1
|
Yao X, Xu H, Du Q, Lu X, Wang Q. A novel method for detecting SARS-CoV-2 IgM and IgG based on the gold immune chromatography assay. Sci Rep 2025; 15:4995. [PMID: 39929938 PMCID: PMC11811196 DOI: 10.1038/s41598-025-89012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
A novel method was proposed based on gold immune chromatography assay (GICA) including the detection of antibodies targeting different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epitopes to improve the SARS-CoV-2 IgM and IgG detection performance. Sera from 282 confirmed Coronavirus Disease 2019 (COVID-19) patients were obtained at different times as the SARS-CoV-2 IgM or IgG experimental group. Sera from 148 uninfected and unvaccinated individuals were used as the control. The serum single-epitope IgM and IgG antibodies against SARS-CoV-2 were detected via GICA; the two epitope antibodies with high detection performance were used to construct a novel method, and then compared with the chemiluminescence immunoassay (CLIA). The diagnostic specificity and screening sensitivity of S2-IgM and N-IgM combined detection of serum SARS-CoV-2 IgM antibodies based on GICA were 99.32% and 98.81%, respectively, which were higher than those of the CLIA test (83.78% and 82.14%; P < 0.001). The diagnostic specificity of RBD-IgG and N-IgG combined detection in the serum was 100.00%, the same as that of CLIA. The novel method showed excellent screening sensitivity and diagnostic specificity for serum SARS-CoV-2 IgM and IgG, effectively avoiding omissions and misdiagnoses in the early clinical stages of screening and diagnosing COVID-19.
Collapse
Affiliation(s)
- Xiaoqin Yao
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Laboratory Medicine, The Sixth People's Hospital of Yibin, Yibin, Sichuan, China
| | - Hao Xu
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qin Du
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaolan Lu
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiang Wang
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan, China.
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
2
|
Safdari A, Keshav CS, Mody D, Verma K, Kaushal U, Burra VK, Ray S, Bandyopadhyay D. The external validity of machine learning-based prediction scores from hematological parameters of COVID-19: A study using hospital records from Brazil, Italy, and Western Europe. PLoS One 2025; 20:e0316467. [PMID: 39903736 PMCID: PMC11793750 DOI: 10.1371/journal.pone.0316467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/11/2024] [Indexed: 02/06/2025] Open
Abstract
The unprecedented worldwide pandemic caused by COVID-19 has motivated several research groups to develop machine-learning based approaches that aim to automate the diagnosis or screening of COVID-19, in large-scale. The gold standard for COVID-19 detection, quantitative-Real-Time-Polymerase-Chain-Reaction (qRT-PCR), is expensive and time-consuming. Alternatively, haematology-based detections were fast and near-accurate, although those were less explored. The external-validity of the haematology-based COVID-19-predictions on diverse populations are yet to be fully investigated. Here we report external-validity of machine learning-based prediction scores from haematological parameters recorded in different hospitals of Brazil, Italy, and Western Europe (raw sample size, 195554). The XGBoost classifier performed consistently better (out of seven ML classifiers) on all the datasets. The working models include a set of either four or fourteen haematological parameters. The internal performances of the XGBoost models (AUC scores range from 84% to 97%) were superior to ML models reported in the literature for some of these datasets (AUC scores range from 84% to 87%). The meta-validation on the external performances revealed the reliability of the performance (AUC score 86%) along with good accuracy of the probabilistic prediction (Brier score 14%), particularly when the model was trained and tested on fourteen haematological parameters from the same country (Brazil). The external performance was reduced when the model was trained on datasets from Italy and tested on Brazil (AUC score 69%) and Western Europe (AUC score 65%); presumably affected by factors, like, ethnicity, phenotype, immunity, reference ranges, across the populations. The state-of-the-art in the present study is the development of a COVID-19 prediction tool that is reliable and parsimonious, using a fewer number of hematological features, in comparison to the earlier study with meta-validation, based on sufficient sample size (n = 195554). Thus, current models can be applied at other demographic locations, preferably, with prior training of the model on the same population. Availability: https://covipred.bits-hyderabad.ac.in/home; https://github.com/debashreebanerjee/CoviPred.
Collapse
Affiliation(s)
- Ali Safdari
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Chanda Sai Keshav
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Deepanshu Mody
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Kshitij Verma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Utsav Kaushal
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Vaadeendra Kumar Burra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Sibnath Ray
- Gencrest Private Limited, 301-302, B-Wing, Corporate Center, Mumbai, India
| | - Debashree Bandyopadhyay
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Bulterys PL, Xu G, Pinsky BA, Troxell ML, Menke JR, Berry GJ, Fernandez-Pol S, Hazard FK. The Histopathologic Features of Early COVID Pneumonia in a Pediatric Patient: New Insight into the Role of Macrophages. Int J Surg Pathol 2024; 32:1595-1601. [PMID: 39435671 DOI: 10.1177/10668969241236704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
A life-threatening complication of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is acute respiratory distress syndrome. Our understanding of the pathologic changes in coronavirus disease 2019 (COVID-19) is based almost exclusively on post-mortem analyses of adults. These studies established several hallmarks of SARS-CoV-2 lung infection, including diffuse alveolar damage, microvascular thrombi, and acute bronchopneumonia. We describe a fatal example of COVID pneumonia in a 9-year-old girl who presented with fever 10 months following the diagnosis of ALK-positive anaplastic large cell lymphoma (ALCL). A chest computed tomography scan revealed left upper lobe lung consolidation and nodular airspace disease, and an initial SARS-CoV-2 nasopharyngeal swab (RT-PCR) was negative. A subsequent lung biopsy performed due to concern for relapsed ALCL demonstrated sheets of intra-alveolar and interstitial macrophages, and macrophage-rich fibrinous exudates. Immunohistochemical and in-situ hybridization stains confirmed these macrophages as the predominant SARS-CoV-2-infected cell type. Subsequent RT-PCR testing of upper and lower respiratory tract samples was positive for SARS-CoV-2 infection. Whole genome sequencing confirmed the presence of the B.1.617.2 (Delta) variant. This biopsy illustrates the histopathologic features of early COVID pneumonia in antemortem lung tissue from a pediatric patient, and establishes macrophages as a potential source of SARS-CoV-2 amplification.
Collapse
Affiliation(s)
- Philip L Bulterys
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Guangwu Xu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Megan L Troxell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua R Menke
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald J Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Florette K Hazard
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Zhu J, Xing F, Li Y, Wu C, Li S, Wang Q, Huang J, Zhang Y, Zheng X, Liu Z, Rao J, Hong R, Tian S, Xiong S, Tan L, Chen X, Li Y, He W, Hong X, Xia J, Zhou Q, Zhang Z. Exploring the causes of variability in quality of oropharyngeal swab sampling for SARS-CoV-2 nucleic acid testing and proposed improvement measures: a multicenter, double-blind study. Microbiol Spectr 2024; 12:e0156724. [PMID: 39382280 PMCID: PMC11537049 DOI: 10.1128/spectrum.01567-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Although coronavirus disease 2019 (COVID-19) has not been considered a public health emergency of international concern since last year, intermittent regional impacts still persist, and accurate testing remains crucial. Ribonuclease P protein subunit P30 (RPP30) RNA, known for its broad and stable expression in tissue cells, was used to evaluate samples from 10 hospitals with over 3,000 negative nucleic acid tests. The results revealed that the overall pass rate for the collected samples was consistently low and exhibited significant heterogeneity. After reassessing the evaluative effectiveness of RPP30 RNA Ct values from the samples of 132 positive individuals under quarantine observation, it was used to identify factors affecting sampling quality. These factors included different stages ranging from sample collection to PCR processing, various characteristics of both samplers and individuals being sampled, as well as sampling season and location. The results indicated that post-sampling handling had minimal impact, winter and fever clinic samples showed higher quality, whereas children's samples had lower quality. The key finding was that the characteristics of samplers were closely related to sampling quality, emphasizing the role of subjectivity. Quality control warnings led to substantial improvements, confirming this finding. Consequently, although there are various factors during the testing process, the most critical aspect is to improve, supervise, and maintain standardized practices among sampling staff.IMPORTANCEThis study further confirmed the reliability of internal references (IRs) in assessing sample quality, and utilized a large sample IR data to comprehensively and multidimensionally identify significant interference factors in nucleic acid test results. By further reminding and intervening in the subjective practices of specimen collectors, good results could be achieved.
Collapse
Affiliation(s)
- Jie Zhu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fanfan Xing
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yunzhu Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Hefei, China
| | - Chunchen Wu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shasha Li
- Division of Liver Disease, The Second People's Hospital of Fuyang City, Fuyang, China
| | - Qin Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinyue Huang
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yafei Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaowei Zheng
- Department of Infectious Diseases, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Zhenjun Liu
- Department of Infectious Diseases, Anqing Municipal Hospital, Anqing, China
| | - Jianguo Rao
- Department of Infectious Diseases, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an People's Hospital, Lu'an, China
| | - Rui Hong
- Department of Infectious Diseases, Tongling Municipal Hospital, Tongling, China
| | - Shuilin Tian
- Division of Liver Disease, Traditional Chinese Hospital of LuAn, Anhui University of Traditional Chinese Medicine, Lu'an, China
| | - Shuangyun Xiong
- Department of Infectious Diseases, Funan County People's Hospital, Fuyang, China
| | - Lin Tan
- Division of Liver Disease, The Second People's Hospital of Fuyang City, Fuyang, China
| | - Xinlei Chen
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanwu Li
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei He
- Division of Liver Disease, Traditional Chinese Hospital of LuAn, Anhui University of Traditional Chinese Medicine, Lu'an, China
| | - Xiaodan Hong
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianbo Xia
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Deutsch N, Dosztányi Z, Csabai I, Medgyes-Horváth A, Pipek OA, Stéger J, Papp K, Visontai D, Erdős G, Mentes A. ViralPrimer: a web server to monitor viral nucleic acid amplification tests' primer efficiency during pandemics, with emphasis on SARS-CoV-2 and Mpox. Bioinformatics 2024; 40:btae657. [PMID: 39499138 PMCID: PMC11572492 DOI: 10.1093/bioinformatics/btae657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/27/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024] Open
Abstract
SUMMARY Accurate pathogen identification is crucial during outbreaks, especially with the emergence of new variants requiring frequent primer updates. However, resources for maintaining up-to-date verification of primer sequences are often limited, which poses challenges for reliable diagnosis and hinders potential monitoring efforts based on genome sequencing. To address this, we introduce ViralPrimer, a web server facilitating primer design, SARS-CoV-2 and Mpox variant monitoring, and adaptation to future threats. ViralPrimer aims to enhance diagnostic accuracy with its comprehensive primer database, mutation analysis assistance, and user primer upload feature. Its adaptable design allows monitoring of other rapidly mutating pathogens, contributing to broader public health protection efforts. AVAILABILITY AND IMPLEMENTATION ViralPrimer is freely accessible and open to all users with no login requirement at https://viralprimer.elte.hu/. The application is hosted on a DJANGO v3.2.13 web server, with a PostgreSQL database, and the frontend was implemented using jQuery v3.6.0, vanilla JavaScript vES6, and Bootstrap v5.1.
Collapse
Affiliation(s)
- Norbert Deutsch
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Zsuzsanna Dosztányi
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - István Csabai
- Department of Physics of Complex Systems, Institute of Physics and Astronomy, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Anna Medgyes-Horváth
- Department of Physics of Complex Systems, Institute of Physics and Astronomy, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Orsolya Anna Pipek
- Department of Physics of Complex Systems, Institute of Physics and Astronomy, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - József Stéger
- Department of Physics of Complex Systems, Institute of Physics and Astronomy, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Krisztián Papp
- Department of Physics of Complex Systems, Institute of Physics and Astronomy, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Dávid Visontai
- Department of Physics of Complex Systems, Institute of Physics and Astronomy, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Gábor Erdős
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Anikó Mentes
- Department of Physics of Complex Systems, Institute of Physics and Astronomy, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| |
Collapse
|
6
|
Sajal SSA, Islam DZ, Khandker SS, Solórzano-Ortiz E, Fardoun M, Ahmed MF, Jamiruddin MR, Azmuda N, Mehta M, Kumar S, Haque M, Adnan N. Strategies to Overcome Erroneous Outcomes in Reverse Transcription-Polymerase Chain Reaction (RT-PCR) Testing: Insights From the COVID-19 Pandemic. Cureus 2024; 16:e72954. [PMID: 39498425 PMCID: PMC11532724 DOI: 10.7759/cureus.72954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/03/2024] [Indexed: 11/07/2024] Open
Abstract
The reverse transcription-polymerase chain reaction (RT-PCR) test to detect SARS-CoV-2, the virus causing COVID-19, has been regarded as the diagnostic gold standard. However, the excessive sensitivity of RT-PCR may cause false-positive outcomes from contamination. Again, its technical complexity increases the chances of false-negatives due to pre-analytical and analytical errors. This narrative review explores the elements contributing to inaccurate results during the COVID-19 pandemic and offers strategies to minimize these errors. False-positive results may occur due to specimen contamination, non-specific primer binding, residual viral RNA, and false-negatives, which may arise from improper sampling, timing, labeling, storage, low viral loads, mutations, and faulty test kits. Proposed mitigation strategies to enhance the accuracy of RT-PCR testing include comprehensive staff training in specimen collection, optimizing the timing of tests, analyzing multiple gene targets, incorporating clinical findings, workflow automation, and implementing stringent contamination control measures. Identifying and rectifying sources of error in RT-PCR diagnosis through quality control and standardized protocols is imperative for ensuring quality patient care and effective epidemic control.
