1
|
Balla J, Rathore APS, St. John AL. Maternal IgE Influence on Fetal and Infant Health. Immunol Rev 2025; 331:e70029. [PMID: 40281548 PMCID: PMC12032057 DOI: 10.1111/imr.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Immunoglobulin E (IgE) is the most recently discovered and evolved mammalian antibody type, best known for interacting with mast cells (MCs) as immune effectors. IgE-mediated antigen sensing by MC provides protection from parasites, venomous animals, bacteria, and other insults to barrier tissues exposed to the environment. IgE and MCs act as inflammation amplifiers and immune response adjuvants. Thus, IgE production and memory formation are greatly constrained and require specific licensing. Failure of regulation gives rise to allergic disease, one of the top causes of chronic illness. Increasing evidence suggests allergy development often starts early in life, including prenatally, with maternal influence being central in shaping the offspring's immune system. Although IgE often exists before birth, an endogenous source of IgE-producing B cells has not been identified. This review discusses the mechanisms of maternal IgE transfer into the offspring, its interactions with offspring MCs and antigen-presenting cells, and the consequences for allergic inflammation and allergen sensitization development. We discuss the multifaceted effects of pre-existing IgG, IgE, and their glycosylation on maternal IgE transfer and functionality in the progeny. Understanding the IgE-mediated mechanisms predisposing for early life allergy development may allow their targeting with existing therapeutics and guide the development of new ones.
Collapse
Affiliation(s)
- Jozef Balla
- Programme in Emerging Infectious DiseasesDuke‐National University of Singapore Medical SchoolSingaporeSingapore
| | - Abhay P. S. Rathore
- Programme in Emerging Infectious DiseasesDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- Department of PathologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Ashley L. St. John
- Programme in Emerging Infectious DiseasesDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- Department of PathologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- SingHealth Duke‐NUS Global Health InstituteSingaporeSingapore
| |
Collapse
|
2
|
Balla J, Rathore AP, St John AL. Mechanisms and risk factors for perinatal allergic disease. Curr Opin Immunol 2024; 91:102505. [PMID: 39566249 DOI: 10.1016/j.coi.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/19/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024]
Abstract
Allergies are among the top causes of chronic disease in children. Their pathogenesis classically involves T helper 2 (Th2)-type inflammation driven by IgE-mediated allergen sensing. Triggers influencing allergic disease occur early in life, including before birth. The immature fetal immune system and mucosal barriers undergo periods of plasticity that are open to longitudinal programming by maternal influence. Evidence supports the importance of the maternal immune system in shaping perinatal immunity, as the transfer of cytokines, antibodies, and cells promotes offspring protection from pathogens. However, the same components may lead to allergic predisposition. Maternal-fetal interactions are further modified by epigenetic, metabolic, dietary, and microbiome-mediated effects. Here, we review how diverse maternal exposures and mediators signal across the placenta and through nursing perinatally to promote future tolerance or enhance reactivity against allergens. Improved understanding of the mechanisms predisposing for allergic disease in early life can guide the development of new therapeutics and preventative lifestyle modifications.
Collapse
Affiliation(s)
- Jozef Balla
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Abhay Ps Rathore
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore; Department of Pathology, Duke University Medical Center, Durham, North Carolina 27705, USA
| | - Ashley L St John
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore; Department of Pathology, Duke University Medical Center, Durham, North Carolina 27705, USA; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; SingHealth Duke-NUS Global Health Institute, Singapore.
| |
Collapse
|
3
|
Mpakosi A, Sokou R, Theodoraki M, Iacovidou N, Cholevas V, Kaliouli-Antonopoulou C. Deciphering the Role of Maternal Microchimerism in Offspring Autoimmunity: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1457. [PMID: 39336498 PMCID: PMC11433734 DOI: 10.3390/medicina60091457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Feto-maternal microchimerism is the bidirectional transfer of cells through the placenta during pregnancy that can affect the health of both the mother and the offspring, even in childhood or adulthood. However, microchimerism seems to have different consequences in the mother, who already has a developed immune system, than in the fetus, which is vulnerable with immature defense mechanisms. Studies have shown that the presence of fetal microchimeric cells in the mother can be associated with reduced fetal growth, pre-eclampsia, miscarriage, premature birth, and the risk of autoimmune disease development in the future. However, some studies report that they may also play a positive role in the healing of maternal tissue, in cancer and cardiovascular disease. There are few studies in the literature regarding the role of maternal microchimeric cells in fetal autoimmunity. Even fewer have examined their association with the potential triggering of autoimmune diseases later in the offspring's life. The objectives of this review were to elucidate the mechanisms underlying the potential association between maternal cells and autoimmune conditions in offspring. Based on our findings, several hypotheses have been proposed regarding possible mechanisms by which maternal cells may trigger autoimmunity. In Type 1 diabetes, maternal cells have been implicated in either attacking the offspring's pancreatic β-cells, producing insulin, differentiating into endocrine and exocrine cells, or serving as markers of tissue damage. Additionally, several potential mechanisms have been suggested for the onset of neonatal lupus erythematosus. In this context, maternal cells may induce a graft-versus-host or host-versus-graft reaction in the offspring, function as effectors within tissues, or contribute to tissue healing. These cells have also been found to participate in inflammation and fibrosis processes, as well as differentiate into myocardial cells, potentially triggering an immune response. Moreover, the involvement of maternal microchimeric cells has been supported in conditions such as juvenile idiopathic inflammatory myopathies, Sjögren's syndrome, systemic sclerosis, biliary atresia, and rheumatoid arthritis. Conversely, no association has been found between maternal cells and celiac disease in offspring. These findings suggest that the role of maternal cells in autoimmunity remains a controversial topic that warrants further investigation.
Collapse
Affiliation(s)
- Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece
| | - Rozeta Sokou
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Martha Theodoraki
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
| | - Nicoletta Iacovidou
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | | | | |
Collapse
|
4
|
Lee HY, Nazmul T, Lan J, Oyoshi MK. Maternal influences on offspring food allergy. Immunol Rev 2024; 326:130-150. [PMID: 39275992 PMCID: PMC11867100 DOI: 10.1111/imr.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
The prevalence of allergies has been globally escalating. While allergies could appear at any age, they often develop in early life. However, the significant knowledge gap in the field is the mechanisms by which allergies affect certain people but not others. Investigating early factors and events in neonatal life that have a lasting impact on determining the susceptibilities of children to develop allergies is a significant area of the investigation as it promotes the understanding of neonatal immune system that mediates tolerance versus allergies. This review focuses on the research over the recent 10 years regarding the potential maternal factors that influence offspring allergies with a view to food allergy, a potentially life-threatening cause of anaphylaxis. The role of breast milk, maternal diet, maternal antibodies, and microbiota that have been suggested as key maternal factors regulating offspring allergies are discussed here. We also suggest future research area to expand our knowledge of maternal-offspring interactions on the pathogenesis of food allergy.
Collapse
Affiliation(s)
- Hwa Yeong Lee
- Division of Pediatric Allergy, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Tanuza Nazmul
- Division of Pediatric Allergy, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, MA
| | - Jinggang Lan
- Division of Pediatric Allergy, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, MA
| | - Michiko K. Oyoshi
- Division of Pediatric Allergy, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Cherayil BJ, Jain N. From Womb to World: Exploring the Immunological Connections between Mother and Child. Immunohorizons 2024; 8:552-562. [PMID: 39172025 PMCID: PMC11374749 DOI: 10.4049/immunohorizons.2400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Mother and child are immunologically interconnected by mechanisms that we are only beginning to understand. During pregnancy, multiple molecular and cellular factors of maternal origin are transferred across the placenta and influence the development and function of the fetal and newborn immune system. Altered maternal immune states arising from pregnancy-associated infections or immunizations have the potential to program offspring immune function in ways that may have long-term health consequences. In this study, we review current literature on the impact of prenatal infection and vaccination on the developing immune system, highlight knowledge gaps, and look to the horizon to envision maternal interventions that could benefit both the mother and her child.
Collapse
Affiliation(s)
- Bobby J. Cherayil
- Mucosal Immunology and Biology Research Center, Mass General for Children, Charlestown, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Nitya Jain
- Mucosal Immunology and Biology Research Center, Mass General for Children, Charlestown, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Center for Computational and Integrative Biology, Mass General Brigham, Boston, MA
| |
Collapse
|
6
|
D'Gama JD, Bermas BL. Safety of biologic agents for the management of rheumatic diseases during pregnancy. Curr Opin Rheumatol 2024; 36:184-190. [PMID: 38456470 DOI: 10.1097/bor.0000000000001014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW To discuss the current understanding regarding the use of biologic therapeutics in pregnancy. RECENT FINDINGS Our understanding of the mechanisms underlying the potential fetal and infant exposure to biologics as well as a growing body of empirical evidence from real world use of biologics in pregnancy have demonstrated that biologics are generally compatible preconception and during pregnancy. Long-term effects of exposure to biologic agents in utero are not known, but will be uncovered in time. Biosimilars, which are becoming more popular, may not always share the same safety profiles as their originators. SUMMARY Biologics have revolutionized the management of rheumatologic disease and ushered in a new era of clinical remission among patients. These agents, developed and introduced into clinical use at the beginning of the new millennium, are very potent, yet their efficacy in treating disease often in reproductive aged women, raises questions regarding their safety during pregnancy. These therapeutics can cause immunosuppression and can inhibit immunologic circuits that are not only involved in disease pathophysiology but hypothetically could impact the development of the fetal immune system. Reassuringly, biologics, typically antibodies or antibody-based proteins, are introduced to the fetus via the typical route of transplacental antibody transfer, and thus only begin to be transferred in appreciable amounts in the second trimester (after organogenesis). From theoretic and empirical standpoints, biologic use during pregnancy appears well tolerated for fetal development and to not substantially affect infant immune development.
