1
|
Fonseca LM, Krause N, Lebreton F, Berishvili E. Recreating the Endocrine Niche: Advances in Bioengineering the Pancreas. Artif Organs 2025; 49:541-555. [PMID: 39844747 DOI: 10.1111/aor.14950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025]
Abstract
Intrahepatic islet transplantation is a promising strategy for β-cell replacement therapy in the treatment of Type 1 Diabetes. However, several obstacles hinder the long-term efficacy of this therapy. A major challenge is the scarcity of donor organs. During the isolation process, islets are disconnected from their extracellular matrix (ECM) and vasculature, leading to significant loss due to anoikis and hypoxia. Additionally, inflammatory and rejection reactions further compromise islet survival and engraftment success. Extensive efforts are being made to improve the efficacy of islet transplantation. These strategies include promoting revascularization and ECM support through bioengineering techniques, exploring alternative sources of insulin-secreting cells, and providing immunomodulation for the graft. Despite these advancements, a significant gap remains in integrating these strategies into a cohesive approach that effectively replicates the native endocrine environment. Specifically, the lack of comprehensive methods to address both the structural and functional aspects of the endocrine niche limits reproducibility and clinical translation. Therefore, bioengineering an endocrine pancreas must aim to recreate the endocrine niche to achieve lifelong efficacy and insulin independence. This review discusses various strategies developed to produce the building blocks for generating a vascularized, immune-protected insulin-secreting construct, emphasizing the importance of the endocrine niche's composition and function.
Collapse
Affiliation(s)
- Laura Mar Fonseca
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - Nicerine Krause
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - Fanny Lebreton
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - Ekaterine Berishvili
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
- Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
2
|
Lai F, Zhou K, Ma Y, Lv H, Wang W, Wang R, Xu T, Huang R. Single-cell RNA sequencing identifies endothelial-derived HBEGF as promoting pancreatic beta cell proliferation in mice via the EGFR-Kmt5a-H4K20me pathway. Diabetologia 2025; 68:835-853. [PMID: 39694915 PMCID: PMC11950091 DOI: 10.1007/s00125-024-06341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/29/2024] [Indexed: 12/20/2024]
Abstract
AIMS/HYPOTHESIS Pancreatic beta cell mass is dynamically regulated in response to increased physiological and pathological demands. Understanding the mechanisms that control physiological beta cell proliferation could provide valuable insights into novel therapeutic approaches to diabetes. Here, we aimed to analyse the intracellular and extracellular signalling pathways involved in regulating the physiological proliferation of beta cells using single-cell RNA-seq (scRNA-seq) and in vitro functional assays. METHODS Islets isolated from nulliparous mice, mice at different time points of gestation and mice at day 4 after delivery were analysed using scRNA-seq. Bioinformatics analyses of scRNA-seq data were performed to determine the heterogeneous transcriptomic characteristics of beta cells and to identify the proliferating subpopulation. CellChat was used to analyse cell-cell communication and identify the ligand-receptor pairs between beta cell subclusters as well as between non-beta cells and proliferating beta cells. In vitro functional assays were conducted in mouse and rat beta cell lines and isolated mouse primary islets to validate the role of Kmt5a- mono-methylation of histone H4 at lysine 20 (H4K20me) signalling and endothelial-derived heparin-binding EGF-like growth factor (HBEGF) in beta cell proliferation. RESULTS Of 43,724 endocrine and non-endocrine cells within islets analysed by scRNA-seq, 15,569 beta cells were clustered into eight distinct populations, each exhibiting unique heterogeneity. A proliferating beta cell subcluster was identified that highly expressed the histone methyltransferase Kmt5a. Activation of Kmt5a-H4K20me signalling upregulated the expression of Cdk1 and promoted beta cell proliferation. The crosstalk between endothelial cells and the proliferating beta cell subcluster, mediated by the HBEGF-EGF receptor (EGFR) ligand-receptor interaction, increased as beta cell mass expanded. HBEGF increased the expression levels of genes involved in the cell cycle and promoted beta cell proliferation by regulating the Kmt5a-H4K20me signalling pathway. CONCLUSIONS/INTERPRETATION Our study demonstrates that, under physiological conditions, endothelial-derived HBEGF regulates beta cell proliferation through the Kmt5a-H4K20me signalling pathway, which may serve as a potential target to promote beta cell expansion and treat diabetes. DATA AVAILABILITY The scRNA-seq and RNA-seq datasets are available from the Gene Expression Omnibus (GEO) using the accession numbers GSE278860 and GSE278861, respectively.
Collapse
Affiliation(s)
- Fengling Lai
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kaixin Zhou
- Guangzhou National Laboratory, Guangzhou, China
| | - Yingjie Ma
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hao Lv
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Weilin Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Rundong Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Tao Xu
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
- Guangzhou National Laboratory, Guangzhou, China.
| | - Rong Huang
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
3
|
Ramirez M, Bastien E, Chae H, Gianello P, Gilon P, Bouzin C. 3D evaluation of the extracellular matrix of hypoxic pancreatic islets using light sheet fluorescence microscopy. Islets 2024; 16:2298518. [PMID: 38267218 PMCID: PMC10810165 DOI: 10.1080/19382014.2023.2298518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Pancreatic islet transplantation is a promising treatment for type 1 diabetes, but the survival and function of transplanted islets are hindered by the loss of extracellular matrix (ECM) during islet isolation and by low oxygenation upon implantation. This study aimed to evaluate the impact of hypoxia on ECM using a cutting-edge imaging approach based on tissue clearing and 3D microscopy. Human and rat islets were cultured under normoxic (O2 21%) or hypoxic (O2 1%) conditions. Immunofluorescence staining targeting insulin, glucagon, CA9 (a hypoxia marker), ECM proteins (collagen 4, fibronectin, laminin), and E-cadherin (intercellular adhesion protein) was performed on fixed whole islets. The cleared islets were imaged using Light Sheet Fluorescence Microscopy (LSFM) and digitally analyzed. The volumetric analysis of target proteins did not show significant differences in abundance between the experimental groups. However, 3D projections revealed distinct morphological features that differentiated normoxic and hypoxic islets. Under normoxic conditions, ECM could be found throughout the islets. Hypoxic islets exhibited areas of scattered nuclei and central clusters of ECM proteins, indicating central necrosis. E-cadherin was absent in these areas. Our results, demonstrating a diminution of islets' functional mass in hypoxia, align with the functional decline observed in transplanted islets experiencing low oxygenation after grafting. This study provides a methodology combining tissue clearing, multiplex immunofluorescence, Light Sheet Fluorescence Microscopy, and digital image analysis to investigate pancreatic islet morphology. This 3D approach allowed us to highlight ECM organizational changes during hypoxia from a morphological perspective.
Collapse
Affiliation(s)
- Matias Ramirez
- Pole of Experimental Surgery and Transplantation, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Estelle Bastien
- Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Heeyoung Chae
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Pierre Gianello
- Laboratory of Experimental Surgery and Transplantation, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Patrick Gilon
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Caroline Bouzin
- Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Brussels, Belgium
| |
Collapse
|
4
|
Akhavan S, Sanati MH, Irani S, Soheili ZS, Arpanaei A. WS6 and 5-iodotubercidin small molecules and growth factors; TGF, HGF, and EGF synergistically enhance proliferation of β-like human induced pluripotent stem cells (iPSCs). J Diabetes Metab Disord 2024; 23:2355-2364. [PMID: 39610526 PMCID: PMC11599654 DOI: 10.1007/s40200-024-01503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/31/2024] [Indexed: 11/30/2024]
Abstract
Objectives It has been shown that growth factors and small molecules play an essential role in the proliferation of β cells and insulin production. In this study, we investigated the effects of small molecules (WS6 and 5-iodotubercidin) and growth factors (TGFβ, HGF, and EGF) on the proliferation of β-like human ipSCs. Methods iPSCs derived β cells were treated with small molecules and growth factors. Cytotoxic activity of small molecules and growth factors was determined using MTT assay. Insulin gene expression and secretion were measured by qPCR and ELISA, respectively. The protein expression of insulin was evaluated by western blot as well. Results Simltananeous addition of WS6 and Harmine into the culture media increased insulin gene expression compared to treatment by each molecule alone (p < 0.05). It was found that the simultaneous recruitment of EGH, HGF, and TGF-β increased insulin expression compared to treatment by each molecule alone (p < 0.05). Results showed that EGF, HGF, TGF-β growth factors increased insulin gene expression, eventually leading to insulin secretion from β cells (p < 0.05). Conclusions Growth factors and small molecules synergistically enhanced the proliferation of β cells and insulin production.
Collapse
Affiliation(s)
- Saeedeh Akhavan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Sanati
- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology, PO Box 14965-16, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Biochemistry, National Institute of Genetic Engineering and Biotechnology, P.O. Box: 14965/161, Tehran, Iran
| | | |
Collapse
|
5
|
Lee CZW, Spagnoli FM. Nurturing protectors: Macrophages in the human pancreatic islet. Cell Stem Cell 2024; 31:1553-1554. [PMID: 39515296 DOI: 10.1016/j.stem.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Two recent publications in Cell Stem Cell, Yang et al.1 and Migliorini et al.,2 utilized pluripotent stem cell-derived co-culture systems to explore the role of macrophages within the pancreatic islet during development and disease states.
Collapse
Affiliation(s)
- Christopher Z W Lee
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, Great Maze Pond, London SE1 9RT, UK
| | - Francesca M Spagnoli
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
6
|
Aplin AC, Aghazadeh Y, Mohn OG, Hull-Meichle RL. Role of the Pancreatic Islet Microvasculature in Health and Disease. J Histochem Cytochem 2024; 72:711-728. [PMID: 39601198 PMCID: PMC11600425 DOI: 10.1369/00221554241299862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The pancreatic islet vasculature comprises microvascular endothelial cells surrounded by mural cells (pericytes). Both cell types support the islet by providing (1) a conduit for delivery and exchange of nutrients and hormones; (2) paracrine signals and extracellular matrix (ECM) components that support islet development, architecture, and endocrine function; and (3) a barrier against inflammation and immune cell infiltration. In type 2 diabetes, the islet vasculature becomes inflamed, showing loss of endothelial cells, detachment, and/or trans-differentiation of pericytes, vessel dilation, and excessive ECM deposition. While most work to date has focused either on endothelial cells or pericytes in isolation, it is very likely that the interaction between these cell types and disruption of that interaction in diabetes are critically important. In fact, dissociation of pericytes from endothelial cells is an early, key feature of microvascular disease in multiple tissues/disease states. Moreover, in beta-cell replacement therapy, co-transplantation with microvessels versus endothelial cells alone is substantially more effective in improving survival and function of the transplanted cells. Ongoing studies, including characterization of islet vascular cell signatures, will aid in the identification of new therapeutic targets aimed at improving islet function and benefiting people living with all forms of diabetes.
Collapse
Affiliation(s)
- Alfred C. Aplin
- Seattle Institute for Biomedical and Clinical Research, and Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | - Yasaman Aghazadeh
- Institut de Recherches Cliniques de Montreal (IRCM), Department of Medicine, University of Montreal, and Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Olivia G. Mohn
- Seattle Institute for Biomedical and Clinical Research, and Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | - Rebecca L. Hull-Meichle
- Seattle Institute for Biomedical and Clinical Research, and Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington; and Alberta Diabetes Institute and Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Langlois A, Pinget M, Kessler L, Bouzakri K. Islet Transplantation: Current Limitations and Challenges for Successful Outcomes. Cells 2024; 13:1783. [PMID: 39513890 PMCID: PMC11544954 DOI: 10.3390/cells13211783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Islet transplantation is a promising approach for treating patients with unstable T1DM. However, it is confronted with numerous obstacles throughout the various stages of the transplantation procedure. Significant progress has been made over the last 25 years in understanding the mechanisms behind the loss of functional islet mass and in developing protective strategies. Nevertheless, at present, two to three pancreases are still needed to treat a single patient, which limits the maximal number of patients who can benefit from islet transplantation. Thus, this publication provides an overview of recent scientific findings on the various issues affecting islet transplantation. Specifically, we will focus on the understanding of the mechanisms involved and the strategies developed to alleviate these problems from the isolation stage to the post-transplantation phase. Finally, we hope that this review will highlight new avenues of action, enabling us to propose pancreatic islet transplantation to a maximum number of patients with T1DM.
