1
|
Maffeis C, Morandi A, Zusi C, Olivieri F, Fornari E, Cavarzere P, Piona C, Corradi M, Emiliani F, Da Ros A, Berni Canani R, Mantovani A, Targher G. Hepatic lipogenesis marked by GCKR-modulated triglycerides increases serum FGF21 in children/teens with obesity. Diabetes Obes Metab 2025; 27:825-834. [PMID: 39611214 DOI: 10.1111/dom.16081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024]
Abstract
AIMS Fibroblast growth factor 21 (FGF21) decreases hepatic lipogenesis in animal models, and FGF21 analogues decrease serum triglycerides (TG) in adults in phase-2 trials. On the other hand, serum FGF21 is associated with higher TG in observational studies of people with obesity, raising a sort of paradox. We tested the hypothesis that FGF21 is induced by TG in youth with obesity, as a compensatory mechanism. MATERIALS AND METHODS We recruited 159 children/adolescents with obesity (80 males, 12.7 ± 2.1 years). Besides serum FGF21 and lipid dosages, we genotyped the Pro446Leu variant at glucokinase regulator (GCKR) as a known marker of genetically increased hepatic de novo lipogenesis, and we used it as an instrumental variable to establish a cause-and-effect relationship between FGF21 and TG, according to a Mendelian randomization analysis. RESULTS The Pro446Leu variant increased circulating TG (β = +0.35, p < 0.001), which was positively associated with circulating FGF21 (β = +0.42, p < 0.001). The Pro446Leu variant increased FGF-21 (β = +0.14, p = 0.031) with the expected slope (β-coefficient) in case of association entirely mediated by TG: 0.35 (slope between Pro446Ala and TG) × 0.42 (slope between TG and FGF21) = 0.14. CONCLUSIONS Hepatic lipogenesis, marked by GCKR-modulated triglycerides, is significantly associated with increased serum FGF-21 in children/adolescents with obesity.
Collapse
Affiliation(s)
- Claudio Maffeis
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
- Department of Mother and Child, Pediatric Unit B, University Hospital of Verona, Verona, Italy
| | - Anita Morandi
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
- Department of Mother and Child, Pediatric Unit B, University Hospital of Verona, Verona, Italy
| | - Chiara Zusi
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Francesca Olivieri
- Department of Mother and Child, Pediatric Unit B, University Hospital of Verona, Verona, Italy
| | - Elena Fornari
- Department of Mother and Child, Pediatric Unit B, University Hospital of Verona, Verona, Italy
| | - Paolo Cavarzere
- Department of Mother and Child, Pediatric Unit B, University Hospital of Verona, Verona, Italy
| | - Claudia Piona
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
- Department of Mother and Child, Pediatric Unit B, University Hospital of Verona, Verona, Italy
| | - Massimiliano Corradi
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Federica Emiliani
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Alessandro Da Ros
- Postgraduate School of Pediatrics, University of Verona, Verona, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | | | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella, Italy
| |
Collapse
|
2
|
Herrerías-García A, Jacobo-Tovar E, Hernández-Robles CM, Guardado-Mendoza R. Pancreatic beta cell function and insulin resistance profiles in first-degree relatives of patients with prediabetes and type 2 diabetes. Acta Diabetol 2025; 62:253-261. [PMID: 39150512 DOI: 10.1007/s00592-024-02352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
AIMS To evaluate insulin secretion and insulin resistance profiles in individuals with family history of prediabetes and type 2 diabetes. METHODS This was a cross-sectional study to evaluate clinical and metabolic profiles between individuals with type 2 diabetes, prediabetes and their relatives. There were 911 subjects divided into five groups: (i) normoglycemic (NG), (ii) type 2 diabetes, (iii) prediabetes, (iv) first-degree relatives of patients with type 2 diabetes (famT2D), and (v) first-degree relatives of patients with prediabetes (famPD); anthropometrical, biochemical and nutritional evaluation, as well as insulin resistance and pancreatic beta cell function measurement was performed by oral glucose tolerance to compare between groups. RESULTS The most prevalent type 2 diabetes risk factors were dyslipidemia (81%), family history of type 2 diabetes (76%), central obesity (73%), male sex (63%), and sedentary lifestyle (60%), and most of them were progressively associated to prediabetes and type 2 diabetes groups. Insulin sensitivity was lower in famT2D groups in comparison to NG group (p < 0.0001). FamPD and famT2D had a 10% lower pancreatic beta cell function (DI) than the NG group (NG group 2.78 ± 1.0, famPD 2.5 ± 0.85, famT2D 2.4 ± 0.75, p˂0.001). CONCLUSIONS FamPD and famT2D patients had lower pancreatic beta cell function than NG patients, highlighting that defects in insulin secretion and insulin sensitivity appear long time before the development of hyperglycemia in patients genetically predisposed.
Collapse
Affiliation(s)
- Anaid Herrerías-García
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, Blvd. Milenio 1001, Predio San Carlos, 37670, León, Guanajuato, Mexico
| | - Emmanuel Jacobo-Tovar
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, Blvd. Milenio 1001, Predio San Carlos, 37670, León, Guanajuato, Mexico
| | - Claudia Mariana Hernández-Robles
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, Blvd. Milenio 1001, Predio San Carlos, 37670, León, Guanajuato, Mexico
| | - Rodolfo Guardado-Mendoza
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, Blvd. Milenio 1001, Predio San Carlos, 37670, León, Guanajuato, Mexico.
| |
Collapse
|
3
|
Li G, Craig-Schapiro R, Redmond D, Chen K, Lin Y, Geng F, Gao M, Rabbany SY, Suresh G, Pearson B, Schreiner R, Rafii S. Vascularization of human islets by adaptable endothelium for durable and functional subcutaneous engraftment. SCIENCE ADVANCES 2025; 11:eadq5302. [PMID: 39879286 PMCID: PMC11777203 DOI: 10.1126/sciadv.adq5302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025]
Abstract
Tissue-specific endothelial cells (ECs) are critical for the homeostasis of pancreatic islets and most other tissues. In vitro recapitulation of islet biology and therapeutic islet transplantation both require adequate vascularization, which remains a challenge. Using human reprogrammed vascular ECs (R-VECs), human islets were functionally vascularized in vitro, demonstrating responsive, dynamic glucose-stimulated insulin secretion and Ca2+ influx. Subcutaneous transplantation of islets with R-VECs reversed hyperglycemia in diabetic mice, with high levels of human insulin detected within recipient serum and relapses of hyperglycemia following graft removal. Examination of retrieved grafts demonstrated that engrafted human islets were mainly vascularized by the cotransplanted R-VECs, which had anastomosed with the host microcirculation. Notably, single-cell RNA-sequencing revealed that R-VECs, when cocultured with islets, acquired islet EC-specific characteristics. Together, R-VECs establish an adaptable vascular niche that supports islet homeostasis both in vitro and in vivo.
Collapse
Affiliation(s)
- Ge Li
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Biological Sciences Department, Bronx Community College, City University of New York, New York, NY, USA
| | - Rebecca Craig-Schapiro
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Chen
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yang Lin
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Fuqiang Geng
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Meng Gao
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sina Y. Rabbany
- School of Engineering and Applied Science, Hofstra University, Hempstead, NY, USA
| | - Gayathri Suresh
- School of Engineering and Applied Science, Hofstra University, Hempstead, NY, USA
| | - Bradley Pearson
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Ryan Schreiner
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Ciccarelli G, Di Giuseppe G, Soldovieri L, Quero G, Nista EC, Brunetti M, Cinti F, Moffa S, Capece U, Tondolo V, Mari A, Gasbarrini A, Pontecorvi A, Alfieri S, Giaccari A, Mezza T. Beta-cell function and glucose metabolism in patients with chronic pancreatitis. Eur J Intern Med 2024; 128:112-118. [PMID: 38871564 DOI: 10.1016/j.ejim.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
AIMS Chronic pancreatitis (CP) is - along with acute pancreatitis - the most frequent cause of diabetes of the exocrine pancreas (DEP). Although insulin deficiency is widely accepted as the major feature of DEP, it is still unclear whether diabetes associated with CP is characterized by additional or different functional defects of the insulin secretory machinery. To identify possible functional defects specifically induced by CP, we performed a cross-sectional study in individuals with normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and diabetes mellitus (DM) comparing patients with and without CP (CP vs. NCP). METHODS We administered an oral glucose tolerance test (OGTT) to all participants and, according to their glucose tolerance, classified them as NGT, IGT and DM. Insulin sensitivity and beta-cell functional parameters were derived from OGTT, hyperglycemic clamp and hyperinsulinemic euglycemic clamp. RESULTS Studying 146 subjects, we found that beta-cell function and insulin secretion were significantly lower in CP compared to NCP patients. However, when we classified the subjects according to OGTT-derived glucose tolerance, we found no differences in beta-cell function or in insulin sensitivity between CP and NCP with the same glucose tolerance status. Of note, we found that arginine-stimulated insulin secretion is reduced only in subjects with CP and DM compared to NCP subjects with DM. CONCLUSIONS Patients with CP had no specific alterations in insulin secretion and beta-cell function. However, in patients diagnosed with diabetes, we found a lower arginine-stimulated insulin secretion, a marker of reduced functional mass.
Collapse
Affiliation(s)
- Gea Ciccarelli
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gianfranco Di Giuseppe
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Laura Soldovieri
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Quero
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Enrico Celestino Nista
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Michela Brunetti
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Cinti
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simona Moffa
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Umberto Capece
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sergio Alfieri
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Andrea Giaccari
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Teresa Mezza
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
5
|
Jiao X, Wan J, Wu W, Ma L, Chen C, Dong W, Liu Y, Jin C, Sun A, Zhou Y, Li Z, Liu Q, Wu Y, Zhou C. GLT-1 downregulation in hippocampal astrocytes induced by type 2 diabetes contributes to postoperative cognitive dysfunction in adult mice. CNS Neurosci Ther 2024; 30:e70024. [PMID: 39218798 PMCID: PMC11366448 DOI: 10.1111/cns.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
AIMS Type 2 diabetes mellitus (T2DM) is related to an increased risk of postoperative cognitive dysfunction (POCD), which may be caused by neuronal hyperexcitability. Astrocyte glutamate transporter 1 (GLT-1) plays a crucial role in regulating neuron excitability. We investigated if T2DM would magnify the increased neuronal excitability induced by anesthesia/surgery (A/S) and lead to POCD in young adult mice, and if so, determined whether these effects were associated with GLT-1 expression. METHODS T2DM model was induced by high fat diet (HFD) and injecting STZ. Then, we evaluated the spatial learning and memory of T2DM mice after A/S with the novel object recognition test (NORT) and object location test (OLT). Western blotting and immunofluorescence were used to analyze the expression levels of GLT-1 and neuronal excitability. Oxidative stress reaction and neuronal apoptosis were detected with SOD2 expression, MMP level, and Tunel staining. Hippocampal functional synaptic plasticity was assessed with long-term potentiation (LTP). In the intervention study, we overexpressed hippocampal astrocyte GLT-1 in GFAP-Cre mice. Besides, AAV-Camkllα-hM4Di-mCherry was injected to inhibit neuronal hyperexcitability in CA1 region. RESULTS Our study found T2DM but not A/S reduced GLT-1 expression in hippocampal astrocytes. Interestingly, GLT-1 deficiency alone couldn't lead to cognitive decline, but the downregulation of GLT-1 in T2DM mice obviously enhanced increased hippocampal glutamatergic neuron excitability induced by A/S. The hyperexcitability caused neuronal apoptosis and cognitive impairment. Overexpression of GLT-1 rescued postoperative cognitive dysfunction, glutamatergic neuron hyperexcitability, oxidative stress reaction, and apoptosis in hippocampus. Moreover, chemogenetic inhibition of hippocampal glutamatergic neurons reduced oxidative stress and apoptosis and alleviated postoperative cognitive dysfunction. CONCLUSIONS These findings suggest that the adult mice with type 2 diabetes are at an increased risk of developing POCD, perhaps due to the downregulation of GLT-1 in hippocampal astrocytes, which enhances increased glutamatergic neuron excitability induced by A/S and leads to oxidative stress reaction, and neuronal apoptosis.
Collapse
Affiliation(s)
- Xin‐Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Wei‐Feng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Lin‐Hui Ma
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Wei Dong
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Yi‐Qi Liu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Chun‐Hui Jin
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Ao Sun
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Yue Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Zi‐Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yu‐Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Cheng‐Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouChina
| |
Collapse
|
6
|
Dietrich JW, Abood A, Dasgupta R, Anoop S, Jebasingh FK, Spurgeon R, Thomas N, Boehm BO. A novel simple disposition index (SPINA-DI) from fasting insulin and glucose concentration as a robust measure of carbohydrate homeostasis. J Diabetes 2024; 16:e13525. [PMID: 38169110 PMCID: PMC11418405 DOI: 10.1111/1753-0407.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
AIMS The widely used dynamic disposition index, derived from oral glucose tolerance testing, is an integrative measure of the homeostatic performance of the insulin-glucose feedback control. Its collection is, however, time consuming and expensive. We, therefore, pursued the question if such a measure can be calculated at baseline/fasting conditions using plasma concentrations of insulin and glucose. METHODS A new fasting-based disposition index (structure parameter inference approach-disposition index [SPINA-DI]) was calculated as the product of the reconstructed insulin receptor gain (SPINA-GR) times the secretory capacity of pancreatic beta cells (SPINA-GBeta). The novel index was evaluated in computer simulations and in three independent, multiethnic cohorts. The objectives were distribution in various populations, diagnostic performance, reliability and correlation to established physiological biomarkers of carbohydrate metabolism. RESULTS Mathematical and in-silico analysis demonstrated SPINA-DI to mirror the hyperbolic relationship between insulin sensitivity and beta-cell function and to represent an optimum of the homeostatic control. It significantly correlates to the oral glucose tolerance test based disposition index and other important physiological parameters. Furthermore, it revealed higher discriminatory power for the diagnosis of (pre)diabetes and superior retest reliability than other static and dynamic function tests of glucose homeostasis. CONCLUSIONS SPINA-DI is a novel simple reliable and inexpensive marker of insulin-glucose homeostasis suitable for screening purposes and a wider clinical application.
