1
|
Song C. Assembly Graph as the Rosetta Stone of Ecological Assembly. Environ Microbiol 2025; 27:e70030. [PMID: 39806523 DOI: 10.1111/1462-2920.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Ecological assembly-the process of ecological community formation through species introductions-has recently seen exciting theoretical advancements across dynamical, informational, and probabilistic approaches. However, these theories often remain inaccessible to non-theoreticians, and they lack a unifying lens. Here, I introduce the assembly graph as an integrative tool to connect these emerging theories. The assembly graph visually represents assembly dynamics, where nodes symbolise species combinations and edges represent transitions driven by species introductions. Through the lens of assembly graphs, I review how ecological processes reduce uncertainty in random species arrivals (informational approach), identify graphical properties that guarantee species coexistence and examine how the class of dynamical models constrain the topology of assembly graphs (dynamical approach), and quantify transition probabilities with incomplete information (probabilistic approach). To facilitate empirical testing, I also review methods to decompose complex assembly graphs into smaller, measurable components, as well as computational tools for deriving empirical assembly graphs. In sum, this math-light review of theoretical progress aims to catalyse empirical research towards a predictive understanding of ecological assembly.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| |
Collapse
|
2
|
Reeb RA, Kuebbing SE. Phenology mediates direct and indirect interactions among co-occurring invasive plant species. Ecology 2024; 105:e4446. [PMID: 39370724 DOI: 10.1002/ecy.4446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/22/2024] [Accepted: 08/21/2024] [Indexed: 10/08/2024]
Abstract
Why nonnative invasive plant species commonly co-occur, despite their competitive superiority and propensity to displace native species, remains a paradox in invasion biology. Negative interactions among competitively dominant invaders are potentially alleviated by two understudied mechanisms: seasonal priority effects, where phenological separation weakens the effect of competition on species with early phenology; and indirect facilitation, where competition between two species is mitigated by a third species. Although phenological separation has been speculated as a mechanism for explaining co-occurrence patterns of invasive plants, it has never been directly tested. In a greenhouse experiment, we tested the effect of phenological separation on direct and indirect interactions between three co-occurring invasive plant species found in the riparian forests of North America. These species have distinct natural phenological separation with reproduction in early spring (Ficaria verna), mid-spring (Alliaria petiolata), and late summer (Microstegium vimineum). When phenology was experimentally synchronized, direct pairwise interactions among invasive species were overwhelmingly negative, asymmetric, and unlikely to promote co-occurrence. However, increasing phenological separation generated seasonal priority effects, which weakened the effect of competition on species with early phenology. Furthermore, the addition of a third species generated indirect facilitative effects, which balanced competitive outcomes among the two weakest competitors. Based on these findings, we conclude that phenological separation modulates the strength of both seasonal priority effects and indirect facilitation within species interaction networks and may promote the co-occurrence of three common invasive species within this study system. We articulate how future studies can test the external validity of these findings in more complex environmental conditions and with a larger range of invasive plants.
Collapse
Affiliation(s)
- Rachel A Reeb
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Section of Botany, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA
| | - Sara E Kuebbing
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- The Forest School at the Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Severgnini MR, de Oliveira MM, Valério LM, Provete DB. Temporal Dynamics of Species Richness and Composition in a Peri-Urban Tropical Frog Community in Central Brazil. Ecol Evol 2024; 14:e70628. [PMID: 39588353 PMCID: PMC11588356 DOI: 10.1002/ece3.70628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
Analyzing the temporal dynamics of ecological communities can shed light on coexistence mechanisms and help understand how populations and communities will behave in the face of climate change. However, little is known about how frog communities respond to climate in urban ecosystems, especially in tropical countries. Here, we analyzed how frog species richness and abundance are influenced by weather variables both intra- and inter-annually. We surveyed a peri-urban area in central Brazil, monthly for 3 years. To test the effect of weather variables on species richness and abundance, we used Generalized Additive Mixed-effects Models. We assessed seasonality using circular statistics. We also tested for differences in temporal beta diversity within and among years by estimating species disappearance and temporal rank shift, in addition to a multivariate model-based method to test the effect of year on species composition. Finally, we tested how taxonomic and phylogenetic alpha diversity changed through time using a novel approach based on Hill numbers. We found that species richness varied little among years and was affected only by photoperiod, while species abundance was more variable both between and within years, being mostly affected by humidity, temperature, and photoperiod. Species composition varied little between years, mostly between the first and subsequent years. Conversely, beta diversity was highest within years. Only the effective number of species changed significantly through time. Our results help not only understand temporal mechanisms that allow species coexistence, but also allow to make inferences about the impact of urbanization on biodiversity in recently urbanized landscapes, showing that species composition in peri-urban sites remains unaltered in a mid-timescale, especially when climate conditions change little across years.
Collapse
Affiliation(s)
- Marcos R. Severgnini
- Graduate Program in Ecology and Conservation, Institute of BiosciencesFederal University of Mato Grosso Do SulCampo GrandeMato Grosso do SulBrazil
- Fragment Ecology Study GroupCampo GrandeMato Grosso do SulBrazil
| | - Mônica M. de Oliveira
- Fragment Ecology Study GroupCampo GrandeMato Grosso do SulBrazil
- Institute of BiosciencesFederal University of Mato Grosso Do SulCampo GrandeMato Grosso do SulBrazil
| | - Luciana M. Valério
- Fragment Ecology Study GroupCampo GrandeMato Grosso do SulBrazil
- Catholic University Dom BoscoCampo GrandeMato Grosso do SulBrazil
| | - Diogo B. Provete
- Institute of BiosciencesFederal University of Mato Grosso Do SulCampo GrandeMato Grosso do SulBrazil
- Gothenburg Global Biodiversity CentreGöteborgSweden
- German Centre for Integrative Biodiversity Research –iDivHalle‐Jena‐LeipzigLeipzigGermany
| |
Collapse
|
4
|
Amarasekare P. Pattern and Process in a Rapidly Changing World: Ideas and Approaches. Am Nat 2024; 204:361-369. [PMID: 39326058 DOI: 10.1086/731993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
AbstractScience is as dynamic as the world around us. Our ideas continually change, as do the approaches we use to study science. Few things remain invariant in this changing landscape, but a fascination with pattern and process is one that has endured throughout the history of science. Paying homage to this long-held tradition, the 2023 Vice Presidential Symposium of the American Society of Naturalists focused on the role of pattern and process in ecology and evolution. It brought together a group of early-career researchers working on topics ranging from genetic diversity in microbes to changing patterns of species interactions in the geological record. Their work spanned the taxonomic spectrum from microbes to mammals, the temporal dimension from the Cenozoic to the present, and approaches ranging from manipulative experiments to comparative approaches. In this introductory article, I discuss how these diverse topics are linked by the common thread of elucidating processes underlying patterns and how they collectively generate novel insights into diversity maintenance at different levels of organization.
Collapse
|
5
|
Guo C, Tuo B, Seibold S, Ci H, Sai BL, Qin HT, Yan ER, Cornelissen JHC. Seasonally Changing Interactions of Species Traits of Termites and Trees Promote Complementarity in Coarse Wood Decomposition. Ecol Lett 2024; 27:e70002. [PMID: 39462853 DOI: 10.1111/ele.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024]
Abstract
Complementary resource use by functionally different species may accelerate ecosystem processes. However, how co-variation in plant traits and animal traits promotes complementarity through temporal plant-animal interactions is poorly understood, even less so in detrital systems, thereby hampering our fundamental understanding of decomposition and carbon turnover. We hypothesised that, in seasonal subtropical forests where termites are major deadwood decomposers, trait complementarity of both termite species and tree species should promote overall deadwood decomposition through different seasons and years. Findings from a four-year coarse wood decomposition experiment involving 27 tree and 5 termite species support this hypothesis. Phenological and mandibular traits of the two most abundant termite species controlled wood decomposition of tree species differing in wood traits, through the seasons over 4 years, thereby promoting overall deadwood decomposition rates. Our findings indicate that complementarity in functional trait co-variation in plants and animals plays an important role in carbon cycling.
Collapse
Affiliation(s)
- Chao Guo
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Institute of Eco-Chongming (IEC), Shanghai, China
- Forest Zoology, TUD Dresden University of Technology, Tharandt, Germany
| | - Bin Tuo
- Department of Ecological Science, A-Life, Faculty of Science, Vrije Universiteit Amsterdam (VU University), HV Amsterdam, The Netherlands
| | - Sebastian Seibold
- Forest Zoology, TUD Dresden University of Technology, Tharandt, Germany
| | - Hang Ci
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Institute of Eco-Chongming (IEC), Shanghai, China
| | - Bi-Le Sai
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Institute of Eco-Chongming (IEC), Shanghai, China
| | - Han-Tang Qin
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Institute of Eco-Chongming (IEC), Shanghai, China
| | - En-Rong Yan
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Institute of Eco-Chongming (IEC), Shanghai, China
| | - Johannes H C Cornelissen
- Department of Ecological Science, A-Life, Faculty of Science, Vrije Universiteit Amsterdam (VU University), HV Amsterdam, The Netherlands
| |
Collapse
|
6
|
Everts T, Van Driessche C, Neyrinck S, Haegeman A, Ruttink T, Jacquemyn H, Brys R. Phenological mismatches mitigate the ecological impact of a biological invader on amphibian communities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3017. [PMID: 39118362 DOI: 10.1002/eap.3017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024]
Abstract
Horizon scans have emerged as a valuable tool to anticipate the incoming invasive alien species (IAS) by judging species on their potential impacts. However, little research has been conducted on quantifying actual impacts and assessing causes of species-specific vulnerabilities to particular IAS due to persistent methodological challenges. The underlying interspecific mechanisms driving species-specific vulnerabilities therefore remain poorly understood, even though they can substantially improve the accuracy of risk assessments. Given that interspecific interactions underlying ecological impacts of IAS are often shaped by phenological synchrony, we tested the hypothesis that temporal mismatches in breeding phenology between native species and IAS can mitigate their ecological impacts. Focusing on the invasive American bullfrog (Lithobates catesbeianus), we combined an environmental DNA (eDNA) quantitative barcoding and metabarcoding survey in Belgium with a global meta-analysis, and integrated citizen-science data on breeding phenology. We examined whether the presence of native amphibian species was negatively related to the presence or abundance of invasive bullfrogs and whether this relationship was affected by their phenological mismatches. The field study revealed a significant negative effect of increasing bullfrog eDNA concentrations on native amphibian species richness and community structure. These observations were shaped by species-specific vulnerabilities to invasive bullfrogs, with late spring- and summer-breeding species being strongly affected, while winter-breeding species remained unaffected. This trend was confirmed by the global meta-analysis. A significant negative relationship was observed between phenological mismatch and the impact of bullfrogs. Specifically, native amphibian species with breeding phenology differing by 6 weeks or less from invasive bullfrogs were more likely to be absent in the presence of bullfrogs than species whose phenology differed by more than 6 weeks with that of bullfrogs. Taken together, we present a novel method based on the combination of aqueous eDNA quantitative barcoding and metabarcoding to quantify the ecological impacts of biological invaders at the community level. We show that phenological mismatches between native and invasive species can be a strong predictor of invasion impact regardless of ecological or methodological context. Therefore, we advocate for the integration of temporal alignment between native and IAS's phenologies into invasion impact frameworks.