Collapse
Affiliation(s)
- Allan Langlois
- UR «Diabète et Thérapeutiques», Centre Européen d’Étude du Diabète, Université de Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France; (A.L.); (M.P.)
| | - Michel Pinget
- UR «Diabète et Thérapeutiques», Centre Européen d’Étude du Diabète, Université de Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France; (A.L.); (M.P.)
| | - Laurence Kessler
- Department of Endocrinology, Diabetes and Nutrition, University Hospital of Strasbourg, 67200 Strasbourg, France;
- Inserm UMR 1260, Nanomédicine Regenerative, University of Strasbourg, 67085 Strasbourg, France
| | - Karim Bouzakri
- UR «Diabète et Thérapeutiques», Centre Européen d’Étude du Diabète, Université de Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France; (A.L.); (M.P.)
| |
Collapse
|
8
|
Grebinoski S, Pieklo G, Zhang Q, Visperas A, Cui J, Goulet J, Xiao H, Brunazzi EA, Cardello C, Herrada AA, Das J, Workman CJ, Vignali DAA. Regulatory T Cell Insufficiency in Autoimmune Diabetes Is Driven by Selective Loss of Neuropilin-1 on Intraislet Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:779-794. [PMID: 39109924 PMCID: PMC11371503 DOI: 10.4049/jimmunol.2300216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/08/2024] [Indexed: 09/05/2024]
Abstract
Approaches to reverse or limit regulatory T cell (Treg) insufficiency are of great interest for development of immunotherapeutic treatments for autoimmune patients, including type 1 diabetes. Treg insufficiency is heavily implicated in the progression of autoimmune diabetes in the NOD mouse model and is characterized by defects in Treg numbers, development, and/or function. Utilizing a Treg-centric screen, we show that intraislet Tregs have a uniquely dysfunctional phenotype, hallmarked by an almost complete lack of neuropilin-1 (Nrp1), a cell surface receptor required to maintain Treg stability. Intraislet Nrp1- Tregs exhibit hallmark features of fragility, including reduced suppressive capacity, decreased CD73 and Helios, and increased Rorγt and Tbet. Intraislet Nrp1- Tregs also exhibit decreased Foxp3 expression on a per cell basis, suggesting that Nrp1 may also be required for long-term Treg stability. Mechanistically, Treg-restricted augmentation of Nrp1 expression limited the onset of autoimmune diabetes in NOD mice suggesting that Nrp1 critically impacts intraislet Treg function. Transcriptional analysis showed that Nrp1 restoration led to an increase in markers and pathways of TCR signaling, survival, and suppression, and when Nrp1 protein expression is examined by cellular indexing of transcriptomes and epitopes by sequencing, significant differences were observed between Nrp1+ and Nrp1- Tregs in all tissues, particularly in markers of Treg fragility. This translated into substantive differences between Nrp1+ and Nrp1- Tregs that afforded the former with a competitive advantage in the islets. Taken together, these data suggest that maintenance of Nrp1 expression and signaling on Tregs limits diabetes onset and may serve as a strategy to combat Treg insufficiency in autoimmune disease.
Collapse
Affiliation(s)
- Stephanie Grebinoski
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Gwenyth Pieklo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Qianxia Zhang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Anabelle Visperas
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Jian Cui
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Jordana Goulet
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Hanxi Xiao
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- CMU-Pitt Joint Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Erin A Brunazzi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Carly Cardello
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Andrés A Herrada
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jishnu Das
- CMU-Pitt Joint Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh PA
| |
Collapse
|
9
|
Wang L, Wan J, Xu Y, Huang Y, Wang D, Zhu D, Chen Q, Lu Y, Guo Q. Endothelial Cells Promote Pseudo-islet Function Through BTC-EGFR-JAK/STAT Signaling Pathways. Ann Biomed Eng 2024; 52:2610-2626. [PMID: 38829457 DOI: 10.1007/s10439-024-03548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
Interactions between cells are of fundamental importance in affecting cell function. In vivo, endothelial cells and islet cells are close to each other, which makes endothelial cells essential for islet cell development and maintenance of islet cell function. We used endothelial cells to construct 3D pseudo-islets, which demonstrated better glucose regulation and greater insulin secretion compared to conventional pseudo-islets in both in vivo and in vitro trials. However, the underlying mechanism of how endothelial cells promote beta cell function localized within islets is still unknown. We performed transcriptomic sequencing, differential gene analysis, and enrichment analysis on two types of pseudo-islets to show that endothelial cells can promote the function of internal beta cells in pseudo-islets through the BTC-EGFR-JAK/STAT signaling pathway. Min6 cells secreted additional BTC after co-culture of endothelial cells with MIN6 cells outside the body. After BTC knockout in vitro, we found that beta cells functioned differently: insulin secretion levels decreased significantly, while the expression of key proteins in the EGFR-mediated JAK/STAT signaling pathway simultaneously decreased, further confirming our results. Through our experiments, we elucidate the molecular mechanisms by which endothelial cells maintain islet function in vitro, which provides a theoretical basis for the construction of pseudo-islets and islet cell transplants for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Jian Wan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Yang Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Dongzhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Donghui Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Qiyang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Qingsong Guo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
10
|
Ruiz-Otero N, Tessem JS, Banerjee RR. Pancreatic islet adaptation in pregnancy and postpartum. Trends Endocrinol Metab 2024; 35:834-847. [PMID: 38697900 DOI: 10.1016/j.tem.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
Pancreatic islets, particularly insulin-producing β-cells, are central regulators of glucose homeostasis capable of responding to a variety of metabolic stressors. Pregnancy is a unique physiological stressor, necessitating the islets to adapt to the complex interplay of maternal and fetal-placental factors influencing the metabolic milieu. In this review we highlight studies defining gestational adaptation mechanisms within maternal islets and emerging studies revealing islet adaptations during the early postpartum and lactation periods. These include adaptations in both β and in 'non-β' islet cells. We also discuss insights into how gestational and postpartum adaptation may inform pregnancy-specific and general mechanisms of islet responses to metabolic stress and contribute to investigation of gestational diabetes.
Collapse
Affiliation(s)
- Nelmari Ruiz-Otero
- Division of Endocrinology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84601, USA
| | - Ronadip R Banerjee
- Division of Endocrinology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|
11
|
Su Y, Liu A, Chen H, Chen Q, Zhao B, Gao R, Zhang K, Peng T, Zhang Z, Ouyang C, Zhu D. Research progress of brain organoids in the field of diabetes. Mol Brain 2024; 17:53. [PMID: 39107846 PMCID: PMC11304585 DOI: 10.1186/s13041-024-01123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Human embryonic stem cells and human induced pluripotent stem cells may be used to create 3D tissues called brain organoids. They duplicate the physiological and pathological characteristics of human brain tissue more faithfully in terms of both structure and function, and they more precisely resemble the morphology and cellular structure of the human embryonic brain. This makes them valuable models for both drug screening and in vitro studies on the development of the human brain and associated disorders. The technical breakthroughs enabled by brain organoids have a significant impact on the research of different brain regions, brain development and sickness, the connections between the brain and other tissues and organs, and brain evolution. This article discusses the development of brain organoids, their use in diabetes research, and their progress.
Collapse
Affiliation(s)
- Ying Su
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Aimei Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
| | - Hongguang Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
| | - Bo Zhao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Runze Gao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Kangwei Zhang
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Tie Peng
- Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China.
| | - Changhan Ouyang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China.
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China.
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China.
| |
Collapse
|
12
|
Pereye OB, Nakagawa Y, Sato T, Fukunaka A, Aoyama S, Nishida Y, Mizutani W, Kobayashi N, Morishita Y, Oyama T, Kawabata-Iwakawa R, Watada H, Mizukami H, Fukuda A, Fujitani Y. Identification of Ppy-lineage cells as a novel origin of pancreatic ductal adenocarcinoma. J Pathol 2024; 263:429-441. [PMID: 38837231 DOI: 10.1002/path.6295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/26/2024] [Accepted: 04/13/2024] [Indexed: 06/07/2024]
Abstract
The Ppy gene encodes pancreatic polypeptide (PP) secreted by PP- or γ-cells, which are a subtype of endocrine cells localised mainly in the islet periphery. For a detailed characterisation of PP cells, we aimed to establish PP cell lines. To this end, we generated a mouse model harbouring the SV40 large T antigen (TAg) in the Rosa26 locus, which is expressed upon Ppy-promoter-mediated Cre-loxP recombination. Whereas Insulin1-CreERT-mediated TAg expression in beta cells resulted in insulinoma, surprisingly, Ppy-Cre-mediated TAg expression resulted in the malignant transformation of Ppy-lineage cells. These mice showed distorted islet structural integrity at 5 days of age compared with normal islets. CK19+ duct-like lesions contiguous with the islets were observed at 2 weeks of age, and mice developed aggressive pancreatic ductal adenocarcinoma (PDAC) at 4 weeks of age, suggesting that PDAC can originate from the islet/endocrine pancreas. This was unexpected as PDAC is believed to originate from the exocrine pancreas. RNA-sequencing analysis of Ppy-lineage islet cells from 7-day-old TAg+ mice showed a downregulation and an upregulation of endocrine and exocrine genes, respectively, in addition to the upregulation of genes and pathways associated with PDAC. These results suggest that the expression of an oncogene in Ppy-lineage cells induces a switch from endocrine cell fate to PDAC. Our findings demonstrate that Ppy-lineage cells may be an origin of PDAC and may provide novel insights into the pathogenesis of pancreatic cancer, as well as possible therapeutic strategies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Animals
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Cell Lineage
- Mice
- Mice, Transgenic
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/metabolism
- Islets of Langerhans/pathology
- Islets of Langerhans/metabolism
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
Collapse
Affiliation(s)
- Ofejiro Blessing Pereye
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Yuko Nakagawa
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Takashi Sato
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Ayako Fukunaka
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Shuhei Aoyama
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Nishida
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wakana Mizutani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Nanami Kobayashi
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Yohei Morishita
- Laboratory for Analytical Instruments, Education and Research Support Centre, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Biomedical Research Centre, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| |
Collapse
|
13
|
Srivastava N, Hu H, Peterson OJ, Vomund AN, Stremska M, Zaman M, Giri S, Li T, Lichti CF, Zakharov PN, Zhang B, Abumrad NA, Chen YG, Ravichandran KS, Unanue ER, Wan X. CXCL16-dependent scavenging of oxidized lipids by islet macrophages promotes differentiation of pathogenic CD8 + T cells in diabetic autoimmunity. Immunity 2024; 57:1629-1647.e8. [PMID: 38754432 PMCID: PMC11236520 DOI: 10.1016/j.immuni.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/18/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
The pancreatic islet microenvironment is highly oxidative, rendering β cells vulnerable to autoinflammatory insults. Here, we examined the role of islet resident macrophages in the autoimmune attack that initiates type 1 diabetes. Islet macrophages highly expressed CXCL16, a chemokine and scavenger receptor for oxidized low-density lipoproteins (OxLDLs), regardless of autoimmune predisposition. Deletion of Cxcl16 in nonobese diabetic (NOD) mice suppressed the development of autoimmune diabetes. Mechanistically, Cxcl16 deficiency impaired clearance of OxLDL by islet macrophages, leading to OxLDL accumulation in pancreatic islets and a substantial reduction in intra-islet transitory (Texint) CD8+ T cells displaying proliferative and effector signatures. Texint cells were vulnerable to oxidative stress and diminished by ferroptosis; PD-1 blockade rescued this population and reversed diabetes resistance in NOD.Cxcl16-/- mice. Thus, OxLDL scavenging in pancreatic islets inadvertently promotes differentiation of pathogenic CD8+ T cells, presenting a paradigm wherein tissue homeostasis processes can facilitate autoimmune pathogenesis in predisposed individuals.