Collapse
Affiliation(s)
- Sm Shafiul Alam Sajal
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, BGD
| | | | - Shahad Saif Khandker
- Department of Microbiology, Gonoshasthaya Samaj Vittik Medical College, Dhaka, BGD
| | - Elizabeth Solórzano-Ortiz
- Department of Chemical, Biological, Biomedical and Biophysical Research, Mariano Gálvez University, Guatemala City, GTM
| | - Manal Fardoun
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, LBN
| | - Md Firoz Ahmed
- Department of Microbiology, Jahangirnagar University, Dhaka, BGD
| | - Mohd Raeed Jamiruddin
- Department of Pharmacy, Bangladesh Rural Advancement Committee (BRAC) University, Dhaka, BGD
| | - Nafisa Azmuda
- Department of Microbiology, Jahangirnagar University, Dhaka, BGD
| | - Miral Mehta
- Department of Pedodontics and Preventive Dentistry, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Nihad Adnan
- Department of Microbiology, Jahangirnagar University, Dhaka, BGD
| |
Collapse
|
7
|
Chandra H, Yadav A, Prasad R, Sagar K, Bhardwaj N, Kumar Gupta K, Singh Thakur G, Nigam M, Pezzani R, Paulo Martins de Lima J, Douglas Melo Coutinho H, Prakash Mishra A. COVID 19: Prevention and treatment through the Indian perspective. Cytokine 2024; 183:156756. [PMID: 39284260 DOI: 10.1016/j.cyto.2024.156756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 11/20/2024]
Abstract
The most destructive period the world has experienced seems to be behind us. Not a single nation was spared by this disease, and many continue to struggle today. Even after recovering from COVID, patient may continue to experience some post-COVID effects, such as heart irregularities or a decline in lung vitality. In the past three years (2019-2022), the world has witnessed the power of a small entity, a single peculiar virus. Science initially appeared to be helpless in this regard, but due to the emergence of disease, pharmaceutics (the development of anti-covid drugs), immunology (the rapid antigen test), microbiology (the isolation of viruses from infected people), biotechnology (the development of recombinant vaccines), biochemistry (the blood profile, the D-dimer test), and biochemistry (blood profile, D-dimer test), biophysics (PCR, RT-PCR, CT Scan, MRI) had worked together to fight the disease. The results of these efforts are the development of new diagnostic techniques, possible treatment and finally the availability of vaccines against COVID-19. However, it is not proven that the treatment through the traditional medical system is directly active on SARS-CoV-2 but is instead indirectly acting on SARS-CoV-2 effects by improving symptoms derived from the viral disease. In India, the traditional system of medicine and tradition knowledge together worked in the pandemic and proved effective strategies in prevention and treatment of SARS-CoV-2. The use of effective masks, PPE kits, plasma therapy, yoga, lockdowns and social seclusion, use of modern antiviral drugs, monoclonal antibodies, herbal remedies, homoeopathy, hygienic practice, as well as the willpower of people, are all contributing to the fight against COVID. Which methods or practices will be effective against COVID nobody is aware since medical professionals who wear PPE kits do not live longer, and some people in India who remained unprotected and roamed freely were not susceptible to infection. The focus of this review is on the mode of transmission, diagnosis, preventive measures, vaccines currently under development, modern medicine developed against SARS-CoV-2, ayurvedic medicine used during pandemic, homoeopathic medicine used during pandemic, and specific yoga poses that can be used to lessen COVID-related symptoms.
Collapse
Affiliation(s)
- Harish Chandra
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India; School of Agriculture, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Archana Yadav
- Department of Microbiology, Institute of Biosciences and Biotechnology, C.S.J.M. University, Kanpur 208024, Uttar Pradesh, India.
| | - Rajendra Prasad
- School of Agriculture, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Kalpana Sagar
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Sciences, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India.
| | - Kartikey Kumar Gupta
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India.
| | - Ghanshyam Singh Thakur
- Department of Naturopathy & Yoga, H. N. B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India.
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India.
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova 35128, Italy; AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy.
| | | | | | - Abhay Prakash Mishra
- Department of Pharmacology, Faculty of Health Science, University of Free State, Bloemfontein 9300, South Africa.
| |
Collapse
|
8
|
Vogel JM, Pollack B, Spier E, McCorkell L, Jaudon TW, Fitzgerald M, Davis H, Cohen AK. Designing and optimizing clinical trials for long COVID. Life Sci 2024; 355:122970. [PMID: 39142505 DOI: 10.1016/j.lfs.2024.122970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Long COVID is a debilitating, multisystemic illness following a SARS-CoV-2 infection whose duration may be indefinite. Over four years into the pandemic, little knowledge has been generated from clinical trials. We analyzed the information available on ClinicalTrials.gov, and found that the rigor and focus of trials vary widely, and that the majority test non-pharmacological interventions with insufficient evidence. We highlight promising trials underway, and encourage the proliferation of clinical trials for treating Long COVID and other infection-associated chronic conditions and illnesses (IACCIs). We recommend several guidelines for Long COVID trials: First, pharmaceutical trials with potentially curative, primary interventions should be prioritized, and both drug repurposing and new drug development should be pursued. Second, study designs should be both rigorous and accessible, e.g., triple-blinded randomized trials that can be conducted remotely, without participants needing to leave their homes. Third, studies should have multiple illness comparator cohorts for IACCIs such as myalgic encephalomyelitis (ME/CFS) and dysautonomia, and screen for the full spectrum of symptomatology and pathologies of these illnesses. Fourth, studies should consider inclusion/exclusion criteria with an eye towards equity and breadth of representation, including participants of all races, ethnicities, and genders most impacted by COVID-19, and including all levels of illness severity. Fifth, involving patient-researchers in all aspects of studies brings immensely valuable perspectives that will increase the impact of trials. We also encourage the development of efficient clinical trial designs including methods to study several therapies in parallel.
Collapse
Affiliation(s)
- Julia Moore Vogel
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, United States of America; Patient-Led Research Collaborative, United States of America.
| | - Beth Pollack
- Patient-Led Research Collaborative, United States of America; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ezra Spier
- Patient-Led Research Collaborative, United States of America
| | - Lisa McCorkell
- Patient-Led Research Collaborative, United States of America
| | - Toni Wall Jaudon
- Patient-Led Research Collaborative, United States of America; University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | | | - Hannah Davis
- Patient-Led Research Collaborative, United States of America
| | - Alison K Cohen
- Patient-Led Research Collaborative, United States of America; University of California San Francisco, Department of Epidemiology & Biostatistics and Philip R. Lee Institute for Health Policy Studies, 550 16th street, 2nd floor, San Francisco, CA 94158, United States of America
| |
Collapse
|
9
|
Lu R, Luo J, Lin F, Han D, Chen G, Li W, Li S, Liu B, Li H, Song C, Cui Y, Zeng Y, Li Y, Pan P. Comparison of clinical, laboratory and radiological characteristics between COVID-19 and Chlamydia psittaci pneumonia: a multicenter retrospective study. Sci Rep 2024; 14:23790. [PMID: 39394412 PMCID: PMC11470005 DOI: 10.1038/s41598-024-74708-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
Chlamydia psittaci pneumonia (CPP) exhibits similar characteristics as of COVID-19 with respect to clustering outbreaks and onset symptoms. This study is aimed at exploring the different clinical manifestations of both pneumonias to establish a simple nomogram to distinguish them. This multicenter, retrospective, case-control study compared two independent cohorts of patients with CPP or COVID-19. The risk factors of CPP were analyzed using multivariate logistic regression, which was used to establish the nomogram. Both patients with CPP and COVID-19 exhibited similar clinical symptoms. As compared to patients with COVID-19, a higher proportion of patients with CPP had nervous system symptoms. Patients with CPP had higher inflammatory indicators, creatine kinase, and lower lymphocyte and albumin. They also had lower proportions of ground-glass opacity and bilateral lung involvement than COVID-19 patients. Furthermore, patients with CPP had higher 30 day mortality as well as higher rates of severe pneumonia, septic shock, and ICU admission. Multivariate logistic regression showed that nervous system symptoms, lymphocytes, creatine kinase, bilateral lung lesions, and ground-glass opacity were risk factors for CPP. Incorporating these five factors, the nomogram achieved good concordance index of 0.989 in differentiating CPP from COVID-19, and had well-fitted calibration curves. Despite similar clinical characteristics, nervous system symptoms, lymphocyte, creatine kinase, lesions in bilateral lungs, and ground-glass opacity may help in differentiating the pneumonias. These were combined into a clinically useful nomogram for rapid and early identification of CPP to avoid misdiagnosis and help in the decision-making process.
Collapse
Affiliation(s)
- Rongli Lu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
| | - Jiefeng Luo
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha, 410008, China
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Fengyu Lin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
| | - Duoduo Han
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
| | - Gang Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
| | - Wen Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
| | - Sha Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ben Liu
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Haitao Li
- First Department of Thoracic Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Chao Song
- Nosocomial Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yanhui Cui
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
| | - Yanjun Zeng
- Department of Geriatric Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yi Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China.
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China.
| |
Collapse
|
10
|
Malic L, Clime L, Moon BU, Nassif C, Da Fonte D, Brassard D, Lukic L, Geissler M, Morton K, Charlebois D, Veres T. Sample-to-answer centrifugal microfluidic droplet PCR platform for quantitation of viral load. LAB ON A CHIP 2024; 24:4755-4765. [PMID: 39301752 DOI: 10.1039/d4lc00533c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Droplet digital polymerase chain reaction (ddPCR) stands out as a highly sensitive diagnostic technique that is gaining traction in infectious disease diagnostics due to its ability to quantitate very low numbers of viral gene copies. By partitioning the sample into thousands of droplets, ddPCR enables precise and absolute quantification without relying on a standard curve. However, current ddPCR systems often exhibit relatively low levels of integration, and the analytical process remains dependent on elaborate workflows for up-front sample preparation. Here, we introduce a fully-integrated system seamlessly combining viral lysis, RNA extraction, emulsification, reverse transcription (RT) ddPCR, and fluorescence readout in a sample-to-answer format. The system comprises a disposable microfluidic cartridge housing buffers and reagents required for the assay, and a centrifugal platform that allows for pneumatic actuation of liquids during rotation, enabling automation of the workflow. Highly monodisperse droplets (∼50 μm in diameter) are produced using centrifugal step emulsification and automatically transferred to an integrated heating module for target amplification. The platform is equipped with a miniature fluorescence imaging system enabling on-chip read-out of droplets after RT-ddPCR. We demonstrate sample-to-answer detection of SARS-CoV-2 N and E genes, along with RNase P endogenous reference, using hydrolysis probes and multiplexed amplification within single droplets for concentrations as low as 0.1 copy per μL. We also tested 14 nasopharyngeal swab specimens from patients and were able to distinguish positive and negative SARS-CoV-2 samples with 100% accuracy, surpassing results obtained by conventional real-time amplification.
Collapse
Affiliation(s)
- Lidija Malic
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
- Department of Biomedical Engineering, McGill University, 775 Rue University, Suite 316, Montreal, QC, H3A 2B4, Canada
| | - Liviu Clime
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Byeong-Ui Moon
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Christina Nassif
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Dillon Da Fonte
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Daniel Brassard
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Ljuboje Lukic
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Matthias Geissler
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Keith Morton
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Denis Charlebois
- Canadian Space Agency, 6767 Route de l'Aéroport, Saint-Hubert, QC, J3Y 8Y9, Canada
| | - Teodor Veres
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| |
Collapse
|
11
|
Yin B, Mao C, Yu F, Li W, Pan R, Feng W, Li Y. A droplet digital PCR method for the detection of scale drop disease virus in yellowfin seabream ( Acanthopagrus latus). Front Microbiol 2024; 15:1444235. [PMID: 39386365 PMCID: PMC11461249 DOI: 10.3389/fmicb.2024.1444235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
In this study, a ddPCR method for the detection of scale drop disease virus (SDDV) in yellowfin seabream (Acanthopagrus latus) was established based on Real-time fluorescence quantitative PCR detection methods and principles. The reaction conditions were optimized, and the sensitivity, specificity, accuracy, and reproducibility were assessed. The results showed that threshold line position was determined to be 1900 by the ddPCR method; the optimum annealing temperature for SDDV detection by the ddPCR method was 60°C; the limit of detection was 1.4-1.7 copies/μL; the results of specific detection of other common viruses, except for SDDV specific amplification, were all negative; and the relative standard deviation (RSD) for the reproducibility validation was 0.77%. The samples of yellowfin seabream (Acanthopagrus latus) liver, spleen, kidney, heart, intestine, brain, blood, muscle, skin and ascites with three replicates, respectively, were tested using the ddPCR method, and the results were consistent with clinical findings. The ddPCR method established in this study has the advantages of high sensitivity, high specificity, good reproducibility and simple steps for the quantitative detection of SDDV, which could be used for the nucleic acid detection of clinical SDDV samples, and provided a new quantitative method for the diagnosis of yellowfin seabream SDDV in the early stage of pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong Li
- Zhuhai Modern Agriculture Development Center, Zhuhai, China
| |
Collapse
|
12
|
Churchill NW, Roudaia E, Chen JJ, Sekuler A, Gao F, Masellis M, Lam B, Cheng I, Heyn C, Black SE, MacIntosh BJ, Graham SJ, Schweizer TA. Effects of post-acute COVID-19 syndrome on cerebral white matter and emotional health among non-hospitalized individuals. Front Neurol 2024; 15:1432450. [PMID: 39165270 PMCID: PMC11333225 DOI: 10.3389/fneur.2024.1432450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Post-acute COVID syndrome (PACS) is a growing concern, given its impact on mental health and quality of life. However, its effects on cerebral white matter remain poorly understood, particularly in non-hospitalized cohorts. The goals of this cross-sectional, observational study were to examine (1) whether PACS was associated with distinct alterations in white matter microstructure, compared to symptom-matched non-COVID viral infection; and (2) whether microstructural alterations correlated with indices of post-COVID emotional health. Methods Data were collected for 54 symptomatic individuals who tested positive for COVID-19 (mean age 41 ± 12 yrs., 36 female) and 14 controls who tested negative for COVID-19 (mean age 41 ± 14 yrs., 8 female), with both groups assessed an average of 4-5 months after COVID testing. Diffusion magnetic resonance imaging data were collected, and emotional health was assessed via the NIH emotion toolbox, with summary scores indexing social satisfaction, well-being and negative affect. Results Despite similar symptoms, the COVID-19 group had reduced mean and axial diffusivity, along with increased mean kurtosis and neurite dispersion, in deep white matter. After adjusting for social satisfaction, higher levels of negative affect in the COVID-19 group were also correlated with increased mean kurtosis and reduced free water in white matter. Discussion These results provide preliminary evidence that indices of white matter microstructure distinguish PACS from symptomatic non-COVID infection. Moreover, white matter effects seen in PACS correlate with the severity of emotional sequelae, providing novel insights into this highly prevalent disorder.
Collapse
Affiliation(s)
- Nathan W. Churchill
- Brain Health and Wellness Research Program, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Physics Department, Toronto Metropolitan University, Toronto, ON, Canada
| | - Eugenie Roudaia
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
| | - J. Jean Chen
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Allison Sekuler
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Fuqiang Gao
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Mario Masellis
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Benjamin Lam
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Ivy Cheng
- Evaluative Clinical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Integrated Community Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Chris Heyn
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Sandra E. Black
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Bradley J. MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Computational Radiology and Artificial Intelligence Unit, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Simon J. Graham
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Tom A. Schweizer
- Brain Health and Wellness Research Program, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Faculty of Medicine (Neurosurgery), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Kudryavtsev DS, Mozhaeva VA, Ivanov IA, Siniavin AE, Kalmykov AS, Gritchenko AS, Khlebtsov BN, Wang SP, Kang B, Tsetlin VI, Balykin VI, Melentiev PN. Optical detection of infectious SARS-CoV-2 virions by counting spikes. NANOSCALE 2024; 16:12424-12430. [PMID: 38887059 DOI: 10.1039/d4nr01236d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Existing methods for the mass detection of viruses are limited to the registration of small amounts of a viral genome or specific protein markers. In spite of high sensitivity, the applied methods cannot distinguish between virulent viral particles and non-infectious viral particle debris. We report an approach to solve this long-standing challenge using the SARS-CoV-2 virus as an example. We show that wide-field optical microscopy with the state-of-the-art mesoscopic fluorescent labels, formed by a core-shell plasmonic nanoparticle with fluorescent dye molecules in the core-shell that are strongly coupled to the plasmonic nanoparticle, not only rapidly, i.e. in less than 20 minutes after sampling, detects SARS-CoV-2 virions directly in a patient sample without a pre-concentration step, but can also distinguish between infectious and non-infectious virus strains by counting the spikes on the lipid envelope of individual viral particles.