Collapse
Affiliation(s)
- Teun Everts
- Genetic Diversity, Research Institute for Nature and Forest, Geraardsbergen, Belgium
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Heverlee, Belgium
| | - Charlotte Van Driessche
- Genetic Diversity, Research Institute for Nature and Forest, Geraardsbergen, Belgium
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Sabrina Neyrinck
- Genetic Diversity, Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Annelies Haegeman
- Plant Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | - Tom Ruttink
- Plant Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Heverlee, Belgium
| | - Rein Brys
- Genetic Diversity, Research Institute for Nature and Forest, Geraardsbergen, Belgium
| |
Collapse
|
7
|
Suh DC, Lance SL, Park AW. Abiotic and biotic factors jointly influence the contact and environmental transmission of a generalist pathogen. Ecol Evol 2024; 14:e70167. [PMID: 39157664 PMCID: PMC11329300 DOI: 10.1002/ece3.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
The joint influence of abiotic and biotic factors is important for understanding the transmission of generalist pathogens. Abiotic factors such as temperature can directly influence pathogen persistence in the environment and will also affect biotic factors, such as host community composition and abundance. At intermediate spatial scales, the effects of temperature, community composition, and host abundance are expected to contribute to generalist pathogen transmission. We use a simple transmission model to explain and predict how host community composition, host abundance, and environmental pathogen persistence times can independently and jointly influence transmission. Our transmission model clarifies how abiotic and biotic factors can synergistically support the transmission of a pathogen. The empirical data show that high community competence, high abundance, and low temperatures correlate with high levels of transmission of ranavirus in larval amphibian communities. Discrete wetlands inhabited by larval amphibians in the presence of ranavirus provide a compelling case study comprising distinct host communities at a spatial scale anticipated to demonstrate abiotic and biotic influence on transmission. We use these host communities to observe phenomena demonstrated in our theoretical model. These findings emphasize the importance of considering both abiotic and biotic factors, and concomitant direct and indirect mechanisms, in the study of pathogen transmission and should extend to other generalist pathogens with the capacity for environmental transmission.
Collapse
Affiliation(s)
- Daniel C. Suh
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
| | - Stacey L. Lance
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
| | - Andrew W. Park
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Infectious Diseases, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
8
|
Yin H, Rudolf VHW. Time is of the essence: A general framework for uncovering temporal structures of communities. Ecol Lett 2024; 27:e14481. [PMID: 39022847 DOI: 10.1111/ele.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024]
Abstract
Ecological communities are inherently dynamic: species constantly turn over within years, months, weeks or even days. These temporal shifts in community composition determine essential aspects of species interactions and how energy, nutrients, information, diseases and perturbations 'flow' through systems. Yet, our understanding of community structure has relied heavily on static analyses not designed to capture critical features of this dynamic temporal dimension of communities. Here, we propose a conceptual and methodological framework for quantifying and analysing this temporal dimension. Conceptually, we split the temporal structure into two definitive features, sequence and duration, and review how they are linked to key concepts in ecology. We then outline how we can capture these definitive features using perspectives and tools from temporal graph theory. We demonstrate how we can easily integrate ongoing research on phenology into this framework and highlight what new opportunities arise from this approach to answer fundamental questions in community ecology. As climate change reshuffles ecological communities worldwide, quantifying the temporal organization of communities is imperative to resolve the fundamental processes that shape natural ecosystems and predict how these systems may change in the future.
Collapse
Affiliation(s)
- Hannah Yin
- Program of Ecology & Evolutionary Biology, BioSciences, Rice University, Houston, Texas, USA
| | - Volker H W Rudolf
- Program of Ecology & Evolutionary Biology, BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
9
|
Medina-Espinoza EF, Juen L, Calvão LB, Arellano Cruz G. Variations in the Odonata Assemblages: How Do the Dry Season and Water Bodies Influence Them? NEOTROPICAL ENTOMOLOGY 2024; 53:630-640. [PMID: 38656590 DOI: 10.1007/s13744-024-01153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Diverse abiotic and biotic factors drive the ecological variation of communities across spatial and temporal dimensions. Within the Amazonian landscape, various freshwater environments exhibit distinct physicochemical characteristics. Thus, our study delved into the fluctuations of Odonata assemblages amidst distinct water bodies within Amazonia, encompassing two distinct climatic seasons. Comparative analysis was conducted on Odonata species diversity and assemblage composition across a blackwater pond, a lake, and a stream, spanning the initiation and culmination of the dry season in the southwestern Amazon region in Peru. Our methodology involved capturing adult Odonata using entomological nets on three separate occasions between 11:00 and 14:00 h for each water body in May (beginning of the dry season) and October (end of the dry season) of 2018. We also evaluated the influence of temperature, precipitation, and percent cloud cover on the abundance and richness of adult Odonata. Species richness and composition differed among the three water bodies in both periods of the dry season. No effect of the dry season periods on species richness and abundance was observed. However, except in the oxbow lake, the more abundant species were substituted to the end of the dry season. Our study highlights the influence of water body types on Odonata species diversity and composition. The effects of the sampling period during the dry season may not be immediately apparent in conventional diversity metrics, such as species richness and abundance. Instead, its effects manifest predominantly in the relative abundance of the species that compose these assemblages.
Collapse
Affiliation(s)
- Emmy Fiorella Medina-Espinoza
- Depto de Entomología, Museo de Historia Natural, Univ Nacional Mayor de San Marcos, Lima, Lima, Peru.
- Programa de Pós-Graduação Em Zoologia, Univ Federal Do Pará, Belém, Pará, Brazil.
- Lab de Ecologia E Conservação (LABECO), Univ Federal Do Pará, Belém, Pará, Brazil.
| | - Leandro Juen
- Programa de Pós-Graduação Em Zoologia, Univ Federal Do Pará, Belém, Pará, Brazil
- Lab de Ecologia E Conservação (LABECO), Univ Federal Do Pará, Belém, Pará, Brazil
| | - Lenize Batista Calvão
- Programa de Pós-Graduação Em Zoologia, Univ Federal Do Pará, Belém, Pará, Brazil
- Lab de Ecologia E Conservação (LABECO), Univ Federal Do Pará, Belém, Pará, Brazil
| | - Germán Arellano Cruz
- Lab de Ecología de Artrópodos (LEA), Univ Nacional Agraria La Molina, Lima, Lima, Perú
| |
Collapse
|
10
|
Zou HX, Yan X, Rudolf VHW. Time-dependent interaction modification generated from plant-soil feedback. Ecol Lett 2024; 27:e14432. [PMID: 38698727 DOI: 10.1111/ele.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Pairwise interactions between species can be modified by other community members, leading to emergent dynamics contingent on community composition. Despite the prevalence of such higher-order interactions, little is known about how they are linked to the timing and order of species' arrival. We generate population dynamics from a mechanistic plant-soil feedback model, then apply a general theoretical framework to show that the modification of a pairwise interaction by a third plant depends on its germination phenology. These time-dependent interaction modifications emerge from concurrent changes in plant and microbe populations and are strengthened by higher overlap between plants' associated microbiomes. The interaction between this overlap and the specificity of microbiomes further determines plant coexistence. Our framework is widely applicable to mechanisms in other systems from which similar time-dependent interaction modifications can emerge, highlighting the need to integrate temporal shifts of species interactions to predict the emergent dynamics of natural communities.
Collapse
Affiliation(s)
- Heng-Xing Zou
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, Texas, USA
| | - Xinyi Yan
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Volker H W Rudolf
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
11
|
Levine JI, Pacala SW, Levine JM. Competition for time: Evidence for an overlooked, diversity-maintaining competitive mechanism. Ecol Lett 2024; 27:e14422. [PMID: 38549235 DOI: 10.1111/ele.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024]
Abstract
Understanding how diversity is maintained in plant communities requires that we first understand the mechanisms of competition for limiting resources. In ecology, there is an underappreciated but fundamental distinction between systems in which the depletion of limiting resources reduces the growth rates of competitors and systems in which resource depletion reduces the time available for competitors to grow, a mechanism we call 'competition for time'. Importantly, modern community ecology and our framing of the coexistence problem are built on the implicit assumption that competition reduces the growth rate. However, recent theoretical work suggests competition for time may be the predominant competitive mechanism in a broad array of natural communities, a significant advance given that when species compete for time, diversity-maintaining trade-offs emerge organically. In this study, we first introduce competition for time conceptually using a simple model of interacting species. Then, we perform an experiment in a Mediterranean annual grassland to determine whether competition for time is an important competitive mechanism in a field system. Indeed, we find that species respond to increased competition through reductions in their lifespan rather than their rate of growth. In total, our study suggests competition for time may be overlooked as a mechanism of biodiversity maintenance.