Collapse
Affiliation(s)
- Johannes W. Dietrich
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef HospitalRuhr University BochumBochumGermany
- Diabetes Centre Bochum/Hattingen, St. Elisabeth‐Hospital BlankensteinHattingenGermany
- Centre for Rare Endocrine Diseases, Ruhr Centre for Rare Diseases (CeSER)Ruhr University Bochum and Witten/Herdecke UniversityBochumGermany
- Centre for Diabetes TechnologyCatholic Hospitals BochumBochumGermany
| | - Assjana Abood
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef HospitalRuhr University BochumBochumGermany
- Diabetes Centre Bochum/Hattingen, St. Elisabeth‐Hospital BlankensteinHattingenGermany
- Centre for Rare Endocrine Diseases, Ruhr Centre for Rare Diseases (CeSER)Ruhr University Bochum and Witten/Herdecke UniversityBochumGermany
- Centre for Diabetes TechnologyCatholic Hospitals BochumBochumGermany
| | - Riddhi Dasgupta
- Department of Endocrinology, Diabetes and MetabolismChristian Medical CollegeVelloreIndia
| | - Shajith Anoop
- Department of Endocrinology, Diabetes and MetabolismChristian Medical CollegeVelloreIndia
| | - Felix K. Jebasingh
- Department of Endocrinology, Diabetes and MetabolismChristian Medical CollegeVelloreIndia
| | - R. Spurgeon
- Department of EndocrinologyBangalore Baptist HospitalBangaloreIndia
| | - Nihal Thomas
- Department of Endocrinology, Diabetes and MetabolismChristian Medical CollegeVelloreIndia
| | - Bernhard O. Boehm
- Lee Kong Chian School of MedicineNanyang Technological University SingaporeSingaporeSingapore
- King's College LondonSchool of Life Course & Population SciencesLondonUK
| |
Collapse
|
7
|
Wrench E, Subar DA, Bampouras TM, Lauder RM, Gaffney CJ. Myths and methodologies: Assessing glycaemic control and associated regulatory mechanisms in human physiology research. Exp Physiol 2024; 109:1461-1477. [PMID: 39014995 PMCID: PMC11363129 DOI: 10.1113/ep091433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/17/2024] [Indexed: 07/18/2024]
Abstract
Accurate measurements of glycaemic control and the underpinning regulatory mechanisms are vital in human physiology research. Glycaemic control is the maintenance of blood glucose concentrations within optimal levels and is governed by physiological variables including insulin sensitivity, glucose tolerance and β-cell function. These can be measured with a plethora of methods, all with their own benefits and limitations. Deciding on the best method to use is challenging and depends on the specific research question(s). This review therefore discusses the theory and procedure, validity and reliability and any special considerations of a range common methods used to measure glycaemic control, insulin sensitivity, glucose tolerance and β-cell function. Methods reviewed include glycosylated haemoglobin, continuous glucose monitors, the oral glucose tolerance test, mixed meal tolerance test, hyperinsulinaemic euglycaemic clamp, hyperglycaemic clamp, intravenous glucose tolerance test and indices derived from both fasting concentrations and the oral glucose tolerance test. This review aims to help direct understanding, assessment and decisions regarding which method to use based on specific physiology-related research questions.
Collapse
Affiliation(s)
- Elizabeth Wrench
- Lancaster Medical School, Health Innovation One, Sir John Fisher DriveLancaster UniversityLancasterUK
| | - Daren A. Subar
- Royal Blackburn HospitalEast Lancashire Hospitals NHS TrustBlackburnUK
| | | | - Robert M. Lauder
- Lancaster Medical School, Health Innovation One, Sir John Fisher DriveLancaster UniversityLancasterUK
| | - Christopher J. Gaffney
- Lancaster Medical School, Health Innovation One, Sir John Fisher DriveLancaster UniversityLancasterUK
| |
Collapse
|
8
|
Anyiam O, Phillips B, Quinn K, Wilkinson D, Smith K, Atherton P, Idris I. Metabolic effects of very-low calorie diet, Semaglutide, or combination of the two, in individuals with type 2 diabetes mellitus. Clin Nutr 2024; 43:1907-1913. [PMID: 38996661 DOI: 10.1016/j.clnu.2024.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND & AIMS Very-low calorie diets (VLCD) and the glucagon-like peptide-1 receptor agonist (GLP1RA) Semaglutide induce significant weight loss and improve glycaemic control in individuals with type 2 diabetes (T2D). This pilot study was conducted to explore the comparative short-term effects of these interventions individually, and in combination, on weight, body composition and metabolic outcomes. METHODS Thirty individuals with T2D (age 18-75 years, BMI 27-50 kg m-2) were randomly assigned to receive Semaglutide (SEM), 800 kilocalorie/day VLCD (VLCD), or both in combination (COMB) for 12 weeks. Measurement of weight and glycated haemoglobin (HbA1c), dual energy X-ray absorptiometry, and intravenous glucose tolerance tests (IVGTT) were performed at baseline and post-intervention. Diet diaries were utilised to assess compliance. Insulin first phase response during IVGTT provided a marker of pancreatic beta-cell function, and insulin sensitivity was estimated using HOMA-IR. RESULTS Significantly greater reductions in body weight and fat mass were observed in VLCD and COMB, than SEM (p < 0.01 v both). VLCD and COMB resulted in a 5.4 and 7 percentage-point greater weight loss than SEM, respectively. HbA1c and fasting glucose reduced significantly in all groups, however fasting insulin and HOMA-IR improved in VLCD and COMB only. Insulin first phase response during IVGTT increased in SEM and COMB, and this increase was significantly greater in COMB than VLCD (p < 0.01). CONCLUSION VLCD elicited greater short-term losses of weight and fat mass than Semaglutide. Adding VLCD to Semaglutide stimulated further weight loss than Semaglutide alone. The combination did not yield any additive effects on weight and body composition above VLCD alone, but did provoke greater improvements in pancreatic beta-cell function. Thus, combination of Semaglutide and VLCD warrants further exploration as a novel approach to T2D management.
Collapse
Affiliation(s)
- Oluwaseun Anyiam
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Derby, DE22 3DT, UK; Department of Endocrinology and Diabetes, University Hospitals Derby and Burton NHS Foundation Trust, Derby, DE22 3NE, UK
| | - Bethan Phillips
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Katie Quinn
- College of Agriculture, Food & Nutrition, University College Dublin, Ireland
| | - Daniel Wilkinson
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Kenneth Smith
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Philip Atherton
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Derby, DE22 3DT, UK.
| | - Iskandar Idris
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Derby, DE22 3DT, UK; Department of Endocrinology and Diabetes, University Hospitals Derby and Burton NHS Foundation Trust, Derby, DE22 3NE, UK.
| |
Collapse
|
9
|
Houborg Petersen M, Stidsen JV, Eisemann de Almeida M, Kleis Wentorf E, Jensen K, Ørtenblad N, Højlund K. High-intensity interval training combining rowing and cycling improves but does not restore beta-cell function in type 2 diabetes. Endocr Connect 2024; 13:e230558. [PMID: 38513367 PMCID: PMC11046351 DOI: 10.1530/ec-23-0558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Aim We investigated whether a high-intensity interval training (HIIT) protocol could restore beta-cell function in type 2 diabetes compared with sedentary obese and lean individuals. Materials and methods In patients with type 2 diabetes, and age-matched, glucose-tolerant obese and lean controls, we examined the effect of 8 weeks of supervised HIIT combining rowing and cycling on the acute (first-phase) and second-phase insulin responses, beta-cell function adjusted for insulin sensitivity (disposition index), and serum free fatty acid (FFA) levels using the Botnia clamp (1-h IVGTT followed by 3-h hyperinsulinemic-euglycemic clamp). Results At baseline, patients with type 2 diabetes had reduced insulin sensitivity (~40%), acute insulin secretion (~13-fold), and disposition index (>35-fold), whereas insulin-suppressed serum FFA was higher (⁓2.5-fold) compared with controls (all P < 0.05). The HIIT protocol increased insulin sensitivity in all groups (all P < 0.01). In patients with type 2 diabetes, this was accompanied by a large (>200%) but variable improvement in the disposition index (P < 0.05). Whereas insulin sensitivity improved to the degree seen in controls at baseline, the disposition index remained markedly lower in patients with type 2 diabetes after HIIT (all P < 0.001). In controls, HIIT increased the disposition index by ~20-30% (all P < 0.05). In all groups, the second-phase insulin responses and insulin-suppressed FFA levels were reduced in response to HIIT (all P < 0.05). No group differences were seen in these HIIT-induced responses. Conclusion HIIT combining rowing and cycling induced a large but variable increase in beta-cell function adjusted for insulin sensitivity in type 2 diabetes, but the disposition index remained severely impaired compared to controls, suggesting that this defect is less reversible in response to exercise training than insulin resistance. Trial registration ClinicalTrials.gov (NCT03500016).
Collapse
Affiliation(s)
- Maria Houborg Petersen
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Martin Eisemann de Almeida
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Emil Kleis Wentorf
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kurt Jensen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
10
|
Bae JC, Wander PL, Lemaitre RN, Fretts AM, Sitlani CM, Bui HH, Thomas MK, Leonetti D, Fujimoto WY, Boyko EJ, Utzschneider KM. Associations of plasma sphingolipids with measures of insulin sensitivity, β-cell function, and incident diabetes in Japanese Americans. Nutr Metab Cardiovasc Dis 2024; 34:633-641. [PMID: 38161124 PMCID: PMC10922320 DOI: 10.1016/j.numecd.2023.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND AIMS To prospectively investigate associations of plasma sphingolipids with insulin sensitivity, β-cell function, and incident diabetes in the Japanese American Community Diabetes Study. METHODS AND RESULTS Baseline plasma samples from adults without diabetes (n = 349; mean age 56.7 years, 51 % men) were assayed for circulating ceramide and sphingomyelin species. Adjusted regression models examined cross-sectional and longitudinal associations with insulin sensitivity (HOMA2-%S), β-cell function (oral disposition index: DIo) and with incident diabetes over 5 years follow-up. Concentrations of four species (Ceramide C16:0, C18:0, C20:0, and C22:0) were inversely associated with HOMA2-%S at baseline (all P values < 0.05, Q values < 0.05) and change in HOMA2-%S over 5 years (all P values < 0.05, Q values < 0.05). No sphingolipids were associated with baseline or change in DIo. Of the four species associated with HOMA2-%S, only Ceramide C18:0 was significantly and positively associated with incident diabetes (RR/1SD 1.44, 95 % CI 1.10-1.80, P = 0.006, Q = 0.024). The association of plasma Ceramide C18:0 with the risk of diabetes was partially mediated by change in HOMA2-%S between baseline and 5 years (mediation proportion: 61.5 %, 95 % CI 21.1%-212.5 %). CONCLUSION Plasma Ceramide C18:0 was associated with higher risk of incident diabetes which was partially mediated through a decrease in insulin sensitivity between baseline and five years. Circulating Ceramide C18:0 could be a potential biomarker for identifying those at risk of developing diabetes.
Collapse
Affiliation(s)
- Ji Cheol Bae
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Pandora L Wander
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Rozenn N Lemaitre
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Amanda M Fretts
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Colleen M Sitlani
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Hai H Bui
- Eli Lilly and Company, Indianapolis, IN, United States
| | | | - Donna Leonetti
- Department of Anthropology, University of Washington, Seattle, WA, United States
| | - Wilfred Y Fujimoto
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Edward J Boyko
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States; Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kristina M Utzschneider
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States; Department of Medicine, University of Washington, Seattle, WA, United States.
| |
Collapse
|
11
|
Cao C, Koh HCE, Reeds DN, Patterson BW, Klein S, Mittendorfer B. Critical Evaluation of Indices Used to Assess β-Cell Function. Diabetes 2024; 73:391-400. [PMID: 38015795 PMCID: PMC10882145 DOI: 10.2337/db23-0613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023]
Abstract
The assessment of β-cell function, defined as the relationship between insulin secretion rate (ISR) and plasma glucose, is not standardized and often involves any of a number of β-cell function indices. We compared β-cell function by using popular indices obtained during basal conditions and after glucose ingestion, including the HOMA-B index, the basal ISR (or plasma insulin)-to-plasma glucose concentration ratio, the insulinogenic and ISRogenic indices, the ISR (or plasma insulin)-to-plasma glucose concentration areas (or incremental areas) under the curve ratio, and the disposition index, which integrates a specific β-cell function index value with an estimate of insulin sensitivity, between lean people with normal fasting glucose (NFG) and normal glucose tolerance (NGT) (n = 50) and four groups of people with obesity (n = 188) with 1) NFG-NGT, 2) NFG and impaired glucose tolerance (IGT), 3) impaired fasting glucose (IFG) and IGT, and 4) type 2 diabetes. We also plotted the ISR-plasma glucose relationship before and after glucose ingestion and used a statistical mixed-effects model to evaluate group differences in this relationship (i.e., β-cell function). Index-based group differences in β-cell function produced contradicting results and did not reflect the group differences of the actual observed ISR-glucose relationship or, in the case of the disposition index, group differences in glycemic status. The discrepancy in results is likely due to incorrect mathematical assumptions that are involved in computing indices, which can be overcome by evaluating the relationship between ISR and plasma glucose with an appropriate statistical model. Data obtained with common β-cell function indices should be interpreted cautiously. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Chao Cao
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Han-Chow E. Koh
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Dominic N. Reeds
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Bruce W. Patterson
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
- Sansum Diabetes Research Institute, Santa Barbara, CA
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
- Departments of Medicine and Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
12
|
Burton JJN, Alonso LC. Overnutrition in the early postnatal period influences lifetime metabolic risk: Evidence for impact on pancreatic β-cell mass and function. J Diabetes Investig 2024; 15:263-274. [PMID: 38193815 PMCID: PMC10906026 DOI: 10.1111/jdi.14136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Overconsumption of energy-rich foods that disrupt caloric balance is a fundamental cause of overweight, obesity and diabetes. Dysglycemia and the resulting cardiovascular disease cause substantial morbidity and mortality worldwide, as well as high societal cost. The prevalence of obesity in childhood and adolescence is increasing, leading to younger diabetes diagnosis, and higher severity of microvascular and macrovascular complications. An important goal is to identify early life conditions that increase future metabolic risk, toward the goal of preventing diabetes and cardiovascular disease. An ample body of evidence implicates prenatal and postnatal childhood growth trajectories in the programming of adult metabolic disease. Human epidemiological data show that accelerated childhood growth increases risk of type 2 diabetes in adulthood. Type 2 diabetes results from the combination of insulin resistance and pancreatic β-cell failure, but specific mechanisms by which accelerated postnatal growth impact one or both of these processes remain uncertain. This review explores the metabolic impact of overnutrition during postnatal life in humans and in rodent models, with specific attention to the connection between accelerated childhood growth and future adiposity, insulin resistance, β-cell mass and β-cell dysfunction. With improved knowledge in this area, we might one day be able to modulate nutrition and growth in the critical postnatal window to maximize lifelong metabolic health.