Collapse
Affiliation(s)
- Neetu Srivastava
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Hao Hu
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Orion J Peterson
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony N Vomund
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Marta Stremska
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohammad Zaman
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Shilpi Giri
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Pavel N Zakharov
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nada A Abumrad
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kodi S Ravichandran
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; VIB/UGent Inflammation Research Centre and Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Emil R Unanue
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
14
|
Zhang Z, Sun G, Wang Y, Wang N, Lu Y, Chen Y, Xia F. Integrated Bioinformatics Analysis Revealed Immune Checkpoint Genes Relevant to Type 2 Diabetes. Diabetes Metab Syndr Obes 2024; 17:2385-2401. [PMID: 38881696 PMCID: PMC11179640 DOI: 10.2147/dmso.s458030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Objective Chronic low-grade inflammation of the pancreatic islets is the characteristic of type 2 diabetes (T2D), and some of the immune checkpoints may play important roles in the pancreatic islet inflammation. Thus, we aim to explore the immune checkpoint genes (ICGs) associated with T2D, thereby revealing the role of ICGs in the pathogenesis of T2D based on bioinformatic analyses. Methods Differentially expressed genes (DEGs) and immune checkpoint genes (ICGs) of islets between T2D and control group were screened from datasets of the Gene Expression Omnibus (GEO). A risk model was built based on the coefficients of ICGs calculated by ridge regression. Functional enrichment analysis and immune cell infiltration estimation were conducted. Correlations between ICGs and hub genes, T2D-related disease genes, insulin secretion genes, and beta cell function-related genes were analyzed. Finally, we conducted RT-PCR to verify the expression of these ICGs. Results In total, pancreatic islets from 19 cases of T2D and 84 healthy subjects were included. We identified 458 DEGs. Six significantly upregulated ICGs (CD44, CD47, HAVCR2, SIRPA, TNFSF9, and VTCN1) in T2D were screened out. These ICGs were significantly correlated with several hub genes and T2D-related genes; furthermore, they were correlated with insulin secretion and β cell function-related genes. The analysis of immune infiltration showed that the concentrations of eosinophils, T cells CD4 naive, and T cells regulatory (Tregs) were significantly higher, but CD4 memory resting T cells and monocytes were lower in islets of T2D patients. The infiltrated immune cells in T2D pancreatic islet were associated with these six ICGs. Finally, the expression levels of four ICGs were confirmed by RT-PCR, and three ICGs were validated in another independent dataset. Conclusion In conclusion, the identified ICGs may play an important role in T2D. Identification of these differential genes may provide new clues for the diagnosis and treatment of T2D.
Collapse
Affiliation(s)
- Ziteng Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Guoting Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Abraham N, Kolipaka T, Pandey G, Negi M, Srinivasarao DA, Srivastava S. Revolutionizing pancreatic islet organoid transplants: Improving engraftment and exploring future frontiers. Life Sci 2024; 343:122545. [PMID: 38458556 DOI: 10.1016/j.lfs.2024.122545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Type-1 Diabetes Mellitus (T1DM) manifests due to pancreatic beta cell destruction, causing insulin deficiency and hyperglycaemia. Current therapies are inadequate for brittle diabetics, necessitating pancreatic islet transplants, which however, introduces its own set of challenges such as paucity of donors, rigorous immunosuppression and autoimmune rejection. Organoid technology represents a significant stride in the field of regenerative medicine and bypasses donor-based approaches. Hence this article focuses on strategies enhancing the in vivo engraftment of islet organoids (IOs), namely vascularization, encapsulation, immune evasion, alternative extra-hepatic transplant sites and 3D bioprinting. Hypoxia-induced necrosis and delayed revascularization attenuate organoid viability and functional capacity, alleviated by the integration of diverse cell types e.g., human amniotic epithelial cells (hAECs) and human umbilical vein endothelial cells (HUVECs) to boost vascularization. Encapsulation with biocompatible materials and genetic modifications counters immune damage, while extra-hepatic sites avoid surgical complications and immediate blood-mediated inflammatory reactions (IBMIR). Customizable 3D bioprinting may help augment the viability and functionality of IOs. While the clinical translation of IOs faces hurdles, preliminary results show promise. This article underscores the importance of addressing challenges in IO transplantation to advance their use in treating type 1 diabetes effectively.
Collapse
Affiliation(s)
- Noella Abraham
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mansi Negi
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
16
|
Kioulaphides S, García AJ. Encapsulation and immune protection for type 1 diabetes cell therapy. Adv Drug Deliv Rev 2024; 207:115205. [PMID: 38360355 PMCID: PMC10948298 DOI: 10.1016/j.addr.2024.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Type 1 Diabetes (T1D) involves the autoimmune destruction of insulin-producing β-cells in the pancreas. Exogenous insulin injections are the current therapy but are user-dependent and cannot fully recapitulate physiological insulin secretion dynamics. Since the emergence of allogeneic cell therapy for T1D, the Edmonton Protocol has been the most promising immunosuppression protocol for cadaveric islet transplantation, but the lack of donor islets, poor cell engraftment, and required chronic immunosuppression have limited its application as a therapy for T1D. Encapsulation in biomaterials on the nano-, micro-, and macro-scale offers the potential to integrate islets with the host and protect them from immune responses. This method can be applied to different cell types, including cadaveric, porcine, and stem cell-derived islets, mitigating the issue of a lack of donor cells. This review covers progress in the efforts to integrate insulin-producing cells from multiple sources to T1D patients as a form of cell therapy.
Collapse
Affiliation(s)
- Sophia Kioulaphides
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
17
|
Schlünder K, Cipriano M, Zbinden A, Fuchs S, Mayr T, Schenke-Layland K, Loskill P. Microphysiological pancreas-on-chip platform with integrated sensors to model endocrine function and metabolism. LAB ON A CHIP 2024; 24:2080-2093. [PMID: 38441218 DOI: 10.1039/d3lc00838j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Pancreatic in vitro research is of major importance to advance mechanistic understanding and development of treatment options for diseases such as diabetes mellitus. We present a thermoplastic-based microphysiological system aiming to model the complex microphysiological structure and function of the endocrine pancreas with concurrent real-time read-out capabilities. The specifically tailored platform enables self-guided trapping of single islets at defined locations: β-cells are assembled to pseudo-islets and injected into the tissue chamber using hydrostatic pressure-driven flow. The pseudo-islets can further be embedded in an ECM-like hydrogel mimicking the native microenvironment of pancreatic islets in vivo. Non-invasive real-time monitoring of the oxygen levels on-chip is realized by the integration of luminescence-based optical sensors to the platform. To monitor insulin secretion kinetics in response to glucose stimulation in a time-resolved manner, an automated cycling of different glucose conditions is implemented. The model's response to glucose stimulation can be monitored via offline analysis of insulin secretion and via specific changes in oxygen consumption due to higher metabolic activity of pseudo-islets at high glucose levels. To demonstrate applicability for drug testing, the effects of antidiabetic medications are assessed and changes in dynamic insulin secretion are observed in line with the respective mechanism of action. Finally, by integrating human pancreatic islet microtissues, we highlight the flexibility of the platform and demonstrate the preservation of long-term functionality of human endocrine pancreatic tissue.
Collapse
Affiliation(s)
- Katharina Schlünder
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany.
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Madalena Cipriano
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Aline Zbinden
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefanie Fuchs
- Institute for Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria
| | - Torsten Mayr
- Institute for Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Peter Loskill
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany.
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Firdos, Pramanik T, Verma P, Mittal A. (Re-)Viewing Role of Intracellular Glucose Beyond Extracellular Regulation of Glucose-Stimulated Insulin Secretion by Pancreatic Cells. ACS OMEGA 2024; 9:11755-11768. [PMID: 38496986 PMCID: PMC10938456 DOI: 10.1021/acsomega.3c09171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
For glucose-stimulated insulin secretion (GSIS) by pancreatic β-cells in animals, it is believed that ATP generated from glucose metabolism is primarily responsible. However, this ignores two well-established aspects in literature: (a) intracellular ATP generation from other sources resulting in an overall pool of ATP, regardless of the original source, and (b) that intracellular glucose transport is 10- to 100-fold higher than intracellular glucose phosphorylation in β-cells. The latter especially provides an earlier unaddressed, but highly appealing, observation pertaining to (at least transient) the presence of intracellular glucose molecules. Could these intracellular glucose molecules be responsible for the specificity of GSIS to glucose (instead of the widely believed ATP production from its metabolism)? In this work, we provide a comprehensive compilation of literature on glucose and GSIS using various cellular systems - all studies focus only on the extracellular role of glucose in GSIS. Further, we carried out a comprehensive analysis of differential gene expression in Mouse Insulinoma 6 (MIN6) cells, exposed to low and high extracellular glucose concentrations (EGC), from the existing whole transcriptome data. The expression of other genes involved in glycolysis, Krebs cycle, and electron transport chain was found to be unaffected by EGC, except Gapdh, Atp6v0a4, and Cox20. Remarkably, 3 upregulated genes (Atp6v0a4, Cacnb4, Kif11) in high EGC were identified to have an association with cellular secretion. Using glucose as a possible ligand for the 3 proteins, computational investigations were carried out (that will require future 'wet validation', both in vitro and in vivo, e.g., using primary islets and animal models). The glucose-affinity/binding scores (in kcal/mol) obtained were also compared with glucose binding scores for positive controls (GCK and GLUT2), along with negative controls (RPA1, KU70-80, POLA1, ACAA1A, POLR1A). The binding affinity scores of glucose molecules for the 3 proteins were found to be closer to positive controls. Therefore, we report the glucose binding ability of 3 secretion-related proteins and a possible direct role of intracellular glucose molecules in GSIS.
Collapse
Affiliation(s)
- Firdos
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
| | - Tapabrata Pramanik
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
| | - Prachi Verma
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
| | - Aditya Mittal
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
- Supercomputing
Facility for Bioinformatics and Computational Biology (SCFBio), IIT Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
19
|
Zhao T, Tian Y, Zhao J, Sun D, Ma Y, Wang W, Yan W, Jiao P, Ma J. Loss of mitogen-activated protein kinase phosphate-5 aggravates islet dysfunction in mice with type 1 and type 2 diabetes. FASEB J 2024; 38:e23437. [PMID: 38305849 DOI: 10.1096/fj.202301479r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Impaired functionality and loss of islet β-cells are the primary abnormalities underlying the pathogenesis of both type 1 and 2 diabetes (T1DM and T2DM). However, specific therapeutic and preventive mechanisms underlying these conditions remain unclear. Mitogen-activated protein kinase phosphatase-5 (MKP-5) has been implicated in carcinogenesis, lipid metabolism regulation, and immune cell activation. In a previous study, we demonstrated the involvement of exogenous MKP-5 in the regulation of obesity-induced T2DM. However, the role of endogenous MKP-5 in the T1DM and T2DM processes is unclear. Thus, mice with MKP-5 knockout (KO) were generated and used to establish mouse models of both T1DM and T2DM. Our results showed that MKP-5 KO exacerbated diabetes-related symptoms in mice with both T1DM and T2DM. Given that most phenotypic studies on islet dysfunction have focused on mice with T2DM rather than T1DM, we specifically aimed to investigate the role of endoplasmic reticulum stress (ERS) and autophagy in T2DM KO islets. To accomplish this, we performed RNA sequence analysis to gain comprehensive insight into the molecular mechanisms associated with ERS and autophagy in T2DM KO islets. The results showed that the islets from mice with MKP-5 KO triggered 5' adenosine monophosphate-activated protein kinase (AMPK)-mediated autophagy inhibition and glucose-regulated protein 78 (GRP-78)-dominated ERS. Hence, we concluded that the autophagy impairment, resulting in islet dysfunction in mice with MKP-5 KO, is mediated through GRP-78 involvement. These findings provide valuable insights into the molecular pathogenesis of diabetes and highlight the significant role of MKP-5. Moreover, this knowledge holds promise for novel therapeutic strategies targeting MKP-5 for diabetes management.