Collapse
Affiliation(s)
- Jonathan D D'Gama
- Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
7
|
Storni F, Vogel M, Bachmann MF, Engeroff P. IgG in the control of FcεRI activation: a battle on multiple fronts. Front Immunol 2024; 14:1339171. [PMID: 38274816 PMCID: PMC10808611 DOI: 10.3389/fimmu.2023.1339171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
The rising global incidence of IgE-mediated allergic reactions poses a significant challenge to the quality of life of affected individuals and to healthcare systems, with current treatments being limited in effectiveness, safety, and disease-modifying capabilities. IgE acts by sensitizing the high-affinity IgE receptor FcεRI expressed by mast cells and basophils, tuning these cells for inflammatory degranulation in response to future allergen encounters. In recent years, IgG has emerged as an essential negative regulator of IgE-dependent allergic inflammation. Mechanistically, studies have proposed different pathways by which IgG can interfere with the activation of IgE-mediated inflammation. Here, we briefly summarize the major proposed mechanisms of action by which IgG controls the IgE-FcεRI inflammatory axis and how those mechanisms are currently applied as therapeutic interventions for IgE-mediated inflammation.
Collapse
Affiliation(s)
- Federico Storni
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Monique Vogel
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| | - Martin F. Bachmann
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| | - Paul Engeroff
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
8
|
Medeleanu MV, Qian YC, Moraes TJ, Subbarao P. Early-immune development in asthma: A review of the literature. Cell Immunol 2023; 393-394:104770. [PMID: 37837916 DOI: 10.1016/j.cellimm.2023.104770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/16/2023]
Abstract
This review presents a comprehensive examination of the various factors contributing to the immunopathogenesis of asthma from the prenatal to preschool period. We focus on the contributions of genetic and environmental components as well as the role of the nasal and gut microbiome on immune development. Predisposing genetic factors, including inherited genes associated with increased susceptibility to asthma, are discussed alongside environmental factors such as respiratory viruses and pollutant exposure, which can trigger or exacerbate asthma symptoms. Furthermore, the intricate interplay between the nasal and gut microbiome and the immune system is explored, emphasizing their influence on allergic immune development and response to environmental stimuli. This body of literature underscores the necessity of a comprehensive approach to comprehend and manage asthma, as it emphasizes the interactions of multiple factors in immune development and disease progression.
Collapse
Affiliation(s)
- Maria V Medeleanu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Canada; Translational Medicine, SickKids Research Institute, Hospital for Sick Children, Canada
| | - Yu Chen Qian
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Canada; Translational Medicine, SickKids Research Institute, Hospital for Sick Children, Canada
| | - Theo J Moraes
- Translational Medicine, SickKids Research Institute, Hospital for Sick Children, Canada; Laboratory Medicine and Pathology, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Canada; Division of Respiratory Medicine, Hospital for Sick Children, Canada
| | - Padmaja Subbarao
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Canada; Translational Medicine, SickKids Research Institute, Hospital for Sick Children, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Canada; Division of Respiratory Medicine, Hospital for Sick Children, Canada; Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Canada.
| |
Collapse
|
9
|
Vidal MS, Menon R. In utero priming of fetal immune activation: Myths and mechanisms. J Reprod Immunol 2023; 157:103922. [PMID: 36913842 PMCID: PMC10205680 DOI: 10.1016/j.jri.2023.103922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Mechanisms of fetal immune system development in utero remain incompletely elucidated. Protective immunity, the arm of reproductive immunology concerned with the progressive education of the fetal immune system as pregnancy advances, allows for programming of the immune system and immune maturation in utero and provides a responsive system to respond to rapid microbial and other antigenic exposure ex utero. Challenges in studying fetal tissues, immune system development, and the contributions of various endogenous and exogenous factors to this process are difficult to study as a progressive sampling of fetal biological samples is impractical during pregnancy, and animal models are limited. This review provides a summary of mechanisms of protective immunity and how it has been shaped, from transplacental transfer of immunoglobulins, cytokines, metabolites, as well as antigenic microchimeric cells to perhaps more controversial notions of materno-fetal transfer of bacteria that subsequently organize into microbiomes within the fetal tissues. This review will also provide a quick overview of future direction in the area of research on fetal immune system development and discusses methods to visualize fetal immune populations and determine fetal immune functions, as well as a quick look into appropriate models for studying fetal immunity.
Collapse
Affiliation(s)
- Manuel S Vidal
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston TX, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Philippines
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston TX, USA.
| |
Collapse
|
10
|
Chen K, Hao Y, Guzmán M, Li G, Cerutti A. Antibody-mediated regulation of basophils: emerging views and clinical implications. Trends Immunol 2023; 44:408-423. [PMID: 37147229 PMCID: PMC10219851 DOI: 10.1016/j.it.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
An increasing number of human diseases, including allergies, infections, inflammation, and cancer, involve roles for basophils. Traditionally viewed as the rarest leukocytes that are present only in the circulation, basophils have recently emerged as important players in systemic as well as tissue-specific immune responses. Their functions are regulated by immunoglobulins (Igs), and this enables basophils to integrate diverse adaptive and innate immunity signals. IgE is well known to regulate basophil responses in the context of type 2 immunity and allergic inflammation; however, growing evidence shows that IgG, IgA, and IgD also shape specific aspects of basophil functions relevant to many human diseases. We discuss recent mechanistic advances underpinning antibody-mediated basophil responses and propose strategies for the treatment of basophil-associated disorders.
Collapse
Affiliation(s)
- Kang Chen
- Departments of Obstetrics and Gynecology, Oncology, Biochemistry, and Microbiology and Immunology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Yujing Hao
- Departments of Obstetrics and Gynecology, Oncology, Biochemistry, and Microbiology and Immunology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mauricio Guzmán
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona 08003, Spain
| | - Genxia Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Andrea Cerutti
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona 08003, Spain; Marc and Jennifer Lipschultz Precision Immunology Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Catalan Institute for Research and Advanced Studies (ICREA), Barcelona Biomedical Research Park, Barcelona 08003, Spain.
| |
Collapse
|
11
|
Msallam R, Redegeld FA. Mast cells-fetal mast cells crosstalk with maternal interfaces during pregnancy: Friend or foe? Pediatr Allergy Immunol 2023; 34:e13943. [PMID: 37102389 DOI: 10.1111/pai.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 04/28/2023]
Abstract
Mast cells (MC) are hematopoietic immune cells that play a major role during allergic reactions in adults by releasing a myriad of vasoactive and inflammatory mediators. MC seed all vascularized tissues and are most prominent in organs with a barrier function such as skin, lungs, and intestines. These secreted molecules cause mild symptoms such as localized itchiness and sneezing to life-threatening symptoms (i.e., anaphylactic shock). Presently, despite the extensive research on Th2-mediated immune responses in allergic diseases in adults, we are still unable to determine the mechanisms of the role of MC in developing pediatric allergic (PA) disorders. In this review, we will summarize the most recent findings on the origin of MC and discuss the underappreciated contribution of MC in the sensitization phase to maternal antibodies during pregnancy in allergic reactions and other diseases such as infectious diseases. Then, we will lay out potential MC-dependent therapeutic strategies to be considered in future investigations to understand the remaining gaps in MC research for a better quality of life for these young patients.
Collapse
Affiliation(s)
- Rasha Msallam
- Next Gen of Immunology (NGIg) Consultancy, Dubai, UAE
| | - Frank A Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Plattner K, Bachmann MF, Vogel M. On the complexity of IgE: The role of structural flexibility and glycosylation for binding its receptors. FRONTIERS IN ALLERGY 2023; 4:1117611. [PMID: 37056355 PMCID: PMC10089267 DOI: 10.3389/falgy.2023.1117611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
It is well established that immunoglobulin E (IgE) plays a crucial role in atopy by binding to two types of Fcε receptors (FcεRI and FcεRII, also known as CD23). The cross-linking of FcεRI-bound IgE on effector cells, such as basophils and mast cells, initiates the allergic response. Conversely, the binding of IgE to CD23 modulates IgE serum levels and antigen presentation. In addition to binding to FcεRs, IgE can also interact with other receptors, such as certain galectins and, in mice, some FcγRs. The binding strength of IgE to its receptors is affected by its valency and glycosylation. While FcεRI shows reduced binding to IgE immune complexes (IgE-ICs), the binding to CD23 is enhanced. There is no evidence that galectins bind IgE-ICs. On the other hand, IgE glycosylation plays a crucial role in the binding to FcεRI and galectins, whereas the binding to CD23 seems to be independent of glycosylation. In this review, we will focus on receptors that bind to IgE and examine how the glycosylation and complexation of IgE impact their binding.
Collapse
Affiliation(s)
- Kevin Plattner
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
| | - Martin F. Bachmann
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Monique Vogel
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
- Correspondence: Monique Vogel
| |
Collapse
|
13
|
Pope EM, Laageide L, Beck LA. Management of Allergic Skin Disorders in Pregnancy. Immunol Allergy Clin North Am 2023; 43:117-132. [PMID: 36410998 PMCID: PMC10875915 DOI: 10.1016/j.iac.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The safe management of allergic skin disorders during pregnancy is essential to maternal and fetal health. Poorly controlled allergic skin disease affects the health of mother and child. This article reviews the disease course and treatment of atopic dermatitis, chronic urticaria, and allergic contact dermatitis in pregnancy. It focuses on topical and systemic therapies in the context of pregnancy and breastfeeding. Because disease activity may vary in pregnancy, prescription stewardship is imperative; a balance among disease control, minimum effective dosing, and medication safety profiles should be maintained. Secondary complications and risks to maternal or infant health should also be avoided.
