyte antigen-DR isotype and Siglec-8 compared to healthy individuals. Other surface proteins showed no significant differences. Clustering analysis confirmed increased Siglec-8 in patients with atopic dermatitis. Additionally, patients with atopic dermatitis had higher serum levels of type 2 immune response markers such as eotaxin-2, IL-5, IL-3, and TARC. Circulating eosinophils in patients with atopic dermatitis show a distinct phenotypic profile, suggesting a role in atopic dermatitis pathophysiology and potential involvement in differential treatment responses.
Collapse
Affiliation(s)
- Frédéric Dezoteux
- CHU Lille, Univ. Lille, Service de Dermatologie, Rue Michel Polonowski, F-59000 Lille, France
- U1286-Infinite-Institute for Translational Research in Inflammation, Univ. Lille, Inserm, CHU Lille, 1, Place Verdun, F-59000 Lille, France
- Centre de Référence National des Syndromes Hyperéosinophiliques (CEREO), Rue Michel Polonowki, F-59000 Lille, France
| | - Pierre Marcant
- CHU Lille, Univ. Lille, Service de Dermatologie, Rue Michel Polonowski, F-59000 Lille, France
| | - Arnaud Dendooven
- U1286-Infinite-Institute for Translational Research in Inflammation, Univ. Lille, Inserm, CHU Lille, 1, Place Verdun, F-59000 Lille, France
| | - Émeline Delaunay
- U1286-Infinite-Institute for Translational Research in Inflammation, Univ. Lille, Inserm, CHU Lille, 1, Place Verdun, F-59000 Lille, France
| | - Stéphane Esnault
- U1286-Infinite-Institute for Translational Research in Inflammation, Univ. Lille, Inserm, CHU Lille, 1, Place Verdun, F-59000 Lille, France
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, 5158 Medical Foundation Centennial Building, 1685 Highland Ave, Madison, WI 53705, United States
| | - Jacques Trauet
- Institut d'Immunologie, CHU Lille, Boulevard du Pr Jules Leclercq, F-59000 Lille, France
| | - Guillaume Lefèvre
- U1286-Infinite-Institute for Translational Research in Inflammation, Univ. Lille, Inserm, CHU Lille, 1, Place Verdun, F-59000 Lille, France
- Centre de Référence National des Syndromes Hyperéosinophiliques (CEREO), Rue Michel Polonowki, F-59000 Lille, France
- Institut d'Immunologie, CHU Lille, Boulevard du Pr Jules Leclercq, F-59000 Lille, France
- Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), CHU Lille, Rue Michel Polonowski, F-59000 Lille, France
| | - Delphine Staumont-Sallé
- CHU Lille, Univ. Lille, Service de Dermatologie, Rue Michel Polonowski, F-59000 Lille, France
- U1286-Infinite-Institute for Translational Research in Inflammation, Univ. Lille, Inserm, CHU Lille, 1, Place Verdun, F-59000 Lille, France
- Centre de Référence National des Syndromes Hyperéosinophiliques (CEREO), Rue Michel Polonowki, F-59000 Lille, France
| |
Collapse
|
4
|
Xu J, Guo J, Liu T, Yang C, Meng Z, Libby P, Zhang J, Shi GP. Differential roles of eosinophils in cardiovascular disease. Nat Rev Cardiol 2025; 22:165-182. [PMID: 39285242 DOI: 10.1038/s41569-024-01071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 02/20/2025]
Abstract
Eosinophils are essential innate immune cells in allergic responses. Accumulating evidence indicates that eosinophils also participate in the pathogenesis of cardiovascular diseases (CVDs). In clinical studies, high blood eosinophil counts and eosinophil cationic protein levels have been associated with an increased risk of CVD, including myocardial infarction (MI), cardiac hypertrophy, atrial fibrillation, abdominal aortic aneurysm (AAA) and atherosclerosis. However, low blood eosinophil counts have also been reported to be a risk factor for MI, heart failure, aortic dissection, AAA, deep vein thrombosis, pulmonary embolism and ischaemic stroke. Although these conflicting clinical observations remain unexplained, CVD status, timing of eosinophil data collection, and tissue eosinophil phenotypic and functional heterogeneities might account for these discrepancies. Preclinical studies suggest that eosinophils have protective actions in MI, cardiac hypertrophy, heart failure and AAA. By contrast, cationic proteins and platelet-activating factor from eosinophils have been shown to promote vascular smooth muscle cell proliferation, vascular calcification, thrombomodulin inactivation and platelet activation and aggregation, thereby exacerbating atherosclerosis, atrial fibrillation, thrombosis and associated complications. Therefore, eosinophils seem to promote calcification and thrombosis in chronic CVD but are protective in acute cardiovascular settings. In this Review, we summarize the available clinical and preclinical data on the different roles of eosinophils in CVD.
Collapse
Affiliation(s)
- Junyan Xu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Junli Guo
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Tianxiao Liu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Chongzhe Yang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhaojie Meng
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jinying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Sasaki H, Miyata J, Kawana A, Fukunaga K. Antiviral roles of eosinophils in asthma and respiratory viral infection. FRONTIERS IN ALLERGY 2025; 6:1548338. [PMID: 40083723 PMCID: PMC11903450 DOI: 10.3389/falgy.2025.1548338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025] Open
Abstract
Eosinophils are immune cells that are crucial for the pathogenesis of allergic diseases, such as asthma. These cells play multifunctional roles in various situations, including infection. They are activated during viral infections and exert antiviral activity. Pattern recognition receptors, toll-like receptor 7 and retinoic acid inducible gene-I, are important for the recognition and capture of RNA viruses. In addition, intracellular granule proteins (eosinophil cationic protein and eosinophil-derived neurotoxin) and intracellular nitric oxide production inactivate and/or degrade RNA viruses. Interestingly, eosinophil-synthesizing specialized pro-resolving mediators possess antiviral properties that inhibit viral replication. Thus, eosinophils may play a protective role during respiratory virus infections. Notably, antiviral activities are impaired in patients with asthma, and eosinophil activities are perturbed in proportion with the severity of asthma. The exact roles of eosinophils in RNA virus (rhinovirus, respiratory syncytial virus, and influenza virus)-induced type 2 inflammation-based asthma exacerbation remain unclear. Our research demonstrates that interferons (IFN-α and IFN-γ) stimulate human eosinophils to upregulate antiviral molecules, including guanylate-binding proteins and tripartite motifs. Furthermore, IFN-γ specifically increases the expression of IL5RA, ICAM-1, and FCGR1A, potentially enhancing cellular responsiveness to IL-5, ICAM-1-mediated adhesion to rhinoviruses, and IgG-induced inflammatory responses, respectively. In this review, we have summarized the relationship between viral infections and asthma and the mechanisms underlying the development of antiviral functions of human and mouse eosinophils in vivo and in vitro.
Collapse
Affiliation(s)
- Hisashi Sasaki
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Jun Miyata
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihiko Kawana
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Koichi Fukunaga
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Kobayashi Y, Hanh CH, Yagi N, Le NKT, Yun Y, Shimamura A, Fukui K, Mitani A, Suzuki K, Kanda A, Iwai H. CCL4 Affects Eosinophil Survival via the Shedding of the MUC1 N-Terminal Domain in Airway Inflammation. Cells 2024; 14:33. [PMID: 39791734 PMCID: PMC11719767 DOI: 10.3390/cells14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
Eosinophilic chronic rhinosinusitis (ECRS), a CRS with nasal polyps (CRSwNP), is characterized by eosinophilic infiltration with type 2 inflammation and is highly associated with bronchial asthma. Intractable ECRS with poorly controlled asthma is recognized as a difficult-to-treat eosinophilic airway inflammation. Although eosinophils are activated and coincubation with airway epithelial cells prolongs their survival, the interaction mechanism between eosinophils and epithelial cells is unclear. This study examined the effect of eosinophils on mucin glycoprotein 1 (MUC1), a member of membrane-bound mucin, in the airway epithelial cells, to elucidate the mechanisms of the eosinophil-airway epithelial cell interaction. Nasal polyp samples from patients with CRSwNP and BEAS-2B airway epithelial cells, coincubated with purified eosinophils, were stained with two MUC1 antibodies. To confirm the involvement of CCL4, an anti-CCL4 neutralizing antibody or recombinant CCL4 was used as needed. The immunofluorescence results revealed a negative correlation between the expression of full-length MUC1 and eosinophil count in nasal polyps. In BEAS-2B coincubated with eosinophils, full-length MUC1, but not the C-terminal domain, was reduced, and eosinophil survival was prolonged, which was concomitant with CCL4 increase, whereas the anti-CCL4 neutralizing antibody decreased these reactions. The survival of eosinophils that contacted recombinant MUC1 without the N-terminal domain was prolonged, and recombinant CCL4 increased the expression of metalloproteases. Increased CCL4 induces the contact between eosinophils and airway epithelial cells by shedding the MUC1 N-terminal domain and enhances eosinophil survival in eosinophilic airway inflammation. This novel mechanism may be a therapeutic target for difficult-to-treat eosinophilic airway inflammation.
Collapse
Affiliation(s)
- Yoshiki Kobayashi
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
- Allergy Center, Kansai Medical University Hospital, Osaka 573-1010, Japan
| | - Chu Hong Hanh
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| | - Naoto Yagi
- Third Department of Internal Medicine, Kansai Medical University, Osaka 573-1010, Japan;
| | - Nhi Kieu Thi Le
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| | - Yasutaka Yun
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
- Allergy Center, Kansai Medical University Hospital, Osaka 573-1010, Japan
| | - Akihiro Shimamura
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| | - Kenta Fukui
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| | - Akitoshi Mitani
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| | - Kensuke Suzuki
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| | - Akira Kanda
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
- Allergy Center, Kansai Medical University Hospital, Osaka 573-1010, Japan
| | - Hiroshi Iwai
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; (C.H.H.); (N.K.T.L.); (Y.Y.); (A.S.); (K.F.); (A.M.); (K.S.); (A.K.); (H.I.)
| |
Collapse
|
7
|
Sasaki H, Miyata J, Kawashima Y, Konno R, Ishikawa M, Hasegawa Y, Onozato R, Otsu Y, Matsuyama E, Sunata K, Masaki K, Kabata H, Kimizuka Y, Ueki S, Asano K, Kawana A, Arita M, Fukunaga K. Distinct roles of types 1 and 2 interferons in human eosinophil regulation: A multi-omics analysis. Allergy 2024; 79:3141-3145. [PMID: 38958441 DOI: 10.1111/all.16215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Affiliation(s)
- Hisashi Sasaki
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Jun Miyata
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Tokyo, Kanagawa, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Ryo Konno
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Masaki Ishikawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Ryuta Onozato
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yo Otsu
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Emiko Matsuyama
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keeya Sunata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Kimizuka
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Akihiko Kawana
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Tokyo, Kanagawa, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, Tokyo, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Lin T, Chang P, Lo C, Chuang H, Lee C, Chang C, Yu C, Hsieh M, Liu C, Kuo CS, Lin S. Correlation Between mRNA Expression of Activated Eosinophils and Air Pollutant Exposure in Patients With Asthma. Immun Inflamm Dis 2024; 12:e70065. [PMID: 39575691 PMCID: PMC11582923 DOI: 10.1002/iid3.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Eosinophil activation is associated with asthma. Whether air pollution affects the activation of blood eosinophils in patients with asthma remains unknown. In this study, we investigated the correlation between transcriptional activity in eosinophils and air pollutant exposure in patients receiving different levels of Global Initiative for Asthma (GINA) treatment. METHODS We evaluated the expression levels of activation- and function-related genes in eosinophils from patients with GINA 4 or 5 (n = 20), those with GINA 3 (n = 12), and normal individuals (n = 7); the eosinophils were activated with interleukin (IL)-5 or IL-17. A land use regression model was used to estimate air pollutant exposure. The correlations between mRNA expression, lung function, and air pollutant exposure were investigated. RESULTS The expression levels of TGFB1, IL7R, and TLR3 were significantly higher for patients with GINA 4 or 5 than for those with GINA 3 or normal individuals. The expression of certain genes, particularly in IL-17-activated eosinophils, was correlated with lung function decline in patients with GINA 4 or 5. For patients with GINA 4 or 5, NO2 exposure was correlated with upregulated TGFB1 expression in IL-5-activated eosinophils. For patients with GINA 3, O3 exposure was correlated with upregulated CCR5, IL5RA, IL7R, and TGFB1 expression in IL-17-activated eosinophils and upregulated IL7R expression in IL-5-activated eosinophils. CONCLUSION Patients with GINA 4 or 5 may exhibit elevated transcriptional activity in eosinophils; this elevation is correlated with lung function decline. Air pollution may affect eosinophil mRNA expression in patients with asthma.