Collapse
Affiliation(s)
- Tongjian Zhao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yafei Tian
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jianan Zhao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yongjun Ma
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Weiqun Yan
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Ping Jiao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jie Ma
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
20
|
Omori K, Qi M, Salgado M, Gonzalez N, Hui LT, Chen KT, Rawson J, Miao L, Komatsu H, Isenberg JS, Al-Abdullah IH, Mullen Y, Kandeel F. A scalable human islet 3D-culture platform maintains cell mass and function long-term for transplantation. Am J Transplant 2024; 24:177-189. [PMID: 37813189 DOI: 10.1016/j.ajt.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Present-day islet culture methods provide short-term maintenance of cell viability and function, limiting access to islet transplantation. Attempts to lengthen culture intervals remain unsuccessful. A new method was developed to permit the long-term culture of islets. Human islets were embedded in polysaccharide 3D-hydrogel in cell culture inserts or gas-permeable chambers with serum-free CMRL 1066 supplemented media for up to 8 weeks. The long-term cultured islets maintained better morphology, cell mass, and viability at 4 weeks than islets in conventional suspension culture. In fact, islets cultured in the 3D-hydrogel retained β cell mass and function on par with freshly isolated islets in vitro and, when transplanted into diabetic mice, restored glucose balance similar to fresh islets. Using gas-permeable chambers, the 3D-hydrogel culture method was scaled up over 10-fold and maintained islet viability and function, although the cell mass recovery rate was 50%. Additional optimization of scale-up methods continues. If successful, this technology could afford flexibility and expand access to islet transplantation, especially single-donor islet-after-kidney transplantation.
Collapse
Affiliation(s)
- Keiko Omori
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Meirigeng Qi
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mayra Salgado
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Nelson Gonzalez
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lauren T Hui
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Kuan-Tsen Chen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jeffrey Rawson
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lynn Miao
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Hirotake Komatsu
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jeffrey S Isenberg
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ismail H Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yoko Mullen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
21
|
Casagrande V, Menini S, Internò C, Pugliese G, Federici M, Menghini R. TIMP3 overexpression in myeloid lineage alleviates pancreatic damage and confers resistance to the development of type 1 diabetes in the MLDS -induced model. Front Endocrinol (Lausanne) 2024; 14:1297847. [PMID: 38313841 PMCID: PMC10835381 DOI: 10.3389/fendo.2023.1297847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Introduction Type 1 diabetes mellitus (T1DM) development involves a complex interplay of genetic, environmental, and immunological factors. By modulating the activity of proteases and receptors, the protein tissue inhibitor of metalloproteinase 3 (TIMP3) plays a role in limiting the expression and function of pro-inflammatory cytokines, which have been implicated in the advancement of T1DM. This study was aimed at examining the effect of TIMP3 overexpression in myeloid cells on the development of T1DM. Methods and results Twelve weeks after multiple low doses of streptozotocin (MLDS) treatment, diabetic mice overexpressing TIMP3 specifically in myeloid cells under the CD68 promoter (MacT3 mice) showed improved insulin secretion, islet morphology and vascularization, antioxidant defense system, and regulatory factors of mitochondrial biosynthesis and function. To get mechanistic insights into the origin of this protection, the severity of insulitis and inflammatory parameters were evaluated in pancreatic tissues 11 days after MLSD treatment, showing significantly reduced insulitis and levels of the pro-inflammatory cytokine tumor necrosis factor-α, interleukin -1β, and interferon -γ in MacT3 mice. Discussion The results indicate that TIMP3 is involved in maintaining islet architecture and functions, at least in part, through modulation of pro-inflammatory cytokine production associated with insulitis and may represent a novel therapeutic strategy for T1DM.
Collapse
Affiliation(s)
- Viviana Casagrande
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Chiara Internò
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Center for Atherosclerosis, Department of Medical Sciences, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
22
|
Wang B, Song X, Zhang X, Li Y, Xu M, Liu X, Li B, Fu S, Ling H, Wang Y, Zhang X, Li A, Liu M. Harnessing the benefits of glycine supplementation for improved pancreatic microcirculation in type 1 diabetes mellitus. Microvasc Res 2024; 151:104617. [PMID: 37918522 DOI: 10.1016/j.mvr.2023.104617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is predominantly managed using insulin replacement therapy, however, pancreatic microcirculatory disturbances play a critical role in T1DM pathogenesis, necessitating alternative therapies. This study aimed to investigate the protective effects of glycine supplementation on pancreatic microcirculation in T1DM. Streptozotocin-induced T1DM and glycine-supplemented mice (n = 6 per group) were used alongside control mice. Pancreatic microcirculatory profiles were determined using a laser Doppler blood perfusion monitoring system and wavelet transform spectral analysis. The T1DM group exhibited disorganized pancreatic microcirculatory oscillation. Glycine supplementation significantly restored regular biorhythmic contraction and relaxation, improving blood distribution patterns. Further-more, glycine reversed the lower amplitudes of endothelial oscillators in T1DM mice. Ultrastructural deterioration of islet microvascular endothelial cells (IMECs) and islet microvascular pericytes, including membrane and organelle damage, collagenous fiber proliferation, and reduced edema, was substantially reversed by glycine supplementation. Additionally, glycine supplementation inhibited the production of IL-6, TNF-α, IFN-γ, pro-MMP-9, and VEGF-A in T1DM, with no significant changes in energetic metabolism observed in glycine-supplemented IMECs. A statistically significant decrease in MDA levels accompanied by an increase in SOD levels was also observed with glycine supplementation. Notably, negative correlations emerged between inflammatory cytokines and microhemodynamic profiles. These findings suggest that glycine supplementation may offer a promising therapeutic approach for protecting against pancreatic microcirculatory dysfunction in T1DM.
Collapse
Affiliation(s)
- Bing Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xiaohong Song
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xu Zhang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing 100034, China
| | - Yuan Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Mengting Xu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xueting Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Bingwei Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Sunjing Fu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Hao Ling
- Department of Radiology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Yingyu Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xiaoyan Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Ailing Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Mingming Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China; Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China..
| |
Collapse
|
23
|
Saito R, Inagaki A, Nakamura Y, Imura T, Kanai N, Mitsugashira H, Endo Kumata Y, Katano T, Suzuki S, Tokodai K, Kamei T, Unno M, Watanabe K, Tabata Y, Goto M. A Gelatin Hydrogel Nonwoven Fabric Enhances Subcutaneous Islet Engraftment in Rats. Cells 2023; 13:51. [PMID: 38201255 PMCID: PMC10777905 DOI: 10.3390/cells13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Although subcutaneous islet transplantation has many advantages, the subcutaneous space is poor in vessels and transplant efficiency is still low in animal models, except in mice. Subcutaneous islet transplantation using a two-step approach has been proposed, in which a favorable cavity is first prepared using various materials, followed by islet transplantation into the preformed cavity. We previously reported the efficacy of pretreatment using gelatin hydrogel nonwoven fabric (GHNF), and the length of the pretreatment period influenced the results in a mouse model. We investigated whether the preimplantation of GHNF could improve the subcutaneous islet transplantation outcomes in a rat model. GHNF sheets sandwiching a silicone spacer (GHNF group) and silicone spacers without GHNF sheets (control group) were implanted into the subcutaneous space of recipients three weeks before islet transplantation, and diabetes was induced seven days before islet transplantation. Syngeneic islets were transplanted into the space where the silicone spacer was removed. Blood glucose levels, glucose tolerance, immunohistochemistry, and neovascularization were evaluated. The GHNF group showed significantly better blood glucose changes than the control group (p < 0.01). The cure rate was significantly higher in the GHNF group (p < 0.05). The number of vWF-positive vessels was significantly higher in the GHNF group (p < 0.01), and lectin angiography showed the same tendency (p < 0.05). The expression of laminin and collagen III around the transplanted islets was also higher in the GHNF group (p < 0.01). GHNF pretreatment was effective in a rat model, and the main mechanisms might be neovascularization and compensation of the extracellular matrices.
Collapse
Affiliation(s)
- Ryusuke Saito
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (R.S.)
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Graduate School of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Norifumi Kanai
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (R.S.)
| | - Hiroaki Mitsugashira
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (R.S.)
| | - Yukiko Endo Kumata
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (R.S.)
| | - Takumi Katano
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Shoki Suzuki
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (R.S.)
| | - Kazuaki Tokodai
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (R.S.)
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (R.S.)
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (R.S.)
| | - Kimiko Watanabe
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto 606-8507, Japan
| | - Masafumi Goto
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (R.S.)
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
24
|
Elgamal RM, Kudtarkar P, Melton RL, Mummey HM, Benaglio P, Okino ML, Gaulton KJ. An Integrated Map of Cell Type-Specific Gene Expression in Pancreatic Islets. Diabetes 2023; 72:1719-1728. [PMID: 37582230 PMCID: PMC10588282 DOI: 10.2337/db23-0130] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
Pancreatic islets consist of multiple cell types that produce hormones required for glucose homeostasis, and islet dysfunction is a major factor in type 1 and type 2 diabetes. Numerous studies have assessed transcription across individual cell types using single-cell assays; however, there is no canonical reference of gene expression in islet cell types that is also easily accessible for researchers to query and use in bioinformatics pipelines. Here we present an integrated map of islet cell type-specific gene expression from 192,203 cells from single-cell RNA sequencing of 65 donors without diabetes, donors who were type 1 diabetes autoantibody positive, donors with type 1 diabetes, and donors with type 2 diabetes from the Human Pancreas Analysis Program. We identified 10 distinct cell types, annotated subpopulations of several cell types, and defined cell type-specific marker genes. We tested differential expression within each cell type across disease states and identified 1,701 genes with significant changes in expression, with most changes observed in β-cells from donors with type 1 diabetes. To facilitate user interaction, we provide several single-cell visualization and reference mapping tools, as well as the open-access analytical pipelines used to create this reference. The results will serve as a valuable resource to investigators studying islet biology. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Ruth M. Elgamal
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA
| | - Parul Kudtarkar
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Rebecca L. Melton
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA
| | - Hannah M. Mummey
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA
| | - Paola Benaglio
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Mei-Lin Okino
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA
| | - Kyle J. Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| |
Collapse
|
25
|
Zhou X, Xu Z, You Y, Yang W, Feng B, Yang Y, Li F, Chen J, Gao H. Subcutaneous device-free islet transplantation. Front Immunol 2023; 14:1287182. [PMID: 37965322 PMCID: PMC10642112 DOI: 10.3389/fimmu.2023.1287182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disease, characterized by high blood sugar levels; it affects more than 500 million individuals worldwide. Type 1 diabetes mellitus (T1DM) is results from insufficient insulin secretion by islets; its treatment requires lifelong use of insulin injections, which leads to a large economic burden on patients. Islet transplantation may be a promising effective treatment for T1DM. Clinically, this process currently involves directly infusing islet cells into the hepatic portal vein; however, transplantation at this site often elicits immediate blood-mediated inflammatory and acute immune responses. Subcutaneous islet transplantation is an attractive alternative to islet transplantation because it is simpler, demonstrates lower surgical complication risks, and enables graft monitoring and removal. In this article, we review the current methods of subcutaneous device-free islet transplantation. Recent subcutaneous islet transplantation techniques with high success rate have involved the use of bioengineering technology and biomaterial cotransplantation-including cell and cell growth factor co-transplantation and hydrogel- or simulated extracellular matrix-wrapped subcutaneous co-transplantation. In general, current subcutaneous device-free islet transplantation modalities can simplify the surgical process and improve the posttransplantation graft survival rate, thus aiding effective T1DM management.