Collapse
Affiliation(s)
- Eleanor M Pope
- UR Medicine Dermatology, 40 Celebration Drive, Rochester, NY 14620
| | - Leah Laageide
- UR Medicine Dermatology, 40 Celebration Drive, Rochester, NY 14620
| | - Lisa A Beck
- UR Medicine Dermatology, 40 Celebration Drive, Rochester, NY 14620.
| |
Collapse
|
14
|
Kothari A, Hirschmugl B, Lee JS, Pfaller B, Schmidthaler K, Szépfalusi Z, Wadsack C, Eiwegger T. The impact of maternal-fetal omalizumab transfer on peanut-specific responses in an ex vivo placental perfusion model. Allergy 2022; 77:3684-3686. [PMID: 35924691 PMCID: PMC10087130 DOI: 10.1111/all.15468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Akash Kothari
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Birgit Hirschmugl
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Jean-Soo Lee
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Birgit Pfaller
- Karl Landsteiner University of Health Sciences, Krems, Austria.,Department of Internal Medicine 1, Karl Landsteiner Institute for Nephrology St. Pölten, University Hospital St. Pölten, St. Pölten, Austria
| | - Klara Schmidthaler
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Zsolt Szépfalusi
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Karl Landsteiner University of Health Sciences, Krems, Austria.,Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St Pölten, Austria
| |
Collapse
|
15
|
Discovery in polyethylene glycol immunogenicity: the characteristic of intergenerational inheritance of anti-polyethylene glycol IgG. Eur J Pharm Biopharm 2022; 172:89-100. [DOI: 10.1016/j.ejpb.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 12/17/2022]
|
16
|
Brinkhaus M, van der Kooi EJ, Bentlage AEH, Ooijevaar-de Heer P, Derksen NIL, Rispens T, Vidarsson G. Human IgE does not bind to human FcRn. Sci Rep 2022; 12:62. [PMID: 34996950 PMCID: PMC8741920 DOI: 10.1038/s41598-021-03852-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/01/2021] [Indexed: 11/15/2022] Open
Abstract
The neonatal Fc receptor (FcRn) is known to mediate placental transfer of IgG from mother to unborn. IgE is widely known for triggering immune responses to environmental antigens. Recent evidence suggests FcRn-mediated transplacental passage of IgE during pregnancy. However, direct interaction of FcRn and IgE was not investigated. Here, we compared binding of human IgE and IgG variants to recombinant soluble human FcRn with β2-microglobulin (sFcRn) in surface plasmon resonance (SPR) at pH 7.4 and pH 6.0. No interaction was found between human IgE and human sFcRn. These results imply that FcRn can only transport IgE indirectly, and thereby possibly transfer allergenic sensitivity from mother to fetus.
Collapse
Affiliation(s)
- Maximilian Brinkhaus
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Elvera J van der Kooi
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Arthur E H Bentlage
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Pleuni Ooijevaar-de Heer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, The Netherlands
| | - Ninotska I L Derksen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, The Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, The Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Lamamy J, Boulard P, Brachet G, Tourlet S, Gouilleux-Gruart V, Ramdani Y. "Ways in which the neonatal Fc-receptor is involved in autoimmunity". J Transl Autoimmun 2021; 4:100122. [PMID: 34568803 PMCID: PMC8449123 DOI: 10.1016/j.jtauto.2021.100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Since the neonatal IgG Fc receptor (FcRn) was discovered, its role has evolved from immunoglobulin recycling and biodistribution to antigen presentation and immune complex routing, bringing it to the center of both humoral and cellular immune responses. FcRn is thus involved in the pathophysiology of immune-related diseases such as cancer, infection, and autoimmune disorders. This review focuses on the role of FcRn in autoimmunity, based on the available data from both animal models and human studies. The knowledge concerning ways in which FcRn is involved in autoimmune response has led to the development of inhibitors for the treatment of autoimmune diseases, also described here. Up to date, the literature remains scarce, shedding light on the need for further studies to fully understand the various pathophysiological roles of this unique receptor. FcRn is an intracellular receptor with a key role in IgG and immune complex management. FcRn-targeting therapies are a promising way of treatment in antibodies mediated diseases.
Collapse
Affiliation(s)
- Juliette Lamamy
- EA7501, GICC, Université François Rabelais de Tours, F-37032, Tours, France
| | - Pierre Boulard
- Laboratoire d'immunologie, CHU Tours, F-37032, Tours, France
| | | | | | | | - Yanis Ramdani
- Service de Médecine Interne, CHU Tours, F-37032, Tours, France
| |
Collapse
|
18
|
Honda Keith Y, Kabashima K. Maternal IgE is transferred to fetuses with IgG and minimally sensitizes fetal/neonatal skin mast cells. J Allergy Clin Immunol 2021; 148:903-904. [PMID: 34183165 DOI: 10.1016/j.jaci.2021.05.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Yuki Honda Keith
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Singapore Immunology Network and Skin Research Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore.
| |
Collapse
|
19
|
Straughen JK, Sitarik AR, Johnson CC, Wegienka G, Ownby DR, Johnson-Hooper TM, Allo G, Levin AM, Cassidy-Bushrow AE. Prenatal IgE as a Risk Factor for the Development of Childhood Neurodevelopmental Disorders. Front Pediatr 2021; 9:601092. [PMID: 34055677 PMCID: PMC8160239 DOI: 10.3389/fped.2021.601092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/30/2021] [Indexed: 01/21/2023] Open
Abstract
Background: Few studies have examined if maternal allergic disease is associated with an offspring's neurodevelopment. We hypothesized that Th-2 biased maternal immune function assessed as total serum immunoglobulin (Ig) E is associated with attention deficit hyperactivity disorder (ADHD). Methods: Data are from the Wayne County Health, Environment, Allergy, and Asthma Longitudinal Study (WHEALS), a racially and socioeconomically diverse birth cohort in metropolitan Detroit, Michigan. Maternal total IgE was measured prenatally and at 1-month postpartum. Child total IgE was assessed at birth, 6 months, and 2 years of age. ADHD diagnosis was based on the parental report at the 10-12-year study visits or medical chart abstraction. Total IgE was log2 transformed. Poisson regression models with robust error variance were used to calculate the risk ratios (RR). Inverse probability weighting was used to correct for potential bias due to a loss to follow-up and non-response. Results: Of the 636 maternal-child pairs in the analysis, 513 children were neurotypical and 123 had ADHD. Maternal prenatal total IgE was significantly associated with ADHD even after adjustment for potential confounders (RR = 1.08, 95% CI 1.03-1.13). Maternal and child IgE measures were positively and significantly correlated, but child total IgE was not associated with ADHD at any time point. Conclusions: Maternal prenatal IgE may influence neurodevelopment, but additional studies are needed to confirm and expand these findings.
Collapse
Affiliation(s)
- Jennifer K. Straughen
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States
| | - Alexandra R. Sitarik
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States
| | | | - Ganesa Wegienka
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States
| | - Dennis R. Ownby
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Tisa M. Johnson-Hooper
- Department of Pediatrics, Henry Ford Hospital, Detroit, MI, United States
- Center for Autism and Developmental Disabilities, Henry Ford Hospital, Detroit, MI, United States
| | - Ghassan Allo
- Department of Pathology, Henry Ford Hospital, Detroit, MI, United States
| | - Albert M. Levin
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States
| | | |
Collapse
|
20
|
Danielewicz H, Dębińska A, Myszczyszyn G, Myszkal A, Hirnle L, Drabik-Chamerska A, Kalita D, Boznański A. Sensitisation patterns and allergy outcomes in pregnant women living in the urban area. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2021; 17:46. [PMID: 33971945 PMCID: PMC8111908 DOI: 10.1186/s13223-021-00547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Worldwide, allergy affects more than one billion people, with particularly rising prevalence in industrialised areas. Specifically, young adults appear to be predominantly targeted for an allergy diagnosis. Allergic diseases in pregnancy are mainly pre-existing but could also occur de novo. The immunological changes while pregnant, with increased Th2 lymphocyte activity, can facilitate allergen sensitisation. OBJECTIVE The aim of this study was to evaluate the pattern of specific IgE (sIgE) sensitisation to common inhalant and food allergens in pregnancy, and assess its relationship to self-reported allergic disease. METHODS We assessed 200 pregnant women, aged 20-38 years (mean age = 29 years), participant of ELMA (Epigenetic Hallmark of Maternal Atopy and Diet) study, living in a metropolitan area, with no pregnancy associated metabolic complications, for total IgE and allergen specific IgE to 20 allergens. RESULTS 48% of pregnant women were sensitised to at least one allergen, at a cut-off point of 0.35 kU/L and they were assigned as atopic. However 42% in atopic group were not reporting any allergic disease. The most common inhalant allergens were: pollen (24.5%) and animal dander (23.5%). The most common food allergens were: cow's milk (5.5%) and apples (4.5%). 7.5% of women reported asthma, 21.5% allergic rhinitis, 11.5% atopic dermatitis and 18.5% food allergy. 8.5% of were taking medication for asthma or allergies. Atopic dermatitis had the highest tendency to become more severe during pregnancy. Total IgE values were significantly higher in atopic women. CONCLUSIONS Allergic sensitisation is a common phenomenon in pregnancy. Some sensitisations could be asymptomatic. Further studies should investigate if sensitisation in mothers confers risks for immune alterations in their children.