Collapse
Affiliation(s)
- Joshua JN Burton
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health, Weill Cornell MedicineNew York CityNew YorkUSA
| | - Laura C Alonso
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health, Weill Cornell MedicineNew York CityNew YorkUSA
| |
Collapse
|
13
|
Subramanian V, Bagger JI, Harihar V, Holst JJ, Knop FK, Villsbøll T. An extended minimal model of OGTT: estimation of α- and β-cell dysfunction, insulin resistance, and the incretin effect. Am J Physiol Endocrinol Metab 2024; 326:E182-E205. [PMID: 38088864 PMCID: PMC11193523 DOI: 10.1152/ajpendo.00278.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
Loss of insulin sensitivity, α- and β-cell dysfunction, and impairment in incretin effect have all been implicated in the pathophysiology of type 2 diabetes (T2D). Parsimonious mathematical models are useful in quantifying parameters related to the pathophysiology of T2D. Here, we extend the minimum model developed to describe the glucose-insulin-glucagon dynamics in the isoglycemic intravenous glucose infusion (IIGI) experiment to the oral glucose tolerance test (OGTT). The extended model describes glucose and hormone dynamics in OGTT including the contribution of the incretin hormones, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide-1 (GLP-1), to insulin secretion. A new function describing glucose arrival from the gut is introduced. The model is fitted to OGTT data from eight individuals with T2D and eight weight-matched controls (CS) without diabetes to obtain parameters related to insulin sensitivity, β- and α-cell function. The parameters, i.e., measures of insulin sensitivity, a1, suppression of glucagon secretion, k1, magnitude of glucagon secretion, γ2, and incretin-dependent insulin secretion, γ3, were found to be different between CS and T2D with P values < 0.002, <0.017, <0.009, <0.004, respectively. A new rubric for estimating the incretin effect directly from modeling the OGTT is presented. The average incretin effect correlated well with the experimentally determined incretin effect with a Spearman rank test correlation coefficient of 0.67 (P < 0.012). The average incretin effect was found to be different between CS and T2D (P < 0.032). The developed model is shown to be effective in quantifying the factors relevant to T2D pathophysiology.NEW & NOTEWORTHY A new extended model of oral glucose tolerance test (OGTT) has been developed that includes glucagon dynamics and incretin contribution to insulin secretion. The model allows the estimation of parameters related to α- and β-cell dysfunction, insulin sensitivity, and incretin action. A new function describing the influx of glucose from the gut has been introduced. A new rubric for estimating the incretin effect directly from the OGTT experiment has been developed. The effect of glucose dose was also investigated.
Collapse
Affiliation(s)
- Vijaya Subramanian
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jonatan I Bagger
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Vinayak Harihar
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States
- Biophysics Graduate Group, University of California, Berkeley, California, United States
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Villsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Narayanan N, Sahoo J, Kamalanathan S, Sagili H, Zachariah B, Naik D, Roy A, Merugu C. Insulin Sensitivity, Islet Cell Function, and Incretin Axis in Pregnant Women With and Without Gestational Diabetes Mellitus. Indian J Endocrinol Metab 2024; 28:71-79. [PMID: 38533283 PMCID: PMC10962776 DOI: 10.4103/ijem.ijem_7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/29/2023] [Accepted: 09/04/2023] [Indexed: 03/28/2024] Open
Abstract
INTRODUCTION The aim of this study was to compare insulin sensitivity, islet cell function, and incretin axes in pregnant subjects with GDM and normal healthy controls. METHODS Pregnant women at 24 to 28 weeks of gestation were subjected to a 75 g oral glucose tolerance test (OGTT). Samples for glucose, insulin, glucagon, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) were collected at 0, 30, 60, and 120 min during the OGTT. The Matsuda index (MI) and insulin secretion and sensitivity index-2 (ISSI-2) were assessed. The glucagon suppression index (GSI) was calculated along with the area under the curve (AUC) for glucose, insulin, glucagon, GLP-1, and GIP. RESULTS A total of 48 pregnant women (25 GDM and 23 controls) were finally analysed. The MI and ISSI-2 were low in the GDM group [4.31 vs. 5.42; P = 0.04], [1.99 vs. 3.18, P ≤ 0.01] respectively). Total AUCglucagon was higher in the GDM group (7411.7 vs. 6320.1, P = 0.02). GSI30 was significantly lower in the GDM group (-62.6 vs. -24.7, P = 0.03). Fasting GLP-1 levels were low in GDM women (17.3 vs. 22.2, P = 0.04). The total AUCGLP-1 positively correlated with total GSI in the GDM group. CONCLUSION Asian-Indian GDM women have high insulin insensitivity, islet cell dysfunction, and low fasting GLP-1. Incretin axis dysfunction plays a potential role in their islet cell dysfunction.
Collapse
Affiliation(s)
- Niya Narayanan
- Department of Endocrinology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Sadishkumar Kamalanathan
- Department of Endocrinology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Haritha Sagili
- Department of Obstetrics and Gynaecology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Bobby Zachariah
- Department of Biochemistry, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Dukhabandhu Naik
- Department of Endocrinology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Ayan Roy
- Department of Endocrinology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Chandhana Merugu
- Department of Endocrinology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
15
|
Couch CA, Piccinini F, Fowler LA, Garvey WT, Gower BA. Proinsulin-to-C-Peptide Ratio as a Marker of β-Cell Function in African American and European American Adults. Diabetes Care 2023; 46:2129-2136. [PMID: 36787895 PMCID: PMC10698211 DOI: 10.2337/dc22-1763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023]
Abstract
OBJECTIVE The primary purpose of the current study was to test the hypothesis that the proinsulin-to-C-peptide (PI-to-CP) ratio, as an index of proinsulin secretion, would be higher and associated with indices of β-cell function in African American adults relative to European American adults without type 2 diabetes. RESEARCH DESIGN AND METHODS Participants were 114 African American and European American adult men and women. A 2-h oral glucose tolerance test was conducted to measure glucose, insulin, C-peptide, and proinsulin and derive indices of β-cell response to glucose. The Matsuda index was calculated as a measure of insulin sensitivity. The disposition index (DI), the product of insulin sensitivity and β-cell response, was calculated for each phase of β-cell responsivity. Pearson correlations were used to investigate the relationship of the PI-to-CP ratio with each phase of β-cell response (basal, Φb; dynamic, Φd; static, Φs; total, Φtot), disposition indices (DId, DIs, DItot), and insulin sensitivity. Multiple linear regression analysis was used to evaluate independent contributions of race, BMI, and glucose tolerance status on PI-to-CP levels before and after adjustment for insulin sensitivity. RESULTS African American participants had higher fasting and 2-h PI-to-CP ratios. The fasting PI-to-CP ratio was positively associated with Φb, and the fasting PI-to-CP ratio and 2-h PI-to-CP ratio were inversely associated with DId and insulin sensitivity only in African American participants. CONCLUSIONS The PI-to-CP ratio could be useful in identifying African American individuals at highest risk for β-cell dysfunction and ultimately type 2 diabetes.
Collapse
Affiliation(s)
- Catharine A. Couch
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Francesca Piccinini
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Lauren A. Fowler
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - W. Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Barbara A. Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
16
|
Ozcaliskan Ilkay H, Karabulut D, Kamaci Ozocak G, Mehmetbeyoglu E, Kaymak E, Kisioglu B, Cicek B, Akyol A. Quinoa ( Chenopodium quinoa Willd.) supplemented cafeteria diet ameliorates glucose intolerance in rats. Food Sci Nutr 2023; 11:6920-6930. [PMID: 37970433 PMCID: PMC10630841 DOI: 10.1002/fsn3.3603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 11/17/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a pseudocereal with rich nutritional composition, gluten free, and organoleptic. The primary aim of this study was to elucidate the possible protective roles of quinoa in glucose homeostasis in a model of cafeteria diet-induced obesity. Male Wistar rats (3 weeks of age) were randomly allocated to be fed by; control chow (CON; n = 6), quinoa (QUI; n = 6), cafeteria (CAF; n = 6), or quinoa and cafeteria (CAFQ; n = 6) for 15 weeks. CAFQ resulted in decreased saturated fat, sugar, and sodium intake in comparison with CAF. Compared to CON, CAF increased body weight gain, plasma insulin, plasma glucose, decreased liver IRS-1, AMPK mRNA expressions, and pancreatic β-cell insulin immunoreactivity, and developed hepatocyte degeneration and microvesicular steatosis. Compared to CAF, QUI lowered body weight, plasma glucose, and plasma insulin, increased liver IRS-1 and AMPK mRNA expressions, and pancreatic β-cell insulin immunoreactivity. Compared to CAF, CAFQ lowered plasma glucose, increased liver IRS-1 mRNA expressions, increased pancreatic β-cell insulin immunoreactivity, and lowered hepatocyte degeneration and microvesicular steatosis. Dietary treatments did not influence IRS-2, AKT2, and INSR mRNA expressions. HOMA-IR, HOMA-β, and QUICKI were also similar between groups. Restoration of insulin in CAFQ islets was as well as that of CON and QUI groups. In conclusion, as a functional food, quinoa may be useful in the prevention of obesity and associated metabolic outcomes such as glucose intolerance, disrupted pancreatic β-cell function, hepatic insulin resistance, and lipid accumulation.
Collapse
Affiliation(s)
- Hatice Ozcaliskan Ilkay
- Faculty of Health Sciences, Department of Nutrition and DieteticsHacettepe UniversityAnkaraTurkey
- Faculty of Health Sciences, Department of Nutrition and DieteticsErciyes UniversityKayseriTurkey
| | - Derya Karabulut
- Faculty of Medicine, Department of Histology and EmbryologyErciyes UniversityKayseriTurkey
| | - Gonca Kamaci Ozocak
- Faculty of Veterinary Medicine, Department of Laboratory Animals ScienceErciyes UniversityKayseriTurkey
| | | | - Emin Kaymak
- Faculty of Medicine, Department of Histology and EmbryologyYozgat Bozok UniversityYozgatTurkey
| | - Betul Kisioglu
- Faculty of Health Sciences, Department of Nutrition and DieteticsHacettepe UniversityAnkaraTurkey
| | - Betul Cicek
- Faculty of Health Sciences, Department of Nutrition and DieteticsErciyes UniversityKayseriTurkey
| | - Asli Akyol
- Faculty of Health Sciences, Department of Nutrition and DieteticsHacettepe UniversityAnkaraTurkey
| |
Collapse
|
17
|
Lindåse S, Nostell K, Forslund A, Bergsten P, Bröjer J. Short-term effects of canagliflozin on glucose and insulin responses in insulin dysregulated horses: A randomized, placebo-controlled, double-blind, study. J Vet Intern Med 2023; 37:2520-2528. [PMID: 37864426 PMCID: PMC10658518 DOI: 10.1111/jvim.16906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Decreasing hyperinsulinemia is crucial in preventing laminitis in insulin dysregulated (ID) horses. Complementary pharmacological treatments that efficiently decrease postprandial hyperinsulinemia in ID horses are needed. OBJECTIVES Compare short-term effects of canagliflozin vs placebo on glucose and insulin responses to an oral sugar test (OST) as well as the effects on body weight and triglyceride concentrations in horses with ID. ANIMALS Sixteen privately-owned ID horses. METHODS A single-center, randomized, double-blind, placebo-controlled, parallel design study. The horses were randomized (ratio 1:1) to either once daily PO treatment with 0.6 mg/kg canagliflozin or placebo. The study consisted of an initial 3-day period for obtaining baseline data, a 3-week double-blind treatment period at home, and a 3-day follow-up period similar to the initial baseline period but with continued double-blind treatment. Horses were subjected to an 8-sample OST in the morning of the third day on both visits. RESULTS Maximal geometric least square (LS) mean insulin concentration (95% confidence interval [CI]) during the OST decreased after 3 weeks of canagliflozin treatment compared with placebo (83.2; 55.4-125.0 vs 215.2; 143.2-323.2 μIU/mL). The geometric LS mean insulin response (insulin AUC0-180 ) for canagliflozin-treated horses was >66% lower compared with placebo. Least square mean body weight decreased by 11.1 (4-18.1) kg and LS mean triglyceride concentrations increased by 0.99 (0.47-1.5) mmol/L with canagliflozin treatment. CONCLUSIONS AND CLINICAL IMPORTANCE Canagliflozin is a promising drug for treatment of ID horses that requires future studies.
Collapse
Affiliation(s)
- Sanna Lindåse
- Department of Clinical SciencesSwedish University of Agricultural SciencesUppsalaSweden
| | - Katarina Nostell
- Department of Clinical SciencesSwedish University of Agricultural SciencesUppsalaSweden
| | - Anders Forslund
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden
| | - Peter Bergsten
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Johan Bröjer
- Department of Clinical SciencesSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
18
|
Liu X, Song L, Zhang Y, Li H, Cui C, Liu D. PEGylated exenatide injection (PB-119) improves beta-cell function and insulin resistance in treatment-naïve type 2 diabetes mellitus patients. Front Pharmacol 2023; 14:1088670. [PMID: 37781697 PMCID: PMC10539604 DOI: 10.3389/fphar.2023.1088670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Objective: PB-119, a PEGylated exenatide injection, is a once-weekly glucagon-like peptide-1 receptor agonist. In the present study, we aimed to evaluate the effects of PB-119 on insulin resistance and beta-cell function in Chinese patients with type 2 diabetes mellitus (T2DM) to uncover its antidiabetic characteristics. Methods: A total of 36 Chinese T2DM patients were randomized to receive 25 μg and 50 μg PB-119 once weekly and exenatide (5-10 μg injected under the skin 2 times a day adjusted by the doctor) for 12 weeks. Oral mixed meal tolerance tests were conducted before the study and on Day 79. The data were fitted to estimate beta-cell function and insulin sensitivity parameters using the SAAM II package integrating the oral minimal model (OMM), which was compared with Homeostatic Model Assessment (HOMA) analysis results. Results: Exenatide or PB-119 treatment, compared with their baseline, was associated with higher beta-cell function parameters (φb, φs and φtot), disposition index, insulin secretion rates, and a lower glucose area under the curve. High-dose PB-119 also has a higher insulin resistance parameter (SI) than the baseline, but HOMA-IR did not. For the homeostatic model assessment parameters, HOMA-IR showed no statistically significant changes within or between treatments. Only high-dose PB-119 improved HOMA-β after 12 weeks of treatment. Conclusion: After 12 weeks of treatment, PB-119 decreased glycemic levels by improving beta-cell function and insulin resistance.
Collapse
Affiliation(s)
- Xu Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Ling Song
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Yuanhui Zhang
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | - Haiyan Li
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Cheng Cui
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| |
Collapse
|
19
|
Lee MH, Febriana E, Lim M, Baig S, Halter JB, Magkos F, Toh SA. Asian females without diabetes are protected from obesity-related dysregulation of glucose metabolism compared with males. Obesity (Silver Spring) 2023; 31:2304-2314. [PMID: 37534562 DOI: 10.1002/oby.23833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVE The impact of obesity on the risk for type 2 diabetes differs between males and females; however, the underlying reasons are unclear. This study aimed to investigate the effect of sex on obesity-driven changes in the mechanisms regulating glucose metabolism (insulin sensitivity and secretion) among Asian individuals without diabetes in Singapore. METHODS The study assessed glucose tolerance using oral glucose tolerance test, insulin-mediated glucose uptake using hyperinsulinemic-euglycemic clamp, acute insulin response using an intravenous glucose challenge, and insulin secretion rates in the fasting state and in response to glucose ingestion using mathematical modeling in 727 males and 952 females who had normal body weight (n = 602, BMI < 23 kg/m2 ), overweight (n = 662, 23 ≤ BMI < 27.5), or obesity (n = 415, BMI ≥ 27.5). RESULTS There were no sex differences among lean individuals. Obesity gradually worsened metabolic function, and the progressive adverse effects of obesity on insulin action and secretion were more pronounced in males than females, such that among participants with obesity, females had greater insulin sensitivity, lower insulin secretion, and lower fasting insulin concentration than males. The increase in waist to hip ratio with increasing BMI was more pronounced in males than females. CONCLUSIONS The female sex exerts a protective effect on obesity-driven dysregulation of glucose metabolism in Asian individuals without diabetes.