Collapse
Affiliation(s)
- Ting‐Yu Lin
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Po‐Jui Chang
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Chun‐Yu Lo
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Hsiao‐Chi Chuang
- National Heart and Lung InstituteImperial College LondonLondonUK
- Division of Pulmonary Medicine, Department of Internal MedicineShuang Ho Hospital, Taipei Medical UniversityNew Taipei CityTaiwan
- School of Respiratory Therapy, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Cell Physiology and Molecular Image Research CenterWan Fang Hospital, Taipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Medical Sciences, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Chung‐Shu Lee
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Pulmonary and Critical Care MedicineNew Taipei Municipal Tucheng HospitalNew Taipei CityTaiwan
| | - Chih‐Hao Chang
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Pulmonary and Critical Care MedicineNew Taipei Municipal Tucheng HospitalNew Taipei CityTaiwan
| | - Chih‐Teng Yu
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Meng‐Heng Hsieh
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Chien‐Ying Liu
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Chih‐Hsi Scott Kuo
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Shu‐Min Lin
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| |
Collapse
|
9
|
Januskevicius A, Vasyle E, Rimkunas A, Malakauskas K. Integrative Cross-Talk in Asthma: Unraveling the Complex Interactions Between Eosinophils, Immune, and Structural Cells in the Airway Microenvironment. Diagnostics (Basel) 2024; 14:2448. [PMID: 39518415 PMCID: PMC11545034 DOI: 10.3390/diagnostics14212448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Asthma is a chronic inflammatory process that leads to airway narrowing, causing breath loss followed by spasms, wheezing, and shortness of breath. Within the asthmatic lungs, interaction among various immune cells and structural cells plays a significant role in orchestrating an inflammatory response in which eosinophils hold central importance. In these settings, allergens or other environmental exposures commonly drive the immune response to recruit eosinophils to the airways. The appearance of eosinophils in the airways indicates a dynamic interplay of various cell types within lung tissue and does not represent a passive effect of inflammation. The cellular cross-talk causes the persistence of eosinophilic inflammation, and if left untreated, it results in long-term damage to the airway structure and function. Further exacerbation of the condition occurs because of this. We discuss how this complex interplay of eosinophils, immune, and structural cells within the airway microenvironment leads to the distinct pathophysiological features in asthma, the variability in disease severity, and the response to biological treatments.
Collapse
Affiliation(s)
- Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
| | - Egle Vasyle
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
| | - Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
| | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| |
Collapse
|
10
|
Lee D, Jo MG, Min KY, Choi MY, Kim YM, Kim HS, Choi WS. IL-10 + regulatory B cells mitigate atopic dermatitis by suppressing eosinophil activation. Sci Rep 2024; 14:18164. [PMID: 39107352 PMCID: PMC11303538 DOI: 10.1038/s41598-024-68660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Atopic dermatitis (AD) presents significant therapeutic challenges due to its poorly understood etiology. Eosinophilia, a hallmark of allergic inflammation, is implicated in AD pathogenesis. Interleukin-10 (IL-10)-producing regulatory B (Breg) cells exhibit potent anti-inflammatory effects. However, their role in controlling AD-related eosinophilia is not well understood. To investigate the impact of eosinophils on AD, we employed IL-5Rα-deficient (Il5ra-/-) mice, which lack functional eosinophils. Induction of AD in these mice resulted in attenuated disease symptoms, underscoring the critical role of eosinophils in AD development. Additionally, the adoptive transfer of purified Breg cells into mice with AD significantly alleviated disease severity. Mechanistic studies revealed that IL-10 produced by Breg cells directly inhibits eosinophil activation and infiltration into the skin. In vitro experiments further confirmed that Breg cells inhibited eosinophil peroxidase secretion in an IL-10-dependent manner. Our collective findings demonstrate that IL-10 from Breg cells alleviates AD by suppressing eosinophil activation and tissue infiltration. This study elucidates a novel regulatory mechanism of Breg cells, providing a foundation for future Breg-mediated therapeutic strategies for AD.
Collapse
Affiliation(s)
- Dajeong Lee
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Min Geun Jo
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Keun Young Min
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Min Yeong Choi
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul, 01369, Korea
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Korea.
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Chungju, 27478, Korea.
- Institute of Biomedical Sciences & Technology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
11
|
Wilson GE, Knight J, Liu Q, Shelar A, Stewart E, Wang X, Yan X, Sanders J, Visness C, Gill M, Gruchalla R, Liu AH, Kattan M, Khurana Hershey GK, Togias A, Becker PM, Altman MC, Busse WW, Jackson DJ, Montgomery RR, Chupp GL. Activated sputum eosinophils associated with exacerbations in children on mepolizumab. J Allergy Clin Immunol 2024; 154:297-307.e13. [PMID: 38485057 PMCID: PMC11305967 DOI: 10.1016/j.jaci.2024.01.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/22/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND MUPPITS-2 was a randomized, placebo-controlled clinical trial that demonstrated mepolizumab (anti-IL-5) reduced exacerbations and blood and airway eosinophils in urban children with severe eosinophilic asthma. Despite this reduction in eosinophilia, exacerbation risk persisted in certain patients treated with mepolizumab. This raises the possibility that subpopulations of airway eosinophils exist that contribute to breakthrough exacerbations. OBJECTIVE We aimed to determine the effect of mepolizumab on airway eosinophils in childhood asthma. METHODS Sputum samples were obtained from 53 MUPPITS-2 participants. Airway eosinophils were characterized using mass cytometry and grouped into subpopulations using unsupervised clustering analyses of 38 surface and intracellular markers. Differences in frequency and immunophenotype of sputum eosinophil subpopulations were assessed based on treatment arm and frequency of exacerbations. RESULTS Median sputum eosinophils were significantly lower among participants treated with mepolizumab compared with placebo (58% lower, 0.35% difference [95% CI 0.01, 0.74], P = .04). Clustering analysis identified 3 subpopulations of sputum eosinophils with varied expression of CD62L. CD62Lint and CD62Lhi eosinophils exhibited significantly elevated activation marker and eosinophil peroxidase expression, respectively. In mepolizumab-treated participants, CD62Lint and CD62Lhi eosinophils were more abundant in participants who experienced exacerbations than in those who did not (100% higher for CD62Lint, 0.04% difference [95% CI 0.0, 0.13], P = .04; 93% higher for CD62Lhi, 0.21% difference [95% CI 0.0, 0.77], P = .04). CONCLUSIONS Children with eosinophilic asthma treated with mepolizumab had significantly lower sputum eosinophils. However, CD62Lint and CD62Lhi eosinophils were significantly elevated in children on mepolizumab who had exacerbations, suggesting that eosinophil subpopulations exist that contribute to exacerbations despite anti-IL-5 treatment.
Collapse
Affiliation(s)
- Gabriella E Wilson
- Department of Internal Medicine, Yale School of Medicine, New Haven, Conn
| | - James Knight
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Conn
| | - Qing Liu
- Department of Internal Medicine, Yale School of Medicine, New Haven, Conn
| | - Ashish Shelar
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Conn
| | - Emma Stewart
- Committee on Immunology, University of Chicago, Chicago, Ill
| | - Xiaomei Wang
- Department of Internal Medicine, Yale School of Medicine, New Haven, Conn
| | - Xiting Yan
- Department of Internal Medicine, Yale School of Medicine, New Haven, Conn
| | | | | | - Michelle Gill
- Department of Pediatric Infectious Diseases, Washington University in St Louis School of Medicine, St Louis, Mo
| | - Rebecca Gruchalla
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Andrew H Liu
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo
| | - Meyer Kattan
- Department of Pediatric Pulmonology, Columbia University Irving Medical Center, New York, NY
| | | | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Patrice M Becker
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | | | - William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Conn
| | - Geoffrey L Chupp
- Department of Internal Medicine, Yale School of Medicine, New Haven, Conn.
| |
Collapse
|
12
|
Steffan BN, Townsend EA, Denlinger LC, Johansson MW. Eosinophil-Epithelial Cell Interactions in Asthma. Int Arch Allergy Immunol 2024; 185:1033-1047. [PMID: 38885626 PMCID: PMC11534548 DOI: 10.1159/000539309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Eosinophils have numerous roles in type 2 inflammation depending on their activation states in the blood and airway or after encounter with inflammatory mediators. Airway epithelial cells have a sentinel role in the lung and, by instructing eosinophils, likely have a foundational role in asthma pathogenesis. SUMMARY In this review, we discuss various topics related to eosinophil-epithelial cell interactions in asthma, including the influence of eosinophils and eosinophil products, e.g., granule proteins, on epithelial cell function, expression, secretion, and plasticity; the effects of epithelial released factors, including oxylipins, cytokines, and other mediators on eosinophils, e.g., on their activation, expression, and survival; possible mechanisms of eosinophil-epithelial cell adhesion; and the role of intra-epithelial eosinophils in asthma. KEY MESSAGES We suggest that eosinophils and their products can have both injurious and beneficial effects on airway epithelial cells in asthma and that there are bidirectional interactions and signaling between eosinophils and airway epithelial cells in asthma.
Collapse
Affiliation(s)
- Breanne N. Steffan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Elizabeth A. Townsend
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Loren C. Denlinger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Mats W. Johansson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Burger G, Adamou R, Kreuzmair R, Ndoumba WN, Mbassi DE, Mouima AMN, Tabopda CM, Adegnika RM, More A, Okwu DG, Mbadinga LBD, Calle CL, Veletzky L, Metzger WG, Mordmüller B, Ramharter M, Mombo-Ngoma G, Adegnika AA, Zoleko-Manego R, McCall MBB. Eosinophils, basophils and myeloid-derived suppressor cells in chronic Loa loa infection and its treatment in an endemic setting. PLoS Negl Trop Dis 2024; 18:e0012203. [PMID: 38771861 PMCID: PMC11147522 DOI: 10.1371/journal.pntd.0012203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/03/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Chronic infection by Loa loa remains an unsolved immunological paradox. Despite harboring subcutaneously migrating adult worms and often high densities of microfilariae, most patients experience only relatively mild symptoms, yet microfilaricidal treatment can trigger life-threatening inflammation. Here, we investigated innate cell populations hypothesized to play a role in these two faces of the disease, in an endemic population in Gabon. METHODOLOGY/PRINCIPAL FINDINGS We analyzed numbers and activation of eosinophils and basophils, as well as myeloid-derived suppressor cell (MDSC) subsets and associated circulating cytokine levels by flow cytometry in sex- and age-matched L. loa-uninfected (LL-), -amicrofilaraemic (MF-) and -microfilaraemic (MF+) individuals (n = 42), as well as microfilaraemic individuals treated with albendazole (n = 26). The percentage of eosinophils was lower in LL- (3.0%) than in the combined L. loa-infected population, but was similar in MF+ (13.1%) and MF- (12.3%). Upon treatment of MF+, eosinophilia increased from day 0 (17.2%) to day 14 (24.8%) and had decreased below baseline at day 168 (6.3%). Expression of the eosinophil activation marker CD123 followed the same pattern as the percentage of eosinophils, while the inverse was observed for CD193 and to some extent CD125. Circulating IL-5 levels after treatment followed the same pattern as eosinophil dynamics. Basophil numbers did not differ between infection states but increased after treatment of MF+. We did not observe differences in MDSC numbers between infection states or upon treatment. CONCLUSIONS/SIGNIFICANCE We demonstrate that both chronic infection and treatment of L. loa microfilaraemia are associated with eosinophil circulation and distinct phenotypical activation markers that might contribute to inflammatory pathways in this setting. In this first ever investigation into MDSC in L. loa infection, we found no evidence for their increased presence in chronic loiasis, suggesting that immunomodulation by L. loa is induced through other pathways.
Collapse
Affiliation(s)
- Gerrit Burger
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Rafiou Adamou
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Ruth Kreuzmair
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Wilfrid Ndzebe Ndoumba
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner sites Hamburg-Borstel-Lübeck-Riems, Germany
| | - Dorothea Ekoka Mbassi
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- German Center for Infection Research, Partner sites Hamburg-Borstel-Lübeck-Riems, Germany
- Centre for Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Ayong More
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Dearie Glory Okwu
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner sites Hamburg-Borstel-Lübeck-Riems, Germany
| | | | | | - Luzia Veletzky
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael Ramharter
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- German Center for Infection Research, Partner sites Hamburg-Borstel-Lübeck-Riems, Germany
- Centre for Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner sites Hamburg-Borstel-Lübeck-Riems, Germany
| | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner site Tübingen, Tübingen Germany
| | - Rella Zoleko-Manego
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- German Center for Infection Research, Partner sites Hamburg-Borstel-Lübeck-Riems, Germany
- Centre for Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthew B. B. McCall
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Savin IA, Zenkova MA, Sen’kova AV. Bronchial Asthma, Airway Remodeling and Lung Fibrosis as Successive Steps of One Process. Int J Mol Sci 2023; 24:16042. [PMID: 38003234 PMCID: PMC10671561 DOI: 10.3390/ijms242216042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Bronchial asthma is a heterogeneous disease characterized by persistent respiratory system inflammation, airway hyperreactivity, and airflow obstruction. Airway remodeling, defined as changes in airway wall structure such as extensive epithelial damage, airway smooth muscle hypertrophy, collagen deposition, and subepithelial fibrosis, is a key feature of asthma. Lung fibrosis is a common occurrence in the pathogenesis of fatal and long-term asthma, and it is associated with disease severity and resistance to therapy. It can thus be regarded as an irreversible consequence of asthma-induced airway inflammation and remodeling. Asthma heterogeneity presents several diagnostic challenges, particularly in distinguishing between chronic asthma and other pulmonary diseases characterized by disruption of normal lung architecture and functions, such as chronic obstructive pulmonary disease. The search for instruments that can predict the development of irreversible structural changes in the lungs, such as chronic components of airway remodeling and fibrosis, is particularly difficult. To overcome these challenges, significant efforts are being directed toward the discovery and investigation of molecular characteristics and biomarkers capable of distinguishing between different types of asthma as well as between asthma and other pulmonary disorders with similar structural characteristics. The main features of bronchial asthma etiology, pathogenesis, and morphological characteristics as well as asthma-associated airway remodeling and lung fibrosis as successive stages of one process will be discussed in this review. The most common murine models and biomarkers of asthma progression and post-asthmatic fibrosis will also be covered. The molecular mechanisms and key cellular players of the asthmatic process described and systematized in this review are intended to help in the search for new molecular markers and promising therapeutic targets for asthma prediction and therapy.