Collapse
Affiliation(s)
| | - Zhiran Xu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yanqiu You
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Wangrong Yang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - BingZheng Feng
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yuwei Yang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Fujun Li
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Jibing Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Hongjun Gao
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
26
|
Kahraman S, Shibue K, De Jesus DF, Kim H, Hu J, Manna D, Wagner B, Choudhary A, Kulkarni RN. Fluorescein-based sensors to purify human α-cells for functional and transcriptomic analyses. eLife 2023; 12:e85056. [PMID: 37732504 PMCID: PMC10567109 DOI: 10.7554/elife.85056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Pancreatic α-cells secrete glucagon, an insulin counter-regulatory peptide hormone critical for the maintenance of glucose homeostasis. Investigation of the function of human α-cells remains a challenge due to the lack of cost-effective purification methods to isolate high-quality α-cells from islets. Here, we use the reaction-based probe diacetylated Zinpyr1 (DA-ZP1) to introduce a novel and simple method for enriching live α-cells from dissociated human islet cells with ~95% purity. The α-cells, confirmed by sorting and immunostaining for glucagon, were cultured up to 10 days to form α-pseudoislets. The α-pseudoislets could be maintained in culture without significant loss of viability, and responded to glucose challenge by secreting appropriate levels of glucagon. RNA-sequencing analyses (RNA-seq) revealed that expression levels of key α-cell identity genes were sustained in culture while some of the genes such as DLK1, GSN, SMIM24 were altered in α-pseudoislets in a time-dependent manner. In conclusion, we report a method to sort human primary α-cells with high purity that can be used for downstream analyses such as functional and transcriptional studies.
Collapse
Affiliation(s)
- Sevim Kahraman
- Islet Cell and Regenerative Biology, Joslin Diabetes CenterBostonUnited States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonUnited States
| | - Kimitaka Shibue
- Islet Cell and Regenerative Biology, Joslin Diabetes CenterBostonUnited States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonUnited States
| | - Dario F De Jesus
- Islet Cell and Regenerative Biology, Joslin Diabetes CenterBostonUnited States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonUnited States
| | - Hyunki Kim
- Islet Cell and Regenerative Biology, Joslin Diabetes CenterBostonUnited States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonUnited States
| | - Jiang Hu
- Islet Cell and Regenerative Biology, Joslin Diabetes CenterBostonUnited States
| | - Debasish Manna
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and HarvardCambridgeUnited States
- Divisions of Renal Medicine and Engineering, Brigham and Women’s HospitalBostonUnited States
| | - Bridget Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and HarvardCambridgeUnited States
- Divisions of Renal Medicine and Engineering, Brigham and Women’s HospitalBostonUnited States
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes CenterBostonUnited States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
27
|
Nemati M, Ebrahimi Z, Karbalaei N, Dastghaib S, Khakshournia S, Sargazi M. In Vitro and In Vivo Improvement of Islet Quality and Transplantation Successes following Islet Treatment with Biomaterials in Diabetic Rats. J Diabetes Res 2023; 2023:1399917. [PMID: 37265573 PMCID: PMC10232112 DOI: 10.1155/2023/1399917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023] Open
Abstract
Background Loss of islet survival and function, caused by native niche disruption and oxidative stress induction during mechanical and enzymatic isolation, limits the effectiveness of islet transplantation. Reconstitution of islet microenvironment, vascularization, and decreased oxidative stress with biomaterials may improve islet quality and graft outcomes. We investigated effects of two biomaterials, platelet-rich plasma and pancreatic islets homogenate combination on islet recovery and quality by evaluating in vitro islet survival, secretory function, and oxidative stress parameters and assessing in vivo transplantation outcomes. Methods In vitro, islet viability and secretory function of isolated islets were assessed after 24 h and 72 h incubation with biomaterials. Also, oxidative stress markers were measured once after isolation and 24 h after incubation with biomaterials. For evaluating in vivo effects, cultured islets for 24 h were transplanted into subscapular space of diabetic rat kidney, and outcomes were analyzed by measuring serum glucose and insulin concentrations, glucose tolerance test, level of oxidative parameters, and pancreatic gene expression. Results Treating islets with biomaterials significantly increased their viability and secretory function, reduced MDA level, and elevate SOD and CAT activity. Decreased level of glucose and MDA improved insulin level, increased SOD activity, and also enhanced pdx1 and insulin gene expression in diabetic rats after islet transplantation. Conclusions Biomaterials used in the present study should be consider as beneficial materials for increasing islet transplantation outcome. These materials may hamper transplantation limitation to some extent.
Collapse
Affiliation(s)
- Marzieh Nemati
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ebrahimi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Narges Karbalaei
- Department of physiology, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Authophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Khakshournia
- Department of Biochemistry, Shiraz University of Medical Science, Shiraz, Iran
| | - Mojtaba Sargazi
- Department of physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Zaeifi D, Azarnia M. Promoting β-cells function by the recapitulation of in vivo microenvironmental differentiation signals. Cell Tissue Res 2023:10.1007/s00441-023-03773-7. [PMID: 37140683 DOI: 10.1007/s00441-023-03773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
The study aims to transdifferentiate rat bone marrow-derived mesenchymal stem cells (BM-MSCs) more efficiently into islet-like cells and encapsulate and transplant them with vital properties like stability, proliferation, and metabolic activity enhanced for the treatment of T1DM. Trans-differentiation of BM-MCs into islet-like cells induced by high glucose concentration combined with Nicotinamide, ꞵ-Mercaptoethanol, ꞵ-Cellulin, and IGF-1. Glucose challenge assays and gene expression profiles were used to determine functionality. Microencapsulation was performed using the vibrating nozzle encapsulator droplet method with a 1% alginate concentration. Encapsulated ꞵ-cells were cultured in a fluidized-bed bioreactor with 1850 μL/min fluid flow rates and a superficial velocity of 1.15 cm/min. The procedure was followed by transplanting transdifferentiated cells into the omentum of streptozotocin (STZ)-induced diabetic Wistar rats. Changes in weight, glucose, insulin, and C-peptide levels were monitored for 2 months after transplantation. PDX1, INS, GCG, NKx2.2, NKx6.1, and GLUT2 expression levels revealed the specificity of generated β-cells with higher viability (about 20%) and glucose sensitivity about twofold more. The encapsulated β-cells decreased the glucose levels in STZ-induced rats significantly (P < 0.05) 1 week after transplantation. Also, the weight and levels of insulin and C-peptide reached the control group. In contrast to the treated, the sham group displayed a consistent decline in weight and died when loss reached > 20% at day ~ 55. The coated cells secrete significantly higher amounts of insulin in response to glucose concentration changes. Enhanced viability and functionality of β-cells can be achieved through differentiation and culturing, a promising approach toward insulin therapy alternatives.
Collapse
Affiliation(s)
- Davood Zaeifi
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahnaz Azarnia
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
29
|
Hu Q, Hu X, Shi Y, Liang L, Zhu J, Zhao S, Wang Y, Wu Z, Wang F, Zhou F, Yang Y. Heterogeneous tissue construction by on-demand bubble-assisted acoustic patterning. LAB ON A CHIP 2023; 23:2206-2216. [PMID: 37006165 DOI: 10.1039/d3lc00122a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Highly heterogeneous structures are closely related to the realization of the tissue functions of living organisms. However, precisely controlling the assembly of heterogeneous structures is still a crucial challenge. This work presents an on-demand bubble-assisted acoustic method for active cell patterning to achieve high-precision heterogeneous structures. Active cell patterning is achieved by the combined effect of acoustic radiation forces and microstreaming around oscillating bubble arrays. On-demand bubble arrays allow flexible construction of cell patterns with a precision of up to 45 μm. As a typical example, the in vitro model of hepatic lobules, composed of patterned endothelial cells and hepatic parenchymal cells, was constructed and cultured for 5 days. The good performance of urea and albumin secretion, enzymatic activity and good proliferation of both cells prove the feasibility of this technique. Overall, this bubble-assisted acoustic approach provides a simple and efficient strategy for on-demand large-area tissue construction, with considerable potential for different tissue model fabrication.
Collapse
Affiliation(s)
- Qinghao Hu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yang Shi
- Institute of Nanophotonics, Jinan University, Guangzhou 510632, China
| | - Li Liang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Jiaomeng Zhu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Shukun Zhao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Yifan Wang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Zezheng Wu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
30
|
Arble DM, Hutch CR, Hafner H, Stelmak D, Leix K, Sorrell J, Pressler JW, Gregg B, Sandoval DA. The role of preproglucagon peptides in regulating β-cell morphology and responses to streptozotocin-induced diabetes. Am J Physiol Endocrinol Metab 2023; 324:E217-E225. [PMID: 36652401 PMCID: PMC9970646 DOI: 10.1152/ajpendo.00152.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
Insulin secretion from β-cells is tightly regulated by local signaling from preproglucagon (Gcg) products from neighboring α-cells. Physiological paracrine signaling within the microenvironment of the β-cell is altered after metabolic stress, such as high-fat diet or the β-cell toxin, streptozotocin (STZ). Here, we examined the role and source of Gcg peptides in β-cell function and in response to STZ-induced hyperglycemia. We used whole body Gcg null (GcgNull) mice and mice with Gcg expression either specifically within the pancreas (GcgΔPanc) or the intestine (GcgΔIntest). With lower doses of STZ exposure, insulin levels were greater and glucose levels were lower in GcgNull mice compared with wild-type mice. When Gcg was functional only in the intestine, plasma glucagon-like peptide-1 (GLP-1) levels were fully restored but these mice did not have any additional protection from STZ-induced diabetes. Pancreatic Gcg reactivation normalized the hyperglycemic response to STZ. In animals not treated with STZ, GcgNull mice had increased pancreas mass via both α- and β-cell hyperplasia and reactivation of Gcg in the intestine normalized β- but not α-cell mass, whereas pancreatic reactivation normalized both β- and α-cell mass. GcgNull and GcgΔIntest mice maintained higher β-cell mass after treatment with STZ compared with control and GcgΔPanc mice. Although in vivo insulin response to glucose was normal, global lack of Gcg impaired glucose-stimulated insulin secretion in isolated islets. Congenital replacement of Gcg either in the pancreas or intestine normalized glucose-stimulated insulin secretion. Interestingly, mice that had intestinal Gcg reactivated in adulthood had impaired insulin response to KCl. We surmise that the expansion of β-cell mass in the GcgNull mice compensated for decreased individual β-cell insulin secretion, which is sufficient to normalize glucose under physiological conditions and conferred some protection after STZ-induced diabetes.NEW & NOTEWORTHY We examined the role of Gcg on β-cell function under normal and high glucose conditions. GcgNull mice had decreased glucose-stimulated insulin secretion, increased β-cell mass, and partial protection against STZ-induced hyperglycemia. Expression of Gcg within the pancreas normalized these endpoints. Intestinal expression of Gcg only normalized β-cell mass and glucose-stimulated insulin secretion. Increased β-cell mass in GcgNull mice likely compensated for decreased insulin secretion normalizing physiological glucose levels and conferring some protection after STZ-induced diabetes.