Collapse
Affiliation(s)
- Denis S Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, 119048 Moscow, Russia
| | - Vera A Mozhaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
| | - Andrey E Siniavin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health, Moscow, 123098, Russia
| | | | | | - Boris N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov, 410049, Russia
| | - Shao-Peng Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow 117997, Russia
| | | | - Pavel N Melentiev
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia.
- Higher School of Economics, National Research University, Moscow, 101000, Russia
| |
Collapse
|
14
|
Deniz-Sakarya M, Yorulmaz İ. Does coronavirus disease 2019 affect peripheral and central auditory systems? Matched group cross-sectional study and six-month follow up. J Laryngol Otol 2024; 138:601-607. [PMID: 38456283 PMCID: PMC11096835 DOI: 10.1017/s0022215124000355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE This study aimed to compare the peripheral-to-central auditory systems of people with coronavirus disease 2019 to a well-matched control group and examine the long-term effects of coronavirus disease 2019 on the auditory system. METHOD Participants who were outpatients of coronavirus disease 2019 (n = 30) were compared with a well-matched control group (n = 30). Behavioural and electrophysiological tests were performed, and tests were repeated at six months in the coronavirus disease 2019 group. RESULTS Statistically significant differences were observed in the right ear at 10 kHz (p = 0.007) and 12.5 kHz (p = 0.028), and in the left ear at 10 kHz (p = 0.040) and 12.5 kHz (p = 0.040) between groups. The groups had no difference regarding the other audiological test results (p > 0.05). CONCLUSION Extended high-frequency thresholds were affected in the coronavirus disease 2019 patients. No other findings indicated that the peripheral-to-central auditory system was affected. The effect on extended high-frequency thresholds appeared permanent, but no clinically significant new, late-onset auditory system effects were observed.
Collapse
Affiliation(s)
- Merve Deniz-Sakarya
- Department of Audiology, Faculty of Health Sciences, Baskent University, Ankara, Turkey
| | - İrfan Yorulmaz
- Department of Otorhinolaryngology—Head and Neck Surgery, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
15
|
Manchanda V, Siddiqui O, Meena K, Sharma A, Saxena S. Quality assurance of SARS-CoV-2 testing laboratories during the pandemic period in India - An experience from a designated provider laboratory. Indian J Med Microbiol 2024; 49:100577. [PMID: 38588879 DOI: 10.1016/j.ijmmb.2024.100577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
PURPOSE Indian Council of Medical Research (ICMR) initiated an Inter-Laboratory Quality Control testing (ILQC) program for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) testing. Under this program, SARS-CoV-2 testing laboratories across the country submit specimens to the assigned State Quality Control (SQCs) laboratories for ILQC testing. This study aimed to investigate the performance of public and private SARS-CoV-2 testing laboratories in Delhi and highlights the country's effort in ramping up testing facility with close monitoring of the quality of Covid-19 testing results. METHODS In the present study, two-years of SARS-CoV-2 testing data is included. During July 2020 through February 2022, a total of 1791 anonymised specimens were received from 56 public and private laboratories. These specimens were processed by reverse transcriptase - polymerase chain reaction (RT-PCR) tests as per National Institute of Virology (NIV) protocol and the results were uploaded on the ICMR quality control/quality assurance (QC/QA) portal without directly conveying the results to respective participating laboratories. This portal generated a final report stating concordance and intimate results to individual laboratories. RESULTS Among the 1791 specimens, 25 were rejected and the remaining 1766 were tested. Among these specimens 1691 (95.75%) revealed concordance, and 75 (4.24%) were discordant. A total of 29 laboratories had 100% concordance, 21 laboratories had over 90% concordance and six laboratories had over 80% concordance. CONCLUSIONS The study demonstrates that the establishment of an inter-laboratory comparison program for SARS-CoV-2 testing helped in monitoring quality of SARS-CoV-2 testing in the country.
Collapse
Affiliation(s)
- Vikas Manchanda
- Department of Microbiology, Maulana Azad Medical College & Associated Lok Nayak Hospital, Bahadur Shah Zafar Marg, New Delhi, 110002, India; State Level -Viral Research and Diagnostic Laboratory (VRDL), Department of Microbiology, Maulana Azad Medical College & Associated Lok Nayak Hospital, Bahadur Shah Zafar Marg, New Delhi, 110002, India.
| | - Oves Siddiqui
- Department of Microbiology, Maulana Azad Medical College & Associated Lok Nayak Hospital, Bahadur Shah Zafar Marg, New Delhi, 110002, India; State Level -Viral Research and Diagnostic Laboratory (VRDL), Department of Microbiology, Maulana Azad Medical College & Associated Lok Nayak Hospital, Bahadur Shah Zafar Marg, New Delhi, 110002, India.
| | - Kavita Meena
- Department of Microbiology, Maulana Azad Medical College & Associated Lok Nayak Hospital, Bahadur Shah Zafar Marg, New Delhi, 110002, India.
| | - Anju Sharma
- State Level -Viral Research and Diagnostic Laboratory (VRDL), Department of Microbiology, Maulana Azad Medical College & Associated Lok Nayak Hospital, Bahadur Shah Zafar Marg, New Delhi, 110002, India.
| | - Sonal Saxena
- Department of Microbiology, Maulana Azad Medical College & Associated Lok Nayak Hospital, Bahadur Shah Zafar Marg, New Delhi, 110002, India; State Level -Viral Research and Diagnostic Laboratory (VRDL), Department of Microbiology, Maulana Azad Medical College & Associated Lok Nayak Hospital, Bahadur Shah Zafar Marg, New Delhi, 110002, India.
| |
Collapse
|
16
|
Thorp JA, Thorp MM, Thorp EM, Scott-Emuakpor A, Thorp K. Global COVID-19 Pandemic Outcomes: A Cross-Country Comparison Study of Policy Strategies. Integr Med (Encinitas) 2024; 23:46-53. [PMID: 38911447 PMCID: PMC11193410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
This paper explores global COVID-19 treatment and containment strategies in 108 countries worldwide, specifically the correlation between COVID-19 deaths and the countries' vaccination rates. Comparison of data across states, provinces, territories, and countries relied upon a common method to evaluate data regarding the impact of COVID-19 policies in the last three years. Data from nine different databases were analyzed to determine if there were correlations between the percentage of countrywide COVID-19 deaths/population and countries' percent vaccinated. Secondary outcome measures include the effect of other variables on COVID-19 death rates per country population, including health expenditures and annual income per capita, COVID-19 tests per 1000 people, stringency index (a measure of each country's containment strategies), hydroxychloroquine/ivermectin scores (measure country use), hypertension, obesity, diabetes, and geographic locations. COVID-19 vaccination rates ranged from 0-99% in 108 countries. Bivariate analysis demonstrates the following independent variables to correlate with COVID-19 deaths/population (Spearman correlation coefficient, p value): countrywide COVID-19 vaccination rates (moderate relationship, r=0.39, P < .001); healthcare expenditures per capita per annum (US dollars) (moderate relationship, r=0.46, P < .001), net annual income per capita (moderate relationship, r=0.50, P < .001), COVID-19 tests per 1000 country population (moderate relationship, r=0.36, P < .003); stringency index per country (moderate relationship, r=0.28, P < .003); hydroxychloroquine index (negative relationship, r= 0.15, P = .125); and ivermectin index (negative relationship, r=0.23 P = .018). The authors found that the higher the percentage of a country's vaccination rate, stringent containment strategies, mass testing, etc., moderately correlated with higher COVID-19 death rates/population. Future studies are required to explore the findings of this study fully.
Collapse
Affiliation(s)
- James A. Thorp
- Chief of Maternal and Pre-Natal Health, The Wellness Company, Gulf Breeze, FL
| | | | | | - Ajovi Scott-Emuakpor
- Dept. of Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing MI
| | - K.E. Thorp
- Department of Radiology, Sparrow Health System, Lansing, MI
| |
Collapse
|
17
|
Hunter SR, Zola A, Ho E, Kallen M, Adjei-Danquah E, Achenbach C, Smith GR, Gershon R, Reed DR, Schalet B, Parma V, Dalton PH. Using SCENTinel® to predict SARS-CoV-2 infection: insights from a community sample during dominance of Delta and Omicron variants. Front Public Health 2024; 12:1322797. [PMID: 38660364 PMCID: PMC11041634 DOI: 10.3389/fpubh.2024.1322797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Based on a large body of previous research suggesting that smell loss was a predictor of COVID-19, we investigated the ability of SCENTinel®, a newly validated rapid olfactory test that assesses odor detection, intensity, and identification, to predict SARS-CoV-2 infection in a community sample. Methods Between April 5, 2021, and July 5, 2022, 1,979 individuals took one SCENTinel® test, completed at least one physician-ordered SARS-CoV-2 PCR test, and endorsed a list of self-reported symptoms. Results Among the of SCENTinel® subtests, the self-rated odor intensity score, especially when dichotomized using a previously established threshold, was the strongest predictor of SARS-CoV-2 infection. SCENTinel® had high specificity and negative predictive value, indicating that those who passed SCENTinel® likely did not have a SARS-CoV-2 infection. Predictability of the SCENTinel® performance was stronger when the SARS-CoV-2 Delta variant was dominant rather than when the SARS-CoV-2 Omicron variant was dominant. Additionally, SCENTinel® predicted SARS-CoV-2 positivity better than using a self-reported symptom checklist alone. Discussion These results indicate that SCENTinel® is a rapid assessment tool that can be used for population-level screening to monitor abrupt changes in olfactory function, and to evaluate spread of viral infections like SARS-CoV-2 that often have smell loss as a symptom.
Collapse
Affiliation(s)
| | - Anne Zola
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Emily Ho
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Michael Kallen
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - Chad Achenbach
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - G. Randy Smith
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Richard Gershon
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - Benjamin Schalet
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Valentina Parma
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | | |
Collapse
|
18
|
Hadidchi R, Wang SH, Rezko D, Henry S, Coyle PK, Duong TQ. SARS-CoV-2 infection increases long-term multiple sclerosis disease activity and all-cause mortality in an underserved inner-city population. Mult Scler Relat Disord 2024; 86:105613. [PMID: 38608516 DOI: 10.1016/j.msard.2024.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Although certain subsets patients with multiple sclerosis (MS), an immune-mediated disorder, are at higher risk of worse acute COVID-19 outcomes compared to the general population, it is not clear whether SARS-CoV-2 infection impacts long-term outcomes compared with MS patients without COVID-19 infection. OBJECTIVES This study investigated MS disease activity and mortality 3.5 years post SARS-CoV-2 infection and compared with MS patients without COVID-19. METHODS This retrospective study evaluated 1,633 patients with MS in the Montefiore Health System in the Bronx from January 2016 to July 2023. This health system serves a large minority population and was an epicenter for the early pandemic and subsequent surges of infection. Positive SARS-CoV-2 infection was determined by a positive polymerase-chain-reaction test. Primary outcomes were all-cause mortality, and optic neuritis post SARS-CoV-2 infection. Secondary outcomes included change in disease-modifying therapy (DMT), treatment with high-dose methylprednisolone, cerebellar deficits, relapse, and all-cause hospitalization post-infection. RESULTS MS patients with COVID-19 had similar demographics but higher prevalence of pre-existing major comorbidities (hypertension, type-2 diabetes, chronic obstructive pulmonary disease, congestive heart failure, chronic kidney disease, and coronary artery disease), optic neuritis, and history of high dose steroid treatment for relapses compared to MS patients without COVID-19. MS patients with COVID-19 had greater risk of mortality (adjusted HR=4.34[1.67, 11.30], p < 0.005), greater risk of post infection optic neuritis (adjusted HR=2.97[1.58, 5.58], p < 0.005), higher incidence of methylprednisolone treatment for post infection acute relapse (12.65% vs. 2.54 %, p < 0.001), and more hospitalization (78.92% vs. 66.81 %, p < 0.01), compared to MS patients without COVID-19. CONCLUSIONS MS patients who survived COVID-19 infection experienced worse long-term outcomes, as measured by treatment for relapse, hospitalization and mortality. Identifying risk factors for worse long-term outcomes may draw clinical attention to the need for careful follow-up of at-risk individuals post-SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Roham Hadidchi
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Center for Health & Data Innovation, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Stephen H Wang
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Center for Health & Data Innovation, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MC, USA
| | - David Rezko
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Center for Health & Data Innovation, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Sonya Henry
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Center for Health & Data Innovation, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Patricia K Coyle
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Center for Health & Data Innovation, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
19
|
Tenda ED, Yunus RE, Zulkarnaen B, Yugo MR, Pitoyo CW, Asaf MM, Islamiyati TN, Pujitresnani A, Setiadharma A, Henrina J, Rumende CM, Wulani V, Harimurti K, Lydia A, Shatri H, Soewondo P, Yusuf PA. Comparison of the Discrimination Performance of AI Scoring and the Brixia Score in Predicting COVID-19 Severity on Chest X-Ray Imaging: Diagnostic Accuracy Study. JMIR Form Res 2024; 8:e46817. [PMID: 38451633 PMCID: PMC10958333 DOI: 10.2196/46817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/28/2023] [Accepted: 12/29/2023] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND The artificial intelligence (AI) analysis of chest x-rays can increase the precision of binary COVID-19 diagnosis. However, it is unknown if AI-based chest x-rays can predict who will develop severe COVID-19, especially in low- and middle-income countries. OBJECTIVE The study aims to compare the performance of human radiologist Brixia scores versus 2 AI scoring systems in predicting the severity of COVID-19 pneumonia. METHODS We performed a cross-sectional study of 300 patients suspected with and with confirmed COVID-19 infection in Jakarta, Indonesia. A total of 2 AI scores were generated using CAD4COVID x-ray software. RESULTS The AI probability score had slightly lower discrimination (area under the curve [AUC] 0.787, 95% CI 0.722-0.852). The AI score for the affected lung area (AUC 0.857, 95% CI 0.809-0.905) was almost as good as the human Brixia score (AUC 0.863, 95% CI 0.818-0.908). CONCLUSIONS The AI score for the affected lung area and the human radiologist Brixia score had similar and good discrimination performance in predicting COVID-19 severity. Our study demonstrated that using AI-based diagnostic tools is possible, even in low-resource settings. However, before it is widely adopted in daily practice, more studies with a larger scale and that are prospective in nature are needed to confirm our findings.