Collapse
Affiliation(s)
- Jacob I Levine
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Stephen W Pacala
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Jonathan M Levine
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
12
|
Otake Y, Yamamichi M, Hirata Y, Odagiri H, Yoshida T. Different photoperiodic responses in diapause induction can promote the maintenance of genetic diversity via the storage effect in Daphnia pulex. Proc Biol Sci 2024; 291:20231860. [PMID: 38351804 PMCID: PMC10865009 DOI: 10.1098/rspb.2023.1860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Understanding mechanisms that promote the maintenance of biodiversity (genetic and species diversity) has been a central topic in evolution and ecology. Previous studies have revealed that diapause can contribute to coexistence of competing genotypes or species in fluctuating environments via the storage effect. However, they tended to focus on differences in reproductive success (e.g. seed yield) and diapause termination (e.g. germination) timing. Here we tested whether different photoperiodic responses in diapause induction can promote coexistence of two parthenogenetic (asexual) genotypes of Daphnia pulex in Lake Fukami-ike, Japan. Through laboratory experiments, we confirmed that short day length and low food availability induced the production of diapausing eggs. Furthermore, we found that one genotype tended to produce diapausing eggs in broader environmental conditions than the other. Terminating parthenogenetic reproduction earlier decreases total clonal production, but the early diapausing genotype becomes advantageous by assuring reproduction in 'short' years where winter arrival is earlier than usual. Empirically parameterized theoretical analyses suggested that different photoperiodic responses can promote coexistence via the storage effect with fluctuations of the growing season length. Therefore, timing of diapause induction may be as important as diapause termination timing for promoting the maintenance of genetic diversity in fluctuating environments.
Collapse
Affiliation(s)
- Yurie Otake
- Department of General Systems Studies, The University of Tokyo, Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Masato Yamamichi
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Yuka Hirata
- Department of General Systems Studies, The University of Tokyo, Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Haruka Odagiri
- Department of General Systems Studies, The University of Tokyo, Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Takehito Yoshida
- Department of General Systems Studies, The University of Tokyo, Komaba, Meguro, Tokyo, 153-8902, Japan
- Research Institute for Humanity and Nature, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8047, Japan
| |
Collapse
|
13
|
Torres A, Kuebbing SE, Stuble KL, Catella SA, Núñez MA, Rodriguez-Cabal MA. Inverse priority effects: A role for historical contingency during species losses. Ecol Lett 2024; 27:e14360. [PMID: 38183675 DOI: 10.1111/ele.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 01/08/2024]
Abstract
Communities worldwide are losing multiple species at an unprecedented rate, but how communities reassemble after these losses is often an open question. It is well established that the order and timing of species arrival during community assembly shapes forthcoming community composition and function. Yet, whether the order and timing of species losses can lead to divergent community trajectories remains largely unexplored. Here, we propose a novel framework that sets testable hypotheses on the effects of the order and timing of species losses-inverse priority effects-and suggests its integration into the study of community assembly. We propose that the order and timing of species losses within a community can generate alternative reassembly trajectories, and suggest mechanisms that may underlie these inverse priority effects. To formalize these concepts quantitatively, we used a three-species Lotka-Volterra competition model, enabling to investigate conditions in which the order of species losses can lead to divergent reassembly trajectories. The inverse priority effects framework proposed here promotes the systematic study of the dynamics of species losses from ecological communities, ultimately aimed to better understand community reassembly and guide management decisions in light of rapid global change.
Collapse
Affiliation(s)
- Agostina Torres
- Grupo de Ecología de Invasiones, INIBIOMA, Universidad Nacional del Comahue, CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - Sara E Kuebbing
- The Forest School at the Yale School of the Environment, New Haven, Connecticut, USA
| | | | - Samantha A Catella
- Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
| | - Martín A Núñez
- Grupo de Ecología de Invasiones, INIBIOMA, Universidad Nacional del Comahue, CONICET, San Carlos de Bariloche, Río Negro, Argentina
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Mariano A Rodriguez-Cabal
- Grupo de Ecología de Invasiones, INIBIOMA, Universidad Nacional del Comahue, CONICET, San Carlos de Bariloche, Río Negro, Argentina
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
14
|
Wirta H, Jones M, Peña‐Aguilera P, Chacón‐Duque C, Vesterinen E, Ovaskainen O, Abrego N, Roslin T. The role of seasonality in shaping the interactions of honeybees with other taxa. Ecol Evol 2023; 13:e10580. [PMID: 37818248 PMCID: PMC10560870 DOI: 10.1002/ece3.10580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
The Eltonian niche of a species is defined as its set of interactions with other taxa. How this set varies with biotic, abiotic and human influences is a core question of modern ecology. In seasonal environments, the realized Eltonian niche is likely to vary due to periodic changes in the occurrence and abundance of interaction partners and changes in species behavior and preferences. Also, human management decisions may leave strong imprints on species interactions. To compare the impact of seasonality to that of management effects, honeybees provide an excellent model system. Based on DNA traces of interaction partners archived in honey, we can infer honeybee interactions with floral resources and microbes in the surrounding habitats, their hives, and themselves. Here, we resolved seasonal and management-based impacts on honeybee interactions by sampling beehives repeatedly during the honey-storing period of honeybees in Finland. We then use a genome-skimming approach to identify the taxonomic contents of the DNA in the samples. To compare the effects of the season to the effects of location, management, and the colony itself in shaping honeybee interactions, we used joint species distribution modeling. We found that honeybee interactions with other taxa varied greatly among taxonomic and functional groups. Against a backdrop of wide variation in the interactions documented in the DNA content of honey from bees from different hives, regions, and beekeepers, the imprint of the season remained relatively small. Overall, a honey-based approach offers unique insights into seasonal variation in the identity and abundance of interaction partners among honeybees. During the summer, the availability and use of different interaction partners changed substantially, but hive- and taxon-specific patterns were largely idiosyncratic as modified by hive management. Thus, the beekeeper and colony identity are as important determinants of the honeybee's realized Eltonian niche as is seasonality.
Collapse
Affiliation(s)
- Helena Wirta
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
| | - Mirkka Jones
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Pablo Peña‐Aguilera
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Camilo Chacón‐Duque
- Centre for PalaeogeneticsStockholmSweden
- Department of Archaeology and Classical StudiesStockholm UniversityStockholmSweden
| | | | - Otso Ovaskainen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Nerea Abrego
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Tomas Roslin
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
15
|
Li X, Liang E, Camarero JJ, Rossi S, Zhang J, Zhu H, Fu YH, Sun J, Wang T, Piao S, Peñuelas J. Warming-induced phenological mismatch between trees and shrubs explains high-elevation forest expansion. Natl Sci Rev 2023; 10:nwad182. [PMID: 37671321 PMCID: PMC10476895 DOI: 10.1093/nsr/nwad182] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 09/07/2023] Open
Abstract
Despite the importance of species interaction in modulating the range shifts of plants, little is known about the responses of coexisting life forms to a warmer climate. Here, we combine long-term monitoring of cambial phenology in sympatric trees and shrubs at two treelines of the Tibetan Plateau, with a meta-analysis of ring-width series from 344 shrubs and 575 trees paired across 11 alpine treelines in the Northern Hemisphere. Under a spring warming of +1°C, xylem resumption advances by 2-4 days in trees, but delays by 3-8 days in shrubs. The divergent phenological response to warming was due to shrubs being 3.2 times more sensitive than trees to chilling accumulation. Warmer winters increased the thermal requirement for cambial reactivation in shrubs, leading to a delayed response to warmer springs. Our meta-analysis confirmed such a mechanism across continental scales. The warming-induced phenological mismatch may give a competitive advantage to trees over shrubs, which would provide a new explanation for increasing alpine treeline shifts under the context of climate change.
Collapse
Affiliation(s)
- Xiaoxia Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi G7H2B1, Canada
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - J Julio Camarero
- InstitutoPirenaico de Ecología (IPE-CSIC), Zaragoza 50059, Spain
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi G7H2B1, Canada
| | - Jingtian Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Haifeng Zhu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongshuo H Fu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Sun
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilong Piao
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Josep Peñuelas
- CREAF, Cerdanyola del Valles, Barcelona 08193, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
16
|
Zou HX, Schreiber SJ, Rudolf VHW. Stage-mediated priority effects and season lengths shape long-term competition dynamics. Proc Biol Sci 2023; 290:20231217. [PMID: 37752843 PMCID: PMC10523084 DOI: 10.1098/rspb.2023.1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
The relative arrival time of species can affect their interactions and thus determine which species persist in a community. Although this phenomenon, called priority effect, is widespread in natural communities, it is unclear how it depends on the length of growing season. Using a seasonal stage-structured model, we show that differences in stages of interacting species could generate priority effects by altering the strength of stabilizing and equalizing coexistence mechanisms, changing outcomes between exclusion, coexistence and positive frequency dependence. However, these priority effects are strongest in systems with just one or a few generations per season and diminish in systems where many overlapping generations per season dilute the importance of stage-specific interactions. Our model reveals a novel link between the number of generations in a season and the consequences of priority effects, suggesting that consequences of phenological shifts driven by climate change should depend on specific life histories of organisms.