Collapse
Affiliation(s)
- Deanna M Arble
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States
| | - Chelsea R Hutch
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Hannah Hafner
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, Michigan, United States
| | - Daria Stelmak
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Kyle Leix
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Joyce Sorrell
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - Joshua W Pressler
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - Brigid Gregg
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, Michigan, United States
| | - Darleen A Sandoval
- Department of Pediatrics, Section of Nutrition and Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
31
|
Elgamal RM, Kudtarkar P, Melton RL, Mummey HM, Benaglio P, Okino ML, Gaulton KJ. An integrated map of cell type-specific gene expression in pancreatic islets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526994. [PMID: 36778506 PMCID: PMC9915747 DOI: 10.1101/2023.02.03.526994] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pancreatic islets are comprised of multiple endocrine cell types that produce hormones required for glucose homeostasis, and islet dysfunction is a major factor in the development of type 1 and type 2 diabetes (T1D, T2D). Numerous studies have generated gene expression profiles in individual islet cell types using single cell assays. However, there is no canonical reference of gene expression in islet cell types in both health and disease that is also easily accessible for researchers to access, query, and use in bioinformatics pipelines. Here we present an integrated reference map of islet cell type-specific gene expression from 192,203 cells derived from single cell RNA-seq assays of 65 non-diabetic, T1D autoantibody positive (Aab+), T1D, and T2D donors from the Human Pancreas Analysis Program. We identified 10 endocrine and non-endocrine cell types as well as sub-populations of several cell types, and defined sets of marker genes for each cell type and sub-population. We tested for differential expression within each cell type in T1D Aab+, T1D, and T2D states, and identified 1,701 genes with significant changes in expression in any cell type. Most changes were observed in beta cells in T1D, and, by comparison, there were almost no genes with changes in T1D Aab+. To facilitate user interaction with this reference, we provide the data using several single cell visualization and reference mapping tools as well as open-access analytical pipelines used to create this reference. The results will serve as a valuable resource to investigators studying islet biology and diabetes.
Collapse
Affiliation(s)
- Ruth M Elgamal
- Biomedical Sciences graduate program, University of California San Diego, La Jolla CA
| | - Parul Kudtarkar
- Department of Pediatrics, University of California San Diego, La Jolla CA
| | - Rebecca L Melton
- Biomedical Sciences graduate program, University of California San Diego, La Jolla CA
| | - Hannah M Mummey
- Bioinformatics and Systems Biology graduate program, University of California San Diego, La Jolla CA
| | - Paola Benaglio
- Department of Pediatrics, University of California San Diego, La Jolla CA
| | - Mei-Lin Okino
- Biomedical Sciences graduate program, University of California San Diego, La Jolla CA
| | - Kyle J Gaulton
- Department of Pediatrics, University of California San Diego, La Jolla CA
| |
Collapse
|
32
|
Paris F, Marrazzo P, Pizzuti V, Marchionni C, Rossi M, Michelotti M, Petrovic B, Ciani E, Simonazzi G, Pession A, Bonsi L, Alviano F. Characterization of Perinatal Stem Cell Spheroids for the Development of Cell Therapy Strategy. Bioengineering (Basel) 2023; 10:bioengineering10020189. [PMID: 36829683 PMCID: PMC9952228 DOI: 10.3390/bioengineering10020189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a complex metabolic disease characterized by a massive loss of insulin-producing cells due to an autoimmune reaction. Currently, daily subcutaneous administration of exogenous insulin is the only effective treatment. Therefore, in recent years considerable interest has been given to stem cell therapy and in particular to the use of three-dimensional (3D) cell cultures to better reproduce in vivo conditions. The goal of this study is to provide a reliable cellular model that could be investigated for regenerative medicine applications for the replacement of insulin-producing cells in T1DM. To pursue this aim we create a co-culture spheroid of amniotic epithelial cells (AECs) and Wharton's jelly mesenchymal stromal cells (WJ-MSCs) in a one-to-one ratio. The resulting co-culture spheroids were analyzed for viability, extracellular matrix production, and hypoxic state in both early- and long-term cultures. Our results suggest that co-culture spheroids are stable in long-term culture and are still viable with a consistent extracellular matrix production evaluated with immunofluorescence staining. These findings suggest that this co-culture may potentially be differentiated into endo-pancreatic cells for regenerative medicine applications in T1DM.
Collapse
Affiliation(s)
- Francesca Paris
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Pasquale Marrazzo
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Correspondence: (P.M.); (L.B.)
| | - Valeria Pizzuti
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Cosetta Marchionni
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Maura Rossi
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Martina Michelotti
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Biljana Petrovic
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| | - Giuliana Simonazzi
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Obstetrics Unit, Department of Obstetrics and Gynecology, IRCCS Azienda Ospedaliero-Universitaria Sant’Orsola, 40138 Bologna, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Laura Bonsi
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Correspondence: (P.M.); (L.B.)
| | - Francesco Alviano
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
33
|
Abstract
BACKGROUND The lack of a suitable transplantation site has become a bottleneck restricting the development of islet transplantation. METHODS In this study, for the first time, a prevascularized sinus tract (PST) for islet transplantation was constructed in a mouse model by temporarily embedding a 4× silk thread between the liver surface and the attached decellularized human amniotic membrane. After which, the characteristics of the PST and the function of the islet graft within the PST were evaluated. RESULTS The results showed that PST was lined with granulation tissue, the blood vessel density of the local tissue increased, and proangiogenic proteins were upregulated, which mimics the microenvironment of the islets in the pancreas to a certain extent. Transplantation of ~200 syngeneic islets into the PST routinely reversed the hyperglycemia of the recipient mice and maintained euglycemia for >100 d until the islet grafts were retrieved. The islet grafts within the PST achieved better results to those in the nonprevascularized control groups and comparable results to those under the kidney capsule with respect to glycemic control and glucose tolerance. CONCLUSIONS By attaching a decellularized human amniotic membrane to the surface of mouse liver and temporarily embedding a 4× silk thread, the PST formed on the liver surface has a favorable local microenvironment and is a potential clinical islet transplantation site.
Collapse
|
34
|
Fonseca LM, Lebreton F, Wassmer CH, Berishvili E. Generation of Insulin-Producing Multicellular Organoids. Methods Mol Biol 2022; 2592:37-60. [PMID: 36507984 DOI: 10.1007/978-1-0716-2807-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clinical islet transplantation (CIT) is an established noninvasive treatment for type I diabetes (T1D) and has demonstrated improved glycemic control, preventing the occurrence of severe hypoglycemia. However, CIT has several limitations, such as the need for multiple donors, lifelong immunosuppression, and suboptimal long-term graft function. Most of the transplanted islets are lost due to inflammation, ischemic damage, and delayed revascularization.Generation of organoids have gained increasing interest in regenerative medicine in recent years. In the context of beta-cell replacement, it offers a possibility to address limitations of CIT by allowing to produce uniform organoids from single or multiple cell types facilitating revascularization and anti-inflammatory and/or immunomodulatory protection. We have previously generated multicellular insulin-secreting organoids composed of islet cells and the human amniotic epithelial cells (hAECs). These 3D insulin-secreting structures demonstrated improved viability and function both in vitro and in vivo. Here we detail a stepwise methodology to generate insulin-secreting organoids using two different methods. In addition, quality assessment in vitro tests are also described.
Collapse
Affiliation(s)
- Laura Mar Fonseca
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland.,Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Fanny Lebreton
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland.,Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | | | - Ekaterine Berishvili
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland. .,Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland. .,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland. .,Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia.
| |
Collapse
|
35
|
RNA binding protein HuD mediates the crosstalk between β cells and islet endothelial cells by the regulation of Endostatin and Serpin E1 expression. Cell Death Dis 2022; 13:1019. [PMID: 36470872 PMCID: PMC9722926 DOI: 10.1038/s41419-022-05465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
RNA binding protein HuD plays essential roles in gene expression by regulating RNA metabolism, and its dysregulation is involved in the pathogenesis of several diseases, including tumors, neurodegenerative diseases, and diabetes. Here, we explored HuD-mediated differential expression of secretory proteins in mouse insulinoma βTC6 cells using a cytokine array. Endostatin and Serpin E1 that play anti-angiogenic roles were identified as differentially expressed proteins by HuD. HuD knockdown increased the expression of α chain of collagen XVIII (Col18a1), a precursor form of endostatin, and Serpin E1 by associating with the 3'-untranslated regions (UTRs) of Col18a1 and Serpin E1 mRNAs. Reporter analysis revealed that HuD knockdown increased the translation of EGFP reporters containing 3'UTRs of Col18a1 and Serpin E1 mRNAs, which suggests the role of HuD as a translational repressor. Co-cultures of βTC6 cells and pancreatic islet endothelial MS1 cells were used to assess the crosstalk between β cells and islet endothelial cells, and the results showed that HuD downregulation in βTC6 cells inhibited the growth and migration of MS1 cells. Ectopic expression of HuD decreased Col18a1 and Serpin E1 expression, while increasing the markers of islet vascular cells in the pancreas of db/db mice. Taken together, these results suggest that HuD has the potential to regulate the crosstalk between β cells and islet endothelial cells by regulating Endostatin and Serpin E1 expression, thereby contributing to the maintenance of homeostasis in the islet microenvironment.
Collapse
|
36
|
Berney T, Wassmer CH, Lebreton F, Bellofatto K, Fonseca LM, Bignard J, Hanna R, Peloso A, Berishvili E. From islet of Langerhans transplantation to the bioartificial pancreas. Presse Med 2022; 51:104139. [PMID: 36202182 DOI: 10.1016/j.lpm.2022.104139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Type 1 diabetes is a disease resulting from autoimmune destruction of the insulin-producing beta cells in the pancreas. When type 1 diabetes develops into severe secondary complications, in particular end-stage nephropathy, or life-threatening severe hypoglycemia, the best therapeutic approach is pancreas transplantation, or more recently transplantation of the pancreatic islets of Langerhans. Islet transplantation is a cell therapy procedure, that is minimally invasive and has a low morbidity, but does not display the same rate of functional success as the more invasive pancreas transplantation because of suboptimal engraftment and survival. Another issue is that pancreas or islet transplantation (collectively known as beta cell replacement therapy) is limited by the shortage of organ donors and by the need for lifelong immunosuppression to prevent immune rejection and recurrence of autoimmunity. A bioartificial pancreas is a construct made of functional, insulin-producing tissue, embedded in an anti-inflammatory, immunomodulatory microenvironment and encapsulated in a perm-selective membrane allowing glucose sensing and insulin release, but isolating from attacks by cells of the immune system. A successful bioartificial pancreas would address the issues of engraftment, survival and rejection. Inclusion of unlimited sources of insulin-producing cells, such as xenogeneic porcine islets or stem cell-derived beta cells would further solve the problem of organ shortage. This article reviews the current status of clinical islet transplantation, the strategies aiming at developing a bioartificial pancreas, the clinical trials conducted in the field and the perspectives for further progress.