Collapse
Affiliation(s)
- Eric Daniel Tenda
- Department of Internal Medicine, Pulmonology and Critical Care Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
| | - Reyhan Eddy Yunus
- Department of Radiology, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
| | - Benny Zulkarnaen
- Department of Radiology, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
| | - Muhammad Reynalzi Yugo
- Department of Radiology, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
| | - Ceva Wicaksono Pitoyo
- Department of Internal Medicine, Pulmonology and Critical Care Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
| | - Moses Mazmur Asaf
- Department of Radiology, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
| | - Tiara Nur Islamiyati
- Department of Internal Medicine, Pulmonology and Critical Care Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
| | - Arierta Pujitresnani
- Department of Medical Physiology and Biophysics/ Medical Technology Cluster IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Andry Setiadharma
- Department of Internal Medicine, Pulmonology and Critical Care Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
| | - Joshua Henrina
- Department of Internal Medicine, Pulmonology and Critical Care Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
| | - Cleopas Martin Rumende
- Department of Internal Medicine, Pulmonology and Critical Care Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
| | - Vally Wulani
- Department of Radiology, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
| | - Kuntjoro Harimurti
- Department of Internal Medicine, Geriatric Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
| | - Aida Lydia
- Department of Internal Medicine, Nephrology and Hypertension Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
| | - Hamzah Shatri
- Department of Internal Medicine, Psychosomatic Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
| | - Pradana Soewondo
- Department of Internal Medicine, Endocrinology - Metabolism - Diabetes division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
| | - Prasandhya Astagiri Yusuf
- Department of Medical Physiology and Biophysics/ Medical Technology Cluster IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
20
|
Liu Y, Yin Y, Ward MP, Li K, Chen Y, Duan M, Wong PPY, Hong J, Huang J, Shi J, Zhou X, Chen X, Xu J, Yuan R, Kong L, Zhang Z. Optimization of Screening Strategies for COVID-19: Scoping Review. JMIR Public Health Surveill 2024; 10:e44349. [PMID: 38412011 PMCID: PMC10933748 DOI: 10.2196/44349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/29/2023] [Accepted: 11/21/2023] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND COVID-19 screening is an effective nonpharmaceutical intervention for identifying infected individuals and interrupting viral transmission. However, questions have been raised regarding its effectiveness in controlling the spread of novel variants and its high socioeconomic costs. Therefore, the optimization of COVID-19 screening strategies has attracted great attention. OBJECTIVE This review aims to summarize the evidence and provide a reference basis for the optimization of screening strategies for the prevention and control of COVID-19. METHODS We applied a methodological framework for scoping reviews and the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) checklist. We conducted a scoping review of the present publications on the optimization of COVID-19 screening strategies. We searched the PubMed, Web of Science, and Elsevier ScienceDirect databases for publications up to December 31, 2022. English publications related to screening and testing strategies for COVID-19 were included. A data-charting form, jointly developed by 2 reviewers, was used for data extraction according to the optimization directions of the screening strategies. RESULTS A total of 2770 unique publications were retrieved from the database search, and 95 abstracts were retained for full-text review. There were 62 studies included in the final review. We summarized the results in 4 major aspects: the screening population (people at various risk conditions such as different regions and occupations; 12/62, 19%), the timing of screening (when the target population is tested before travel or during an outbreak; 12/62, 19%), the frequency of screening (appropriate frequencies for outbreak prevention, outbreak response, or community transmission control; 6/62, 10%), and the screening and detection procedure (the choice of individual or pooled detection and optimization of the pooling approach; 35/62, 56%). CONCLUSIONS This review reveals gaps in the optimization of COVID-19 screening strategies and suggests that a number of factors such as prevalence, screening accuracy, effective allocation of resources, and feasibility of strategies should be carefully considered in the development of future screening strategies.
Collapse
Affiliation(s)
- Yuanhua Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yun Yin
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Michael P Ward
- Sydney School of Veterinary Science, The University of Sydney, NSW, Australia
| | - Ke Li
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mengwei Duan
- Department of Mathematics and Physics, North China Electric Power University, Baoding, China
| | | | - Jie Hong
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jiaqi Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jin Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Xuan Zhou
- Department of Mathematics and Physics, North China Electric Power University, Baoding, China
| | - Xi Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jiayao Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Rui Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Lingcai Kong
- Department of Mathematics and Physics, North China Electric Power University, Baoding, China
| | - Zhijie Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| |
Collapse
|
21
|
Ota K, Kodama H, Kawamoto Y, Sasaki D, Mitsumoto-Kaseida F, Sakamoto K, Kosai K, Hasegawa H, Takazono T, Izumikawa K, Mukae H, Tun MMN, Morita K, Yanagihara K. The evaluation of a rapid microfluidic immunofluorescence antigen test in detecting the infectiousness of COVID-19 patients. BMC Infect Dis 2023; 23:823. [PMID: 37996783 PMCID: PMC10668452 DOI: 10.1186/s12879-023-08821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND A test-based strategy against coronavirus disease 2019 (COVID-19) is one of the measures to assess the need for isolation and prevention of infection. However, testing with high sensitivity methods, such as quantitative RT-PCR, leads to unnecessary isolation, whereas the lateral flow antigen test shows low sensitivity and false negative results. The purpose of this study was to evaluate the performance of the LumiraDx SARS-CoV-2 Ag test (Lumira Ag), a rapid microfluidic immunofluorescence method, in assessing infectivity. METHODS This study was performed from March 2022 to July 2022. A pair of nasopharyngeal swab samples were obtained from each patient with mild COVID-19. One swab was used for Lumira Ag testing, and the other for quantitative RT-PCR testing and virus culture. RESULTS A total of 84 patients were included in the study. Among them, PCR, Lumira Ag test, and virus culture indicated positivity for 82, 66, and 24 patients, respectively. When comparing the Lumira Ag test to virus culture, its sensitivity was 100.0% (24/24), specificity, 30.0% (18/60); positive predictive value, 36.3% (24/66); and negative predictive value (NPV), 100.0% (18/18). The positive sample for virus culture was observed until the ninth day from the onset of symptoms, while the Lumira Ag test was observed until day 11. CONCLUSIONS The Lumira Ag test showed high sensitivity and NPV (100% each) compared to virus culture. A test-based strategy using the Lumira Ag test can effectively exclude COVID-19 infectiousness.
Collapse
Affiliation(s)
- Kenji Ota
- Department of Laboratory Medicine, Nagasaki University Hospital, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan.
| | - Hina Kodama
- Department of Laboratory Medicine, Nagasaki University Hospital, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Yasuhide Kawamoto
- Department of Laboratory Medicine, Nagasaki University Hospital, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Daisuke Sasaki
- Department of Laboratory Medicine, Nagasaki University Hospital, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Fujiko Mitsumoto-Kaseida
- Department of Laboratory Medicine, Nagasaki University Hospital, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Kei Sakamoto
- Department of Laboratory Medicine, Nagasaki University Hospital, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
- Department of Microbiology, Graduate School of Medicine, Yamaguchi University, 1-1-1, Minami-Kogushi, Ube, 755-8505, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Hospital, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Koichi Izumikawa
- Infection Control and Education Center, Nagasaki University Hospital, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4, Sakamoto, Nagasaki, 852-8102, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4, Sakamoto, Nagasaki, 852-8102, Japan
- Dejima Infectious Disease Research Alliance, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, 852-8102, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, 1-7-1, Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
22
|
Escobar Vidarte MF, Echavarria MP, Carvajal JA, Albornoz LL, Peña-Zarate EE, Libreros L, Nasner D, Vélez JD. Universal Screening for SARS-CoV-2 in Obstetric Care: Clinical Characteristics and Maternofetal Outcomes in a Latin American High-Complexity Unit. J Patient Exp 2023; 10:23743735231213764. [PMID: 38026062 PMCID: PMC10655671 DOI: 10.1177/23743735231213764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
The asymptomatic population's role in COVID-19 transmission poses challenges for control efforts. Pregnant women are susceptible to severe manifestations, increasing maternal and perinatal morbidity and mortality. This study describes the clinical characteristics, maternal and fetal outcomes, and our experience in universal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) screening of pregnant women admitted to a high-complexity obstetric unit in Latin America. Of 568 pregnant women tested for SARS-CoV-2, 23 obtained a positive result. Among these patients, 17% had symptoms at admission, and 0.2% reported an epidemiological link. Pregnant women with positive were associated with an increased risk of eclampsia (16.7% vs 4.9%, P = .014) and acute respiratory distress (16.7% vs 4.9%, P = .014). In this group, 4 patients developed maternal near misses, and no maternal deaths were noted. Two early perinatal deaths occurred in the positive SARS-CoV-2 test group (2, 9.5% vs 17, 4.1%, P = .235). The high prevalence of asymptomatic pregnant women with SARS-CoV-2 and the adverse outcomes for those infected during pregnancy highlights the importance of universal screening upon hospital admission. This approach streamlines risk management, and enhances service structure, resource allocation, care pathways, patient management, follow-up, and overall outcomes.
Collapse
Affiliation(s)
- María Fernanda Escobar Vidarte
- Department of Obstetrics and Gynecology, Fundación Valle del Lili, Cali, Valle del Cauca, Colombia
- Facultad de Ciencias de la Salud, Universidad ICESI, Cali, Valle del Cauca, Colombia
| | - Maria Paula Echavarria
- Department of Obstetrics and Gynecology, Fundación Valle del Lili, Cali, Valle del Cauca, Colombia
- Facultad de Ciencias de la Salud, Universidad ICESI, Cali, Valle del Cauca, Colombia
| | - Javier Andrés Carvajal
- Department of Obstetrics and Gynecology, Fundación Valle del Lili, Cali, Valle del Cauca, Colombia
- Facultad de Ciencias de la Salud, Universidad ICESI, Cali, Valle del Cauca, Colombia
| | - Ludwig Luis Albornoz
- Department of Pathology, Fundación Valle del Lili, Cali, Valle del Cauca, Colombia
| | - Evelyn E. Peña-Zarate
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Valle del Cauca, Colombia
| | - Laura Libreros
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Valle del Cauca, Colombia
| | - Daniela Nasner
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Valle del Cauca, Colombia
| | - Juan Diego Vélez
- Department of Infectious Disease, Fundación Valle del Lili, Cali, Valle del Cauca, Colombia
| |
Collapse
|
23
|
Beenstock M, Felsenstein D, Gdaliahu M. The joint determination of morbidity and vaccination in the spatiotemporal epidemiology of COVID-19. Spat Spatiotemporal Epidemiol 2023; 47:100621. [PMID: 38042534 DOI: 10.1016/j.sste.2023.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/09/2023] [Accepted: 09/21/2023] [Indexed: 12/04/2023]
Abstract
This paper examines the mutual dependence between COVID-19 morbidity and vaccination rollout. A theory of endogenous immunization is proposed in which the decision to become vaccinated varies directly with the risks of contagion, and the public self-selects into self-protection. Hence, COVID-19 morbidity varies inversely with vaccination rollout, and vaccination rollout varies directly with COVID-19 morbidity. The paper leverages the natural sequencing between morbidity and immunization to identify the causal order in the dynamics of this relationship. A modified SIR model is estimated using spatial econometric methods for weekly panel data for Israel at a high level of spatial granularity. Connectivity between spatial units is measured using physical proximity and a unique mobility-based measure. Spatiotemporal models for morbidity and vaccination rollout show that not only does morbidity vary inversely with vaccination rollout, vaccination rollout varies directly with morbidity. The utility of the model for public health policy targeting, is highlighted.
Collapse
Affiliation(s)
- Michael Beenstock
- Department of Economics, Hebrew University of Jerusalem, Mt Scopus, Jerusalem 91900, Israel
| | - Daniel Felsenstein
- Department of Geography, Hebrew University of Jerusalem, Mt Scopus, Jerusalem 91900, Israel.
| | - Matan Gdaliahu
- Department of Economics, Hebrew University of Jerusalem, Mt Scopus, Jerusalem 91900, Israel
| |
Collapse
|
24
|
Yari P, Liang S, Chugh VK, Rezaei B, Mostufa S, Krishna VD, Saha R, Cheeran MCJ, Wang JP, Gómez-Pastora J, Wu K. Nanomaterial-Based Biosensors for SARS-CoV-2 and Future Epidemics. Anal Chem 2023; 95:15419-15449. [PMID: 37826859 DOI: 10.1021/acs.analchem.3c01522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Affiliation(s)
- Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Venkatramana Divana Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Jian-Ping Wang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
25
|
Hoffmann EDR, Balzan LDR, Inamine E, Pancotto LR, Gaboardi G, Cantarelli VV. Performance of Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) Targeting the RNA Polymerase Gene for the Direct Detection of SARS-CoV2 in Nasopharyngeal Swabs. Int J Mol Sci 2023; 24:13056. [PMID: 37685863 PMCID: PMC10487735 DOI: 10.3390/ijms241713056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/10/2023] Open
Abstract
In 2020, a global pandemic caused by SARS-CoV-2 was declared. Different institutes proposed diagnostic molecular methods to detect the virus in clinical samples. This study aims to validate and standardize the use of a loop-mediated isothermal amplification (LAMP)-based methodology targeting the viral RP gene, as a faster and low-cost diagnostic method for SARS-CoV-2 infections. The results obtained with RT-LAMP (Reverse Transcriptase) were compared to the results of real-time polymerase chain reaction (RT-PCR) to assess its sensitivity and specificity. In total, 115 samples (nasopharyngeal samples) were used for detecting SARS-CoV-2 by RT-LAMP, with 43 positives and 72 negatives. The study showed a positive predictive value (PPV) of 90.7% and a negative predictive value (VPN) of 100%. The LAMP assay also demonstrated a high sensitivity of 90.7% and a specificity of 100% (confidence interval 77.9-97.4%) when using the lower detection limit of 40 copies/µL. The RT-LAMP described here has the potential to detect even the new variants of SARS-CoV-2, suggesting that it may not be significantly affected by gene mutations. The RT-LAMP targeting the RP viral region is faster and less expensive than other molecular approaches, making it an alternative for developing countries.
Collapse
Affiliation(s)
- Elias da Rosa Hoffmann
- Basic Health Sciences Department, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil;
- Bom Pastor Laboratory, Molecular Biology Department, Igrejinha 95650-000, Brazil
| | | | - Everton Inamine
- Central Laboratory, Santa Casa de Misericórdia de Porto Alegre, Porto Alegre 90020-090, Brazil; (E.I.)
| | - Lisiane Rech Pancotto
- Central Laboratory, Santa Casa de Misericórdia de Porto Alegre, Porto Alegre 90020-090, Brazil; (E.I.)
| | - Guilherme Gaboardi
- Biomedical Sciences Department, Serra Gaúcha University Center (FSG), Caxias do Sul 95020-472, Brazil
| | - Vlademir Vicente Cantarelli
- Basic Health Sciences Department, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil;
| |
Collapse
|
26
|
Chen HC. A systematic review of the barcoding strategy that contributes to COVID-19 diagnostics at a population level. Front Mol Biosci 2023; 10:1141534. [PMID: 37496777 PMCID: PMC10366608 DOI: 10.3389/fmolb.2023.1141534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
The outbreak of SARS-CoV-2 has made us more alert to the importance of viral diagnostics at a population level to rapidly control the spread of the disease. The critical question would be how to scale up testing capacity and perform a diagnostic test in a high-throughput manner with robust results and affordable costs. Here, the latest 26 articles using barcoding technology for COVID-19 diagnostics and biologically-relevant studies are reviewed. Barcodes are molecular tags, that allow proceeding an array of samples at once. To date, barcoding technology followed by high-throughput sequencing has been made for molecular diagnostics for SARS-CoV-2 infections because it can synchronously analyze up to tens of thousands of clinical samples within a short diagnostic time. Essentially, this technology can also be used together with different biotechnologies, allowing for investigation with resolution of single molecules. In this Mini-Review, I first explain the general principle of the barcoding strategy and then put forward recent studies using this technology to accomplish COVID-19 diagnostics and basic research. In the meantime, I provide the viewpoint to improve the current COVID-19 diagnostic strategy with potential solutions. Finally, and importantly, two practical ideas about how barcodes can be further applied in studying SARS-CoV-2 to accelerate our understanding of this virus are proposed.