Collapse
Affiliation(s)
- Michelle H Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eveline Febriana
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maybritte Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, National University Hospital, Singapore
| | - Sonia Baig
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jeffrey B Halter
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, København, Denmark
| | - Sue-Anne Toh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, National University Hospital, Singapore
- NOVI Health, Singapore
- Regional Health System Office, National University Health System, Singapore
| |
Collapse
|
20
|
Song Z, Yan A, Guo Z, Zhang Y, Wen T, Li Z, Yang Z, Chen R, Wang Y. Targeting metabolic pathways: a novel therapeutic direction for type 2 diabetes. Front Cell Infect Microbiol 2023; 13:1218326. [PMID: 37600949 PMCID: PMC10433779 DOI: 10.3389/fcimb.2023.1218326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disease that causes multi-organ complications, seriously affecting patients' quality of life and survival. Understanding its pathogenesis remains challenging, with current clinical treatment regimens often proving ineffective. Methods In this study, we established a mouse model of T2DM and employed 16s rDNA sequencing to detect changes in the species and structure of gut flora. Additionally, we used UPLC-Q-TOF-MS to identify changes in urinary metabolites of T2DM mice, analyzed differential metabolites and constructed differential metabolic pathways. Finally, we used Pearman correlation analysis to investigate the relationship between intestinal flora and differential metabolites in T2DM mice, aiming to elucidate the pathogenesis of T2DM and provide an experimental basis for its clinical treatment. Results Our findings revealed a reduction in both the species diversity and abundance of intestinal flora in T2DM mice, with significantly decreased levels of beneficial bacteria such as Lactobacillus and significantly increased levels of harmful bacteria such as Helicobacter pylori. Urinary metabolomics results identified 31 differential metabolites between T2DM and control mice, including Phosphatidylcholine, CDP-ethanolamine and Leukotriene A4, which may be closely associated with the glycerophospholipid and arachidonic acid pathways. Pearman correlation analysis showed a strong correlation between dopamine and gonadal, estradiol and gut microbiota, may be a novel direction underlying T2DM. Conclusion In conclusion, our study suggests that alterations in gut microbiota and urinary metabolites are characteristic features of T2DM in mice. Furthermore, a strong correlation between dopamine, estradiol and gut microbiota, may be a novel direction underlying T2DM, the aim is to provide new ideas for clinical treatment and basic research.
Collapse
Affiliation(s)
- Zhihui Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - An Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Zehui Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhang Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Wen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenzhen Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Chen
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
21
|
Mittendorfer B, Patterson BW, Magkos F, Yoshino M, Bradley DP, Eagon JC, Klein S. β Cell function after Roux-en-Y gastric bypass surgery or reduced energy intake alone in people with obesity. JCI Insight 2023; 8:e170307. [PMID: 37166995 PMCID: PMC10371232 DOI: 10.1172/jci.insight.170307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023] Open
Abstract
BackgroundThe effects of diet-induced weight loss (WL) and WL after Roux-en-Y gastric bypass (RYGB) surgery on β cell function (BCF) are unclear because of conflicting results from different studies, presumably because of differences in the methods used to measure BCF, the amount of WL between treatment groups, and baseline BCF. We evaluated the effect of WL after RYGB surgery or reduced energy intake alone on BCF in people with obesity with and without type 2 diabetes.MethodsBCF (insulin secretion in relationship to plasma glucose) was assessed before and after glucose or mixed-meal ingestion before and after (a) progressive amounts (6%, 11%, 16%) of WL induced by a low-calorie diet (LCD) in people with obesity without diabetes, (b) ~20% WL after RYGB surgery or laparoscopic adjustable gastric banding (LAGB) in people with obesity without diabetes, and (c) ~20% WL after RYGB surgery or LCD alone in people with obesity and diabetes.ResultsDiet-induced progressive WL in people without diabetes progressively decreased BCF. Marked WL after LAGB or RYGB in people without diabetes did not alter BCF. Marked WL after LCD or RYGB in people with diabetes markedly increased BCF, without a difference between groups.ConclusionMarked WL increases BCF in people with obesity and diabetes but not in people with obesity without diabetes. The effect of RYGB-induced WL on BCF is not different from the effect of matched WL after LAGB or LCD alone.trial registrationNCT00981500, NCT02207777, NCT01299519.FundingNIH grants R01 DK037948, P30 DK056341, P30 DK020579, UL1 TR002345.
Collapse
|
22
|
Legaard GE, Lyngbæk MPP, Almdal TP, Karstoft K, Bennetsen SL, Feineis CS, Nielsen NS, Durrer CG, Liebetrau B, Nystrup U, Østergaard M, Thomsen K, Trinh B, Solomon TPJ, Van Hall G, Brønd JC, Holst JJ, Hartmann B, Christensen R, Pedersen BK, Ried-Larsen M. Effects of different doses of exercise and diet-induced weight loss on beta-cell function in type 2 diabetes (DOSE-EX): a randomized clinical trial. Nat Metab 2023; 5:880-895. [PMID: 37127822 PMCID: PMC10229430 DOI: 10.1038/s42255-023-00799-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Diet-induced weight loss is associated with improved beta-cell function in people with type 2 diabetes (T2D) with remaining secretory capacity. It is unknown if adding exercise to diet-induced weight loss improves beta-cell function and if exercise volume is important for improving beta-cell function in this context. Here, we carried out a four-armed randomized trial with a total of 82 persons (35% females, mean age (s.d.) of 58.2 years (9.8)) with newly diagnosed T2D (<7 years). Participants were randomly allocated to standard care (n = 20), calorie restriction (25% energy reduction; n = 21), calorie restriction and exercise three times per week (n = 20), or calorie restriction and exercise six times per week (n = 21) for 16 weeks. The primary outcome was beta-cell function as indicated by the late-phase disposition index (insulin secretion multiplied by insulin sensitivity) at steady-state hyperglycemia during a hyperglycemic clamp. Secondary outcomes included glucose-stimulated insulin secretion and sensitivity as well as the disposition, insulin sensitivity, and secretion indices derived from a liquid mixed meal tolerance test. We show that the late-phase disposition index during the clamp increases more in all three intervention groups than in standard care (diet control group, 58%; 95% confidence interval (CI), 16 to 116; moderate exercise dose group, 105%; 95% CI, 49 to 182; high exercise dose group, 137%; 95% CI, 73 to 225) and follows a linear dose-response relationship (P > 0.001 for trend). We report three serious adverse events (two in the control group and one in the diet control group), as well as adverse events in two participants in the diet control group, and five participants each in the moderate and high exercise dose groups. Overall, adding an exercise intervention to diet-induced weight loss improves glucose-stimulated beta-cell function in people with newly diagnosed T2D in an exercise dose-dependent manner (NCT03769883).
Collapse
Affiliation(s)
- Grit E Legaard
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Mark P P Lyngbæk
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Thomas P Almdal
- Department of Endocrinology PE, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Karstoft
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Camilla S Feineis
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Nina S Nielsen
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Cody G Durrer
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | | | - Ulrikke Nystrup
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Martin Østergaard
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Katja Thomsen
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Beckey Trinh
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | | | - Gerrit Van Hall
- Biomedical Sciences, Faculty of Health & Medical Science, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Clinical Biochemistry, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jan Christian Brønd
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences and the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Robin Christensen
- Section for Biostatistics and Evidence-Based Research, the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bente K Pedersen
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Mathias Ried-Larsen
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark.
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
23
|
Lodato M, Plaisance V, Pawlowski V, Kwapich M, Barras A, Buissart E, Dalle S, Szunerits S, Vicogne J, Boukherroub R, Abderrahmani A. Venom Peptides, Polyphenols and Alkaloids: Are They the Next Antidiabetics That Will Preserve β-Cell Mass and Function in Type 2 Diabetes? Cells 2023; 12:cells12060940. [PMID: 36980281 PMCID: PMC10047094 DOI: 10.3390/cells12060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Improvement of insulin secretion by pancreatic β-cells and preservation of their mass are the current challenges that future antidiabetic drugs should meet for achieving efficient and long-term glycemic control in patients with type 2 diabetes (T2D). The successful development of glucagon-like peptide 1 (GLP-1) analogues, derived from the saliva of a lizard from the Helodermatidae family, has provided the proof of concept that antidiabetic drugs directly targeting pancreatic β-cells can emerge from venomous animals. The literature reporting on the antidiabetic effects of medicinal plants suggests that they contain some promising active substances such as polyphenols and alkaloids, which could be active as insulin secretagogues and β-cell protectors. In this review, we discuss the potential of several polyphenols, alkaloids and venom peptides from snake, frogs, scorpions and cone snails. These molecules could contribute to the development of new efficient antidiabetic medicines targeting β-cells, which would tackle the progression of the disease.
Collapse
Affiliation(s)
- Michele Lodato
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Plaisance
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Pawlowski
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Maxime Kwapich
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
- Service de Diabétologie et d’Endocrinologie, CH Dunkerque, 59385 Dunkirk, France
| | - Alexandre Barras
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Emeline Buissart
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Sabine Szunerits
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Jérôme Vicogne
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Rabah Boukherroub
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Amar Abderrahmani
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
- Correspondence: ; Tel.: +33-362531704
| |
Collapse
|
24
|
Zhu J, Han J, Liu L, Liu Y, Xu W, Li X, Yang L, Gu Y, Tang W, Shi Y, Ye S, Hua F, Xiang G, Liu M, Sun Z, Su Q, Li X, Li Y, Li Y, Li H, Li Y, Yang T, Yang J, Shi L, Yu X, Chen L, Shao J, Liang J, Han X, Xue Y, Ma J, Zhu D, Mu Y. Clinical expert consensus on the assessment and protection of pancreatic islet β-cell function in type 2 diabetes mellitus. Diabetes Res Clin Pract 2023; 197:110568. [PMID: 36738836 DOI: 10.1016/j.diabres.2023.110568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/08/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Islet β-cell dysfunction is a basic pathophysiological characteristic of type 2 diabetes mellitus (T2DM). Appropriate assessment of islet β-cell function is beneficial to better management of T2DM. Protecting islet β-cell function is vital to delay the progress of type 2 diabetes mellitus. Therefore, the Pancreatic Islet β-cell Expert Panel of the Chinese Diabetes Society and Endocrinology Society of Jiangsu Medical Association organized experts to draft the "Clinical expert consensus on the assessment and protection of pancreatic islet β-cell function in type 2 diabetes mellitus." This consensus suggests that β-cell function can be clinically assessed using blood glucose-based methods or methods that combine blood glucose and endogenous insulin or C-peptide levels. Some measures, including weight loss and early and sustained euglycemia control, could effectively protect islet β-cell function, and some newly developed drugs, such as Sodium-glucose cotransporter-2 inhibitor and Glucagon-like peptide-1 receptor agonists, could improve islet β-cell function, independent of glycemic control.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junfeng Han
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Liehua Liu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Liu
- Endocrinology Department, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaomu Li
- Department of Endocrine and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Gu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Tang
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yongquan Shi
- Department of Endocrinology, Changzheng Hospital, The Navy Military Medical University, Shanghai, China
| | - Shandong Ye
- Department of Endocrinology, Anhui Provincial Hospital, Hefei, China
| | - Fei Hua
- Department of Endocrinology, The First People's Hospital of Changzhou, Changzhou, China
| | - Guangda Xiang
- Department of Endocrinology, General Hospital of Central Theater Command of Chinese People' s Liberation Army, Wuhan, China
| | - Ming Liu
- Department of Endocrinology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoying Li
- Department of Endocrine and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuxiu Li
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Li
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiming Li
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Yang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lixin Shi
- Department of Endocrinology, Guiqian International General Hospital, Guiyang 550018, China
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaqing Shao
- Department of Endocrinology, the Affiliated Jinling Hospital of Nanjing Medical University, General Hospital of Eastern Theater Command, Nanjing, China
| | - Jun Liang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yaomin Xue
- The First Clinical Medical Institute, Southern Medical University, Guangzhou, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China.
| | - Yiming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
25
|
Bantle AE, Lau KJ, Wang Q, Malaeb S, Harindhanavudhi T, Manoogian ENC, Panda S, Mashek DG, Chow LS. Time-restricted eating did not alter insulin sensitivity or β-cell function in adults with obesity: A randomized pilot study. Obesity (Silver Spring) 2023; 31 Suppl 1:108-115. [PMID: 36518093 PMCID: PMC9877119 DOI: 10.1002/oby.23620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Decreased insulin sensitivity and impairment of β-cell function predate and predict development of type 2 diabetes mellitus. Time-restricted eating (TRE) might have a benefit for these parameters. The objective of this pilot study was to investigate this possibility. METHODS Secondary analysis of a randomized controlled trial comparing 12 weeks of TRE (8-hour eating window) to unrestricted eating (non-TRE) was performed. Participants were adults with overweight or obesity and without diabetes. Two-hour oral glucose tolerance testing was performed at baseline and end-intervention. Glucose tolerance test-derived measures of insulin sensitivity, insulin secretion, and β-cell function were compared between groups. RESULTS Participants (17 women/3 men with mean [SD] age 45.5 [12.1] years and BMI 34.1 [7.5] kg/m2 ) with a prolonged eating window (15.4 [0.9] hours) were randomized to TRE (n = 11) or non-TRE (n = 9). The quantitative insulin sensitivity check index (QUICKI), Stumvoll index, Avignon index, insulinogenic index, insulin area under the curve/glucose area under the curve, and oral disposition index did not differ between the TRE and non-TRE groups at end-intervention. CONCLUSIONS In adults with overweight or obesity and without diabetes, TRE did not significantly alter insulin sensitivity, insulin secretion, or β-cell function over a 12-week intervention. Whether TRE is beneficial in adults with prediabetes or type 2 diabetes mellitus warrants further investigation.
