1
|
Zhao Q, Shao M, Ma L, Zhou R. Insights into Modeling Inflammatory Bowel Disease from Stem Cell Derived Intestinal Organoids. Stem Cell Rev Rep 2025:10.1007/s12015-025-10887-8. [PMID: 40299197 DOI: 10.1007/s12015-025-10887-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2025] [Indexed: 04/30/2025]
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), is a multifactorial, immune-mediated condition marked by chronic gastrointestinal inflammation. This condition significantly impairs patients' quality of life and represents a major public health challenge globally. Pathogenesis of IBD arises from complex interplay among genetic predisposition, environmental factors, immune dysregulation, and microbial dysbiosis. Although significant strides have been made in unraveling these mechanisms, existing therapeutic options remain inadequate in addressing the full spectrum of clinical needs, underscoring the urgent demand for innovative strategies. Regenerative medicine has emerged as a promising frontier, offering novel tools for therapeutic development. We briefly consolidated current knowledge on IBD pathogenesis and treatments, emphasized the pivotal potential of human intestinal organoids (including adult stem cell-derived organoids and pluripotent stem cell- derived organoids) as a robust platform for mechanistic studies and treatment exploration. Leveraging this technology, we aim to advance personalized and next-generation therapies for IBD.
Collapse
Affiliation(s)
- Qi Zhao
- The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Taizhou, Zhejiang Province, China
| | - Miaoli Shao
- The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Taizhou, Zhejiang Province, China
| | - Lisha Ma
- The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Taizhou, Zhejiang Province, China
| | - Renfang Zhou
- The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Taizhou, Zhejiang Province, China.
| |
Collapse
|
2
|
Li YR, Shen X, Zhu Y, Lyu Z, Yang L. The microbiota shapes the life trajectory of mucosal-associated invariant T cells. Trends Microbiol 2025:S0966-842X(25)00107-6. [PMID: 40280795 DOI: 10.1016/j.tim.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells predominantly located in barrier tissues such as the lung, liver, skin, and colon. These cells recognize metabolites derived from the riboflavin biosynthetic pathway, which can rapidly traverse epithelial barriers and be presented during MAIT cell differentiation in the thymus and maturation in peripheral tissues. Furthermore, microbial metabolites significantly influence MAIT cell functions in various conditions, including cancer. This review summarizes how the microbiota shapes the life trajectory of MAIT cells and their antitumor reactivity. Additionally, we discuss the therapeutic implications of manipulating the microbiota as a 'bug-drug' strategy to enhance MAIT cell antitumor immunity, particularly in mucosal cancers, while emphasizing challenges and future directions for integrating microbiota considerations into MAIT cell-based therapies.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Xinyuan Shen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA; Goodman-Luskin Microbiome Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Nabakhteh S, Lotfi A, Afsartaha A, Khodadadi ES, Abdolghaderi S, Mohammadpour M, Shokri Y, Kiani P, Ehtiati S, Khakshournia S, Khatami SH. Nutritional Interventions in Amyotrophic Lateral Sclerosis: From Ketogenic Diet and Neuroprotective Nutrients to the Microbiota-Gut-Brain Axis Regulation. Mol Neurobiol 2025:10.1007/s12035-025-04830-8. [PMID: 40097762 DOI: 10.1007/s12035-025-04830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/09/2025] [Indexed: 03/19/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with significant challenges in diagnosis and treatment. Recent research has highlighted the complex nature of ALS, encompassing behavioral impairments in addition to its neurological manifestations. While several medications have been approved to slow disease progression, ongoing research is focused on identifying new therapeutic targets. The current review focuses on emerging therapeutic strategies and personalized approaches aimed at improving patient outcomes. Recent advancements highlight the importance of targeting additional pathways such as mitochondrial dysfunction and neuroinflammation to develop more effective treatments. Personalized medicine, including genetic testing and biomarkers, is proving valuable in stratifying patients and tailoring treatment options. Complementary therapies, such as nutritional interventions like the ketogenic diet and microbiome modulation, also show promise. This review emphasizes the need for a multidisciplinary approach that integrates early diagnosis, targeted treatments, and supportive care to address the multisystemic nature of ALS and improve the quality of life for patients.
Collapse
Affiliation(s)
- Samira Nabakhteh
- Department of Biochemistry, School of Basic Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Anahita Lotfi
- Department of Food Sciences and Industry, School of Agricultural Sciences and Natural Resources, Islamic Azad University, Khorasgan Branch, Isfahan, Iran
| | - Arman Afsartaha
- Department of Nutrition, Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elaheh Sadat Khodadadi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, 35122, Italy
| | - Siavash Abdolghaderi
- Department of Physical Medicine and Rehabilitation, Iran University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadpour
- Department of Physical Medicine and Rehabilitation, Iran University of Medical Sciences, Tehran, Iran
| | - Yasaman Shokri
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Khakshournia
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Wu Z, Chen X, Han F, Leeansyah E. MAIT cell homing in intestinal homeostasis and inflammation. SCIENCE ADVANCES 2025; 11:eadu4172. [PMID: 39919191 PMCID: PMC11804934 DOI: 10.1126/sciadv.adu4172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025]
Abstract
Mucosa-associated invariant T (MAIT) cells are a large population of unconventional T cells widely distributed in the human gastrointestinal tract. Their homing to the gut is central to maintaining mucosal homeostasis and immunity. This review discusses the potential mechanisms that guide MAIT cells to the intestinal mucosa during homeostasis and inflammation, emphasizing the roles of chemokines, chemokine receptors, and tissue adhesion molecules. The potential influence of the gut microbiota on MAIT cell homing to different regions of the human gut is also discussed. Last, we introduce how organoid technology offers a potentially valuable approach to advance our understanding of MAIT cell tissue homing by providing a more physiologically relevant model that mimics the human gut tissue. These models may enable a detailed investigation of the gut-specific homing mechanisms of MAIT cells. By understanding the regulation of MAIT cell homing to the human gut, potential avenues for therapeutic interventions targeting gut inflammatory conditions such as inflammatory bowel diseases (IBD) may emerge.
Collapse
Affiliation(s)
- Zhengyu Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xingchi Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
5
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Germain L, Veloso P, Lantz O, Legoux F. MAIT cells: Conserved watchers on the wall. J Exp Med 2025; 222:e20232298. [PMID: 39446132 PMCID: PMC11514058 DOI: 10.1084/jem.20232298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
MAIT cells are innate-like T cells residing in barrier tissues such as the lung, skin, and intestine. Both the semi-invariant T cell receptor of MAIT cells and the restricting element MR1 are deeply conserved across mammals, indicating non-redundant functions linked to antigenic specificity. MAIT cells across species concomitantly express cytotoxicity and tissue-repair genes, suggesting versatile functions. Accordingly, MAIT cells contribute to antibacterial responses as well as to the repair of damaged barrier tissues. MAIT cells recognize riboflavin biosynthetic pathway-derived metabolites, which rapidly cross epithelial barriers to be presented by antigen-presenting cells. Changes in gut ecology during intestinal inflammation drive the expansion of strong riboflavin and MAIT ligand producers. Thus, MAIT cells may enable real-time surveillance of microbiota dysbiosis across intact epithelia and provide rapid and context-dependent responses. Here, we discuss recent findings regarding the origin and regulation of MAIT ligands and the role of MAIT cells in barrier tissues. We speculate on the potential reasons for MAIT cell conservation during evolution.
Collapse
Affiliation(s)
- Lilou Germain
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
| | - Pablo Veloso
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
| | - Olivier Lantz
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Laboratoire d’immunologie Clinique, Institut Curie, Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - François Legoux
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| |
Collapse
|
7
|
Afify R, Lipsius K, Wyatt-Johnson SJ, Brutkiewicz RR. Myeloid antigen-presenting cells in neurodegenerative diseases: a focus on classical and non-classical MHC molecules. Front Neurosci 2024; 18:1488382. [PMID: 39720231 PMCID: PMC11667120 DOI: 10.3389/fnins.2024.1488382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/20/2024] [Indexed: 12/26/2024] Open
Abstract
In recent years, increasing evidence has highlighted the critical role of myeloid cells, specifically those that present antigen (APCs) in health and disease. These shape the progression and development of neurodegenerative disorders, where considerable interplay between the immune system and neurons influences the course of disease pathogenesis. Antigen-presenting myeloid cells display different classes of major histocompatibility complex (MHC) and MHC-like proteins on their surface for presenting various types of antigens to a wide variety of T cells. While most studies focus on the role of myeloid MHC class I and II molecules in health and disease, there is still much that remains unknown about non-polymorphic MHC-like molecules such as CD1d and MR1. Thus, in this review, we will summarize the recent findings regarding the contributions of both classical and non-classical MHC molecules, particularly on myeloid microglial APCs, in neurodegenerative diseases. This will offer a better understanding of altered mechanisms that may pave the way for the development of novel therapeutic strategies targeting immune cell-MHC interactions, to mitigate neurodegeneration and its associated pathology.
Collapse
Affiliation(s)
| | | | | | - Randy R. Brutkiewicz
- Department of Microbiology and Immunology and Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
8
|
Hetemäki I, Sarkkinen J, Wong HH, Heikkilä N, Laakso S, Miettinen S, Mäyränpää MI, Mäkitie O, Arstila TP, Kekäläinen E. Reduction in mucosal-associated invariant T cells (MAIT) in APECED patients is associated with elevated serum IFN-γ concentration. Eur J Immunol 2024; 54:e2451189. [PMID: 39292205 PMCID: PMC11628920 DOI: 10.1002/eji.202451189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Mucosal-associated invariant T cells (MAIT) are innate-like lymphocytes enriched in mucosal organs where they contribute to antimicrobial defense. APECED is an inborn error of immunity characterized by immune dysregulation and chronic mucocutaneous candidiasis. Reduction in the frequency of circulating MAITs has been reported in many inborn errors of immunity, but only in a few of them, the functional competence of MAITs has been assessed. Here, we show in a cohort of 24 patients with APECED, that the proportion of circulating MAITs was reduced compared with healthy age and sex-matched controls (1.1% vs. 2.6% of CD3+ T cells; p < 0.001) and the MAIT cell immunophenotype was more activated. Functionally the IFN-γ secretion of patient MAITs after stimulation was comparable to healthy controls. We observed in the patients elevated serum IFN-γ (46.0 vs. 21.1 pg/mL; p = 0.01) and IL-18 (42.6 vs. 13.7 pg/mL; p < 0.001) concentrations. Lower MAIT proportion did not associate with the levels of neutralizing anti-IL-22 or anti-IL-12/23 antibodies but had a clear negative correlation with serum concentrations of IFN-γ, IL-18, and protein C-reactive protein. Our data suggest that reduction of circulating MAITs in patients with APECED correlates with chronic type 1 inflammation but the remaining MAITs are functionally competent.
Collapse
Affiliation(s)
- Iivo Hetemäki
- Translational Immunology Research ProgramUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Joona Sarkkinen
- Translational Immunology Research ProgramUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Huai Hui Wong
- ImmuDocs National Doctoral Education Pilot ProgramUniversity of HelsinkiHelsinkiFinland
| | - Nelli Heikkilä
- Translational Immunology Research ProgramUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Saila Laakso
- Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Folkhälsan Research CenterInstitute of GeneticsHelsinkiFinland
| | - Simo Miettinen
- Translational Immunology Research ProgramUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Mikko I. Mäyränpää
- Department of PathologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Outi Mäkitie
- Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Folkhälsan Research CenterInstitute of GeneticsHelsinkiFinland
- Department of Molecular Medicine, Karolinska Institutet, and Clinical GeneticsKarolinska University HospitalStockholmSweden
| | - T Petteri Arstila
- Translational Immunology Research ProgramUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Eliisa Kekäläinen
- Translational Immunology Research ProgramUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
9
|
Vu LQ, Espinoza JL, Nguyen HTG, Mizuno S, Takami A. MAIT Cells in the Bone Marrow of Patients with Aplastic Anemia. Int J Mol Sci 2024; 25:10160. [PMID: 39337644 PMCID: PMC11432160 DOI: 10.3390/ijms251810160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Mucosal-associated invariant T cells (MAIT cells) are a subset of T cells with innate, effector-like properties that play an essential role in the immune response to microbial infections. In humans, MAIT cells are detectable in the blood, liver, and lungs, but little is known about the frequency of these cells in the bone marrow. Also, the pathogenic role, if any, of MAIT cells in the development of aplastic anemia, a disease with an exquisite origin in the bone marrow, is currently unknown. We investigated the frequency and clinical relevance of bone marrow MAIT cells in a cohort of 14 patients (60.6 ± 23 and 57% women) with aplastic anemia. MAIT cells in the bone marrow samples obtained at diagnosis were evaluated by flow cytometry, and their association with various blood cell parameters and the patients' clinical features was analyzed. MAIT cells were detectable in the bone marrow of all patients, with considerable variations among them. Bone marrow MAIT cells expressing the activator receptor natural killer group 2D - NKG2D (NKG2D+ MAIT cells) were significantly more abundant in the specimens of the aplastic anemia patients than in patients with bone marrow failure distinct from aplastic anemia. In addition, the NKG2D+ MAIT cells positively correlated with whole blood cell counts (WBC), platelet counts, and neutrophil counts, as well as with various inflammatory markers, including neutrophil-to-lymphocyte rate (NLR), platelet-to-lymphocyte rate (PLR), and systemic inflammatory index (SII). In functional studies, bone marrow CD34+ hematopoietic cells exposed to phytohemagglutinin or bacterial-derived lipopolysaccharide and acetyl-6-formylpterin upregulated MR1 (major histocompatibility complex, class I-related, known to interact with MAIT cells) and MICA/B (MHC class I chain-related gene A, a ligand of NKG2D) proteins on their cell surface, suggesting that under stress conditions, CD34+ hematopoietic cells are more likely to interact with NKG2D+ MAIT cells. In addition, NKG2D+ MAIT cells upregulated perforin and granzyme B in response to their interaction with recombinant MICA protein in vitro. This study reports for the first time the frequency of MAIT cells in the bone marrow of patients with aplastic anemia and assesses the potential implications of these cells in the pathogenesis or progression of aplastic anemia.
Collapse
Affiliation(s)
- Lam Quang Vu
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (L.Q.V.)
| | - J. Luis Espinoza
- Faculty of Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan; (J.L.E.); (H.T.G.N.)
| | - Hoang Thao Giang Nguyen
- Faculty of Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan; (J.L.E.); (H.T.G.N.)
| | - Shohei Mizuno
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (L.Q.V.)
| | - Akiyoshi Takami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan; (L.Q.V.)
| |
Collapse
|
10
|
Mirabelli M, Misiti R, Sicilia L, Brunetti FS, Chiefari E, Brunetti A, Foti DP. Hypoxia in Human Obesity: New Insights from Inflammation towards Insulin Resistance-A Narrative Review. Int J Mol Sci 2024; 25:9802. [PMID: 39337290 PMCID: PMC11432683 DOI: 10.3390/ijms25189802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Insulin resistance (IR), marked by reduced cellular responsiveness to insulin, and obesity, defined by the excessive accumulation of adipose tissue, are two intertwined conditions that significantly contribute to the global burden of cardiometabolic diseases. Adipose tissue, beyond merely storing triglycerides, acts as an active producer of biomolecules. In obesity, as adipose tissue undergoes hypertrophy, it becomes dysfunctional, altering the release of adipocyte-derived factors, known as adipokines. This dysfunction promotes low-grade chronic inflammation, exacerbates IR, and creates a hyperglycemic, proatherogenic, and prothrombotic environment. However, the fundamental cause of these phenomena remains unclear. This narrative review points to hypoxia as a critical trigger for the molecular changes associated with fat accumulation, particularly within visceral adipose tissue (VAT). The activation of hypoxia-inducible factor-1 (HIF-1), a transcription factor that regulates homeostatic responses to low oxygen levels, initiates a series of molecular events in VAT, leading to the aberrant release of adipokines, many of which are still unexplored, and potentially affecting peripheral insulin sensitivity. Recent discoveries have highlighted the role of hypoxia and miRNA-128 in regulating the insulin receptor in visceral adipocytes, contributing to their dysfunctional behavior, including impaired glucose uptake. Understanding the complex interplay between adipose tissue hypoxia, dysfunction, inflammation, and IR in obesity is essential for developing innovative, targeted therapeutic strategies.
Collapse
Affiliation(s)
- Maria Mirabelli
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.M.)
- Operative Unit of Endocrinology, “Renato Dulbecco” University Hospital, 88100 Catanzaro, Italy
| | - Roberta Misiti
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
- Operative Unit of Clinical Pathology, “Renato Dulbecco” Hospital, 88100 Catanzaro, Italy
| | - Luciana Sicilia
- Operative Unit of Endocrinology, “Renato Dulbecco” University Hospital, 88100 Catanzaro, Italy
| | - Francesco S. Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.M.)
| | - Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.M.)
- Operative Unit of Endocrinology, “Renato Dulbecco” University Hospital, 88100 Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.M.)
- Operative Unit of Endocrinology, “Renato Dulbecco” University Hospital, 88100 Catanzaro, Italy
| | - Daniela P. Foti
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
- Operative Unit of Clinical Pathology, “Renato Dulbecco” Hospital, 88100 Catanzaro, Italy
| |
Collapse
|
11
|
Kammann T, Cai C, Sekine T, Mouchtaridi E, Boulouis C, Nilsén V, Ballesteros OR, Müller TR, Gao Y, Raineri EJM, Mily A, Adamo S, Constantz C, Niessl J, Weigel W, Kokkinou E, Stamper C, Marchalot A, Bassett J, Ferreira S, Rødahl I, Wild N, Brownlie D, Tibbitt C, Mak JYW, Fairlie DP, Leeansyah E, Michaelsson J, Marquardt N, Mjösberg J, Jorns C, Buggert M, Sandberg JK. MAIT cell heterogeneity across paired human tissues reveals specialization of distinct regulatory and enhanced effector profiles. Sci Immunol 2024; 9:eadn2362. [PMID: 39241054 DOI: 10.1126/sciimmunol.adn2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 08/07/2024] [Indexed: 09/08/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T cells that recognize microbial riboflavin pathway metabolites presented by evolutionarily conserved MR1 molecules. We explored the human MAIT cell compartment across organ donor-matched blood, barrier, and lymphoid tissues. MAIT cell population size was donor dependent with distinct tissue compartmentalization patterns and adaptations: Intestinal CD103+ resident MAIT cells presented an immunoregulatory CD39highCD27low profile, whereas MAIT cells expressing NCAM1/CD56 dominated in the liver and exhibited enhanced effector capacity with elevated response magnitude and polyfunctionality. Both intestinal CD39high and hepatic CD56+ adaptations accumulated with donor age. CD56+ MAIT cells displayed limited T cell receptor-repertoire breadth, elevated MR1 binding, and a transcriptional profile skewed toward innate activation pathways. Furthermore, CD56 was dynamically up-regulated to a persistent steady-state equilibrium after exposure to antigen or IL-7. In summary, we demonstrate functional heterogeneity and tissue site adaptation in resident MAIT cells across human barrier tissues with distinct regulatory and effector signatures.
Collapse
Affiliation(s)
- Tobias Kammann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Curtis Cai
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Takuya Sekine
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elli Mouchtaridi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Vera Nilsén
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Olga Rivera Ballesteros
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Thomas R Müller
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elisa J M Raineri
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Akhirunnesa Mily
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Adamo
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christian Constantz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Julia Niessl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Whitney Weigel
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Stamper
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anne Marchalot
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - John Bassett
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sabrina Ferreira
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Inga Rødahl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Wild
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Demi Brownlie
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Chris Tibbitt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jeffrey Y W Mak
- Centre for Chemistry and Drug Discovery, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jakob Michaelsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Marquardt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Carl Jorns
- ME Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Mak JYW, Rivero RJD, Hoang HN, Lim XY, Deng J, McWilliam HEG, Villadangos JA, McCluskey J, Corbett AJ, Fairlie DP. Potent Immunomodulators Developed from an Unstable Bacterial Metabolite of Vitamin B2 Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202400632. [PMID: 38679861 DOI: 10.1002/anie.202400632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
Bacterial synthesis of vitamin B2 generates a by-product, 5-(2-oxopropylideneamino)-d-ribityl-aminouracil (5-OP-RU), with potent immunological properties in mammals, but it is rapidly degraded in water. This natural product covalently bonds to the key immunological protein MR1 in the endoplasmic reticulum of antigen presenting cells (APCs), enabling MR1 refolding and trafficking to the cell surface, where it interacts with T cell receptors (TCRs) on mucosal associated invariant T lymphocytes (MAIT cells), activating their immunological and antimicrobial properties. Here, we strategically modify this natural product to understand the molecular basis of its recognition by MR1. This culminated in the discovery of new water-stable compounds with extremely powerful and distinctive immunological functions. We report their capacity to bind MR1 inside APCs, triggering its expression on the cell surface (EC50 17 nM), and their potent activation (EC50 56 pM) or inhibition (IC50 80 nM) of interacting MAIT cells. We further derivatize compounds with diazirine-alkyne, biotin, or fluorophore (Cy5 or AF647) labels for detecting, monitoring, and studying cellular MR1. Computer modeling casts new light on the molecular mechanism of activation, revealing that potent activators are first captured in a tyrosine- and serine-lined cleft in MR1 via specific pi-interactions and H-bonds, before more tightly attaching via a covalent bond to Lys43 in MR1. This chemical study advances our molecular understanding of how bacterial metabolites are captured by MR1, influence cell surface expression of MR1, interact with T cells to induce immunity, and offers novel clues for developing new vaccine adjuvants, immunotherapeutics, and anticancer drugs.
Collapse
Affiliation(s)
- Jeffrey Y W Mak
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ryan J D Rivero
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Huy N Hoang
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xin Yi Lim
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Jieru Deng
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
- Department of Biochemistry and Pharmacology Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
13
|
Pirker AL, Vogl T. Development of systemic and mucosal immune responses against gut microbiota in early life and implications for the onset of allergies. FRONTIERS IN ALLERGY 2024; 5:1439303. [PMID: 39086886 PMCID: PMC11288972 DOI: 10.3389/falgy.2024.1439303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
The early microbial colonization of human mucosal surfaces is essential for the development of the host immune system. Already during pregnancy, the unborn child is prepared for the postnatal influx of commensals and pathogens via maternal antibodies, and after birth this protection is continued with antibodies in breast milk. During this critical window of time, which extends from pregnancy to the first year of life, each encounter with a microorganism can influence children's immune response and can have a lifelong impact on their life. For example, there are numerous links between the development of allergies and an altered gut microbiome. However, the exact mechanisms behind microbial influences, also extending to how viruses influence host-microbe interactions, are incompletely understood. In this review, we address the impact of infants' first microbial encounters, how the immune system develops to interact with gut microbiota, and summarize how an altered immune response could be implied in allergies.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Gao M, Zhao X. Insights into the tissue repair features of MAIT cells. Front Immunol 2024; 15:1432651. [PMID: 39086492 PMCID: PMC11289772 DOI: 10.3389/fimmu.2024.1432651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are a subset of innate-like non-conventional T cells characterized by multifunctionality. In addition to their well-recognized antimicrobial activity, increasing attention is being drawn towards their roles in tissue homeostasis and repair. However, the precise mechanisms underlying these functions remain incompletely understood and are still subject to ongoing exploration. Currently, it appears that the tissue localization of MAIT cells and the nature of the diseases or stimuli, whether acute or chronic, may induce a dynamic interplay between their pro-inflammatory and anti-inflammatory, or pathogenic and reparative functions. Therefore, elucidating the conditions and mechanisms of MAIT cells' reparative functions is crucial for fully maximizing their protective effects and advancing future MAIT-related therapies. In this review, we will comprehensively discuss the establishment and potential mechanisms of their tissue repair functions as well as the translational application prospects and current challenges in this field.
Collapse
Affiliation(s)
- Mengge Gao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaosu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
15
|
Zhao M, Cheng Y, Gao J, Zhou F. Single-cell mass cytometry in immunological skin diseases. Front Immunol 2024; 15:1401102. [PMID: 39081313 PMCID: PMC11286489 DOI: 10.3389/fimmu.2024.1401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Immune-related skin diseases represent a collective of dermatological disorders intricately linked to dysfunctional immune system processes. These conditions are primarily characterized by an immoderate activation of the immune system or deviant immune responses, involving diverse immune components including immune cells, antibodies, and inflammatory mediators. However, the precise molecular dysregulation underlying numerous individual cases of these diseases and unique subsets respond under disease conditions remains elusive. Comprehending the mechanisms and determinants governing the homeostasis and functionality of diseases could offer potential therapeutic opportunities for intervention. Mass cytometry enables precise and high-throughput quantitative measurement of proteins within individual cells by utilizing antibodies labeled with rare heavy metal isotopes. Imaging mass cytometry employs mass spectrometry to obtain spatial information on cell-to-cell interactions within tissue sections, simultaneously utilizing more than 40 markers. The application of single-cell mass cytometry presents a unique opportunity to conduct highly multiplexed analysis at the single-cell level, thereby revolutionizing our understanding of cell population heterogeneity and hierarchy, cellular states, multiplexed signaling pathways, proteolysis products, and mRNA transcripts specifically in the context of many autoimmune diseases. This information holds the potential to offer novel approaches for the diagnosis, prognostic assessment, and monitoring responses to treatment, thereby enriching our strategies in managing the respective conditions. This review summarizes the present-day utilization of single-cell mass cytometry in studying immune-related skin diseases, highlighting its advantages and limitations. This technique will become increasingly prevalent in conducting extensive investigations into these disorders, ultimately yielding significant contributions to their accurate diagnosis and efficacious therapeutic interventions.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yuqi Cheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Jinping Gao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
16
|
El Morr Y, Fürstenheim M, Mestdagh M, Franciszkiewicz K, Salou M, Morvan C, Dupré T, Vorobev A, Jneid B, Premel V, Darbois A, Perrin L, Mondot S, Colombeau L, Bugaut H, du Halgouet A, Richon S, Procopio E, Maurin M, Philippe C, Rodriguez R, Lantz O, Legoux F. MAIT cells monitor intestinal dysbiosis and contribute to host protection during colitis. Sci Immunol 2024; 9:eadi8954. [PMID: 38905325 PMCID: PMC7616241 DOI: 10.1126/sciimmunol.adi8954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Intestinal inflammation shifts microbiota composition and metabolism. How the host monitors and responds to such changes remains unclear. Here, we describe a protective mechanism by which mucosal-associated invariant T (MAIT) cells detect microbiota metabolites produced upon intestinal inflammation and promote tissue repair. At steady state, MAIT ligands derived from the riboflavin biosynthesis pathway were produced by aerotolerant bacteria residing in the colonic mucosa. Experimental colitis triggered luminal expansion of riboflavin-producing bacteria, leading to increased production of MAIT ligands. Modulation of intestinal oxygen levels suggested a role for oxygen in inducing MAIT ligand production. MAIT ligands produced in the colon rapidly crossed the intestinal barrier and activated MAIT cells, which expressed tissue-repair genes and produced barrier-promoting mediators during colitis. Mice lacking MAIT cells were more susceptible to colitis and colitis-driven colorectal cancer. Thus, MAIT cells are sensitive to a bacterial metabolic pathway indicative of intestinal inflammation.
Collapse
Affiliation(s)
- Yara El Morr
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Mariela Fürstenheim
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Martin Mestdagh
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | | | - Marion Salou
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Claire Morvan
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015Paris, France
| | - Thierry Dupré
- Laboratoire de Biochimie, Hôpital Bichat AP-HP, Université de Paris, Paris, France
| | - Alexey Vorobev
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Bakhos Jneid
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Virginie Premel
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Aurélie Darbois
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Laetitia Perrin
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Stanislas Mondot
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ludovic Colombeau
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005Paris, France
| | - Hélène Bugaut
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | | | - Sophie Richon
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Emanuele Procopio
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Catherine Philippe
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Raphael Rodriguez
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005Paris, France
| | - Olivier Lantz
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Laboratoire d’immunologie clinique, Institut Curie, 75005Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - François Legoux
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- INSERM ERL1305, CNRS UMR6290, Université de Rennes, Institut de Génétique & Développement de Rennes, Rennes, France
| |
Collapse
|
17
|
Zheng Y, Han F, Wu Z, Wang B, Chen X, Boulouis C, Jiang Y, Ho A, He D, Sia WR, Mak JYW, Fairlie DP, Wang LF, Sandberg JK, Lobie PE, Ma S, Leeansyah E. MAIT cell activation and recruitment in inflammation and tissue damage in acute appendicitis. SCIENCE ADVANCES 2024; 10:eadn6331. [PMID: 38865451 PMCID: PMC11168461 DOI: 10.1126/sciadv.adn6331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are antimicrobial T cells abundant in the gut, but mechanisms for their migration into tissues during inflammation are poorly understood. Here, we used acute pediatric appendicitis (APA), a model of acute intestinal inflammation, to examine these migration mechanisms. MAIT cells were lower in numbers in circulation of patients with APA but were enriched in the inflamed appendix with increased production of proinflammatory cytokines. Using the patient-derived appendix organoid (PDAO) model, we found that circulating MAIT cells treated with inflammatory cytokines elevated in APA up-regulated chemokine receptors, including CCR1, CCR3, and CCR4. They exhibited enhanced infiltration of Escherichia coli-pulsed PDAO in a CCR1-, CCR2-, and CCR4-dependent manner. Close interactions of MAIT cells with infected organoids led to the PDAO structural destruction and death. These findings reveal a previously unidentified mechanism of MAIT cell tissue homing, their participation in tissue damage in APA, and their intricate relationship with mucosal tissues during acute intestinal inflammation in humans.
Collapse
Affiliation(s)
- Yichao Zheng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhengyu Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bingjie Wang
- Department of Pediatric Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, China
| | - Xingchi Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Yuebin Jiang
- Department of Pathology, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou 363000, China
| | - Amanda Ho
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Dan He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jeffrey Y. W. Mak
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - David P. Fairlie
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Peter E. Lobie
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
18
|
Chen Y, Sun H, Luo Z, Mei Y, Xu Z, Tan J, Xie Y, Li M, Xia J, Yang B, Su B. Crosstalk between CD8 + T cells and mesenchymal stromal cells in intestine homeostasis and immunity. Adv Immunol 2024; 162:23-58. [PMID: 38866438 DOI: 10.1016/bs.ai.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The intestine represents the most complex cellular network in the whole body. It is constantly faced with multiple types of immunostimulatory agents encompassing from food antigen, gut microbiome, metabolic waste products, and dead cell debris. Within the intestine, most T cells are found in three primary compartments: the organized gut-associated lymphoid tissue, the lamina propria, and the epithelium. The well-orchestrated epithelial-immune-microbial interaction is critically important for the precise immune response. The main role of intestinal mesenchymal stromal cells is to support a structural framework within the gut wall. However, recent evidence from stromal cell studies indicates that they also possess significant immunomodulatory functions, such as maintaining intestinal tolerance via the expression of PDL1/2 and MHC-II molecules, and promoting the development of CD103+ dendritic cells, and IgA+ plasma cells, thereby enhancing intestinal homeostasis. In this review, we will summarize the current understanding of CD8+ T cells and stromal cells alongside the intestinal tract and discuss the reciprocal interactions between T subsets and mesenchymal stromal cell populations. We will focus on how the tissue residency, migration, and function of CD8+ T cells could be potentially regulated by mesenchymal stromal cell populations and explore the molecular mediators, such as TGF-β, IL-33, and MHC-II molecules that might influence these processes. Finally, we discuss the potential pathophysiological impact of such interaction in intestine hemostasis as well as diseases of inflammation, infection, and malignancies.
Collapse
Affiliation(s)
- Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengnan Luo
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yisong Mei
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyang Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmei Tan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Xie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengda Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Xia
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beichun Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
19
|
Lin X, Wang Y, He Y. Mucosal-associated invariant T cells in infectious diseases of respiratory system: recent advancements and applications. J Inflamm (Lond) 2024; 21:6. [PMID: 38419084 PMCID: PMC10902946 DOI: 10.1186/s12950-024-00376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are an atypical subset of T lymphocytes, which have a highly conserved semi-constant αβ chain of T-cell receptor (TCR) and recognize microbe-derived vitamin B metabolites via major histocompatibility complex class I related-1 molecule (MR1). MAIT cells get activated mainly through unique TCR-dependent and TCR-independent pathways, and express multiple functional and phenotypic traits, including innate-like functionality, T helper (Th) 1 cell immunity, Th 17 cell immunity, and tissue homing. Given the functions, MAIT cells are extensively reported to play a key role in mucosal homeostasis and infectious diseases. In the current work, we review the basic characteristics of MAIT cells and their roles in mucosal homeostasis and development of respiratory infectious diseases as well as their potential therapeutic targets.
Collapse
Affiliation(s)
- Xue Lin
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanqi He
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Liu J, Joseph S, Manohar K, Lee J, Brokaw JP, Shelley WC, Markel TA. Role of innate T cells in necrotizing enterocolitis. Front Immunol 2024; 15:1357483. [PMID: 38390341 PMCID: PMC10881895 DOI: 10.3389/fimmu.2024.1357483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a destructive gastrointestinal disease primarily affecting preterm babies. Despite advancements in neonatal care, NEC remains a significant cause of morbidity and mortality in neonatal intensive care units worldwide and the etiology of NEC is still unclear. Risk factors for NEC include prematurity, very low birth weight, feeding with formula, intestinal dysbiosis and bacterial infection. A review of the literature would suggest that supplementation of prebiotics and probiotics prevents NEC by altering the immune responses. Innate T cells, a highly conserved subpopulation of T cells that responds quickly to stimulation, develops differently from conventional T cells in neonates. This review aims to provide a succinct overview of innate T cells in neonates, encompassing their phenotypic characteristics, functional roles, likely involvement in the pathogenesis of NEC, and potential therapeutic implications.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sharon Joseph
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Krishna Manohar
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jasmine Lee
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - John P. Brokaw
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - W. Christopher Shelley
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States
| | - Troy A. Markel
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States
| |
Collapse
|
21
|
Shrinivasan R, Wyatt-Johnson SK, Brutkiewicz RR. The MR1/MAIT cell axis in CNS diseases. Brain Behav Immun 2024; 116:321-328. [PMID: 38157945 PMCID: PMC10842441 DOI: 10.1016/j.bbi.2023.12.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subpopulation of innate-like T cells that can be found throughout the body, predominantly in mucosal sites, the lungs and in the peripheral blood. MAIT cells recognize microbial-derived vitamin B (e.g., riboflavin) metabolite antigens that are presented by the major histocompatibility complex class I-like protein, MR1, found on a variety of cell types in the periphery and the CNS. Since their original discovery, MAIT cells have been studied predominantly in their roles in diseases in the periphery; however, it was not until the early 2000s that these cells were first examined for their contributions to disorders of the CNS, with the bulk of the work being done within the past few years. Currently, the MR1/MAIT cell axis has been investigated in only a few neurological diseases including, multiple sclerosis and experimental autoimmune encephalomyelitis, brain cancer/tumors, ischemia, cerebral palsy, general aging and, most recently, Alzheimer's disease. Each of these diseases demonstrates a role for this under-studied innate immune axis in its neuropathology. Together, they highlight the importance of studying the MR1/MAIT cell axis in CNS disorders. Here, we review the contributions of the MR1/MAIT cell axis in the progression or remission of these neurological diseases. This work has shed some light in terms of potentially exploiting the MR1/MAIT cell axis in novel therapeutic applications.
Collapse
Affiliation(s)
- Rashmi Shrinivasan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
22
|
Shimizu Y, Sugimoto C, Wakao H. Potential of MAIT cells to modulate asthma. Allergol Int 2024; 73:40-47. [PMID: 37567833 DOI: 10.1016/j.alit.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Despite recent advances in asthma treatments, the search for novel therapies remains necessary because there are still patients with recurrent asthma exacerbations and poor responses to the existing treatments. Since group 2 innate lymphoid cells (ILC2) play a pivotal role in asthma by triggering and exacerbating type 2 inflammation, controlling ILC2s function is key to combating severe asthma. Mucosal-associated invariant T (MAIT) cells are innate-like T cells abundant in humans and are activated both in a T cell receptor-dependent and -independent manner. MAIT cells are composed of MAIT1 and MAIT17 based on the expression of transcription factors T-bet and RORγt, respectively. MAIT cells play pivotal roles in host defense against pathogens and in tissue repair and are essential for the maintenance of immunity and hemostasis. Our recent studies revealed that MAIT cells inhibit both ILC2 proliferation and functions in a mouse model of airway inflammation. MAIT cells may alleviate airway inflammation in two ways, by promoting airway epithelial cell barrier repair and by repressing ILC2s. Therefore, reagents that promote MAIT cell-mediated suppression of ILC2 proliferation and function, or designer MAIT cells (genetically engineered to suppress ILC2s or promote repair of airway damage), may be effective therapeutic agents for severe asthma.
Collapse
Affiliation(s)
- Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Tochigi, Japan; Respiratory Endoscopy Center, Dokkyo Medical University Hospital, Tochigi, Japan; Regenerative Center, Dokkyo Medical University Hospital, Tochigi, Japan.
| | - Chie Sugimoto
- Center for the Frontier Medicine, Host Defense Division, Dokkyo Medical University, Tochigi, Japan
| | - Hiroshi Wakao
- Center for the Frontier Medicine, Host Defense Division, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
23
|
Liu M, Yang Z, Wu Q, Yang Y, Zhao D, Cheng Q, Li Y, Liu G, Zhao C, Pan J, Zhang Y, Deng F, Jin T. IL-4-secreting CD40L + MAIT cells support antibody production in the peripheral blood of Heonch-Schönlein purpura patients. Inflamm Res 2024; 73:35-46. [PMID: 38147125 DOI: 10.1007/s00011-023-01816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/10/2023] [Accepted: 11/06/2023] [Indexed: 12/27/2023] Open
Abstract
OBJECTIVE Here, we explored the phenotype and function of MAIT cells in the peripheral blood of patients with HSP. METHODS Blood samples from HSP patients and HDs were assessed by flow cytometry and single-cell RNA sequencing to analyze the proportion, phenotype, and function of MAIT cells. Th-cytokines in the serum of HSP patients were analyzed by CBA. IgA in cocultured supernatant was detected by CBA to analyze antibody production by B cells. RESULTS The percentage of MAIT cells in HSP patients was significantly reduced compared with that in HDs. Genes related to T cell activation and effector were up-regulated in HSP MAIT cells, indicating a more activated phenotype. In addition, HSP MAIT cells displayed a Th2-like profile with the capacity to produce more IL-4 and IL-5, and IL-4 was correlated with IgA levels in the serum of HSP patients. Furthermore, CD40L was up-regulated in HSP MAIT cells, and CD40L+ MAIT cells showed an increased ability to produce IL-4 and to enhance IgA production by B cells. CONCLUSION Our data demonstrate that MAIT cells in HSP patients exhibit an activated phenotype. The enhanced IL-4 production and CD40L expression of MAIT cells in HSP patients could take part in the pathogenesis of HSP.
Collapse
Affiliation(s)
- Muziying Liu
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, 230051, China
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Ziqiang Yang
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, 230051, China
| | - Qielan Wu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230071, China
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yunru Yang
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230071, China
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, China
- Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| | - Dan Zhao
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230071, China
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, China
- Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| | - Qingyu Cheng
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, China
- Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| | - Yajuan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gengyuan Liu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
| | - Changfeng Zhao
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Jun Pan
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yuwei Zhang
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Fang Deng
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, 230051, China.
| | - Tengchuan Jin
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230071, China.
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China.
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
24
|
Loh L, Orlicky D, Spengler A, Levens C, Celli S, Domenico J, Klarquist J, Onyiah J, Matsuda J, Kuhn K, Gapin L. MAIT cells drive chronic inflammation in a genetically diverse murine model of spontaneous colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569225. [PMID: 38076996 PMCID: PMC10705467 DOI: 10.1101/2023.11.29.569225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Background & aims Lymphocytes that produce IL-17 can confer protective immunity during infections by pathogens, yet their involvement in inflammatory diseases is a subject of debate. Although these cells may perpetuate inflammation, resulting in tissue damage, they are also capable of contributing directly or indirectly to tissue repair, thus necessitating more detailed investigation. Mucosal-Associated-Invariant-T (MAIT) cells are innate-like T cells, acquiring a type III phenotype in the thymus. Here, we dissected the role of MAIT cells in vivo using a spontaneous colitis model in a genetically diverse mouse strain. Methods Multiparameter spectral flow cytometry and scRNAseq were used to characterize MAIT and immune cell dynamics and transcriptomic signatures respectively, in the collaborative-cross strain, CC011/Unc and CC011/Unc- Traj33 -/- . Results In contrast to many conventional mouse laboratory strains, the CC011 strain harbors a high baseline population of MAIT cells. We observed an age-related increase in colonic MAIT cells, Th17 cells, regulatory T cells, and neutrophils, which paralleled the development of spontaneous colitis. This progression manifested histological traits reminiscent of human IBD. The transcriptomic analysis of colonic MAIT cells from CC011 revealed an activation profile consistent with an inflammatory milieu, marked by an enhanced type-III response. Notably, IL-17A was abundantly secreted by MAIT cells in the colons of afflicted mice. Conversely, in the MAIT cell-deficient CC011-Traj33-/- mice, there was a notable absence of significant colonic histopathology. Furthermore, myeloperoxidase staining indicated a substantial decrease in colonic neutrophils. Conclusions Our findings suggest that MAIT cells play a pivotal role in modulating the severity of intestinal pathology, potentially orchestrating the inflammatory process by driving the accumulation of neutrophils within the colonic environment.
Collapse
|
25
|
Waterhölter A, Wunderlich M, Turner JE. MAIT cells in immune-mediated tissue injury and repair. Eur J Immunol 2023; 53:e2350483. [PMID: 37740567 DOI: 10.1002/eji.202350483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are T cells that express a semi-invariant αβ T-cell receptor (TCR), recognizing non-peptide antigens, such as microbial-derived vitamin B2 metabolites, presented by the nonpolymorphic MHC class I related-1 molecule. Like NKT cells and γδT cells, MAIT cells belong to the group of innate-like T cells that combine properties of the innate and adaptive immune systems. They account for up to 10% of the blood T-cell population in humans and are particularly abundant at mucosal sites. Beyond the emerging role of MAIT cells in antibacterial and antiviral defenses, increasing evidence suggests additional functions in noninfectious settings, including immune-mediated inflammatory diseases and tissue repair. Here, we discuss recent advances in the understanding of MAIT cell functions in sterile tissue inflammation, with a particular focus on autoimmunity, chronic inflammatory diseases, and tissue repair.
Collapse
Affiliation(s)
- Alex Waterhölter
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Wunderlich
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Wei L, Chen Z, Lv Q. Mucosal-associated invariant T cells display both pathogenic and protective roles in patients with inflammatory bowel diseases. Amino Acids 2023; 55:1819-1827. [PMID: 37819474 DOI: 10.1007/s00726-023-03344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
An important subtype of the innate-like T lymphocytes is mucosal-associated invariant T (MAIT) cells expressing a semi-invariant T cell receptor α (TCR-α) chain. MAIT cells could be activated mainly by TCR engagement or cytokines. They have been found to have essential roles in various immune mediated. There have been growing preclinical and clinical findings that show an association between MAIT cells and the physiopathology of inflammatory bowel diseases (IBD). Of note, published reports demonstrate contradictory findings regarding the role of MAIT cells in IBD patients. A number of reports suggests a protective effect, whereas others show a pathogenic impact. The present review article aimed to explore and discuss the findings of experimental and clinical investigations evaluating the effects of MAIT cells in IBD subjects and animal models. Findings indicate that MAIT cells could exert opposite effects in the course of IBD, including an anti-inflammatory protective effect of blood circulating MAIT cells and an effector pathogenic effect of colonic MAIT cells. Another important finding is that blood levels of MAIT cells can be considered as a potential biomarker in IBD patients.
Collapse
Affiliation(s)
- Lei Wei
- Department of General Surgery, Pudong New District Gongli Hospital of Shanghai, Shanghai, 200120, China
| | - Zhigang Chen
- Department of General Surgery, Pudong New District Gongli Hospital of Shanghai, Shanghai, 200120, China
| | - Qiang Lv
- Department of General Surgery, Pudong New District Gongli Hospital of Shanghai, Shanghai, 200120, China.
| |
Collapse
|
27
|
Chengalroyen MD. Current Perspectives and Challenges of MAIT Cell-Directed Therapy for Tuberculosis Infection. Pathogens 2023; 12:1343. [PMID: 38003807 PMCID: PMC10675005 DOI: 10.3390/pathogens12111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a distinct population of non-conventional T cells that have been preserved through evolution and possess properties of both innate and adaptive immune cells. They are activated through the recognition of antigens presented by non-polymorphic MR1 proteins or, alternately, can be stimulated by specific cytokines. These cells are multifaceted and exert robust antimicrobial activity against bacterial and viral infections, direct the immune response through the modulation of other immune cells, and exhibit a specialized tissue homeostasis and repair function. These distinct characteristics have instigated interest in MAIT cell biology for immunotherapy and vaccine development. This review describes the current understanding of MAIT cell activation, their role in infections and diseases with an emphasis on tuberculosis (TB) infection, and perspectives on the future use of MAIT cells in immune-mediated therapy.
Collapse
Affiliation(s)
- Melissa D Chengalroyen
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
28
|
Brauns S, Marquardt I, Thon C, Frentzel S, Jakob J, Färber J, Philipsen L, Jänsch L, Link A, Bruder D. Mucosal-associated invariant T cells from Clostridioides difficile-infected patients exhibit a distinct proinflammatory phenotype and enhanced cytotoxic activity. Int Immunol 2023; 35:543-554. [PMID: 37549964 DOI: 10.1093/intimm/dxad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/07/2023] [Indexed: 08/09/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells mainly found in the mucosa and peripheral blood. We have recently demonstrated that Clostridioides difficile activates MAIT cells in vitro. However, their role in the pathogenesis of C. difficile infection (CDI) in human patients remains elusive to date. In this study, we performed comprehensive immunophenotyping of MAIT cells derived from CDI patients and compared their phenotype to that of patients with inflammatory bowel diseases (IBD) and healthy controls. Our study revealed that blood MAIT cells from CDI patients exhibit an interleukin 17a (IL-17a)-dominated proinflammatory phenotype and an increased readiness to synthesize the proinflammatory cytokine interferon γ (IFN-γ) following in vitro re-stimulation. Moreover, the cytotoxic activity of MAIT cells, as measured by surface CD107a and intracellular granzyme B expression, was strongly increased in CDI. Multi epitope ligand cartography (MELC) analysis of intestinal biopsies from CDI patients revealed that MAIT cells exhibit an increased production of granzyme B and increased cytotoxicity compared to the control group. Together with previously published in vitro data from our group, our findings suggest that MAIT cells are functionally involved in the immune response against C. difficile and contribute to the pathogenesis of CDI.
Collapse
Affiliation(s)
- Steffen Brauns
- Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Isabel Marquardt
- Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Cosima Thon
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Sarah Frentzel
- Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Josefine Jakob
- Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jacqueline Färber
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Multi-parametric Bioimaging and Cytometry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lothar Jänsch
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Dunja Bruder
- Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
29
|
Konecny AJ, Shows DM, Lord JD. Colonic mucosal associated invariant T cells in Crohn's disease have a diverse and non-public T cell receptor beta chain repertoire. PLoS One 2023; 18:e0285918. [PMID: 37922286 PMCID: PMC10624325 DOI: 10.1371/journal.pone.0285918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2023] Open
Abstract
OBJECTIVES Mucosal-Associated Invariant T (MAIT) cells are T cells with a semi-invariant T cell receptor (TCR), recognizing riboflavin precursors presented by a non-polymorphic MR1 molecule. As these precursors are produced by the gut microbiome, we characterized the frequency, phenotype and clonality of MAIT cells in human colons with and without Crohn's disease (CD). METHODS The transcriptome of MAIT cells sorted from blood and intestinal lamina propria cells from colectomy recipients were compared with other CD8+ T cells. Colon biopsies from an additional ten CD patients and ten healthy controls (HC) were analyzed by flow cytometry. TCR genes were sequenced from individual MAIT cells from these biopsies and compared with those of MAIT cells from autologous blood. RESULTS MAIT cells in the blood and colon showed a transcriptome distinct from other CD8 T cells, with more expression of the IL-23 receptor. MAIT cells were enriched in the colons of CD patients, with less NKG2D in inflamed versus uninflamed segments. Regardless of disease, most MAIT cells expressed integrin α4β7 in the colon but not in the blood, where they were enriched for α4β7 expression. TCR sequencing revealed heterogeneity in the colon and blood, with few public sequences associated with cohorts. CONCLUSION MAIT cells are enriched in the colons of CD patients and disproportionately express molecules (IL-23R, integrin α4β7) targeted by CD therapeutics, to suggest a pathogenic role for them in CD. Public TCR sequences were neither common nor sufficiently restricted to a cohort to suggest protective or pathogenic antigen-specificities.
Collapse
Affiliation(s)
- Andrew J. Konecny
- Benaroya Research Institute, Translational Research Program, Seattle, WA, United States of America
- Department of Immunology, University of Washington, Seattle, WA, United States of America
| | - Donna M. Shows
- Benaroya Research Institute, Translational Research Program, Seattle, WA, United States of America
| | - James D. Lord
- Benaroya Research Institute, Translational Research Program, Seattle, WA, United States of America
| |
Collapse
|
30
|
Mortier C, Quintelier K, De Craemer AS, Renson T, Deroo L, Dumas E, Verheugen E, Coudenys J, Decruy T, Lukasik Z, Van Gassen S, Saeys Y, Hoorens A, Lobatón T, Van den Bosch F, Van de Wiele T, Venken K, Elewaut D. Gut Inflammation in Axial Spondyloarthritis Patients is Characterized by a Marked Type 17 Skewed Mucosal Innate-like T Cell Signature. Arthritis Rheumatol 2023; 75:1969-1982. [PMID: 37293832 DOI: 10.1002/art.42627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/29/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Patients with spondyloarthritis (SpA) often present with microscopic signs of gut inflammation, a risk factor for progressive disease. We investigated whether mucosal innate-like T cells are involved in dysregulated interleukin-23 (IL-23)/IL-17 responses in the gut-joint axis in SpA. METHODS Ileal and colonic intraepithelial lymphocytes (IELs), lamina propria lymphocytes (LPLs), and paired peripheral blood mononuclear cells (PBMCs) were isolated from treatment-naive patients with nonradiographic axial SpA with (n = 11) and without (n = 14) microscopic gut inflammation and healthy controls (n = 15) undergoing ileocolonoscopy. The presence of gut inflammation was assessed histopathologically. Immunophenotyping of innate-like T cells and conventional T cells was performed using intracellular flow cytometry. Unsupervised clustering analysis was done by FlowSOM technology. Serum IL-17A levels were measured via Luminex. RESULTS Microscopic gut inflammation in nonradiographic axial SpA was characterized by increased ileal intraepithelial γδ-hi T cells, a γδ-T cell subset with elevated γδ-T cell receptor expression. γδ-hi T cells were also increased in PBMCs of patients with nonradiographic axial SpA versus healthy controls and were strongly associated with Ankylosing Spondylitis Disease Activity Score. The abundance of mucosal-associated invariant T cells and invariant natural killer T cells was unaltered. Innate-like T cells in the inflamed gut showed increased RORγt, IL-17A, and IL-22 levels with loss of T-bet, a signature that was less pronounced in conventional T cells. Presence of gut inflammation was associated with higher serum IL-17A levels. In patients treated with tumor necrosis factor blockade, the proportion of γδ-hi cells and RORγt expression in blood was completely restored. CONCLUSION Intestinal innate-like T cells display marked type 17 skewing in the inflamed gut mucosa of patients with nonradiographic axial SpA. γδ-hi T cells are linked to intestinal inflammation and disease activity in SpA.
Collapse
Affiliation(s)
- Céline Mortier
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Katrien Quintelier
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium, Data Mining and Modeling for Biomedicine group, VIB-UGent Center for Inflammation Research, Ghent, Belgium, and Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ann-Sophie De Craemer
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Thomas Renson
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Liselotte Deroo
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Emilie Dumas
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Eveline Verheugen
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Julie Coudenys
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Tine Decruy
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Zuzanna Lukasik
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Sofie Van Gassen
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University and Data Mining and Modeling for Biomedicine group, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Yvan Saeys
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University and Data Mining and Modeling for Biomedicine group, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Triana Lobatón
- Department of Internal Medicine and Pediatrics, Ghent University and Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Filip Van den Bosch
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Koen Venken
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Dirk Elewaut
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
31
|
Litvinova E, Bounaix C, Hanouna G, Da Silva J, Noailles L, Beaudoin L, Padden M, Bellamri N, Lehuen A, Daugas E, Monteiro RC, Flament H. MAIT cells altered phenotype and cytotoxicity in lupus patients are linked to renal disease severity and outcome. Front Immunol 2023; 14:1205405. [PMID: 37885889 PMCID: PMC10598677 DOI: 10.3389/fimmu.2023.1205405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/26/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is an autoimmune disease in which circulating immune complexes can cause different types of glomerulonephritis, according to immune deposits and to the type of glomerular cell injury. Proliferative lesions represent the most severe form of lupus nephritis (LN) and often lead to kidney failure and death. Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells that recognize microbial-derived ligands from the riboflavin synthesis pathway. Although abundant in peripheral blood, MAIT cells are enriched in mucosal and inflamed tissues. While previous studies have reported concordant results concerning lower MAIT cell frequencies in the blood of SLE patients, no information is known about MAIT cell function and LN severity and outcome. Methods In the current study, we analyzed the baseline phenotype and function of peripheral blood MAIT cells by flow cytometry in 26 patients with LN and in a control group of 16 healthy individuals. Results We observe that MAIT cell frequencies are markedly reduced in blood of LN patients. MAIT cells from patients have an altered phenotype in terms of migration, proliferation and differentiation markers, notably in most severe forms of LN. Frequencies of PMA/ionomycin stimulated MAIT cells secreting effector molecules, such as proinflammatory IL-17 and cytotoxic protein granzyme B, are higher in LN patients. Patients undergoing a complete renal remission after immunosuppressive therapy had higher MAIT cell frequency, lower expression of proliferation marker Ki-67 and granzyme B (GzB) at inclusion. Remarkably, GzB production defines a predictive model for complete remission. Discussion We report here that blood MAIT cells display proinflammatory and cytotoxic function in severe lupus nephritis which may play a pathogenesis role, but without association with systemic lupus activity. Finally, low cytotoxic profile of MAIT cells may represent a promising prognostic factor of lupus nephritis remission one year after induction therapy.
Collapse
Affiliation(s)
- Elena Litvinova
- Service d’Immunologie, Hôpital Bichat-Claude Bernard, Paris, France
| | - Carine Bounaix
- Université Paris Cité, Centre de Recherche sur l’Inflammation Institut national de la santé et de la recherche médicale (INSERM) Unité Mixte de Recherche (UMR)1149 & Centre national de la recherche scientifique (CNRS) équipe mixte de recherche (EMR)8252, Inflamex Laboratory of Excellence, Paris, France
| | - Guillaume Hanouna
- Service de Néphrologie, Assistance publique - Hôpitaux de Paris (AP-HP), Hôpital Bichat-Claude Bernard, Paris, France
| | - Jennifer Da Silva
- Université Paris Cité, Centre de Recherche sur l’Inflammation Institut national de la santé et de la recherche médicale (INSERM) Unité Mixte de Recherche (UMR)1149 & Centre national de la recherche scientifique (CNRS) équipe mixte de recherche (EMR)8252, Inflamex Laboratory of Excellence, Paris, France
| | - Laura Noailles
- Université Paris Cité, Centre de Recherche sur l’Inflammation Institut national de la santé et de la recherche médicale (INSERM) Unité Mixte de Recherche (UMR)1149 & Centre national de la recherche scientifique (CNRS) équipe mixte de recherche (EMR)8252, Inflamex Laboratory of Excellence, Paris, France
| | - Lucie Beaudoin
- Université de Paris, Institut Cochin, Institut national de la santé et de la recherche médicale (INSERM) U1016, Centre national de la recherche scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, Inflamex Laboratory of Excellence, Paris, France
| | - Michael Padden
- Service de Néphrologie, Assistance publique - Hôpitaux de Paris (AP-HP), Hôpital Bichat-Claude Bernard, Paris, France
| | - Nessrine Bellamri
- Université Paris Cité, Centre de Recherche sur l’Inflammation Institut national de la santé et de la recherche médicale (INSERM) Unité Mixte de Recherche (UMR)1149 & Centre national de la recherche scientifique (CNRS) équipe mixte de recherche (EMR)8252, Inflamex Laboratory of Excellence, Paris, France
| | - Agnès Lehuen
- Université de Paris, Institut Cochin, Institut national de la santé et de la recherche médicale (INSERM) U1016, Centre national de la recherche scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, Inflamex Laboratory of Excellence, Paris, France
| | - Eric Daugas
- Université Paris Cité, Centre de Recherche sur l’Inflammation Institut national de la santé et de la recherche médicale (INSERM) Unité Mixte de Recherche (UMR)1149 & Centre national de la recherche scientifique (CNRS) équipe mixte de recherche (EMR)8252, Inflamex Laboratory of Excellence, Paris, France
- Service de Néphrologie, Assistance publique - Hôpitaux de Paris (AP-HP), Hôpital Bichat-Claude Bernard, Paris, France
| | - Renato C. Monteiro
- Service d’Immunologie, Hôpital Bichat-Claude Bernard, Paris, France
- Université Paris Cité, Centre de Recherche sur l’Inflammation Institut national de la santé et de la recherche médicale (INSERM) Unité Mixte de Recherche (UMR)1149 & Centre national de la recherche scientifique (CNRS) équipe mixte de recherche (EMR)8252, Inflamex Laboratory of Excellence, Paris, France
| | - Héloïse Flament
- Service d’Immunologie, Hôpital Bichat-Claude Bernard, Paris, France
- Université Paris Cité, Centre de Recherche sur l’Inflammation Institut national de la santé et de la recherche médicale (INSERM) Unité Mixte de Recherche (UMR)1149 & Centre national de la recherche scientifique (CNRS) équipe mixte de recherche (EMR)8252, Inflamex Laboratory of Excellence, Paris, France
| |
Collapse
|
32
|
Zheng Y, Han F, Ho A, Xue Y, Wu Z, Chen X, Sandberg JK, Ma S, Leeansyah E. Role of MAIT cells in gastrointestinal tract bacterial infections in humans: More than a gut feeling. Mucosal Immunol 2023; 16:740-752. [PMID: 37353006 DOI: 10.1016/j.mucimm.2023.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Mucosa-associated invariant T (MAIT) cells are the largest population of unconventional T cells in humans. These antimicrobial T cells are poised with rapid effector responses following recognition of the cognate riboflavin (vitamin B2)-like metabolite antigens derived from microbial riboflavin biosynthetic pathway. Presentation of this unique class of small molecule metabolite antigens is mediated by the highly evolutionarily conserved major histocompatibility complex class I-related protein. In humans, MAIT cells are widely found along the upper and lower gastrointestinal tracts owing to their high expression of chemokine receptors and homing molecules directing them to these tissue sites. In this review, we discuss recent findings regarding the roles MAIT cells play in various gastrointestinal bacterial infections, and how their roles appear to differ depending on the etiological agents and the anatomical location. We further discuss the potential mechanisms by which MAIT cells contribute to pathogen control, orchestrate adaptive immunity, as well as their potential contribution to inflammation and tissue damage during gastrointestinal bacterial infections, and the ensuing tissue repair following resolution. Finally, we propose and discuss the use of the emerging three-dimensional organoid technology to test different hypotheses regarding the role of MAIT cells in gastrointestinal bacterial infections, inflammation, and immunity.
Collapse
Affiliation(s)
- Yichao Zheng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Amanda Ho
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Yiting Xue
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Zhengyu Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xingchi Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
33
|
Wang X, Liang M, Song P, Guan W, Shen X. Mucosal-associated invariant T cells in digestive tract: Local guardians or destroyers? Immunology 2023; 170:167-179. [PMID: 37132045 DOI: 10.1111/imm.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Mucosa-associated invariant T cells (MAIT) are a class of innate-like T lymphocytes mainly presenting CD8+ phenotype with a semi-invariant αβ T-cell receptor, which specifically recognises MR1-presented biosynthetic derivatives of riboflavin synthesis produced by various types of microbiomes. As innate-like T lymphocytes, MAIT can be activated by a variety of cytokines, leading to immediate immune responses to infection and tumour cues. As an organ that communicates with the external environment, the digestive tract, especially the gastrointestinal tract, contains abundant microbial populations. Communication between MAIT and local microbiomes is important for the homeostasis of mucosal immunity. In addition, accumulating evidence suggests changes in the abundance and structure of the microbial community during inflammation and tumorigenesis plays a critical role in disease progress partly through their impact on MAIT development and function. Therefore, it is essential for the understanding of MAIT response and their interaction with microbiomes in the digestive tract. Here, we summarised MAIT characteristics in the digestive tract and its alteration facing inflammation and tumour, raising that targeting MAIT can be a candidate for treatment of gastrointestinal diseases.
Collapse
Affiliation(s)
- Xingzhou Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Mengjie Liang
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Peng Song
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
34
|
Parihar N, Bhatt LK. The emerging paradigm of Unconventional T cells as a novel therapeutic target for celiac disease. Int Immunopharmacol 2023; 122:110666. [PMID: 37473709 DOI: 10.1016/j.intimp.2023.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Celiac disease (CD) is an organ-specific autoimmune disorder that occurs in genetically predisposed individuals when exposed to exogenous dietary gluten. This exposure to wheat gluten and related proteins from rye and barley triggers an immune response which leads to the development of enteropathy associated with symptoms of bloating, diarrhea, or malabsorption. The sole current treatment is to follow a gluten-free diet for the rest of one's life. Intestinal barriers are enriched with Unconventional T cells such as iNKT, MAIT, and γδ T cells, which lack or express only a limited range of rearranged antigen receptors. Unconventional T cells play a crucial role in regulating mucosal barrier function and microbial colonization. Unconventional T cell populations are widely represented in diseased conditions, where changes in disease activity related to iNKT and MAIT cell reduction, as well as γδ T cell expansion, are demonstrated. In this review, we discuss the role and potential employment of Unconventional T cells as a therapeutic target in the pathophysiology of celiac disease.
Collapse
Affiliation(s)
- Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
35
|
Cozzi G, Scagnellato L, Lorenzin M, Savarino E, Zingone F, Ometto F, Favero M, Doria A, Vavricka SR, Ramonda R. Spondyloarthritis with inflammatory bowel disease: the latest on biologic and targeted therapies. Nat Rev Rheumatol 2023:10.1038/s41584-023-00984-8. [PMID: 37386288 DOI: 10.1038/s41584-023-00984-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Spondyloarthritis (SpA) encompasses a heterogeneous group of chronic inflammatory diseases that can affect both axial and peripheral joints, tendons and entheses. Among the extra-articular manifestations, inflammatory bowel disease (IBD) is associated with considerable morbidity and effects on quality of life. In everyday clinical practice, treatment of these conditions requires a close collaboration between gastroenterologists and rheumatologists to enable early detection of joint and intestinal manifestations during follow-up and to choose the most effective therapeutic regimen, implementing precision medicine for each patient's subtype of SpA and IBD. The biggest issue in this field is the dearth of drugs that are approved for both diseases, as only TNF inhibitors are currently approved for the treatment of full-spectrum SpA-IBD. Janus tyrosine kinase inhibitors are among the most promising drugs for the treatment of peripheral and axial SpA, as well as for intestinal manifestations. Other therapies such as inhibitors of IL-23 and IL-17, phosphodiesterase 4 inhibitor, α4β7 integrin blockers and faecal microbiota transplantation seem to only be able to control some disease domains, or require further studies. Given the growing interest in the development of novel drugs to treat both conditions, it is important to understand the current state of the art and the unmet needs in the management of SpA-IBD.
Collapse
Affiliation(s)
- Giacomo Cozzi
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Laura Scagnellato
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Mariagrazia Lorenzin
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Edoardo Savarino
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| | - Fabiana Zingone
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| | - Francesca Ometto
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Marta Favero
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Stephan R Vavricka
- Department of Gastroenterology and Hepatology, University Hospital Zürich and Center for Gastroenterology and Hepatology, Zürich, Switzerland
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy.
| |
Collapse
|
36
|
Kokkinou E, Soini T, Pandey RV, van Acker A, Theorell J, Czarnewski P, Kvedaraite E, Vandamme N, Lourda M, Sorini C, Weigel W, Carrasco A, Tibbitt CA, Schlums H, Lindforss U, Nordenvall C, Ljunggren M, Ideström M, Svensson M, Henter JI, Villablanca EJ, Bryceson YT, Rolandsdotter H, Mjösberg J. The single-cell transcriptional landscape of innate and adaptive lymphocytes in pediatric-onset colitis. Cell Rep Med 2023; 4:101038. [PMID: 37160121 DOI: 10.1016/j.xcrm.2023.101038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/15/2022] [Accepted: 04/14/2023] [Indexed: 05/11/2023]
Abstract
Innate lymphoid cells (ILCs) are considered innate counterparts of adaptive T cells; however, their common and unique transcriptional signatures in pediatric inflammatory bowel disease (pIBD) are largely unknown. Here, we report a dysregulated colonic ILC composition in pIBD colitis that correlates with inflammatory activity, including accumulation of naive-like CD45RA+CD62L- ILCs. Weighted gene co-expression network analysis (WGCNA) reveals modules of genes that are shared or unique across innate and adaptive lymphocytes. Shared modules include genes associated with activation/tissue residency, naivety/quiescence, and antigen presentation. Lastly, nearest-neighbor-based analysis facilitates the identification of "most inflamed" and "least inflamed" lymphocytes in pIBD colon with unique transcriptional signatures. Our study reveals shared and unique transcriptional signatures of colonic ILCs and T cells in pIBD. We also provide insight into the transcriptional regulation of colonic inflammation, deepening our understanding of the potential mechanisms involved in pIBD.
Collapse
Affiliation(s)
- Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Tea Soini
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ram Vinay Pandey
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Aline van Acker
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jakob Theorell
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden; Psychiatry Southwest, Health Care Services Stockholm County, Huddinge, Sweden
| | - Paulo Czarnewski
- Science for Life Laboratory, Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Stockholm University, Solna, Sweden
| | - Egle Kvedaraite
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden; Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Magda Lourda
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden; Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Chiara Sorini
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Whitney Weigel
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Anna Carrasco
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Christopher Andrew Tibbitt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Heinrich Schlums
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ulrik Lindforss
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Nordenvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Ljunggren
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Maja Ideström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Svensson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Theme of Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Eduardo J Villablanca
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Helena Rolandsdotter
- Department of Gastroenterology, Sachs' Children and Youth Hospital, Stockholm, Sweden; Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
37
|
Abstract
Mucosal associated invariant T (MAIT) cells are innate-like T lymphocytes, strikingly enriched at mucosal surfaces and characterized by a semi-invariant αβ T cell receptor (TCR) recognizing microbial derived intermediates of riboflavin synthesis presented by the MHC-Ib molecule MR1. At barrier sites MAIT cells occupy a prime position for interaction with commensal microorganisms, comprising the microbiota. The microbiota is a rich source of riboflavin derived antigens required in early life to promote intra-thymic MAIT cell development and sustain a life-long population of tissue resident cells. A symbiotic relationship is thought to be maintained in health whereby microbes promote maturation and homeostasis, and in turn MAIT cells can engage a TCR-dependent "tissue repair" program in the presence of commensal organisms conducive to sustaining barrier function and integrity of the microbial community. MAIT cell activation can be induced in a MR1-TCR dependent manner or through MR1-TCR independent mechanisms via pro-inflammatory cytokines interleukin (IL)-12/-15/-18 and type I interferon. MAIT cells provide immunity against bacterial, fungal and viral pathogens. However, MAIT cells may have deleterious effects through insufficient or exacerbated effector activity and have been implicated in autoimmune, inflammatory and allergic conditions in which microbial dysbiosis is a shared feature. In this review we summarize the current knowledge on the role of the microbiota in the development and maintenance of circulating and tissue resident MAIT cells. We also explore how microbial dysbiosis, alongside changes in intestinal permeability and imbalance between pro- and anti-inflammatory components of the immune response are together involved in the potential pathogenicity of MAIT cells. Whilst there have been significant improvements in our understanding of how the microbiota shapes MAIT cell function, human data are relatively lacking, and it remains unknown if MAIT cells can conversely influence the composition of the microbiota. We speculate whether, in a human population, differences in microbiomes might account for the heterogeneity observed in MAIT cell frequency across mucosal sites or between individuals, and response to therapies targeting T cells. Moreover, we speculate whether manipulation of the microbiota, or harnessing MAIT cell ligands within the gut or disease-specific sites could offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Maisha F. Jabeen
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Timothy S. C. Hinks
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
38
|
Chen X, Zhang Y, Zhang Y, Zhang Y, Wang S, Yu Z, Liu X, Huang G, Guo L, Li X, Zha X, Li Y, Li B. Increased IFN-γ + and TNF-α + mucosal-associated invariant T cells in patients with aplastic anemia. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:253-262. [PMID: 36779834 DOI: 10.1002/cyto.b.22115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/14/2023]
Abstract
BACKGROUND Aplastic anemia (AA) is known as an autoimmune disease in which T cell activation is aberrant. It has been reported that unconventional T cells, mucosal-associated invariant T (MAIT) cells, play an important role in several autoimmune diseases, but it is unclear if they are involved in AA. METHODS In this study, we for the first time analyzed the proportions, phenotypes, and cytokine properties of MAIT cells in AA by flow cytometry. RESULTS We found that the percentage of circulating MAIT cells was generally higher for CD3+ , CD8+ , and CD8- T cells in AA patients compared with healthy individuals. Moreover, the percentage of IL-18Rα-, NKG2D-, IFN-γ-, and TNF-α- positive MAIT cells was also significantly higher in AA patients. In addition, the percentage of IFN-γ+ CD3+ or TNF-α+ CD8- MAIT cells had a significant negative correlation with the absolute neutrophil count. CONCLUSIONS We present the first observation of MAIT cells in patients with AA. MAIT cells are associated with a higher frequency of IFN-γ and TNF-α production and may contribute to the pathogenesis of AA.
Collapse
Affiliation(s)
- Xiaohui Chen
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yikai Zhang
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Yue Zhang
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhi Yu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaoen Liu
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Guixuan Huang
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Lixing Guo
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Xueqin Li
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Bo Li
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
39
|
Nurzat Y, Zhu Z, Zhang Y, Xu H. Invariant chain of the MAIT-TCR vα7.2-Jα33 as a novel diagnostic biomarker for keloids. Exp Dermatol 2023; 32:186-197. [PMID: 36309840 DOI: 10.1111/exd.14700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 11/28/2022]
Abstract
Keloids are pathological scars that invade normal surrounding tissue without self-limitation, causing pain, itching, cosmetic disfigurement, etc. Knowledge of the molecular mechanisms underlying keloids remains unclear; thus, there are no available biomarkers for its diagnosis, resulting in a diagnostic accuracy of only 81%, which may be resolved by seeking an effective biomarker. Given that keloids possess pathogenic features similar to those of autoimmune skin disease, this study aimed to utilise the single-cell V(D)J sequencing method to identify a potential biomarker and clarify the underlying biological mechanisms. Single-cell V(D)J sequencing was used to detect T cell receptor (TCR) diversity between keloid patients and healthy donors using peripheral blood samples, the results of which were further validated using reverse transcription-polymerase chain reaction (RT-PCR). Flow cytometry was used to analyse the mucosal-associated invariant T (MAIT) cell percentage, cytokine production, and activation marker expression levels in peripheral blood samples of keloid patients and normal donors. An immunofluorescence test was used to quantitatively analyse the distribution of MAIT cells in scar and healthy donor skin tissues. Single-cell V(D)J sequencing analysis showed that the usage frequency of the TRAJ33-one invariant chain of the TCR of MAIT cells was decreased in keloid patients. This result was validated by RT-PCR, which showed that significantly lower TCR Vα7.2-Jα33 was expressed in keloid patients compared with that in healthy donors and hypertrophic scar patients (p < 0.05). Flow cytometry and immunofluorescence tests further verified that MAIT cells decreased significantly both in the peripheral blood sample and lesions of keloid patients compared with those of healthy controls (p < 0.05). MAIT cells from keloid patients secreted less interferon (IFN)-γ than those from the healthy controls and hypertrophic scar group (p < 0.001). The percentage of PLZF+ MAIT cells was lowest in the peripheral blood samples of keloid patients (p < 0.05). The percentage of IL-18+ MAIT cells was lower in the peripheral blood samples of keloid patients compared with that in healthy donors (p < 0.05). These findings indicate that MAIT cells could be associated with keloids and may serve as potential biomarkers or therapeutic targets in the diagnosis of keloids.
Collapse
Affiliation(s)
- Yeltai Nurzat
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Bisphenols, but not phthalate esters, modulate gene expression in activated human MAIT cells in vitro. Toxicol Rep 2023; 10:348-356. [PMID: 36923442 PMCID: PMC10008924 DOI: 10.1016/j.toxrep.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
One route of human exposure to environmental chemicals is oral uptake. This is primarily true for chemicals that may leach from food packaging materials, such as bisphenols and phthalate esters. Upon ingestion, these compounds are transported along the intestinal tract, from where they can be taken up into the blood stream or distributed to mucosal sites. At mucosal sites, mucosal immune cells and in the blood stream peripheral immune cells may be exposed to these chemicals potentially modulating immune cell functions. In the present study, we investigated the impact of three common bisphenols and two phthalate esters on mucosal-associated invariant T (MAIT) cells in vitro, a frequent immune cell type in the intestinal mucosae and peripheral blood of humans. All compounds were non-cytotoxic at the chosen concentrations. MAIT cell activation was only slightly affected as seen by flow cytometric analysis. Phthalate esters did not affect MAIT cell gene expression, while bisphenol-exposure induced significant changes. Transcriptional changes occurred in ∼ 25 % of genes for BPA, ∼ 22 % for BPF and ∼ 8 % for BPS. All bisphenols down-modulated expression of CCND2, CCL20, GZMB and IRF4, indicating an effect on MAIT cell effector function. Further, BPA and BPF showed a high overlap in modulated genes involved in cellular stress response, activation signaling and effector function suggesting that BPF may not be safe substitute for BPA.
Collapse
Key Words
- BPA, bisphenol A
- BPF, bisphenol F
- BPS, bisphenol S
- Bisphenols
- CD, cluster of differentiation
- DEHP, di(2-ethylhexyl) phthalate
- DINP, diisononyl phthalate
- DMSO, dimethyl sulfoxide
- EFSA, European Food Safety Agency
- EU, European Union
- FCS, fetal calf serum
- IFNg, interferon gamma
- IMDM, Iscove Modified Dulbecco Medium
- Immunomodulation
- In vitro model
- MAIT cells
- MAIT cells, mucosal-associated invariant T cells
- MeOH, methanol
- NHANES, National Health and Nutrition Examination Survey
- PBMC, peripheral blood mononuclear cell
- PE, phthalate ester
- Phthalate ester
- Plasticizers
- RT, room temperature
- SVHC, substance of very high concern
- TDI, tolerable daily intake
- TNF, tumor necrosis factor
- bpc, bacteria per cell
- bw, body weight
Collapse
|
41
|
Zhang H, Shen H, Zhou L, Xie L, Kong D, Wang H. Mucosal-Associated Invariant T Cells in the Digestive System: Defender or Destroyer? Cell Mol Gastroenterol Hepatol 2023; 15:809-819. [PMID: 36584816 PMCID: PMC9971522 DOI: 10.1016/j.jcmgh.2022.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of innate T lymphocytes that express the semi-invariant T cell receptor and recognize riboflavin metabolites via the major histocompatibility complex class I-related protein. Given the abundance of MAIT cells in the human body, their role in human diseases has been increasingly studied in recent years. MAIT cells may serve as targets for clinical therapy. Specifically, this review discusses how MAIT cells are altered in gastric, esophageal, intestinal, and hepatobiliary diseases and describes their protective or pathogenic roles. A greater understanding of MAIT cells will provide a more favorable therapeutic approach for digestive diseases in the clinical field.
Collapse
Affiliation(s)
- Hejiao Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Liangliang Zhou
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Linxi Xie
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Derun Kong
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| |
Collapse
|
42
|
Daferera N, Nyström S, Hjortswang H, Ignatova S, Jenmalm MC, Ström M, Münch A. Mucosa associated invariant T and natural killer cells in active and budesonide treated collagenous colitis patients. Front Immunol 2022; 13:981740. [PMID: 36591297 PMCID: PMC9798420 DOI: 10.3389/fimmu.2022.981740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Collagenous colitis (CC) is an inflammatory bowel disease, which usually responds to budesonide treatment. Our aim was to study the immunological background of the disease. Methods Analyses of peripheral and mucosal MAIT (mucosa associated invariant T cells) and NK (natural killer) cells were performed with flow cytometry. Numbers of mucosal cells were calculated using immunohistochemistry. We studied the same patients with active untreated CC (au-CC) and again while in remission on budesonide treatment. Budesonide refractory patients and healthy controls were also included. The memory marker CD45R0 and activation marker CD154 and CD69 were used to further study the cells. Finally B cells, CD4+ and CD8+ T cells were also analysed. Results The percentages of circulating CD56dimCD16+ NK cells as well as MAIT cells (CD3+TCRVa7.2+CD161+) were decreased in au-CC compared to healthy controls. This difference was not seen in the mucosa; where we instead found increased numbers of mucosal CD4+ T cells and CD8+ T cells in au-CC. Mucosal immune cell numbers were not affected by budesonide treatment. In refractory CC we found increased mucosal numbers of MAIT cells, CD4+ and CD8+ T cells compared to au-CC. Discussion Patients with active collagenous colitis have lower percentages of circulating MAIT and NK cells. However, there was no change of these cells in the colonic mucosa. Most mucosal cell populations were increased in budesonide refractory as compared to au-CC patients, particularly the number of MAIT cells. This may indicate that T cell targeting therapy could be an alternative in budesonide refractory CC.
Collapse
Affiliation(s)
- Niki Daferera
- Department of Gastroenterology, Faculty of Health Sciences, Linköping University, Linköping, Sweden,*Correspondence: Niki Daferera,
| | - Sofia Nyström
- Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden,Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden
| | - Henrik Hjortswang
- Department of Gastroenterology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Simone Ignatova
- Department of Pathology, Linköping University, Linköping, Sweden
| | - Maria C. Jenmalm
- Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Magnus Ström
- Department of Gastroenterology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Andreas Münch
- Department of Gastroenterology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
43
|
Increased Number of Mucosal-Associated Invariant T Cells Is Associated with the Inhibition of Nonalcoholic Fatty Liver Disease in High Fat Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms232315309. [PMID: 36499635 PMCID: PMC9739562 DOI: 10.3390/ijms232315309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an emerging worldwide health concern. The disease may involve immune cells including T cells, but little is known about the role(s) of the innate-like T cells in the liver. Furthermore, the most abundant innate-like T cells in the human liver are mucosal-associated invariant T (MAIT) cells, but the involvement of MAIT cells in NAFLD remains largely unexplored because of their paucity in mice. In this study, we used a novel mouse line, Vα19, in which the number of MAIT cells is equivalent to or greater than that in humans. Compared with the control mice, Vα19 mice fed a high-fat diet (HFD) exhibited a reduction in lipid accumulation, NAFLD activity score, and transcripts relevant to lipogenesis. In addition, serum triglyceride and non-esterified fatty acids were lower in Vα19 mice fed normal chow or HFD. In contrast, the Vα19 mice showed little or no change in glucose tolerance, insulin sensitivity, inflammation in adipose tissues, or intestinal permeability compared with the controls, irrespective of diet. These results suggest that the presence of MAIT cells is associated with reduced lipogenesis and lipid accumulation in the liver; however, further studies are needed to clarify the role of MAIT cells in hepatic lipid metabolism.
Collapse
|
44
|
Rosati E, Rios Martini G, Pogorelyy MV, Minervina AA, Degenhardt F, Wendorff M, Sari S, Mayr G, Fazio A, Dowds CM, Hauser C, Tran F, von Schönfels W, Pochhammer J, Salnikova MA, Jaeckel C, Gigla JB, Sabet SS, Hübenthal M, Schiminsky E, Schreiber S, Rosenstiel PC, Scheffold A, Thomas PG, Lieb W, Bokemeyer B, Witte M, Aden K, Hendricks A, Schafmayer C, Egberts JH, Mamedov IZ, Bacher P, Franke A. A novel unconventional T cell population enriched in Crohn's disease. Gut 2022; 71:2194-2204. [PMID: 35264446 PMCID: PMC9554086 DOI: 10.1136/gutjnl-2021-325373] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE One of the current hypotheses to explain the proinflammatory immune response in IBD is a dysregulated T cell reaction to yet unknown intestinal antigens. As such, it may be possible to identify disease-associated T cell clonotypes by analysing the peripheral and intestinal T-cell receptor (TCR) repertoire of patients with IBD and controls. DESIGN We performed bulk TCR repertoire profiling of both the TCR alpha and beta chains using high-throughput sequencing in peripheral blood samples of a total of 244 patients with IBD and healthy controls as well as from matched blood and intestinal tissue of 59 patients with IBD and disease controls. We further characterised specific T cell clonotypes via single-cell RNAseq. RESULTS We identified a group of clonotypes, characterised by semi-invariant TCR alpha chains, to be significantly enriched in the blood of patients with Crohn's disease (CD) and particularly expanded in the CD8+ T cell population. Single-cell RNAseq data showed an innate-like phenotype of these cells, with a comparable gene expression to unconventional T cells such as mucosal associated invariant T and natural killer T (NKT) cells, but with distinct TCRs. CONCLUSIONS We identified and characterised a subpopulation of unconventional Crohn-associated invariant T (CAIT) cells. Multiple evidence suggests these cells to be part of the NKT type II population. The potential implications of this population for CD or a subset thereof remain to be elucidated, and the immunophenotype and antigen reactivity of CAIT cells need further investigations in future studies.
Collapse
Affiliation(s)
- Elisa Rosati
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Gabriela Rios Martini
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Mikhail V Pogorelyy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anastasia A Minervina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Mareike Wendorff
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Soner Sari
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Gabriele Mayr
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Antonella Fazio
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Christel Marie Dowds
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Charlotte Hauser
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Witigo von Schönfels
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Julius Pochhammer
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Maria A Salnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Charlot Jaeckel
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Johannes Boy Gigla
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Sanaz Sedghpour Sabet
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Matthias Hübenthal
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
- Department of Dermatology, University Hospital Schleswig Holstein, Kiel, Schleswig-Holstein, Germany
| | - Esther Schiminsky
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Philip C Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank POPGEN, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Bernd Bokemeyer
- Interdisciplinary Crohn Colitis Centre Minden, Minden, Germany
| | - Maria Witte
- Department of General Surgery, Rostock University Medical Center, Rostock, Mecklenburg-Vorpommern, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Alexander Hendricks
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
- Department of General Surgery, Rostock University Medical Center, Rostock, Mecklenburg-Vorpommern, Germany
| | - Clemens Schafmayer
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
- Department of General Surgery, Rostock University Medical Center, Rostock, Mecklenburg-Vorpommern, Germany
| | - Jan-Hendrick Egberts
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Ilgar Z Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- CEITEC, Masaryk University, Brno, Czech Republic
- Dmitry Rogachev National Research Center of Pediatric Hematology, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russian Federation
| | - Petra Bacher
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
45
|
Sterling KG, Dodd GK, Alhamdi S, Asimenios PG, Dagda RK, De Meirleir KL, Hudig D, Lombardi VC. Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune Disease. Int J Mol Sci 2022; 23:13328. [PMID: 36362150 PMCID: PMC9655506 DOI: 10.3390/ijms232113328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Recent advances in next-generation sequencing (NGS) technologies have opened the door to a wellspring of information regarding the composition of the gut microbiota. Leveraging NGS technology, early metagenomic studies revealed that several diseases, such as Alzheimer's disease, Parkinson's disease, autism, and myalgic encephalomyelitis, are characterized by alterations in the diversity of gut-associated microbes. More recently, interest has shifted toward understanding how these microbes impact their host, with a special emphasis on their interactions with the brain. Such interactions typically occur either systemically, through the production of small molecules in the gut that are released into circulation, or through signaling via the vagus nerves which directly connect the enteric nervous system to the central nervous system. Collectively, this system of communication is now commonly referred to as the gut-microbiota-brain axis. While equally important, little attention has focused on the causes of the alterations in the composition of gut microbiota. Although several factors can contribute, mucosal immunity plays a significant role in shaping the microbiota in both healthy individuals and in association with several diseases. The purpose of this review is to provide a brief overview of the components of mucosal immunity that impact the gut microbiota and then discuss how altered immunological conditions may shape the gut microbiota and consequently affect neuroimmune diseases, using a select group of common neuroimmune diseases as examples.
Collapse
Affiliation(s)
| | - Griffin Kutler Dodd
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shatha Alhamdi
- Clinical Immunology and Allergy Division, Department of Pediatrics, King Abdullah Specialist Children’s Hospital, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | | | - Ruben K. Dagda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | | | - Dorothy Hudig
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
46
|
LeBlanc G, Kreissl F, Melamed J, Sobel AL, Constantinides MG. The role of unconventional T cells in maintaining tissue homeostasis. Semin Immunol 2022; 61-64:101656. [PMID: 36306662 PMCID: PMC9828956 DOI: 10.1016/j.smim.2022.101656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Gabrielle LeBlanc
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Felix Kreissl
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Jonathan Melamed
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Adam L. Sobel
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | | |
Collapse
|
47
|
Dogan M, Karhan E, Kozhaya L, Placek L, Chen X, Yigit M, Unutmaz D. Engineering Human MAIT Cells with Chimeric Antigen Receptors for Cancer Immunotherapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1523-1531. [PMID: 36165183 DOI: 10.4049/jimmunol.2100856] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 08/08/2022] [Indexed: 12/12/2022]
Abstract
Engineering immune cells with chimeric Ag receptors (CARs) is a promising technology in cancer immunotherapy. Besides classical cytotoxic CD8+ T cells, innate cell types such as NK cells have also been used to generate CAR-T or CAR-NK cells. In this study, we devised an approach to program a nonclassical cytotoxic T cell subset called mucosal-associated invariant T (MAIT) cells into effective CAR-T cells against B cell lymphoma and breast cancer cells. Accordingly, we expressed anti-CD19 and anti-Her2 CARs in activated primary human MAIT cells and CD8+ T cells, expanded them in vitro, and compared their cytotoxicity against tumor cell targets. We show upon activation through CARs that CAR-MAIT cells exhibit high levels of cytotoxicity toward target cells, comparable to CD8+ CAR-T cells, but interestingly expressed lower levels of IFN-γ than conventional CAR CD8+ T cells. Additionally, in the presence of vitamin B2 metabolite 5-ARU (5-amino-4-d-ribitylaminouracil dihydrochloride), which is a conserved compound that activates MAIT cells through MHC class I-related (MR1) protein, MAIT cells killed MR1-expressing target breast cancer and B cell lymphoma cell lines in a dose-dependent manner. Thus, MAIT cells can be genetically edited as CAR-T cells or mobilized and expanded by MR1 ligands as an off-the-shelf novel approach to cell-based cancer immunotherapy strategies while being comparable to conventional methods in effectivity.
Collapse
Affiliation(s)
- Mikail Dogan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and
| | - Ece Karhan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and
| | - Lina Kozhaya
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and
| | - Lindsey Placek
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and
| | - Xin Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and
| | - Mesut Yigit
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and
| | - Derya Unutmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and .,Department of Immunology, University of Connecticut School of Medicine, Farmington, CT
| |
Collapse
|
48
|
Wang Z, Zhang S, Zhang X, Liu L, Zhou L, Shen Y, Zhang R, He Y, Yang D, Jiang E, Feng X, Zhou J, Cheng T, Han M, Feng S. Mucosal-associated invariant T cells predict increased acute graft-versus-host-disease incidence in patients receiving allogeneic hematopoietic stem cell transplantation. Cancer Cell Int 2022; 22:297. [PMID: 36180885 PMCID: PMC9526319 DOI: 10.1186/s12935-022-02703-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mucosal-associated invariant T (MAIT) cells are innate-like T cells, some studies have reported that the number of circulating MAIT cells reduced in patients with acute graft-versus-host-disease (aGVHD) development. However, the role of donor MAIT cells on aGVHD development and subsequent functional change still remain unclear. METHODS The study recruited 86 patients with hematological malignancies who underwent allogeneic hematopoietic cell transplantation (HCT) from May 1, 2018 to June 30, 2019. MAIT cells, their subset, and cytokine levels were measured by flow cytometry. Gray's test was used to assess the impact of graft MAIT cell proportion and number on aGVHD incidence. The Cox proportional hazard model was used in the multivariate analysis. The comparison for continuous variables was assessed using Mann-Whitney analysis. RNA-sequencing was performed to investigate the possible molecular pathway changes. RESULTS Our study showed that the proportion of MAIT cells in grafts was not different from normal controls, but the CD4/8 subsets were altered. Taking the median of the proportion and number of MAIT cells in the graft as the threshold, the results showed that the incidence of grade B-D aGVHD in patients with MAIT cell proportion ≥ 3.03% was significantly higher than that in patients with MAIT cell proportion < 3.03% (56.3%, 95% CI 37.1-71.2 versus 23.1%, 95% CI 13.8-46.2; P = 0.038).The number of MAIT cells in the graft was not associated with aGVHD development (P = 0.173), however, when the graft contained more CD4 positive, CD8 positive, and CD4/CD8 double-positive MAIT cells, the incidence of aGVHD was significantly increased (P = 0.019, P = 0.035 and P = 0.027, respectively). Besides, reduced frequencies and counts of circulating MAIT cells were observed in patients with aGVHD when compared to patients without aGVHD, accompanied by enhanced production of Tumor necrosis factor-α, Interferon-γ and upregulated programmed death-1, CXC Chemokine Receptor-6 (CXCR6) and CD38 expression. Gene set enrichment analysis of MAIT cell RNA-seq data showed interferon-α response pathway upregulated in aGVHD patients when compared with patients without aGVHD and healthy controls. CONCLUSIONS Our study shows that MAIT cells in grafts and peripheral blood are both closely related to the aGVHD development post allogeneic HCT. Interferon-α response pathway perhaps is a critical regulation mechanism for the MAIT cell involvement in aGVHD development.
Collapse
Affiliation(s)
- Zhao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Sudong Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xiaoyu Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Li Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Lukun Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yuyan Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
| |
Collapse
|
49
|
Tian J, Yan C, Jiang Y, Zhou H, Li L, Shen J, Wang J, Sun H, Yang G, Sun W. Peripheral and intestinal mucosal-associated invariant T cells in premature infants with necrotizing enterocolitis. Front Pharmacol 2022; 13:1008080. [PMID: 36188574 PMCID: PMC9515899 DOI: 10.3389/fphar.2022.1008080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Necrotizing enterocolitis (NEC) is a potentially fatal inflammatory gastrointestinal disease in preterm infants with unknown pathogenesis. Mucosal-associated invariant T (MAIT) cells primarily accumulate at sites where exposure to microbes is ubiquitous and regulate immunological responses. As the implications of these cells in NEC development in premature infants remain unknown, we investigated the role and characteristics of MAIT cells in NEC pathogenesis. Methods: The percentage of different MAIT cell subsets in peripheral blood samples of 30 preterm infants with NEC and 22 control subjects was estimated using flow cytometry. The frequency of MAIT cells in the intestinal tissues of five NEC patients and five control subjects was also examined. The level of serum cytokines was estimated using cytometric bead array. Potential associations between the different measurements were analyzed using the Spearman’s correlation test. Results: Compared with controls, the NEC patients were found to have significantly reduced percentages of circulating CD161+ CD3+ CD8αα+ T cells and CD161+ CD3+ TCRγδ-TCRVa7.2+ MAIT cells. In the intestinal tissues, the percentage of MAIT cells was significantly higher in samples from the NEC patients than the controls. Furthermore, the percentage of circulating MAIT cells in the peripheral blood samples was inversely correlated with that in the intestinal tissues of the NEC patients. The percentage of CD8αα+ MAIT cells was found to be significantly reduced in both peripheral blood and intestinal tissues of NEC patients. Following treatment, the frequency of circulating MAIT cells significantly increased in NEC patients and reached a level similar to that in the control subjects. However, there was no difference in the percentage of circulating CD8αα+ MAIT cells before and after treatment in the NEC patients. Conclusion: Our results suggested that during the development of NEC MAIT cells accumulate in the inflammatory intestinal tissues, while the percentage of CD8aa+ MAIT cells is significantly decreased, which may lead to the dysfunction of MAIT cells in gut immunity.
Collapse
Affiliation(s)
- Jiayi Tian
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Chaoying Yan
- Department of Neonatology, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Department of Center of Gene Diagnosis, The First Hospital of Jilin University, Changchun, China
| | - Haohan Zhou
- Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Liyuan Li
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jingjing Shen
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, China
| | - Jian Wang
- Department of Neonatology, The First Hospital of Jilin University, Changchun, China
| | - Hongyu Sun
- Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Guang Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Sun
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Wei Sun,
| |
Collapse
|
50
|
Salerno-Gonçalves R, Fresnay S, Magder L, Darton TC, Waddington CS, Blohmke CJ, Angus B, Levine MM, Pollard AJ, Sztein MB. Mucosal-Associated Invariant T cells exhibit distinct functional signatures associated with protection against typhoid fever. Cell Immunol 2022; 378:104572. [PMID: 35772315 PMCID: PMC9377420 DOI: 10.1016/j.cellimm.2022.104572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022]
Abstract
First demonstration of cytokine-secreting MAIT cell kinetics after human challenge with Salmonella enterica serovar Typhi. MAIT cell's functional signatures and association with typhoid fever protection. Predictive value of MAIT cell cytokine pattern. Lack of association between the number of cytokines expressed by MAIT cells and prevention against typhoid fever.
We have previously demonstrated that Mucosal-Associated Invariant T (MAIT) cells secrete multiple cytokines after exposure to Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever in humans. However, whether cytokine secreting MAIT cells can enhance or attenuate the clinical severity of bacterial infections remain debatable. This study characterizes human MAIT cell functions in subjects participating in a wild-type S. Typhi human challenge model. Here, we found that MAIT cells exhibit distinct functional signatures associated with protection against typhoid fever. We also observed that the cytokine patterns of MAIT cell responses, rather than the average number of cytokines expressed, are more predictive of typhoid fever outcomes. These results might enable us to objectively, based on functional parameters, identify cytokine patterns that may serve as predictive biomarkers during natural infection and vaccination.
Collapse
|