Collapse
|
27
|
O’Gara D, Rosenblatt SF, Hébert-Dufresne L, Purcell R, Kasman M, Hammond RA. TRACE-Omicron: Policy Counterfactuals to Inform Mitigation of COVID-19 Spread in the United States. ADVANCED THEORY AND SIMULATIONS 2023; 6:2300147. [PMID: 38283383 PMCID: PMC10812885 DOI: 10.1002/adts.202300147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 01/30/2024]
Abstract
The Omicron wave was the largest wave of COVID-19 pandemic to date, more than doubling any other in terms of cases and hospitalizations in the United States. In this paper, we present a large-scale agent-based model of policy interventions that could have been implemented to mitigate the Omicron wave. Our model takes into account the behaviors of individuals and their interactions with one another within a nationally representative population, as well as the efficacy of various interventions such as social distancing, mask wearing, testing, tracing, and vaccination. We use the model to simulate the impact of different policy scenarios and evaluate their potential effectiveness in controlling the spread of the virus. Our results suggest the Omicron wave could have been substantially curtailed via a combination of interventions comparable in effectiveness to extreme and unpopular singular measures such as widespread closure of schools and workplaces, and highlight the importance of early and decisive action.
Collapse
Affiliation(s)
- David O’Gara
- Division of Computational and Data Sciences, Washington University in St. Louis
| | - Samuel F. Rosenblatt
- Vermont Complex Systems Center, University of Vermont
- Department of Computer Science, University of Vermont
| | - Laurent Hébert-Dufresne
- Vermont Complex Systems Center, University of Vermont
- Department of Computer Science, University of Vermont
| | - Rob Purcell
- Center On Social Dynamics and Policy, Brookings Institution
| | - Matt Kasman
- Center On Social Dynamics and Policy, Brookings Institution
| | - Ross A. Hammond
- Center On Social Dynamics and Policy, Brookings Institution
- Division of Computational and Data Sciences, Washington University in St. Louis
- Brown School, Washington University in St. Louis
- Santa Fe Institute
| |
Collapse
|
28
|
Hamed SA, Kamal-Eldeen EB, Ahmed MAAR. Evaluation of children and adults with post-COVID-19 persistent smell, taste and trigeminal chemosensory disorders: A hospital based study. World J Clin Pediatr 2023; 12:133-150. [PMID: 37342446 PMCID: PMC10278074 DOI: 10.5409/wjcp.v12.i3.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Smell disorders are the most frequent persistent coronavirus disease 2019 (COVID-19) complications. AIM To describe the patterns and characteristics of persistent smell and taste disorders in Egyptian patients. METHODS Assessment was done to 185 patients (adults = 150, age: 31.41 ± 8.63 years; children = 35; age: 15.66 ± 1.63 years). Otolaryngology and neuropsychiatric evaluations were done. Measurements included: A clinical questionnaire (for smell and taste); sniffin' odor, taste and flavor identification tests and the Questionnaire of Olfactory Disorders-Negative Statements (sQOD-NS). RESULTS Duration of disorders was 11.53 ± 3.97 ms (6-24 ms). Parosmia (n = 119; 64.32%) was developed months after anosmia (3.05 ± 1.87 ms). Objective testing showed anosmia in all, ageusia and flavor loss in 20% (n = 37) and loss of nasal and oral trigeminal sensations in 18% (n = 33) and 20% (n = 37), respectively. Patients had low scoring of sQOD-NS (11.41 ± 3.66). There were no specific differences in other demographics and clinical variables which could distinguish post-COVID-19 smell and taste disorders in children from adults. CONCLUSION The course of small and taste disorders are supportive of the nasal and oral neuronal compromises. Post-COVID-19 taste and trigeminal disorders were less frequent compared to smell disorders. Post-COVID-19 flavor disorders were solely dependent on taste and not smell disorders. There were no demographics, clinical variables at onset or specific profile of these disorders in children compared to adults.
Collapse
Affiliation(s)
- Sherifa Ahmed Hamed
- Department of Neurology and Psychiatry, Assiut University, Faculty of Medicine, Assiut 71516, Egypt
| | | | | |
Collapse
|
29
|
Lee H, Wang W, Chauhan N, Xiong Y, Magazine N, Valdescruz O, Kim DY, Qiu T, Huang W, Wang X, Cunningham BT. Rapid detection of intact SARS-CoV-2 using designer DNA Nets and a pocket-size smartphone-linked fluorimeter. Biosens Bioelectron 2023; 229:115228. [PMID: 36963325 PMCID: PMC10019040 DOI: 10.1016/j.bios.2023.115228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Rapid, sensitive, and inexpensive point-of-care diagnosis is vital to controlling highly infectious diseases, including COVID-19. Here, we report the design and characterization of a compact fluorimeter called a "Virus Pod" (V-Pod) that enables sensitive self-testing of SARS-CoV-2 viral load in saliva. The rechargeable battery-operated device reads the fluorescence generated by Designer DNA Nanostructures (DDN) when they specifically interact with intact SARS-CoV-2 virions. DDNs are net-shaped self-assembling nucleic acid constructs that provide an array of highly specific aptamer-fluorescent quencher duplexes located at precise positions that match the pattern of spike proteins. The room-temperature assay is performed by mixing the test sample with DNA Net sensor in a conventional PCR tube and placing the tube into the V-Pod. Fluorescent signals are generated when multivalent aptamer-spike binding releases fluorescent quenchers, resulting in rapid (5-min) generation of dose-dependent output. The V-Pod instrument performs laser excitation, fluorescence intensity quantitation, and secure transmission of data to an App via Bluetooth™. We show that the V-Pod and DNA Net assay achieves clinically relevant detection limits of 3.92 × 103 viral-genome-copies/mL for pseudo-typed wild-type SARS-CoV-2 and 1.84 × 104, 9.69 × 104, 6.99 × 104 viral-genome-copies/mL for pathogenic Delta, Omicron, and D614G variants, representing sensitivity similar to laboratory-based PCR. The pocket-sized instrument (∼$294), inexpensive reagent-cost/test ($1.26), single-step, rapid sample-to-answer, and quantitative output represent a capability that is compatible with the needs of frequent self-testing in a consumer-friendly format that can link with medical service systems such as healthcare providers, contact tracing, and infectious disease reporting.
Collapse
Affiliation(s)
- Hankeun Lee
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Weijing Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Neha Chauhan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Center for Genomic Diagnostics, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Center for Genomic Diagnostics, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA
| | - Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Owen Valdescruz
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Dong Yeun Kim
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Tianjie Qiu
- Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Xing Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Center for Genomic Diagnostics, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA
| | - Brian T Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Center for Genomic Diagnostics, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA.
| |
Collapse
|
30
|
He XH, Yan H, Wang CY, Duan XY, Qiao JJ, Guo XJ, Zhao HB, Ren D, Li JS, Zhang Q. Comparison of the conventional tube and erythrocyte-magnetized technology in titration of red blood cell alloantibodies. World J Biol Chem 2023; 14:62-71. [PMID: 37273684 PMCID: PMC10236968 DOI: 10.4331/wjbc.v14.i3.62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/16/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Erythrocyte alloantibodies are mainly produced after immune stimulation, such as blood transfusion, pregnancy, and transplantation, and are the leading causes of severe hemolytic transfusion reactions and difficulty in blood grouping and matching. Therefore, antibody screening is critical to prevent and improve red cell alloantibodies. Routine tube assay is the primary detection method of antibody screening. Recently, erythrocyte-magnetized technology (EMT) has been increasingly used in clinical practice. This study intends to probe the application and efficacy of the conventional tube and EMT in red blood cell alloantibody titration to provide a reference for clinical blood transfusion.
AIM To investigate the application value of conventional tube and EMT in red blood cell alloantibody titration and enhance the safety of blood transfusion practice.
METHODS A total of 1298 blood samples were harvested from blood donors at the Department of Blood Transfusion of our hospital from March 2021 to December 2022. A 5 mL blood sample was collected in tubing, which was then cut, and the whole blood was put into a test tube for centrifugation to separate the serum. Different red blood cell blood group antibody titers were simultaneously detected using the tube polybrene test, tube antiglobulin test (AGT), and EMT screening irregular antibody methods to determine the best test method.
RESULTS Simultaneous detection was performed through the tube polybrene test, tube AGT and EMT screening irregular antibodies. It was discovered that the EMT screening irregular antibody method could detect all immunoglobulin G (IgG) and immunoglobulin M (IgM) irregular antibodies, and the results of manual tube AGT were satisfactory, but the operation time was lengthy, and the equipment had a large footprint. The EMT screening irregular antibody assay was also conducted to determine its activity against type O Rh (D) red blood cells, and the outcomes were satisfactory. Furthermore, compared to the conventional tube method, the EMT screening irregular antibody method was more cost-effective and had significantly higher detection efficiency.
CONCLUSION With a higher detection rate, the EMT screening irregular antibody method can detect both IgG and IgM irregular antibodies faster and more effectively than the conventional tube method.
Collapse
Affiliation(s)
- Xue-Hua He
- Department of Blood Transfusion, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, Shanxi Province, China
| | - Hong Yan
- Department of Blood Transfusion, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Chun-Yan Wang
- Department of Blood Transfusion, Shanxi Cancer Hospital, Taiyuan 030013, Shanxi Province, China
| | - Xue-Yun Duan
- Department of Blood Transfusion, Shanxi Cardiovascular Hospital, Taiyuan 030024, Shanxi Province, China
| | - Jia-Jia Qiao
- Department of Blood Transfusion, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, Shanxi Province, China
| | - Xiao-Jun Guo
- Department of Blood Transfusion, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, Shanxi Province, China
| | - Hong-Bin Zhao
- Department of Blood Transfusion, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, Shanxi Province, China
| | - Dong Ren
- Department of Blood Transfusion, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, Shanxi Province, China
| | - Jian-She Li
- Department of Blood Transfusion, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Qiang Zhang
- Department of Clinical Laboratory, Taiyuan Blood Center, Institute of Blood Transfusion Technology, Taiyuan 030024, Shanxi Province, China
| |
Collapse
|
31
|
Samman N, El-Boubbou K, Al-Muhalhil K, Ali R, Alaskar A, Alharbi NK, Nehdi A. MICaFVi: A Novel Magnetic Immuno-Capture Flow Virometry Nano-Based Diagnostic Tool for Detection of Coronaviruses. BIOSENSORS 2023; 13:553. [PMID: 37232914 PMCID: PMC10216117 DOI: 10.3390/bios13050553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
COVID-19 has resulted in a pandemic that aggravated the world's healthcare systems, economies, and education, and caused millions of global deaths. Until now, there has been no specific, reliable, and effective treatment to combat the virus and its variants. The current standard tedious PCR-based tests have limitations in terms of sensitivity, specificity, turnaround time, and false negative results. Thus, an alternative, rapid, accurate, and sensitive diagnostic tool that can detect viral particles, without the need for amplification or viral replication, is central to infectious disease surveillance. Here, we report MICaFVi (Magnetic Immuno-Capture Flow Virometry), a novel precise nano-biosensor diagnostic assay for coronavirus detection which combines the MNP-based immuno-capture of viruses for enrichment followed by flow-virometry analysis, enabling the sensitive detection of viral particles and pseudoviruses. As proof of concept, virus-mimicking spike-protein-coated silica particles (VM-SPs) were captured using anti-spike-antibody-conjugated MNPs (AS-MNPs) followed by detection using flow cytometry. Our results showed that MICaFVi can successfully detect viral MERS-CoV/SARS-CoV-2-mimicking particles as well as MERS-CoV pseudoviral particles (MERSpp) with high specificity and sensitivity, where a limit of detection (LOD) of 3.9 µg/mL (20 pmol/mL) was achieved. The proposed method has great potential for designing practical, specific, and point-of-care testing for rapid and sensitive diagnoses of coronavirus and other infectious diseases.
Collapse
Affiliation(s)
- Nosaibah Samman
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC) & King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Kheireddine El-Boubbou
- King Abdullah International Medical Research Center (KAIMRC) & King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
- Nanomaterials for Bioimaging Group (nanoBIG), Facultad de Ciencias, Departamento de Física de Materiales, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Department of Chemistry, College of Science, University of Bahrain, Sakhir 32038, Bahrain
| | - Khawlah Al-Muhalhil
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC) & King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Rizwan Ali
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC) & King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Ahmed Alaskar
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC) & King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
- Department of Oncology, King Abdulaziz Medical City, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Naif Khalaf Alharbi
- King Abdullah International Medical Research Center (KAIMRC) & King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Atef Nehdi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC) & King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
- Department of Life Sciences, Faculty of Sciences of Gabes, University of Gabes, Gabes 6029, Tunisia
| |
Collapse
|
32
|
Zhang Y, Clarke SP, Wu H, Li W, Zhou C, Lin K, Wang J, Wang J, Liang Y, Wang X, Wang L. A comprehensive overview on the transmission, pathogenesis, diagnosis, treatment, and prevention of SARS-CoV-2. J Med Virol 2023; 95:e28776. [PMID: 37212261 DOI: 10.1002/jmv.28776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) is a single positive-strand RNA virus that is responsible for the current pandemic that the world has been facing since 2019. The primary route of transmission of SARS-CoV-2 is through respiratory tract transmission. However, other transmission routes such as fecal-oral, vertical transmission, and aerosol-eye also exist. In addition, it has been found that the pathogenesis of this virus involves the binding of the virus's S protein to its host cell surface receptor angiotensin-converting enzyme 2, which results in the subsequent membrane fusion that is required for SARS-CoV-2 to replicate and complete its entire life. The clinical symptoms of patients infected with SARS-CoV-2 can range from asymptomatic to severe. The most common symptoms seen include fever, dry cough, and fatigue. Once these symptoms are observed, a nucleic acid test is done using reverse transcription-polymerase chain reaction. This currently serves as the main confirmatory tool for COVID-19. Despite the fact that no cure has been found for SARS-CoV-2, prevention methods such as vaccines, specific facial mask, and social distancing have proven to be quite effective. It is imperative to have a complete understanding of the transmission and pathogenesis of this virus. To effectively develop new drugs as well as diagnostic tools, more knowledge about this virus would be needed.