Collapse
Affiliation(s)
- Anne E. Bantle
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Kheng Joe Lau
- EndocrinologyWestern Wisconsin HealthBaldwinWisconsinUSA
| | - Qi Wang
- Clinical and Translational Science InstituteUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Samar Malaeb
- Department of EndocrinologyPark Nicollet Health ServicesSaint Louis ParkMinnesotaUSA
| | - Tasma Harindhanavudhi
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Emily N. C. Manoogian
- Regulatory Biology LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Satchidananda Panda
- Regulatory Biology LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Douglas G. Mashek
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lisa S. Chow
- Division of Diabetes, Endocrinology and Metabolism, Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
26
|
Lecorguillé M, McAuliffe FM, Twomey PJ, Viljoen K, Mehegan J, Kelleher CC, Suderman M, Phillips CM. Maternal Glycaemic and Insulinemic Status and Newborn DNA Methylation: Findings in Women With Overweight and Obesity. J Clin Endocrinol Metab 2022; 108:85-98. [PMID: 36137169 PMCID: PMC9759168 DOI: 10.1210/clinem/dgac553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/26/2022] [Indexed: 11/07/2022]
Abstract
CONTEXT Maternal dysglycaemia and prepregnancy obesity are associated with adverse offspring outcomes. Epigenetic mechanisms such as DNA methylation (DNAm) could contribute. OBJECTIVE To examine relationships between maternal glycaemia, insulinemic status, and dietary glycemic indices during pregnancy and an antenatal behavioral-lifestyle intervention with newborn DNAm. METHODS We investigated 172 women from a randomized controlled trial of a lifestyle intervention in pregnant women who were overweight or obese. Fasting glucose and insulin concentrations and derived indices of insulin resistance (HOMA-IR), β-cell function (HOMA-%B), and insulin sensitivity were determined at baseline (15) and 28 weeks' gestation. Dietary glycemic load (GL) and index (GI) were calculated from 3-day food diaries. Newborn cord blood DNAm levels of 850K CpG sites were measured using the Illumina Infinium HumanMethylationEPIC array. Associations of each biomarker, dietary index and intervention with DNAm were examined. RESULTS Early pregnancy HOMA-IR and HOMA-%B were associated with lower DNAm at CpG sites cg03158092 and cg05985988, respectively. Early pregnancy insulin sensitivity was associated with higher DNAm at cg04976151. Higher late pregnancy insulin concentrations and GL scores were positively associated with DNAm at CpGs cg12082129 and cg11955198 and changes in maternal GI with lower DNAm at CpG cg03403995 (Bonferroni corrected P < 5.99 × 10-8). These later associations were located at genes previously implicated in growth or regulation of insulin processes. No effects of the intervention on cord blood DNAm were observed. None of our findings were replicated in previous studies. CONCLUSION Among women who were overweight or obese, maternal pregnancy dietary glycemic indices, glucose, and insulin homeostasis were associated with modest changes in their newborn methylome. TRIAL REGISTRATION ISRCTN29316280.
Collapse
Affiliation(s)
- Marion Lecorguillé
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Republic of Ireland
| | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, School of Medicine, National Maternity Hospital, University College Dublin, Dublin, Ireland
| | - Patrick J Twomey
- School of Medicine, University College Dublin, Dublin, Republic of Ireland
| | - Karien Viljoen
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Republic of Ireland
| | - John Mehegan
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Republic of Ireland
| | - Cecily C Kelleher
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Republic of Ireland
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Catherine M Phillips
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Republic of Ireland
| |
Collapse
|
27
|
Cade WT, Mittendorfer B, Patterson BW, Haire-Joshu D, Cahill AG, Stein RI, Schechtman KB, Tinius RA, Brown K, Klein S. Effect of excessive gestational weight gain on insulin sensitivity and insulin kinetics in women with overweight/obesity. Obesity (Silver Spring) 2022; 30:2014-2022. [PMID: 36150208 PMCID: PMC9512396 DOI: 10.1002/oby.23533] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Obesity increases the risk for pregnancy complications and maternal hyperglycemia. The Institute of Medicine developed guidelines for gestational weight gain (GWG) targets for women with overweight/obesity, but it is unclear whether exceeding these targets has adverse effects on maternal glucose metabolism. METHODS Insulin sensitivity (assessed using the Matsuda Insulin Sensitivity Index), β-cell function (assessed as insulin secretion rate in relation to plasma glucose), and plasma insulin clearance rate were evaluated using a frequently sampled oral glucose tolerance test at 15 and 35 weeks of gestation in 184 socioeconomically disadvantaged African American women with overweight/obesity. RESULTS Insulin sensitivity decreased, whereas β-cell function and insulin clearance increased from 15 to 35 weeks of gestation in the entire group. Compared with women who achieved the recommended GWG, excessive GWG was associated with a greater decrease in insulin sensitivity between 15 and 35 weeks. β-cell function and plasma insulin clearance were not affected by excessive GWG. CONCLUSIONS These data demonstrate that gaining more weight during pregnancy than recommended by the Institute of Medicine is associated with functional effects on glucose metabolism.
Collapse
Affiliation(s)
- W. Todd Cade
- Program in Physical Therapy, Washington University, St. Louis, Missouri, USA
| | | | - Bruce W. Patterson
- Center for Human Nutrition, Washington University, St. Louis, Missouri, USA
| | | | - Alison G. Cahill
- Department of Obstetrics and Gynecology, Washington University, St. Louis, Missouri, USA
- Department of Women’s Health, The University of Texas at Austin, Dell Medical School, Austin TX USA
| | - Richard I. Stein
- Center for Human Nutrition, Washington University, St. Louis, Missouri, USA
| | | | - Rachel A. Tinius
- Program in Physical Therapy, Washington University, St. Louis, Missouri, USA
| | - Katherine Brown
- Program in Physical Therapy, Washington University, St. Louis, Missouri, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
28
|
Jalleh RJ, Wu T, Jones KL, Rayner CK, Horowitz M, Marathe CS. Relationships of Glucose, GLP-1, and Insulin Secretion With Gastric Emptying After a 75-g Glucose Load in Type 2 Diabetes. J Clin Endocrinol Metab 2022; 107:e3850-e3856. [PMID: 35608823 PMCID: PMC9387705 DOI: 10.1210/clinem/dgac330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The relationships of gastric emptying (GE) with the glycemic response at 120 minutes, glucagon-like peptide-1 (GLP-1), and insulin secretion following a glucose load in type 2 diabetes (T2D) are uncertain. OBJECTIVE We evaluated the relationship of plasma glucose, GLP-1, and insulin secretion with GE of a 75-g oral glucose load in T2D. DESIGN Single-center, cross-sectional, post hoc analysis. SETTING Institutional research center. PARTICIPANTS 43 individuals with T2D age 65.6 ± 1.1 years, hemoglobin A1c 7.2 ± 1.0%, median duration of diabetes 5 years managed by diet and/or metformin. INTERVENTION Participants consumed the glucose drink radiolabeled with 99mTc-phytate colloid following an overnight fast. GE (scintigraphy), plasma glucose, GLP-1, insulin, and C-peptide were measured between 0 and 180 minutes. MAIN OUTCOME MEASURES The relationships of the plasma glucose at 120 minutes, plasma GLP-1, and insulin secretion (calculated by Δinsulin0-30/ Δglucose0-30 and ΔC-peptide0-30/Δglucose0-30) with the rate of GE (scintigraphy) were evaluated. RESULTS There were positive relationships of plasma glucose at 30 minutes (r = 0.56, P < 0.001), 60 minutes (r = 0.57, P < 0.001), and 120 minutes (r = 0.51, P < 0.001) but not at 180 minutes (r = 0.13, P = 0.38), with GE. The 120-minute plasma glucose and GE correlated weakly in multiple regression models adjusting for age, GLP-1, and insulin secretion (P = 0.04 and P = 0.06, respectively). There was no relationship of plasma GLP-1 with GE. Multiple linear regression analysis indicated that there was no significant effect of GE on insulin secretion. CONCLUSION In T2D, while insulin secretion is the dominant determinant of the 120-minute plasma glucose, GE also correlates. Given the relevance to interpreting the results of an oral glucose tolerance test, this relationship should be evaluated further. There appears to be no direct effect of GE on either GLP-1 or insulin secretion.
Collapse
Affiliation(s)
- Ryan J Jalleh
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Tongzhi Wu
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Christopher K Rayner
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Michael Horowitz
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Chinmay S Marathe
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
29
|
Aroda VR, Krause-Steinrauf H, Kazemi EJ, Buse JB, Gulanski BI, Florez HJ, Ahmann AJ, Loveland A, Kuhn A, Lonier JY, Wexler DJ. Clinical and Metabolic Characterization of Adults With Type 2 Diabetes by Age in the Glycemia Reduction Approaches in Diabetes: A Comparative Effectiveness Study (GRADE) Cohort. Diabetes Care 2022; 45:1512-1521. [PMID: 40315175 PMCID: PMC9375440 DOI: 10.2337/dc21-2659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/09/2022] [Indexed: 05/04/2025]
Abstract
OBJECTIVE Differences in type 2 diabetes phenotype by age are described, but it is not known whether these differences are seen in a more uniformly defined adult population at a common early stage of care. We sought to characterize age-related clinical and metabolic characteristics of adults with type 2 diabetes on metformin monotherapy, prior to treatment intensification. RESEARCH DESIGN AND METHODS In the Glycemia Reduction Approaches in Diabetes: A Comparative Effectiveness Study (GRADE), participants were enrolled who had type 2 diabetes duration <10 years, had HbA1c 6.8-8.5%, and were on metformin monotherapy. Participants were randomly assigned to one of four additional glucose-lowering medications. We compared baseline clinical and metabolic characteristics across age categories (<45, 45 to <55, 55 to <65, and ≥65 years) using ANOVA and Pearson χ2 tests. RESULTS Within the GRADE cohort (n = 5,047), we observed significant differences by age, with younger adults having greater racial diversity, fewer medications for common comorbidities, lower prevalence of CVD, higher weight and BMI, and more pronounced hyperglycemia and diabetic dyslipidemia and with metabolic profile indicating lower insulin sensitivity (inverse fasting insulin [1/(fasting insulin)], HOMA of steady-state insulin sensitivity, Matsuda index) and inadequate β-cell response (oral disposition index) (P < 0.05 across age categories). CONCLUSIONS Clinical and metabolic characteristics of type 2 diabetes differ by age within the GRADE cohort. Younger adults exhibit more prominent obesity-related characteristics, including higher obesity levels and lower insulin sensitivity and β-cell compensation. Given the increasing burden of type 2 diabetes and complications, particularly among younger populations, these age-related distinctions may inform risk factor management approaches and treatment priorities. Further study will determine whether age-related differences impact response to therapy.
Collapse
Affiliation(s)
- Vanita R. Aroda
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- MedStar Health Research Institute, Hyattsville, MD
| | - Heidi Krause-Steinrauf
- The Biostatistics Center, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Rockville, MD
| | - Erin J. Kazemi
- The Biostatistics Center, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Rockville, MD
| | - John B. Buse
- University of North Carolina School of Medicine, Chapel Hill, NC
| | - Barbara I. Gulanski
- Endocrinology, Department of Medicine, Yale University School of Medicine, New Haven, CT
| | - Hermes J. Florez
- Department of Medicine, University of Miami, Miami, FL
- Geriatric Research Education and Clinical Center, Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL
- Medical University of South Carolina, Charleston, SC
| | - Andrew J. Ahmann
- Division of Endocrinology, Diabetes & Clinical Nutrition, Oregon Health & Science University, Portland, OR
| | - Amy Loveland
- MedStar Health Research Institute, Hyattsville, MD
| | | | - Jacqueline Y. Lonier
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY
| | - Deborah J. Wexler
- Diabetes Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
30
|
Ke C, Narayan KMV, Chan JCN, Jha P, Shah BR. Pathophysiology, phenotypes and management of type 2 diabetes mellitus in Indian and Chinese populations. Nat Rev Endocrinol 2022; 18:413-432. [PMID: 35508700 PMCID: PMC9067000 DOI: 10.1038/s41574-022-00669-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 02/08/2023]
Abstract
Nearly half of all adults with type 2 diabetes mellitus (T2DM) live in India and China. These populations have an underlying predisposition to deficient insulin secretion, which has a key role in the pathogenesis of T2DM. Indian and Chinese people might be more susceptible to hepatic or skeletal muscle insulin resistance, respectively, than other populations, resulting in specific forms of insulin deficiency. Cluster-based phenotypic analyses demonstrate a higher frequency of severe insulin-deficient diabetes mellitus and younger ages at diagnosis, lower β-cell function, lower insulin resistance and lower BMI among Indian and Chinese people compared with European people. Individuals diagnosed earliest in life have the most aggressive course of disease and the highest risk of complications. These characteristics might contribute to distinctive responses to glucose-lowering medications. Incretin-based agents are particularly effective for lowering glucose levels in these populations; they enhance incretin-augmented insulin secretion and suppress glucagon secretion. Sodium-glucose cotransporter 2 inhibitors might also lower blood levels of glucose especially effectively among Asian people, while α-glucosidase inhibitors are better tolerated in east Asian populations versus other populations. Further research is needed to better characterize and address the pathophysiology and phenotypes of T2DM in Indian and Chinese populations, and to further develop individualized treatment strategies.
Collapse
Affiliation(s)
- Calvin Ke
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Department of Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
- Centre for Global Health Research, Unity Health Toronto, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Asia Diabetes Foundation, Shatin, Hong Kong SAR, China.
| | - K M Venkat Narayan
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Nutrition and Health Sciences Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Asia Diabetes Foundation, Shatin, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Prabhat Jha
- Centre for Global Health Research, Unity Health Toronto, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Baiju R Shah
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Vazquez Rocha L, Macdonald I, Alssema M, Færch K. The Use and Effectiveness of Selected Alternative Markers for Insulin Sensitivity and Secretion Compared with Gold Standard Markers in Dietary Intervention Studies in Individuals without Diabetes: Results of a Systematic Review. Nutrients 2022; 14:nu14102036. [PMID: 35631177 PMCID: PMC9143618 DOI: 10.3390/nu14102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 12/10/2022] Open
Abstract
Background: The gold-standard techniques for measuring insulin sensitivity and secretion are well established. However, they may be perceived as invasive and expensive for use in dietary intervention studies. Thus, surrogate markers have been proposed as alternative markers for insulin sensitivity and secretion. This systematic review aimed to identify markers of insulin sensitivity and secretion in response to dietary intervention and assess their suitability as surrogates for the gold-standard methodology. Methods: Three databases, PubMed, Scopus, and Cochrane were searched, intervention studies and randomised controlled trials reporting data on dietary intake, a gold standard of analysis of insulin sensitivity (either euglycaemic-hyperinsulinaemic clamp or intravenous glucose tolerance test and secretion (acute insulin response to glucose), as well as surrogate markers for insulin sensitivity (either fasting insulin, area under the curve oral glucose tolerance tests and HOMA-IR) and insulin secretion (disposition index), were selected. Results: We identified thirty-five studies that were eligible for inclusion. We found insufficient evidence to predict insulin sensitivity and secretion with surrogate markers when compared to gold standards in nutritional intervention studies. Conclusions: Future research is needed to investigate if surrogate measures of insulin sensitivity and secretion can be repeatable and reproducible in the same way as gold standards.