Collapse
Affiliation(s)
- Heng-Xing Zou
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, TX 77005, USA
| | | | - Volker H. W. Rudolf
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
17
|
von Schmalensee L, Caillault P, Gunnarsdóttir KH, Gotthard K, Lehmann P. Seasonal specialization drives divergent population dynamics in two closely related butterflies. Nat Commun 2023; 14:3663. [PMID: 37339960 DOI: 10.1038/s41467-023-39359-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
Seasons impose different selection pressures on organisms through contrasting environmental conditions. How such seasonal evolutionary conflict is resolved in organisms whose lives span across seasons remains underexplored. Through field experiments, laboratory work, and citizen science data analyses, we investigate this question using two closely related butterflies (Pieris rapae and P. napi). Superficially, the two butterflies appear highly ecologically similar. Yet, the citizen science data reveal that their fitness is partitioned differently across seasons. Pieris rapae have higher population growth during the summer season but lower overwintering success than do P. napi. We show that these differences correspond to the physiology and behavior of the butterflies. Pieris rapae outperform P. napi at high temperatures in several growth season traits, reflected in microclimate choice by ovipositing wild females. Instead, P. rapae have higher winter mortality than do P. napi. We conclude that the difference in population dynamics between the two butterflies is driven by seasonal specialization, manifested as strategies that maximize gains during growth seasons and minimize harm during adverse seasons, respectively.
Collapse
Affiliation(s)
- Loke von Schmalensee
- Department of Zoology, Stockholm University, SE-106 91, Stockholm, Sweden.
- Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Pauline Caillault
- Department of Zoology, Stockholm University, SE-106 91, Stockholm, Sweden
| | | | - Karl Gotthard
- Department of Zoology, Stockholm University, SE-106 91, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, SE-106 91, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden
- Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, 1D-17489, Greifswald, Germany
| |
Collapse
|
18
|
Anderson TL, Burkhart JJ, Cianci‐Gaskill JA, Davenport JM. Limited population and community effects of hatching asynchrony in a pond‐breeding salamander. Ecosphere 2023. [DOI: 10.1002/ecs2.4372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Affiliation(s)
- Thomas L. Anderson
- Department of Biology Appalachian State University Boone North Carolina USA
| | - Jacob J. Burkhart
- Department of Biology Appalachian State University Boone North Carolina USA
| | | | - Jon M. Davenport
- Department of Biology Appalachian State University Boone North Carolina USA
| |
Collapse
|
19
|
Toll K. An evolutionary framework for understanding habitat partitioning in plants. AMERICAN JOURNAL OF BOTANY 2023; 110:e16119. [PMID: 36585942 PMCID: PMC10107657 DOI: 10.1002/ajb2.16119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Many plant species with overlapping geographic ranges segregate at smaller spatial scales. This spatial segregation-zonation when it follows an abiotic gradient and habitat partitioning when it does not-has been experimentally investigated for over a century often using distantly related taxa, such as different genera of algae or barnacles. In those foundational studies, trade-offs between stress tolerance and competitive ability were found to be the major driving factors of habitat partitioning for both animals and plants. Yet, the evolutionary relationships among segregating species are usually not taken into account. Since close relatives are hypothesized to compete more intensely and are more likely to interact during mating compared to distant relatives, the mechanisms underlying habitat partitioning may differ depending on the relatedness of the species in question. Here, I propose an integration of ecological and evolutionary factors contributing to habitat partitioning in plants, specifically how the relative contributions of factors predictably change with relatedness of taxa. Interspecific reproductive interactions in particular are understudied, yet important drivers of habitat partitioning. In spatially segregated species, interspecific mating can reduce the fitness of rare immigrants, preventing their establishment and maintaining patterns of spatial segregation. In this synthesis, I review the literature on mechanisms of habitat partitioning in plants within an evolutionary framework, identifying knowledge gaps and detailing future directions for this rapidly growing field of study.
Collapse
Affiliation(s)
- Katherine Toll
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
20
|
The role of priority effects in limiting the success of the invasive tiger mosquito, Aedes albopictus. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
21
|
Mougi A. Phenological Coadaptation Can Stabilize Predator–Prey Dynamics. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.817339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In recent years, phenology – the seasonal timing of biological life cycles – has received increasing attention as climate change threatens to shift phenology. Phenology is crucial to the life cycle of organisms and their interactions with intimate partner species; hence, phenology has important fitness consequences suggesting that phenology can change through adaptive processes caused by species interaction. However, to date, there is limited understanding of how phenological adaptation occurs among interacting species and consequently affects ecological population dynamics. In this study, a phenological predator–prey co-adaptation model was evaluated to determine how adaptive phenological changes occur in prey and predator and how phenological coadaptation affects their coexistence. Population fluctuations tend to decrease and become stabilized when adaptation occurs rapidly. Furthermore, when adaptation is slow, predator–prey dynamics can be stabilized or destabilized depending on the initial difference in phenological timing between species. These results suggest that phenology shaped by slow coevolution can shift with changes in activity timing caused by environmental changes and simultaneously alter the stability of predator–prey dynamics. In contrast, phenology caused by rapid adaptation, such as phenotypic plasticity, may be robust to environmental change and maintain the stability of predator–prey dynamics. Understanding the types of adaptative processes that shape species phenologies may be crucial for predicting the ecological effects of climate change.
Collapse
|
22
|
Rudolf VHW. Temperature and nutrient conditions modify the effects of phenological shifts in predator-prey communities. Ecology 2022; 103:e3704. [PMID: 35357008 DOI: 10.1002/ecy.3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/10/2022]
Abstract
While there is mounting evidence indicating that the relative timing of predator and prey phenologies shapes the outcome of trophic interactions, we still lack a comprehensive understanding of how important the environmental context (e.g. abiotic conditions) is for shaping this relationship. Environmental conditions not only frequently drive shifts in phenologies, but they can also affect the very same processes that mediate the effects of phenological shifts on species interactions. Thus, identifying how environmental conditions shape the effects of phenological shifts is key to predict community dynamics across a heterogenous landscape and how they will change with ongoing climate change in the future. Here I tested how environmental conditions shape effects of phenological shifts by experimentally manipulating temperature, nutrient availability, and relative phenologies in two predator-prey freshwater systems (mole salamander- bronze frog vs dragonfly larvae-leopard frog). This allowed me to (1) isolate the effect of phenological shifts and different environmental conditions, (2) determine how they interact, and (3) how consistent these patterns are across different species and environments. I found that delaying prey arrival dramatically increased predation rates, but these effects were contingent on environmental conditions and predator system. While both nutrient addition and warming significantly enhanced the effect of arrival time, their effect was qualitatively different across systems: Nutrient addition enhanced the positive effect of early arrival in the dragonfly-leopard frog system, while warming enhanced the negative effect of arriving late in the salamander-bronze frog system. Predator responses varied qualitatively across predator-prey systems. Only in the system with strong gape-limitation were predators (salamanders) significantly affected by prey arrival time and this effect varied with environmental context. Correlations between predator and prey demographic rates suggest that this was driven by shifts in initial predator-prey size ratios and a positive feedback between size-specific predation rates and predator growth rates. These results highlight the importance of accounting for temporal and spatial correlation of local environmental conditions and gape-limitation in predator-prey systems when predicting the effects of phenological shifts and climate change on predator-prey systems.
Collapse
Affiliation(s)
- V H W Rudolf
- BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
23
|
Multiple-Predator Effects and Functional Redundancy of Pond Predators. J HERPETOL 2022. [DOI: 10.1670/20-080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Scott RC, Pintar MR, Resetarits WJ. Patch size drives colonization by aquatic insects, with minor priority effects of a cohabitant. Ecol Evol 2021; 11:16817-16834. [PMID: 34938475 PMCID: PMC8668781 DOI: 10.1002/ece3.8313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/15/2021] [Accepted: 10/23/2021] [Indexed: 11/05/2022] Open
Abstract
Patch size is one of the most important factors affecting the distribution and abundance of species, and recent research has shown that patch size is an important niche dimension affecting community structure in aquatic insects. Building on this result, we examined the impact of patch size in conjunction with presence of larval anurans on colonization by aquatic insects. Hyla chrysoscelis (Cope's gray treefrog) larvae are abundant and early colonists in fishless lentic habitats, and these larvae can fill multiple ecological roles. By establishing larvae in mesocosms prior to colonization, we were able to assess whether H. chrysoscelis larvae have priority effects on aquatic insect assemblages. We conducted a series of three experiments in naturally colonized experimental landscapes to test whether (1) H. chrysoscelis larval density affects insect colonization, (2) variation in patch size affects insect colonization, and (3) the presence and larval density of H. chrysoscelis shift colonization of insects between patches of different size. Larval density independently had almost no effect on colonization, while patch size had species-specific effects consistent with prior work. When larvae and patch size were tested in conjunction, patch size had numerous, often strong, species-specific effects on colonization; larval density had effects largely limited to the assemblages of colonizing beetles and water bugs, with few effects on individual species. Higher larval densities in large mesocosms shifted some insect colonization to smaller patches, resulting in higher beta diversity among small patches in proximity to high density large mesocosms. This indicates establishing H. chrysoscelis larvae prior to insect colonization can likely create priority effects that slightly shape insect communities. Our results support the importance of patch size in studying species abundances and distributions and also indicate that colonization order plays an important role in determining the communities found within habitat patches.
Collapse
Affiliation(s)
- Reed C. Scott
- Department of BiologyCenter for Water and Wetlands ResourcesCenter for Biodiversity and Conservation ResearchUniversity of MississippiUniversityMississippiUSA
| | - Matthew R. Pintar
- Department of BiologyCenter for Water and Wetlands ResourcesCenter for Biodiversity and Conservation ResearchUniversity of MississippiUniversityMississippiUSA
- Institute of EnvironmentFlorida International UniversityMiamiFloridaUSA
| | - William J. Resetarits
- Department of BiologyCenter for Water and Wetlands ResourcesCenter for Biodiversity and Conservation ResearchUniversity of MississippiUniversityMississippiUSA
| |
Collapse
|
25
|
O'Brien AM, Ginnan NA, Rebolleda-Gómez M, Wagner MR. Microbial effects on plant phenology and fitness. AMERICAN JOURNAL OF BOTANY 2021; 108:1824-1837. [PMID: 34655479 DOI: 10.1002/ajb2.1743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Plant development and the timing of developmental events (phenology) are tightly coupled with plant fitness. A variety of internal and external factors determine the timing and fitness consequences of these life-history transitions. Microbes interact with plants throughout their life history and impact host phenology. This review summarizes current mechanistic and theoretical knowledge surrounding microbe-driven changes in plant phenology. Overall, there are examples of microbes impacting every phenological transition. While most studies have focused on flowering time, microbial effects remain important for host survival and fitness across all phenological phases. Microbe-mediated changes in nutrient acquisition and phytohormone signaling can release plants from stressful conditions and alter plant stress responses inducing shifts in developmental events. The frequency and direction of phenological effects appear to be partly determined by the lifestyle and the underlying nature of a plant-microbe interaction (i.e., mutualistic or pathogenic), in addition to the taxonomic group of the microbe (fungi vs. bacteria). Finally, we highlight biases, gaps in knowledge, and future directions. This biotic source of plasticity for plant adaptation will serve an important role in sustaining plant biodiversity and managing agriculture under the pressures of climate change.
Collapse
Affiliation(s)
- Anna M O'Brien
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Nichole A Ginnan
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - María Rebolleda-Gómez
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, CA, USA
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
26
|
Response of Biodiversity, Ecosystems, and Ecosystem Services to Climate Change in China: A Review. ECOLOGIES 2021. [DOI: 10.3390/ecologies2040018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change is having a significant impact on the global ecosystem and is likely to become increasingly important as this phenomenon intensifies. Numerous studies in climate change impacts on biodiversity, ecosystems, and ecosystem services in China have been published in recent decades. However, a comprehensive review of the topic is needed to provide an improved understanding of the history and driving mechanisms of environmental changes within the region. Here we review the evidence for changes in climate and the peer-reviewed literature that assesses climate change impacts on biodiversity, ecosystem, and ecosystem services at a China scale. Our main conclusions are as follows. (1) Most of the evidence shows that climate change (the increasing extreme events) is affecting the change of productivity, species interactions, and biological invasions, especially in the agro-pastoral transition zone and fragile ecological area in Northern China. (2) The individuals and populations respond to climate change through changes in behavior, functions, and geographic scope. (3) The impact of climate change on most types of services (provisioning, regulating, supporting, and cultural) in China is mainly negative and brings threats and challenges to human well-being and natural resource management, therefore, requiring costly societal adjustments. In general, although great progress has been made, the management strategies still need to be further improved. Integrating climate change into ecosystem services assessment and natural resource management is still a major challenge. Moving forward, it is necessary to evaluate and research the effectiveness of typical demonstration cases, which will contribute to better scientific management of natural resources in China and the world.
Collapse
|
27
|
Laska A, Magalhães S, Lewandowski M, Puchalska E, Karpicka-Ignatowska K, Radwańska A, Meagher S, Kuczyński L, Skoracka A. A sink host allows a specialist herbivore to persist in a seasonal source. Proc Biol Sci 2021; 288:20211604. [PMID: 34465242 PMCID: PMC8437026 DOI: 10.1098/rspb.2021.1604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In seasonal environments, sinks that are more persistent than sources may serve as temporal stepping stones for specialists. However, this possibility has to our knowledge, not been demonstrated to date, as such environments are thought to select for generalists, and the role of sinks, both in the field and in the laboratory, is difficult to document. Here, we used laboratory experiments to show that herbivorous arthropods associated with seasonally absent main (source) habitats can endure on a suboptimal (sink) host for several generations, albeit with a negative growth rate. Additionally, they dispersed towards this host less often than towards the main host and accepted it less often than the main host. Finally, repeated experimental evolution attempts revealed no adaptation to the suboptimal host. Nevertheless, field observations showed that arthropods are found in suboptimal habitats when the main habitat is unavailable. Together, these results show that evolutionary rescue in the suboptimal habitat is not possible. Instead, the sink habitat functions as a temporal stepping stone, allowing for the persistence of a specialist when the source habitat is gone.
Collapse
Affiliation(s)
- Alicja Laska
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Sara Magalhães
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016 Lisboa, Portugal
| | - Mariusz Lewandowski
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland
| | - Ewa Puchalska
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland
| | - Kamila Karpicka-Ignatowska
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Anna Radwańska
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Shawn Meagher
- Department of Biological Sciences, Western Illinois University, Macomb, IL 61455, USA
| | - Lechosław Kuczyński
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Anna Skoracka
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
28
|
Song C, Fukami T, Saavedra S. Untangling the complexity of priority effects in multispecies communities. Ecol Lett 2021; 24:2301-2313. [PMID: 34472694 DOI: 10.1111/ele.13870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/23/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
The history of species immigration can dictate how species interact in local communities, thereby causing historical contingency in community assembly. Since immigration history is rarely known, these historical influences, or priority effects, pose a major challenge in predicting community assembly. Here, we provide a graph-based, non-parametric, theoretical framework for understanding the predictability of community assembly as affected by priority effects. To develop this framework, we first show that the diversity of possible priority effects increases super-exponentially with the number of species. We then point out that, despite this diversity, the consequences of priority effects for multispecies communities can be classified into four basic types, each of which reduces community predictability: alternative stable states, alternative transient paths, compositional cycles and the lack of escapes from compositional cycles to stable states. Using a neural network, we show that this classification of priority effects enables accurate explanation of community predictability, particularly when each species immigrates repeatedly. We also demonstrate the empirical utility of our theoretical framework by applying it to two experimentally derived assembly graphs of algal and ciliate communities. Based on these analyses, we discuss how the framework proposed here can help guide experimental investigation of the predictability of history-dependent community assembly.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.,Department of Biology, McGill University, Montreal, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Tadashi Fukami
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA
| |
Collapse
|
29
|
Fehmi JS, Rasmussen C, Arnold AE. The pioneer effect advantage in plant invasions: site priming of native grasslands by invasive grasses. Ecosphere 2021. [DOI: 10.1002/ecs2.3750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jeffrey S. Fehmi
- School of Natural Resources and the Environment University of Arizona Tucson Arizona 85719 USA
| | - Craig Rasmussen
- Department of Environmental Science University of Arizona Tucson Arizona 85719 USA
| | - A. Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona 85719 USA
| |
Collapse
|
30
|
Wolkovich EM, Donahue MJ. How phenological tracking shapes species and communities in non-stationary environments. Biol Rev Camb Philos Soc 2021; 96:2810-2827. [PMID: 34288337 DOI: 10.1111/brv.12781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 01/27/2023]
Abstract
Climate change alters the environments of all species. Predicting species responses requires understanding how species track environmental change, and how such tracking shapes communities. Growing empirical evidence suggests that how species track phenologically - how an organism shifts the timing of major biological events in response to the environment - is linked to species performance and community structure. Such research tantalizingly suggests a potential framework to predict the winners and losers of climate change, and the future communities we can expect. But developing this framework requires far greater efforts to ground empirical studies of phenological tracking in relevant ecological theory. Here we review the concept of phenological tracking in empirical studies and through the lens of coexistence theory to show why a community-level perspective is critical to accurate predictions with climate change. While much current theory for tracking ignores the importance of a multi-species context, basic community assembly theory predicts that competition will drive variation in tracking and trade-offs with other traits. We highlight how existing community assembly theory can help understand tracking in stationary and non-stationary systems. But major advances in predicting the species- and community-level consequences of climate change will require advances in theoretical and empirical studies. We outline a path forward built on greater efforts to integrate priority effects into modern coexistence theory, improved empirical estimates of multivariate environmental change, and clearly defined estimates of phenological tracking and its underlying environmental cues.
Collapse
Affiliation(s)
- E M Wolkovich
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Megan J Donahue
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kān'eohe, HI, 96744, U.S.A
| |
Collapse
|
31
|
Duchenne F, Fontaine C, Teulière E, Thébault E. Phenological traits foster persistence of mutualistic networks by promoting facilitation. Ecol Lett 2021; 24:2088-2099. [PMID: 34218505 PMCID: PMC8518482 DOI: 10.1111/ele.13836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/02/2022]
Abstract
Morphological and phenological traits are key determinants of the structure of mutualistic networks. Both traits create forbidden links, but phenological traits can also decouple interaction in time. While such difference likely affects the indirect effects among species and consequently network persistence, it remains overlooked. Here, using a dynamic model, we show that networks structured by phenology favour facilitation over competition within guilds of pollinators and plants, thereby increasing network persistence, while the contrary holds for networks structured by morphology. We further show that such buffering of competition by phenological traits mostly beneficiate to specialists, the most vulnerable species otherwise, which propagate the most positive effects within guilds and promote nestedness. Our results indicate that beyond trophic mismatch, phenological shifts such as those induced by climate change are likely to affect indirect effects within mutualistic assemblages, with consequences for biodiversity.
Collapse
Affiliation(s)
- François Duchenne
- Institute of Ecology and Environmental Sciences of Paris, (Sorbonne Université, CNRS, Université Paris Est Créteil, INRAE, IRD), Paris, France.,Centre d'Ecologie et des Sciences de la Conservation, (CNRS, MNHN, Sorbonne Université), Paris, France.,Biodiversity and Conservation Biology Research Center, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Colin Fontaine
- Centre d'Ecologie et des Sciences de la Conservation, (CNRS, MNHN, Sorbonne Université), Paris, France
| | - Elsa Teulière
- Lycée Romain Rolland, Académie de Créteil (Education Nationale), Ivry-sur-Seine, France
| | - Elisa Thébault
- Institute of Ecology and Environmental Sciences of Paris, (Sorbonne Université, CNRS, Université Paris Est Créteil, INRAE, IRD), Paris, France
| |
Collapse
|
32
|
Migratory strategy drives species-level variation in bird sensitivity to vegetation green-up. Nat Ecol Evol 2021; 5:987-994. [PMID: 33927370 DOI: 10.1038/s41559-021-01442-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/04/2021] [Indexed: 02/02/2023]
Abstract
Animals and plants are shifting the timing of key life events in response to climate change, yet despite recent documentation of escalating phenological change, scientists lack a full understanding of how and why phenological responses vary across space and among species. Here, we used over 7 million community-contributed bird observations to derive species-specific, spatially explicit estimates of annual spring migration phenology for 56 bird species across eastern North America. We show that changes in the spring arrival of migratory birds are coarsely synchronized with fluctuations in vegetation green-up and that the sensitivity of birds to plant phenology varied extensively. Bird arrival responded more synchronously with vegetation green-up at higher latitudes, where phenological shifts over time are also greater. Critically, species' migratory traits explained variation in sensitivity to green-up, with species that migrate more slowly, arrive earlier and overwinter further north showing greater responsiveness to earlier springs. Identifying how and why species vary in their ability to shift phenological events is fundamental to predicting species' vulnerability to climate change. Such variation in sensitivity across taxa, with long-distance neotropical migrants exhibiting reduced synchrony, may help to explain substantial declines in these species over the last several decades.
Collapse
|
33
|
Willems FM, Scheepens JF, Ammer C, Block S, Bucharova A, Schall P, Sehrt M, Bossdorf O. Spring understory herbs flower later in intensively managed forests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02332. [PMID: 33765327 DOI: 10.1002/eap.2332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Many organisms respond to anthropogenic environmental change through shifts in their phenology. In plants, flowering is largely driven by temperature, and therefore affected by climate change. However, on smaller scales climatic conditions are also influenced by other factors, including habitat structure. A group of plants with a particularly distinct phenology are the understory herbs in temperate European forests. In these forests, management alters tree species composition (often replacing deciduous with coniferous species) and homogenizes stand structure, and as a consequence changes light conditions and microclimate. Forest management should thus also affect the phenology of understory herbs. To test this, we recorded the flowering phenology of 16 early-flowering herbs on 100 forest plots varying in management intensity, from near-natural to intensely managed forests, in central and southern Germany. We found that in forest stands with a high management intensity, such as Norway spruce plantations, the plants flowered on average about 2 weeks later than in unmanaged forests. This was largely because management also affected microclimate (e.g., spring temperatures of 5.9°C in managed coniferous, 6.7 in managed deciduous, and 7.0°C in unmanaged deciduous plots), which in turn affected phenology, with plants flowering later on colder and moister forest stands (+4.5 d per -1°C and 2.7 d per 10% humidity increase). Among forest characteristics, the percentage of conifers had the greatest influence on microclimate, but also the age, overall crown projection area, structural complexity and spatial distribution of the forest stands. Our study indicates that forest management alters plant phenology, with potential far-reaching consequences for the ecology and evolution of understorey communities. More generally, our study demonstrates that besides climate change other drivers of environmental change, too, can influence the phenology of organisms.
Collapse
Affiliation(s)
- Franziska M Willems
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - J F Scheepens
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
- Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Svenja Block
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Anna Bucharova
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
- Biodiversity and Ecosystem Research Group, Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Melissa Sehrt
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
Stillman RA, Rivers EM, Gilkerson W, Wood KA, Nolet BA, Clausen P, Wilson HM, Ward DH. Predicting impacts of food competition, climate, and disturbance on a long‐distance migratory herbivore. Ecosphere 2021. [DOI: 10.1002/ecs2.3405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- R. A. Stillman
- Department of Life and Environmental Sciences Faculty of Science and Technology Bournemouth University Poole DorsetBH12 5BBUK
| | - E. M. Rivers
- Department of Life and Environmental Sciences Faculty of Science and Technology Bournemouth University Poole DorsetBH12 5BBUK
| | - W. Gilkerson
- Merkel and Associates 5434 Ruffin Road San Diego California92123USA
| | - K. A. Wood
- Wildfowl and Wetlands Trust Slimbridge GloucestershireGL2 7BTUK
| | - B. A. Nolet
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Droevendaalsesteeg 10 Wageningen6708 PBThe Netherlands
- Theoretical and Computational Ecology Institute for Biodiversity and Ecosystem Dynamics Science Park 904 Amsterdam1098 XHThe Netherlands
| | - P. Clausen
- Department of Bioscience—Wildlife Ecology Aarhus University Grenåvej 14 Rønde8410Denmark
| | - H. M. Wilson
- U.S. Fish and Wildlife Service Migratory Bird Management‐Region 7, 1011 E. Tudor Road Anchorage Alaska99503USA
| | - D. H. Ward
- Alaska Science Center U.S. Geological Survey 4210 University Drive Anchorage Alaska99508USA
| |
Collapse
|
35
|
Abstract
How ecosystem biodiversity is maintained remains a persistent question in the field of ecology. Here, I present a new coexistence theory, i.e. diversity of biological rhythm. Circadian, circalunar and circannual rhythms, which control short- and long-term activities, are identified as universal phenomena in organisms. Analysis of a theoretical food web with diel, monthly and annual cycles in foraging activity for each organism shows that diverse biological cycles play key roles in maintaining complex communities. Each biological rhythm does not have a strong stabilizing effect independently but enhances community persistence when combined with other rhythms. Biological rhythms also mitigate inherent destabilization tendencies caused by food web complexity. Temporal weak interactions due to hybridity of multiple activity cycles play a key role toward coexistence. Polyrhythmic changes in biological activities in response to the Earth's rotation may be a key factor in maintaining biological communities.
Collapse
Affiliation(s)
- Akihiko Mougi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Japan
| |
Collapse
|
36
|
Prevéy JS, Vitasse Y, Fu Y. Editorial: Experimental Manipulations to Predict Future Plant Phenology. FRONTIERS IN PLANT SCIENCE 2021; 11:637156. [PMID: 33519883 PMCID: PMC7840893 DOI: 10.3389/fpls.2020.637156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Janet S Prevéy
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, United States
| | - Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research, Forest Dynamics, Birmensdorf, Switzerland
| | | |
Collapse
|
37
|
Wetland hydroperiod predicts community structure, but not the magnitude of cross-community congruence. Sci Rep 2021; 11:429. [PMID: 33432086 PMCID: PMC7801406 DOI: 10.1038/s41598-020-80027-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
A major focus in community ecology is understanding how biological interactions and environmental conditions shape horizontal communities. However, few studies have explored whether cross-community interactions are consistent or non-stationary across environmental gradients. Using the relative abundance of birds, aquatic macroinvertebrates and plants, we examined how cross-community congruence varied between short and long-hydroperiod prairie pothole wetlands in southern Alberta. These wetlands are structured by their hydroperiod: the length of time that ponded water is present in the wetland. We compared the strength of cross-community congruence and the strength of congruence between each horizontal community and wetland hydroperiod in wetlands that typically contain ponded water throughout the year to wetlands that dry up every summer. The strength of cross-community relationships was similar between more permanent and more ephemeral wetland classes, suggesting that biological interactions have a near equivalent role in shaping community composition, regardless of hydroperiod. However, because cross-community congruence, measured as the Procrustes pseudo-R value, was, on average, 77% ± SE 12% greater than that between each horizontal community and measures of wetland hydroperiod, we concluded that community structure is not shaped by hydroperiod alone. We attribute the observed cross-community congruence to (1) plants and aquatic macroinvertebrates influence birds through habitat and food provisioning, and (2) birds influence plants and aquatic macroinvertebrates by dispersing their propagules.
Collapse
|
38
|
Sugai LSM, Silva TSF, Llusia D, Siqueira T. Drivers of assemblage-wide calling activity in tropical anurans and the role of temporal resolution. J Anim Ecol 2020; 90:673-684. [PMID: 33289069 DOI: 10.1111/1365-2656.13399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/06/2020] [Indexed: 11/27/2022]
Abstract
Temporal scale in animal communities is often associated with seasonality, despite the large variation in species activity during a diel cycle. A gap thus remains in understanding the dynamics of short-term activity in animal communities. Here we assessed calling activity of tropical anurans and addressed how species composition varied during night activity in assemblages along gradients of local and landscape environmental heterogeneity. We investigated 39 anuran assemblages in the Pantanal wetlands (Brazil) with passive acoustic monitoring during the peak of one breeding season, and first determined changes in species composition between night periods (early, mid and late) using two temporal resolutions (1- and 3-hr intervals). Then, we addressed the role of habitat structure (local and landscape heterogeneity variables from field-based and remote sensing metrics) and ecological context (species richness and phylogenetic relatedness) in determining changes in species composition (a) between night periods and (b) across days. Nocturnal calling activity of anuran assemblages varied more within the 1-hr resolution than the 3-hr resolution. Differences in species composition between early- and late-night periods were related to local habitat structure and phylogenetic relatedness, while a low variation in compositional changes across days was associated with low-heterogeneous landscapes. None of these relationships were observed using the coarser temporal resolution (3 hr). Our findings on the variation of calling activity in tropical anuran assemblages suggest potential trade-offs mediated by fine-temporal partitioning. Local and landscape heterogeneity may provide conditions for spatial partitioning, while the relatedness among co-signalling species provides cues on the ecological overlap of species with similar requirements. These relationships suggest a role of niche dimensional complementarity on the structuring of these anuran assemblages over fine-temporal scales. We argue that fine-temporal differences between species in breeding activity can influence the outcome of species interaction and thus, addressing temporal scaling issues can improve our understanding of the dynamics of animal communities.
Collapse
Affiliation(s)
- Larissa S M Sugai
- Instituto de Biociências, Universidade Estadual Paulista (Unesp), Rio Claro, Brazil.,Terrestrial Ecology Group, Departamento de Ecología, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Facultad de Ciencias, Biología, Madrid, Spain.,Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, Spain
| | - Thiago S F Silva
- Instituto de Biociências, Universidade Estadual Paulista (Unesp), Rio Claro, Brazil.,Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Diego Llusia
- Terrestrial Ecology Group, Departamento de Ecología, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Facultad de Ciencias, Biología, Madrid, Spain.,Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, Spain.,Laboratório de Herpetologia e Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Tadeu Siqueira
- Instituto de Biociências, Universidade Estadual Paulista (Unesp), Rio Claro, Brazil
| |
Collapse
|
39
|
Duchenne F, Thébault E, Michez D, Gérard M, Devaux C, Rasmont P, Vereecken NJ, Fontaine C. Long-term effects of global change on occupancy and flight period of wild bees in Belgium. GLOBAL CHANGE BIOLOGY 2020; 26:6753-6766. [PMID: 33016508 DOI: 10.1111/gcb.15379] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Global change affects species by modifying their abundance, spatial distribution, and activity period. The challenge is now to identify the respective drivers of those responses and to understand how those responses combine to affect species assemblages and ecosystem functioning. Here we correlate changes in occupancy and mean flight date of 205 wild bee species in Belgium with temporal changes in temperature trend and interannual variation, agricultural intensification, and urbanization. Over the last 70 years, bee occupancy decreased on average by 33%, most likely because of agricultural intensification, and flight period of bees advanced on average by 4 days, most likely because of interannual temperature changes. Those responses resulted in a synergistic effect because species which increased in occupancy tend to be those that have shifted their phenologies earlier in the season. This leads to an overall advancement and shortening of the pollination season by 9 and 15 days respectively, with lower species richness and abundance compared to historical pollinator assemblages, except at the early start of the season. Our results thus suggest a strong decline in pollination function and services.
Collapse
Affiliation(s)
- François Duchenne
- Institute of Ecology and Environmental Sciences of Paris (Sorbonne Université, CNRS, Université Paris Est Créteil, INRA, IRD), Paris, France
- Centre d'Ecologie et des Sciences de la Conservation (CNRS, MNHN, Sorbonne Université), Paris, France
| | - Elisa Thébault
- Institute of Ecology and Environmental Sciences of Paris (Sorbonne Université, CNRS, Université Paris Est Créteil, INRA, IRD), Paris, France
| | - Denis Michez
- Laboratory of Zoology, Research Institute of Biosciences (University of Mons), Mons, Belgium
| | - Maxence Gérard
- Laboratory of Zoology, Research Institute of Biosciences (University of Mons), Mons, Belgium
| | - Céline Devaux
- Institut des Sciences de l'Evolution de Montpellier, Montpellier (Université de Montpellier, CNRS, IRD, EPHE), Montpellier, France
| | - Pierre Rasmont
- Laboratory of Zoology, Research Institute of Biosciences (University of Mons), Mons, Belgium
| | | | - Colin Fontaine
- Centre d'Ecologie et des Sciences de la Conservation (CNRS, MNHN, Sorbonne Université), Paris, France
| |
Collapse
|
40
|
White ER, Hastings A. Seasonality in ecology: Progress and prospects in theory. ECOLOGICAL COMPLEXITY 2020. [DOI: 10.1016/j.ecocom.2020.100867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Mougi A. Polyrhythmic foraging and competitive coexistence. Sci Rep 2020; 10:20282. [PMID: 33219304 PMCID: PMC7679447 DOI: 10.1038/s41598-020-77483-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/06/2020] [Indexed: 11/09/2022] Open
Abstract
The current ecological understanding still does not fully explain how biodiversity is maintained. One strategy to address this issue is to contrast theoretical prediction with real competitive communities where diverse species share limited resources. I present, in this study, a new competitive coexistence theory-diversity of biological rhythms. I show that diversity in activity cycles plays a key role in coexistence of competing species, using a two predator-one prey system with diel, monthly, and annual cycles for predator foraging. Competitive exclusion always occurs without activity cycles. Activity cycles do, however, allow for coexistence. Furthermore, each activity cycle plays a different role in coexistence, and coupling of activity cycles can synergistically broaden the coexistence region. Thus, with all activity cycles, the coexistence region is maximal. The present results suggest that polyrhythmic changes in biological activity in response to the earth's rotation and revolution are key to competitive coexistence. Also, temporal niche shifts caused by environmental changes can easily eliminate competitive coexistence.
Collapse
Affiliation(s)
- Akihiko Mougi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-cho, Matsue, 690-8504, Japan.
| |
Collapse
|
42
|
Chen R. Transient inconsistency between population density and fisheries yields without bycatch species extinction. Ecol Evol 2020; 10:12372-12384. [PMID: 33209295 PMCID: PMC7663084 DOI: 10.1002/ece3.6868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/06/2022] Open
Abstract
Recent studies have demonstrated the great advantages of marine reserves in solving bycatch problems by maintaining the persistence (i.e., avoid extinction) of endangered species without sacrificing the fisheries yields of target species. However, transient phenomena rather than equilibrium states of population dynamics still require further research. Here, with a simple and general model, the transient dynamics of the target fish species are investigated under management which minimizes extinction risk of the bycatch species. An interesting finding is that fisheries yields can strongly fluctuate even if population density both inside and outside marine reserve only slightly varies (or vice versa), leading to transient inconsistency between the population densities and fisheries yields. This finding suggests that population density dynamics of the target fish species cannot be used to predict the transient phenomena of fisheries yields (or vice versa) in fisheries management. However, the unpredictability can be receded as the sensitivity analyses show that a large marine reserve size and low escapement rate can shorten the transient duration.
Collapse
Affiliation(s)
- Renfei Chen
- School of Life ScienceShanxi Normal UniversityLinfenChina
| |
Collapse
|
43
|
Holyoak M, Caspi T, Redosh LW. Integrating Disturbance, Seasonality, Multi-Year Temporal Dynamics, and Dormancy Into the Dynamics and Conservation of Metacommunities. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.571130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Wassmer T. Phenological Patterns and Seasonal Segregation of Coprophilous Beetles (Coleoptera: Scarabaeoidea and Hydrophilidae) on a Cattle Farm in SE-Michigan, United States Throughout the Year. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.563532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Bison M, Yoccoz NG, Carlson B, Klein G, Laigle I, Van Reeth C, Asse D, Delestrade A. Best environmental predictors of breeding phenology differ with elevation in a common woodland bird species. Ecol Evol 2020; 10:10219-10229. [PMID: 33005377 PMCID: PMC7520200 DOI: 10.1002/ece3.6684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Temperatures in mountain areas are increasing at a higher rate than the Northern Hemisphere land average, but how fauna may respond, in particular in terms of phenology, remains poorly understood. The aim of this study was to assess how elevation could modify the relationships between climate variability (air temperature and snow melt-out date), the timing of plant phenology and egg-laying date of the coal tit (Periparus ater). We collected 9 years (2011-2019) of data on egg-laying date, spring air temperature, snow melt-out date, and larch budburst date at two elevations (~1,300 m and ~1,900 m asl) on a slope located in the Mont-Blanc Massif in the French Alps. We found that at low elevation, larch budburst date had a direct influence on egg-laying date, while at high-altitude snow melt-out date was the limiting factor. At both elevations, air temperature had a similar effect on egg-laying date, but was a poorer predictor than larch budburst or snowmelt date. Our results shed light on proximate drivers of breeding phenology responses to interannual climate variability in mountain areas and suggest that factors directly influencing species phenology vary at different elevations. Predicting the future responses of species in a climate change context will require testing the transferability of models and accounting for nonstationary relationships between environmental predictors and the timing of phenological events.
Collapse
Affiliation(s)
- Marjorie Bison
- Centre de Recherches sur les Ecosystèmes d’Altitude (CREA Mont‐Blanc)Observatoire du Mont‐BlancChamonixFrance
| | - Nigel G. Yoccoz
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Bradley Carlson
- Centre de Recherches sur les Ecosystèmes d’Altitude (CREA Mont‐Blanc)Observatoire du Mont‐BlancChamonixFrance
| | - Geoffrey Klein
- Centre de Recherches sur les Ecosystèmes d’Altitude (CREA Mont‐Blanc)Observatoire du Mont‐BlancChamonixFrance
- Institute of GeographyUniversity of NeuchatelNeuchatelSwitzerland
| | - Idaline Laigle
- Centre de Recherches sur les Ecosystèmes d’Altitude (CREA Mont‐Blanc)Observatoire du Mont‐BlancChamonixFrance
| | - Colin Van Reeth
- Centre de Recherches sur les Ecosystèmes d’Altitude (CREA Mont‐Blanc)Observatoire du Mont‐BlancChamonixFrance
| | - Daphné Asse
- Centre de Recherches sur les Ecosystèmes d’Altitude (CREA Mont‐Blanc)Observatoire du Mont‐BlancChamonixFrance
- Centre d’Ecologie Fonctionnelle et EvolutiveUMR 5175CNRS‐Université de Montpellier – Université Paul‐Valéry Montpellier – EPHEMontpellierFrance
| | - Anne Delestrade
- Centre de Recherches sur les Ecosystèmes d’Altitude (CREA Mont‐Blanc)Observatoire du Mont‐BlancChamonixFrance
| |
Collapse
|
46
|
Menzies AK, Studd EK, Majchrzak YN, Peers MJL, Boutin S, Dantzer B, Lane JE, McAdam AG, Humphries MM. Body temperature, heart rate, and activity patterns of two boreal homeotherms in winter: Homeostasis, allostasis, and ecological coexistence. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13640] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Allyson K. Menzies
- Department of Natural Resource Sciences McGill University Ste‐Anne‐de‐Bellevue QC Canada
| | - Emily K. Studd
- Department of Natural Resource Sciences McGill University Ste‐Anne‐de‐Bellevue QC Canada
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| | | | | | - Stan Boutin
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| | - Ben Dantzer
- Department of Psychology University of Michigan Ann Arbor MI USA
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| | - Jeffrey E. Lane
- Department of Biology University of Saskatchewan Saskatoon SK Canada
| | - Andrew G. McAdam
- Department of Ecology and Evolutionary Biology University of Colorado Boulder CO USA
| | - Murray M. Humphries
- Department of Natural Resource Sciences McGill University Ste‐Anne‐de‐Bellevue QC Canada
| |
Collapse
|
47
|
Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proc Natl Acad Sci U S A 2020; 117:18557-18565. [PMID: 32690693 PMCID: PMC7414193 DOI: 10.1073/pnas.1913579117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The changing climate is causing shifts in the timing of species activity. We use data on over 820,000 nesting records to quantify changes in the beginning, end, and duration of breeding among boreal birds. In addition to a general advance of breeding, we find an overall contraction of the breeding period. This pattern was most common among resident and short-distance migrating species. Overall, we detect a shift in the community-level distribution of bird reproduction, involving the start and end of reproduction and how concentrated the breeding period is. From a methodological perspective, our study illustrates that a focus on quantifying phenological advances alone may mask important patterns of phenology change across the season. Breeding timed to match optimal resource abundance is vital for the successful reproduction of species, and breeding is therefore sensitive to environmental cues. As the timing of breeding shifts with a changing climate, this may not only affect the onset of breeding but also its termination, and thus the length of the breeding period. We use an extensive dataset of over 820K nesting records of 73 bird species across the boreal region in Finland to probe for changes in the beginning, end, and duration of the breeding period over four decades (1975 to 2017). We uncover a general advance of breeding with a strong phylogenetic signal but no systematic variation over space. Additionally, 31% of species contracted their breeding period in at least one bioclimatic zone, as the end of the breeding period advanced more than the beginning. We did not detect a statistical difference in phenological responses of species with combinations of different migratory strategy or number of broods. Nonetheless, we find systematic differences in species responses, as the contraction in the breeding period was found almost exclusively in resident and short-distance migrating species, which generally breed early in the season. Overall, changes in the timing and duration of reproduction may potentially lead to more broods co-occurring in the early breeding season—a critical time for species’ reproductive success. Our findings highlight the importance of quantifying phenological change across species and over the entire season to reveal shifts in the community-level distribution of bird reproduction.