Collapse
Affiliation(s)
- Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland; Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland; Faculty Diabetes Center, University of Geneva School of Medicine, Geneva, Switzerland; Department of Surgery, School of Medicine and Natural Sciences, Ilia State University, Tbilisi, Georgia
| | - Charles H Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland; Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland
| | - Kevin Bellofatto
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland
| | - Laura Mar Fonseca
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland; Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland
| | - Juliette Bignard
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland
| | - Reine Hanna
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland
| | - Andrea Peloso
- Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland; Faculty Diabetes Center, University of Geneva School of Medicine, Geneva, Switzerland; Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia.
| |
Collapse
|
37
|
Hou L, Peng X, Wang R, Wang Y, Li H, Zhang H, Zhang Y, Zhang Z. Oral nano-formulation improves pancreatic islets dysfunction via lymphatic transport for antidiabetic treatment. Acta Pharm Sin B 2022. [PMID: 37521855 PMCID: PMC10373096 DOI: 10.1016/j.apsb.2022.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) therapy is facing the challenges of long-term medication and gradual destruction of pancreatic islet β-cells. Therefore, it is timely to develop oral prolonged action formulations to improve compliance, while restoring β-cells survival and function. Herein, we designed a simple nanoparticle with enhanced oral absorption and pancreas accumulation property, which combined apical sodium-dependent bile acid transporter-mediated intestinal uptake and lymphatic transportation. In this system, taurocholic acid (TCA) modified poly(lactic-co-glycolic acid) (PLGA) was employed to achieve pancreas location, hydroxychloroquine (HCQ) was loaded to execute therapeutic efficacy, and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) was introduced as stabilizer together with synergist (PLGA-TCA/DLPC/HCQ). In vitro and in vivo results have proven that PLGA-TCA/DLPC/HCQ reversed the pancreatic islets damage and dysfunction, thus impeding hyperglycemia progression and restoring systemic glucose homeostasis via only once administration every day. In terms of mechanism PLGA-TCA/DLPC/HCQ ameliorated oxidative stress, remodeled the inflammatory pancreas microenvironment, and activated PI3K/AKT signaling pathway without obvious toxicity. This strategy not only provides an oral delivery platform for increasing absorption and pancreas targetability but also opens a new avenue for thorough T2DM treatment.
Collapse
|
38
|
Ellison ST, Duraivel S, Subramaniam V, Hugosson F, Yu B, Lebowitz JJ, Khoshbouei H, Lele TP, Martindale MQ, Angelini TE. Cellular micromasonry: biofabrication with single cell precision. SOFT MATTER 2022; 18:8554-8560. [PMID: 36350122 DOI: 10.1039/d2sm01013e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In many tissues, cell type varies over single-cell length-scales, creating detailed heterogeneities fundamental to physiological function. To gain understanding of the relationship between tissue function and detailed structure, and eventually to engineer structurally and physiologically accurate tissues, we need the ability to assemble 3D cellular structures having the level of detail found in living tissue. Here we introduce a method of 3D cell assembly having a level of precision finer than the single-cell scale. With this method we create detailed cellular patterns, demonstrating that cell type can be varied over the single-cell scale and showing function after their assembly.
Collapse
Affiliation(s)
- S Tori Ellison
- Department of Material Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA.
| | - Senthilkumar Duraivel
- Department of Material Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA.
| | - Vignesh Subramaniam
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Fredrik Hugosson
- The Whitney Laboratory for Marine Bioscience, St. Augustine, Florida 32080, USA
| | - Bo Yu
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Joseph J Lebowitz
- Department of Neuroscience, University of Florida, Gainesville, Florida 32611, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, Florida 32611, USA
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
- Department of Translational Medical Sciences, Texas A&M University, Houston, Texas 77843, USA
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, St. Augustine, Florida 32080, USA
| | - Thomas E Angelini
- Department of Material Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA.
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
39
|
Desmoglein-2 is important for islet function and β-cell survival. Cell Death Dis 2022; 13:911. [PMID: 36309486 PMCID: PMC9617887 DOI: 10.1038/s41419-022-05326-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022]
Abstract
Type 1 diabetes is a complex disease characterized by the lack of endogenous insulin secreted from the pancreatic β-cells. Although β-cell targeted autoimmune processes and β-cell dysfunction are known to occur in type 1 diabetes, a complete understanding of the cell-to-cell interactions that support pancreatic function is still lacking. To characterize the pancreatic endocrine compartment, we studied pancreata from healthy adult donors and investigated a single cell surface adhesion molecule, desmoglein-2 (DSG2). Genetically-modified mice lacking Dsg2 were examined for islet cell mass, insulin production, responses to glucose, susceptibility to a streptozotocin-induced mouse model of hyperglycaemia, and ability to cure diabetes in a syngeneic transplantation model. Herein, we have identified DSG2 as a previously unrecognized adhesion molecule that supports β-cells. Furthermore, we reveal that DSG2 is within the top 10 percent of all genes expressed by human pancreatic islets and is expressed by the insulin-producing β-cells but not the somatostatin-producing δ-cells. In a Dsg2 loss-of-function mice (Dsg2lo/lo), we observed a significant reduction in the number of pancreatic islets and islet size, and consequently, there was less total insulin content per islet cluster. Dsg2lo/lo mice also exhibited a reduction in blood vessel barrier integrity, an increased incidence of streptozotocin-induced diabetes, and islets isolated from Dsg2lo/lo mice were more susceptible to cytokine-induced β-cell apoptosis. Following transplantation into diabetic mice, islets isolated from Dsg2lo/lo mice were less effective than their wildtype counterparts at curing diabetes. In vitro assays using the Beta-TC-6 murine β-cell line suggest that DSG2 supports the actin cytoskeleton as well as the release of cytokines and chemokines. Taken together, our study suggests that DSG2 is an under-appreciated regulator of β-cell function in pancreatic islets and that a better understanding of this adhesion molecule may provide new opportunities to combat type 1 diabetes.
Collapse
|
40
|
Pignatelli C, Campo F, Neroni A, Piemonti L, Citro A. Bioengineering the Vascularized Endocrine Pancreas: A Fine-Tuned Interplay Between Vascularization, Extracellular-Matrix-Based Scaffold Architecture, and Insulin-Producing Cells. Transpl Int 2022; 35:10555. [PMID: 36090775 PMCID: PMC9452644 DOI: 10.3389/ti.2022.10555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Intrahepatic islet transplantation is a promising β-cell replacement strategy for the treatment of type 1 diabetes. Instant blood-mediated inflammatory reactions, acute inflammatory storm, and graft revascularization delay limit islet engraftment in the peri-transplant phase, hampering the success rate of the procedure. Growing evidence has demonstrated that islet engraftment efficiency may take advantage of several bioengineering approaches aimed to recreate both vascular and endocrine compartments either ex vivo or in vivo. To this end, endocrine pancreas bioengineering is an emerging field in β-cell replacement, which might provide endocrine cells with all the building blocks (vascularization, ECM composition, or micro/macro-architecture) useful for their successful engraftment and function in vivo. Studies on reshaping either the endocrine cellular composition or the islet microenvironment have been largely performed, focusing on a single building block element, without, however, grasping that their synergistic effect is indispensable for correct endocrine function. Herein, the review focuses on the minimum building blocks that an ideal vascularized endocrine scaffold should have to resemble the endocrine niche architecture, composition, and function to foster functional connections between the vascular and endocrine compartments. Additionally, this review highlights the possibility of designing bioengineered scaffolds integrating alternative endocrine sources to overcome donor organ shortages and the possibility of combining novel immune-preserving strategies for long-term graft function.
Collapse
Affiliation(s)
- Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Campo
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Neroni
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
41
|
A Prevascularized Sinus Tract on the Liver Surface for Islet Transplantation. Transplantation 2022. [DOI: 10.1097/10.1097/tp.0000000000004236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Collares-Buzato CB, Carvalho CP. Is type 2 diabetes mellitus another intercellular junction-related disorder? Exp Biol Med (Maywood) 2022; 247:743-755. [PMID: 35466731 DOI: 10.1177/15353702221090464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) is nowadays a worldwide epidemic and has become a major challenge for health systems around the world. It is a multifactorial disorder, characterized by a chronic state of hyperglycemia caused by defects in the production as well as in the peripheral action of insulin. This minireview highlights the experimental and clinical evidence that supports the novel idea that intercellular junctions (IJs)-mediated cell-cell contacts play a role in the pathogenesis of T2D. It focuses on IJs repercussion for endocrine pancreas, intestinal barrier, and kidney dysfunctions that contribute to the onset and evolution of this metabolic disorder.
Collapse
Affiliation(s)
- Carla B Collares-Buzato
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, CEP 13083-970, Brazil
| | - Carolina Pf Carvalho
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, CEP 11015-020, Brazil
| |
Collapse
|
43
|
Laminin matrix regulates beta-cell FGFR5 expression to enhance glucose-stimulated metabolism. Sci Rep 2022; 12:6110. [PMID: 35414066 PMCID: PMC9005713 DOI: 10.1038/s41598-022-09804-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
We previously showed that pancreatic beta-cells plated on laminin matrix express reduced levels of FGFR1, a receptor linked to beta-cell metabolism and differentiation. Due to recent evidence that adult beta-cells also express FGFR5, a co-receptor for FGFR1, we now aim to determine the effect of laminin on FGFR5 expression and consequent effects on beta-cell metabolism. Using a genetically encoded sensor for NADPH/NADP+ redox state (Apollo-NADP+), we show overexpression of FGFR5 enhances glucose-stimulated NADPH metabolism in beta-cell lines as well as mouse and human beta-cells. This enhanced response was accompanied by increased insulin secretion as well as increased expression of transcripts for glycolytic enzymes (Glucokinase/GCK, PKM2) and the functional maturity marker Urocortin 3 (UCN3). Culturing beta-cells on laminin matrix also stimulated upregulation of endogenous FGFR5 expression, and similarly enhanced beta-cell glucose-stimulated NADPH-metabolism as well as GCK and PKM2 transcript expression. The metabolism and transcript responses triggered by laminin were disrupted by R5ΔC, a truncated receptor isoform that inhibits the FGFR5/FGFR1 signaling complex. Collectively these data reveal that beta-cells respond to laminin by increasing FGFR5 expression to enhance beta-cell glucose metabolism.
Collapse
|
44
|
Zou W, Liu B, Wang Y, Shi F, Pang S. Metformin attenuates high glucose-induced injury in islet microvascular endothelial cells. Bioengineered 2022; 13:4385-4396. [PMID: 35139776 PMCID: PMC8973819 DOI: 10.1080/21655979.2022.2033411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
As one of the most frequently prescribed antidiabetic drugs, metformin can lower glucose levels, improve insulin resistance manage body weight. However, the effect of metformin on islet microcirculation remains unclear. In the present study, to explore the effect of metformin on islet endothelial cells and investigated the underlying mechanism, we assessed the effects of metformin on islet endothelial cell survival, proliferation, oxidative stress and apoptosis. Our results suggest that metformin stimulates the proliferation of pancreatic islet endothelial cells and inhibits the apoptosis and oxidative stress caused by high glucose levels. By activating farnesoid X receptor (FXR), metformin increases the expression of vascular endothelial growth factor-A (VEGF-A) and endothelial nitric oxide synthase (eNOS), improves the production of nitric oxide (NO) and decreases the production of ROS. After the inhibition of FXR or VEGF-A, all of the effects disappeared. Thus, metformin appears to regulate islet microvascular endothelial cell (IMEC) proliferation, apoptosis and oxidative stress by activating the FXR/VEGF-A/eNOS pathway. These findings provide a new mechanism underlying the islet-protective effect of metformin.