Collapse
Affiliation(s)
- Lucia Vazquez Rocha
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
- Correspondence:
| | - Ian Macdonald
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
- Nestle Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Marjan Alssema
- Unilever Research and Development, 3133 AT Vlaardingen, The Netherlands;
| | - Kristine Færch
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark;
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
32
|
Halperin F, Mezza T, Li P, Shirakawa J, Kulkarni RN, Goldfine AB. Insulin regulates arginine-stimulated insulin secretion in humans. Metabolism 2022; 128:155117. [PMID: 34999111 PMCID: PMC8821403 DOI: 10.1016/j.metabol.2021.155117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/16/2021] [Accepted: 12/26/2021] [Indexed: 11/30/2022]
Abstract
AIMS Insulin potentiates glucose-stimulated insulin secretion. These effects are attenuated in beta cell-specific insulin receptor knockout mice and insulin resistant humans. This investigation examines whether short duration insulin exposure regulates beta cell responsiveness to arginine, a non-glucose secretagogue, in healthy humans. MATERIALS AND METHODS Arginine-stimulated insulin secretion was studied in 10 healthy humans. In each subject arginine was administered as a bolus followed by continuous infusion on two occasions one month apart, after sham/saline or hyperinsulinemic-isoglycemic clamp, respectively providing low and high insulin pre-exposure conditions. Arginine-stimulated insulin secretion was measured by C-peptide deconvolution, and by a selective immunogenic (DAKO) assay for direct measurement of endogenous but not exogenous insulin. RESULTS Pre-exposure to exogenous insulin augmented arginine-stimulated insulin secretion. The effect was seen acutely following arginine bolus (endogenous DAKO insulin incremental AUC240-255min 311.6 ± 208.1 (post-insulin exposure) versus 120.6 ± 42.2 μU/ml•min (sham/saline) (t-test P = 0.021)), as well as in response to continuous arginine infusion (DAKO insulin incremental AUC260-290min 1095.3 ± 592.1 (sham/saline) versus 564.8 ± 207.1 μU/ml•min (high insulin)(P = 0.009)). Findings were similar when beta cell response was assessed using C-peptide, insulin secretion rates by deconvolution, and the C-peptide to glucose ratio. CONCLUSIONS We demonstrate a physiologic role of insulin in regulation of the beta cell secretory response to arginine.
Collapse
Affiliation(s)
- Florencia Halperin
- Joslin Diabetes Center, Boston, MA, United States of America; Brigham and Women's Hospital, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Teresa Mezza
- Joslin Diabetes Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCSS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Ping Li
- Joslin Diabetes Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America; Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, PR China
| | - Jun Shirakawa
- Joslin Diabetes Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America; Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Rohit N Kulkarni
- Joslin Diabetes Center, Boston, MA, United States of America; Brigham and Women's Hospital, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| | - Allison B Goldfine
- Joslin Diabetes Center, Boston, MA, United States of America; Brigham and Women's Hospital, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
33
|
Zhou X, Ying C, Hu B, Zhang Y, Gan T, Zhu Y, Wang N, Li A, Song Y. Receptor for advanced glycation end products aggravates cognitive deficits in type 2 diabetes through binding of C-terminal AAs 2-5 to mitogen-activated protein kinase kinase 3 (MKK3) and facilitation of MEKK3-MKK3-p38 module assembly. Aging Cell 2022; 21:e13543. [PMID: 35080104 PMCID: PMC8844116 DOI: 10.1111/acel.13543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/28/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022] Open
Abstract
In this study, we explored the precise mechanisms underlying the receptor for advanced glycation end products (RAGE)‐mediated neuronal loss and behavioral dysfunction induced by hyperglycemia. We used immunoprecipitation (IP) and GST pull‐down assays to assess the interaction between RAGE and mitogen‐activated protein kinase kinase 3 (MKK3). Then, we investigated the effect of specific mutation of RAGE on plasticity at hippocampal synapses and behavioral deficits in db/db mice through electrophysiological recordings, morphological assays, and behavioral tests. We discovered that RAGE binds MKK3 and that this binding is required for assembly of the MEKK3‐MKK3‐p38 signaling module. Mechanistically, we found that activation of p38 mitogen‐activated protein kinase (MAPK)/NF‐κB signaling depends on mediation of the RAGE‐MKK3 interaction by C‐terminal RAGE (ctRAGE) amino acids (AAs) 2‐5. We found that ctRAGE R2A‐K3A‐R4A‐Q5A mutation suppressed neuronal damage, improved synaptic plasticity, and alleviated behavioral deficits in diabetic mice by disrupting the RAGE‐MKK3 conjugation. High glucose induces direct binding of RAGE and MKK3 via ctRAGE AAs 2‐5, which leads to assembly of the MEKK3‐MKK3‐p38 signaling module and subsequent activation of the p38MAPK/NF‐κB pathway, and ultimately results in diabetic encephalopathy (DE).
Collapse
Affiliation(s)
- Xiao‐Yan Zhou
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
- Department of Genetics, Xuzhou Engineering Research Center of Medical Genetics and Transformation Xuzhou Medical University Xuzhou China
| | - Chang‐Jiang Ying
- Department of Endocrinology Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Bin Hu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Yu‐Sheng Zhang
- The Graduate School Xuzhou Medical University Xuzhou China
| | - Tian Gan
- The Graduate School Xuzhou Medical University Xuzhou China
| | - Yan‐Dong Zhu
- The Graduate School Xuzhou Medical University Xuzhou China
| | - Nan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - An‐An Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Yuan‐Jian Song
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
- Department of Genetics, Xuzhou Engineering Research Center of Medical Genetics and Transformation Xuzhou Medical University Xuzhou China
| |
Collapse
|
34
|
Gupta AP, Chakraborty PP, Halder R, Sahoo A, Roy K. Post-usual meal C-peptide as a reliable and practical alternative to C-peptide following glucagon or standardized mixed-meal for β-cell reserve: a comparative study between three stimulatory methods in different types of diabetes. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-00987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
35
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
36
|
Zhao MM, Lu J, Li S, Wang H, Cao X, Li Q, Shi TT, Matsunaga K, Chen C, Huang H, Izumi T, Yang JK. Berberine is an insulin secretagogue targeting the KCNH6 potassium channel. Nat Commun 2021; 12:5616. [PMID: 34556670 PMCID: PMC8460738 DOI: 10.1038/s41467-021-25952-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
Coptis chinensis is an ancient Chinese herb treating diabetes in China for thousands of years. However, its underlying mechanism remains poorly understood. Here, we report the effects of its main active component, berberine (BBR), on stimulating insulin secretion. In mice with hyperglycemia induced by a high-fat diet, BBR significantly increases insulin secretion and reduced blood glucose levels. However, in mice with hyperglycemia induced by global or pancreatic islet β-cell-specific Kcnh6 knockout, BBR does not exert beneficial effects. BBR directly binds KCNH6 potassium channels, significantly accelerates channel closure, and subsequently reduces KCNH6 currents. Consequently, blocking KCNH6 currents prolongs high glucose-dependent cell membrane depolarization and increases insulin secretion. Finally, to assess the effect of BBR on insulin secretion in humans, a randomized, double-blind, placebo-controlled, two-period crossover, single-dose, phase 1 clinical trial (NCT03972215) including 15 healthy men receiving a 160-min hyperglycemic clamp experiment is performed. The pre-specified primary outcomes are assessment of the differences of serum insulin and C-peptide levels between BBR and placebo treatment groups during the hyperglycemic clamp study. BBR significantly promotes insulin secretion under hyperglycemic state comparing with placebo treatment, while does not affect basal insulin secretion in humans. All subjects tolerate BBR well, and we observe no side effects in the 14-day follow up period. In this study, we identify BBR as a glucose-dependent insulin secretagogue for treating diabetes without causing hypoglycemia that targets KCNH6 channels.
Collapse
Affiliation(s)
- Miao-Miao Zhao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Jing Lu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Sen Li
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Hao Wang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Xi Cao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Qi Li
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Ting-Ting Shi
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Haixia Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China.
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China.
| |
Collapse
|
37
|
Sam S, Edelstein SL, Arslanian SA, Barengolts E, Buchanan TA, Caprio S, Ehrmann DA, Hannon TS, Tjaden AH, Kahn SE, Mather KJ, Tripputi M, Utzschneider KM, Xiang AH, Nadeau KJ. Baseline Predictors of Glycemic Worsening in Youth and Adults With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes in the Restoring Insulin Secretion (RISE) Study. Diabetes Care 2021; 44:1938-1947. [PMID: 34131048 PMCID: PMC8740917 DOI: 10.2337/dc21-0027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/31/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To identify predictors of glycemic worsening among youth and adults with impaired glucose tolerance (IGT) or recently diagnosed type 2 diabetes in the Restoring Insulin Secretion (RISE) Study. RESEARCH DESIGN AND METHODS A total of 91 youth (10-19 years) were randomized 1:1 to 12 months of metformin (MET) or 3 months of glargine, followed by 9 months of metformin (G-MET), and 267 adults were randomized to MET, G-MET, liraglutide plus MET (LIRA+MET), or placebo for 12 months. All participants underwent a baseline hyperglycemic clamp and a 3-h oral glucose tolerance test (OGTT) at baseline, month 6, month 12, and off treatment at month 15 and month 21. Cox models identified baseline predictors of glycemic worsening (HbA1c increase ≥0.5% from baseline). RESULTS Glycemic worsening occurred in 17.8% of youth versus 7.5% of adults at month 12 (P = 0.008) and in 36% of youth versus 20% of adults at month 21 (P = 0.002). In youth, glycemic worsening did not differ by treatment. In adults, month 12 glycemic worsening was less on LIRA+MET versus placebo (hazard ratio 0.21, 95% CI 0.05-0.96, P = 0.044). In both age-groups, lower baseline clamp-derived β-cell responses predicted month 12 and month 21 glycemic worsening (P < 0.01). Lower baseline OGTT-derived β-cell responses predicted month 21 worsening (P < 0.05). In youth, higher baseline HbA1c and 2-h glucose predicted month 12 and month 21 glycemic worsening, and higher fasting glucose predicted month 21 worsening (P < 0.05). In adults, lower clamp- and OGTT-derived insulin sensitivity predicted month 12 and month 21 worsening (P < 0.05). CONCLUSIONS Glycemic worsening was more common among youth than adults with IGT or recently diagnosed type 2 diabetes, predicted by lower baseline β-cell responses in both groups, hyperglycemia in youth, and insulin resistance in adults.
Collapse
Affiliation(s)
| | | | - Silva A. Arslanian
- University of Pittsburgh Medical Center-Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | | | - Thomas A. Buchanan
- University of Southern California Keck School of Medicine, Los Angeles, CA
| | | | | | | | | | - Steven E. Kahn
- Veterans Affairs Puget Sound Health Care System and University of Washington, Seattle, WA
| | | | - Mark Tripputi
- George Washington University Biostatistics Center, Washington, DC
| | | | - Anny H. Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA
| | - Kristen J. Nadeau
- University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, CO
| |
Collapse
|
38
|
Ehrlich R, Hendler-Neumark A, Wulf V, Amir D, Bisker G. Optical Nanosensors for Real-Time Feedback on Insulin Secretion by β-Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101660. [PMID: 34197026 DOI: 10.1002/smll.202101660] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Quantification of insulin is essential for diabetes research in general, and for the study of pancreatic β-cell function in particular. Herein, fluorescent single-walled carbon nanotubes (SWCNT) are used for the recognition and real-time quantification of insulin. Two approaches for rendering the SWCNT sensors for insulin are compared, using surface functionalization with either a natural insulin aptamer with known affinity to insulin, or a synthetic lipid-poly(ethylene glycol) (PEG) (C16 -PEG(2000Da)-Ceramide), both of which show a modulation of the emitted fluorescence in response to insulin. Although the PEGylated-lipid has no prior affinity to insulin, the response of C16 -PEG(2000Da)-Ceramide-SWCNTs to insulin is more stable and reproducible compared to the insulin aptamer-SWCNTs. The SWCNT sensors successfully detect insulin secreted by β-cells within the complex environment of the conditioned media. The insulin is quantified by comparing the SWCNTs fluorescence response to a standard calibration curve, and the results are found to be in agreement with an enzyme-linked immunosorbent assay. This novel analytical tool for real time quantification of insulin secreted by β-cells provides new opportunities for rapid assessment of β-cell function, with the ability to push forward many aspects of diabetes research.
Collapse
Affiliation(s)
- Roni Ehrlich
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Verena Wulf
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Dean Amir
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Center for Nanoscience and Nanotechnology, Center for Light Matter Interaction, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
39
|
Xiang AH, Martinez MP, Trigo E, Utzschneider KM, Cree-Green M, Arslanian SA, Ehrmann DA, Caprio S, Mohamed PHIH, Hwang DH, Katkhouda N, Nayak KS, Buchanan TA. Liver Fat Reduction After Gastric Banding and Associations with Changes in Insulin Sensitivity and β-Cell Function. Obesity (Silver Spring) 2021; 29:1155-1163. [PMID: 34038037 PMCID: PMC8222142 DOI: 10.1002/oby.23174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The aim of this study was to examine the relationship between changes in liver fat and changes in insulin sensitivity and β-cell function 2 years after gastric banding surgery. METHODS Data included 23 adults with the surgery who had prediabetes or type 2 diabetes for less than 1 year and BMI 30 to 40 kg/m2 at baseline. Body adiposity measures including liver fat content (LFC), insulin sensitivity (M/I), and β-cell responses (acute, steady-state, and arginine-stimulated maximum C-peptide) were assessed at baseline and 2 years after surgery. Regression models were used to assess associations adjusted for age and sex. RESULTS Two years after surgery, all measures of body adiposity, LFC, fasting and 2-hour glucose, and hemoglobin A1c significantly decreased; M/I significantly increased; and β-cell responses adjusted for M/I did not change significantly. Among adiposity measures, reduction in LFC had the strongest association with M/I increase (r = -0.61, P = 0.003). Among β-cell measures, change in LFC was associated with change in acute C-peptide response to arginine at maximal glycemic potentiation adjusted for M/I (r = 0.66, P = 0.007). Significant reductions in glycemic measures and increase in M/I were observed in individuals with LFC loss >2.5%. CONCLUSIONS Reduction in LFC after gastric banding surgery appears to be an important factor associated with long-term improvements in insulin sensitivity and glycemic profiles in adults with obesity and prediabetes or early type 2 diabetes.