Collapse
Affiliation(s)
| | | | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev Ave 8, 630090 Novosibirsk, Russia; (I.A.S.); (M.A.Z.)
| |
Collapse
|
15
|
Jukema BN, Pelgrim TC, Janssen SLJE, Eijsvogels TMH, Mingels A, Vroemen W, Vrisekoop N, Koenderman L. Exercise-induced eosinophil responses: Normal cell counts with a marked decrease in responsiveness. Clin Transl Allergy 2023; 13:e12314. [PMID: 38006381 PMCID: PMC10652691 DOI: 10.1002/clt2.12314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023] Open
Affiliation(s)
- Bernard N. Jukema
- Department of Respiratory MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Center for Translational ImmunologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Thomas C. Pelgrim
- Department of Respiratory MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Center for Translational ImmunologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Sylvan L. J. E. Janssen
- Department of Medical BioSciencesExercise Physiology Research GroupRadboud University Medical CenterNijmegenThe Netherlands
| | - Thijs M. H. Eijsvogels
- Department of Medical BioSciencesExercise Physiology Research GroupRadboud University Medical CenterNijmegenThe Netherlands
| | - Alma Mingels
- Central Diagnostic LaboratoryMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Wim Vroemen
- Central Diagnostic LaboratoryMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Nienke Vrisekoop
- Department of Respiratory MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Center for Translational ImmunologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Leo Koenderman
- Department of Respiratory MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Center for Translational ImmunologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
16
|
Lin TY, Lo CY, Chang PJ, Lo YL, Lee CS, Chang CH, Yu CT, Yao JH, Lin SM. High Transcriptional Activity and Clinical Correlations in Eosinophils of Patients with Late-Onset Asthma. J Asthma Allergy 2023; 16:863-878. [PMID: 37637476 PMCID: PMC10455810 DOI: 10.2147/jaa.s417974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
Background The immunological features of eosinophils in early-onset asthma (EOA) differ from those in late-onset asthma (LOA). Clinical trials of anti-interleukin-5 (IL-5) treatment for severe eosinophilic asthma showed a better response for LOA patients than EOA patients. We wonder if the transcriptional activity of activated eosinophils was different in EOA and LOA. Methods Eosinophils obtained from well-controlled EOA and LOA patients and normal subjects were compared in terms of the mRNA expression of activation-related genes and specific markers related to cell functions in eosinophils activated by IL-5 or IL-17. The correlation between mRNA expression and clinical features and lung function was further analyzed. Results The transcriptional expression of most genes was higher in activated eosinophils from LOA patients than in those from EOA patients and normal subjects. After IL-17 stimulation, the expression of certain genes was higher in atopic EOA patients than in non-atopic EOA patients. Similar observation was noted in obese EOA patients. After IL-5 stimulation, the transcriptional expression of most genes in eosinophils from LOA patients was negatively correlated with indicators of lung function. These correlations were less pronounced in EOA patients: After IL-17 stimulation, some genes in EOA patients were negatively correlated with post-bronchodilator changes in lung function. Conclusion This study describes differences in the transcriptional active patterns of eosinophils and their correlation to atopy and obesity by age of onset. High transcriptional activity in activated eosinophils and a negative correlation to lung function indicate the importance of eosinophils in the pathogenesis of LOA.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Yu Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Jui Chang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Lun Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Shu Lee
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Pulmonary and Critical Care Medicine, New Taipei Municipal Tucheng Hospital, New Taipei City, Taiwan
| | - Chih-Hao Chang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Pulmonary and Critical Care Medicine, New Taipei Municipal Tucheng Hospital, New Taipei City, Taiwan
| | - Chih-Teng Yu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jonathan Huai Yao
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Shu-Min Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
17
|
Bleecker ER, Meyers DA, Billheimer D, Li H, Newbold P, Kwiatek J, Hirsch I, Katial R, Li X. Clinical Implications of Longitudinal Blood Eosinophil Counts in Patients With Severe Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1805-1813. [PMID: 36868471 DOI: 10.1016/j.jaip.2023.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND The stability and variability of blood eosinophil counts (BECs) to phenotype patients with severe asthma is not fully understood. OBJECTIVE This post hoc, longitudinal, pooled analysis of placebo-arm patients from 2 phase 3 studies evaluated the clinical implications of BEC stability and variability in moderate-to-severe asthma. METHODS This analysis included patients from SIROCCO and CALIMA who received maintenance medium- to high-dosage inhaled corticosteroids plus long-acting β2-agonists; 2:1 patients with BECs of 300 cells/μL or higher and less than 300 cells/μL were enrolled. The BECs were measured 6 times over 1 year in a centralized laboratory. Exacerbations, lung function, and Asthma Control Questionnaire 6 scores were documented across patients grouped by BEC (<300 cells/μL or ≥300 cells/μL) and variability (<80% or ≥80% BECs less than or greater than 300 cells/μL). RESULTS Among 718 patients, 42.2% (n = 303) had predominantly high, 30.9% (n = 222) had predominantly low, and 26.9% (n = 193) had variable BECs. Prospective exacerbation rates (mean ± SD) were significantly greater in patients with predominantly high (1.39 ± 2.20) and variable (1.41 ± 2.09) BECs versus predominantly low (1.05 ± 1.66) BECs. Similar results were observed for the number of exacerbations while on placebo. CONCLUSIONS Although patients with variable BECs had intermittently high and low BECs, they experienced similar exacerbation rates to the predominantly high group, which were greater than those in the predominantly low group. A high BEC supports an eosinophilic phenotype in clinical settings without additional measurements, whereas a low BEC requires repeated measurements because it could reflect intermittently high or predominantly low BECs.
Collapse
Affiliation(s)
- Eugene R Bleecker
- Department of Medicine, University of Arizona College of Medicine, Tucson, Ariz.
| | - Deborah A Meyers
- Department of Medicine, University of Arizona College of Medicine, Tucson, Ariz
| | - Dean Billheimer
- Arizona Statistical Consulting, University of Arizona College of Public Health, Tucson, Ariz
| | - Huashi Li
- Department of Medicine, University of Arizona College of Medicine, Tucson, Ariz
| | - Paul Newbold
- Late-stage Respiratory & Immunology, AstraZeneca, Gaithersburg, Md
| | - Justin Kwiatek
- BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, Md
| | - Ian Hirsch
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Rohit Katial
- BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, Md
| | - Xingnan Li
- Department of Medicine, University of Arizona College of Medicine, Tucson, Ariz
| |
Collapse
|
18
|
Gomułka K, Tota M, Brzdąk K. Effect of VEGF Stimulation on CD11b Receptor on Peripheral Eosinophils in Asthmatics. Int J Mol Sci 2023; 24:ijms24108880. [PMID: 37240226 DOI: 10.3390/ijms24108880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Asthma is a chronic, complex disease associated with heterogeneity in molecular pathways. Airway inflammation with different cell activation (e.g., eosinophils) and with hypersecretion of many cytokines (e.g., vascular endothelial growth factor-VEGF) might be relevant for asthma pathogenesis and responsible for airway hyperresponsiveness and remodeling. The aim of our study was to reveal the expression of activation marker CD11b on peripheral eosinophils unstimulated and after VEGF in vitro stimulation in asthmatics with different degrees of airway narrowing. The study population included a total of 118 adult subjects: 78 patients with asthma (among them 39 patients with irreversible bronchoconstriction and 39 patients with reversible bronchoconstriction according to the bronchodilation test) and 40 healthy participants as a control group. CD11b expression on peripheral blood eosinophils was detected in vitro using the flow cytometric method without exogenous stimulation (negative control), after N-formyl-methionine-leucyl-phenylalanine stimulation (fMLP; positive control) and after stimulation with VEGF in two concentrations (250 ng/mL and 500 ng/mL). CD11b marker was slightly presented on unstimulated eosinophils in asthmatics and the subgroup with irreversible airway narrowing (p = 0.06 and p = 0.07, respectively). Stimulation with VEGF enhanced the activity of peripheral eosinophils and induced CD11b expression in asthmatics in comparison with a healthy control (p < 0.05), but it was dependent neither on the concentration of VEGF nor on the degree of airways narrowing in patients with asthma. We present our findings to draw attention to the potential role of VEGF in the eosinophil priming and CD11b-mediated signaling in patients with asthma which is currently undervalued.
Collapse
Affiliation(s)
- Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, ul. M. Curie-Skłodowskiej 66, 50-369 Wrocław, Poland
| | - Maciej Tota
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, ul. M. Curie-Skłodowskiej 66, 50-369 Wrocław, Poland
| | - Kacper Brzdąk
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, ul. M. Curie-Skłodowskiej 66, 50-369 Wrocław, Poland
| |
Collapse
|
19
|
Matucci A, Nencini F, Maggiore G, Chiccoli F, Accinno M, Vivarelli E, Bruno C, Locatello LG, Palomba A, Nucci E, Mecheri V, Perlato M, Rossi O, Parronchi P, Maggi E, Gallo O, Vultaggio A. High proportion of inflammatory CD62L low eosinophils in blood and nasal polyps of severe asthma patients. Clin Exp Allergy 2023; 53:78-87. [PMID: 35490414 DOI: 10.1111/cea.14153] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND In mice models, eosinophils have been divided into different subpopulations with distinct phenotypes and functions, based on CD62L and CD101 patterns of membrane expression. Limited data are available in humans. OBJECTIVE To investigate eosinophils subpopulations in peripheral blood (PB) and nasal polyp tissue (NP) from severe eosinophilic asthma (SEA) patients plus concomitant chronic rhinosinusitis with nasal polyps (CRSwNP). METHODS We recruited 23 SEA patients (14 with CRSwNP); as controls, we enrolled 15 non-severe asthma patients, 15 allergic rhinitis patients without asthma and 15 healthy donors. Eosinophils were isolated from PB and NP and analysed by FACS. Eotaxin-3 and eotaxin-1 mRNA expression in NP tissue was also evaluated. RESULTS A significantly higher percentage of circulating CD62Llow cells was observed in SEA, as compared with controls, expressing higher levels of CCR3, CD69 and lower levels of CD125 (IL-5R), CRTH2, CD86 and CD28 in comparison with CD62Lbright cells. In NP, eosinophils showed a high proportion of CD62Llow phenotype, significantly greater than that observed in PB. Surface expression of IL-3R, IL-5R, CD69 and CD86 was significantly higher in CD62Llow eosinophils from NP than in those from blood. Moreover, eotaxin-3 mRNA expression positively correlated with the percentage of CD62Llow cells in NP. CONCLUSION Two different eosinophil subphenotypes can be identified in blood and NP of SEA patients, with a preferential accumulation of CD62Llow inflammatory cells in NP.
Collapse
Affiliation(s)
- Andrea Matucci
- Immunoallergology Unit, Careggi University Hospital, Florence, Italy
| | - Francesca Nencini
- Immunoallergology Unit, Careggi University Hospital, Florence, Italy
| | - Giandomenico Maggiore
- Otolaryngology Clinic, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Fabio Chiccoli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Accinno
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Chiara Bruno
- Otolaryngology Clinic, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Luca Giovanni Locatello
- Otolaryngology Clinic, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Annarita Palomba
- Department of Pathology, Careggi University Hospital, Florence, Italy
| | - Elena Nucci
- Department of Pathology, Careggi University Hospital, Florence, Italy
| | - Valentina Mecheri
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Margherita Perlato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Oliviero Rossi
- Immunoallergology Unit, Careggi University Hospital, Florence, Italy
| | - Paola Parronchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Enrico Maggi
- Translational Immunology Unit, Immunology Area, Bambino Gesù Children's Hospital, I.R.C.C.S, Rome, Italy
| | - Oreste Gallo
- Otolaryngology Clinic, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | | |
Collapse
|
20
|
Jasim SA, Mahdi RS, Bokov DO, Najm MAA, Sobirova GN, Bafoyeva ZO, Taifi A, Alkadir OKA, Mustafa YF, Mirzaei R, Karampoor S. The deciphering of the immune cells and marker signature in COVID-19 pathogenesis: An update. J Med Virol 2022; 94:5128-5148. [PMID: 35835586 PMCID: PMC9350195 DOI: 10.1002/jmv.28000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
The precise interaction between the immune system and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical in deciphering the pathogenesis of coronavirus disease 2019 (COVID-19) and is also vital for developing novel therapeutic tools, including monoclonal antibodies, antivirals drugs, and vaccines. Viral infections need innate and adaptive immune reactions since the various immune components, such as neutrophils, macrophages, CD4+ T, CD8+ T, and B lymphocytes, play different roles in various infections. Consequently, the characterization of innate and adaptive immune reactions toward SARS-CoV-2 is crucial for defining the pathogenicity of COVID-19. In this study, we explain what is currently understood concerning the conventional immune reactions to SARS-CoV-2 infection to shed light on the protective and pathogenic role of immune response in this case. Also, in particular, we investigate the in-depth roles of other immune mediators, including neutrophil elastase, serum amyloid A, and syndecan, in the immunopathogenesis of COVID-19.