Collapse
Affiliation(s)
- Yiting Zhang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | | | - Huanwu Wu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wenli Li
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Chang Zhou
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Kang Lin
- Department of Basic Medical Sciences, Morphological Experimental Center, Anhui Medical University, Hefei, Anhui, China
| | - Jiawen Wang
- Department of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Jinzhi Wang
- Department of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ying Liang
- Department of The Second Clinical School of Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Xin Wang
- Department of Chemistry, Anhui Medical University, Hefei, Anhui, China
| | - Linding Wang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
33
|
Chong YP, Choy KW, Doerig C, Lim CX. SARS-CoV-2 Testing Strategies in the Diagnosis and Management of COVID-19 Patients in Low-Income Countries: A Scoping Review. Mol Diagn Ther 2023; 27:303-320. [PMID: 36705912 PMCID: PMC9880944 DOI: 10.1007/s40291-022-00637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 01/28/2023]
Abstract
The accuracy of diagnostic laboratory tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can impact downstream clinical procedures in managing and controlling the outbreak of coronavirus disease 2019 (COVID-19). To assess the effectiveness of laboratory tools for managing COVID-19 patients in low-income countries (LICs), we systematically searched the PubMed, Embase, Scopus and CINHAL databases for reports published between January 2020 and June 2022. We found that 22 of 1303 articles reported the performance of various SARS-CoV-2 detection tools across 10 LICs. These tools were (1) real-time reverse transcriptase polymerase chain reaction (RT-PCR); (2) reverse transcription loop-mediated isothermal amplification (RT-LAMP); (3) rapid diagnostic tests (RDTs); (4) enzyme-linked immunosorbent assay (ELISA); and (5) dot-blot immunoassay. The detection of COVID-19 is largely divided into two main streams-direct virus (antigen) detection and serology (immunoglobulin)-based detection. Point-of-care testing using antigen-based RDTs is preferred in LICs because of cost effectiveness and simplicity in the test procedures. The nucleic acid amplification technology (RT-PCR and RT-LAMP) has the highest diagnostic performance among the available tests, but it is not broadly used in this context due to costs and shortage of facilities/trained staff. The serology-based test method is affected by antibody interferences and varying amounts of SARS-CoV-2 immunoglobulins expressed at different stages of disease onset. We further discuss the effectiveness and shortcomings of each of these tools in the diagnosis and management of COVID-19. Using the LICs as the study model, our findings highlight ways to improve the quality and turnaround time of COVID-19 testing in resource-constrained settings, notably through local/international collaborative efforts to refine the molecular-based or immunoassay-based testing technologies.
Collapse
Affiliation(s)
- Yuh Ping Chong
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia.
| | - Kay Weng Choy
- Northern Pathology Victoria, Northern Health, Epping, VIC, 3076, Australia
| | - Christian Doerig
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Chiao Xin Lim
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
34
|
Kuzan A, Tabakov I, Madej L, Mucha A, Fulawka L. What to Do if the qPCR Test for SARS-CoV-2 or Other Pathogen Lacks Endogenous Internal Control? A Simple Test on Housekeeping Genes. Biomedicines 2023; 11:biomedicines11051337. [PMID: 37239008 DOI: 10.3390/biomedicines11051337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Some of the products for the molecular diagnosis of infections do not have an endogenous internal control, and this is necessary to ensure that the result is not a false negative. The aim of the project was to design a simple low-cost RT-qPCR test that can confirm the expression of basic metabolism proteins, thus confirming the quality of genetic material for molecular diagnostic tests. Two successful equivalent qPCR assays for the detection of the GADPH and ACTB genes were obtained. The course of standard curves is logarithmic, with a very high correlation coefficient R2 within the range of 0.9955-0.9956. The reaction yield was between 85.5 and 109.7%, and the detection limit (LOD) with 95% positive probability was estimated at 0.0057 ng/µL for GAPDH and 0.0036 ng/µL for ACTB. These tests are universal because they function on various types of samples (swabs, cytology, etc.) and can complement the diagnosis of SARS-CoV-2 and other pathogens, as well as potentially oncological diagnostics.
Collapse
Affiliation(s)
- Aleksandra Kuzan
- Molecular Pathology Centre Cellgen, 50-353 Wroclaw, Poland
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Ivo Tabakov
- Molecular Pathology Centre Cellgen, 50-353 Wroclaw, Poland
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Lukasz Madej
- Molecular Pathology Centre Cellgen, 50-353 Wroclaw, Poland
- Collegium Medicum, Jan Kochanowski University, 25-516 Kielce, Poland
| | - Anna Mucha
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
| | - Lukasz Fulawka
- Molecular Pathology Centre Cellgen, 50-353 Wroclaw, Poland
| |
Collapse
|
35
|
Spicuzza L, Campagna D, Di Maria C, Sciacca E, Mancuso S, Vancheri C, Sambataro G. An update on lateral flow immunoassay for the rapid detection of SARS-CoV-2 antibodies. AIMS Microbiol 2023; 9:375-401. [PMID: 37091823 PMCID: PMC10113162 DOI: 10.3934/microbiol.2023020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
Over the last three years, after the outbreak of the COVID-19 pandemic, an unprecedented number of novel diagnostic tests have been developed. Assays to evaluate the immune response to SARS-CoV-2 have been widely considered as part of the control strategy. The lateral flow immunoassay (LFIA), to detect both IgM and IgG against SARS-CoV-2, has been widely studied as a point-of-care (POC) test. Compared to laboratory tests, LFIAs are faster, cheaper and user-friendly, thus available also in areas with low economic resources. Soon after the onset of the pandemic, numerous kits for rapid antibody detection were put on the market with an emergency use authorization. However, since then, scientists have tried to better define the accuracy of these tests and their usefulness in different contexts. In fact, while during the first phase of the pandemic LFIAs for antibody detection were auxiliary to molecular tests for the diagnosis of COVID-19, successively these tests became a tool of seroprevalence surveillance to address infection control policies. When in 2021 a massive vaccination campaign was implemented worldwide, the interest in LFIA reemerged due to the need to establish the extent and the longevity of immunization in the vaccinated population and to establish priorities to guide health policies in low-income countries with limited access to vaccines. Here, we summarize the accuracy, the advantages and limits of LFIAs as POC tests for antibody detection, highlighting the efforts that have been made to improve this technology over the last few years.
Collapse
Affiliation(s)
- Lucia Spicuzza
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Ying X, Liu H, Huang R. COVID-19 chest X-ray image classification in the presence of noisy labels. DISPLAYS 2023; 77:102370. [PMID: 36644695 PMCID: PMC9826538 DOI: 10.1016/j.displa.2023.102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The Corona Virus Disease 2019 (COVID-19) has been declared a worldwide pandemic, and a key method for diagnosing COVID-19 is chest X-ray imaging. The application of convolutional neural network with medical imaging helps to diagnose the disease accurately, where the label quality plays an important role in the classification problem of COVID-19 chest X-rays. However, most of the existing classification methods ignore the problem that the labels are hardly completely true and effective, and noisy labels lead to a significant degradation in the performance of image classification frameworks. In addition, due to the wide distribution of lesions and the large number of local features of COVID-19 chest X-ray images, existing label recovery algorithms have to face the bottleneck problem of the difficult reuse of noisy samples. Therefore, this paper introduces a general classification framework for COVID-19 chest X-ray images with noisy labels and proposes a noisy label recovery algorithm based on subset label iterative propagation and replacement (SLIPR). Specifically, the proposed algorithm first obtains random subsets of the samples multiple times. Then, it integrates several techniques such as principal component analysis, low-rank representation, neighborhood graph regularization, and k-nearest neighbor for feature extraction and image classification. Finally, multi-level weight distribution and replacement are performed on the labels to cleanse the noise. In addition, for the label-recovered dataset, high confidence samples are further selected as the training set to improve the stability and accuracy of the classification framework without affecting its inherent performance. In this paper, three typical datasets are chosen to conduct extensive experiments and comparisons of existing algorithms under different metrics. Experimental results on three publicly available COVID-19 chest X-ray image datasets show that the proposed algorithm can effectively recover noisy labels and improve the accuracy of the image classification framework by 18.9% on the Tawsifur dataset, 19.92% on the Skytells dataset, and 16.72% on the CXRs dataset. Compared to the state-of-the-art algorithms, the gain of classification accuracy of SLIPR on the three datasets can reach 8.67%-19.38%, and the proposed algorithm also has certain scalability while ensuring data integrity.
Collapse
Affiliation(s)
- Xiaoqing Ying
- Collage of Information Science and Technology, Donghua University, Shanghai 201620, China
| | - Hao Liu
- Collage of Information Science and Technology, Donghua University, Shanghai 201620, China
- Engineering Research Center of Digitized Textile & Apparel Technology, Ministry of Education, Shanghai 201620, China
| | - Rong Huang
- Collage of Information Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
37
|
Xie B, Semaan DB, Binko MA, Agrawal N, Kulkarni RN, Andraska EA, Sachdev U, Chaer RA, Eslami MH, Makaroun MS, Sridharan N. COVID-associated acute limb ischemia during the Delta surge and the effect of vaccines. J Vasc Surg 2023; 77:1165-1173.e1. [PMID: 36526086 PMCID: PMC9744677 DOI: 10.1016/j.jvs.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Hypercoagulability is common in severe acute respiratory syndrome coronavirus 2 and has been associated with arterial thrombosis leading to acute limb ischemia (ALI). Our objective was to determine the outcomes of concurrent coronavirus disease 2019 (COVID-19) infection and ALI, particularly during the Delta variant surge and the impact of vaccination status. METHODS A retrospective review was performed of patients treated at a single health care system between March 2020 and December 2021 for ALI and recent (<14 days) COVID-19 infection or who developed ALI during hospitalization for the same disease. Patients were grouped by year as well as by pre and post Delta variant emergence in 2021 based on the World Health Organization timeline (January to May vs June to December). Baseline demographics, imaging, interventions, and outcomes were evaluated. A control cohort of all patients with ALI requiring surgical intervention for a 2-year period prior to the pandemic was used for comparison. Primary outcomes were in-hospital mortality and amputation-free survival. Kaplan-Meier survival and Cox proportional hazards analysis were performed. RESULTS Forty acutely ischemic limbs were identified in 36 patients with COVID-19, the majority during the Delta surge (52.8%) and after the wide availability of vaccines. The rate of COVID-19-associated ALI, although low overall, nearly doubled during the Delta surge (0.37% vs 0.20%; P = .09). Intervention (open or endovascular revascularization vs primary amputation) was performed on 31 limbs in 28 individuals, with the remaining eight treated with systemic anti-coagulation. Postoperative mortality was 48%, and overall mortality was 50%. Major amputation following revascularization was significantly higher with COVID-19 ALI (25% vs 3%; P = .006) compared with the pre-pandemic group. Thirty-day amputation-free survival was significantly lower (log-rank P < .001). COVID-19 infection (adjusted hazard ratio, 6.2; P < .001) and age (hazard ratio, 1.1; P = .006) were associated with 30-day amputation in multivariate analysis. Severity of COVID-19 infection, defined as vasopressor usage, was not associated with post-revascularization amputation. There was a higher incidence of re-thrombosis in the latter half of 2021 with the Delta surge, as reintervention for recurrent ischemia of the same limb was more common than our previous experience (21% vs 0%; P = .55). COVID-19-associated limb ischemia occurred almost exclusively in non-vaccinated patients (92%). CONCLUSIONS ALI observed with Delta appears more resistant to standard therapy. Unvaccinated status correlated highly with ALI occurrence in the setting of COVID-19 infection. Information of limb loss as a COVID-19 complication among non-vaccinated patients may help to increase compliance.
Collapse
Affiliation(s)
- Bowen Xie
- Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA.
| | - Dana B Semaan
- Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Mary A Binko
- University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Rohan N Kulkarni
- Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Elizabeth A Andraska
- Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Ulka Sachdev
- Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Rabih A Chaer
- Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Mohammad H Eslami
- Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Michel S Makaroun
- Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Natalie Sridharan
- Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
38
|
Jang WS, Jee H, Lee JM, Lim CS, Kim J. Performance Evaluation of a BZ COVID-19 NALF Assay for Rapid Diagnosis of SARS-CoV-2. Diagnostics (Basel) 2023; 13:diagnostics13061118. [PMID: 36980425 PMCID: PMC10047401 DOI: 10.3390/diagnostics13061118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Coronavirus disease (COVID-19) caused by SARS-CoV-2 infection has been a global pandemic for more than two years, and it is important to quickly and accurately diagnose and isolate patients with SARS-CoV-2 infection. The BZ COVID-19 NALF Assay could sensitively detect SARS-CoV-2 from a nasopharyngeal swab because it adopts both a loop-mediated isothermal amplification and lateral flow immunochromatography technology. In this study, a total of 389 nasopharyngeal swab samples, of which 182 were SARS-CoV-2 PCR positive and 207 were negative samples, were recruited. Compared to the Allplex™ SARS-CoV-2 Assay, the BZ COVID-19 NALF Assay showed 95.05% sensitivity and 99.03% specificity for detecting SARS-CoV-2. The concordance rate between the BZ COVID-19 NALF Assay and Allplex™ SARS-CoV-2 Assay was 97.69%. The turnaround time of the BZ COVID-19 NALF Assay is only about 40~55 min. The BZ COVID-19 NALF Assay is an accurate, easy, and quick molecular diagnostic test compared to the conventional PCR test for detection of SARS-CoV-2. In addition, the BZ COVID-19 NALF Assay is thought to be very useful in small size medical facilities or developing countries where it is difficult to operate a clinical laboratory.
Collapse
Affiliation(s)
- Woong Sik Jang
- Emergency Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Hyunseul Jee
- Departments of Laboratory Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Joon Min Lee
- Departments of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Chae Seung Lim
- Departments of Laboratory Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Departments of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Jeeyong Kim
- Departments of Laboratory Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Correspondence: ; Tel.: +82-31-412-5304
| |
Collapse
|
39
|
Zhao Z, Sun L, Wang L, Li X, Peng J. A Multiplex Method for Detection of SARS-CoV-2 Variants Based on MALDI-TOF Mass Spectrometry. BIOSAFETY AND HEALTH 2023; 5:101-107. [PMID: 37123451 PMCID: PMC9977071 DOI: 10.1016/j.bsheal.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
The recent outbreak of the coronavirus disease 2019 (COVID-19) pandemic and the continuous evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have highlighted the significance of new detection methods for global monitoring and prevention. Although quantitative reverse transcription PCR (RT-qPCR), the current gold standard for diagnosis, performs excellently in genetic testing, its multiplexing capability is limited because of the signal crosstalk of various fluorophores. Herein, we present a highly efficient platform which combines 17-plex assays with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), enabling the targeting of 14 different mutation sites of the spike gene. Diagnosis using a set of 324 nasopharyngeal swab or sputum clinical samples with SARS-CoV-2 MS method was identical to that with the RT-qPCR. The detection consistency of mutation sites was 97.9% (47/48) compared to Sanger sequencing without cross-reaction with other respiratory-related pathogens. Therefore, the MS method is highly potent to track and assess SARS-CoV-2 changes in a timely manner, thereby aiding continuous response to viral variation and prevention of further transmission.
Collapse
Affiliation(s)
- Ziyuan Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Liying Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Liqin Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaodong Li
- Shimadzu China Innovation Center, Shimadzu Corporation, Beijing 100020, China
| | - Junping Peng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
40
|
Athanasiou NK, Antonoglou A, Ioannou M, Jahaj E, Katsaounou P. Unilateral Pleural Effusion after Third Dose of BNT162b2 mRNA Vaccination: Case Report. J Pers Med 2023; 13:jpm13030391. [PMID: 36983574 PMCID: PMC10054106 DOI: 10.3390/jpm13030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
Vaccination remains the best strategy against coronavirus disease 2019 (COVID-19) in terms of prevention. The efficacy and safety of COVID-19 vaccines is supported by well-designed clinical trials that recruited many participants. It is well-known that vaccination is associated with local side effects related to the injection site, and mild, systemic side effects. However, there has been an increase in the occurrence of what is known as infrequent adverse effects in the population of vaccinated individuals in real life. We present the case of a 46-year-old woman with no past medical history, who presented with a sharp chest pain with deep inspiration, a few days after receiving the third dose of the Pfizer-BioNTech COVID-19 mRNA vaccine (BNT162b2). There is an association between the BNT16b2 vaccination and myocarditis, pericarditis, and even bilateral pleural effusions. To the best of our knowledge, this is the first report featuring a unilateral pleural effusion in a patient with no known past medical history, who did not develop cardiac involvement nor have any viral infection. The aim of our report is to inform health professionals of the possibility of encountering this rare adverse event in their daily practice, as the population of individuals who are receiving additional vaccine doses is increasing steadily.
Collapse
|
41
|
Seidl C, Coyer L, Ackermann N, Katz K, Walter J, Ippisch S, Hoch M, Böhmer MM. SARS-CoV-2 Prevalence on and Incidence after Arrival in Travelers on Direct Flights from Cape Town, South Africa to Munich, Germany Shortly after Occurrence of the Omicron Variant in November/December 2021: Results from the OMTRAIR Study. Pathogens 2023; 12:pathogens12020354. [PMID: 36839626 PMCID: PMC9960974 DOI: 10.3390/pathogens12020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The highly transmissible SARS-CoV-2-variant B.1.1.529 (Omicron) first appeared in South Africa in November 2021. In order to study Omicron entry to Germany, its occurrence related to incoming airline travel, symptomatology and compliance with entry regulations and recommendations, we conducted a cross-sectional study, followed by a retrospective cohort study among passengers and crew on 19 direct flights from Cape Town, South Africa, to Munich, Germany, between 26 November and 23 December 2021. Travelers were mandatorily PCR-tested on arrival and invited to complete an online questionnaire. SARS-CoV-2-prevalence on arrival was 3.3% (n = 90/2728), and 93% were Omicron. Of the passengers, 528 (19%) completed the questionnaire. Among participants who tested negative on arrival, self-reported SARS-CoV-2-incidence was 4.3% within 14 days, of whom 74% reported a negative PCR-test ≤ 48 h before boarding, 77% were fully vaccinated, and 90% reported wearing an FFP2/medical mask during flight. We found multiple associations between risk factors and infection on and after arrival, among which having a positive-tested travel partner was the most noteworthy. In conclusion, PCR testing before departure was insufficient to control the introduction of the Omicron variant. Additional measures (e.g., frequent testing, quarantine after arrival or travel ban) should be considered to delay virus introduction in such settings.
Collapse
Affiliation(s)
- Cornelia Seidl
- Infectious Disease Epidemiology and Surveillance Unit, Bavarian Health and Food Safety Authority, 80636 Munich, Germany
- Postgraduate Training in Applied Epidemiology (PAE), Department of Infectious Epidemiology, Robert Koch Institute, 13353 Berlin, Germany
- Correspondence: (C.S.); (L.C.)
| | - Liza Coyer
- Infectious Disease Epidemiology and Surveillance Unit, Bavarian Health and Food Safety Authority, 80636 Munich, Germany
- ECDC Fellowship Programme, Field Epidemiology path (EPIET), European Centre for Disease Prevention and Control, 16 973 Solna, Sweden
- Correspondence: (C.S.); (L.C.)
| | - Nikolaus Ackermann
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany
| | - Katharina Katz
- Infectious Disease Epidemiology and Surveillance Unit, Bavarian Health and Food Safety Authority, 80636 Munich, Germany
| | - Jan Walter
- Postgraduate Training in Applied Epidemiology (PAE), Department of Infectious Epidemiology, Robert Koch Institute, 13353 Berlin, Germany
| | - Siegfried Ippisch
- Task Force Infectious Diseases Department, Bavarian Health and Food Safety Authority, 80636 Munich, Germany
| | - Martin Hoch
- Task Force Infectious Diseases Department, Bavarian Health and Food Safety Authority, 80636 Munich, Germany
| | - Merle M. Böhmer
- Infectious Disease Epidemiology and Surveillance Unit, Bavarian Health and Food Safety Authority, 80636 Munich, Germany
- Institute of Social Medicine and Health Systems Research, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| |
Collapse
|
42
|
Li Y, Yamamoto S, Oshiro Y, Inamura N, Nemoto T, Horii K, Takeuchi JS, Mizoue T, Konishi M, Ozeki M, Sugiyama H, Sugiura W, Ohmagari N. Comparison of risk factors for SARS-CoV-2 infection among healthcare workers during Omicron and Delta dominance periods in Japan. J Hosp Infect 2023; 134:97-107. [PMID: 36805085 PMCID: PMC9933573 DOI: 10.1016/j.jhin.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND The risk factors for coronavirus disease (COVID-19) among healthcare workers (HCWs) might have changed since the emergence of the highly immune evasive Omicron variant. AIM To compare the risk factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among HCWs during the Delta- and Omicron-predominant periods. METHODS Using data from repeated serosurveys among the staff of a medical research centre in Tokyo, two cohorts were established: Delta period cohort (N = 858) and Omicron period cohort (N = 652). The potential risk factors were assessed using a questionnaire. Acute/current or past SARS-CoV-2 infection was identified by polymerase chain reaction or anti-nucleocapsid antibody tests, respectively. Poisson regression was used to calculate the risk ratio (RR) of infection risk. FINDINGS The risk of SARS-CoV-2 infection during the early Omicron-predominant period was 3.4-fold higher than during the Delta-predominant period. Neither working in a COVID-19-related department nor having a higher degree of occupational exposure to SARS-CoV-2 was associated with an increased infection risk during both periods. During the Omicron-predominant period, infection risk was higher among those who spent ≥30 min in closed spaces, crowded spaces, and close-contact settings without wearing mask (≥3 times versus never: RR: 6.62; 95% confidence interval: 3.01-14.58), whereas no such association was found during the Delta period. CONCLUSION Occupational exposure to COVID-19-related work was not associated with the risk of SARS-CoV-2 infection in the Delta or Omicron period, whereas high-risk behaviours were associated with an increased infection risk during the Omicron period.
Collapse
Affiliation(s)
- Y Li
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - S Yamamoto
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Y Oshiro
- Department of Laboratory Testing, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - N Inamura
- Department of Laboratory Testing, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - T Nemoto
- Department of Laboratory Testing, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - K Horii
- Infection Control Office, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - J S Takeuchi
- Department Academic-Industrial Partnerships Promotion, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - T Mizoue
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan.
| | - M Konishi
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - M Ozeki
- Department of Laboratory Testing, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - H Sugiyama
- Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - W Sugiura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - N Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
43
|
Ilié M, Benzaquen J, Hofman V, Long-Mira E, Lassalle S, Boutros J, Bontoux C, Lespinet-Fabre V, Bordone O, Tanga V, Allegra M, Salah M, Fayada J, Leroy S, Vassallo M, Touitou I, Courjon J, Contenti J, Carles M, Marquette CH, Hofman P. Accurate Detection of SARS-CoV-2 by Next-Generation Sequencing in Low Viral Load Specimens. Int J Mol Sci 2023; 24:ijms24043478. [PMID: 36834888 PMCID: PMC9964843 DOI: 10.3390/ijms24043478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
As new SARS-CoV-2 variants emerge, there is an urgent need to increase the efficiency and availability of viral genome sequencing, notably to detect the lineage in samples with a low viral load. SARS-CoV-2 genome next-generation sequencing (NGS) was performed retrospectively in a single center on 175 positive samples from individuals. An automated workflow used the Ion AmpliSeq SARS-CoV-2 Insight Research Assay on the Genexus Sequencer. All samples were collected in the metropolitan area of the city of Nice (France) over a period of 32 weeks (from 19 July 2021 to 11 February 2022). In total, 76% of cases were identified with a low viral load (Ct ≥ 32, and ≤200 copies/µL). The NGS analysis was successful in 91% of cases, among which 57% of cases harbored the Delta variant, and 34% the Omicron BA.1.1 variant. Only 9% of cases had unreadable sequences. There was no significant difference in the viral load in patients infected with the Omicron variant compared to the Delta variant (Ct values, p = 0.0507; copy number, p = 0.252). We show that the NGS analysis of the SARS-CoV-2 genome provides reliable detection of the Delta and Omicron SARS-CoV-2 variants in low viral load samples.
Collapse
Affiliation(s)
- Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
- Hospital-Related Biobank (BB-0033-00025), Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
- Team 4, Institute of Research on Cancer and Aging (IRCAN), CNRS INSERM, Université Côte d’Azur, 06107 Nice, France
| | - Jonathan Benzaquen
- Team 4, Institute of Research on Cancer and Aging (IRCAN), CNRS INSERM, Université Côte d’Azur, 06107 Nice, France
- Department of Pulmonary Medicine and Oncology, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
- Hospital-Related Biobank (BB-0033-00025), Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
- Team 4, Institute of Research on Cancer and Aging (IRCAN), CNRS INSERM, Université Côte d’Azur, 06107 Nice, France
| | - Elodie Long-Mira
- Laboratory of Clinical and Experimental Pathology, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
- Hospital-Related Biobank (BB-0033-00025), Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
- Team 4, Institute of Research on Cancer and Aging (IRCAN), CNRS INSERM, Université Côte d’Azur, 06107 Nice, France
| | - Sandra Lassalle
- Laboratory of Clinical and Experimental Pathology, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
- Hospital-Related Biobank (BB-0033-00025), Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
- Team 4, Institute of Research on Cancer and Aging (IRCAN), CNRS INSERM, Université Côte d’Azur, 06107 Nice, France
| | - Jacques Boutros
- Department of Pulmonary Medicine and Oncology, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
| | - Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
- Hospital-Related Biobank (BB-0033-00025), Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
- Team 4, Institute of Research on Cancer and Aging (IRCAN), CNRS INSERM, Université Côte d’Azur, 06107 Nice, France
| | - Virginie Lespinet-Fabre
- Laboratory of Clinical and Experimental Pathology, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
- Hospital-Related Biobank (BB-0033-00025), Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
| | - Olivier Bordone
- Hospital-Related Biobank (BB-0033-00025), Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
| | - Virginie Tanga
- Hospital-Related Biobank (BB-0033-00025), Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
| | - Maryline Allegra
- Hospital-Related Biobank (BB-0033-00025), Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
| | - Myriam Salah
- Hospital-Related Biobank (BB-0033-00025), Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
| | - Julien Fayada
- Hospital-Related Biobank (BB-0033-00025), Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
| | - Sylvie Leroy
- Department of Pulmonary Medicine and Oncology, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
| | - Matteo Vassallo
- Department of Internal Medicine and Oncology, Centre Hospitalier de Cannes, 06400 Cannes, France
| | - Irit Touitou
- Department of Infectious Diseases, Hôpital Archet 1, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06200 Nice, France
| | - Johan Courjon
- Department of Infectious Diseases, Hôpital Archet 1, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06200 Nice, France
| | - Julie Contenti
- Emergency Department, Hôpital Pasteur 2, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06000 Nice, France
| | - Michel Carles
- Department of Infectious Diseases, Hôpital Archet 1, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06200 Nice, France
| | - Charles-Hugo Marquette
- Team 4, Institute of Research on Cancer and Aging (IRCAN), CNRS INSERM, Université Côte d’Azur, 06107 Nice, France
- Department of Pulmonary Medicine and Oncology, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
- Hospital-Related Biobank (BB-0033-00025), Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France
- Team 4, Institute of Research on Cancer and Aging (IRCAN), CNRS INSERM, Université Côte d’Azur, 06107 Nice, France
- Correspondence:
| |
Collapse
|
44
|
Mziray SR, van Zwetselaar M, Kayuki CC, Mbelele PM, Makubi AN, Magesa AS, Kisonga RM, Sonda TB, Kibiki GS, Githinji G, Heysell SK, Chilongola JO, Mpagama SG. Whole-genome sequencing of SARS-CoV-2 isolates from symptomatic and asymptomatic individuals in Tanzania. Front Med (Lausanne) 2023; 9:1034682. [PMID: 36687433 PMCID: PMC9846855 DOI: 10.3389/fmed.2022.1034682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Background Coronavirus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) accounts for considerable morbidity and mortality globally. Paucity of SARS-CoV-2 genetic data from Tanzania challenges in-country tracking of the pandemic. We sequenced SARS-CoV-2 isolated in the country to determine circulating strains, mutations and phylogenies and finally enrich international genetic databases especially with sequences from Africa. Methods This cross-sectional study utilized nasopharyngeal swabs of symptomatic and asymptomatic adults with positive polymerase chain reaction tests for COVID-19 from January to May 2021. Viral genomic libraries were prepared using ARTIC nCoV-2019 sequencing protocol version three. Whole-genome sequencing (WGS) was performed using Oxford Nanopore Technologies MinION device. In silico genomic data analysis was done on ARTIC pipeline version 1.2.1 using ARTIC nCoV-2019 bioinformatics protocol version 1.1.0. Results Twenty-nine (42%) out of 69 samples qualified for sequencing based on gel electrophoretic band intensity of multiplex PCR amplicons. Out of 29 isolates, 26 were variants of concern [Beta (n = 22); and Delta (n = 4)]. Other variants included Eta (n = 2) and B.1.530 (n = 1). We found combination of mutations (S: D80A, S: D215G, S: K417N, ORF3a: Q57H, E: P71L) in all Beta variants and absent in other lineages. The B.1.530 lineage carried mutations with very low cumulative global prevalence, these were nsp13:M233I, nsp14:S434G, ORF3a:A99S, S: T22I and S: N164H. The B.1.530 lineage clustered phylogenetically with isolates first reported in south-east Kenya, suggesting regional evolution of SARS-CoV-2. Conclusion We provide evidence of existence of Beta, Delta, Eta variants and a locally evolving lineage (B.1.530) from samples collected in early 2021 in Tanzania. This work provides a model for ongoing WGS surveillance that will be required to inform on emerging and circulating SARS-CoV-2 diversity in Tanzania and East Africa.