Collapse
Affiliation(s)
- Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Mayra P Martinez
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Enrique Trigo
- Division of Endocrinology and Diabetes, Department of Medicine and Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kristina M Utzschneider
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and the University of Washington, Seattle, Washington, USA
| | - Melanie Cree-Green
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz, Aurora, Colorado, USA
| | - Silva A Arslanian
- School of Medicine, UPMC Children's Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David A Ehrmann
- Section of Endocrinology, Diabetes and Metabolism, the University of Chicago, Chicago, Illinois, USA
| | - Sonia Caprio
- Department of Pediatric/Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Passant H I H Mohamed
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Darryl H Hwang
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Namir Katkhouda
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Krishna S Nayak
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Thomas A Buchanan
- Division of Endocrinology and Diabetes, Department of Medicine and Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
40
|
Kiyohara T, Matsuo R, Hata J, Nakamura K, Wakisaka Y, Kamouchi M, Kitazono T, Ago T. β-Cell Function and Clinical Outcome in Nondiabetic Patients With Acute Ischemic Stroke. Stroke 2021; 52:2621-2628. [PMID: 33985365 DOI: 10.1161/strokeaha.120.031392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Takuya Kiyohara
- Department of Medicine and Clinical Science (T. Kiyohara, R.M., J.H., K.N., Y.W., T. Kitazono, T.A.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Cerebrovascular Disease and Neurology, Hakujyuji Hospital, Fukuoka, Japan (T. Kiyohara)
| | - Ryu Matsuo
- Department of Medicine and Clinical Science (T. Kiyohara, R.M., J.H., K.N., Y.W., T. Kitazono, T.A.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Health Care Administration and Management (R.M., M.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Center for Cohort Studies (R.M., M.K., T. Kitazono), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Hata
- Department of Medicine and Clinical Science (T. Kiyohara, R.M., J.H., K.N., Y.W., T. Kitazono, T.A.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Epidemiology and Public Health (J.H.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kuniyuki Nakamura
- Department of Medicine and Clinical Science (T. Kiyohara, R.M., J.H., K.N., Y.W., T. Kitazono, T.A.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science (T. Kiyohara, R.M., J.H., K.N., Y.W., T. Kitazono, T.A.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Kamouchi
- Department of Health Care Administration and Management (R.M., M.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Center for Cohort Studies (R.M., M.K., T. Kitazono), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science (T. Kiyohara, R.M., J.H., K.N., Y.W., T. Kitazono, T.A.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Center for Cohort Studies (R.M., M.K., T. Kitazono), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science (T. Kiyohara, R.M., J.H., K.N., Y.W., T. Kitazono, T.A.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
41
|
Sharma VR, Matta ST, Haymond MW, Chung ST. Measuring Insulin Resistance in Humans. Horm Res Paediatr 2021; 93:577-588. [PMID: 33934092 PMCID: PMC8162778 DOI: 10.1159/000515462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/25/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Insulin resistance is a pathophysiological condition associated with diabetes and cardiometabolic diseases that is characterized by a diminished tissue response to insulin action. Our understanding of this complex phenomenon and its role in the pathogenesis of cardiometabolic diseases is rooted in the discovery of insulin, its isolation and purification, and the challenges encountered with its therapeutic use. SUMMARY In this historical perspective, we explore the evolution of the term "insulin resistance" and demonstrate how advances in insulin and glucose analytics contributed to the recognition and validation of this metabolic entity. We identify primary discoveries which were pivotal in expanding our knowledge of insulin resistance, the challenges in measurement and interpretation, contemporary techniques, and areas of future exploration. Key Message: Measurements of insulin resistance are important tools for defining and treating cardiometabolic diseases. Accurate quantification of this pathophysiological entity requires careful consideration of the assumptions and pitfalls of the methodological techniques and the historical and clinical context when interpreting and applying the results.
Collapse
Affiliation(s)
- Vandhna R. Sharma
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Samantha T. Matta
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Stephanie T. Chung
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA,*Stephanie T. Chung,
| |
Collapse
|
42
|
Brooks-Worrell BM, Tjaden AH, Edelstein SL, Palomino B, Utzschneider KM, Arslanian S, Mather KJ, Buchanan TA, Nadeau KJ, Atkinson K, Barengolts E, Kahn SE, Palmer JP. Islet Autoimmunity in Adults With Impaired Glucose Tolerance and Recently Diagnosed, Treatment Naïve Type 2 Diabetes in the Restoring Insulin SEcretion (RISE) Study. Front Immunol 2021; 12:640251. [PMID: 33981301 PMCID: PMC8108986 DOI: 10.3389/fimmu.2021.640251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 12/26/2022] Open
Abstract
The presence of islet autoantibodies and islet reactive T cells (T+) in adults with established type 2 diabetes (T2D) have been shown to identify those patients with more severe β-cell dysfunction. However, at what stage in the progression toward clinical T2D does islet autoimmunity emerge as an important component influencing β-cell dysfunction? In this ancillary study to the Restoring Insulin SEcretion (RISE) Study, we investigated the prevalence of and association with β-cell dysfunction of T+ and autoantibodies to the 65 kDa glutamic acid decarboxylase antigen (GADA) in obese pre-diabetes adults with impaired glucose tolerance (IGT) and recently diagnosed treatment naïve (Ndx) T2D. We further investigated the effect of 12 months of RISE interventions (metformin or liraglutide plus metformin, or with 3 months of insulin glargine followed by 9 months of metformin or placebo) on islet autoimmune reactivity. We observed GADA(+) in 1.6% of NdxT2D and 4.6% of IGT at baseline, and in 1.6% of NdxT2D and 5.3% of IGT at 12 months, but no significant associations between GADA(+) and β-cell function. T(+) was observed in 50% of NdxT2D and 60.4% of IGT at baseline, and in 68.4% of NdxT2D and 83.9% of IGT at 12 months. T(+) NdxT2D were observed to have significantly higher fasting glucose (p = 0.004), and 2 h glucose (p = 0.0032), but significantly lower steady state C-peptide (sscpep, p = 0.007) compared to T(-) NdxT2D. T(+) IGT participants demonstrated lower but not significant (p = 0.025) acute (first phase) C-peptide response to glucose (ACPRg) compared to T(-) IGT. With metformin treatment, T(+) participants were observed to have a significantly lower Hemoglobin A1c (HbA1c, p = 0.002) and fasting C-peptide (p = 0.002) compared to T(-), whereas T(+) treated with liraglutide + metformin had significantly lower sscpep (p = 0.010) compared to T(-) participants. In the placebo group, T(+) participants demonstrated significantly lower ACPRg (p = 0.001) compared to T(-) participants. In summary, T(+) were found in a large percentage of obese pre-diabetes adults with IGT and in recently diagnosed T2D. Moreover, T(+) were significantly correlated with treatment effects and β-cell dysfunction. Our results demonstrate that T(+) are an important component in T2D.
Collapse
Affiliation(s)
- Barbara M Brooks-Worrell
- Department of Medicine, University of Washington, Seattle, WA, United States.,Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Ashley H Tjaden
- Biostatistics Center, Milken School of Public Health, George Washington University Biostatistics Center, Rockville, MD, United States
| | - Sharon L Edelstein
- Biostatistics Center, Milken School of Public Health, George Washington University Biostatistics Center, Rockville, MD, United States
| | - Brenda Palomino
- Seattle Institute for Biochemical and Clinical Research, Seattle, WA, United States
| | - Kristina M Utzschneider
- Department of Medicine, University of Washington, Seattle, WA, United States.,Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Silva Arslanian
- Department of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Kieren J Mather
- Indiana University School of Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, United States
| | - Thomas A Buchanan
- University of Southern California Keck School of Medicine/Kaiser Permanente Southern California, Los Angeles, CA, United States
| | - Kristen J Nadeau
- University of Colorado Anschutz Medical Campus/Children's Hospital Colorado, Aurora, CO, United States
| | - Karen Atkinson
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Elena Barengolts
- University of Chicago Clinical Research Center and Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Steven E Kahn
- Department of Medicine, University of Washington, Seattle, WA, United States.,Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Jerry P Palmer
- Department of Medicine, University of Washington, Seattle, WA, United States.,Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | | |
Collapse
|
43
|
Lyngbaek MPP, Legaard GE, Bennetsen SL, Feineis CS, Rasmussen V, Moegelberg N, Brinkløv CF, Nielsen AB, Kofoed KS, Lauridsen CA, Ewertsen C, Poulsen HE, Christensen R, Van Hall G, Karstoft K, Solomon TPJ, Ellingsgaard H, Almdal TP, Pedersen BK, Ried-Larsen M. The effects of different doses of exercise on pancreatic β-cell function in patients with newly diagnosed type 2 diabetes: study protocol for and rationale behind the "DOSE-EX" multi-arm parallel-group randomised clinical trial. Trials 2021; 22:244. [PMID: 33794975 PMCID: PMC8017660 DOI: 10.1186/s13063-021-05207-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/18/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Lifestyle intervention, i.e. diet and physical activity, forms the basis for care of type 2 diabetes (T2D). The current physical activity recommendation for T2D is aerobic training for 150 min/week of moderate to vigorous intensity, supplemented with resistance training 2-3 days/week, with no more than two consecutive days without physical activity. The rationale for the recommendations is based on studies showing a reduction in glycated haemoglobin (HbA1c). This reduction is supposed to be caused by increased insulin sensitivity in muscle and adipose tissue, whereas knowledge about effects on abnormalities in the liver and pancreas are scarce, with the majority of evidence stemming from in vitro and animal studies. The aim of this study is to investigate the role of the volume of exercise training as an adjunct to dietary therapy in order to improve the pancreatic β-cell function in T2D patients less than 7 years from diagnosis. The objective of this protocol for the DOSE-EX trial is to describe the scientific rationale in detail and to provide explicit information about study procedures and planned analyses. METHODS/DESIGN In a parallel-group, 4-arm assessor-blinded randomised clinical trial, 80 patients with T2D will be randomly allocated (1:1:1:1, stratified by sex) to 16 weeks in either of the following groups: (1) no intervention (CON), (2) dietary intervention (DCON), (3) dietary intervention and supervised moderate volume exercise (MED), or (4) dietary intervention and supervised high volume exercise (HED). Enrolment was initiated December 15th, 2018, and will continue until N = 80 or December 1st, 2021. Primary outcome is pancreatic beta-cell function assessed as change in late-phase disposition index (DI) from baseline to follow-up assessed by hyperglycaemic clamp. Secondary outcomes include measures of cardiometabolic risk factors and the effect on subsequent complications related to T2D. The study was approved by The Scientific Ethical Committee at the Capital Region of Denmark (H-18038298). TRIAL REGISTRATION The Effects of Different Doses of Exercise on Pancreatic β-cell Function in Patients With Newly Diagnosed Type 2 Diabetes (DOSE-EX), NCT03769883, registered 10 December 2018 https://clinicaltrials.gov/ct2/show/NCT03769883 ). Any modification to the protocol, study design, and changes in written participant information will be approved by The Scientific Ethical Committee at the Capital Region of Denmark before effectuation. DISCUSSION The data from this study will add knowledge to which volume of exercise training in combination with a dietary intervention is needed to improve β-cell function in T2D. Secondarily, our results will elucidate mechanisms of physical activity mitigating the development of micro- and macrovascular complications correlated with T2D.
Collapse
Affiliation(s)
- Mark P. P. Lyngbaek
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Grit E. Legaard
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sebastian L. Bennetsen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Camilla S. Feineis
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Villads Rasmussen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Nana Moegelberg
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Cecilie F. Brinkløv
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anette B. Nielsen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Katja S. Kofoed
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Carsten A. Lauridsen
- Department of Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Bachelor’s Degree Programme in Radiography, Copenhagen University College, Copenhagen, Denmark
| | - Caroline Ewertsen
- Department of Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Henrik E. Poulsen
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Robin Christensen
- Musculoskeletal Statistics Unit, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Research, Research Unit of Rheumatology, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Gerrit Van Hall
- Biomedical Sciences, Faculty of Health & Medical Science, University of Copenhagen & Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Kristian Karstoft
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Helga Ellingsgaard
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Thomas P. Almdal
- Department of Endocrinology PE, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bente K. Pedersen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Ried-Larsen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
44
|
Mokhlesi B, Tjaden AH, Temple KA, Edelstein SL, Sam S, Nadeau KJ, Hannon TS, Manchanda S, Mather KJ, Kahn SE, Ehrmann DA, Van Cauter E. Obstructive Sleep Apnea, Glucose Tolerance, and β-Cell Function in Adults With Prediabetes or Untreated Type 2 Diabetes in the Restoring Insulin Secretion (RISE) Study. Diabetes Care 2021; 44:993-1001. [PMID: 33547205 PMCID: PMC7985427 DOI: 10.2337/dc20-2127] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/12/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Obstructive sleep apnea (OSA) is associated with insulin resistance and has been described as a risk factor for type 2 diabetes. Whether OSA adversely impacts pancreatic islet β-cell function remains unclear. We aimed to investigate the association of OSA and short sleep duration with β-cell function in overweight/obese adults with prediabetes or recently diagnosed, treatment-naive type 2 diabetes. RESEARCH DESIGN AND METHODS Two hundred twenty-one adults (57.5% men, age 54.5 ± 8.7 years, BMI 35.1 ± 5.5 kg/m2) completed 1 week of wrist actigraphy and 1 night of polysomnography before undergoing a 3-h oral glucose tolerance test (OGTT) and a two-step hyperglycemic clamp. Associations of measures of OSA and actigraphy-derived sleep duration with HbA1c, OGTT-derived outcomes, and clamp-derived outcomes were evaluated with adjusted regression models. RESULTS Mean ± SD objective sleep duration by actigraphy was 6.6 ± 1.0 h/night. OSA, defined as an apnea-hypopnea index (AHI) of five or more events per hour, was present in 89% of the participants (20% mild, 28% moderate, 41% severe). Higher AHI was associated with higher HbA1c (P = 0.007). However, OSA severity, measured either by AHI as a continuous variable or by categories of OSA severity, and sleep duration (continuous or <6 vs. ≥6 h) were not associated with fasting glucose, 2-h glucose, insulin sensitivity, or β-cell responses. CONCLUSIONS In this baseline cross-sectional analysis of the RISE clinical trial of adults with prediabetes or recently diagnosed, untreated type 2 diabetes, the prevalence of OSA was high. Although some measures of OSA severity were associated with HbA1c, OSA severity and sleep duration were not associated with measures of insulin sensitivity or β-cell responses.
Collapse
Affiliation(s)
| | - Ashley H Tjaden
- George Washington University Biostatistics Center (RISE Coordinating Center), Rockville, MD
| | | | - Sharon L Edelstein
- George Washington University Biostatistics Center (RISE Coordinating Center), Rockville, MD
| | | | - Kristen J Nadeau
- University of Colorado Anschutz Medical Campus/Children's Hospital Colorado, Denver, CO
| | | | | | | | - Steven E Kahn
- VA Puget Sound Health Care System and University of Washington, Seattle, WA
| | | | | | | |
Collapse
|
45
|
Liu X, Liu Y, Liu H, Li H, Yang J, Hu P, Xiao X, Liu D. Dipeptidyl-Peptidase-IV Inhibitors, Imigliptin and Alogliptin, Improve Beta-Cell Function in Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:694390. [PMID: 34616361 PMCID: PMC8488395 DOI: 10.3389/fendo.2021.694390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTS Imigliptin is a novel dipeptidyl peptidase-4 inhibitor. In the present study, we aimed to evaluate the effects of imigliptin and alogliptin on insulin resistance and beta-cell function in Chinese patients with type-2 diabetes mellitus (T2DM). METHODS A total of 37 Chinese T2DM patients were randomized to receive 25 mg imigliptin, 50 mg imigliptin, placebo, and 25 mg alogliptin (positive drug) for 13 days. Oral glucose tolerance tests were conducted at baseline and on day 13, followed by the oral minimal model (OMM). RESULTS Imigliptin or alogliptin treatment, compared with their baseline or placebo, was associated with higher beta-cell function parameters (φs and φtot) and lower glucose area under the curve (AUC) and postprandial glucose levels. The changes in the AUC for the glucose appearance rate between 0 and 120 min also showed a decrease in imigliptin or alogliptin groups. However, the insulin resistance parameter, fasting glucose, was not changed. For the homeostatic model assessment (HOMA-β and HOMA-IR) parameters or secretory units of islets in transplantation index (SUIT), no statistically significant changes were found both within treatments and between treatments. CONCLUSIONS After 13 days of treatment, imigliptin and alogliptin could decrease glycemic levels by improving beta-cell function. By comparing OMM with HOMA or SUIT results, glucose stimulation might be more sensitive for detecting changes in beta-cell function.