Collapse
Affiliation(s)
| | - Roaa Salih Mahdi
- Department of Pathology, College of MedicineUniversity of BabylonHillaIraq
| | - Dmitry Olegovich Bokov
- Institute of PharmacySechenov First Moscow State Medical UniversityMoscowRussian Federation
- Laboratory of Food ChemistryFederal Research Center of Nutrition, Biotechnology and Food SafetyMoscowRussian Federation
| | - Mazin A. A. Najm
- Pharmaceutical Chemistry Department, College of PharmacyAl‐Ayen UniversityThi‐QarIraq
| | - Guzal N. Sobirova
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | - Zarnigor O. Bafoyeva
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of PharmacyUniversity of MosulMosulIraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
21
|
Curto E, Mateus-Medina ÉF, Crespo-Lessmann A, Osuna-Gómez R, Ujaldón-Miró C, García-Moral A, Galván-Blasco P, Soto-Retes L, Ramos-Barbón D, Plaza V. Identification of Two Eosinophil Subsets in Induced Sputum from Patients with Allergic Asthma According to CD15 and CD66b Expression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13400. [PMID: 36293979 PMCID: PMC9602830 DOI: 10.3390/ijerph192013400] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Two subsets of eosinophils have been described: resident eosinophils with homeostatic functions (rEOS) in healthy subjects and in patients with nonallergic eosinophilic asthma, and inflammatory eosinophils (iEOS) in blood and lung samples from patients with allergic asthma. We explored if it would be possible to identify different subsets of eosinophils using flow cytometry and the gating strategy applied to induced sputum. We conducted an observational cross-sectional single-center study of 62 patients with persistent allergic asthma. Inflammatory cells from induced sputum samples were counted by light microscopy and flow cytometry, and cytokine levels in the supernatant were determined. Two subsets of eosinophils were defined that we call E1 (CD66b-high and CD15-high) and E2 (CD66b-low and CD15-low). Of the 62 patients, 24 were eosinophilic, 18 mixed, 10 paucigranulocytic, and 10 neutrophilic. E1 predominated over E2 in the eosinophilic and mixed patients (20.86% vs. 6.27% and 14.42% vs. 4.31%, respectively), while E1 and E2 were similar for neutrophilic and paucigranulocytic patients. E1 correlated with IL-5, fractional exhaled nitric oxide, and blood eosinophils. While eosinophil subsets have been identified for asthma in blood, we have shown that they can also be identified in induced sputum.
Collapse
Affiliation(s)
- Elena Curto
- Asthma Unit, Respiratory and Allergy Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Éder F. Mateus-Medina
- Asthma Unit, Respiratory and Allergy Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Astrid Crespo-Lessmann
- Asthma Unit, Respiratory and Allergy Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Rubén Osuna-Gómez
- Inflammatory Diseases Unit, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Cristina Ujaldón-Miró
- Cellular Immunotherapy and Gene Therapy Group (GITG), Oncology, Hematology and Transplantation Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Alba García-Moral
- Pediatric Allergy Unit, Pediatric Allergy Section, Pediatric Pneumology and Cystic Fibrosis, Pediatrics Service, Hospital Universitari Vall d’Hebron, 08041 Barcelona, Spain
| | - Paula Galván-Blasco
- Allergology Section, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, 08041 Barcelona, Spain
| | - Lorena Soto-Retes
- Asthma Unit, Respiratory and Allergy Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - David Ramos-Barbón
- Asthma Unit, Respiratory and Allergy Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Vicente Plaza
- Asthma Unit, Respiratory and Allergy Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| |
Collapse
|
22
|
Li M, Wen Ma Z, Jun Deng S, Oliver BG, Wang T, Ping Zhang H, Wang L, McDonald VM, Wang J, Liu D, Gibson PG, Ming Luo F, Min Li W, Jing Wan H, Wang G. Development and validation of a noninvasive prediction model for identifying eosinophilic asthma. Respir Med 2022; 201:106935. [DOI: 10.1016/j.rmed.2022.106935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
|
23
|
Blood Eosinophils Are Associated with Efficacy of Targeted Therapy in Patients with Advanced Melanoma. Cancers (Basel) 2022; 14:cancers14092294. [PMID: 35565423 PMCID: PMC9104271 DOI: 10.3390/cancers14092294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Eosinophils appear to contribute to the efficacy of immunotherapy and their frequency was suggested as a predictive biomarker. Whether this observation could be transferred to patients treated with targeted therapy remains unknown. Methods: Blood and serum samples of healthy controls and 216 patients with advanced melanoma were prospectively and retrospectively collected. Freshly isolated eosinophils were phenotypically characterized by flow cytometry and co-cultured in vitro with melanoma cells to assess cytotoxicity. Soluble serum markers and peripheral blood counts were used for correlative studies. Results: Eosinophil-mediated cytotoxicity towards melanoma cells, as well as phenotypic characteristics, were similar when comparing healthy donors and patients. However, high relative pre-treatment eosinophil counts were significantly associated with response to MAPKi (p = 0.013). Eosinophil-mediated cytotoxicity towards melanoma cells is dose-dependent and requires proximity of eosinophils and their target in vitro. Treatment with targeted therapy in the presence of eosinophils results in an additive tumoricidal effect. Additionally, melanoma cells affected eosinophil phenotype upon co-culture. Conclusion: High pre-treatment eosinophil counts in advanced melanoma patients were associated with a significantly improved response to MAPKi. Functionally, eosinophils show potent cytotoxicity towards melanoma cells, which can be reinforced by MAPKi. Further studies are needed to unravel the molecular mechanisms of our observations.
Collapse
|
24
|
He L, Norris C, Cui X, Li Z, Barkjohn KK, Teng Y, Fang L, Lin L, Wang Q, Zhou X, Hong J, Li F, Zhang Y, Schauer JJ, Black M, Bergin MH, Zhang JJ. Oral cavity response to air pollutant exposure and association with pulmonary inflammation and symptoms in asthmatic children. ENVIRONMENTAL RESEARCH 2022; 206:112275. [PMID: 34710437 DOI: 10.1016/j.envres.2021.112275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Exposure to fine particulate matter (PM2.5) and ozone (O3) may lead to inflammation and oxidative damage in the oral cavity, which is hypothesized to contribute to the worsening of airway inflammation and asthma symptoms. In this panel study of 43 asthmatic children aged 5-13 years old, each child had 4 clinic visits with a 2-week interval between two consecutive visits. At each visit, saliva samples were collected and subsequently analyzed for interleukin 6 (IL-6) and eosinophil cationic protein (ECP) as biomarkers of inflammation and malondialdehyde (MDA) as a biomarker of oxidative stress in the oral cavity. At each visit, children were measured for fractional exhaled nitric oxide (FeNO) as a marker of pulmonary inflammation. Asthma symptoms of these children were measured using the Childhood Asthma Control Test (C-ACT). We found that an interquartile range (IQR) increase in 24-h average personal exposure to PM2.5 measured 1 and 2 days prior was associated with increased salivary IL-6 concentration by 3.0% (95%CI: 0.2%-6.0%) and 4.2% (0.7%-8.0%), respectively. However, we did not find a clear association between personal O3 exposure and any of the salivary biomarkers, except for a negative association between salivary MDA and O3 exposure measured 1 day prior. An IQR increase in salivary IL-6 concentration was associated with significantly increased FeNO by 28.8% (4.3%-53.4%). In addition, we found that increasing salivary IL-6 concentrations were associated with decreased individual and total C-ACT scores, indicating the worsening of asthma symptoms. We estimated that 13.2%-22.2% of the associations of PM2.5 exposure measured 1 day prior with FeNO and C-ACT scores were mediated by salivary IL-6. These findings suggest that the induction of inflammation in the oral cavity may have played a role in linking air pollution exposure with the worsening of airway inflammation and asthma symptoms.
Collapse
Affiliation(s)
- Linchen He
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Duke Global Health Institute, Duke University, Durham, NC, USA.
| | - Christina Norris
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA.
| | - Xiaoxing Cui
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| | - Zhen Li
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Karoline K Barkjohn
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA.
| | - Yanbo Teng
- Duke Kunshan University, Kunshan, Jiangsu Province, China.
| | - Lin Fang
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China.
| | - Lili Lin
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Qian Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaojian Zhou
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Jianguo Hong
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Feng Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China.
| | - James J Schauer
- Department of Civil and Environmental Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | | | - Michael H Bergin
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA.
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Duke Global Health Institute, Duke University, Durham, NC, USA; Duke Kunshan University, Kunshan, Jiangsu Province, China.
| |
Collapse
|
25
|
Janulaityte I, Januskevicius A, Rimkunas A, Palacionyte J, Vitkauskiene A, Malakauskas K. Asthmatic Eosinophils Alter the Gene Expression of Extracellular Matrix Proteins in Airway Smooth Muscle Cells and Pulmonary Fibroblasts. Int J Mol Sci 2022; 23:4086. [PMID: 35456903 PMCID: PMC9031271 DOI: 10.3390/ijms23084086] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
The impaired production of extracellular matrix (ECM) proteins by airway smooth muscle cells (ASMC) and pulmonary fibroblasts (PF) is a part of airway remodeling in asthma. This process might be influenced by eosinophils that migrate to the airway and abundantly secrete various cytokines, including TGF-β. We aimed to investigate the effect of asthmatic eosinophils on the gene expression of ECM proteins in ASMC and PF. A total of 34 study subjects were recruited: 14 with allergic asthma (AA), 9 with severe non-allergic eosinophilic asthma (SNEA), and 11 healthy subjects (HS). All AA patients underwent bronchial allergen challenge with D. pteronyssinus. The peripheral blood eosinophils were isolated using high-density centrifugation and magnetic separation. The individual cell cultures were made using hTERT ASMC and MRC-5 cell lines and the subjects' eosinophils. The gene expression of ECM and the TGF-β signaling pathway was analyzed using qRT-PCR. We found that asthmatic eosinophils significantly promoted collagen I, fibronectin, versican, tenascin C, decorin, vitronectin, periostin, vimentin, MMP-9, ADAM33, TIMP-1, and TIMP-2 gene expression in ASMC and collagen I, collagen III, fibronectin, elastin, decorin, MMP-2, and TIMP-2 gene expression in PF compared with the HS eosinophil effect. The asthmatic eosinophils significantly increased the gene expression of several canonical and non-canonical TGF-β signaling pathway components in ASMC and PF compared with the HS eosinophil effect. The allergen-activated AA and SNEA eosinophils had a greater effect on these changes. In conclusion, asthmatic eosinophils, especially SNEA and allergen-activated eosinophils, imbalanced the gene expression of ECM proteins and their degradation-regulating proteins. These changes were associated with increased gene expression of TGF-β signaling pathway molecules in ASMC and PF.
Collapse
Affiliation(s)
- Ieva Janulaityte
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Jolita Palacionyte
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| |
Collapse
|
26
|
Yue M, Hu M, Fu F, Ruan H, Wu C. Emerging Roles of Platelets in Allergic Asthma. Front Immunol 2022; 13:846055. [PMID: 35432313 PMCID: PMC9010873 DOI: 10.3389/fimmu.2022.846055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/21/2023] Open
Abstract
Allergic asthma is a complex chronic inflammatory disease of the airways, driven by Th2 immune responses and characterized by eosinophilic pulmonary inflammation, airway hyperresponsiveness, excessive mucus production, and airway remodeling. Overwhelming evidence from studies in animal models and allergic asthmatic patients suggests that platelets are aberrantly activated and recruited to the lungs. It has been established that platelets can interact with other immune cells and secrete various biochemical mediators to promote allergic sensitization and airway inflammatory response, and platelet deficiency may alleviate the pathological features and symptoms of allergic asthma. However, the comprehensive roles of platelets in allergic asthma have not been fully clarified, leaving attempts to treat allergic asthma with antiplatelet agents questionable. In this review, we summarize the role of platelet activation and pulmonary accumulation in allergic asthma; emphasis is placed on the different interactions between platelets with crucial immune cell types and the contribution of platelet-derived mediators in this context. Furthermore, clinical antiplatelet approaches to treat allergic asthma are discussed. This review provides a clearer understanding of the roles of platelets in the pathogenesis of allergic asthma and could be informative in the development of novel strategies for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Ming Yue
- Department of Physiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengjiao Hu
- Department of Immunology and Microbiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Hongfeng Ruan,
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
27
|
Johansson MW. Not all the same: Subtypes of mouse intestinal eosinophils in health and disease models. J Leukoc Biol 2022; 111:939-941. [PMID: 35132683 DOI: 10.1002/jlb.3ce1021-545r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Discussion on mouse intestinal eosinophils before and after allergen challenge, and in a chronic inflammation model focusing on subtypes that differ in CD11c surface expression.
