1
|
Bai X, Zhang Z, Gu D. Driving mechanism of natural vegetation response to climate change in China from 2001 to 2022. ENVIRONMENTAL RESEARCH 2025; 276:121529. [PMID: 40185269 DOI: 10.1016/j.envres.2025.121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Understanding driving mechanism of natural vegetation response to climate change is crucial for maintaining vegetation stability. In this study, driving mechanism of natural vegetation sensitivity to precipitation (SVP) and temperature (SVT) changes in China were analyzed based on Normalized Difference Vegetation Index (NDVI), Solar-induced Chlorophyll Fluorescence (SIF), Dead Fuel Index (DFI), and climate, hydrological, and CO2 data. Results showed that NDVI and SIF significantly increased but DFI significantly decreased from 2001 to 2022, with proportion of over 67 % of natural vegetation area. The SVP of NDVI (SVPN) and DFI (SVPD) of natural vegetation decreased while SVP of SIF (SVPS) increased during 2001-2022, with average of -6.8 × 10-5/mm, -9.9 × 10-3/mm, and 2.3 × 10-5/mm, respectively. The SVPN and SVPD decreased from arid to humid regions, SVPS was high in semi-arid and semi-humid regions. The SVP was correlated with precipitation, runoff, CO2 and surface soil moisture (SSM), and their correlation was higher in drier regions. The SVT of NDVI (SVTN) of natural vegetation increased while SVT of SIF (SVTS) and DFI (SVTD) decreased during 2001-2022, with average of 13.3 × 10-3/°C, 7 × 10-3/°C, and -1.2/°C, respectively. And there was no significant spatial variation of SVT in different climate regions. The SVT was correlated with aridity index (AI), potential evapotranspiration (PET), temperature and SSM. The explanation of climate, hydrological, and CO2 for SVP and SVT was over 64 %, especially for SVTD at 76.2 %. The influencing factors had great explanations for alpine vegetation, desert, needle-leaf forest, and shrubland, and small explanations for broadleaf forest, mixed forest, and wetland. Overall, natural vegetation of China greened and its dependence on climate change decreased, SVP and SVT were driven by hydrology and heat, respectively. These findings will provide scientific basis for vegetation to cope with future extreme events and maintain vegetation stability.
Collapse
Affiliation(s)
- Xuelian Bai
- Coastal Science and Marine Policy Center, First Institute of Oceanology, Ministry of Natural Resources, Qingdao, 266061, PR China; Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, Qingdao, 266033, PR China
| | - Zhiwei Zhang
- Coastal Science and Marine Policy Center, First Institute of Oceanology, Ministry of Natural Resources, Qingdao, 266061, PR China.
| | - Dongqi Gu
- Coastal Science and Marine Policy Center, First Institute of Oceanology, Ministry of Natural Resources, Qingdao, 266061, PR China
| |
Collapse
|
2
|
Luo W, Ishii NI, Muraina TO, Song L, Te N, Griffin-Nolan RJ, Slette IJ, Ross SRPJ, Sasaki T, Rudgers JA, Smith MD, Knapp AK, Collins SL. Extreme Drought Increases the Temporal Variability of Grassland Productivity by Suppressing Dominant Grasses. Ecol Lett 2025; 28:e70127. [PMID: 40289883 DOI: 10.1111/ele.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025]
Abstract
Extreme droughts are intensifying, yet their impact on temporal variability of grassland functioning and its drivers remains poorly understood. We imposed a 6-year extreme drought in two semiarid grasslands to explore how drought influences the temporal variability of ANPP and identify potential stabilising mechanisms. Drought decreased ANPP while increasing its temporal variability across grasslands. In the absence of drought, ANPP variability was strongly driven by the dominant plant species (i.e., mass-ratio effects), as captured by community-weighted traits and species stability. However, drought decreased the dominance of perennial grasses, providing opportunities for subordinate species to alter the stability of productivity through compensatory dynamics. Specifically, under drought, species asynchrony emerged as a more important correlate of ANPP variability than community-weighted traits or species stability. Our findings suggest that in grasslands, prolonged, extreme droughts may decrease the relative contribution of mass-ratio effects versus compensatory dynamics to productivity stability by reducing the influence of dominant species.
Collapse
Affiliation(s)
- Wentao Luo
- Liaoning Northwest Grassland Ecosystem National Observation and Research Station, Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Naohiro I Ishii
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Taofeek O Muraina
- Department of Biology, Texas State University, San Marcos, Texas, USA
- Department of Animal Health and Production, Oyo State College of Agriculture and Technology, Igbo-Ora, Oyo State, Nigeria
| | - Lin Song
- Liaoning Northwest Grassland Ecosystem National Observation and Research Station, Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Niwu Te
- Liaoning Northwest Grassland Ecosystem National Observation and Research Station, Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | | | - Ingrid J Slette
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, Minnesota, USA
| | - Samuel R P J Ross
- Integrative Community Ecology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Takehiro Sasaki
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Melinda D Smith
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Alan K Knapp
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
3
|
Soranno PA, Hanly PJ, Webster KE, Wagner T, McDonald A, Shuvo A, Schliep EM, Reinl KL, McCullough IM, Tan PN, Lottig NR, Spence Cheruvelil K. Abrupt changes in algal biomass of thousands of US lakes are related to climate and are more likely in low-disturbance watersheds. Proc Natl Acad Sci U S A 2025; 122:e2416172122. [PMID: 39993195 PMCID: PMC11892623 DOI: 10.1073/pnas.2416172122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/14/2025] [Indexed: 02/26/2025] Open
Abstract
Climate change is predicted to intensify lake algal blooms globally and result in regime shifts. However, observed increases in algal biomass do not consistently correlate with air temperature or precipitation, and evidence is lacking for a causal effect of climate or the nonlinear dynamics needed to demonstrate regime shifts. We modeled the causal effects of climate on annual lake chlorophyll (a measure of algal biomass) over 34 y for 24,452 lakes across broad ecoclimatic zones of the United States and evaluated the potential for regime shifts. We found that algal biomass was causally related to climate in 34% of lakes. In these cases, 71% exhibited abrupt but mostly temporary shifts as opposed to persistent changes, 13% had the potential for regime shifts. Climate was causally related to algal biomass in lakes experiencing all levels of human disturbance, but with different likelihood. Climate causality was most likely to be observed in lakes with minimal human disturbance and cooler summer temperatures that have increased over the 34 y studied. Climate causality was variable in lakes with low to moderate human disturbance, and least likely in lakes with high human disturbance, which may mask climate causality. Our results explain some of the previously observed heterogeneous climate responses of lake algal biomass globally and they can be used to predict future climate effects on lakes.
Collapse
Affiliation(s)
- Patricia A. Soranno
- Department of Integrative Biology, Michigan State University, East Lansing, MI48864
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI48864
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI48864
| | - Patrick J. Hanly
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI48864
| | - Katherine E. Webster
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI48864
| | - Tyler Wagner
- United States Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA16802
| | - Andrew McDonald
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI48864
| | - Arnab Shuvo
- Hasler Laboratory of Limnology, University of Wisconsin-Madison, Madison, WI53706
| | - Erin M. Schliep
- Department of Statistics, North Carolina State University, Raleigh, NC27607
| | - Kaitlin L. Reinl
- Lake Superior National Estuarine Research Reserve, University of Wisconsin-Madison Division of Extension, Superior, WI54880
| | - Ian M. McCullough
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI48864
| | - Pang-Ning Tan
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI48864
| | - Noah R. Lottig
- Trout Lake Station, University of Wisconsin-Madison, Boulder Junction, WI54512
| | - Kendra Spence Cheruvelil
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI48864
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI48864
- Lyman Briggs College, Michigan State University, East Lansing, MI48864
| |
Collapse
|
4
|
Yu Q, Xu C, Wu H, