1
|
Dentovskaya SV, Vagaiskaya AS, Platonov ME, Trunyakova AS, Krasil’nikova EA, Mazurina EM, Gapel’chenkova TV, Lipatnikova NA, Shaikhutdinova RZ, Ivanov SA, Kombarova TI, Sebbane F, Anisimov AP. Protection Elicited by Glutamine Auxotroph of Yersinia pestis. Vaccines (Basel) 2025; 13:353. [PMID: 40333211 PMCID: PMC12030962 DOI: 10.3390/vaccines13040353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 05/09/2025] Open
Abstract
Background/Objectives:Yersinia pestis is an important zoonotic pathogen responsible for the rare but deadly disease of people with bubonic, septic, or pneumonic forms of plague. The emergence of multidrug-resistant Y. pestis strains has attracted more and more researchers' attention to the search for molecular targets for antivirulence therapy, including anti-nutritional-virulence therapy. The glnALG operon plays a crucial role in regulating the nitrogen content within a bacterial cell. This operon codes for three genes: the structural gene glnA and the two regulatory genes glnL and glnG. In this study, we tested the effect of the deletion of glnA and glnALG on the pathogenic properties of Y. pestis. Methods: To assess the contribution of nitrogen metabolism to Y. pestis virulence, knockout mutants ΔglnA and ΔglnALG were constructed. The former was unable to synthesize glutamine, while the latter was not only defective in glutamine synthesis but also lacked the two-component sensor-transcriptional activator pair GlnL and GlnG, which could partially compensate for the decrease in intracellular glutamine concentrations by transporting it from the host or by catabolic reactions. For vaccine studies, immunized mice and guinea pigs were injected s.c. with 200 LD100 of the wild-type Y. pestis strain. Results: A single knockout mutation in the glnA gene did not affect the virulence of Y. pestis in mice and guinea pigs. Knockout of the entire glnALG gene cluster was required for attenuation in these animals. The ΔglnALG strain of Y. pestis did not cause death in mice (LD50 > 105 CFU) and guinea pigs (LD50 > 107 CFU) when administered subcutaneously and provided 100% protection of animals when subsequently infected with 200 LD100 of the Y. pestis virulent wild-type strain 231. Conclusions:Y. pestis, defective in both the glutamine synthetase GlnA and the two-component sensor-transcriptional activator pair GlnL-GlnG, completely lost virulence and provided potent protective immunity to mice and guinea pigs subsequently challenged with a wild-type Y. pestis strain, demonstrating the potential use of the glnALG operon as a new molecular target for developing a safe and efficient live plague vaccine.
Collapse
Affiliation(s)
- Svetlana V. Dentovskaya
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.V.); (M.E.P.); (A.S.T.); (E.A.K.); (E.M.M.); (T.V.G.); (N.A.L.); (R.Z.S.); (S.A.I.); (A.P.A.)
| | - Anastasia S. Vagaiskaya
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.V.); (M.E.P.); (A.S.T.); (E.A.K.); (E.M.M.); (T.V.G.); (N.A.L.); (R.Z.S.); (S.A.I.); (A.P.A.)
| | - Mikhail E. Platonov
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.V.); (M.E.P.); (A.S.T.); (E.A.K.); (E.M.M.); (T.V.G.); (N.A.L.); (R.Z.S.); (S.A.I.); (A.P.A.)
| | - Alexandra S. Trunyakova
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.V.); (M.E.P.); (A.S.T.); (E.A.K.); (E.M.M.); (T.V.G.); (N.A.L.); (R.Z.S.); (S.A.I.); (A.P.A.)
| | - Ekaterina A. Krasil’nikova
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.V.); (M.E.P.); (A.S.T.); (E.A.K.); (E.M.M.); (T.V.G.); (N.A.L.); (R.Z.S.); (S.A.I.); (A.P.A.)
| | - Elizaveta M. Mazurina
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.V.); (M.E.P.); (A.S.T.); (E.A.K.); (E.M.M.); (T.V.G.); (N.A.L.); (R.Z.S.); (S.A.I.); (A.P.A.)
| | - Tat’yana V. Gapel’chenkova
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.V.); (M.E.P.); (A.S.T.); (E.A.K.); (E.M.M.); (T.V.G.); (N.A.L.); (R.Z.S.); (S.A.I.); (A.P.A.)
| | - Nadezhda A. Lipatnikova
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.V.); (M.E.P.); (A.S.T.); (E.A.K.); (E.M.M.); (T.V.G.); (N.A.L.); (R.Z.S.); (S.A.I.); (A.P.A.)
| | - Rima Z. Shaikhutdinova
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.V.); (M.E.P.); (A.S.T.); (E.A.K.); (E.M.M.); (T.V.G.); (N.A.L.); (R.Z.S.); (S.A.I.); (A.P.A.)
| | - Sergei A. Ivanov
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.V.); (M.E.P.); (A.S.T.); (E.A.K.); (E.M.M.); (T.V.G.); (N.A.L.); (R.Z.S.); (S.A.I.); (A.P.A.)
| | - Tat’yana I. Kombarova
- Laboratory of Biomodels, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia;
| | - Florent Sebbane
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunityof Lille, F-59000 Lille, France;
| | - Andrey P. Anisimov
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.V.); (M.E.P.); (A.S.T.); (E.A.K.); (E.M.M.); (T.V.G.); (N.A.L.); (R.Z.S.); (S.A.I.); (A.P.A.)
| |
Collapse
|
2
|
Carter EL, Waterfield NR, Constantinidou C, Alam MT. A temperature-induced metabolic shift in the emerging human pathogen Photorhabdus asymbiotica. mSystems 2024; 9:e0097023. [PMID: 39445821 PMCID: PMC11575385 DOI: 10.1128/msystems.00970-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/29/2023] [Indexed: 10/25/2024] Open
Abstract
Photorhabdus is a bacterial genus containing both insect and emerging human pathogens. Most insect-restricted species display temperature restriction, unable to grow above 34°C, while Photorhabdus asymbiotica can grow at 37°C to infect mammalian hosts and cause Photorhabdosis. Metabolic adaptations have been proposed to facilitate the survival of this pathogen at higher temperatures, yet the biological mechanisms underlying these are poorly understood. We have reconstructed an extensively manually curated genome-scale metabolic model of P. asymbiotica (iEC1073, BioModels ID MODEL2309110001), validated through in silico gene knockout and nutrient utilization experiments with an excellent agreement between experimental data and model predictions. Integration of iEC1073 with transcriptomics data obtained for P. asymbiotica at temperatures of 28°C and 37°C allowed the development of temperature-specific reconstructions representing metabolic adaptations the pathogen undergoes when shifting to a higher temperature in a mammalian compared to insect host. Analysis of these temperature-specific reconstructions reveals that nucleotide metabolism is enriched with predicted upregulated and downregulated reactions. iEC1073 could be used as a powerful tool to study the metabolism of P. asymbiotica, in different genetic or environmental conditions. IMPORTANCE Photorhabdus bacterial species contain both human and insect pathogens, and most of these species cannot grow in higher temperatures. However, Photorhabdus asymbiotica, which infects both humans and insects, can grow in higher temperatures and undergoes metabolic adaptations at a temperature of 37°C compared to that of insect body temperature. Therefore, it is important to examine how this bacterial species can metabolically adapt to survive in higher temperatures. In this work, using a mathematical model, we have examined the metabolic shift that takes place when the bacteria switch from growth conditions in 28°C to 37°C. We show that P. asymbiotica potentially experiences predicted temperature-induced metabolic adaptations at 37°C predominantly clustered within the nucleotide metabolism pathway.
Collapse
Affiliation(s)
- Elena Lucy Carter
- Warwick Medical School, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
| | - Nicholas R Waterfield
- Warwick Medical School, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
| | - Chrystala Constantinidou
- Warwick Medical School, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
- Bioinformatics Research Technology Platform, University of Warwick, Warwick, United Kingdom
| | - Mohammad Tauqeer Alam
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
3
|
Sanchez SE, Chiarelli TJ, Park MA, Carlyon JA. Orientia tsutsugamushi infection reduces host gluconeogenic but not glycolytic substrates. Infect Immun 2024; 92:e0028424. [PMID: 39324805 PMCID: PMC11556148 DOI: 10.1128/iai.00284-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Orientia tsutsugamushi a causal agent of scrub typhus, is an obligate intracellular bacterium that, akin to other rickettsiae, is dependent on host cell-derived nutrients for survival and thus pathogenesis. Based on limited experimental evidence and genome-based in silico predictions, O. tsutsugamushi is hypothesized to parasitize host central carbon metabolism (CCM). Here, we (re-)evaluated O. tsutsugamushi dependency on host cell CCM as initiated by glucose and glutamine. Orientia infection had no effect on host glucose and glutamine consumption or lactate accumulation, indicating no change in overall flux through CCM. However, host cell mitochondrial activity and ATP levels were reduced during infection and correspond with lower intracellular glutamine and glutamate pools. To further probe the essentiality of host CCM in O. tsutsugamushi proliferation, we developed a minimal medium for host cell cultivation and paired it with chemical inhibitors to restrict the intermediates and processes related to glucose and glutamine metabolism. These conditions failed to negatively impact O. tsutsugamushi intracellular growth, suggesting the bacterium is adept at scavenging from host CCM. Accordingly, untargeted metabolomics was utilized to evaluate minor changes in host CCM metabolic intermediates across O. tsutsugamushi infection and revealed that pathogen proliferation corresponds with reductions in critical CCM building blocks, including amino acids and TCA cycle intermediates, as well as increases in lipid catabolism. This study directly correlates O. tsutsugamushi proliferation to alterations in host CCM and identifies metabolic intermediates that are likely critical for pathogen fitness.IMPORTANCEObligate intracellular bacterial pathogens have evolved strategies to reside and proliferate within the eukaryotic intracellular environment. At the crux of this parasitism is the balance between host and pathogen metabolic requirements. The physiological basis driving O. tsutsugamushi dependency on its mammalian host remains undefined. By evaluating alterations in host metabolism during O. tsutsugamushi proliferation, we discovered that bacterial growth is independent of the host's nutritional environment but appears dependent on host gluconeogenic substrates, including amino acids. Given that O. tsutsugamushi replication is essential for its virulence, this study provides experimental evidence for the first time in the post-genomic era of metabolic intermediates potentially parasitized by a scrub typhus agent.
Collapse
Affiliation(s)
- Savannah E. Sanchez
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Travis J. Chiarelli
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Margaret A. Park
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
4
|
Asha IJ, Gupta SD, Hossain MM, Islam MN, Akter NN, Islam MM, Das SC, Barman DN. In silico Characterization of a Hypothetical Protein (PBJ89160.1) from Neisseria meningitidis Exhibits a New Insight on Nutritional Virulence and Molecular Docking to Uncover a Therapeutic Target. Evol Bioinform Online 2024; 20:11769343241298307. [PMID: 39534576 PMCID: PMC11555745 DOI: 10.1177/11769343241298307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Objective Neisseria meningitidis is an encapsulated, diplococcus, kidney bean-shaped bacteria that causes bacterial meningitis. Our study hopes to advance our understanding of disease progression, the spread frequency of the bacteria in people, and the interactions between the bacteria and human body by identifying a functional protein, potentially serving as a target for meningococcal medicine in the future. Methods A hypothetical protein HP (PBJ89160.1) from N. meningitidis was employed in this study for extensive structural and functional characterization. In the predictive functional role of HP, several constitutive bioinformatics approaches are applied, such as prediction of physiological properties, domain and motif family function, secondary and tertiary structure prediction, energy minimization, quality validation, docking, and ADMET analysis. To create the protein's three-dimensional (3D) structure, a template protein (PDB_ID: 3GXA) is used with 99% sequence identity by homology modeling technique with the HHpred server. To mitigate the pathogenicity associated with the HP function, it was docked with the natural ligand methionine and five other drug compounds like Verapamil, Loperamide, Thioridazine, Chlorpromazine, and Auranofine. Results The protein is predicted to be acidic, soluble and hydrophilic by physicochemical properties analysis. Subcellular localization analysis demonstrated the protein to be periplasmic. The HP has an ATP-binding cassette transporter (also known as ABC transporter) involved in uptake of methionine (MetQ) that creates nutritional virulence in host. Energy minimization, multiple quality assessments, and validation value determination led to the conclusion that the HP model had a workable and acceptable quality. Following ADMET analysis and binding affinity assessments from the docking studies, Loperamide emerged as the most promising therapeutic compound, effectively inhibiting the ATP transporter activity of the HP. Conclusion Comparative genomic analysis revealed that this protein is specific to N. meningitidis and has no homologs in human proteins, thereby identifying it as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Israt Jahan Asha
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Shipan Das Gupta
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Murad Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Nur Islam
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Nurun Nahar Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mohammed Mafizul Islam
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Shuvo Chandra Das
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Dhirendra Nath Barman
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
5
|
Sasikumar R, Saranya S, Lourdu Lincy L, Thamanna L, Chellapandi P. Genomic insights into fish pathogenic bacteria: A systems biology perspective for sustainable aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109978. [PMID: 39442738 DOI: 10.1016/j.fsi.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Fish diseases significantly challenge global aquaculture, causing substantial financial losses and impacting sustainability, trade, and socioeconomic conditions. Understanding microbial pathogenesis and virulence at the molecular level is crucial for disease prevention in commercial fish. This review provides genomic insights into fish pathogenic bacteria from a systems biology perspective, aiming to promote sustainable aquaculture. It covers the genomic characteristics of various fish pathogens and their industry impact. The review also explores the systems biology of zebrafish, fish bacterial pathogens, and probiotic bacteria, offering insights into fish production, potential vaccines, and therapeutic drugs. Genome-scale metabolic models aid in studying pathogenic bacteria, contributing to disease management and antimicrobial development. Researchers have also investigated probiotic strains to improve aquaculture health. Additionally, the review highlights bioinformatics resources for fish and fish pathogens, which are essential for researchers. Systems biology approaches enhance understanding of bacterial fish pathogens by revealing virulence factors and host interactions. Despite challenges from the adaptability and pathogenicity of bacterial infections, sustainable alternatives are necessary to meet seafood demand. This review underscores the potential of systems biology in understanding fish pathogen biology, improving production, and promoting sustainable aquaculture.
Collapse
Affiliation(s)
- R Sasikumar
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - S Saranya
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Lourdu Lincy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Thamanna
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - P Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
6
|
Gnanagobal H, Chakraborty S, Vasquez I, Chukwu-Osazuwa J, Cao T, Hossain A, Dang M, Valderrama K, Kumar S, Bindea G, Hill S, Boyce D, Hall JR, Santander J. Transcriptome profiling of lumpfish (Cyclopterus lumpus) head kidney to Renibacterium salmoninarum at early and chronic infection stages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105165. [PMID: 38499166 DOI: 10.1016/j.dci.2024.105165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Renibacterium salmoninarum causes Bacterial Kidney Disease (BKD) in several fish species. Atlantic lumpfish, a cleaner fish, is susceptible to R. salmoninarum. To profile the transcriptome response of lumpfish to R. salmoninarum at early and chronic infection stages, fish were intraperitoneally injected with either a high dose of R. salmoninarum (1 × 109 cells dose-1) or PBS (control). Head kidney tissue samples were collected at 28- and 98-days post-infection (dpi) for RNA sequencing. Transcriptomic profiling identified 1971 and 139 differentially expressed genes (DEGs) in infected compared with control samples at 28 and 98 dpi, respectively. At 28 dpi, R. salmoninarum-induced genes (n = 434) mainly involved in innate and adaptive immune response-related pathways, whereas R. salmoninarum-suppressed genes (n = 1537) were largely connected to amino acid metabolism and cellular processes. Cell-mediated immunity-related genes showed dysregulation at 98 dpi. Several immune-signalling pathways were dysregulated in response to R. salmoninarum, including apoptosis, alternative complement, JAK-STAT signalling, and MHC-I dependent pathways. In summary, R. salmoninarum causes immune suppression at early infection, whereas lumpfish induce a cell-mediated immune response at chronic infection. This study provides a complete depiction of diverse immune mechanisms dysregulated by R. salmoninarum in lumpfish and opens new avenues to develop immune prophylactic tools to prevent BKD.
Collapse
Affiliation(s)
- Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Joy Chukwu-Osazuwa
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - My Dang
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katherine Valderrama
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Surendra Kumar
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada; Ocean Frontier Institute, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Gabriela Bindea
- INSERM, Laboratory of Integrative Cancer Immunology, 75006, Paris, France; Equipe Labellisée Ligue Contre Le Cancer, 75013, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Stephen Hill
- Cold-Ocean Deep-Sea Research Facility, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Danny Boyce
- The Dr. Joe Brown Aquatic Research Building (JBARB), Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
7
|
Dhull KS, Dutta B, Pattanaik S, Gupta A, Md I, Wandile B. Decoding Early Childhood Caries: A Comprehensive Review Navigating the Impact of Evolving Dietary Trends in Preschoolers. Cureus 2024; 16:e58170. [PMID: 38741840 PMCID: PMC11090680 DOI: 10.7759/cureus.58170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 05/16/2024] Open
Abstract
This comprehensive review delves into the intricate relationship between evolving dietary trends in preschoolers and the prevalence of early childhood caries (ECC). The investigation meticulously analyzes ECC epidemiology, etiology, and preventive strategies. The review unveils the multifaceted nature of ECC, highlighting microbial, dietary, and environmental factors contributing to its development. Significantly, the study explores the global prevalence of ECC and its substantial implications for the overall health, nutrition, and development of preschool-aged children. The implications for public health and policy are deliberated, advocating for targeted interventions and collaborative efforts among healthcare professionals, policymakers, educators, and parents. The conclusion presents a compelling call to action, urging collective engagement to mitigate the impact of ECC and prioritize the well-being of preschoolers. This review offers valuable insights for healthcare professionals, policymakers, educators, and parents to inform evidence-based strategies for addressing ECC and promoting early childhood oral health.
Collapse
Affiliation(s)
- Kanika S Dhull
- Pedodontics and Preventive Dentistry, Kalinga Institute of Dental Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, IND
| | - Brahmananda Dutta
- Pedodontics and Preventive Dentistry, Kalinga Institute of Dental Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, IND
| | | | - Aditi Gupta
- Pediatric Dentistry, Kalinga Institute of Dental Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, IND
| | - Indira Md
- Pedodontics and Preventive Dentistry, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysuru, IND
| | - Bhushan Wandile
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
8
|
Mandel CG, Sanchez SE, Monahan CC, Phuklia W, Omsland A. Metabolism and physiology of pathogenic bacterial obligate intracellular parasites. Front Cell Infect Microbiol 2024; 14:1284701. [PMID: 38585652 PMCID: PMC10995303 DOI: 10.3389/fcimb.2024.1284701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/01/2024] [Indexed: 04/09/2024] Open
Abstract
Bacterial obligate intracellular parasites (BOIPs) represent an exclusive group of bacterial pathogens that all depend on invasion of a eukaryotic host cell to reproduce. BOIPs are characterized by extensive adaptation to their respective replication niches, regardless of whether they replicate within the host cell cytoplasm or within specialized replication vacuoles. Genome reduction is also a hallmark of BOIPs that likely reflects streamlining of metabolic processes to reduce the need for de novo biosynthesis of energetically costly metabolic intermediates. Despite shared characteristics in lifestyle, BOIPs show considerable diversity in nutrient requirements, metabolic capabilities, and general physiology. In this review, we compare metabolic and physiological processes of prominent pathogenic BOIPs with special emphasis on carbon, energy, and amino acid metabolism. Recent advances are discussed in the context of historical views and opportunities for discovery.
Collapse
Affiliation(s)
- Cameron G. Mandel
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Savannah E. Sanchez
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Colleen C. Monahan
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Weerawat Phuklia
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Anders Omsland
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
9
|
Solar Venero EC, Galeano MB, Luqman A, Ricardi MM, Serral F, Fernandez Do Porto D, Robaldi SA, Ashari BAZ, Munif TH, Egoburo DE, Nemirovsky S, Escalante J, Nishimura B, Ramirez MS, Götz F, Tribelli PM. Fever-like temperature impacts on Staphylococcus aureus and Pseudomonas aeruginosa interaction, physiology, and virulence both in vitro and in vivo. BMC Biol 2024; 22:27. [PMID: 38317219 PMCID: PMC10845740 DOI: 10.1186/s12915-024-01830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) cause a wide variety of bacterial infections and coinfections, showing a complex interaction that involves the production of different metabolites and metabolic changes. Temperature is a key factor for bacterial survival and virulence and within the host, bacteria could be exposed to an increment in temperature during fever development. We analyzed the previously unexplored effect of fever-like temperatures (39 °C) on S. aureus USA300 and P. aeruginosa PAO1 microaerobic mono- and co-cultures compared with 37 °C, by using RNAseq and physiological assays including in vivo experiments. RESULTS In general terms both temperature and co-culturing had a strong impact on both PA and SA with the exception of the temperature response of monocultured PA. We studied metabolic and virulence changes in both species. Altered metabolic features at 39 °C included arginine biosynthesis and the periplasmic glucose oxidation in S. aureus and P. aeruginosa monocultures respectively. When PA co-cultures were exposed at 39 °C, they upregulated ethanol oxidation-related genes along with an increment in organic acid accumulation. Regarding virulence factors, monocultured SA showed an increase in the mRNA expression of the agr operon and hld, pmsα, and pmsβ genes at 39 °C. Supported by mRNA data, we performed physiological experiments and detected and increment in hemolysis, staphyloxantin production, and a decrease in biofilm formation at 39 °C. On the side of PA monocultures, we observed an increase in extracellular lipase and protease and biofilm formation at 39 °C along with a decrease in the motility in correlation with changes observed at mRNA abundance. Additionally, we assessed host-pathogen interaction both in vitro and in vivo. S. aureus monocultured at 39οC showed a decrease in cellular invasion and an increase in IL-8-but not in IL-6-production by A549 cell line. PA also decreased its cellular invasion when monocultured at 39 °C and did not induce any change in IL-8 or IL-6 production. PA strongly increased cellular invasion when co-cultured at 37 and 39 °C. Finally, we observed increased lethality in mice intranasally inoculated with S. aureus monocultures pre-incubated at 39 °C and even higher levels when inoculated with co-cultures. The bacterial burden for P. aeruginosa was higher in liver when the mice were infected with co-cultures previously incubated at 39 °C comparing with 37 °C. CONCLUSIONS Our results highlight a relevant change in the virulence of bacterial opportunistic pathogens exposed to fever-like temperatures in presence of competitors, opening new questions related to bacteria-bacteria and host-pathogen interactions and coevolution.
Collapse
Affiliation(s)
- E C Solar Venero
- Instituto De Química Biológica de La Facultad de Ciencias Exactas y Naturales-CONICET, Buenos Aires, Argentina
- Present addressDepartment of BiochemistrySchool of Medicine, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas Alberto Sols (Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - M B Galeano
- Instituto De Química Biológica de La Facultad de Ciencias Exactas y Naturales-CONICET, Buenos Aires, Argentina
| | - A Luqman
- Department of Biology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - M M Ricardi
- IFIBYNE (UBA-CONICET), FBMC, FCEyN-UBA, Buenos Aires, Argentina
| | - F Serral
- Instituto del Calculo-UBA-CONICET, Buenos Aires, Argentina
| | | | - S A Robaldi
- Departamento de Química Biológica, FCEyN-UBA, Buenos Aires, Argentina
| | - B A Z Ashari
- Department of Biology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - T H Munif
- Department of Biology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - D E Egoburo
- Departamento de Química Biológica, FCEyN-UBA, Buenos Aires, Argentina
| | - S Nemirovsky
- Instituto De Química Biológica de La Facultad de Ciencias Exactas y Naturales-CONICET, Buenos Aires, Argentina
| | - J Escalante
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - B Nishimura
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - M S Ramirez
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - F Götz
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - P M Tribelli
- Instituto De Química Biológica de La Facultad de Ciencias Exactas y Naturales-CONICET, Buenos Aires, Argentina.
- Departamento de Química Biológica, FCEyN-UBA, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Kago G, Turnbough CL, Salazar JC, Payne SM. (p)ppGpp is required for virulence of Shigella flexneri. Infect Immun 2024; 92:e0033423. [PMID: 38099658 PMCID: PMC10790822 DOI: 10.1128/iai.00334-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/16/2023] [Indexed: 01/17/2024] Open
Abstract
Infection by the enteric pathogen Shigella flexneri requires transit through the gastrointestinal tract and invasion of and replication within the cells of the host colonic epithelium. This process exposes the pathogen to a range of diverse microenvironments. Furthermore, the unique composition and physical environment of the eukaryotic cell cytosol represents a stressful environment for S. flexneri, and extensive physiological adaptations are needed for the bacterium to thrive. In this work, we show that disrupting synthesis of the stringent response alarmone (p)ppGpp in S. flexneri diminished expression of key virulence genes, including ipaA, ipaB, ipaC, and icsA, and it reduced bacterial invasion and intercellular spread. Deletion of the (p)ppGpp synthase gene relA alone had no effect on S. flexneri virulence, but disruption of both relA and the (p)ppGpp synthase/hydrolase gene spoT resulted in loss of (p)ppGpp synthesis and virulence. While the relA spoT deletion mutant was able to invade a cultured human epithelial cell monolayer, albeit at reduced levels, it was unable to maintain the infection and spread to adjacent cells, as indicated by loss of plaque formation. Complementation with spoT on a plasmid vector restored plaque formation. Thus, SpoT alone is sufficient to provide the necessary level of (p)ppGpp for virulence. These results indicate that (p)ppGpp is required for S. flexneri virulence and adaptation to the intracellular environment, adding to the repertoire of signaling pathways that affect Shigella pathogenesis.
Collapse
Affiliation(s)
- Grace Kago
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Charles L. Turnbough
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Juan Carlos Salazar
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Shelley M. Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
11
|
Krekhno Z, Woodward SE, Serapio-Palacios A, Peña-Díaz J, Moon KM, Foster LJ, Finlay BB. Citrobacter rodentium possesses a functional type II secretion system necessary for successful host infection. Gut Microbes 2024; 16:2308049. [PMID: 38299318 PMCID: PMC10841016 DOI: 10.1080/19490976.2024.2308049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024] Open
Abstract
Infectious diarrheal diseases are the third leading cause of mortality in young children, many of which are driven by Gram-negative bacterial pathogens. To establish successful host infections these pathogens employ a plethora of virulence factors necessary to compete with the resident microbiota, and evade and subvert the host defenses. The type II secretion system (T2SS) is one such conserved molecular machine that allows for the delivery of effector proteins into the extracellular milieu. To explore the role of the T2SS during natural host infection, we used Citrobacter rodentium, a murine enteric pathogen, as a model of human intestinal disease caused by pathogenic Escherichia coli such as Enteropathogenic and Enterohemorrhagic E. coli (EPEC and EHEC). In this study, we determined that the C. rodentium genome encodes one T2SS and 22 potential T2SS-secreted protein effectors, as predicted via sequence homology. We demonstrated that this system was functional in vitro, identifying a role in intestinal mucin degradation allowing for its utilization as a carbon source, and promoting C. rodentium attachment to a mucus-producing colon cell line. During host infection, loss of the T2SS or associated effectors led to a significant colonization defect and lack of systemic spread. In mice susceptible to lethal infection, T2SS-deficient C. rodentium was strongly attenuated, resulting in reduced morbidity and mortality in infected hosts. Together these data highlight the important role of the T2SS and its effector repertoire during C. rodentium pathogenesis, aiding in successful host mucosal colonization.
Collapse
Affiliation(s)
- Z Krekhno
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - SE Woodward
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - A Serapio-Palacios
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - J Peña-Díaz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - KM Moon
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - LJ Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - BB Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Carter EL, Constantinidou C, Alam MT. Applications of genome-scale metabolic models to investigate microbial metabolic adaptations in response to genetic or environmental perturbations. Brief Bioinform 2023; 25:bbad439. [PMID: 38048080 PMCID: PMC10694557 DOI: 10.1093/bib/bbad439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Environmental perturbations are encountered by microorganisms regularly and will require metabolic adaptations to ensure an organism can survive in the newly presenting conditions. In order to study the mechanisms of metabolic adaptation in such conditions, various experimental and computational approaches have been used. Genome-scale metabolic models (GEMs) are one of the most powerful approaches to study metabolism, providing a platform to study the systems level adaptations of an organism to different environments which could otherwise be infeasible experimentally. In this review, we are describing the application of GEMs in understanding how microbes reprogram their metabolic system as a result of environmental variation. In particular, we provide the details of metabolic model reconstruction approaches, various algorithms and tools for model simulation, consequences of genetic perturbations, integration of '-omics' datasets for creating context-specific models and their application in studying metabolic adaptation due to the change in environmental conditions.
Collapse
Affiliation(s)
- Elena Lucy Carter
- Warwick Medical School, University of Warwick, Coventry, CV4 7HL, UK
| | | | | |
Collapse
|
13
|
Li XY, Zeng ZX, Cheng ZX, Wang YL, Yuan LJ, Zhai ZY, Gong W. Common pathogenic bacteria-induced reprogramming of the host proteinogenic amino acids metabolism. Amino Acids 2023; 55:1487-1499. [PMID: 37814028 PMCID: PMC10689525 DOI: 10.1007/s00726-023-03334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
Apart from cancer, metabolic reprogramming is also prevalent in other diseases, such as bacterial infections. Bacterial infections can affect a variety of cells, tissues, organs, and bodies, leading to a series of clinical diseases. Common Pathogenic bacteria include Helicobacter pylori, Salmonella enterica, Mycobacterium tuberculosis, Staphylococcus aureus, and so on. Amino acids are important and essential nutrients in bacterial physiology and support not only their proliferation but also their evasion of host immune defenses. Many pathogenic bacteria or opportunistic pathogens infect the host and lead to significant changes in metabolites, especially the proteinogenic amino acids, to inhibit the host's immune mechanism to achieve its immune evasion and pathogenicity. Here, we review the regulation of host metabolism, while host cells are infected by some common pathogenic bacteria, and discuss how amino acids of metabolic reprogramming affect bacterial infections, revealing the potential adjunctive application of amino acids alongside antibiotics.
Collapse
Affiliation(s)
- Xiao-Yue Li
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Zi-Xin Zeng
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Zhi-Xing Cheng
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Yi-Lin Wang
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Liang-Jun Yuan
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Zhi-Yong Zhai
- Shenzhen Hospital, Southern Medical University, Shenzhen Clinical Medical College, Southern Medical University, Guangdong, 518101, China.
| | - Wei Gong
- Shenzhen Hospital, Southern Medical University, Shenzhen Clinical Medical College, Southern Medical University, Guangdong, 518101, China.
| |
Collapse
|
14
|
Askari F, Vasavi B, Kaur R. Phosphatidylinositol 3-phosphate regulates iron transport via PI3P-binding CgPil1 protein. Cell Rep 2023; 42:112855. [PMID: 37490387 DOI: 10.1016/j.celrep.2023.112855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 05/23/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Iron homeostasis, which is pivotal to virulence, is regulated by the phosphatidylinositol 3-kinase CgVps34 in the human fungal pathogen Candida glabrata. Here, we identify CgPil1 as a phosphatidylinositol 3-phosphate (PI3P)-binding protein and unveil its role in retaining the high-affinity iron transporter CgFtr1 at the plasma membrane (PM), with PI3P negatively regulating CgFtr1-CgPil1 interaction. PI3P production and its PM localization are elevated in the high-iron environment. Surplus iron also leads to intracellular distribution and vacuolar delivery of CgPil1 and CgFtr1, respectively, from the PM. Loss of CgPil1 or CgFtr1 ubiquitination at lysines 391 and 401 results in CgFtr1 trafficking to the endoplasmic reticulum and a decrease in vacuole-localized CgFtr1. The E3-ubiquitin ligase CgRsp5 interacts with CgFtr1 and forms distinct CgRsp5-CgFtr1 puncta at the PM, with high iron resulting in their internalization. Finally, PI3P controls retrograde transport of many PM proteins. Altogether, we establish PI3P as a key regulator of membrane transport in C. glabrata.
Collapse
Affiliation(s)
- Fizza Askari
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India; Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Bhogadi Vasavi
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India.
| |
Collapse
|
15
|
Wang Y, Ledvina HE, Tower CA, Kambarev S, Liu E, Charity JC, Kreuk LSM, Tang Q, Chen Q, Gallagher LA, Radey MC, Rerolle GF, Li Y, Penewit KM, Turkarslan S, Skerrett SJ, Salipante SJ, Baliga NS, Woodward JJ, Dove SL, Peterson SB, Celli J, Mougous JD. Discovery of a glutathione utilization pathway in Francisella that shows functional divergence between environmental and pathogenic species. Cell Host Microbe 2023; 31:1359-1370.e7. [PMID: 37453420 PMCID: PMC10763578 DOI: 10.1016/j.chom.2023.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/19/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Glutathione (GSH) is an abundant metabolite within eukaryotic cells that can act as a signal, a nutrient source, or serve in a redox capacity for intracellular bacterial pathogens. For Francisella, GSH is thought to be a critical in vivo source of cysteine; however, the cellular pathways permitting GSH utilization by Francisella differ between strains and have remained poorly understood. Using genetic screening, we discovered a unique pathway for GSH utilization in Francisella. Whereas prior work suggested GSH catabolism initiates in the periplasm, the pathway we define consists of a major facilitator superfamily (MFS) member that transports intact GSH and a previously unrecognized bacterial cytoplasmic enzyme that catalyzes the first step of GSH degradation. Interestingly, we find that the transporter gene for this pathway is pseudogenized in pathogenic Francisella, explaining phenotypic discrepancies in GSH utilization among Francisella spp. and revealing a critical role for GSH in the environmental niche of these bacteria.
Collapse
Affiliation(s)
- Yaxi Wang
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Hannah E Ledvina
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Catherine A Tower
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Stanimir Kambarev
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA
| | - Elizabeth Liu
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - James C Charity
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Qing Tang
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Qiwen Chen
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Larry A Gallagher
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Matthew C Radey
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Guilhem F Rerolle
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Yaqiao Li
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Institute for Systems Biology, Seattle, WA 98109, USA
| | - Kelsi M Penewit
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Shawn J Skerrett
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Joshua J Woodward
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - S Brook Peterson
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Jean Celli
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Microbial Interactions and Microbiome Center, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
16
|
Hüsler D, Stauffer P, Hilbi H. Tapping lipid droplets: A rich fat diet of intracellular bacterial pathogens. Mol Microbiol 2023; 120:194-209. [PMID: 37429596 DOI: 10.1111/mmi.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Lipid droplets (LDs) are dynamic and versatile organelles present in most eukaryotic cells. LDs consist of a hydrophobic core of neutral lipids, a phospholipid monolayer coat, and a variety of associated proteins. LDs are formed at the endoplasmic reticulum and have diverse roles in lipid storage, energy metabolism, membrane trafficking, and cellular signaling. In addition to their physiological cellular functions, LDs have been implicated in the pathogenesis of several diseases, including metabolic disorders, cancer, and infections. A number of intracellular bacterial pathogens modulate and/or interact with LDs during host cell infection. Members of the genera Mycobacterium, Legionella, Coxiella, Chlamydia, and Salmonella exploit LDs as a source of intracellular nutrients and membrane components to establish their distinct intracellular replicative niches. In this review, we focus on the biogenesis, interactions, and functions of LDs, as well as on their role in lipid metabolism of intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Dario Hüsler
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Pia Stauffer
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Solar Venero EC, Galeano MB, Luqman A, Ricardi MM, Serral F, Fernandez Do Porto D, Robaldi SA, Ashari B, Munif TH, Egoburo DE, Nemirovsky S, Escalante J, Nishimura B, Ramirez MS, Götz F, Tribelli PM. Fever-like temperature impacts on Staphylococcus aureus and Pseudomonas aeruginosa interaction, physiology, and virulence both in vitro and in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.529514. [PMID: 36993402 PMCID: PMC10055263 DOI: 10.1101/2023.03.21.529514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Background Staphylococcus aureus and Pseudomonas aeruginosa cause a wide variety of bacterial infections and coinfections, showing a complex interaction that involves the production of different metabolites and metabolic changes. Temperature is a key factor for bacterial survival and virulence and within the host, bacteria could be exposed to an increment in temperature during fever development. We analyzed the previously unexplored effect of fever-like temperatures (39°C) on S. aureus USA300 and P. aeruginosa PAO1 microaerobic mono- and co-cultures compared with 37°C, by using RNAseq and physiological assays including in-vivo experiments. Results In general terms both temperature and co-culturing had a strong impact on both PA and SA with the exception of the temperature response of monocultured PA. We studied metabolic and virulence changes on both species. Altered metabolic features at 39°C included arginine biosynthesis and the periplasmic glucose oxidation in S. aureus and P. aeruginosa monocultures respectively. When PA co-cultures were exposed at 39°C they upregulated ethanol oxidation related genes along with an increment in organic acid accumulation. Regarding virulence factors, monocultured SA showed an increase in the mRNA expression of the agr operon and hld, pmsα and pmsβ genes at 39°C. Supported by mRNA data, we performed physiological experiments and detected and increment in hemolysis, staphylxantin production and a decrease in biofilm formation at 39°C. On the side of PA monocultures, we observed increase in extracellular lipase and protease and biofilm formation at 39°C along with a decrease in motility in correlation with changes observed at mRNA abundance. Additionally, we assessed host-pathogen interaction both in-vitro and in-vivo . S. aureus monocultured at 39°C showed a decrease in cellular invasion and an increase in IL-8 -but not in IL-6- production by A549 cell line. PA also decreased its cellular invasion when monocultured at 39°C and did not induce any change in IL-8 or IL-6 production. PA strongly increased cellular invasion when co-cultured at 37°C and 39°C. Finally, we observed increased lethality in mice intranasally inoculated with S. aureus monocultures pre-incubated at 39°C and even higher levels when inoculated with co-cultures. The bacterial burden for P. aeruginosa was higher in liver when the mice were infected with co-cultures previously incubated at 39°C comparing with 37°C. Conclusion Our results highlight a relevant change in the virulence of bacterial opportunistic pathogens exposed to fever-like temperatures in presence of competitors, opening new questions related to bacteria-bacteria and host-pathogen interactions and coevolution.
Collapse
|
18
|
Baskerville MJ, Kovalyova Y, Mejías-Luque R, Gerhard M, Hatzios SK. Isotope tracing reveals bacterial catabolism of host-derived glutathione during Helicobacter pylori infection. PLoS Pathog 2023; 19:e1011526. [PMID: 37494402 PMCID: PMC10406306 DOI: 10.1371/journal.ppat.1011526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/07/2023] [Accepted: 07/01/2023] [Indexed: 07/28/2023] Open
Abstract
Mammalian cells synthesize the antioxidant glutathione (GSH) to shield cellular biomolecules from oxidative damage. Certain bacteria, including the gastric pathogen Helicobacter pylori, can perturb host GSH homeostasis. H. pylori infection significantly decreases GSH levels in host tissues, which has been attributed to the accumulation of reactive oxygen species in infected cells. However, the precise mechanism of H. pylori-induced GSH depletion remains unknown, and tools for studying this process during infection are limited. We developed an isotope-tracing approach to quantitatively monitor host-derived GSH in H. pylori-infected cells by mass spectrometry. Using this method, we determined that H. pylori catabolizes reduced GSH from gastric cells using γ-glutamyl transpeptidase (gGT), an enzyme that hydrolyzes GSH to glutamate and cysteinylglycine (Cys-Gly). gGT is an established virulence factor with immunomodulatory properties that is required for H. pylori colonization in vivo. We found that H. pylori internalizes Cys-Gly in a gGT-dependent manner and that Cys-Gly production during H. pylori infection is coupled to the depletion of intracellular GSH from infected cells. Consistent with bacterial catabolism of host GSH, levels of oxidized GSH did not increase during H. pylori infection, and exogenous antioxidants were unable to restore the GSH content of infected cells. Altogether, our results indicate that H. pylori-induced GSH depletion proceeds via an oxidation-independent mechanism driven by the bacterial enzyme gGT, which fortifies bacterial acquisition of nutrients from the host. Additionally, our work establishes a method for tracking the metabolic fate of host-derived GSH during infection.
Collapse
Affiliation(s)
- Maia J. Baskerville
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
| | - Yekaterina Kovalyova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
| | - Raquel Mejías-Luque
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University of Munich, School of Medicine, Munich, Germany
- German Centre for Infection Research, Munich, Germany
| | - Markus Gerhard
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University of Munich, School of Medicine, Munich, Germany
- German Centre for Infection Research, Munich, Germany
| | - Stavroula K. Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
19
|
Shames SR. Eat or Be Eaten: Strategies Used by Legionella to Acquire Host-Derived Nutrients and Evade Lysosomal Degradation. Infect Immun 2023; 91:e0044122. [PMID: 36912646 PMCID: PMC10112212 DOI: 10.1128/iai.00441-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
To replicate within host cells, bacterial pathogens must acquire host-derived nutrients while avoiding degradative antimicrobial pathways. Fundamental insights into bacterial pathogenicity have been revealed by bacteria of the genus Legionella, which naturally parasitize free-living protozoa by establishing a membrane-bound replicative niche termed the Legionella-containing vacuole (LCV). Biogenesis of the LCV and intracellular replication rely on rapid evasion of the endocytic pathway and acquisition of host-derived nutrients, much of which is mediated by bacterial effector proteins translocated into host cells by a Dot/Icm type IV secretion system. Billions of years of co-evolution with eukaryotic hosts and broad host tropism have resulted in expansion of the Legionella genome to accommodate a massive repertoire of effector proteins that promote LCV biogenesis, safeguard the LCV from endolysosomal maturation, and mediate the acquisition of host nutrients. This minireview is focused on the mechanisms by which an ancient intracellular pathogen leverages effector proteins and hijacks host cell biology to obtain essential host-derived nutrients and prevent lysosomal degradation.
Collapse
Affiliation(s)
- Stephanie R. Shames
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
20
|
Banerjee A, Sun Y, Muramatsu MK, Toh E, Nelson DE. A Member of an Ancient Family of Bacterial Amino Acids Transporters Contributes to Chlamydia Nutritional Virulence and Immune Evasion. Infect Immun 2023; 91:e0048322. [PMID: 36847502 PMCID: PMC10068747 DOI: 10.1128/iai.00483-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
Many obligate intracellular bacteria, including members of the genus Chlamydia, cannot synthesize a variety of amino acids de novo and acquire these from host cells via largely unknown mechanisms. Previously, we determined that a missense mutation in ctl0225, a conserved Chlamydia open reading frame of unknown function, mediated sensitivity to interferon gamma. Here, we show evidence that CTL0225 is a member of the SnatA family of neutral amino acid transporters that contributes to the import of several amino acids into Chlamydia cells. Further, we show that CTL0225 orthologs from two other distantly related obligate intracellular pathogens (Coxiella burnetii and Buchnera aphidicola) are sufficient to import valine into Escherichia coli. We also show that chlamydia infection and interferon exposure have opposing effects on amino acid metabolism, potentially explaining the relationship between CTL0225 and interferon sensitivity. Overall, we show that phylogenetically diverse intracellular pathogens use an ancient family of amino acid transporters to acquire host amino acids and provide another example of how nutritional virulence and immune evasion can be linked in obligate intracellular pathogens.
Collapse
Affiliation(s)
- Arkaprabha Banerjee
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yuan Sun
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthew K. Muramatsu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Evelyn Toh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - David E. Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
21
|
Pfenning‐Butterworth AC, Vetter RE, Hite JL. Natural variation in host feeding behaviors impacts host disease and pathogen transmission potential. Ecol Evol 2023; 13:e9865. [PMID: 36911315 PMCID: PMC9992943 DOI: 10.1002/ece3.9865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/09/2023] [Indexed: 03/10/2023] Open
Abstract
Animals ranging from mosquitoes to humans often vary their feeding behavior when infected or merely exposed to pathogens. These so-called "sickness behaviors" are part of the innate immune response with many consequences, including avoiding orally transmitted pathogens. Fully understanding the role of this ubiquitous behavior in host defense and pathogen evolution requires a quantitative account of its impact on host and pathogen fitness across environmentally relevant contexts. Here, we use a zooplankton host and fungal pathogen as a case study to ask if infection-mediated feeding behaviors vary across pathogen exposure levels and natural genetic variation in susceptibility to infection. Then, we connect these changes in behavior to pathogen transmission potential (spore yield) and fitness and growth costs to the host. Our results validate a protective effect of altered feeding behavior during pathogen exposure while also revealing significant variation in the magnitude of this response across host susceptibility and pathogen exposure levels. Across all four host genotypes, feeding rates were negatively correlated with susceptibility to infection and transmission potential. The most susceptible genotypes exhibited either strong anorexia, reducing food intake by 26%-42%, ("Standard") or pronounced hyperphagia, increasing food intake by 20%-54% ("A45"). Together, these results suggest that infection-mediated changes in host feeding behavior-which are traditionally interpreted as immunopathology- may in fact serve as crucial components of host defense strategies and warrant further investigation.
Collapse
Affiliation(s)
- Alaina C. Pfenning‐Butterworth
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Rachel E. Vetter
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | - Jessica L. Hite
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Department of Pathobiological SciencesUniversity of WisconsinMadisonWisconsinUSA
| |
Collapse
|
22
|
Taylor-Joyce G, Manoharan S, Brooker TA, Hernández-Rodríguez CS, Baillie L, Oyston PCF, Hapeshi A, Waterfield NR. The influence of extrachromosomal elements in the anthrax "cross-over" strain Bacillus cereus G9241. Front Microbiol 2023; 14:1113642. [PMID: 37213513 PMCID: PMC10196113 DOI: 10.3389/fmicb.2023.1113642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/31/2023] [Indexed: 05/23/2023] Open
Abstract
Bacillus cereus G9241 was isolated from a welder who survived a pulmonary anthrax-like disease. Strain G9241 carries two virulence plasmids, pBCX01 and pBC210, as well as an extrachromosomal prophage, pBFH_1. pBCX01 has 99.6% sequence identity to pXO1 carried by Bacillus anthracis and encodes the tripartite anthrax toxin genes and atxA, a mammalian virulence transcriptional regulator. This work looks at how the presence of pBCX01 and temperature may affect the lifestyle of B. cereus G9241 using a transcriptomic analysis and by studying spore formation, an important part of the B. anthracis lifecycle. Here we report that pBCX01 has a stronger effect on gene transcription at the mammalian infection relevant temperature of 37°C in comparison to 25°C. At 37°C, the presence of pBCX01 appears to have a negative effect on genes involved in cell metabolism, including biosynthesis of amino acids, whilst positively affecting the transcription of many transmembrane proteins. The study of spore formation showed B. cereus G9241 sporulated rapidly in comparison to the B. cereus sensu stricto type strain ATCC 14579, particularly at 37°C. The carriage of pBCX01 did not affect this phenotype suggesting that other genetic elements were driving rapid sporulation. An unexpected finding of this study was that pBFH_1 is highly expressed at 37°C in comparison to 25°C and pBFH_1 expression leads to the production of Siphoviridae-like phage particles in the supernatant of B. cereus G9241. This study provides an insight on how the extrachromosomal genetic elements in B. cereus G9241 has an influence in bacterial phenotypes.
Collapse
Affiliation(s)
- Grace Taylor-Joyce
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Shathviga Manoharan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Thomas A. Brooker
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | - Les Baillie
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | | | - Alexia Hapeshi
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Nicholas R. Waterfield
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- *Correspondence: Nicholas R. Waterfield,
| |
Collapse
|
23
|
Nishikawa S, Ogawa Y, Shiraiwa K, Nozawa R, Nakayama M, Eguchi M, Shimoji Y. Rational Design of Live-Attenuated Vaccines against Genome-Reduced Pathogens. Microbiol Spectr 2022; 10:e0377622. [PMID: 36453908 PMCID: PMC9769512 DOI: 10.1128/spectrum.03776-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022] Open
Abstract
To develop safe and highly effective live vaccines, rational vaccine design is necessary. Here, we sought a simple approach to rationally develop a safe attenuated vaccine against the genome-reduced pathogen Erysipelothrix rhusiopathiae. We examined the mRNA expression of all conserved amino acid biosynthetic genes remaining in the genome after the reductive evolution of E. rhusiopathiae. Reverse transcription-quantitative PCR (qRT-PCR) analysis revealed that half of the 14 genes examined were upregulated during the infection of murine J774A.1 macrophages. Gene deletion was possible only for three proline biosynthesis genes, proB, proA, and proC, the last of which was upregulated 29-fold during infection. Five mutants bearing an in-frame deletion of one (ΔproB, ΔproA, or ΔproC mutant), two (ΔproBA mutant), or three (ΔproBAC mutant) genes exhibited attenuated growth during J774A.1 infection, and the attenuation and vaccine efficacy of these mutants were confirmed in mice and pigs. Thus, for the rational design of live vaccines against genome-reduced bacteria, the selective targeting of genes that escaped chromosomal deletions during evolution may be a simple approach for identifying genes which are specifically upregulated during infection. IMPORTANCE Identification of bacterial genes that are specifically upregulated during infection can lead to the rational construction of live vaccines. For this purpose, genome-based approaches, including DNA microarray analysis and IVET (in vivo expression technology), have been used so far; however, these methods can become laborious and time-consuming. In this study, we used a simple in silico approach and showed that in genome-reduced bacteria, the genes which evolutionarily remained conserved for metabolic adaptations during infection may be the best targets for the deletion and construction of live vaccines.
Collapse
Affiliation(s)
- Sayaka Nishikawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Yohsuke Ogawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Kazumasa Shiraiwa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Rieko Nozawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Momoko Nakayama
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Masahiro Eguchi
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Yoshihiro Shimoji
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
24
|
Dominguez SR, Whiles S, Deobald KN, Kawula T. Francisella tularensis Exploits AMPK Activation to Harvest Host-Derived Nutrients Liberated from Host Lipolysis. Infect Immun 2022; 90:e0015522. [PMID: 35916521 PMCID: PMC9387300 DOI: 10.1128/iai.00155-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Francisella tularensis is a zoonotic, facultative intracellular bacterial pathogen that replicates in a variety of cell types during infection. Following entry into the cell and phagosome escape, the bacterium replicates rapidly in the cytoplasm. F. tularensis intracellular growth depends on the availability of metabolizable essential nutrients to support replication. However, the mechanism by which metabolizable nutrients become available to the bacterium in the intracellular environment is not fully understood. We found that F. tularensis-infected cells had significantly smaller and fewer lipid droplets than uninfected cells. Inhibition of triacylglycerol degradation significantly reduced bacterial growth, whereas inhibition of triacylglycerol formation did not reduce bacterial growth, suggesting that triacylglycerols sequestered within lipid droplets are important nutrient sources for F. tularensis. We found that F. tularensis-infected cells had increased activation of lipolysis and the upstream regulatory protein AMP protein kinase (AMPK). These data suggest that F. tularensis exploits AMPK activation and lipid metabolism to use host-derived nutrients. Finally, we found that AMPK activation is correlated with an increased bacterial burden, which suggests that it is a host-mediated response to nutrient starvation that results from increased bacterial replication. Altogether, we conclude that F. tularensis exploits AMPK activation to access nutrients sequestered in lipid droplets, specifically glycerol and fatty acids, to undergo efficient bacterial replication and cause successful infection.
Collapse
Affiliation(s)
- Sedelia R. Dominguez
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Shannon Whiles
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Kelly N. Deobald
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Thomas Kawula
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
25
|
Mycobacterial resistance to zinc poisoning requires assembly of P-ATPase-containing membrane metal efflux platforms. Nat Commun 2022; 13:4731. [PMID: 35961955 PMCID: PMC9374683 DOI: 10.1038/s41467-022-32085-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
The human pathogen Mycobacterium tuberculosis requires a P1B-ATPase metal exporter, CtpC (Rv3270), for resistance to zinc poisoning. Here, we show that zinc resistance also depends on a chaperone-like protein, PacL1 (Rv3269). PacL1 contains a transmembrane domain, a cytoplasmic region with glutamine/alanine repeats and a C-terminal metal-binding motif (MBM). PacL1 binds Zn2+, but the MBM is required only at high zinc concentrations. PacL1 co-localizes with CtpC in dynamic foci in the mycobacterial plasma membrane, and the two proteins form high molecular weight complexes. Foci formation does not require flotillin nor the PacL1 MBM. However, deletion of the PacL1 Glu/Ala repeats leads to loss of CtpC and sensitivity to zinc. Genes pacL1 and ctpC appear to be in the same operon, and homologous gene pairs are found in the genomes of other bacteria. Furthermore, PacL1 colocalizes and functions redundantly with other PacL orthologs in M. tuberculosis. Overall, our results indicate that PacL proteins may act as scaffolds that assemble P-ATPase-containing metal efflux platforms mediating bacterial resistance to metal poisoning. The human pathogen Mycobacterium tuberculosis requires a metal exporter, CtpC, for resistance to zinc poisoning. Here, the authors show that zinc resistance also depends on a chaperone-like protein that binds zinc ions, forms high-molecular-weight complexes with CtpC in the cytoplasmic membrane, and is required for CtpC function.
Collapse
|
26
|
The source of carbon and nitrogen differentially affects the survival of Neisseria meningitidis in macrophages and epithelial cells. Arch Microbiol 2022; 204:404. [PMID: 35723778 DOI: 10.1007/s00203-022-03037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Neisseria meningitidis is a commensal of human nasopharynx which under certain unidentified conditions could lead to fulminant meningitis or sepsis. Availability of nutrients is essential for bacterial growth and virulence. The metabolic adaptations allow N. meningitidis to utilize host resources, colonize and cause virulence functions which are a crucial for the invasive infection. During colonization meningococci encounters a range of microenvironments involving fluctuations in the availability of carbon and nitrogen source. Therefore, the characterization of virulence factors of N. meningitidis under different microenvironmental conditions is a prime requisite to understand pathogenesis; however, the role of nutrients is not well understood. Here, we explore the expression of virulence phenotype leading to symptomatic behaviour as affected by available carbon and nitrogen sources. We evaluate the effect of carbon or nitrogen source on growth, adhesion to epithelial cells, macrophage infectivity, capsule formation and virulence gene expression of N. meningitidis. It was found that lactate, pyruvate, and acetate facilitate survival of N. meningitidis in macrophages. While in epithelial cells, the survival of N. meningitidis is negatively affected by the presence of lactate and pyruvate.
Collapse
|
27
|
Hosmer J, Nasreen M, Dhouib R, Essilfie AT, Schirra HJ, Henningham A, Fantino E, Sly P, McEwan AG, Kappler U. Access to highly specialized growth substrates and production of epithelial immunomodulatory metabolites determine survival of Haemophilus influenzae in human airway epithelial cells. PLoS Pathog 2022; 18:e1010209. [PMID: 35085362 PMCID: PMC8794153 DOI: 10.1371/journal.ppat.1010209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
Haemophilus influenzae (Hi) infections are associated with recurring acute exacerbations of chronic respiratory diseases in children and adults including otitis media, pneumonia, chronic obstructive pulmonary disease and asthma. Here, we show that persistence and recurrence of Hi infections are closely linked to Hi metabolic properties, where preferred growth substrates are aligned to the metabolome of human airway epithelial surfaces and include lactate, pentoses, and nucleosides, but not glucose that is typically used for studies of Hi growth in vitro. Enzymatic and physiological investigations revealed that utilization of lactate, the preferred Hi carbon source, required the LldD L-lactate dehydrogenase (conservation: 98.8% of strains), but not the two redox-balancing D-lactate dehydrogenases Dld and LdhA. Utilization of preferred substrates was directly linked to Hi infection and persistence. When unable to utilize L-lactate or forced to rely on salvaged guanine, Hi showed reduced extra- and intra-cellular persistence in a murine model of lung infection and in primary normal human nasal epithelia, with up to 3000-fold attenuation observed in competitive infections. In contrast, D-lactate dehydrogenase mutants only showed a very slight reduction compared to the wild-type strain. Interestingly, acetate, the major Hi metabolic end-product, had anti-inflammatory effects on cultured human tissue cells in the presence of live but not heat-killed Hi, suggesting that metabolic endproducts also influence HI-host interactions. Our work provides significant new insights into the critical role of metabolism for Hi persistence in contact with host cells and reveals for the first time the immunomodulatory potential of Hi metabolites.
Collapse
Affiliation(s)
- Jennifer Hosmer
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Marufa Nasreen
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Rabeb Dhouib
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | | | | | - Anna Henningham
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Emmanuelle Fantino
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Peter Sly
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Alastair G. McEwan
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
28
|
Kuhn HW, Lasseter AG, Adams PP, Avile CF, Stone BL, Akins DR, Jewett TJ, Jewett MW. BB0562 is a nutritional virulence determinant with lipase activity important for Borrelia burgdorferi infection and survival in fatty acid deficient environments. PLoS Pathog 2021; 17:e1009869. [PMID: 34415955 PMCID: PMC8409650 DOI: 10.1371/journal.ppat.1009869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/01/2021] [Accepted: 08/05/2021] [Indexed: 11/22/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi relies on uptake of essential nutrients from its host environments for survival and infection. Therefore, nutrient acquisition mechanisms constitute key virulence properties of the pathogen, yet these mechanisms remain largely unknown. In vivo expression technology applied to B. burgdorferi (BbIVET) during mammalian infection identified gene bb0562, which encodes a hypothetical protein comprised of a conserved domain of unknown function, DUF3996. DUF3996 is also found across adjacent encoded hypothetical proteins BB0563 and BB0564, suggesting the possibility that the three proteins could be functionally related. Deletion of bb0562, bb0563 and bb0564 individually and together demonstrated that bb0562 alone was important for optimal disseminated infection in immunocompetent and immunocompromised mice by needle inoculation and tick bite transmission. Moreover, bb0562 promoted spirochete survival during the blood dissemination phase of infection. Gene bb0562 was also found to be important for spirochete growth in low serum media and the growth defect of Δbb0562 B. burgdorferi was rescued with the addition of various long chain fatty acids, particularly oleic acid. In mammals, fatty acids are primarily stored in fat droplets in the form of triglycerides. Strikingly, addition of glyceryl trioleate, the triglyceride form of oleic acid, to the low serum media did not rescue the growth defect of the mutant, suggesting bb0562 may be important for the release of fatty acids from triglycerides. Therefore, we searched for and identified two canonical GXSXG lipase motifs within BB0562, despite the lack of homology to known bacterial lipases. Purified BB0562 demonstrated lipolytic activity dependent on the catalytic serine residues within the two motifs. In sum, we have established that bb0562 is a novel nutritional virulence determinant, encoding a lipase that contributes to fatty acid scavenge for spirochete survival in environments deficient in free fatty acids including the mammalian host. Borrelia burgdorferi, the causative agent of Lyme disease, has a small genome and lacks the ability to synthesize essential nutrients on its own as well as many of the virulence properties typical of bacterial pathogens that contribute to disease. The clinical manifestations of Lyme disease predominantly result from inflammation in response to the B. burgdorferi infection. Therefore, nutrient acquisition functions constitute key virulence factors for the pathogen. Fatty acids are critical components of B. burgdorferi membranes and lipoproteins, which the spirochete must scavenge from the host environment. Previously, through a genetic screen for B. burgdorferi genes that are expressed during mammalian infection we identified gene of unknown function, bb0562. Herein, we demonstrate that bb0562 encodes a lipase that plays a role in the release of free fatty acids from triglycerides. Furthermore, bb0562 contributes to B. burgdorferi survival and dissemination in the mammalian host. BB0562 is important for spirochete survival in environments low in free fatty acids thereby adding to B. burgdorferi’s arsenal of nutritional virulence determinants necessary for the pathogen to be maintained in the tick-mouse enzootic cycle and to cause disseminated disease.
Collapse
Affiliation(s)
- Hunter W. Kuhn
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Amanda G. Lasseter
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Philip P. Adams
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institute of Health, Bethesda, Maryland, United States of America
| | - Carlos Flores Avile
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Brandee L. Stone
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Darrin R. Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Travis J. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Mollie W. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
- * E-mail:
| |
Collapse
|
29
|
Matz LM, Petrosino JF. A study of innate immune kinetics reveals a role for a chloride transporter in a virulent Francisella tularensis type B strain. Microbiologyopen 2021; 10:e1170. [PMID: 33970545 PMCID: PMC8483402 DOI: 10.1002/mbo3.1170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/26/2022] Open
Abstract
Tularemia is a zoonotic disease of global proportions. Francisella tularensis subspecies tularensis (type A) and holarctica (type B) cause disease in healthy humans, with type A infections resulting in higher mortality. Repeated passage of a type B strain in the mid-20th century generated the Live Vaccine Strain (LVS). LVS remains unlicensed, does not protect against high inhalational doses of type A, and its exact mechanisms of attenuation are poorly understood. Recent data suggest that live attenuated vaccines derived from type B may cross-protect against type A. However, there is a dearth of knowledge regarding virulent type B pathogenesis and its capacity to stimulate the host's innate immune response. We therefore sought to increase our understanding of virulent type B in vitro characteristics using strain OR96-0246 as a model. Adding to our knowledge of innate immune kinetics in macrophages following infection with virulent type B, we observed robust replication of strain OR96-0246 in murine and human macrophages, reduced expression of pro-inflammatory cytokine genes from "wild type" type B-infected macrophages compared to LVS, and delayed macrophage cell death suggesting that virulent type B may suppress macrophage activation. One disruption in LVS is in the gene encoding the chloride transporter ClcA. We investigated the role of ClcA in macrophage infection and observed a replication delay in a clcA mutant. Here, we propose its role in acid tolerance. A greater understanding of LVS attenuation may reveal new mechanisms of pathogenesis and inform strategies toward the development of an improved vaccine against tularemia.
Collapse
Affiliation(s)
- Lisa M. Matz
- The Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTXUSA
- The Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTXUSA
- Baylor College of MedicineHoustonTXUSA
| | - Joseph F. Petrosino
- The Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTXUSA
- The Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTXUSA
- Baylor College of MedicineHoustonTXUSA
| |
Collapse
|
30
|
Groshong AM, McLain MA, Radolf JD. Host-specific functional compartmentalization within the oligopeptide transporter during the Borrelia burgdorferi enzootic cycle. PLoS Pathog 2021; 17:e1009180. [PMID: 33428666 PMCID: PMC7822543 DOI: 10.1371/journal.ppat.1009180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/22/2021] [Accepted: 11/23/2020] [Indexed: 12/27/2022] Open
Abstract
Borrelia burgdorferi must acquire all of its amino acids (AAs) from its arthropod vector and vertebrate host. Previously, we determined that peptide uptake via the oligopeptide (Opp) ABC transporter is essential for spirochete viability in vitro and during infection. Our prior study also suggested that B. burgdorferi employs temporal regulation in concert with structural variation of oligopeptide-binding proteins (OppAs) to meet its AA requirements in each biological niche. Herein, we evaluated the contributions to the B. burgdorferi enzootic cycle of three of the spirochete's five OppAs (OppA1, OppA2, and OppA5). An oppA1 transposon (tn) mutant lysed in the hyperosmolar environment of the feeding tick, suggesting that OppA1 imports amino acids required for osmoprotection. The oppA2tn mutant displayed a profound defect in hematogenous dissemination in mice, yet persisted within skin while inducing only a minimal antibody response. These results, along with slightly decreased growth of the oppA2tn mutant within DMCs, suggest that OppA2 serves a minor nutritive role, while its dissemination defect points to an as yet uncharacterized signaling function. Previously, we identified a role for OppA5 in spirochete persistence within the mammalian host. We now show that the oppA5tn mutant displayed no defect during the tick phase of the cycle and could be tick-transmitted to naïve mice. Instead of working in tandem, however, OppA2 and OppA5 appear to function in a hierarchical manner; the ability of OppA5 to promote persistence relies upon the ability of OppA2 to facilitate dissemination. Structural homology models demonstrated variations within the binding pockets of OppA1, 2, and 5 indicative of different peptide repertoires. Rather than being redundant, B. burgdorferi's multiplicity of Opp binding proteins enables host-specific functional compartmentalization during the spirochete lifecycle.
Collapse
Affiliation(s)
- Ashley M. Groshong
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
- * E-mail:
| | - Melissa A. McLain
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Science, UConn Health, Farmington, Connecticut, United States of America
- Department of Immunology, UConn Health, Farmington, Connecticut, United States of America
| |
Collapse
|
31
|
Díaz-Yáñez F, Álvarez R, Calderón IL, Fuentes JA, Gil F. CdsH Contributes to the Replication of Salmonella Typhimurium inside Epithelial Cells in a Cysteine-Supplemented Medium. Microorganisms 2020; 8:microorganisms8122019. [PMID: 33348574 PMCID: PMC7767077 DOI: 10.3390/microorganisms8122019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
Salmonella Typhimurium is a facultative, intracellular pathogen whose products range from self-limited gastroenteritis to systemic diseases. Food ingestion increases biomolecules' concentration in the intestinal lumen, including amino acids such as cysteine, which is toxic in a concentration-dependent manner. When cysteine's intracellular concentration reaches toxic levels, S. Typhimurium expresses a cysteine-inducible enzyme (CdsH), which converts cysteine into pyruvate, sulfide, and ammonia. Despite this evidence, the biological context of cdsH's role is not completely clear, especially in the infective cycle. Since inside epithelial cells both cdsH and its positive regulator, ybaO, are overexpressed, we hypothesized a possible role of cdsH in the intestinal phase of the infection. To test this hypothesis, we used an in vitro model of HT-29 cell infection, adding extra cysteine to the culture medium during the infective process. We observed that, at 6 h post-invasion, the wild type S. Typhimurium proliferated 30% more than the ΔcdsH strain in the presence of extra cysteine. This result shows that cdsH contributes to the bacterial replication in the intracellular environment in increased concentrations of extracellular cysteine, strongly suggesting that cdsH participates by increasing the bacterial fitness in the intestinal phase of the S. Typhimurium infection.
Collapse
Affiliation(s)
- Fernando Díaz-Yáñez
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile; (F.D.-Y.); (R.Á.)
- ANID-Millennium Science Initiative Program-Millennium Nucleus in the Biology of the Intestinal Microbiota, 8370186 Santiago, Chile
| | - Ricardo Álvarez
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile; (F.D.-Y.); (R.Á.)
| | - Iván L. Calderón
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile;
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile
- Correspondence: (J.A.F.); (F.G.); Tel.: +56-2-2661-8373 (J.A.F.); +56-2-2770-3065 (F.G.)
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile; (F.D.-Y.); (R.Á.)
- ANID-Millennium Science Initiative Program-Millennium Nucleus in the Biology of the Intestinal Microbiota, 8370186 Santiago, Chile
- Correspondence: (J.A.F.); (F.G.); Tel.: +56-2-2661-8373 (J.A.F.); +56-2-2770-3065 (F.G.)
| |
Collapse
|
32
|
Wu R, Chen X, Kang S, Wang T, Gnanaprakasam JR, Yao Y, Liu L, Fan G, Burns MR, Wang R. De novo synthesis and salvage pathway coordinately regulate polyamine homeostasis and determine T cell proliferation and function. SCIENCE ADVANCES 2020; 6:eabc4275. [PMID: 33328226 PMCID: PMC7744078 DOI: 10.1126/sciadv.abc4275] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/22/2020] [Indexed: 05/05/2023]
Abstract
Robust and effective T cell-mediated immune responses require proper allocation of metabolic resources through metabolic pathways to sustain the energetically costly immune response. As an essential class of polycationic metabolites ubiquitously present in all living organisms, the polyamine pool is tightly regulated by biosynthesis and salvage pathway. We demonstrated that arginine is a major carbon donor and glutamine is a minor carbon donor for polyamine biosynthesis in T cells. Accordingly, the dependence of T cells can be partially relieved by replenishing the polyamine pool. In response to the blockage of biosynthesis, T cells can rapidly restore the polyamine pool through a compensatory increase in extracellular polyamine uptake, indicating a layer of metabolic plasticity. Simultaneously blocking synthesis and uptake depletes the intracellular polyamine pool, inhibits T cell proliferation, and suppresses T cell inflammation, indicating the potential therapeutic value of targeting the polyamine pool for managing inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Ruohan Wu
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | - Xuyong Chen
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | - Siwen Kang
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | - Tingting Wang
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | - Jn Rashida Gnanaprakasam
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | - Yufeng Yao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lingling Liu
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | | | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA.
| |
Collapse
|
33
|
Phillips IL, Everman JL, Bermudez LE, Danelishvili L. Acanthamoeba castellanii as a Screening Tool for Mycobacterium avium Subspecies paratuberculosis Virulence Factors with Relevance in Macrophage Infection. Microorganisms 2020; 8:microorganisms8101571. [PMID: 33066018 PMCID: PMC7601679 DOI: 10.3390/microorganisms8101571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/05/2023] Open
Abstract
The high prevalence of Johne's disease has driven a continuous effort to more readily understand the pathogenesis of the etiological causative bacterium, Mycobacterium avium subsp. paratuberculosis (MAP), and to develop effective preventative measures for infection spread. In this study, we aimed to create an in vivo MAP infection model employing an environmental protozoan host and used it as a tool for selection of bacterial virulence determinants potentially contributing to MAP survival in mammalian host macrophages. We utilized Acanthamoeba castellanii (amoeba) to explore metabolic consequences of the MAP-host interaction and established a correlation between metabolic changes of this phagocytic host and MAP virulence. Using the library of gene knockout mutants, we identified MAP clones that can either enhance or inhibit amoeba metabolism and we discovered that, for most part, it mirrors the pattern of MAP attenuation or survival during infection of macrophages. It was found that MAP mutants that induced an increase in amoeba metabolism were defective in intracellular growth in macrophages. However, MAP clones that exhibited low metabolic alteration in amoeba were able to survive at a greater rate within mammalian cells, highlighting importance of both category of genes in bacterial pathogenesis. Sequencing of MAP mutants has identified several virulence factors previously shown to have a biological relevance in mycobacterial survival and intracellular growth in phagocytic cells. In addition, we uncovered new genetic determinants potentially contributing to MAP pathogenicity. Results of this study support the use of the amoeba model system as a quick initial screening tool for selection of virulence factors of extremely slow-grower MAP that is challenging to study.
Collapse
Affiliation(s)
- Ida L. Phillips
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (I.L.P.); (L.E.B.)
| | - Jamie L. Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA;
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (I.L.P.); (L.E.B.)
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (I.L.P.); (L.E.B.)
- Correspondence: ; Tel.: +541-737-6544; Fax: +541-737-2730
| |
Collapse
|
34
|
Hapeshi A, Healey JRJ, Mulley G, Waterfield NR. Temperature Restriction in Entomopathogenic Bacteria. Front Microbiol 2020; 11:548800. [PMID: 33101227 PMCID: PMC7554251 DOI: 10.3389/fmicb.2020.548800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/08/2020] [Indexed: 11/21/2022] Open
Abstract
Temperature plays an important role in bacteria-host interactions and can be a determining factor for host switching. In this study we sought to investigate the reasons behind growth temperature restriction in the entomopathogenic enterobacterium Photorhabdus. Photorhabdus has a complex dual symbiotic and pathogenic life cycle. The genus consists of 19 species but only one subgroup, previously all classed together as Photorhabdus asymbiotica, have been shown to cause human disease. These clinical isolates necessarily need to be able to grow at 37°C, whilst the remaining species are largely restricted to growth temperatures below 34°C and are therefore unable to infect mammalian hosts. Here, we have isolated spontaneous mutant lines of Photorhabdus laumondii DJC that were able to grow up to 36-37°C. Following whole genome sequencing of 29 of these mutants we identified a single gene, encoding a protein with a RecG-like helicase domain that for the majority of isolates contained single nucleotide polymorphisms. Importantly, provision of the wild-type allele of this gene in trans restored the temperature restriction, confirming the mutations are recessive, and the dominant effect of the protein product of this gene. The gene appears to be part of a short three cistron operon, which we have termed the Temperature Restricting Locus (TRL). Transcription reporter strains revealed that this operon is induced upon the switch from 30 to 36°C, leading to replication arrest of the bacteria. TRL is absent from all of the human pathogenic species so far examined, although its presence is not uniform in different strains of the Photorhabdus luminescens subgroup. In a wider context, the presence of this gene is not limited to Photorhabdus, being found in phylogenetically diverse proteobacteria. We therefore suggest that this system may play a more fundamental role in temperature restriction in diverse species, relating to as yet cryptic aspects of their ecological niches and life cycle requirements.
Collapse
Affiliation(s)
- Alexia Hapeshi
- Microbiology and Infection Unit, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Joseph R. J. Healey
- Microbiology and Infection Unit, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Geraldine Mulley
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Nicholas R. Waterfield
- Microbiology and Infection Unit, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
35
|
Diauxie and co-utilization of carbon sources can coexist during bacterial growth in nutritionally complex environments. Nat Commun 2020; 11:3135. [PMID: 32561713 PMCID: PMC7305145 DOI: 10.1038/s41467-020-16872-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
It is commonly thought that when multiple carbon sources are available, bacteria metabolize them either sequentially (diauxic growth) or simultaneously (co-utilization). However, this view is mainly based on analyses in relatively simple laboratory settings. Here we show that a heterotrophic marine bacterium, Pseudoalteromonas haloplanktis, can use both strategies simultaneously when multiple possible nutrients are provided in the same growth experiment. The order of nutrient uptake is partially determined by the biomass yield that can be achieved when the same compounds are provided as single carbon sources. Using transcriptomics and time-resolved intracellular 1H-13C NMR, we reveal specific pathways for utilization of various amino acids. Finally, theoretical modelling indicates that this metabolic phenotype, combining diauxie and co-utilization of substrates, is compatible with a tight regulation that allows the modulation of assimilatory pathways. It is thought that when multiple carbon sources are available, bacteria metabolize them either sequentially or simultaneously. Here, the authors show that a marine bacterium can use a mixed strategy when multiple possible nutrients are provided, and analyse the metabolic pathways involved.
Collapse
|
36
|
The Functional Characterization of TcMyoF Implicates a Family of Cytostome-Cytopharynx Targeted Myosins as Integral to the Endocytic Machinery of Trypanosoma cruzi. mSphere 2020; 5:5/3/e00313-20. [PMID: 32554712 PMCID: PMC7300353 DOI: 10.1128/msphere.00313-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The parasite Trypanosoma cruzi is the etiological agent of Chagas disease and chronically infects upwards of 7 million people in the Americas. Current diagnostics and treatments remain grossly inadequate due, in part, to our general lack of understanding of this parasite’s basic biology. One aspect that has resisted detailed scrutiny is the mechanism employed by this parasite to extract nutrient resources from the radically different environments that it encounters as it transitions between its invertebrate and mammalian hosts. These parasites engulf food via a tubular invagination of its membrane, a strategy used by many protozoan species, but how this structure is formed or functions mechanistically remains a complete mystery. The significance of our research is in the identification of the mechanistic underpinnings of this feeding organelle that may bring to light new potential therapeutic targets to impede parasite feeding and thus halt the spread of this deadly human pathogen. Of the pathogenic trypanosomatids, Trypanosoma cruzi alone retains an ancient feeding apparatus known as the cytostome-cytopharynx complex (SPC) that it uses as its primary mode of endocytosis in a manner akin to its free-living kinetoplastid relatives who capture and eat bacterial prey via this endocytic organelle. In a recent report, we began the process of dissecting how this organelle functions by identifying the first SPC-specific proteins in T. cruzi. Here, we continued these studies and report on the identification of the first enzymatic component of the SPC, a previously identified orphan myosin motor (MyoF) specifically targeted to the SPC. We overexpressed MyoF as a dominant-negative mutant, resulting in parasites that, although viable, were completely deficient in measurable endocytosis in vitro. To our surprise, however, a full deletion of MyoF demonstrated only a decrease in the overall rate of endocytosis, potentially indicative of redundant myosin motors at work. Thereupon, we identified three additional orphan myosin motors, two of which (MyoB and MyoE) were targeted to the preoral ridge region adjacent to the cytostome entrance and another (MyoC) which was targeted to the cytopharynx tubular structure similar to that of MyoF. Additionally, we show that the C-terminal tails of each myosin are sufficient for targeting a fluorescent reporter to SPC subregions. This work highlights a potential mechanism used by the SPC to drive the inward flow of material for digestion and unveils a new level of overlapping complexity in this system with four distinct myosin isoforms targeted to this feeding structure. IMPORTANCE The parasite Trypanosoma cruzi is the etiological agent of Chagas disease and chronically infects upwards of 7 million people in the Americas. Current diagnostics and treatments remain grossly inadequate due, in part, to our general lack of understanding of this parasite’s basic biology. One aspect that has resisted detailed scrutiny is the mechanism employed by this parasite to extract nutrient resources from the radically different environments that it encounters as it transitions between its invertebrate and mammalian hosts. These parasites engulf food via a tubular invagination of its membrane, a strategy used by many protozoan species, but how this structure is formed or functions mechanistically remains a complete mystery. The significance of our research is in the identification of the mechanistic underpinnings of this feeding organelle that may bring to light new potential therapeutic targets to impede parasite feeding and thus halt the spread of this deadly human pathogen.
Collapse
|
37
|
Dong Y, Li S, Zhao D, Liu J, Ma S, Geng J, Lu C, Liu Y. IolR, a negative regulator of the myo-inositol metabolic pathway, inhibits cell autoaggregation and biofilm formation by downregulating RpmA in Aeromonas hydrophila. NPJ Biofilms Microbiomes 2020; 6:22. [PMID: 32433466 PMCID: PMC7239862 DOI: 10.1038/s41522-020-0132-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Aeromonas hydrophila is the causative agent of motile Aeromonad septicemia in fish. Previous studies have shown that the myo-inositol metabolism is essential for the virulence of this bacterium. IolR is a transcription inhibitor that negatively regulates myo-inositol metabolic activity. While in the process of studying the inositol catabolism in A. hydrophila Chinese epidemic strain NJ-35, we incidentally found that ΔiolR mutant exhibited obvious autoaggregation and increased biofilm formation compared to the wild type. The role of surface proteins in A. hydrophila autoaggregation was confirmed by different degradation treatments. Furthermore, calcium promotes the formation of aggregates, which disappear in the presence of the calcium chelator EGTA. Transcriptome analysis, followed by targeted gene deletion, demonstrated that biofilm formation and autoaggregation caused by the inactivation of iolR was due to the increased transcription of a RTX-family adhesion gene, rmpA. Further, IolR was determined to directly regulate the transcription of rmpA. These results indicated that iolR is negatively involved in autoaggregation and biofilm formation in A. hydrophila, and this involvement was associated with its inhibition on the expression of rmpA.
Collapse
Affiliation(s)
- Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shougang Li
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dan Zhao
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuiyan Ma
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinzhu Geng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
38
|
Basu M, Gupta P, Dutta A, Jana K, Ukil A. Increased host ATP efflux and its conversion to extracellular adenosine is crucial for establishing Leishmania infection. J Cell Sci 2020; 133:jcs239939. [PMID: 32079656 DOI: 10.1242/jcs.239939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Intracellular survival of Leishmania donovani demands rapid production of host ATP for its sustenance. However, a gradual decrease in intracellular ATP in spite of increased glycolysis suggests ATP efflux during infection. Accordingly, upon infection, we show here that ATP is exported and the major exporter was pannexin-1, leading to raised extracellular ATP levels. Extracellular ATP shows a gradual decrease after the initial increase, and analysis of cell surface ATP-degrading enzymes revealed induction of the ectonucleotidases CD39 and CD73. Ectonucleotidase-mediated ATP degradation leads to increased extracellular adenosine (eADO), and inhibition of CD39 and CD73 in infected cells decreased adenosine concentration and parasite survival, documenting the importance of adenosine in infection. Inhibiting adenosine uptake by cells did not affect parasite survival, suggesting that eADO exerts its effect through receptor-mediated signalling. We also show that Leishmania induces the expression of adenosine receptors A2AR and A2BR, both of which are important for anti-inflammatory responses. Treating infected BALB/c mice with CD39 and CD73 inhibitors resulted in decreased parasite burden and increased host-favourable cytokine production. Collectively, these observations indicate that infection-induced ATP is exported, and after conversion into adenosine, propagates infection via receptor-mediated signalling.
Collapse
Affiliation(s)
- Moumita Basu
- Department of Biochemistry, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Purnima Gupta
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 69372, Lyon Cedex 08, France
| | - Ananya Dutta
- Division of Molecular Medicine, Bose Institute, P1/12 Calcutta Improvement Trust Scheme, VIIM, Kolkata, 700054, West Bengal, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P1/12 Calcutta Improvement Trust Scheme, VIIM, Kolkata, 700054, West Bengal, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata 700019, West Bengal, India
| |
Collapse
|
39
|
Chasen NM, Coppens I, Etheridge RD. Identification and Localization of the First Known Proteins of the Trypanosoma cruzi Cytostome Cytopharynx Endocytic Complex. Front Cell Infect Microbiol 2020; 9:445. [PMID: 32010635 PMCID: PMC6978632 DOI: 10.3389/fcimb.2019.00445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
The etiological agent of Chagas disease, Trypanosoma cruzi, is an obligate intracellular parasite that infects an estimated 7 million people in the Americas, with an at-risk population of 70 million. Despite its recognition as the highest impact parasitic infection of the Americas, Chagas disease continues to receive insufficient attention and resources in order to be effectively combatted. Unlike the other parasitic trypanosomatids that infect humans (Trypanosoma brucei and Leishmania spp.), T. cruzi retains an ancestral mode of phagotrophic feeding via an endocytic organelle known as the cytostome-cytopharynx complex (SPC). How this tubular invagination of the plasma membrane functions to bring in nutrients is poorly understood at a mechanistic level, partially due to a lack of knowledge of the protein machinery specifically targeted to this structure. Using a combination of CRISPR/Cas9 mediated endogenous tagging, fluorescently labeled overexpression constructs and endocytic assays, we have identified the first known SPC targeted protein (CP1). The CP1 labeled structure co-localizes with endocytosed protein and undergoes disassembly in infectious forms and reconstitution in replicative forms. Additionally, through the use of immunoprecipitation and mass spectrometry techniques, we have identified two additional CP1-associated proteins (CP2 and CP3) that also target to this endocytic organelle. Our localization studies using fluorescently tagged proteins and surface lectin staining have also allowed us, for the first time, to specifically define the location of the intriguing pre-oral ridge (POR) surface prominence at the SPC entrance through the use of super-resolution light microscopy. This work is a first glimpse into the proteome of the SPC and provides the tools for further characterization of this enigmatic endocytic organelle. A better understanding of how this deadly pathogen acquires nutrients from its host will potentially direct us toward new therapeutic targets to combat infection.
Collapse
Affiliation(s)
- Nathan Michael Chasen
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, United States
| | - Isabelle Coppens
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Ronald Drew Etheridge
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, United States
| |
Collapse
|
40
|
Miller HE, Hoyt FH, Heinzen RA. Replication of Coxiella burnetii in a Lysosome-Like Vacuole Does Not Require Lysosomal Hydrolases. Infect Immun 2019; 87:e00493-19. [PMID: 31405956 PMCID: PMC6803326 DOI: 10.1128/iai.00493-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/06/2019] [Indexed: 01/03/2023] Open
Abstract
Coxiella burnetii is an intracellular bacterium that causes query, or Q fever, a disease that typically manifests as a severe flu-like illness. The initial target of C. burnetii is the alveolar macrophage. Here, it regulates vesicle trafficking pathways and fusion events to establish a large replication vacuole called the Coxiella-containing vacuole (CCV). Similar to a phagolysosome, the CCV has an acidic pH and contains lysosomal hydrolases obtained via fusion with late endocytic vesicles. Lysosomal hydrolases break down various lipids, carbohydrates, and proteins; thus, it is assumed C. burnetii derives nutrients for growth from these degradation products. To investigate this possibility, we utilized a GNPTAB-/- HeLa cell line that lacks lysosomal hydrolases in endocytic compartments. Unexpectedly, examination of C. burnetii growth in GNPTAB-/- HeLa cells revealed replication and viability are not impaired, indicating C. burnetii does not require by-products of hydrolase degradation to survive and grow in the CCV. However, although bacterial growth was normal, CCVs were abnormal, appearing dark and condensed rather than clear and spacious. Lack of degradation within CCVs allowed waste products to accumulate, including intraluminal vesicles, autophagy protein LC3, and cholesterol. The build-up of waste products coincided with an altered CCV membrane, where LAMP1 was decreased and CD63 and LAMP1 redistributed from a punctate to uniform localization. This disruption of CCV membrane organization may account for the decreased CCV size due to impaired fusion with late endocytic vesicles. Collectively, these results demonstrate lysosomal hydrolases are not required for C. burnetii survival and growth but are needed for normal CCV development. These data provide insight into mechanisms of CCV biogenesis while raising the important question of how C. burnetii obtains essential nutrients from its host.
Collapse
Affiliation(s)
- Heather E Miller
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Forrest H Hoyt
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Robert A Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
41
|
Pontes MH, Groisman EA. Slow growth determines nonheritable antibiotic resistance in Salmonella enterica. Sci Signal 2019; 12:12/592/eaax3938. [PMID: 31363068 DOI: 10.1126/scisignal.aax3938] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bacteria can withstand killing by bactericidal antibiotics through phenotypic changes mediated by their preexisting genetic repertoire. These changes can be exhibited transiently by a large fraction of the bacterial population, giving rise to tolerance, or displayed by a small subpopulation, giving rise to persistence. Apart from undermining the use of antibiotics, tolerant and persistent bacteria foster the emergence of antibiotic-resistant mutants. Persister formation has been attributed to alterations in the abundance of particular proteins, metabolites, and signaling molecules, including toxin-antitoxin modules, adenosine triphosphate, and guanosine (penta) tetraphosphate, respectively. Here, we report that persistent bacteria form as a result of slow growth alone, despite opposite changes in the abundance of such proteins, metabolites, and signaling molecules. Our findings argue that transitory disturbances to core activities, which are often linked to cell growth, promote a persister state regardless of the underlying physiological process responsible for the change in growth.
Collapse
Affiliation(s)
- Mauricio H Pontes
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Microbial Sciences Institute, Yale University, P.O. Box 27389, West Haven, CT 06516, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA. .,Microbial Sciences Institute, Yale University, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
42
|
Physiologically Relevant Alternative Carbon Sources Modulate Biofilm Formation, Cell Wall Architecture, and the Stress and Antifungal Resistance of Candida glabrata. Int J Mol Sci 2019; 20:ijms20133172. [PMID: 31261727 PMCID: PMC6651560 DOI: 10.3390/ijms20133172] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/29/2022] Open
Abstract
Flexibility in carbon metabolism is pivotal for the survival and propagation of many human fungal pathogens within host niches. Indeed, flexible carbon assimilation enhances pathogenicity and affects the immunogenicity of Candida albicans. Over the last decade, Candida glabrata has emerged as one of the most common and problematic causes of invasive candidiasis. Despite this, the links between carbon metabolism, fitness, and pathogenicity in C. glabrata are largely unexplored. Therefore, this study has investigated the impact of alternative carbon metabolism on the fitness and pathogenic attributes of C. glabrata. We confirm our previous observation that growth on carbon sources other than glucose, namely acetate, lactate, ethanol, or oleate, attenuates both the planktonic and biofilm growth of C. glabrata, but that biofilms are not significantly affected by growth on glycerol. We extend this by showing that C. glabrata cells grown on these alternative carbon sources undergo cell wall remodeling, which reduces the thickness of their β-glucan and chitin inner layer while increasing their outer mannan layer. Furthermore, alternative carbon sources modulated the oxidative stress resistance of C. glabrata as well as the resistance of C. glabrata to an antifungal drug. In short, key fitness and pathogenic attributes of C. glabrata are shown to be dependent on carbon source. This reaffirms the perspective that the nature of the carbon sources available within specific host niches is crucial for C. glabrata pathogenicity during infection.
Collapse
|
43
|
Determination of an Interaction Network between an Extracellular Bacterial Pathogen and the Human Host. mBio 2019; 10:mBio.01193-19. [PMID: 31213562 PMCID: PMC6581864 DOI: 10.1128/mbio.01193-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dual RNA sequencing (RNA-seq) offers the promise of determining an interactome at a transcriptional level between a bacterium and the host but has yet to be done on any bacterial infection in human tissue. We performed dual RNA-seq and metabolomics analyses on wounded and infected sites following experimental infection of the arm with H. ducreyi. Our results suggest that H. ducreyi survives in an abscess by utilizing l-ascorbate as an alternative carbon source, possibly taking advantage of host ascorbic acid recycling, and that H. ducreyi also adapts by upregulating genes involved in anaerobic metabolism and inorganic ion and nutrient transport. To our knowledge, this is the first description of an interaction network between a bacterium and the human host at a site of infection. A major gap in understanding infectious diseases is the lack of information about molecular interaction networks between pathogens and the human host. Haemophilus ducreyi causes the genital ulcer disease chancroid in adults and is a leading cause of cutaneous ulcers in children in the tropics. We developed a model in which human volunteers are infected on the upper arm with H. ducreyi until they develop pustules. To define the H. ducreyi and human interactome, we determined bacterial and host transcriptomic and host metabolomic changes in pustules. We found that in vivoH. ducreyi transcripts were distinct from those in the inocula, as were host transcripts in pustule and wounded control sites. Many of the upregulated H. ducreyi genes were found to be involved in ascorbic acid and anaerobic metabolism and inorganic ion/nutrient transport. The top 20 significantly expressed human pathways showed that all were involved in immune responses. We generated a bipartite network for interactions between host and bacterial gene transcription; multiple positively correlated networks contained H. ducreyi genes involved in anaerobic metabolism and host genes involved with the immune response. Metabolomic studies showed that pustule and wounded samples had different metabolite compositions; the top ion pathway involved ascorbate and aldarate metabolism, which correlated with the H. ducreyi transcriptional response and upregulation of host genes involved in ascorbic acid recycling. These data show that an interactome exists between H. ducreyi and the human host and suggest that H. ducreyi exploits the metabolic niche created by the host immune response.
Collapse
|
44
|
Jores J, Ma L, Ssajjakambwe P, Schieck E, Liljander A, Chandran S, Stoffel MH, Cippa V, Arfi Y, Assad-Garcia N, Falquet L, Sirand-Pugnet P, Blanchard A, Lartigue C, Posthaus H, Labroussaa F, Vashee S. Removal of a Subset of Non-essential Genes Fully Attenuates a Highly Virulent Mycoplasma Strain. Front Microbiol 2019; 10:664. [PMID: 31001234 PMCID: PMC6456743 DOI: 10.3389/fmicb.2019.00664] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
Mycoplasmas are the smallest free-living organisms and cause a number of economically important diseases affecting humans, animals, insects, and plants. Here, we demonstrate that highly virulent Mycoplasma mycoides subspecies capri (Mmc) can be fully attenuated via targeted deletion of non-essential genes encoding, among others, potential virulence traits. Five genomic regions, representing approximately 10% of the original Mmc genome, were successively deleted using Saccharomyces cerevisiae as an engineering platform. Specifically, a total of 68 genes out of the 432 genes verified to be individually non-essential in the JCVI-Syn3.0 minimal cell, were excised from the genome. In vitro characterization showed that this mutant was similar to its parental strain in terms of its doubling time, even though 10% of the genome content were removed. A novel in vivo challenge model in goats revealed that the wild-type parental strain caused marked necrotizing inflammation at the site of inoculation, septicemia and all animals reached endpoint criteria within 6 days after experimental infection. This is in contrast to the mutant strain, which caused no clinical signs nor pathomorphological lesions. These results highlight, for the first time, the rational design, construction and complete attenuation of a Mycoplasma strain via synthetic genomics tools. Trait addition using the yeast-based genome engineering platform and subsequent in vitro or in vivo trials employing the Mycoplasma chassis will allow us to dissect the role of individual candidate Mycoplasma virulence factors and lead the way for the development of an attenuated designer vaccine.
Collapse
Affiliation(s)
- Joerg Jores
- Department of Infectious Diseases and Pathobiology, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland.,International Livestock Research Institute, Nairobi, Kenya
| | - Li Ma
- J. Craig Venter Institute, Rockville, MD, United States
| | - Paul Ssajjakambwe
- International Livestock Research Institute, Nairobi, Kenya.,College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Elise Schieck
- International Livestock Research Institute, Nairobi, Kenya
| | - Anne Liljander
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Michael H Stoffel
- Division of Veterinary Anatomy, Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| | - Valentina Cippa
- Department of Infectious Diseases and Pathobiology, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Yonathan Arfi
- UMR 1332 - Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave-d'Ornon, France.,UMR 1332 - Biologie du Fruit et Pathologie, Université de Bordeaux, Villenave-d'Ornon, France
| | | | - Laurent Falquet
- Biochemistry Unit, Swiss Institute of Bioinformatics, University of Fribourg, Fribourg, Switzerland
| | - Pascal Sirand-Pugnet
- UMR 1332 - Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave-d'Ornon, France.,UMR 1332 - Biologie du Fruit et Pathologie, Université de Bordeaux, Villenave-d'Ornon, France
| | - Alain Blanchard
- UMR 1332 - Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave-d'Ornon, France.,UMR 1332 - Biologie du Fruit et Pathologie, Université de Bordeaux, Villenave-d'Ornon, France
| | - Carole Lartigue
- UMR 1332 - Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave-d'Ornon, France.,UMR 1332 - Biologie du Fruit et Pathologie, Université de Bordeaux, Villenave-d'Ornon, France
| | - Horst Posthaus
- Department for Infectious Diseases and Pathobiology, Institute of Animal Pathology (COMPATH), University of Bern, Bern, Switzerland
| | - Fabien Labroussaa
- Department of Infectious Diseases and Pathobiology, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Sanjay Vashee
- J. Craig Venter Institute, Rockville, MD, United States
| |
Collapse
|
45
|
Best A, Abu Kwaik Y. Nutrition and Bipartite Metabolism of Intracellular Pathogens. Trends Microbiol 2019; 27:550-561. [PMID: 30655036 DOI: 10.1016/j.tim.2018.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/20/2018] [Accepted: 12/20/2018] [Indexed: 12/29/2022]
Abstract
The host is a nutrient-rich niche for microbial pathogens, but one that comes with obstacles and challenges. Many intracellular pathogens like Legionella pneumophila, Coxiella burnetii, Listeria monocytogenes, and Chlamydia trachomatis have developed bipartite metabolism within their hosts. This style of metabolic regulation enables pathogen sensing of specific nutrients to engage them into catabolic and anabolic processes, and contributes to temporal and spatial pathogen phenotypic modulation. Not only have intracellular pathogens adapted their metabolism to the host, they have also acquired idiosyncratic strategies to exploit host nutritional supplies and intercept metabolites. Francisella tularensis and Anaplasma phagocytophilum alter host autophagy, Shigella flexneri intercepts all host pyruvate, while L. pneumophila induces host protein degradation and blocks protein translation. Strategies of pathogen manipulation of host nutrients could serve as therapeutic targets.
Collapse
Affiliation(s)
- Ashley Best
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, KY, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, KY, USA; Center for Predictive Medicine, College of Medicine, University of Louisville, KY, USA.
| |
Collapse
|
46
|
DeShazer D, Lovett S, Richardson J, Koroleva G, Kuehl K, Amemiya K, Sun M, Worsham P, Welkos S. Bacteriophage-associated genes responsible for the widely divergent phenotypes of variants of Burkholderia pseudomallei strain MSHR5848. J Med Microbiol 2019; 68:263-278. [PMID: 30628877 DOI: 10.1099/jmm.0.000908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Burkholderia pseudomallei, the tier 1 agent of melioidosis, is a saprophytic microbe that causes endemic infections in tropical regions such as South-East Asia and Northern Australia. It is globally distributed, challenging to diagnose and treat, infectious by several routes including inhalation, and has potential for adversarial use. B. pseudomallei strain MSHR5848 produces two colony variants, smooth (S) and rough (R), which exhibit a divergent range of morphological, biochemical and metabolic phenotypes, and differ in macrophage and animal infectivity. We aimed to characterize two major phenotypic differences, analyse gene expression and study the regulatory basis of the variation. METHODOLOGY Phenotypic expression was characterized by DNA and RNA sequencing, microscopy, and differential bacteriology. Regulatory genes were identified by cloning and bioinformatics.Results/Key findings. Whereas S produced larger quantities of extracellular DNA, R was upregulated in the production of a unique chromosome 1-encoded Siphoviridae-like bacteriophage, φMSHR5848. Exploratory transcriptional analyses revealed significant differences in variant expression of genes encoding siderophores, pili assembly, type VI secretion system cluster 4 (T6SS-4) proteins, several exopolysaccharides and secondary metabolites. A single 3 base duplication in S was the only difference that separated the variants genetically. It occurred upstream of a cluster of bacteriophage-associated genes on chromosome 2 that were upregulated in S. The first two genes were involved in regulating expression of the multiple phenotypes distinguishing S and R. CONCLUSION Bacteriophage-associated proteins have a major role in the phenotypic expression of MSHR5848. The goals are to determine the regulatory basis of this phenotypic variation and its role in pathogenesis and environmental persistence of B. pseudomallei.
Collapse
Affiliation(s)
- David DeShazer
- 1Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Sean Lovett
- 2Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Joshua Richardson
- 2Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Galina Koroleva
- 2Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA.,†Present address: Room 7N109, Center for Human Immunology, Autoimmunity and Inflammation, National Institute of Allergy and Infectious Diseases, 10 Center Drive, Bethesda, MD 20814, USA
| | - Kathleen Kuehl
- 3Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Kei Amemiya
- 1Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Mei Sun
- 4United States Army Medical Research and Materiel Command (USAMRMC), Frederick, MD, USA
| | - Patricia Worsham
- 1Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Susan Welkos
- 1Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| |
Collapse
|
47
|
Sodolescu A, Dian C, Terradot L, Bouzhir-Sima L, Lestini R, Myllykallio H, Skouloubris S, Liebl U. Structural and functional insight into serine hydroxymethyltransferase from Helicobacter pylori. PLoS One 2018; 13:e0208850. [PMID: 30550583 PMCID: PMC6294363 DOI: 10.1371/journal.pone.0208850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/23/2018] [Indexed: 11/19/2022] Open
Abstract
Serine hydroxymethyltransferase (SHMT), encoded by the glyA gene, is a ubiquitous pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the formation of glycine from serine. The thereby generated 5,10-methylene tetrahydrofolate (MTHF) is a major source of cellular one-carbon units and a key intermediate in thymidylate biosynthesis. While in virtually all eukaryotic and many bacterial systems thymidylate synthase ThyA, SHMT and dihydrofolate reductase (DHFR) are part of the thymidylate/folate cycle, the situation is different in organisms using flavin-dependent thymidylate synthase ThyX. Here the distinct catalytic reaction directly produces tetrahydrofolate (THF) and consequently in most ThyX-containing organisms, DHFR is absent. While the resulting influence on the folate metabolism of ThyX-containing bacteria is not fully understood, the presence of ThyX may provide growth benefits under conditions where the level of reduced folate derivatives is compromised. Interestingly, the third key enzyme implicated in generation of MTHF, serine hydroxymethyltransferase (SHMT), has a universal phylogenetic distribution, but remains understudied in ThyX-containg bacteria. To obtain functional insight into these ThyX-dependent thymidylate/folate cycles, we characterized the predicted SHMT from the ThyX-containing bacterium Helicobacter pylori. Serine hydroxymethyltransferase activity was confirmed by functional genetic complementation of a glyA-inactivated E. coli strain. A H. pylori ΔglyA strain was obtained, but exhibited markedly slowed growth and had lost the virulence factor CagA. Biochemical and spectroscopic evidence indicated formation of a characteristic enzyme-PLP-glycine-folate complex and revealed unexpectedly weak binding affinity of PLP. The three-dimensional structure of the H. pylori SHMT apoprotein was determined at 2.8Ǻ resolution, suggesting a structural basis for the low affinity of the enzyme for its cofactor. Stabilization of the proposed inactive configuration using small molecules has potential to provide a specific way for inhibiting HpSHMT.
Collapse
Affiliation(s)
- Andreea Sodolescu
- Laboratory of Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris Saclay, Palaiseau, France
| | - Cyril Dian
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris Saclay, Gif-sur-Yvette, France
| | - Laurent Terradot
- UMR 5086 Molecular Microbiology and Structural Biochemistry, Institut de Biologie et Chimie des Protéines, CNRS, Université de Lyon, Lyon, France
| | - Latifa Bouzhir-Sima
- Laboratory of Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris Saclay, Palaiseau, France
| | - Roxane Lestini
- Laboratory of Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris Saclay, Palaiseau, France
| | - Hannu Myllykallio
- Laboratory of Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris Saclay, Palaiseau, France
| | - Stéphane Skouloubris
- Laboratory of Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris Saclay, Palaiseau, France
- Department of Biology, Université Paris-Sud, Université Paris Saclay, Orsay, France
| | - Ursula Liebl
- Laboratory of Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris Saclay, Palaiseau, France
| |
Collapse
|
48
|
The Meningococcal Cysteine Transport System Plays a Crucial Role in Neisseria meningitidis Survival in Human Brain Microvascular Endothelial Cells. mBio 2018; 9:mBio.02332-18. [PMID: 30538184 PMCID: PMC6299482 DOI: 10.1128/mbio.02332-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Neisseria meningitidis colonizes at a nasopharynx of human as a unique host and has many strains that are auxotrophs for amino acids for their growth. To cause invasive meningococcal diseases (IMD) such as sepsis and meningitis, N. meningitidis passes through epithelial and endothelial barriers and infiltrates into blood and cerebrospinal fluid as well as epithelial and endothelial cells. However, meningococcal nutrients, including cysteine, become less abundant when it more deeply infiltrates the human body even during inflammation, such that N. meningitidis has to acquire nutrients in order to survive/persist, disseminate, and proliferate in humans. This was the first study to examine the relationship between meningococcal cysteine acquisition and the pathogenesis of meningococcal infections. The results of the present study provide insights into the mechanisms by which pathogens with auxotrophs acquire nutrients in hosts and may also contribute to the development of treatments and prevention strategies for IMD. While Neisseria meningitidis typically exists in an asymptomatic nasopharyngeal carriage state, it may cause potentially lethal diseases in humans, such as septicemia or meningitis, by invading deeper sites in the body. Since the nutrient compositions of human cells are not always conducive to meningococci, N. meningitidis needs to exploit nutrients from host environments. In the present study, the utilization of cysteine by the meningococcal cysteine transport system (CTS) was analyzed for the pathogenesis of meningococcal infections. A N. meningitidis strain deficient in one of the three cts genes annotated as encoding cysteine-binding protein (cbp) exhibited approximately 100-fold less internalization into human brain microvascular endothelial cells (HBMEC) than the wild-type strain. This deficiency was restored by complementation with the three cts genes together, and the infectious phenotype of HBMEC internalization correlated with cysteine uptake activity. However, efficient accumulation of ezrin was observed beneath the cbp mutant. The intracellular survival of the cbp mutant in HBMEC was markedly reduced, whereas equivalent reductions of glutathione concentrations and of resistance to reactive oxygens species in the cbp mutant were not found. The cbp mutant grew well in complete medium but not in synthetic medium supplemented with less than 300 μM cysteine. Taking cysteine concentrations in human cells and other body fluids, including blood and cerebrospinal fluid, into consideration, the present results collectively suggest that the meningococcal CTS is crucial for the acquisition of cysteine from human cells and participates in meningococcal nutrient virulence.
Collapse
|
49
|
Kröger C, Rothhardt JE, Brokatzky D, Felsl A, Kary SC, Heermann R, Fuchs TM. The small RNA RssR regulates myo-inositol degradation by Salmonella enterica. Sci Rep 2018; 8:17739. [PMID: 30531898 PMCID: PMC6288124 DOI: 10.1038/s41598-018-35784-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 10/08/2018] [Indexed: 12/25/2022] Open
Abstract
Small noncoding RNAs (sRNAs) with putative regulatory functions in gene expression have been identified in the enteropathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). Two sRNAs are encoded by the genomic island GEI4417/4436 responsible for myo-inositol (MI) degradation, suggesting a role in the regulation of this metabolic pathway. We show that a lack of the sRNA STnc2160, termed RssR, results in a severe growth defect in minimal medium (MM) with MI. In contrast, the second sRNA STnc1740 was induced in the presence of glucose, and its overexpression slightly attenuated growth in the presence of MI. Constitutive expression of RssR led to an increased stability of the reiD mRNA, which encodes an activator of iol genes involved in MI utilization, via interaction with its 5′-UTR. SsrB, a response regulator contributing to the virulence properties of salmonellae, activated rssR transcription by binding the sRNA promoter. In addition, the absence of the RNA chaperone Hfq resulted in strongly decreased levels of RssR, attenuated S. Typhimurium growth with MI, and reduced expression of several iol genes required for MI degradation. Considered together, the extrinsic RssR allows fine regulation of cellular ReiD levels and thus of MI degradation by acting on the reiD mRNA stability.
Collapse
Affiliation(s)
- Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Johannes E Rothhardt
- Lehrstuhl für Mikrobielle Ökologie, ZIEL - Institute for Food & Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Dominik Brokatzky
- Lehrstuhl für Mikrobielle Ökologie, ZIEL - Institute for Food & Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Angela Felsl
- Lehrstuhl für Mikrobielle Ökologie, ZIEL - Institute for Food & Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Stefani C Kary
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Ralf Heermann
- Biozentrum, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Martinsried/München, Germany
| | - Thilo M Fuchs
- Lehrstuhl für Mikrobielle Ökologie, ZIEL - Institute for Food & Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany. .,Friedrich-Loeffler-Institut, Institut für molekulare Pathogenese, Naumburger Str. 96a, 07743, Jena, Germany.
| |
Collapse
|
50
|
Valenzuela-Miranda D, Gallardo-Escárate C. Dual RNA-Seq Uncovers Metabolic Amino Acids Dependency of the Intracellular Bacterium Piscirickettsia salmonis Infecting Atlantic Salmon. Front Microbiol 2018; 9:2877. [PMID: 30542335 PMCID: PMC6277808 DOI: 10.3389/fmicb.2018.02877] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
High-throughput sequencing technologies have offered the possibility to understand the complexity of the transcriptomic responses of an organism during a wide variety of biological scenarios, such as the case of pathogenic infections. Recently, the simultaneous sequencing of both pathogen and host transcriptomes (dual RNA-seq) during the infection has become a promising approach to uncover the complexity of the host-pathogen interactions. In this study, through a double rRNA depletion and RNA sequencing protocols, we simultaneously analyzed the transcriptome of the intracellular bacterium Piscirickettsia salmonis and its host the Atlantic salmon (Salmo salar) during the course of the infection. Beyond canonical host immune-related response and pathogen virulent factors, both bacteria and host displayed a large number of genes associated with metabolism and particularly related with the amino acid metabolism. Notably, genome-wide comparison among P. salmonis genomes and different fish pathogens genomes revealed a lack of the biosynthetic pathway for several amino acids such as valine, leucine, and isoleucine. To support this finding, in vitro experiments evidenced that when these amino acids are restricted the bacterial growth dynamics is significantly affected. However, this condition is phenotypically reversed when the amino acids are supplemented in the bacterial growth medium. Based on our results, a metabolic dependency of P. salmonis on S. salar amino acids is suggested, which could imply novel mechanisms of pathogenesis based on the capacity to uptake nutrients from the host. Overall, dual transcriptome sequencing leads to the understanding of host-pathogen interactions from a different perspective, beyond biological processes related to immunity.
Collapse
Affiliation(s)
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research, University of Concepción, Concepción, Chile
| |
Collapse
|