Collapse
Affiliation(s)
- Shabani Ramadhani Mziray
- Department of Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Kibong’oto Infectious Diseases Hospital, Sanya Juu, Tanzania
| | | | | | | | | | | | | | | | - Gibson S. Kibiki
- The Africa Research Excellence Fund (AREF), London, United Kingdom
| | - George Githinji
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| | - Scott K. Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Jaffu O. Chilongola
- Department of Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | | |
Collapse
|
45
|
Picasso R, Cozzi A, Picasso V, Zaottini F, Pistoia F, Perissi S, Martinoli C. Immune checkpoint inhibitor-related pneumonitis and COVID-19: a case-matched comparison of CT findings. LA RADIOLOGIA MEDICA 2023; 128:212-221. [PMID: 36680711 PMCID: PMC9862244 DOI: 10.1007/s11547-023-01598-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
OBJECTIVES To compare the radiological findings of immune checkpoint inhibitor-related pneumonitis (IRP) and COVID-19 pneumonia, evaluating the potential of the CO-RADS score to differentiate between them. METHODS Two readers blindly reviewed chest CTs from age- and sex-matched groups of 33 patients with IRP and 33 patients with COVID-19 pneumonia. Each examiner evaluated the presence of 13 CT features, semiquantitatively scored lung involvement, and assigned a CO-RADS score. Inter-reader reliability in the assessment of CT features and CO-RADS categories was evaluated with Cohen's κ. Distribution differences between groups were evaluated with the χ2, Fisher's, and Mann-Whitney U tests. RESULTS Substantial or higher inter-reader reliability was found in CO-RADS assignments (κ = 0.664) and in the evaluation of CT features (κ ≥ 0.638), among which the sole feature found to significantly differentiate IRP from COVID-19 pneumonia was unilateral presentation (p < 0.001). Lung involvement semiquantitative scores and CO-RADS scores were significantly higher (p < 0.001) in COVID patients (median involvement score 4, IQR 4-6; median CO-RADS score 5, IQR 4-5) than in IRP patients (median involvement score 2.5, IQR 2-4; median CO-RADS score 3, IQR 3-4) but exploratory analysis of CO-RADS specificity revealed comparatively low values, ranging between 51.5% (Reader 1) and 54.6% (Reader 2). CONCLUSIONS CT features of IRP and COVID-19 pneumonia frequently overlap, save for the extent of lung involvement and bilaterality. In the current SARS-CoV-2 pandemic, the low specificity of the CO-RADS score for the differential diagnosis of COVID-19 pneumonia and IRP may prompt to reconsider the role of imaging in IRP work-up.
Collapse
Affiliation(s)
- Riccardo Picasso
- Unit of Radiology, IRCCS Ospedale Policlinico San Martino, Via Largo Rosanna Benzi, 10, 16132 Genoa, Italy
| | - Andrea Cozzi
- Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, 6900 Lugano, Switzerland
| | - Virginia Picasso
- Unit of Radiology, Ospedale Lavagna, Via Don Giovanni Battista Bobbio 25, 16033 Lavagna, Italy
| | - Federico Zaottini
- Unit of Radiology, IRCCS Ospedale Policlinico San Martino, Via Largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| | - Federico Pistoia
- Unit of Radiology, IRCCS Ospedale Policlinico San Martino, Via Largo Rosanna Benzi, 10, 16132 Genoa, Italy
| | - Sara Perissi
- Dipartimento Di Scienze Della Salute (DISSAL), Università Degli Studi Di Genova, Via Alberti L.B 2, 16132 Genoa, Italy
| | - Carlo Martinoli
- Unit of Radiology, IRCCS Ospedale Policlinico San Martino, Via Largo Rosanna Benzi, 10, 16132 Genoa, Italy ,Dipartimento Di Scienze Della Salute (DISSAL), Università Degli Studi Di Genova, Via Alberti L.B 2, 16132 Genoa, Italy
| |
Collapse
|
46
|
Osada SS, Szeghy RE, Stute NL, Province VM, Augenreich MA, Putnam A, Stickford JL, Stickford ASL, Grosicki GJ, Ratchford SM. Monthly transthoracic echocardiography in young adults for 6 months following SARS-CoV-2 infection. Physiol Rep 2023; 11:e15560. [PMID: 36597212 PMCID: PMC9810842 DOI: 10.14814/phy2.15560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can elicit acute and long-term effects on the myocardium among survivors, yet effects among otherwise healthy young adults remains unclear. Young adults with mild symptoms of SARS-CoV-2 (8M/8F, age: 21 ± 1 years, BMI: 23.5 ± 3.1 kg·m-2 ) underwent monthly transthoracic echocardiography (TTE) and testing of circulating cardiac troponin-I for months 1-6 (M1-M6) following a positive polymerase chain reaction test to better understand the acute effects and post-acute sequelae of SARS-CoV-2 on cardiac structure and function. Left heart structure and ejection fraction were unaltered from M1-M6 (p > 0.05). While most parameters of septal and lateral wall velocities, mitral and tricuspid valve, and pulmonary vein (PV) were unaltered from M1-M6 (p > 0.05), lateral wall s' wave velocity increased (M1: 0.113 ± 0.019 m·s-1 , M6: 0.135 ± 0.022 m·s-1 , p = 0.013); PV S wave velocity increased (M1: 0.596 ± 0.099 m·s-1 , M6: 0.824 ± 0.118 m·s-1 , p < 0.001); the difference between PV A wave and mitral valve (MV) A wave durations decreased (M1: 39.139 ± 43.715 ms, M6: 18.037 ± 7.227 ms, p = 0.002); the ratio of PV A duration to MV A duration increased (M1: 0.844 ± 0.205, M6: 1.013 ± 0.132, p = 0.013); and cardiac troponin-I levels decreased (M1: 0.38 ± 0.20 ng·ml-1 , M3: 0.28 ± 0.34 ng·ml-1 , M6: 0.29 ± 0.16 ng·ml-1 ; p = 0.002) over time. While young adults with mild symptoms of SARS-CoV-2 lacked changes to cardiac structure, the subclinical improvements to cardiac function and reduced inflammatory marker of cardiac troponin-I over 6 months following SARS-CoV-2 infection provide physiologic guidance to post-acute sequelae and recovery from SARS-CoV-2 and its variants using conventional TTE.
Collapse
Affiliation(s)
- Sophie S. Osada
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Rachel E. Szeghy
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Nina L. Stute
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Valesha M. Province
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Marc A. Augenreich
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Andrew Putnam
- Department of Cardiovascular MedicineNorthwest Health – PorterValparaisoIndianaUSA
| | - Jonathon L. Stickford
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | | | - Gregory J. Grosicki
- Biodynamics and Human Performance CenterGeorgia Southern University (Armstrong)SavannahGeorgiaUSA
| | - Stephen M. Ratchford
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| |
Collapse
|
47
|
Aminu M, Yadav D, Hong L, Young E, Edelkamp P, Saad M, Salehjahromi M, Chen P, Sujit SJ, Chen MM, Sabloff B, Gladish G, de Groot PM, Godoy MCB, Cascone T, Vokes NI, Zhang J, Brock KK, Daver N, Woodman SE, Tawbi HA, Sheshadri A, Lee JJ, Jaffray D, Wu CC, Chung C, Wu J. Habitat Imaging Biomarkers for Diagnosis and Prognosis in Cancer Patients Infected with COVID-19. Cancers (Basel) 2022; 15:275. [PMID: 36612278 PMCID: PMC9818576 DOI: 10.3390/cancers15010275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES Cancer patients have worse outcomes from the COVID-19 infection and greater need for ventilator support and elevated mortality rates than the general population. However, previous artificial intelligence (AI) studies focused on patients without cancer to develop diagnosis and severity prediction models. Little is known about how the AI models perform in cancer patients. In this study, we aim to develop a computational framework for COVID-19 diagnosis and severity prediction particularly in a cancer population and further compare it head-to-head to a general population. METHODS We have enrolled multi-center international cohorts with 531 CT scans from 502 general patients and 420 CT scans from 414 cancer patients. In particular, the habitat imaging pipeline was developed to quantify the complex infection patterns by partitioning the whole lung regions into phenotypically different subregions. Subsequently, various machine learning models nested with feature selection were built for COVID-19 detection and severity prediction. RESULTS These models showed almost perfect performance in COVID-19 infection diagnosis and predicting its severity during cross validation. Our analysis revealed that models built separately on the cancer population performed significantly better than those built on the general population and locked to test on the cancer population. This may be because of the significant difference among the habitat features across the two different cohorts. CONCLUSIONS Taken together, our habitat imaging analysis as a proof-of-concept study has highlighted the unique radiologic features of cancer patients and demonstrated effectiveness of CT-based machine learning model in informing COVID-19 management in the cancer population.
Collapse
Affiliation(s)
- Muhammad Aminu
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Divya Yadav
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Lingzhi Hong
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Elliana Young
- Department of Enterprise Data Engineering & Analytics, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Paul Edelkamp
- Department of Enterprise Data Engineering & Analytics, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Maliazurina Saad
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Morteza Salehjahromi
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Pingjun Chen
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Sheeba J. Sujit
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Melissa M. Chen
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Bradley Sabloff
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Gregory Gladish
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Patricia M. de Groot
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Myrna C. B. Godoy
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Natalie I. Vokes
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kristy K. Brock
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Naval Daver
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Scott E. Woodman
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Hussein A. Tawbi
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - J. Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - David Jaffray
- Office of the Chief Technology and Digital Officer, MD Anderson Cancer Center, Houston, TX 77054, USA
| | | | - Carol C. Wu
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Caroline Chung
- Office of the Chief Data Officer, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jia Wu
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
48
|
Ram-Mohan N, Rogers AJ, Blish CA, Nadeau KC, Zudock EJ, Kim D, Quinn JV, Sun L, Liesenfeld O, Yang S. Using a 29-mRNA Host Response Classifier To Detect Bacterial Coinfections and Predict Outcomes in COVID-19 Patients Presenting to the Emergency Department. Microbiol Spectr 2022; 10:e0230522. [PMID: 36250865 PMCID: PMC9769905 DOI: 10.1128/spectrum.02305-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/26/2022] [Indexed: 01/06/2023] Open
Abstract
Clinicians in the emergency department (ED) face challenges in concurrently assessing patients with suspected COVID-19 infection, detecting bacterial coinfection, and determining illness severity since current practices require separate workflows. Here, we explore the accuracy of the IMX-BVN-3/IMX-SEV-3 29 mRNA host response classifiers in simultaneously detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and bacterial coinfections and predicting clinical severity of COVID-19. A total of 161 patients with PCR-confirmed COVID-19 (52.2% female; median age, 50.0 years; 51% hospitalized; 5.6% deaths) were enrolled at the Stanford Hospital ED. RNA was extracted (2.5 mL whole blood in PAXgene blood RNA), and 29 host mRNAs in response to the infection were quantified using Nanostring nCounter. The IMX-BVN-3 classifier identified SARS-CoV-2 infection in 151 patients with a sensitivity of 93.8%. Six of 10 patients undetected by the classifier had positive COVID tests more than 9 days prior to enrollment, and the remaining patients oscillated between positive and negative results in subsequent tests. The classifier also predicted that 6 (3.7%) patients had a bacterial coinfection. Clinical adjudication confirmed that 5/6 (83.3%) of the patients had bacterial infections, i.e., Clostridioides difficile colitis (n = 1), urinary tract infection (n = 1), and clinically diagnosed bacterial infections (n = 3), for a specificity of 99.4%. Two of 101 (2.8%) patients in the IMX-SEV-3 "Low" severity classification and 7/60 (11.7%) in the "Moderate" severity classification died within 30 days of enrollment. IMX-BVN-3/IMX-SEV-3 classifiers accurately identified patients with COVID-19 and bacterial coinfections and predicted patients' risk of death. A point-of-care version of these classifiers, under development, could improve ED patient management, including more accurate treatment decisions and optimized resource utilization. IMPORTANCE We assay the utility of the single-test IMX-BVN-3/IMX-SEV-3 classifiers that require just 2.5 mL of patient blood in concurrently detecting viral and bacterial infections as well as predicting the severity and 30-day outcome from the infection. A point-of-care device, in development, will circumvent the need for blood culturing and drastically reduce the time needed to detect an infection. This will negate the need for empirical use of broad-spectrum antibiotics and allow for antibiotic use stewardship. Additionally, accurate classification of the severity of infection and the prediction of 30-day severe outcomes will allow for appropriate allocation of hospital resources.
Collapse
Affiliation(s)
- Nikhil Ram-Mohan
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Angela J. Rogers
- Department of Medicine—Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Catherine A. Blish
- Department of Medicine/Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
| | - Kari C. Nadeau
- Department of Medicine—Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Elizabeth J. Zudock
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - David Kim
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - James V. Quinn
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Lixian Sun
- Inflammatix, Inc., Burlingame, California, USA
| | | | - The Stanford COVID-19 Biobank Study Group
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
- Department of Medicine—Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Stanford, California, USA
- Department of Medicine/Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
- Inflammatix, Inc., Burlingame, California, USA
| | - Samuel Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
49
|
Sakhabutdinova AR, Gazizov RR, Chemeris AV, Garafutdinov RR. Reverse transcriptase-free detection of viral RNA using Hemo Klentaq DNA polymerase. Anal Biochem 2022; 659:114960. [PMID: 36306819 PMCID: PMC9597527 DOI: 10.1016/j.ab.2022.114960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
COVID-19 pandemic highlighted the demand for the fast and reliable detection of viral RNA. Although various methods for RNA amplification and detection have been proposed, some limitations, including those caused by reverse transcription (RT), need to be overcome. Here, we report on the direct detection of specific RNA by conventional polymerase chain reaction (PCR) requiring no prior RT step. It was found that Hemo KlenTaq (HKTaq), which is posed as DNA-dependent DNA polymerase, possesses reverse transcriptase activity and provides reproducible amplification of RNA targets with an efficiency comparable to common RT-PCR. Using nasopharyngeal swab extracts from COVID-19-positive patients, the high reliability of SARS-CoV-2 detection based on HKTaq was demonstrated. The most accurate detection of specific targets are provided by nearby primers, which allow to determine RNA in solutions affected to multiple freeze-thaw cycles. HKTaq can be used for elaboration of simplified amplification techniques intended for the analysis of any specific RNA and requiring only one DNA polymerase.
Collapse
|
50
|
Clinical and Epidemiological Presentation of COVID-19 among Children in Conflict Setting. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9111712. [PMID: 36360440 PMCID: PMC9688921 DOI: 10.3390/children9111712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Background: This study aims to describe the observable symptoms of children with COVID-19 infection and analyze access to real-time polymerase chain reaction (RT-PCR) testing among children seeking care in Yemen. Method: In the period of March 2020−February 2022, data were obtained from 495 children suspected to have been infected with COVID-19 (from a larger register of 5634 patients) from the Diseases Surveillance and Infection Control Department at the Ministry of Public Health and Population in Aden, Yemen. Results: Overall, 21.4% of the children with confirmed COVID-19 infection were asymptomatic. Fever (71.4%) and cough (67.1%) were the most frequently reported symptoms among children, and children were less likely to have fever (p < 0.001), sore throat (p < 0.001) and cough (p < 0.001) compared to adults. A lower frequency of COVID-19-associated symptoms was reported among children with positive RT-PCR tests compared to children with negative tests. A lower rate of testing was conducted among children (25%) compared to adults (61%). Fewer tests were carried out among children <5 years (11%) compared to other age groups (p < 0.001), for children from other nationalities (4%) compared to Yemeni children (p < 0.001) and for girls (21%) compared to boys (30%) (p < 0.031). Conclusion: Understanding and addressing the cause of these disparities and improving guidelines for COVID-19 screening among children will improve access to care and control of the COVID-19 pandemic.
Collapse
|