Collapse
Affiliation(s)
- Mats W Johansson
- Metabolism Theme, Morgridge Institute for Research, Madison, Wisconsin, USA.,Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA.,Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
28
|
Buhl R, Bel E, Bourdin A, Dávila I, Douglass JA, FitzGerald JM, Jackson DJ, Lugogo NL, Matucci A, Pavord ID, Wechsler ME, Kraft M. Effective Management of Severe Asthma with Biologic Medications in Adult Patients: A Literature Review and International Expert Opinion. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:422-432. [PMID: 34763123 DOI: 10.1016/j.jaip.2021.10.059] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022]
Abstract
Severe asthma often remains uncontrolled despite effective treatments and evidence-based guidelines. A group of global experts in asthma and biologic medications from 9 countries considered the most relevant clinical variables to manage severe asthma in adult patients and guide treatment choice. The resulting recommendations address the investigation of biomarker levels (blood eosinophil count along with fractional concentration of exhaled nitric oxide [FeNO]), clinical features (oral corticosteroid [OCS] dependence, specific comorbid disease entities associated with severe type 2 asthma), and safety considerations. Current evidence suggests that biomarkers, including both blood or sputum eosinophil counts as well as FeNO, add prognostic and predictive value and should be measured in all patients with severe asthma. OCS use is an important factor in biologic selection, especially given the documented ability of some biologics to reduce OCS dependence. Comorbid diseases and relevant safety considerations to each biologic should also be considered. More data are needed to determine whether biomarker profiles identify patients suited to one biologic versus another as limited data support differential predictors of response. Further prospective head-to-head trials and post hoc analyses of clinical trial data are warranted. The authors believe that these recommendations have value as they offer expert opinion to assist health care providers in making difficult decisions regarding the quality of care in severe, type 2 asthma with biologic medications. They remain conditional and are based on limited data owing to a lack of head-to-head comparisons.
Collapse
Affiliation(s)
- Roland Buhl
- Pulmonary Department, Mainz University Hospital, Mainz, Germany.
| | - Elisabeth Bel
- Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Arnaud Bourdin
- CHU Montpellier, PhyMedExp, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Ignacio Dávila
- Allergy Service, University of Salamanca, Salamanca, Spain
| | - Jo A Douglass
- Department of Medicine, The Royal Melbourne Hospital and the University of Melbourne, Melbourne, Australia
| | - J Mark FitzGerald
- Centre for Lung Health, University of British Columbia, Vancouver, BC, Canada
| | | | - Njira L Lugogo
- Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Mich
| | - Andrea Matucci
- Immunoallergology Unit, Careggi University Hospital, Florence, Italy
| | - Ian D Pavord
- Oxford Respiratory NIHR BRC, University of Oxford, Oxford, United Kingdom
| | | | - Monica Kraft
- Department of Medicine, University of Arizona, Tucson, Ariz
| |
Collapse
|
29
|
Lombardi C, Berti A, Cottini M. The emerging roles of eosinophils: Implications for the targeted treatment of eosinophilic-associated inflammatory conditions. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:42-53. [PMID: 35496822 PMCID: PMC9040157 DOI: 10.1016/j.crimmu.2022.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/06/2022] [Accepted: 03/07/2022] [Indexed: 01/20/2023] Open
Abstract
Eosinophils have multiple relevant biological functions, including the maintenance of homeostasis, host defense against infectious agents, innate immunity activities, immune regulation through Th1/Th2 balance, anti-inflammatory, and anti-tumorigenic effects. Eosinophils also have a main role in tissue damage through eosinophil-derived cytotoxic mediators that are involved in eosinophilic inflammation, as documented in Th2-high asthma and other eosinophilic-associated inflammatory conditions. Recent evidence shows that these multiple and apparently conflicting functions may be attributed to the existence of different eosinophil subtypes (i.e.: tissue resident and inducible eosinophils). Therapeutic intervention with biological agents that totally deplete tissues and circulating eosinophils or, vice versa, maintain a minimal proportion of eosinophils, particularly the tissue-resident ones, could therefore have a very different impact on patients, especially when considering the administration of these therapies for prolonged time. In addition, the characterization of the predominant pathway underlying eosinophilic inflammation by surrogate biomarkers (circulating eosinophils, organ-specific eosinophils levels such as eosinophil count in sputum, bronchoalveolar lavage, tissue biopsy; total circulating IgE levels, or the use of FeNO) in the single patient with an eosinophilic-associated inflammatory condition could help in choosing the treatment. These observations are crucial in light of the increasing therapeutic armamentarium effective in modulating eosinophilic inflammation through the inhibition in different, yet complementary ways of eosinophil pathways, such as the interleukin-5 one (with mepolizumab, benralizumab, reslizumab) or the interleukin-4/13 one (with dupilumab and lebrikizumab), in severe T2-high asthma as well as in other systemic eosinophilic associated diseases, such as eosinophilic granulomatosis with polyangiitis and hypereosinophilic syndrome. Recent evidence pointed out the existence of different eosinophil subtypes, i.e. tissue resident and inducible eosinophils, with different and apparently conflicting functions. Biological therapies with different mechanisms can deplete completely tissues and circulating eosinophils or maintain a minimal proportion of eosinophils, particularly the tissue-resident ones, and this could therefore have a different impact on patients, especially when considering the administration of these therapies for prolonged time. The identification of the predominant pathway underlying eosinophilic inflammation by surrogate biomarkers (circulating eosinophils, organ-specific eosinophils levels such as eosinophil count in sputum, bronchoalveolar lavage, tissue biopsy; total circulating IgE levels, or the use of FeNO) should be sought in the single patient with an eosinophilic-associated inflammatory condition. These considerations may help in choosing the best anti-eosinophilic treatment, considering the increasing therapeutic armamentarium effective in modulating eosinophilic inflammation through the inhibition of the interleukin-5 one (with mepolizumab, benralizumab, reslizumab) or the interleukin-4/13 one (with dupilumab and lebrikizumab)
Collapse
Affiliation(s)
- Carlo Lombardi
- Departmental Unit of Allergology, Immunology & Pulmonary Diseases, Fondazione Poliambulanza, Brescia, Italy
- Corresponding author. Departmental Unit of Pneumology & Allergology, Fondazione Poliambulanza Istituto Ospedaliero, Via Bissolati, 57 Brescia, 25100, Italy.
| | - Alvise Berti
- Ospedale Santa Chiara and Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Thoracic Disease Research Unit, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
30
|
Dolitzky A, Shapira G, Grisaru-Tal S, Hazut I, Avlas S, Gordon Y, Itan M, Shomron N, Munitz A. Transcriptional Profiling of Mouse Eosinophils Identifies Distinct Gene Signatures Following Cellular Activation. Front Immunol 2022; 12:802839. [PMID: 34970274 PMCID: PMC8712732 DOI: 10.3389/fimmu.2021.802839] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are multifunctional, evolutionary conserved leukocytes that are involved in a plethora of responses ranging from regulation of tissue homeostasis to host defense and cancer. Eosinophils have been studied mostly in the context of Type 2 inflammatory responses such as those found in allergy. Nonetheless, it is now evident that they participate in Type 1 inflammatory responses and can respond to Type 1 cytokines such as IFN-γ. Recent data suggest that the pleotropic roles of eosinophils are due to heterogeneous responses to environmental cues. Despite this, the activation profile of eosinophils, in response to various stimuli is yet to be defined. To better understand the transcriptional spectrum of eosinophil activation, we exposed eosinophils to Type 1 (e.g. IFN-γ, E. coli) vs. Type 2 (e.g. IL-4) conditions and subjected them to global RNA sequencing. Our analyses show that IL-4, IFN-γ, E. coli and IFN-γ in the presence of E. coli (IFN-γ/E. coli)-stimulated eosinophils acquire distinct transcriptional profiles, which polarize them towards what we termed Type 1 and Type 2 eosinophils. Bioinformatics analyses using Gene Ontology based on biological processes revealed that different stimuli induced distinct pathways in eosinophils. These pathways were confirmed using functional assays by assessing cytokine/chemokine release (i.e. CXCL9, CCL24, TNF-α and IL-6) from eosinophils following activation. In addition, analysis of cell surface markers highlighted CD101 and CD274 as potential cell surface markers that distinguish between Type 1 and Type 2 eosinophils, respectively. Finally, the transcriptome signature of Type 1 eosinophils resembled that of eosinophils that were obtained from mice with experimental colitis whereas the transcriptome signature of Type 2 eosinophils resembled that of eosinophils from experimental asthma. Our data demonstrate that eosinophils are polarized to distinct “Type 1” and “Type 2” phenotypes following distinct stimulations. These findings provide fundamental knowledge regarding the heterogeneity of eosinophils and support the presence of transcriptional differences between Type 1 and Type 2 cells that are likely reflected by their pleotropic activities in diverse disease settings.
Collapse
Affiliation(s)
- Avishay Dolitzky
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Guy Shapira
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Grisaru-Tal
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Hazut
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shmulik Avlas
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaara Gordon
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Micahl Itan
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
31
|
Chandler J, Prout M, Old S, Morgan C, Ronchese F, Benoist C, Le Gros G. BCL6 deletion in CD4 T cells does not affect Th2 effector mediated immunity in the skin. Immunol Cell Biol 2022; 100:791-804. [PMID: 36177669 PMCID: PMC9828354 DOI: 10.1111/imcb.12589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/05/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Recent studies propose that T follicular helper (Tfh) cells possess a high degree of functional plasticity in addition to their well-defined roles in mediating interleukin-4-dependent switching of germinal center B cells to the production of immunoglobulin (Ig)G1 and IgE antibodies. In particular Tfh cells have been proposed to be an essential stage in Th2 effector cell development that are able to contribute to innate type 2 responses. We used CD4-cre targeted deletion of BCL6 to identify the contribution Tfh cells make to tissue Th2 effector responses in models of atopic skin disease and lung immunity to parasites. Ablation of Tfh cells did not impair the development or recruitment of Th2 effector subsets to the skin and did not alter the transcriptional expression profile or functional activities of the resulting tissue resident Th2 effector cells. However, the accumulation of Th2 effector cells in lung Th2 responses was partially affected by BCL6 deficiency. These data indicate that the development of Th2 effector cells does not require a BCL6 dependent step, implying Tfh and Th2 effector populations follow separate developmental trajectories and Tfh cells do not contribute to type 2 responses in the skin.
Collapse
Affiliation(s)
- Jodie Chandler
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| | - Melanie Prout
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| | - Sam Old
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| | - Cynthia Morgan
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| | | | | | - Graham Le Gros
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| |
Collapse
|
32
|
Peripheral blood eosinophils priming and in vitro vascular endothelial growth factor stimulation in asthmatics. Postepy Dermatol Alergol 2021; 38:850-854. [PMID: 34849133 PMCID: PMC8610052 DOI: 10.5114/ada.2021.103498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Asthma is a complex airway disease with heterogeneity in molecular pathways. Hypersecretion of many cytokines (e.g. vascular endothelial growth factor – VEGF), inflammatory cells infiltration (e.g. eosinophils) and different genetic factors (e.g. gene polymorphism) might be responsible for physiological and pathological changes in the course of this chronic disease. Aim To reveal the possible expression of activation marker CD69 on eosinophils unstimulated and stimulated by VEGF in patients with asthma. Additionally, the influence of a genetic factor (del18 genotype at -2549 -2567 position in the promoter of the VEGF gene) was considered. Material and methods The study involved 122 participants (82 patients with asthma and 40 healthy controls). CD69 expression on peripheral blood eosinophils was detected by flow cytometry without exogenous stimulation and after in vitro stimulation with VEGF. Genotyping for VEGF-promoter region was performed using the polymerase chain reaction method. Results CD69 was strongly presented (p < 0.05) on unstimulated eosinophils of patients with asthma and del18 genotype in the promoter of the VEGF gene. Stimulation of peripheral eosinophils with VEGF did not induce CD69 expression in a dose-dependent manner. Conclusions Our results may suggest the potential contribution of the VEGF gene polymorphism to the spontaneous increase of eosinophils activity (priming) in patients with asthma. In addition, the results show that VEGF is unlikely to significantly activate eosinophils in asthmatics.