Collapse
|
48
|
Xie J, Jonas T, Rixen C, de Jong R, Garonna I, Notarnicola C, Asam S, Schaepman ME, Kneubühler M. Land surface phenology and greenness in Alpine grasslands driven by seasonal snow and meteorological factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138380. [PMID: 32298886 DOI: 10.1016/j.scitotenv.2020.138380] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/06/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Snow accumulation and melt have multiple impacts on Land Surface Phenology (LSP) and greenness in Alpine grasslands. Our understanding of these impacts and their interactions with meteorological factors are still limited. In this study, we investigate this topic by analyzing LSP dynamics together with potential drivers, using satellite imagery and other data sources. LSP (start and end of season) and greenness metrics were extracted from time series of vegetation and leaf area index. As explanatory variables we used snow accumulation, snow cover melt date and meteorological factors. We tested for inter-annual co-variation of LSP and greenness metrics with seasonal snow and meteorological metrics across elevations and for four sub-regions of natural grasslands in the Swiss Alps over the period 2003-2014. We found strong positive correlations of snow cover melt date and snow accumulation with the start of season, especially at higher elevation. Autumn temperature was found to be important at the end of season below 2000 m above sea level (m asl), while autumn precipitation was relevant above 2000 m asl, indicating climatic growth limiting factors to be elevation dependent. The effects of snow and meteorological factors on greenness revealed that this metric tends to be influenced by temperatures at high elevations, and by snow melt date at low elevations. Given the high sensitivity of alpine grassland ecosystems, these results suggest that alpine grasslands may be particularly affected by future changes in seasonal snow, to varying degree depending on elevation.
Collapse
Affiliation(s)
- Jing Xie
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland.
| | - Tobias Jonas
- WSL Institute for Snow and Avalanche Research, SLF Davos, Flüelastr. 11, 7260 Davos Dorf, Switzerland
| | - Christian Rixen
- WSL Institute for Snow and Avalanche Research, SLF Davos, Flüelastr. 11, 7260 Davos Dorf, Switzerland
| | - Rogier de Jong
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Irene Garonna
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Claudia Notarnicola
- Institute for Earth Observation, EURAC, Viale Druso 1, I-39100 Bolzano, Italy
| | - Sarah Asam
- Institute for Earth Observation, EURAC, Viale Druso 1, I-39100 Bolzano, Italy; German Remote Sensing Data Center, Earth Observation Center, German Aerospace Center, 82234 Wessling, Germany
| | - Michael E Schaepman
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Mathias Kneubühler
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| |
Collapse
|
49
|
Ceron K, Santana DJ, Lucas EM, Zocche JJ, Provete DB. Climatic variables influence the temporal dynamics of an anuran metacommunity in a nonstationary way. Ecol Evol 2020; 10:4630-4639. [PMID: 32551048 PMCID: PMC7297772 DOI: 10.1002/ece3.6217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 11/07/2022] Open
Abstract
Understanding the temporal dynamics of communities is crucial to predict how communities respond to climate change. Several factors can promote variation in phenology among species, including tracking of seasonal resources, adaptive responses to other species, demographic stochasticity, and physiological constraints. The activities of ectothermic vertebrates are sensitive to climatic variations due to the effect of temperature and humidity on species physiology. However, most studies on temporal dynamics have analyzed multi-year data and do not have resolution to discriminate within-year patterns that can determine community assembly cycles. Here, we tested the temporal stability and synchrony of calling activity and also how climatic variables influence anuran species composition throughout the year in a metacommunity in the Atlantic Forest of southern Brazil. Using a multivariate method, we described how the relationship between species composition and climatic variables changes through time. The metacommunity showed a weak synchronous spatial pattern, meaning that species responded independently to environmental variation. Interestingly, species composition exhibited a nonstationary response to climate, suggesting that climate affects species composition differently depending on the season. The species-climate relationship was stronger during the spring, summer, and winter, mainly influenced by temperature, rainfall, and humidity. Thus, temporal community dynamics seem to be mediated by species life-history traits, in which independent fluctuations promote community stability in temporally varying environments.
Collapse
Affiliation(s)
- Karoline Ceron
- Instituto de BiociênciasUniversidade Federal de Mato Grosso do SulCampo GrandeBrazil
| | - Diego J. Santana
- Instituto de BiociênciasUniversidade Federal de Mato Grosso do SulCampo GrandeBrazil
| | - Elaine M. Lucas
- Departamento de Zootecnia e Ciências BiológicasUniversidade Federal de Santa MariaPalmeira das MissõesBrazil
| | - Jairo José Zocche
- Pós‐Graduação em Ciências AmbientaisUniversidade do Extremo Sul CatarinenseCriciúmaBrazil
| | - Diogo B. Provete
- Instituto de BiociênciasUniversidade Federal de Mato Grosso do SulCampo GrandeBrazil
- Gothenburg Global Biodiversity CentreGöteborgSweden
| |
Collapse
|
50
|
Bröder L, Tatin L, Hochkirch A, Schuld A, Pabst L, Besnard A. Optimization of capture-recapture monitoring of elusive species illustrated with a threatened grasshopper. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2020; 34:743-753. [PMID: 31825105 DOI: 10.1111/cobi.13449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Information on population sizes and trends of threatened species is essential for their conservation, but obtaining reliable estimates can be challenging. We devised a method to improve the precision of estimates of population size obtained from capture-recapture studies for species with low capture and recapture probabilities and short seasonal activity, illustrated with population data of an elusive grasshopper (Prionotropis rhodanica). We used data from 5 capture-recapture studies to identify methodological and environmental factors affecting capture and recapture probabilities and estimates of population size. In a simulation, we used the population size and capture and recapture probability estimates obtained from the field studies to identify the minimum number of sampling occasions needed to obtain unbiased and robust estimates of population size. Based on these results we optimized the capture-recapture design, implemented it in 2 additional studies, and compared their precision with those of the nonoptimized studies. Additionally, we simulated scenarios based on thresholds of population size in criteria C and D of the International Union for Conservation of Nature (IUCN) Red List to investigate whether estimates of population size for elusive species can reliably inform red-list assessments. Identifying parameters that affect capture and recapture probabilities (for the grasshopper time since emergence of first adults) and optimizing field protocols based on this information reduced study effort (-6% to -27% sampling occasions) and provided more precise estimates of population size (reduced coefficient of variation) compared with nonoptimized studies. Estimates of population size from the scenarios based on the IUCN thresholds were mostly unbiased and robust (only the combination of very small populations and little study effort produced unreliable estimates), suggesting capture-recapture can be considered reliable for informing red-list assessments. Although capture-recapture remains difficult and costly for elusive species, our optimization procedure can help determine efficient protocols to increase data quality and minimize monitoring effort.
Collapse
Affiliation(s)
- Linda Bröder
- Department of Biogeography, Trier University, Universitätsring 15, 54296, Trier, Germany
| | - Laurent Tatin
- Conservatoire d'espaces naturels de Provence-Alpes-Côte d'Azur, 2 Place Léon Michaud, 13310, Saint Martin de Crau, France
| | - Axel Hochkirch
- Department of Biogeography, Trier University, Universitätsring 15, 54296, Trier, Germany
| | - Andreas Schuld
- Department of Biogeography, Trier University, Universitätsring 15, 54296, Trier, Germany
| | - Lucas Pabst
- Department of Biogeography, Trier University, Universitätsring 15, 54296, Trier, Germany
| | - Aurélien Besnard
- EPHE, PSL Research University, CNRS, UM, SupAgro, IRD, INRA, UMR 5175 CEFE, Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS - 1919 route de Mende, 34293, Montpellier, France
| |
Collapse
|