Collapse
Affiliation(s)
- Hanna Danielewicz
- 1st Department of Pediatrics, Allergology and Cardiology, Wroclaw Medical University, ul. Chalubinskiego 2a, 50-368, Wroclaw, Poland.
| | - Anna Dębińska
- 1st Department of Pediatrics, Allergology and Cardiology, Wroclaw Medical University, ul. Chalubinskiego 2a, 50-368, Wroclaw, Poland
| | - Grzegorz Myszczyszyn
- 1st Department of Gynecology and Obstetrics, Wroclaw Medical University, ul. Chalubinskiego 5, 50-368, Wroclaw, Poland
| | - Anna Myszkal
- 1st Department of Gynecology and Obstetrics, University Hospital of Jan Mikulicz-Radecki in Wroclaw, ul. Chalubinskiego 5, 50-368, Wroclaw, Poland
| | - Lidia Hirnle
- 1st Department of Gynecology and Obstetrics, Wroclaw Medical University, ul. Chalubinskiego 5, 50-368, Wroclaw, Poland
| | - Anna Drabik-Chamerska
- 1st Department of Pediatrics, Allergology and Cardiology, Wroclaw Medical University, ul. Chalubinskiego 2a, 50-368, Wroclaw, Poland
| | - Danuta Kalita
- 1st Department of Pediatrics, Allergology and Cardiology, Wroclaw Medical University, ul. Chalubinskiego 2a, 50-368, Wroclaw, Poland
| | - Andrzej Boznański
- 1st Department of Pediatrics, Allergology and Cardiology, Wroclaw Medical University, ul. Chalubinskiego 2a, 50-368, Wroclaw, Poland
| |
Collapse
|
21
|
Qi T, Cao Y. In Translation: FcRn across the Therapeutic Spectrum. Int J Mol Sci 2021; 22:3048. [PMID: 33802650 PMCID: PMC8002405 DOI: 10.3390/ijms22063048] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
As an essential modulator of IgG disposition, the neonatal Fc receptor (FcRn) governs the pharmacokinetics and functions many therapeutic modalities. In this review, we thoroughly reexamine the hitherto elucidated biological and thermodynamic properties of FcRn to provide context for our assessment of more recent advances, which covers antigen-binding fragment (Fab) determinants of FcRn affinity, transgenic preclinical models, and FcRn targeting as an immune-complex (IC)-clearing strategy. We further comment on therapeutic antibodies authorized for treating SARS-CoV-2 (bamlanivimab, casirivimab, and imdevimab) and evaluate their potential to saturate FcRn-mediated recycling. Finally, we discuss modeling and simulation studies that probe the quantitative relationship between in vivo IgG persistence and in vitro FcRn binding, emphasizing the importance of endosomal transit parameters.
Collapse
Affiliation(s)
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA;
| |
Collapse
|
22
|
Alonso S, Vidal M, Ruiz-Olalla G, González R, Manaca MN, Jairoce C, Vázquez-Santiago M, Balcells R, Vala A, Rupérez M, Cisteró P, Fuente-Soro L, Cova M, Angov E, Nhacolo A, Sevene E, Aponte JJ, Macete E, Aguilar R, Mayor A, Menéndez C, Dobaño C, Moncunill G. Reduced Placental Transfer of Antibodies Against a Wide Range of Microbial and Vaccine Antigens in HIV-Infected Women in Mozambique. Front Immunol 2021; 12:614246. [PMID: 33746958 PMCID: PMC7965965 DOI: 10.3389/fimmu.2021.614246] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/08/2021] [Indexed: 01/16/2023] Open
Abstract
Transplacental transfer of antibodies is essential for conferring protection in newborns against infectious diseases. We assessed the impact of different factors, including gestational age and maternal infections such as HIV and malaria, on the efficiency of cord blood levels and placental transfer of IgG subclasses. We measured total IgG and IgG subclasses by quantitative suspension array technology against 14 pathogens and vaccine antigens, including targets of maternal immunization, in 341 delivering HIV-uninfected and HIV-infected mother-infant pairs from southern Mozambique. We analyzed the association of maternal HIV infection, Plasmodium falciparum exposure, maternal variables and pregnancy outcomes on cord antibody levels and transplacental transfer. Our results show that maternal antibody levels were the main determinant of cord antibody levels. Univariable and multivariable analysis showed that HIV reduced the placental transfer and cord levels of IgG and IgG1 principally, but also IgG2 to half of the antigens tested. P. falciparum exposure and prematurity were negatively associated with cord antibody levels and placental transfer, but this was antigen-subclass dependent. Our findings suggest that lower maternally transferred antibodies may underlie increased susceptibility to infections of HIV-exposed infants. This could affect efficacy of maternal vaccination, especially in sub-Saharan Africa, where there is a high prevalence of HIV, malaria and unfavorable environmental factors.
Collapse
Affiliation(s)
- Selena Alonso
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Gemma Ruiz-Olalla
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Raquel González
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - M. Nelia Manaca
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Reyes Balcells
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Anifa Vala
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - María Rupérez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pau Cisteró
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Laura Fuente-Soro
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Marta Cova
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Arsenio Nhacolo
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Esperança Sevene
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Department of Physiologic Science, Clinical Pharmacology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - John J. Aponte
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Eusebio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Clara Menéndez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| |
Collapse
|
23
|
Losappio LM, Mirone C, Schroeder JW, Scibilia J, Balossi L, Pastorello EA. Omalizumab Use in Chronic Spontaneous Urticaria during Pregnancy and a Four Years' Follow-Up: A Case Report. Case Rep Dermatol 2020; 12:174-177. [PMID: 33173477 PMCID: PMC7588681 DOI: 10.1159/000509179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/04/2020] [Indexed: 12/27/2022] Open
Abstract
Chronic spontaneous urticaria (CSU) is a benign skin disorder usually responsive to treatment; however, at times it can be difficult to control and become very debilitating. We discuss the case of a woman with CSU that was unresponsive to H1-antihistamines who was treated with omalizumab and became pregnant during omalizumab treatment. We also considered the follow-up of the mother and newborn for 4 years after delivery. Our case report confirms that omalizumab is a safe and effective therapeutic option, after careful evaluations in terms of cost-effectiveness, in pregnant and lactating women with severe chronic urticaria. Assessment throughout follow-up confirmed a regular progression of pregnancy parameters and no adverse reaction was documented in the child from birth to 4 years of age.
Collapse
Affiliation(s)
- Laura Michelina Losappio
- Unit of Allergology and Immunology, ASST Grande Ospedale Metropolitano Niguarda Ca' Granda, Milan, Italy
| | - Corrado Mirone
- Unit of Allergology and Immunology, ASST Grande Ospedale Metropolitano Niguarda Ca' Granda, Milan, Italy
| | - Jan Walter Schroeder
- Unit of Allergology and Immunology, ASST Grande Ospedale Metropolitano Niguarda Ca' Granda, Milan, Italy
| | - Joseph Scibilia
- Unit of Allergology and Immunology, ASST Grande Ospedale Metropolitano Niguarda Ca' Granda, Milan, Italy
| | - Luca Balossi
- Unit of Allergology and Immunology, ASST Grande Ospedale Metropolitano Niguarda Ca' Granda, Milan, Italy
| | - Elide Anna Pastorello
- Unit of Allergology and Immunology, ASST Grande Ospedale Metropolitano Niguarda Ca' Granda, Milan, Italy
| |
Collapse
|
24
|
Msallam R, Balla J, Rathore APS, Kared H, Malleret B, Saron WAA, Liu Z, Hang JW, Dutertre CA, Larbi A, Chan JKY, St. John AL, Ginhoux F. Fetal mast cells mediate postnatal allergic responses dependent on maternal IgE. Science 2020; 370:941-950. [DOI: 10.1126/science.aba0864] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 07/25/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Mast cells (MCs) are central effector cells in allergic reactions that are often mediated by immunoglobulin E (IgE). Allergies commonly start at an early age, and both MCs and IgE are detectable in fetuses. However, the origin of fetal IgE and whether fetal MCs can degranulate in response to IgE-dependent activation are presently unknown. Here, we show that human and mouse fetal MCs phenotypically mature through pregnancy and can be sensitized by maternal IgE. IgE crossed the placenta, dependent on the fetal neonatal Fc receptor (FcRN), and sensitized fetal MCs for allergen-specific degranulation. Both passive and active prenatal sensitization conferred allergen sensitivity, resulting in postnatal skin and airway inflammation after the first allergen encounter. We report a role for MCs within the developing fetus and demonstrate that fetal MCs may contribute to antigen-specific vertical transmission of allergic disease.
Collapse
Affiliation(s)
- Rasha Msallam
- Singapore Immunology Network (SIgN), A*STAR, Singapore 138648, Singapore
| | - Jozef Balla
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Abhay P. S. Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA
| | - Hassen Kared
- Singapore Immunology Network (SIgN), A*STAR, Singapore 138648, Singapore
| | - Benoit Malleret
- Singapore Immunology Network (SIgN), A*STAR, Singapore 138648, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Wilfried A. A. Saron
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Wen Hang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Charles Antoine Dutertre
- Singapore Immunology Network (SIgN), A*STAR, Singapore 138648, Singapore
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), A*STAR, Singapore 138648, Singapore
| | - Jerry K. Y. Chan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
- Academic Clinical Program of Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore 229899, Singapore
- Experimental Fetal Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ashley L. St. John
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A*STAR, Singapore 138648, Singapore
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, The Academia, Singapore 169856, Singapore
| |
Collapse
|
25
|
Pillay P, Moodley K, Vatish M, Moodley J. Exosomal MicroRNAs in Pregnancy Provides Insight into a Possible Cure for Cancer. Int J Mol Sci 2020; 21:ijms21155384. [PMID: 32751127 PMCID: PMC7432616 DOI: 10.3390/ijms21155384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
The biological links between cancer and pregnancy are of recent interest due to parallel proliferative, immunosuppressive and invasive mechanisms between tumour and trophoblast development. Therefore, understanding “cancer-like” mechanisms in pregnancy could lead to the development of novel cancer therapeutics, however, little is understood on how tumour and trophoblast cells recapitulate similar molecular mechanisms. Based on our observations from a previous study, it was not only evident that exosomal miRNAs are involved in the pathophysiology of preeclampsia but also contained cancer-specific miRNAs, which suggested that “pseudo-malignant-like” exosomal-mediated mechanisms exist in pregnancy. The presented study therefore aimed to identify exosomal miRNAs (exomiR) in pregnancy which can be repurposed towards preventing tumour metastasis and immunosuppression. It was identified that exomiR-302d-3p, exomiR-223-3p and exomiR-451a, commonly associated with cancer metastasis, were found to be highly expressed in pregnancy. Furthermore, computational merging and meta-analytical pathway analysis (DIANA miRPath) of significantly expressed exomiRs between 38 ± 1.9 vs. 30 ± 1.11 weeks of gestation indicated controlled regulation of biological pathways associated with cancer metastasis and immunosuppression. Therefore, the observations made in this study provide the experimental framework for the repurposing of exosomal miRNA molecular mechanisms in pregnancy towards treating and preventing cancer.
Collapse
Affiliation(s)
- Preenan Pillay
- Pearson Institute of Higher Education, Faculty of Applied Science, Johannesburg 2153, South Africa
- Nuffield Department of Women’s and Reproductive Health, Women’s Centre, John Radcliffe Hospital, University of Oxford, Oxford 38655, UK;
- Correspondence: or ; Tel.: +27-83-4402-486
| | - Kogi Moodley
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Manu Vatish
- Nuffield Department of Women’s and Reproductive Health, Women’s Centre, John Radcliffe Hospital, University of Oxford, Oxford 38655, UK;
| | - Jagidesa Moodley
- Women’s Health and HIV Research Group, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
26
|
Mimoun A, Delignat S, Peyron I, Daventure V, Lecerf M, Dimitrov JD, Kaveri SV, Bayry J, Lacroix-Desmazes S. Relevance of the Materno-Fetal Interface for the Induction of Antigen-Specific Immune Tolerance. Front Immunol 2020; 11:810. [PMID: 32477339 PMCID: PMC7240014 DOI: 10.3389/fimmu.2020.00810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/08/2020] [Indexed: 12/26/2022] Open
Abstract
In humans, maternal IgGs are transferred to the fetus from the second trimester of pregnancy onwards. The transplacental delivery of maternal IgG is mediated by its binding to the neonatal Fc receptor (FcRn) after endocytosis by the syncytiotrophoblast. IgGs present in the maternal milk are also transferred to the newborn through the digestive epithelium upon binding to the FcRn. Importantly, the binding of IgGs to the FcRn is also responsible for the recycling of circulating IgGs that confers them with a long half-life. Maternally delivered IgG provides passive immunity to the newborn, for instance by conferring protective anti-flu or anti-pertussis toxin IgGs. It may, however, lead to the development of autoimmune manifestations when pathological autoantibodies from the mother cross the placenta and reach the circulation of the fetus. In recent years, strategies that exploit the transplacental delivery of antigen/IgG complexes or of Fc-fused proteins have been validated in mouse models of human diseases to impose antigen-specific tolerance, particularly in the case of Fc-fused factor VIII (FVIII) domains in hemophilia A mice or pre-pro-insulin (PPI) in the case of preclinical models of type 1 diabetes (T1D). The present review summarizes the mechanisms underlying the FcRn-mediated transcytosis of IgGs, the physiopathological relevance of this phenomenon, and the repercussion for drug delivery and shaping of the immune system during its ontogeny.
Collapse
Affiliation(s)
- Angelina Mimoun
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Sandrine Delignat
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Ivan Peyron
- HITh, INSERM, UMR_S1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Victoria Daventure
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Maxime Lecerf
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Srinivas V Kaveri
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Jagadeesh Bayry
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | | |
Collapse
|
27
|
Albrecht M, Arck PC. Vertically Transferred Immunity in Neonates: Mothers, Mechanisms and Mediators. Front Immunol 2020; 11:555. [PMID: 32296443 PMCID: PMC7136470 DOI: 10.3389/fimmu.2020.00555] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/11/2020] [Indexed: 12/31/2022] Open
Abstract
Over the last years, an increasing number of outbreaks of vaccine-preventable infectious diseases has been reported. Besides elderly and immunocompromised individuals, newborns and small infants are most susceptible to infections, as their immune system is still immature. This vulnerability during infancy can be mitigated by the transplacental transfer of pathogen-specific antibodies and other mediators of immunity from mother to the fetus during pregnancy, followed postnatally by breast milk-derived immunity. Since this largely antibody-mediated passive immunity can prevent the newborn from infections, neonatal immunity depends strongly on the maternal concentration of respective specific antibodies during pregnancy. If titers are low or wane rapidly after birth, the protection transferred to the child may not be sufficient to prevent disease. Moreover, emerging concepts propose that mothers may transfer active immunity to the newborns via vertical transfer of pathogen-specific T cells. Overall, a promising strategy to augment and prolong neonatal immunity is to vaccinate the mother before or during pregnancy in order to boost maternal antibody concentrations or availability of specific T cells. Hence, a large number of pre-and postconceptional vaccine trials have been carried out to test and confirm this concept. We here highlight novel insights arising from recent research endeavors on the influence of prenatal maternal vaccination against pathogens that can pose a threat for newborns, such as measles, pertussis, rubella and influenza A. We delineate pathways involved in the transfer of specific maternal antibodies. We also discuss the consequences for children's health and long-term immunity resulting from an adjustment of prenatal vaccination regimes.
Collapse
Affiliation(s)
- Marie Albrecht
- Laboratory for Experimental Feto-Maternal Medicine, Department of Gynecology and Obstetrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Clara Arck
- Laboratory for Experimental Feto-Maternal Medicine, Department of Gynecology and Obstetrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Immunobiological aspects of vaccines in pregnancy: Maternal perspective. MATERNAL IMMUNIZATION 2020. [PMCID: PMC7149477 DOI: 10.1016/b978-0-12-814582-1.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immunization during pregnancy is an efficient strategy to protect both the mother and the newborn infant against infectious pathogens. Pregnant women have an increased susceptibility to severe infections caused by some pathogens, but the mechanisms involved remain poorly understood. Pregnancy is associated with dynamic changes in maternal immune system that are critical for tolerance of the fetus. These changes could also play an important role in shaping maternal immune components that are transferred to the newborn infant following natural infection or vaccination to prevent infectious diseases in early life. As the momentum for maternal immunization is growing, there is a need to increase our understanding of the immunobiology of maternal immunization in order to better prevent infectious diseases in the pregnant women and the young infant.
Collapse
|
29
|
Ravn NH, Halling AS, Berkowitz AG, Rinnov MR, Silverberg JI, Egeberg A, Thyssen JP. How does parental history of atopic disease predict the risk of atopic dermatitis in a child? A systematic review and meta-analysis. J Allergy Clin Immunol 2019; 145:1182-1193. [PMID: 31887393 DOI: 10.1016/j.jaci.2019.12.899] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/06/2019] [Accepted: 12/11/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Parental history of atopic disease is a well-established risk factor for the development of atopic dermatitis (AD), but several aspects of this association remain unclear. OBJECTIVE We sought to determine the association of parental history of atopic disease with AD in offspring. METHODS We searched PubMed and EMBASE through June 2018 for relevant records and adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Pooled odds ratios (ORs) with 95% CI were calculated using random-effects models. RESULTS A total of 163 records covering 149 unique studies were included. Of these, 119 studies were included in the meta-analysis. Individuals with parental history of atopic disease had increased odds of AD (OR, 1.81; 95% CI, 1.65-1.99). Parental asthma (OR, 1.56; 95% CI, 1.18-2.05) and allergic rhinitis (OR, 1.68; 95% CI, 1.34-2.11) had a smaller effect than AD (OR, 3.30; 95% CI, 2.46-4.42). The effect of maternal and paternal history was comparable for all atopic diseases. An increase in odds was observed when comparing the effect of having 1 (OR, 1.30; 95% CI, 1.15-1.47) or 2 atopic parents (OR, 2.08; 95% CI, 1.83-2.36), as well as having a parent with 1 (OR, 1.49; 95% CI, 1.28-1.74) or more atopic diseases (OR, 2.32; 95% CI, 1.92-2.81). CONCLUSIONS This study provides evidence-based risk estimates that may guide physicians who counsel parents with a history of atopic disease about their children's risk of AD. This information is of particular importance for future efforts toward establishing prophylactic interventions for AD on a general population level.
Collapse
Affiliation(s)
- Nina H Ravn
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Anne-Sofie Halling
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | - Maria R Rinnov
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jonathan I Silverberg
- Departments of Dermatology, Preventive Medicine, and Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Alexander Egeberg
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jacob P Thyssen
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; National Allergy Research Centre, Herlev and Gentofte Hospital, Hellerup, Denmark.
| |
Collapse
|
30
|
Omalizumab safety in pregnancy. J Allergy Clin Immunol 2019; 145:481-483. [PMID: 31778706 DOI: 10.1016/j.jaci.2019.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 01/04/2023]
|
31
|
Fujimura T, Lum SZC, Nagata Y, Kawamoto S, Oyoshi MK. Influences of Maternal Factors Over Offspring Allergies and the Application for Food Allergy. Front Immunol 2019; 10:1933. [PMID: 31507589 PMCID: PMC6716146 DOI: 10.3389/fimmu.2019.01933] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
The prevalence of food allergy has been steadily rising worldwide with the highest incidence noted among younger children, and increasingly recognized as a growing public concern. The first known ingestion of foods often causes allergic reaction, suggesting that sensitization of offspring with food allergens may occur during pregnancy and/or through breastfeeding. This creates a milieu that shapes the neonatal immune responses to these allergens. However, the effects of maternal allergen exposure and maternal sensitization with allergens on development of allergies in offspring remain controversial. This review discusses recent advances from human data in our understanding of how maternal factors, namely, food allergens, allergen-specific immunoglobulins, cytokines, genetics, and environmental factors transferred during pregnancy or breastfeeding influence offspring allergies and how such effects may be applicable to food allergy. Based on information obtained from mouse models of asthma and food allergy, the review also dissects the mechanisms by which maternal factors, including the impact of immune complexes, transforming growth factor-β, vitamin A, and regulatory T-cell responses, contribute to the induction of neonatal tolerance vs. development of allergic responses to maternally transferred allergens.
Collapse
Affiliation(s)
- Takashi Fujimura
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
- Hiroshima Research Center for Healthy Aging (HiHA), Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | | | - Yuka Nagata
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Seiji Kawamoto
- Hiroshima Research Center for Healthy Aging (HiHA), Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Michiko K. Oyoshi
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
Pyzik M, Sand KMK, Hubbard JJ, Andersen JT, Sandlie I, Blumberg RS. The Neonatal Fc Receptor (FcRn): A Misnomer? Front Immunol 2019; 10:1540. [PMID: 31354709 PMCID: PMC6636548 DOI: 10.3389/fimmu.2019.01540] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibodies are essential components of an adaptive immune response. Immunoglobulin G (IgG) is the most common type of antibody found in circulation and extracellular fluids. Although IgG alone can directly protect the body from infection through the activities of its antigen binding region, the majority of IgG immune functions are mediated via proteins and receptors expressed by specialized cell subsets that bind to the fragment crystallizable (Fc) region of IgG. Fc gamma (γ) receptors (FcγR) belong to a broad family of proteins that presently include classical membrane-bound surface receptors as well as atypical intracellular receptors and cytoplasmic glycoproteins. Among the atypical FcγRs, the neonatal Fc receptor (FcRn) has increasingly gained notoriety given its intimate influence on IgG biology and its ability to also bind to albumin. FcRn functions as a recycling or transcytosis receptor that is responsible for maintaining IgG and albumin in the circulation, and bidirectionally transporting these two ligands across polarized cellular barriers. More recently, it has been appreciated that FcRn acts as an immune receptor by interacting with and facilitating antigen presentation of peptides derived from IgG immune complexes (IC). Here we review FcRn biology and focus on newer advances including how emerging FcRn-targeted therapies may affect the immune responses to IgG and IgG IC.
Collapse
Affiliation(s)
- Michal Pyzik
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Kine M K Sand
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jonathan J Hubbard
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Inger Sandlie
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Digestive Diseases Center, Boston, MA, United States
| |
Collapse
|
33
|
Honda Y, Ono S, Honda T, Kataoka TR, Egawa G, Kitoh A, Otsuka A, Nakajima S, Nomura T, Dainichi T, Kabashima K. Murine neonatal skin mast cells are phenotypically immature and minimally sensitized with transplacentally transferred IgE. J Allergy Clin Immunol 2019; 144:617-620.e5. [PMID: 31125593 DOI: 10.1016/j.jaci.2019.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/28/2019] [Accepted: 05/14/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Yuki Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sachiko Ono
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Tatsuki R Kataoka
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gyohei Egawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiko Kitoh
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Teruki Dainichi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Singapore Immunology Network and Skin Research Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore.
| |
Collapse
|
34
|
Lenz KM, Pickett LA, Wright CL, Galan A, McCarthy MM. Prenatal Allergen Exposure Perturbs Sexual Differentiation and Programs Lifelong Changes in Adult Social and Sexual Behavior. Sci Rep 2019; 9:4837. [PMID: 30886382 PMCID: PMC6423032 DOI: 10.1038/s41598-019-41258-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/05/2019] [Indexed: 12/27/2022] Open
Abstract
Sexual differentiation is the early life process by which the brain is prepared for male or female typical behaviors, and is directed by sex chromosomes, hormones and early life experiences. We have recently found that innate immune cells residing in the brain, including microglia and mast cells, are more numerous in the male than female rat brain. Neuroimmune cells are also key participants in the sexual differentiation process, specifically organizing the synaptic development of the preoptic area and leading to male-typical sexual behavior in adulthood. Mast cells are known for their roles in allergic responses, thus in this study we sought to determine if exposure to an allergic response of the pregnant female in utero would alter the sexual differentiation of the preoptic area of offspring and resulting sociosexual behavior in later life. Pregnant rats were sensitized to ovalbumin (OVA), bred, and challenged intranasally with OVA on gestational day 15, which produced robust allergic inflammation, as measured by elevated immunoglobulin E. Offspring of these challenged mother rats were assessed relative to control rats in the early neonatal period for mast cell and microglia activation within their brains, downstream dendritic spine patterning on POA neurons, or grown to adulthood to assess behavior and dendritic spines. In utero exposure to allergic inflammation increased mast cell and microglia activation in the neonatal brain, and led to masculinization of dendritic spine density in the female POA. In adulthood, OVA-exposed females showed an increase in male-typical mounting behavior relative to control females. In contrast, OVA-exposed males showed evidence of dysmasculinization, including reduced microglia activation, reduced neonatal dendritic spine density, decreased male-typical copulatory behavior, and decreased olfactory preference for female-typical cues. Together these studies show that early life allergic events may contribute to natural variations in both male and female sexual behavior, potentially via underlying effects on brain-resident mast cells.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, 43210, USA.
| | - Lindsay A Pickett
- Department of Pharmacology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Christopher L Wright
- Department of Pharmacology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Anabel Galan
- Department of Psychology, The Ohio State University, Columbus, OH, 43210, USA
| | - Margaret M McCarthy
- Department of Pharmacology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
35
|
Černý V, Hrdý J, Novotná O, Petrásková P, Boráková K, Kolářová L, Prokešová L. Distinct characteristics of Tregs of newborns of healthy and allergic mothers. PLoS One 2018; 13:e0207998. [PMID: 30475891 PMCID: PMC6258229 DOI: 10.1371/journal.pone.0207998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/11/2018] [Indexed: 12/19/2022] Open
Abstract
Allergic diseases represent a major issue in clinical and experimental immunology due to their high and increasing incidence worldwide. Allergy status of the mother remains the best predictor of an individual's increased risk of allergy development. Dysregulation of the balance between different branches of immune response, chiefly excessive polarization towards Th2, is the underlying cause of allergic diseases. Regulatory T cells (Tregs) play a pivotal role in the timely establishment of physiological immune polarization and are crucial for control of allergy. In our study we used flow cytometry to assess Tregs in cord blood of newborns of healthy (n = 121) and allergic (n = 108) mothers. We observed a higher percentage of Tregs (CD4+CD25+CD127lowFoxP3+) in cord blood of children of allergic mothers. However, the percentage of cells expressing extracellular (PD-1, CTLA-4, GITR) and intracellular (IL-10, TGF-β) markers of function was lower (significantly for PD-1 and IL-10) within Tregs of these children. Furthermore, Helios- induced Tregs in the cord blood of children of allergic mothers were decreased. These results were supported by a decrease in plasma levels of IL-10 and TGF-β in cord blood of newborns of allergic mothers, implying lower tolerogenic capacity on the systemic level. Taken together, these findings reflect deficient function of Tregs in the group with higher risk of allergy development. This may be caused by a lower maturation status of the immune system, specifically Tregs, at birth. Such immaturity may represent an important mechanism involved in the increased risk of allergy in children of allergic mothers.
Collapse
Affiliation(s)
- Viktor Černý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Olga Novotná
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Petrásková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | | | - Libuše Kolářová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ludmila Prokešová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
36
|
Wilcox CR, Jones CE. Beyond Passive Immunity: Is There Priming of the Fetal Immune System Following Vaccination in Pregnancy and What Are the Potential Clinical Implications? Front Immunol 2018; 9:1548. [PMID: 30061881 PMCID: PMC6054988 DOI: 10.3389/fimmu.2018.01548] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Infection is responsible for over half a million neonatal deaths worldwide every year, and vaccination in pregnancy is becoming increasingly recognized as an important strategy for the protection of young infants. Increasing evidence suggests that exposure to maternal infection in utero may "prime" the developing immune system, even in the absence of infant infection. It is also possible that in utero priming may occur following maternal vaccination, with antigen-specific cellular immune responses detectable in utero and at birth. However, this remains a topic of some controversy. This review focuses on the evidence for in utero priming and the clinical implications for vaccination in pregnancy, considering whether in utero priming following vaccination could provide protection independent of antibody-mediated passive immunity, the possible effects of vaccination on subsequent infant vaccinations, their potential "non-specific" effects, and how the design and timing of vaccination might affect prenatal priming. Looking forward, we describe other possible options for quantifying antigen-specific cellular responses, including MHC tetramers, novel proliferation and cytokine-based assays, and animal models. Together, these may help us address future research questions and establish more robust evidence of fetal immune system priming.
Collapse
Affiliation(s)
- Christopher R. Wilcox
- NIHR Clinical Research Facility, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Christine E. Jones
- Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| |
Collapse
|
37
|
Pyrhönen K, Kulmala P, Näyhä S. Coincidence of pollen season with the first fetal trimester together with early pet exposure is associated with sensitization to cat and dog allergens in early childhood: A Finnish population-based study. Clin Exp Allergy 2017; 48:306-316. [DOI: 10.1111/cea.13067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 11/15/2017] [Accepted: 11/18/2017] [Indexed: 01/18/2023]
Affiliation(s)
- K. Pyrhönen
- Center for Life Course Health Research; University of Oulu; Oulu Finland
| | - P. Kulmala
- PEDEGO Research Unit and MRC Oulu; University of Oulu and Oulu University Hospital; Oulu Finland
- Biomedicine Research Unit; Medical Microbiology and Immunology; University of Oulu; Oulu Finland
| | - S. Näyhä
- Faculty of Medicine; University of Oulu; Oulu Finland
| |
Collapse
|
38
|
Roberts G, Boyle R, Bryce PJ, Crane J, Hogan SP, Saglani S, Wickman M, Woodfolk JA. Developments in the field of allergy mechanisms in 2015 through the eyes of Clinical & Experimental Allergy. Clin Exp Allergy 2017; 46:1248-57. [PMID: 27682977 DOI: 10.1111/cea.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the first of two papers we described the development in the field of allergy mechanisms as described by Clinical and Experimental Allergy in 2015. Experimental models of allergic disease, basic mechanisms, clinical mechanisms and allergens are all covered. A second paper will cover clinical aspects.
Collapse
Affiliation(s)
- G Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK. .,NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK. .,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK.
| | - R Boyle
- Paediatric Research Unit, Imperial College London, London, UK
| | - P J Bryce
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - J Crane
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - S P Hogan
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - S Saglani
- National Heart & Lung Institute, Imperial College London, London, UK
| | - M Wickman
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - J A Woodfolk
- Allergy Division, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
39
|
Jennewein MF, Abu-Raya B, Jiang Y, Alter G, Marchant A. Transfer of maternal immunity and programming of the newborn immune system. Semin Immunopathol 2017; 39:605-613. [PMID: 28971246 DOI: 10.1007/s00281-017-0653-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022]
Abstract
As placental mammals, the pregnant women and the fetus have intense and prolonged interactions during gestation. There is increasing evidence that multiple molecular as well as cellular components originating in pregnant women are transferred to the fetus. The transfer of maternal antibodies has long been recognized as a central component of newborn immunity against pathogens. More recent studies indicate that inflammatory mediators, micronutrients, microbial products and maternal cells are transferred in utero and influence the fetal immune system. Together, these multiple signals are likely to form a complex network of interactions that program the neonatal immune system and tune its homeostatic regulation. Maternal disorders, in particular infectious diseases, modify these signals and may thereby alter immunity in early life. Understanding maternal programming of the newborn immune system could provide a basis for interventions promoting child health.
Collapse
Affiliation(s)
| | - Bahaa Abu-Raya
- Vaccine Evaluation Center, BC Children's Hospital, Department of Pediatrics, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada
| | - Yiwei Jiang
- Institute for Medical Immunology, Université Libre de Bruxelles, Rue Adrienne Bolland 8, 6041 Gosselies, Charleroi, Belgium
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Rue Adrienne Bolland 8, 6041 Gosselies, Charleroi, Belgium.
| |
Collapse
|
40
|
Susanto NH, Vicendese D, Salim A, Lowe AJ, Dharmage SC, Tham R, Lodge C, Garden F, Allen K, Svanes C, Heinrich J, Abramson MJ, Erbas B. Effect of season of birth on cord blood IgE and IgE at birth: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2017; 157:198-205. [PMID: 28575785 DOI: 10.1016/j.envres.2017.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Elevated cord blood IgE is important on the pathway to allergic disease. The association between season of birth and infant cord blood IgE is not well-established. Study findings differ on which birth season is associated with higher cord blood IgE risk and its magnitude. We conducted a systematic review and meta-analysis of studies on season of birth and cord blood IgE. METHODS We searched Medline, Web of Science, Scopus and ProQuest Health databases, and reviewed reference lists of articles that met the inclusion criteria. All included studies measured IgE as a binary variable using various cut-off values. We performed multivariate-random-effects meta-analysis to handle an exposure with multiple categories of Season of Birth. RESULTS Our search identified 275 records and 10 had sufficient data to be included in a meta-analysis. Relative to summer, winter birth had the greatest odds of high IgE (≥ 0.1IU/ml), meta-analysis OR = 1.24 (95%CI: 1.01-1.52). A similar OR, was found for IgE ≥ 0.5 IU/ml, OR = 1.30 (95%CI: 0.99-1.71). CONCLUSIONS A winter season of birth was associated with statistically significant higher odds of elevated cord blood IgE at cut-off ≥ 0.1IU/ml but borderline at cut-off ≥ 0.5IU/ml. This winter effect is likely to be a marker for a range of other environmental exposures during specific stages of pregnancy, such as aeroallergen exposures, maternal infections and vitamin D levels. Further research is required to support our finding and to identify the exact mechanisms that lead to the winter season of birth effect on circulating IgE levels, as this may have implications for allergic disease prevention.
Collapse
Affiliation(s)
- Nugroho Harry Susanto
- School of Public Health, La Trobe University, Bundoora, Vic, Australia; Indonesia Research Partnership on Infectious Diseases (INA-RESPOND), Jakarta, Indonesia; Epidemiology and Biostatistics Division, Public Health Department, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Don Vicendese
- Cancer Council of Victoria, Melbourne, Vic 3004, Australia
| | - Agus Salim
- Department of Mathematics and Statistics, La Trobe University, Bundoora, Vic, Australia
| | - Adrian J Lowe
- Allergy and Lung Health Unit, School of Population and Global Health, The University of Melbourne, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, School of Population and Global Health, The University of Melbourne, Australia
| | - Rachel Tham
- Allergy and Lung Health Unit, School of Population and Global Health, The University of Melbourne, Australia
| | - Caroline Lodge
- Allergy and Lung Health Unit, School of Population and Global Health, The University of Melbourne, Australia
| | - Frances Garden
- Woolcock Institute of Medical Research, The University of Sydney, Glebe, New South Wales, Australia; South Western Sydney Clinical School, University of New South Wales, Liverpool, New South Wales, Australia; Ingham Institute of Applied Medical Research, University of New South Wales, Liverpool, New South Wales, Australia
| | - Katie Allen
- Department of Allergy and Clinical Immunology and Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Melbourne 3052, Australia
| | - Cecilie Svanes
- Centre for International Health, University of Bergen, Norway and Department Occupational Medicine, Haukelan, University Hospital, Bergen, Norway
| | - Joachim Heinrich
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Inner City Clinic, University Hospital of Munich (LMU), Munich, Germany
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne
| | - Bircan Erbas
- School of Public Health, La Trobe University, Bundoora, Vic, Australia.
| |
Collapse
|
41
|
Riccardo F, Réal A, Voena C, Chiarle R, Cavallo F, Barutello G. Maternal Immunization: New Perspectives on Its Application Against Non-Infectious Related Diseases in Newborns. Vaccines (Basel) 2017; 5:E20. [PMID: 28763018 PMCID: PMC5620551 DOI: 10.3390/vaccines5030020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
The continuous evolution in preventive medicine has anointed vaccination a versatile, human-health improving tool, which has led to a steady decline in deaths in the developing world. Maternal immunization represents an incisive step forward for the field of vaccination as it provides protection against various life-threatening diseases in pregnant women and their children. A number of studies to improve prevention rates and expand protection against the largest possible number of infections are still in progress. The complex unicity of the mother-infant interaction, both during and after pregnancy and which involves immune system cells and molecules, is an able partner in the success of maternal immunization, as intended thus far. Interestingly, new studies have shed light on the versatility of maternal immunization in protecting infants from non-infectious related diseases, such as allergy, asthma and congenital metabolic disorders. However, barely any attempt at applying maternal immunization to the prevention of childhood cancer has been made. The most promising study reported in this new field is a recent proof of concept on the efficacy of maternal immunization in protecting cancer-prone offspring against mammary tumor progression. New investigations into the possibility of exploiting maternal immunization to prevent the onset and/or progression of neuroblastoma, one of the most common childhood malignancies, are therefore justified. Maternal immunization is presented in a new guise in this review. Attention will be focused on its versatility and potential applications in preventing tumor progression in neuroblastoma-prone offspring.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| | - Aline Réal
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, Center for Experimental Research and Medical Studies, University of Torino, Torino 10126, Italy.
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, Center for Experimental Research and Medical Studies, University of Torino, Torino 10126, Italy.
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| |
Collapse
|
42
|
Marchant A, Sadarangani M, Garand M, Dauby N, Verhasselt V, Pereira L, Bjornson G, Jones CE, Halperin SA, Edwards KM, Heath P, Openshaw PJ, Scheifele DW, Kollmann TR. Maternal immunisation: collaborating with mother nature. THE LANCET. INFECTIOUS DISEASES 2017; 17:e197-e208. [PMID: 28433705 DOI: 10.1016/s1473-3099(17)30229-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 10/07/2016] [Accepted: 01/18/2017] [Indexed: 12/15/2022]
Abstract
Maternal immunisation has the potential to substantially reduce morbidity and mortality from infectious diseases after birth. The success of tetanus, influenza, and pertussis immunisation during pregnancy has led to consideration of additional maternal immunisation strategies to prevent group B streptococcus and respiratory syncytial virus infections, among others. However, many gaps in knowledge regarding the immunobiology of maternal immunisation prevent the optimal design and application of this successful public health intervention. Therefore, we did an innovative landscape analysis to identify research priorities. Key topics were delineated through review of the published literature, consultation with vaccine developers and regulatory agencies, and a collaborative workshop that gathered experts across several maternal immunisation initiatives-group B streptococcus, respiratory syncytial virus, pertussis, and influenza. Finally, a global online survey prioritised the identified knowledge gaps on the basis of expert opinion about their importance and relevance. Here we present the results of this worldwide landscape analysis and discuss the identified research gaps.
Collapse
Affiliation(s)
- Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium.
| | - Manish Sadarangani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Division of Infectious Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada; Vaccine Evaluation Center, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Mathieu Garand
- Vaccine Evaluation Center, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada; Vaccine and Immunity Theme, Medical Research Council Unit, Fajara, The Gambia
| | - Nicolas Dauby
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium; Department of Infectious Diseases, Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium
| | - Valerie Verhasselt
- Faculty of Molecular Science, University of Western Australia, Perth, WA, Australia
| | | | - Gordean Bjornson
- Vaccine Evaluation Center, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Christine E Jones
- Paediatric Infectious Diseases Research Group, Institute of Infection and Immunity, St George's, University of London, London, UK
| | - Scott A Halperin
- Canadian Center for Vaccinology, Dalhousie University, Izaak Walton Killam Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | - Kathryn M Edwards
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Paul Heath
- St George's Vaccine Institute, Institute of Infection and Immunity, St George's, University of London, London, UK
| | - Peter J Openshaw
- Respiratory Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - David W Scheifele
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada; Vaccine Evaluation Center, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Tobias R Kollmann
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada; Vaccine Evaluation Center, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada.
| |
Collapse
|
43
|
|
44
|
Kawamoto N, Kamemura N, Kido H, Fukao T. Detection of ovomucoid-specific low-affinity IgE in infants and its relationship to eczema. Pediatr Allergy Immunol 2017; 28:355-361. [PMID: 28140473 DOI: 10.1111/pai.12702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Allergen-specific low-affinity IgE was previously detected in cord blood by a highly sensitive densely carboxylated protein (DCP) chip, but not by ImmunoCAP. Here, we investigated the presence of low-affinity IgE during the early life of infants and observed its relationship with eczema. METHODS We conducted a birth cohort study, collecting sera at birth and 6 and 14 months of age (n = 110). We monitored the ovomucoid (OM)- and egg white (EW)-specific IgE (sIgE) by ImmunoCAP or DCP chip and analyzed the antigen affinity of sIgE by binding inhibition assays in the presence or absence of a mild chaotropic agent, diethyl amine (DEA). The low- and high-affinity OM-sIgEs and sensitization risk factors were analyzed by a multivariate logistic analysis. RESULTS The OM-sIgE measured by DCP chip significantly correlated with that measured by ImmunoCAP, but some samples assessed as OM-sIgE positive by DCP chip were considered OM-sIgE negative by ImmunoCAP. Binding inhibition analysis after DEA treatment was performed for participants judged as OM-sIgE positive by DCP chip at 14 M. The group assessed as negative for OM- and EW-sIgE by ImmunoCAP at 6 and 14 months showed a larger binding inhibition curve shift after DEA treatment than did the group assessed as positive at these times, indicating the presence of low-affinity sIgE antibodies at 14 months. The logistic regression analysis found that persistent eczema from 6 to 14 months is a significant risk factor for developing high-affinity, but not low-affinity, sIgE. CONCLUSIONS Human infant peripheral blood contains allergen-specific low-affinity sIgE. Persistent eczema is related to the development of high-affinity, but not low-affinity, IgE.
Collapse
Affiliation(s)
- Norio Kawamoto
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Norio Kamemura
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
45
|
Lawrence MG, Woodfolk JA, Schuyler AJ, Stillman LC, Chapman MD, Platts-Mills TAE. Half-life of IgE in serum and skin: Consequences for anti-IgE therapy in patients with allergic disease. J Allergy Clin Immunol 2017; 139:422-428.e4. [PMID: 27496596 PMCID: PMC5405770 DOI: 10.1016/j.jaci.2016.04.056] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 04/13/2016] [Accepted: 04/29/2016] [Indexed: 01/08/2023]
Abstract
We present results from clinical studies on plasma infusion done in the late 1970s in patients with hypogammaglobulinemia in which we documented the short half-life of both total and allergen-specific IgE in serum. The development of specific allergic sensitization in the skin of those patients followed by the gradual decrease in sensitization over 50 days was also documented. The data are included here along with a discussion of the existing literature about the half-life of IgE in both the circulation and skin. This rostrum reinterprets the earlier clinical studies in light of new insights and mechanisms that could explain the rapid removal of IgE from the circulation. These mechanisms have clinical implications that relate to the increasing use of anti-IgE mAbs for the treatment of allergic disease.
Collapse
Affiliation(s)
- Monica G Lawrence
- University of Virginia Asthma and Allergic Diseases Center, Charlottesville, Va
| | - Judith A Woodfolk
- University of Virginia Asthma and Allergic Diseases Center, Charlottesville, Va
| | | | | | | | | |
Collapse
|
46
|
Wolsk HM, Andersen MR, Bisgaard H, Bønnelykke K. No evidence of intrauterine sensitization against inhalant allergens. J Allergy Clin Immunol 2016; 140:286-288.e3. [PMID: 28040416 DOI: 10.1016/j.jaci.2016.10.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 11/25/2022]
Affiliation(s)
- Helene Mygind Wolsk
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Malene Rohr Andersen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Gentofte, Denmark; Department of Obstetrics and Gynecology, Aarhus University Hospital, Skejby, Denmark
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
FcεRI cross-linking reduces cord blood dendritic cell responsiveness to LPS. J Allergy Clin Immunol 2016; 139:1992-1994.e3. [PMID: 27919739 DOI: 10.1016/j.jaci.2016.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/16/2016] [Accepted: 11/02/2016] [Indexed: 11/20/2022]
|
48
|
Ponvert C. Quoi de neuf en allergologie pédiatrique en 2015 ? Épidémiologie générale, diagnostic (précoce), traitement, anaphylaxie, allergie alimentaire, médicamenteuse, aux excipients et contaminants, et aux venins et salives d’insectes (Une revue de la littérature internationale 2015). REVUE FRANÇAISE D'ALLERGOLOGIE 2016; 56:579-602. [DOI: 10.1016/j.reval.2016.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
49
|
Wang JY, Chen CA, Hou YI, Hsiao WL, Huang YW, Tsai YT, Tsai HJ. Longitudinal pattern of multiplexed immunoglobulin E sensitization from prenatal stage to the first year of life. Pediatr Allergy Immunol 2016; 27:620-6. [PMID: 27089848 DOI: 10.1111/pai.12583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND The longitudinal pattern of allergen-specific IgE levels from the prenatal stage to early life has remained largely unexplored. METHODS One-hundred and three mother-infant pairs, which were part of an ongoing population-based prospective birth cohort study of early childhood allergic diseases in Tainan, Taiwan, were included in this study. We examined the relationship of 20 allergen-specific IgE levels with blood samples of mothers, cord blood, and infants at 12 months of age using Spearman rank correlation, Kenal τ and McNemar test, respectively. RESULTS Certain degree of IgE sensitization against most 20 examined specific allergens was observed in blood samples of mothers, cord blood, and infants at 12 months of age. When we further examined the association between allergy-related risk factors and atopy in infants at the first year of life, we found positive association between colic pain and atopy in infants at 12 months of age [adjusted odds ratios (AOR) = 3.51; 95% confidence interval (CI): 1.13-10.96; p = 0.03], and borderline significance between wheezing and atopy in infants at 12 months of age (AOR = 4.58; 95% CI: 0.89-23.50; p = 0.07). CONCLUSION The findings from this study suggest that influence of maternal allergen-specific IgE levels on infant immune response might occur at birth and then wane in infants at 12 months of age. Positive association of colic pain and wheezing with atopy in infants at 12 months of age provides supportive evidence for the 'Allergy March' theory of allergy development in an Asian birth cohort.
Collapse
Affiliation(s)
- Jiu-Yao Wang
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Allergy and Clinical Immunology Research (ACIR) Center, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Ann Chen
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Allergy and Clinical Immunology Research (ACIR) Center, National Cheng Kung University, Tainan, Taiwan
| | - Yung-I Hou
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Allergy and Clinical Immunology Research (ACIR) Center, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Lin Hsiao
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Allergy and Clinical Immunology Research (ACIR) Center, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Wen Huang
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Yu-Ting Tsai
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Hui-Ju Tsai
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan.,Department of Public Health, China Medical University, Taichung, Taiwan.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
50
|
Bundhoo A, Paveglio S, Rafti E, Dhongade A, Blumberg RS, Matson AP. Evidence that FcRn mediates the transplacental passage of maternal IgE in the form of IgG anti-IgE/IgE immune complexes. Clin Exp Allergy 2016; 45:1085-98. [PMID: 25652137 PMCID: PMC4437844 DOI: 10.1111/cea.12508] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/13/2014] [Accepted: 01/12/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND The mechanism(s) responsible for acquisition of maternal antibody isotypes other than IgG are not fully understood. This uncertainty is a major reason underlying the continued controversy regarding whether cord blood (CB) IgE originates in the mother or fetus. OBJECTIVE To investigate the capacity of maternal IgE to be transported across the placenta in the form of IgG anti-IgE/IgE immune complexes (ICs) and to determine the role of the neonatal Fc receptor (FcRn) in mediating this process. METHODS Maternal and CB serum concentrations of IgE, IgG anti-IgE, and IgG anti-IgE/IgE ICs were determined in a cohort of allergic and non-allergic mother/infant dyads. Madin-Darby canine kidney (MDCK) cells stably transfected with human FcRn were used to study the binding and transcytosis of IgE in the form of IgG anti-IgE/IgE ICs. RESULTS Maternal and CB serum concentrations of IgG anti-IgE/IgE ICs were highly correlated, regardless of maternal allergic status. IgG anti-IgE/IgE ICs generated in vitro bound strongly to FcRn-expressing MDCK cells and were transcytosed in an FcRn-dependent manner. Conversely, monomeric IgE did not bind to FcRn and was not transcytosed. IgE was detected in solutions of transcytosed IgG anti-IgE/IgE ICs, even though essentially all the IgE remained in complex form. Similarly, the majority of IgE in CB sera was found to be complexed to IgG. CONCLUSIONS AND CLINICAL RELEVANCE These data indicate that human FcRn facilitates the transepithelial transport of IgE in the form of IgG anti-IgE/IgE ICs. They also strongly suggest that the majority of IgE in CB sera is the result of FcRn-mediated transcytosis of maternal-derived IgG anti-IgE/IgE ICs. These findings challenge the widespread perception that maternal IgE does not cross the placenta. Measuring maternal or CB levels of IgG anti-IgE/IgE ICs may be a more accurate predictor of allergic risk.
Collapse
Affiliation(s)
- A Bundhoo
- Division of Neonatology, Connecticut Children's Medical Center, Hartford, CT, USA.,Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - S Paveglio
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - E Rafti
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - A Dhongade
- Division of Neonatology, Connecticut Children's Medical Center, Hartford, CT, USA.,Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - R S Blumberg
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - A P Matson
- Division of Neonatology, Connecticut Children's Medical Center, Hartford, CT, USA.,Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA.,Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|