Collapse
|
33
|
Carroll DJ, Cao Y, Bochner BS, O’Sullivan JA. Siglec-8 Signals Through a Non-Canonical Pathway to Cause Human Eosinophil Death In Vitro. Front Immunol 2021; 12:737988. [PMID: 34721399 PMCID: PMC8549629 DOI: 10.3389/fimmu.2021.737988] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is a glycan-binding receptor bearing immunoreceptor tyrosine-based inhibitory and switch motifs (ITIM and ITSM, respectively) that is selectively expressed on eosinophils, mast cells, and, to a lesser extent, basophils. Previous work has shown that engagement of Siglec-8 on IL-5-primed eosinophils causes cell death via CD11b/CD18 integrin-mediated adhesion and NADPH oxidase activity and identified signaling molecules linking adhesion, reactive oxygen species (ROS) production, and cell death. However, the proximal signaling cascade activated directly by Siglec-8 engagement has remained elusive. Most members of the Siglec family possess similar cytoplasmic signaling motifs and recruit the protein tyrosine phosphatases SHP-1/2, consistent with ITIM-mediated signaling, to dampen cellular activation. However, the dependence of Siglec-8 function in eosinophils on these phosphatases has not been studied. Using Siglec-8 antibody engagement and pharmacological inhibition in conjunction with assays to measure cell-surface upregulation and conformational activation of CD11b integrin, ROS production, and cell death, we sought to identify molecules involved in Siglec-8 signaling and determine the stage of the process in which each molecule plays a role. We demonstrate here that the enzymatic activities of Src family kinases (SFKs), Syk, SHIP1, PAK1, MEK1, ERK1/2, PLC, PKC, acid sphingomyelinase/ceramidase, and Btk are all necessary for Siglec-8-induced eosinophil cell death, with no apparent role for SHP-1/2, SHIP2, or c-Raf. While most of these signaling molecules are necessary for Siglec-8-induced upregulation of CD11b integrin at the eosinophil cell surface, Btk is phosphorylated and activated later in the signaling cascade and is instead necessary for CD11b activation. In contrast, SFKs and ERK1/2 are phosphorylated far earlier in the process, consistent with their role in augmenting cell-surface levels of CD11b. In addition, pretreatment of eosinophils with latrunculin B or jasplakinolide revealed that actin filament disassembly is necessary and sufficient for surface CD11b integrin upregulation and that actin polymerization is necessary for downstream ROS production. These results show that Siglec-8 signals through an unanticipated set of signaling molecules in IL-5-primed eosinophils to induce cell death and challenges the expectation that ITIM-bearing Siglecs signal through inhibitory pathways involving protein tyrosine phosphatases to achieve their downstream functions.
Collapse
Affiliation(s)
| | | | | | - Jeremy A. O’Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
34
|
Xie Z, Sun H, Li X, Sun W, Yin J. Alteration of lung tissues proteins in birch pollen induced asthma mice before and after SCIT. PLoS One 2021; 16:e0258051. [PMID: 34618857 PMCID: PMC8496856 DOI: 10.1371/journal.pone.0258051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Subcutaneous immunotherapy (SCIT) is a classic form of allergen-specific immunotherapy that is used to treat birch pollen induced allergic asthma. To investigate the underlying molecular mechanisms of SCIT, we aimed to profile lung samples to explore changes in the differential proteome before and after SCIT in mice with allergic asthma. Fresh lungs were collected from three groups of female BALB/c mice: 1) control mice, 2) birch pollen-induced allergic mice, and 3) birch pollen-induced allergic mice with SCIT. Tandem mass tag (TMT) labelling coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze the lung proteome in the mice. Ingenuity pathway analysis (IPA) and Gene Ontology (GO) classification analysis were applied to identify differentially expressed proteins (DEPs) and crucial pathways. The screened DEPs were validated by immunohistochemistry analysis. A total of 317 proteins were upregulated and 184 proteins were downregulated in the asthma group compared to those of the control group. In contrast, 639 DEPs (163 upregulated and 456 downregulated proteins) were identified after SCIT in comparison with those of the asthma group. Among the 639 DEPs, 277 proteins returned to similar levels as those of the relative non-asthma condition. Bioinformatic analysis revealed that the 277 proteins played a significant role in the leukocyte extravasation signaling pathway. The leukocyte extravasation signaling pathway and related DEPs were of crucial importance in birch pollen SCIT.
Collapse
Affiliation(s)
- Zhijuan Xie
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, P.R. China
- Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Haidan Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, P.R. China
| | - Xiaogang Li
- Department of Central laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, P.R. China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, P.R. China
| | - Jia Yin
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, P.R. China
- Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
35
|
Poncin A, Onesti CE, Josse C, Boulet D, Thiry J, Bours V, Jerusalem G. Immunity and Breast Cancer: Focus on Eosinophils. Biomedicines 2021; 9:biomedicines9091087. [PMID: 34572273 PMCID: PMC8470317 DOI: 10.3390/biomedicines9091087] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 01/21/2023] Open
Abstract
The role of eosinophils, a cell type involved in the immune response to parasitic infections and allergies, has been investigated in different cancer types, in both tumor tissue and at the circulating level. Most studies showed a role mainly in conjunction with immunotherapy in melanomas and lung tumors, while few data are available in breast cancer. In this review, we summarize literature data on breast cancer, showing a prognostic role of circulating eosinophil counts as well as of the presence of tumor tissue infiltration by eosinophils. In particular, some studies showed an association between a higher circulating eosinophil count and a good prognosis, as well as an association with response to neoadjuvant chemotherapy in hormone receptor-negative/HER2-positive and in triple negative breast cancer. Several mechanistic studies have also been conducted in in vivo models, but the exact mechanism by which eosinophils act in the presence of breast cancer is still unknown. Further studies on this subject are desirable, in order to understand their role at the cellular level, identify related biomarkers and/or possibly search for new therapeutic targets.
Collapse
Affiliation(s)
- Aurélie Poncin
- Department of Medical Oncology, University Hospital of Liege, CHU Sart Tilman, 4000 Liege, Belgium; (A.P.); (G.J.)
| | - Concetta Elisa Onesti
- Clinical and Oncological Research Department, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Correspondence:
| | - Claire Josse
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Delphine Boulet
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Jérôme Thiry
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Vincent Bours
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Guy Jerusalem
- Department of Medical Oncology, University Hospital of Liege, CHU Sart Tilman, 4000 Liege, Belgium; (A.P.); (G.J.)
- Department of Medical Oncology, University of Liege, 4000 Liege, Belgium
| |
Collapse
|
36
|
Jurkeviciute E, Januskevicius A, Rimkunas A, Palacionyte J, Malakauskas K. α 4β 1 and α Mβ 2 Integrin Expression and Pro-Proliferative Properties of Eosinophil Subtypes in Asthma. J Pers Med 2021; 11:jpm11090829. [PMID: 34575607 PMCID: PMC8467456 DOI: 10.3390/jpm11090829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 12/02/2022] Open
Abstract
Eosinophilic inflammation is one of the main pathophysiological features in asthma. Two subtypes of eosinophils exist in the lung and systemic circulation: lung-resident eosinophils (rEOS) and inflammatory eosinophils (iEOS). We evaluated the expression of α4β1 and αMβ2 integrins of eosinophil subtypes and their influence on airway smooth muscle (ASM) cell proliferation and viability in asthma. We included 16 severe non-allergic eosinophilic asthma (SNEA) patients, 13 steroid-free, non-severe allergic asthma (AA) patients, and 12 healthy control subjects (HS). For AA patients, a bronchial allergen challenge with Dermatophagoides pteronyssinus was performed. The eosinophil subtypes were distinguished using magnetic bead-labeled antibodies against surface CD62L, and individual combined cell cultures were prepared with ASM cells. The integrins gene expression was analyzed by a quantitative real-time polymerase chain reaction. Proliferation was assessed by the Alamar blue assay, and viability by annexin V and propidium iodide staining. rEOS-like cells were characterized by the relatively higher gene expression of the β1 integrin subunit, whereas iEOS-like cells were characterized by the αM and β2 integrin subunits. The inclusion of either eosinophil subtypes in co-culture significantly increased the proliferation of ASM cells, and the effect of rEOS-like cells was stronger than iEOS-like cells (p < 0.05). Furthermore, rEOS-like cells had a more pronounced effect on reducing ASM cell apoptosis compared to that of iEOS-like cells (p < 0.05). Lastly, the bronchial allergen challenge significantly enhanced only the iEOS-like cells’ effect on ASM cell proliferation and viability in AA patients (p < 0.05). These findings highlight the different expression of α4β1 and αMβ2 integrins on distinct eosinophil subtypes in asthma. Therefore, rEOS-like cells have a stronger effect in stimulating ASM cell proliferation and viability; however, contact with specific allergens mainly enhances pro-proliferative iEOS-like cell properties.
Collapse
Affiliation(s)
- Egle Jurkeviciute
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
- Correspondence: ; Tel.: +370-653-61275
| | - Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Jolita Palacionyte
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| |
Collapse
|
37
|
Differential effects of short- and long-term treatment with mepolizumab on eosinophil kinetics in blood and sputum in eosinophilic asthma. iScience 2021; 24:102913. [PMID: 34409272 PMCID: PMC8361259 DOI: 10.1016/j.isci.2021.102913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 01/21/2023] Open
Abstract
Mepolizumab (anti-IL-5) is a successful biological for treatment of T2/eosinophilic asthma by blocking the IL-5-eosinophil axis. The kinetics of human eosinophils in blood and sputum was determined to better understand the underlying mechanism(s). Pulse-chase labeling was performed with 6,6-2H2-glucose in patients with asthma after short term (4 days) and long term (84 days) treatment with mepolizumab (n = 10) or placebo (n = 10). The retention time of eosinophils in sputum was longer than in blood. Treatment with mepolizumab induced a fast and long-lasting eosinopenia with no reduction of eosinophil progenitors. The retention time of eosinophils in blood was delayed only after short-term treatment. This leads to the hypothesis that IL-5 increases the number of IL-5-responsive progenitors and potentiates homing to the tissues, leading to reactive eosinophilia. Long-term treatment is associated with low numbers of IL-5-independent eosinophils in blood and tissues. Therefore, long-term treatment with mepolizumab restores the kinetics of eosinophils as normally found in homeostasis. Anti-IL-5 (mepolizumab) treatment leads to inhibition of reactive eosinophilia Reactive blood eosinophils have a high retention time in the absence of IL-5 Eosinophils are long lived in the sputum of eosinophil asthmatics Anti-IL-5 reduces proliferating progenitors rather than inhibiting differentiation
Collapse
|
38
|
Kwon EK, Choi Y, Yoon IH, Won HK, Sim S, Lee HR, Kim HS, Ye YM, Shin YS, Park HS, Ban GY. Oleoylethanolamide induces eosinophilic airway inflammation in bronchial asthma. Exp Mol Med 2021; 53:1036-1045. [PMID: 34079051 PMCID: PMC8257664 DOI: 10.1038/s12276-021-00622-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/31/2022] Open
Abstract
Asthma is a chronic eosinophilic inflammatory disease with an increasing prevalence worldwide. Endocannabinoids are known to have immunomodulatory biological effects. However, the contribution of oleoylethanolamide (OEA) to airway inflammation remains to be elucidated. To investigate the effect of OEA, the expression of proinflammatory cytokines was measured by RT-qPCR and ELISA in airway epithelial (A549) cells. The numbers of airway inflammatory cells and cytokine levels in bronchoalveolar lavage fluid, airway hyperresponsiveness, and type 2 innate lymphoid cells (ILC2s) were examined in BALB/c mice after 4 days of OEA treatment. Furthermore, eosinophil activation after OEA treatment was evaluated by measuring cellular CD69 levels in eosinophils from human peripheral eosinophils using flow cytometry. OEA induced type 2 inflammatory responses in vitro and in vivo. OEA increased the levels of proinflammatory cytokines, such as IL-6, IL-8, and IL-33, in A549 cells. In addition, it also induced eosinophilic inflammation, the production of IL-4, IL-5, IL-13, and IL-33 in bronchoalveolar lavage fluid, and airway hyperresponsiveness. OEA increased the numbers of IL-5- or IL-13-producing ILC2s in a mouse model. Finally, we confirmed that OEA increased CD69 expression (an eosinophil activation marker) on purified eosinophils from patients with asthma compared to those from healthy controls. OEA may play a role in the pathogenesis of asthma by activating ILC2s and eosinophils.
Collapse
Affiliation(s)
- Eun-Kyung Kwon
- Department of Pulmonary, Allergy and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Il-Hee Yoon
- VHS Veterans Medical Research Institute, VHS Medical Center, Seoul, Korea
| | - Ha-Kyeong Won
- Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Soyoon Sim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | | | - Hyoung Su Kim
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Young-Min Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Ga-Young Ban
- Department of Pulmonary, Allergy and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea. .,Allergy and Clinical Immunology Research Center, Hallym University College of Medicine, Dongtan, Korea.
| |
Collapse
|
39
|
Rosenberg HF, Foster PS. Eosinophils and COVID-19: diagnosis, prognosis, and vaccination strategies. Semin Immunopathol 2021; 43:383-392. [PMID: 33728484 PMCID: PMC7962927 DOI: 10.1007/s00281-021-00850-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
The unprecedented impact of the coronavirus disease 2019 (COVID-19) pandemic has resulted in global challenges to our health-care systems and our economic security. As such, there has been significant research into all aspects of the disease, including diagnostic biomarkers, associated risk factors, and strategies that might be used for its treatment and prevention. Toward this end, eosinopenia has been identified as one of many factors that might facilitate the diagnosis and prognosis of severe COVID-19. However, this finding is neither definitive nor pathognomonic for COVID-19. While eosinophil-associated conditions have been misdiagnosed as COVID-19 and others are among its reported complications, patients with pre-existing eosinophil-associated disorders (e.g., asthma, eosinophilic gastrointestinal disorders) do not appear to be at increased risk for severe disease; interestingly, several recent studies suggest that a diagnosis of asthma may be associated with some degree of protection. Finally, although vaccine-associated aberrant inflammatory responses, including eosinophil accumulation in the respiratory tract, were observed in preclinical immunization studies targeting the related SARS-CoV and MERS-CoV pathogens, no similar complications have been reported clinically in response to the widespread dissemination of either of the two encapsulated mRNA-based vaccines for COVID-19.
Collapse
Affiliation(s)
- Helene F Rosenberg
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Paul S Foster
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, 2300, Australia
| |
Collapse
|
40
|
Vaillant L, Oster P, McMillan B, Velin D. Gastric eosinophils are detrimental for Helicobacter pylori vaccine efficacy. Vaccine 2021; 39:3590-3601. [PMID: 34049736 DOI: 10.1016/j.vaccine.2021.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori (Hp) colonizes the human gastric mucosa with a high worldwide prevalence. Currently, Hp can be eradicated by the use of antibiotics. Due to the increase of antibiotic resistance, new therapeutic strategies need to be devised: one such approach being prophylactic vaccination. Pre-clinical and clinical data showed that a urease-based vaccine is efficient in decreasing Hp infection through the mobilization of T helper (Th)-dependent immune effectors, including eosinophils. Preliminary data have shown that upon vaccination and subsequent Hp infection, eosinophils accumulate in the gastric mucosa, suggesting a possible implication of this granulocyte subset in the vaccine-induced reduction of Hp infection. In our study, we confirm that activated eosinophils, expressing CD63, CD40, MHCII and PD-L1 at their cell surface, infiltrate the gastric mucosa during vaccine-induced reduction of Hp infection. Strikingly, we provide evidence that bone marrow derived eosinophils efficiently kill Hp in vitro, suggesting that eosinophils may participate to the vaccine-induced reduction of Hp infection. However, conversely to our expectations, the absence of eosinophils does not decrease the efficacy of this Hp vaccine in vivo. Indeed, vaccinated mice that have been genetically ablated of the eosinophil lineage or that have received anti-Sialic acid-binding immunoglobulin-like lectin F eosinophil-depleting antibodies, display a lower Hp colonization when compared to their eosinophil sufficient counterparts. Although the vaccine induces similar urease-specific humoral and Th responses in both eosinophil sufficient and deficient mice, a decreased production of anti-inflammatory cytokines, such as IL-10, TGFβ, and calgranulin B, was specifically observed in eosinophil depleted mice. Taken together, our results suggest that gastric eosinophils maintain an anti-inflammatory environment, thus sustaining chronic Hp infection. Because eosinophils are one of the main immune effectors mobilized by Th2 responses, our study strongly suggests that the formulation of an Hp vaccine needs to include an adjuvant that preferentially primes Hp-specific Th1/Th17 responses.
Collapse
Affiliation(s)
- Laurie Vaillant
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Paul Oster
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Brynn McMillan
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Dominique Velin
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
41
|
Zhou P, Xiang CX, Wei JF. The clinical significance of spondin 2 eccentric expression in peripheral blood mononuclear cells in bronchial asthma. J Clin Lab Anal 2021; 35:e23764. [PMID: 33998076 PMCID: PMC8183911 DOI: 10.1002/jcla.23764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/18/2022] Open
Abstract
Background Bronchial asthma (BA) was a heterogeneous disease characterized by chronic airway inflammation. Spondin 2 (SPON2) was reported to be implicated in the integrin pathway, protein metabolism, and drug‐induced lupus erythematosus. The purpose of this study was to evaluate the significance of SPON2 in BA diagnosis and treatment. Methods Peripheral blood samples were obtained from 137 BA pediatric patients (61 mild‐to‐moderate BA and 76 severe BA) and 59 healthy children. Subject's information, clinical indexes, pulmonary ventilation functions were recorded in the two groups. Peripheral blood mononuclear cells (PBMCs) were isolated from patients’ samples. qRT‐PCR and ELISA assays were employed to examine the levels of SPON2 and inflammatory cytokines, respectively. Pearson's correlation analysis confirmed the association between SPON2 and inflammatory cytokines. Receiver operating characteristic (ROC) analysis was used to evaluate the potentials of SPON2 in terms of BA detection and discriminating against the severity of BA. Results Bioinformatics analysis showed that SPON2, OLFM4, XIST, and TSIX were significantly upregulated, while KDM5D and RPS4Y1 were reduced in BA. GO analysis verified that these six genes were mainly involved in neutrophil degranulation, neutrophil activation involved in immune response, neutrophil activation, and neutrophil‐mediated immunity. After isolating PBMCs, we found that SPON2 was remarkably increased in BA pediatric group compared with healthy children, and the relative levels of SPON2 were related to the severity of BA. The receiver operating characteristic (ROC) analysis revealed the high potentials of SPON2 in BA diagnosis (AUC was 0.8080) and severity distinctions (AUCs were 0.7341 and 0.8541, respectively). Also, we found that there were significant differences in fractional exhaled nitric oxide (FeNO), forced expiratory volume in 1 s (FEV1)%, FEV1/ forced vital capacity (FVC)%, immunoglobulin E (IgE), serum eosinophils, and serum neutrophils between mild‐to‐moderate BA group and severe BA group. Finally, SPON2 was negatively correlated with IL‐12 while positively associated with IL‐4, IL‐13, and IL‐17A. Conclusions SPON2 was a viable biomarker for diagnosing and degree of severity in BA, providing more insight into exploring BA and treatment's pathogenesis.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Pediatric, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, China
| | - Cai-Xia Xiang
- Department of Pediatric, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, China
| | - Jin-Feng Wei
- Department of Respiratory, Hangzhou Children's Hospital, Hangzhou, China
| |
Collapse
|
42
|
Bartig KA, Lee KE, Mosher DF, Mathur SK, Johansson MW. Platelet association with leukocytes in active eosinophilic esophagitis. PLoS One 2021; 16:e0250521. [PMID: 33891621 PMCID: PMC8064567 DOI: 10.1371/journal.pone.0250521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/07/2021] [Indexed: 12/27/2022] Open
Abstract
We previously demonstrated that the percentage of blood eosinophils that are associated with platelets and thus positive for CD41 (integrin αIIb-subunit) correlates with and predicts peak eosinophil count (PEC) in biopsies of eosinophilic esophagitis (EoE) patients after treatment. Thus, flow cytometric determination of CD41+ eosinophils is a potential measure of EoE disease activity. Determinants of association of platelets with eosinophils and other leukocytes in EoE are largely unknown. The objectives of this study were to test the hypotheses that platelets associate with blood leukocytes other than eosinophils in EoE and that such associations also predict EoE activity. Whole blood flow cytometry was performed on samples from 25 subjects before and after two months of standard of care EoE treatment. CD41 positivity of cells within gates for eosinophils, neutrophils, monocytes, lymphocytes, and natural killer cells was compared. We found that percent CD41+ neutrophils, monocytes, and eosinophils correlated with one another such that principal component analysis of the five cell types identified “myeloid” and “lymphoid” factors. Percent CD41+ neutrophils or monocytes, or the myeloid factor, like CD41+ eosinophils, correlated with PEC after treatment, and CD41+ neutrophils or the myeloid factor predicted PEC < 6/high power field after treatment, albeit with lower area under the curve than for CD41+ eosinophils. We conclude that the processes driving platelets to associate with eosinophils in EoE also drive association of platelets with neutrophils and monocytes and that association of platelets with all three cell types is related to disease activity. Clinicaltrials.gov identifier: NCT02775045.
Collapse
Affiliation(s)
- Kelly A. Bartig
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kristine E. Lee
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Deane F. Mosher
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Sameer K. Mathur
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mats W. Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
43
|
Basophils Orchestrating Eosinophils' Chemotaxis and Function in Allergic Inflammation. Cells 2021; 10:cells10040895. [PMID: 33919759 PMCID: PMC8070740 DOI: 10.3390/cells10040895] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Eosinophils are well known to contribute significantly to Th2 immunity, such as allergic inflammations. Although basophils have often not been considered in the pathogenicity of allergic dermatitis and asthma, their role in Th2 immunity has become apparent in recent years. Eosinophils and basophils are present at sites of allergic inflammations. It is therefore reasonable to speculate that these two types of granulocytes interact in vivo. In various experimental allergy models, basophils and eosinophils appear to be closely linked by directly or indirectly influencing each other since they are responsive to similar cytokines and chemokines. Indeed, basophils are shown to be the gatekeepers that are capable of regulating eosinophil entry into inflammatory tissue sites through activation-induced interactions with endothelium. However, the direct evidence that eosinophils and basophils interact is still rarely described. Nevertheless, new findings on the regulation and function of eosinophils and basophils biology reported in the last 25 years have shed some light on their potential interaction. This review will focus on the current knowledge that basophils may regulate the biology of eosinophil in atopic dermatitis and allergic asthma.
Collapse
|
44
|
Mallah N, Rodriguez-Segade S, Gonzalez-Barcala FJ, Takkouche B. Blood eosinophil count as predictor of asthma exacerbation. A meta-analysis. Pediatr Allergy Immunol 2021; 32:465-478. [PMID: 33135257 DOI: 10.1111/pai.13403] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Evidence about the association of high blood eosinophil count with asthma exacerbation is inconsistent and unclear. The objective of this meta-analysis was to determine whether elevated blood eosinophil count predicts asthma exacerbation. METHODS We searched MEDLINE, EMBASE, and additional databases, without any language restriction. We also checked the reference lists of the included studies and of relevant systematic reviews. The main outcome was the occurrence of asthma exacerbation. We calculated global pooled odds ratios (ORs) and their 95% confidence intervals (CIs) and performed predefined subgroup analyses. We appraised the quality of the studies using Newcastle-Ottawa Scale, examined the heterogeneity between studies, assessed publication bias, and carried out sensitivity analyses. RESULTS Among 1567 retrieved publications, 23 observational studies comprising 155,772 participants met the inclusion criteria. High blood eosinophil count was associated with higher odds of asthma exacerbation [OR: 1.31 (95% CI: 1.16, 1.49)], specifically with asthma-related outpatient visits [OR: 1.46 (95% CI: 1.25, 1.70)] and emergency department visits [OR: 1.63 (95% CI: 1.29, 2.07)]. A significant association was observed starting from an eosinophils' cutoff value of 200 cells/μl. The association was observed for cohort studies [OR: 1.30 (95%CI: 1.13, 1.49)], North American studies [OR: 1.43 (95%CI: 1.31, 1.57)], Asian populations [OR: 1.67 (95%CI: 1.34, 2.08)], children [OR: 1.38 (95%CI: 1.22, 1.56)], and studies that adjusted for inhaled corticosteroids therapy [OR: 1.42 (95%CI: 1.28, 1.56)]. CONCLUSIONS Blood eosinophil counts ≥ 200 cells/µL are associated with asthma exacerbation. Blood eosinophil count is a modifiable factor that could be addressed in asthma management strategies.
Collapse
Affiliation(s)
- Narmeen Mallah
- Department of Preventive Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Carlos III Health Research Institute, Madrid, Spain
| | - Santiago Rodriguez-Segade
- Department of Respiratory Medicine, University Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Francisco-Javier Gonzalez-Barcala
- Department of Respiratory Medicine, University Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain.,Department of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.,Spanish Biomedical Research Networking Centre (CIBER-ES), Carlos III Health Research Institute, Madrid, Spain.,Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Bahi Takkouche
- Department of Preventive Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Carlos III Health Research Institute, Madrid, Spain.,Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
45
|
Eosinophil Responses at the Airway Epithelial Barrier during the Early Phase of Influenza A Virus Infection in C57BL/6 Mice. Cells 2021; 10:cells10030509. [PMID: 33673645 PMCID: PMC7997358 DOI: 10.3390/cells10030509] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Eosinophils, previously considered terminally differentiated effector cells, have multifaceted functions in tissues. We previously found that allergic mice with eosinophil-rich inflammation were protected from severe influenza and discovered specialized antiviral effector functions for eosinophils including promoting cellular immunity during influenza. In this study, we hypothesized that eosinophil responses during the early phase of influenza contribute to host protection. Using in vitro and in vivo models, we found that eosinophils were rapidly and dynamically regulated upon influenza A virus (IAV) exposure to gain migratory capabilities to traffic to lymphoid organs after pulmonary infection. Eosinophils were capable of neutralizing virus upon contact and combinations of eosinophil granule proteins reduced virus infectivity through hemagglutinin inactivation. Bi-directional crosstalk between IAV-exposed epithelial cells and eosinophils occurred after IAV infection and cross-regulation promoted barrier responses to improve antiviral defenses in airway epithelial cells. Direct interactions between eosinophils and airway epithelial cells after IAV infection prevented virus-induced cytopathology in airway epithelial cells in vitro, and eosinophil recipient IAV-infected mice also maintained normal airway epithelial cell morphology. Our data suggest that eosinophils are important in the early phase of IAV infection providing immediate protection to the epithelial barrier until adaptive immune responses are deployed during influenza.