Collapse
Affiliation(s)
- Xu Liu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | - Yang Liu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital and Chinese Academy of Medical Sciences, Beijing, China
- Department of Pharmacology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Hongzhong Liu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital and Chinese Academy of Medical Sciences, Beijing, China
| | - Haiyan Li
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Jianhong Yang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Pei Hu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital and Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital and Chinese Academy of Medical Sciences, Beijing, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| |
Collapse
|
46
|
Exosome-Mediated Differentiation of Mouse Embryonic Fibroblasts and Exocrine Cells into β-Like Cells and the Identification of Key miRNAs for Differentiation. Biomedicines 2020; 8:biomedicines8110485. [PMID: 33182285 PMCID: PMC7695333 DOI: 10.3390/biomedicines8110485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023] Open
Abstract
Diabetes is a concerning health malady worldwide. Islet or pancreas transplantation is the only long-term treatment available; however, the scarcity of transplantable tissues hampers this approach. Therefore, new cell sources and differentiation approaches are required. Apart from the genetic- and small molecule-based approaches, exosomes could induce cellular differentiation by means of their cargo, including miRNA. We developed a chemical-based protocol to differentiate mouse embryonic fibroblasts (MEFs) into β-like cells and employed mouse insulinoma (MIN6)-derived exosomes in the presence or absence of specific small molecules to encourage their differentiation into β-like cells. The differentiated β-like cells were functional and expressed pancreatic genes such as Pdx1, Nkx6.1, and insulin 1 and 2. We found that the exosome plus small molecule combination differentiated the MEFs most efficiently. Using miRNA-sequencing, we identified miR-127 and miR-709, and found that individually and in combination, the miRNAs differentiated MEFs into β-like cells similar to the exosome treatment. We also confirmed that exocrine cells can be differentiated into β-like cells by exosomes and the exosome-identified miRNAs. A new differentiation approach based on the use of exosome-identified miRNAs could help people afflicted with diabetes
Collapse
|
47
|
Johansen MY, Karstoft K, MacDonald CS, Hansen KB, Ellingsgaard H, Hartmann B, Wewer Albrechtsen NJ, Vaag AA, Holst JJ, Pedersen BK, Ried-Larsen M. Effects of an intensive lifestyle intervention on the underlying mechanisms of improved glycaemic control in individuals with type 2 diabetes: a secondary analysis of a randomised clinical trial. Diabetologia 2020; 63:2410-2422. [PMID: 32816096 DOI: 10.1007/s00125-020-05249-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/03/2020] [Indexed: 12/23/2022]
Abstract
AIMS/HYPOTHESIS The aim was to investigate whether an intensive lifestyle intervention, with high volumes of exercise, improves beta cell function and to explore the role of low-grade inflammation and body weight. METHODS This was a randomised, assessor-blinded, controlled trial. Ninety-eight individuals with type 2 diabetes (duration <10 years), BMI of 25-40 kg/m2, no use of insulin and taking fewer than three glucose-lowering medications were randomised (2:1) to either the standard care plus intensive lifestyle group or the standard care alone group. Standard care consisted of individual guidance on disease management, lifestyle advice and blinded regulation of medication following a pre-specified algorithm. The intensive lifestyle intervention consisted of aerobic exercise sessions that took place 5-6 times per week, combined with resistance exercise sessions 2-3 times per week, with a concomitant dietary intervention aiming for a BMI of 25 kg/m2. In this secondary analysis beta cell function was assessed from the 2 h OGTT-derived disposition index, which is defined as the product of the Matsuda and the insulinogenic indices. RESULTS At baseline, individuals were 54.8 years (SD 8.9), 47% women, type 2 diabetes duration 5 years (IQR 3-8) and HbA1c was 49.3 mmol/mol (SD 9.2); 6.7% (SD 0.8). The intensive lifestyle group showed 40% greater improvement in the disposition index compared with the standard care group (ratio of geometric mean change [RGM] 1.40 [95% CI 1.01, 1.94]) from baseline to 12 months' follow-up. Plasma concentration of IL-1 receptor antagonist (IL-1ra) decreased 30% more in the intensive lifestyle group compared with the standard care group (RGM 0.70 [95% CI 0.58, 0.85]). Statistical single mediation analysis estimated that the intervention effect on the change in IL-1ra and the change in body weight explained to a similar extent (59%) the variance in the intervention effect on the disposition index. CONCLUSIONS/INTERPRETATION Our findings show that incorporating an intensive lifestyle intervention, with high volumes of exercise, in individuals with type 2 diabetes has the potential to improve beta cell function, associated with a decrease in low-grade inflammation and/or body weight. TRIAL REGISTRATION ClinicalTrials.gov NCT02417012 Graphical abstract.
Collapse
Affiliation(s)
- Mette Y Johansen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | - Kristian Karstoft
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Christopher S MacDonald
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
- CopenRehab, University of Copenhagen, Copenhagen, Denmark
| | - Katrine B Hansen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Helga Ellingsgaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Allan A Vaag
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente K Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Mathias Ried-Larsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| |
Collapse
|
48
|
Marrano N, Biondi G, Cignarelli A, Perrini S, Laviola L, Giorgino F, Natalicchio A. Functional loss of pancreatic islets in type 2 diabetes: How can we halt it? Metabolism 2020; 110:154304. [PMID: 32599081 DOI: 10.1016/j.metabol.2020.154304] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/14/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
The loss of beta-cell functional mass is a necessary and early condition in the development of type 2 diabetes (T2D). In T2D patients, beta-cell function is already reduced by about 50% at diagnosis and further declines thereafter. Beta-cell mass is also reduced in subjects with T2D, and islets from diabetic donors are smaller compared to non-diabetic donors. Thus, beta-cell regeneration and/or preservation of the functional islet integrity should be highly considered for T2D treatment and possibly cure. To date, the available anti-diabetes drugs have been developed as "symptomatic" medications since they act to primarily reduce elevated blood glucose levels. However, a truly efficient anti-diabetes medication, capable to prevent the onset and progression of T2D, should stop beta-cell loss and/or promote the restoration of fully functional beta-cell mass, independently of reducing hyperglycemia and ameliorating glucotoxicity on the pancreatic islets. This review provides a view of the experimental and clinical evidence on the ability of available anti-diabetes drugs to exert protective effects on beta-cells, with a specific focus on human pancreatic islets and clinical trials. Potential explanations for the lack of concordance between evidence of beta-cell protection in vitro and of persistent amelioration of beta-cell function in vivo are also discussed.
Collapse
Affiliation(s)
- Nicola Marrano
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| | - Giuseppina Biondi
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Cignarelli
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Sebastio Perrini
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| | - Luigi Laviola
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| | - Annalisa Natalicchio
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
49
|
Mather KJ, Chen M, Hannon TS. Linearization of the Disposition Index equation allows evaluation of secretion-sensitivity coupling slopes. J Diabetes Complications 2020; 34:107589. [PMID: 32376087 DOI: 10.1016/j.jdiacomp.2020.107589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/29/2020] [Accepted: 03/29/2020] [Indexed: 12/28/2022]
Abstract
AIMS The Disposition Index (DI) is widely used in clinical studies of β-cell function. However, direct physiologic interpretation of the DI value and the inverse exponential slope relating insulin secretion and insulin sensitivity terms is difficult. We evaluated a linearization of the relationship that allows separate evaluation of the DI term and the slope. METHODS Insulin secretion and sensitivity indices were derived from standardized oral glucose tolerance testing, including commonly used terms and model-derived terms. The population included participants with normoglycemia, dysglycemia or Type 2 diabetes. Logarithmic transformation of the DI equation to linearize the secretion-sensitivity relationship was performed, and the resulting secretion-sensitivity relationships were evaluated using standard linear regression methods. RESULTS Simple logarithmic transformation linearized the secretion-sensitivity relationships available from a variety of OGTT-derived metrics. In normoglycemic subjects the slopes approximated -1 in insulin-basedsecretion-sensitivity pairs, and approximated -0.6 in C-peptide based secretion-sensitivity pairs. Group differences in DI terms were observed as expected. These analyses also revealed differing secretion-sensitivity slopes, with IGT and T2D demonstrating progressively impaired coupling. CONCLUSIONS Linearization of the secretion-sensitivity relationship provides simplified interpretation of the DI value and allows simple analysis and meaningful interpretation of the secretion-sensitivity slope. This linear relationship is amenable to standard statistical evaluations for comparisons of insulin secretion responses and of secretion-sensitivity coupling across groups.
Collapse
Affiliation(s)
- Kieren J Mather
- Indiana University School of Medicine, United States of America.
| | - Melinda Chen
- University of Nebraska School of Medicine, United States of America
| | - Tamara S Hannon
- Indiana University School of Medicine, United States of America
| |
Collapse
|
50
|
Gnesin F, Thuesen ACB, Kähler LKA, Madsbad S, Hemmingsen B. Metformin monotherapy for adults with type 2 diabetes mellitus. Cochrane Database Syst Rev 2020; 6:CD012906. [PMID: 32501595 PMCID: PMC7386876 DOI: 10.1002/14651858.cd012906.pub2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Worldwide, there is an increasing incidence of type 2 diabetes mellitus (T2DM). Metformin is still the recommended first-line glucose-lowering drug for people with T2DM. Despite this, the effects of metformin on patient-important outcomes are still not clarified. OBJECTIVES To assess the effects of metformin monotherapy in adults with T2DM. SEARCH METHODS We based our search on a systematic report from the Agency for Healthcare Research and Quality, and topped-up the search in CENTRAL, MEDLINE, Embase, WHO ICTRP, and ClinicalTrials.gov. Additionally, we searched the reference lists of included trials and systematic reviews, as well as health technology assessment reports and medical agencies. The date of the last search for all databases was 2 December 2019, except Embase (searched up 28 April 2017). SELECTION CRITERIA We included randomised controlled trials (RCTs) with at least one year's duration comparing metformin monotherapy with no intervention, behaviour changing interventions or other glucose-lowering drugs in adults with T2DM. DATA COLLECTION AND ANALYSIS Two review authors read all abstracts and full-text articles/records, assessed risk of bias, and extracted outcome data independently. We resolved discrepancies by involvement of a third review author. For meta-analyses we used a random-effects model with investigation of risk ratios (RRs) for dichotomous outcomes and mean differences (MDs) for continuous outcomes, using 95% confidence intervals (CIs) for effect estimates. We assessed the overall certainty of the evidence by using the GRADE instrument. MAIN RESULTS We included 18 RCTs with multiple study arms (N = 10,680). The percentage of participants finishing the trials was approximately 58% in all groups. Treatment duration ranged from one to 10.7 years. We judged no trials to be at low risk of bias on all 'Risk of bias' domains. The main outcomes of interest were all-cause mortality, serious adverse events (SAEs), health-related quality of life (HRQoL), cardiovascular mortality (CVM), non-fatal myocardial infarction (NFMI), non-fatal stroke (NFS), and end-stage renal disease (ESRD). Two trials compared metformin (N = 370) with insulin (N = 454). Neither trial reported on all-cause mortality, SAE, CVM, NFMI, NFS or ESRD. One trial provided information on HRQoL but did not show a substantial difference between the interventions. Seven trials compared metformin with sulphonylureas. Four trials reported on all-cause mortality: in three trials no participant died, and in the remaining trial 31/1454 participants (2.1%) in the metformin group died compared with 31/1441 participants (2.2%) in the sulphonylurea group (very low-certainty evidence). Three trials reported on SAE: in two trials no SAE occurred (186 participants); in the other trial 331/1454 participants (22.8%) in the metformin group experienced a SAE compared with 308/1441 participants (21.4%) in the sulphonylurea group (very low-certainty evidence). Two trials reported on CVM: in one trial no CVM was observed and in the other trial 4/1441 participants (0.3%) in the metformin group died of cardiovascular reasons compared with 8/1447 participants (0.6%) in the sulphonylurea group (very low-certainty evidence). Three trials reported on NFMI: in two trials no NFMI occurred, and in the other trial 21/1454 participants (1.4%) in the metformin group experienced a NFMI compared with 15/1441 participants (1.0%) in the sulphonylurea group (very low-certainty evidence). One trial reported no NFS occurred (very low-certainty evidence). No trial reported on HRQoL or ESRD. Seven trials compared metformin with thiazolidinediones (very low-certainty evidence for all outcomes). Five trials reported on all-cause mortality: in two trials no participant died; the overall RR was 0.88, 95% CI 0.55 to 1.39; P = 0.57; 5 trials; 4402 participants). Four trials reported on SAE, the RR was 0,95, 95% CI 0.84 to 1.09; P = 0.49; 3208 participants. Four trials reported on CVM, the RR was 0.71, 95% CI 0.21 to 2.39; P = 0.58; 3211 participants. Three trial reported on NFMI: in two trials no NFMI occurred and in one trial 21/1454 participants (1.4%) in the metformin group experienced a NFMI compared with 25/1456 participants (1.7%) in the thiazolidinedione group. One trial reported no NFS occurred. No trial reported on HRQoL or ESRD. Three trials compared metformin with dipeptidyl peptidase-4 inhibitors (one trial each with saxagliptin, sitagliptin, vildagliptin with altogether 1977 participants). There was no substantial difference between the interventions for all-cause mortality, SAE, CVM, NFMI and NFS (very low-certainty evidence for all outcomes). One trial compared metformin with a glucagon-like peptide-1 analogue (very low-certainty evidence for all reported outcomes). There was no substantial difference between the interventions for all-cause mortality, CVM, NFMI and NFS. One or more SAEs were reported in 16/268 (6.0%) of the participants allocated to metformin compared with 35/539 (6.5%) of the participants allocated to a glucagon-like peptide-1 analogue. HRQoL or ESRD were not reported. One trial compared metformin with meglitinide and two trials compared metformin with no intervention. No deaths or SAEs occurred (very low-certainty evidence) no other patient-important outcomes were reported. No trial compared metformin with placebo or a behaviour changing interventions. Four ongoing trials with 5824 participants are likely to report one or more of our outcomes of interest and are estimated to be completed between 2018 and 2024. Furthermore, 24 trials with 2369 participants are awaiting assessment. AUTHORS' CONCLUSIONS There is no clear evidence whether metformin monotherapy compared with no intervention, behaviour changing interventions or other glucose-lowering drugs influences patient-important outcomes.
Collapse
Affiliation(s)
- Filip Gnesin
- Department of Endocrinology, Diabetes and Metabolism, Department 7652, Rigshospitalet, Copenhagen, Denmark
| | - Anne Cathrine Baun Thuesen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | | | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Bianca Hemmingsen
- Cochrane Metabolic and Endocrine Disorders Group, Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|