Collapse
Affiliation(s)
- Wenyu Zou
- Department of endocrinologyEndocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bingkun Liu
- Department of Cardiology, Yidu Central Hospital of Weifang, Weifang, China
| | - Yulu Wang
- Department of Internal Medicine, Weifang Medical University, Weifang, China
| | - Fangbin Shi
- Department of endocrinologyEndocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuguang Pang
- Department of endocrinologyEndocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
45
|
Shcheglova E, Blaszczyk K, Borowiak M. Mitogen Synergy: An Emerging Route to Boosting Human Beta Cell Proliferation. Front Cell Dev Biol 2022; 9:734597. [PMID: 35155441 PMCID: PMC8829426 DOI: 10.3389/fcell.2021.734597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Decreased number and function of beta cells are a key aspect of diabetes mellitus (diabetes), a disease that remains an onerous global health problem. Means of restoring beta cell mass are urgently being sought as a potential cure for diabetes. Several strategies, such as de novo beta cell derivation via pluripotent stem cell differentiation or mature somatic cell transdifferentiation, have yielded promising results. Beta cell expansion is another promising strategy, rendered challenging by the very low proliferative capacity of beta cells. Many effective mitogens have been identified in rodents, but the vast majority do not have similar mitogenic effects in human beta cells. Extensive research has led to the identification of several human beta cell mitogens, but their efficacy and specificity remain insufficient. An approach based on the simultaneous application of several mitogens has recently emerged and can yield human beta cell proliferation rates of up to 8%. Here, we discuss recent advances in restoration of the beta cell population, focusing on mitogen synergy, and the contribution of RNA-sequencing (RNA-seq) to accelerating the elucidation of signaling pathways in proliferating beta cells and the discovery of novel mitogens. Together, these approaches have taken beta cell research up a level, bringing us closer to a cure for diabetes.
Collapse
Affiliation(s)
- Ekaterina Shcheglova
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Katarzyna Blaszczyk
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Malgorzata Borowiak, ;
| |
Collapse
|
46
|
Okajima Y, Matsuzaka T, Miyazaki S, Motomura K, Ohno H, Sharma R, Shimura T, Istiqamah N, Han SI, Mizunoe Y, Osaki Y, Iwasaki H, Yatoh S, Suzuki H, Sone H, Miyamoto T, Aita Y, Takeuchi Y, Sekiya M, Yahagi N, Nakagawa Y, Tomita T, Shimano H. Morphological and functional adaptation of pancreatic islet blood vessels to insulin resistance is impaired in diabetic db/db mice. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166339. [PMID: 35017029 DOI: 10.1016/j.bbadis.2022.166339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/07/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022]
Abstract
The pancreatic islet vasculature is of fundamental importance to the β-cell response to obesity-associated insulin resistance. To explore islet vascular alterations in the pathogenesis of type 2 diabetes, we evaluated two insulin resistance models: ob/ob mice, which sustain large β-cell mass and hyperinsulinemia, and db/db mice, which progress to diabetes due to secondary β-cell compensation failure for insulin secretion. Time-dependent changes in islet vasculature and blood flow were investigated using tomato lectin staining and in vivo live imaging. Marked islet capillary dilation was observed in ob/ob mice, but this adaptive change was blunted in db/db mice. Islet blood flow volume was augmented in ob/ob mice, whereas it was reduced in db/db mice. The protein concentrations of total and phosphorylated endothelial nitric oxide synthase (eNOS) at Ser1177 were increased in ob/ob islets, while they were diminished in db/db mice, indicating decreased eNOS activity. This was accompanied by an increased retention of advanced glycation end-products in db/db blood vessels. Amelioration of diabetes by Elovl6 deficiency involved a restoration of capillary dilation, blood flow, and eNOS phosphorylation in db/db islets. Our findings suggest that the disability of islet capillary dilation due to endothelial dysfunction impairs local islet blood flow, which may play a role in the loss of β-cell function and further exacerbate type 2 diabetes.
Collapse
Affiliation(s)
- Yuka Okajima
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Shun Miyazaki
- Timelapse Vision Inc., 5-23-11 Honcho, Shiki, Saitama 353-0004, Japan
| | - Kaori Motomura
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroshi Ohno
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Rahul Sharma
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takuya Shimura
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Nurani Istiqamah
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Song-Iee Han
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuhei Mizunoe
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshinori Osaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hitoshi Iwasaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shigeru Yatoh
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroaki Suzuki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hirohito Sone
- Department of Internal Medicine, Faculty of Medicine, Niigata University, 1-754 Asahimachi, Niigata 951-8510, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuichi Aita
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshinori Takeuchi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Motohiro Sekiya
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Naoya Yahagi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Tsutomu Tomita
- Timelapse Vision Inc., 5-23-11 Honcho, Shiki, Saitama 353-0004, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Life Science Center of Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), 1-7-1, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
47
|
Li G, Sun J, Zhang J, Lv Y, Liu D, Zhu X, Qi L, Chen Z, Ye Z, Su X, Li L. Identification of Inflammation-Related Biomarkers in Diabetes of the Exocrine Pancreas With the Use of Weighted Gene Co-Expression Network Analysis. Front Endocrinol (Lausanne) 2022; 13:839865. [PMID: 35498402 PMCID: PMC9046596 DOI: 10.3389/fendo.2022.839865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes of the exocrine pancreas (DEP), also commonly described as pancreatogenic diabetes mellitus, is a type of diabetes secondary to abnormalities in pancreatic or exocrine secretion of the pancreas. However, its pathogenesis is not yet known. The aim of this article was to explore the biomarkers of DEP and their potential molecular mechanisms. Based on GSE76896 dataset, which was acquired from Gene Expression Omnibus (GEO), we identified 373 genes by weighted gene co-expression network analysis (WGCNA) and differential expression analysis. In addition, protein-protein interaction (PPI) network analysis and cytoHubba were used to screen potential hub genes. Five hub genes were determined, comprising Toll-like receptor 4 (TLR4), ITGAM, ITGB2, PTPRC, and CSF1R. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways suggested macrophage activation and Toll-like receptor signaling pathway as important pathophysiological features of DEP. CIBERSORT suggested that TLR4 may regulate the immune pathway via macrophages. Next, we validated the expression and receiver operating characteristic curve (ROC) of the hub genes using the GSE164416 dataset. In addition, we used miRNet to predict the target miRNAs of hub genes and intersected them with common miRNAs in diabetes from the Human MicroRNA Disease Database (HMDD), which was used to propose a possible mechanistic model for DEP. The miRNA-mRNA network showed that has-miR-155-5p/has-miR-27a-3p/has-miR-21-5p-TLR4 might lead to TLR4 signaling pathway activation in DEP. In conclusion, we identified five hub genes, namely, TLR4, ITGAM, ITGB2, PTPRC, and CSF1R, as biomarkers to aid in the diagnosis of DEP and conducted an in-depth study of the pathogenesis of DEP at the genetic level.
Collapse
Affiliation(s)
- Guoqing Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jinfang Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jun Zhang
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yingqi Lv
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Dechen Liu
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, China
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiangyun Zhu
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Liang Qi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhiwei Chen
- Department of Endocrinology, Hunan Provincial People’s Hospital, First Affiliated Hospital of Hunan Normal University, Hunan, China
| | - Zheng Ye
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xianghui Su
- Department of Endocrinology, Changji Branch, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
- *Correspondence: Xianghui Su, ; Ling Li,
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, China
- *Correspondence: Xianghui Su, ; Ling Li,
| |
Collapse
|
48
|
Langlois A, Dumond A, Vion J, Pinget M, Bouzakri K. Crosstalk Communications Between Islets Cells and Insulin Target Tissue: The Hidden Face of Iceberg. Front Endocrinol (Lausanne) 2022; 13:836344. [PMID: 35185804 PMCID: PMC8851682 DOI: 10.3389/fendo.2022.836344] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
The regulation of insulin secretion is under control of a complex inter-organ/cells crosstalk involving various metabolites and/or physical connections. In this review, we try to illustrate with current knowledge how β-cells communicate with other cell types and organs in physiological and pathological contexts. Moreover, this review will provide a better understanding of the microenvironment and of the context in which β-cells exist and how this can influence their survival and function. Recent studies showed that β-cell insulin secretion is regulated also by a direct and indirect inter-organ/inter-cellular communication involving various factors, illustrating the idea of "the hidden face of the iceberg". Moreover, any disruption on the physiological communication between β-cells and other cells or organs can participate on diabetes onset. Therefore, for new anti-diabetic treatments' development, it is necessary to consider the entire network of cells and organs involved in the regulation of β-cellular function and no longer just β-cell or pancreatic islet alone. In this context, we discuss here the intra-islet communication, the β-cell/skeletal muscle, β-cell/adipose tissue and β-cell/liver cross talk.
Collapse
|
49
|
Kim M, Jang J. Construction of 3D hierarchical tissue platforms for modeling diabetes. APL Bioeng 2021; 5:041506. [PMID: 34703970 PMCID: PMC8530538 DOI: 10.1063/5.0055128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most serious systemic diseases worldwide, and the majority of DM patients face severe complications. However, many of underlying disease mechanisms related to these complications are difficult to understand with the use of currently available animal models. With the urgent need to fundamentally understand DM pathology, a variety of 3D biomimetic platforms have been generated by the convergence of biofabrication and tissue engineering strategies for the potent drug screening platform of pre-clinical research. Here, we suggest key requirements for the fabrication of physiomimetic tissue models in terms of recapitulating the cellular organization, creating native 3D microenvironmental niches for targeted tissue using biomaterials, and applying biofabrication technologies to implement tissue-specific geometries. We also provide an overview of various in vitro DM models, from a cellular level to complex living systems, which have been developed using various bioengineering approaches. Moreover, we aim to discuss the roadblocks facing in vitro tissue models and end with an outlook for future DM research.
Collapse
Affiliation(s)
- Myungji Kim
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, 77 Cheongam-ro, Namgu, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Jinah Jang
- Author to whom correspondence should be addressed:
| |
Collapse
|
50
|
Mukhuty A, Fouzder C, Kundu R. Fetuin-A secretion from β-cells leads to accumulation of macrophages in islets, aggravates inflammation and impairs insulin secretion. J Cell Sci 2021; 134:272470. [PMID: 34643217 DOI: 10.1242/jcs.258507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Elevated fetuin-A levels, chemokines and islet-resident macrophages are crucial factors associated with obesity-mediated type 2 diabetes (T2D). Here, the aim of the study was to investigate the effect of MIN6 (a mouse insulinoma cell line)-derived fetuin-A (also known as AHSG) in macrophage polarization and decipher the effect of M1 type pro-inflammatory macrophages in commanding over insulin secretion. MIN6 and islet-derived fetuin-A induced expression of the M1 type macrophage markers Emr1 (also known as Adgre1), Cd68 and CD11c (Itgax) (∼1.8 fold) along with increased cytokine secretion. Interestingly, suppression of fetuin-A in MIN6 successfully reduced M1 markers by ∼1.5 fold. MIN6-derived fetuin-A also induced chemotaxis of macrophages in a Boyden chamber chemotaxis assay. Furthermore, high-fat feeding in mice showed elevated cytokine and fetuin-A content in serum and islets, and also migration and polarization of macrophages to the islets, while β-cells failed to meet the increased insulin demand. Moreover, in MIN6 culture, M1 macrophages sharply decreased insulin secretion by ∼2.8 fold. Altogether our results support an association of fetuin-A with islet inflammation and β-cell dysfunction, owing to its role as a key chemoattractant and macrophage polarizing factor.
Collapse
Affiliation(s)
- Alpana Mukhuty
- Cell Signaling Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan 731 235, India
| | - Chandrani Fouzder
- Cell Signaling Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan 731 235, India
| | - Rakesh Kundu
- Cell Signaling Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan 731 235, India
| |
Collapse
|