Collapse
|
46
|
Duan S, Kondo T, Miwa H, Yang Y, Wang S, Kanda H, Kogure Y, Imamura N, Fujimura T, Kono T, Fukushima M, Tozawa K, Tomita T, Oshima T, Fukui H, Yamamoto S, Noguchi K, Dai Y. Eosinophil-associated microinflammation in the gastroduodenal tract contributes to gastric hypersensitivity in a rat model of early-life adversity. Am J Physiol Gastrointest Liver Physiol 2021; 320:G206-G216. [PMID: 33174456 DOI: 10.1152/ajpgi.00313.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric hypersensitivity is a major pathophysiological feature of functional dyspepsia (FD). Recent clinical studies have shown that a large number of patients with FD present with gastroduodenal microinflammation, which may be involved in the pathophysiology of FD. However, no animal model reflecting this clinical characteristic has been established. The underlying mechanism between microinflammation and FD remains unknown. In this study, using a maternal separation (MS)-induced FD model, we aimed to reproduce the gastroduodenal microinflammation and reveal the interaction between gastroduodenal microinflammation and gastric hypersensitivity. The MS model was established by separating newborn Sprague-Dawley rats for 2 h a day from postnatal day 1 to day 10. At 7-8 wk of age, electromyography was used to determine the visceromotor response to gastric distention (GD) and immunohistochemistry was performed to detect distension-associated neuronal activation as well as immunohistological changes. Our results demonstrated that MS-induced FD rats underwent gastric hypersensitivity with GD at 60 and 80 mmHg, which are related to increased p-ERK1/2 expression in the dorsal horn of T9-T10 spinal cords. Eosinophils, but not mast cells, were significantly increased in the gastroduodenal tract, and the coexpression rate of CD11b and major basic protein significantly increased in MS rats. Treatment with dexamethasone reversed gastric hypersensitivity in MS-induced FD rats by inhibiting eosinophil infiltration. These findings indicated that neonatal MS stress induces eosinophil-associated gastroduodenal microinflammation and gastric hypersensitivity in adulthood in rats. Microinflammation contributes to gastric hypersensitivity; therefore, anti-inflammatory therapy may be effective in treating patients with FD with gastroduodenal microinflammation.NEW & NOTEWORTHY We showed for the first time that neonatal MS stress-induced FD rats undergo gastroduodenal eosinophil-associated microinflammation in adulthood. Suppression of microinflammation attenuated gastric hypersensitivity in MS rats. These findings established a functional link between microinflammation and gastric hypersensitivity, which may provide a potential clue for the clinical treatment of FD.
Collapse
Affiliation(s)
- Shaoqi Duan
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan.,Traditional Medicine Research Center, Chinese Medicine Confucius Institute at Hyogo College of Medicine (CMCIHCM), Kobe, Japan
| | - Takashi Kondo
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroto Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan.,Traditional Medicine Research Center, Chinese Medicine Confucius Institute at Hyogo College of Medicine (CMCIHCM), Kobe, Japan
| | - Yanjing Yang
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan.,Traditional Medicine Research Center, Chinese Medicine Confucius Institute at Hyogo College of Medicine (CMCIHCM), Kobe, Japan.,Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shenglan Wang
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan.,School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Hirosato Kanda
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan.,Traditional Medicine Research Center, Chinese Medicine Confucius Institute at Hyogo College of Medicine (CMCIHCM), Kobe, Japan.,Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yoko Kogure
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Nobuko Imamura
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tadahiro Fujimura
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tomoaki Kono
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masashi Fukushima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Katsuyuki Tozawa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshihiko Tomita
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tadayuki Oshima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hirokazu Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Satoshi Yamamoto
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Koichi Noguchi
- Traditional Medicine Research Center, Chinese Medicine Confucius Institute at Hyogo College of Medicine (CMCIHCM), Kobe, Japan.,Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yi Dai
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan.,Traditional Medicine Research Center, Chinese Medicine Confucius Institute at Hyogo College of Medicine (CMCIHCM), Kobe, Japan.,Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
47
|
The Cycling of Intracellular Calcium Released in Response to Fluid Shear Stress Is Critical for Migration-Associated Actin Reorganization in Eosinophils. Cells 2021; 10:cells10010157. [PMID: 33467432 PMCID: PMC7829934 DOI: 10.3390/cells10010157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
The magnitude of eosinophil mobilization into respiratory tissues drives the severity of inflammation in several airway diseases. In classical models of leukocyte extravasation, surface integrins undergo conformational switches to high-affinity states via chemokine binding activation. Recently, we learned that eosinophil integrins possess mechanosensitive properties that detect fluid shear stress, which alone was sufficient to induce activation. This mechanical stimulus triggered intracellular calcium release and hallmark migration-associated cytoskeletal reorganization including flattening for increased cell–substratum contact area and pseudopodia formation. The present study utilized confocal fluorescence microscopy to investigate the effects of pharmacological inhibitors to calcium signaling and actin polymerization pathways on shear stress-induced migration in vitro. Morphological changes (cell elongation, membrane protrusions) succeeded the calcium flux in untreated eosinophils within 2 min, suggesting that calcium signaling was upstream of actin cytoskeleton rearrangement. The inhibition of ryanodine receptors and endomembrane Ca2+-ATPases corroborated this idea, indicated by a significant increase in time between the calcium spike and actin polymerization. The impact of the temporal link is evident as the capacity of treated eosinophils to move across fibronectin-coated surfaces was significantly hampered relative to untreated eosinophils. Furthermore, we determined that the nature of cellular motility in response to fluid shear stress was nondirectional.
Collapse
|
48
|
Clinical Differences between Early- and Late-Onset Asthma: A Population-Based Cross-Sectional Study. Can Respir J 2021; 2021:8886520. [PMID: 33574971 PMCID: PMC7864752 DOI: 10.1155/2021/8886520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/15/2020] [Indexed: 01/08/2023] Open
Abstract
Background Limited information exists about the nature of late-onset asthma (LOA) without medication intervention when compared to early-onset asthma (EOA). Our goal was to understand how EOA and LOA affect clinical and pathophysiological features. Methods A population-based cross-sectional study was carried out in Zhongshan Hospital (Shanghai, China). EOA and LOA were based on age of diagnosis (before and after age 40 years, respectively). Clinical variables were collected with an emphasis on allergic features, analyzed, related, and compared using one-way ANOVA or Kruskal-Wallis test. Correlations between blood basophils and clinical data were evaluated by Spearman's rank test. Statistical analyses were conducted with SPSS v24.0. Results Of a total of 12,760 adults with cough, sputum, or chest tightness, 90 subjects with EOA (mean age ± standard deviation (SD):28.73 ± 5.89), 111 with LOA (mean age ± SD: 60.25 ± 9.85), and 106 with chronic obstructive pulmonary disease (COPD) (mean age ± SD: 61.58 ± 10.95) were selected. FEV1/FVC (%), FEV1% predicted, and FVC% predicted were all significantly lower in LOA compared to EOA (p < 0.01). The values of post-bronchodilator FEV1 in bronchodilator reversibility testing were higher in the LOA and EOA groups compared to subjects with COPD (p < 0.01). Among allergic features, mite sensitization was most common in EOA patients, followed by LOA and COPD, whereas mold sensitization was more prevalent in LOA than EOA. Moreover, blood eosinophils were a typical feature of asthma in both EOA and LOA compared to COPD and controls (p < 0.01), and there were no differences in blood neutrophils in LOA compared to controls. Interestingly, blood basophils were increased in both EOA (p < 0.01) and LOA (p < 0.05) compared to COPD and controls. This variable correlated with eosinophils in EOA (r = 0.549, p=0.002) but not in LOA. Conclusion LOA is a distinct clinical entity from EOA. In LOA, atopy was less frequent and spirometry values were lower when compared to EOA. In EOA, blood basophils and eosinophils were significantly correlated owing to pathophysiological differences between the two forms of the disease.
Collapse
|
49
|
Lee LY, Hew GSY, Mehta M, Shukla SD, Satija S, Khurana N, Anand K, Dureja H, Singh SK, Mishra V, Singh PK, Gulati M, Prasher P, Aljabali AAA, Tambuwala MM, Thangavelu L, Panneerselvam J, Gupta G, Zacconi FC, Shastri M, Jha NK, Xenaki D, MacLoughlin R, Oliver BG, Chellappan DK, Dua K. Targeting eosinophils in respiratory diseases: Biological axis, emerging therapeutics and treatment modalities. Life Sci 2021; 267:118973. [PMID: 33400932 DOI: 10.1016/j.lfs.2020.118973] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
Eosinophils are bi-lobed, multi-functional innate immune cells with diverse cell surface receptors that regulate local immune and inflammatory responses. Several inflammatory and infectious diseases are triggered with their build up in the blood and tissues. The mobilization of eosinophils into the lungs is regulated by a cascade of processes guided by Th2 cytokine generating T-cells. Recruitment of eosinophils essentially leads to a characteristic immune response followed by airway hyperresponsiveness and remodeling, which are hallmarks of chronic respiratory diseases. By analysing the dynamic interactions of eosinophils with their extracellular environment, which also involve signaling molecules and tissues, various therapies have been invented and developed to target respiratory diseases. Having entered clinical testing, several eosinophil targeting therapeutic agents have shown much promise and have further bridged the gap between theory and practice. Moreover, researchers now have a clearer understanding of the roles and mechanisms of eosinophils. These factors have successfully assisted molecular biologists to block specific pathways in the growth, migration and activation of eosinophils. The primary purpose of this review is to provide an overview of the eosinophil biology with a special emphasis on potential pharmacotherapeutic targets. The review also summarizes promising eosinophil-targeting agents, along with their mechanisms and rationale for use, including those in developmental pipeline, in clinical trials, or approved for other respiratory disorders.
Collapse
Affiliation(s)
- Li-Yen Lee
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Geena Suet Yin Hew
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Flavia C Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Madhur Shastri
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7005, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Dikaia Xenaki
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, H91 HE94 Galway, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW 2305, Australia; School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India.
| |
Collapse
|
50
|
Ban GY, Kim SC, Lee HY, Ye YM, Shin YS, Park HS. Risk Factors Predicting Severe Asthma Exacerbations in Adult Asthmatics: A Real-World Clinical Evidence. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:420-434. [PMID: 33733637 PMCID: PMC7984950 DOI: 10.4168/aair.2021.13.3.420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Minimizing the future risk of asthma exacerbation (AE) is one of the main goals of asthma management. We investigated prognostic factors for risk of severe AE (SAE) in a real-world clinical setting. METHODS This is an observational study evaluating subjects who were diagnosed with asthma and treated with anti-asthmatic medications from January 1995 to June 2018. Risk factors for SAE were analyzed in 2 treatment periods (during the initial 2 years and the following 3-10 years of treatment) using the big data of electronic medical records. RESULTS In this study, 5,058 adult asthmatics were enrolled; 1,335 (28.64%) experienced ≥ 1 SAE during the initial 2 years of treatment. Female sex, higher peripheral eosinophil/basophil counts, and lower levels of forced expiratory volume in 1 second (FEV1; %) were factors predicting the risk of SAEs (P < 0.001 for all). Higher serum total immunoglobulin E levels increased the risk of SAEs among the patients having ≤ 2 SAEs (P = 0.025). Patients with more frequent SAEs during the initial 2 years of treatment had significantly higher risks of SAEs during the following years of treatment (P < 0.001, for all) (patients with ≥ 4 SAEs, odds ratio [OR], 29.147; those with 3 SAEs, OR, 14.819; those with 2 SAEs, OR, 9.867; those with 1 SAE, OR, 5.116), had higher maintenance doses of systemic steroids, and showed more gradual decline in FEV1 (%) and FEV1/forced vital capacity levels maintained during the following years of treatment (P < 0.001 for all). CONCLUSIONS Asthmatics having risk factors for SAEs (female sex, higher peripheral eosinophil/basophil counts, and lower FEV1) should be strictly monitored to prevent future risk and improve clinical outcomes.
Collapse
Affiliation(s)
- Ga Young Ban
- Department of Pulmonary, Allergy, and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea.,Allergy and Clinical Immunology Research Center, Hallym University College of Medicine, Chuncheon, Korea
| | - Su Chin Kim
- Department of Statistics, Clinical Trial Center, Ajou University Medical Center, Suwon, Korea
| | - Hyun Young Lee
- Department of Statistics, Clinical Trial Center, Ajou University Medical Center, Suwon, Korea
| | - Young Min Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|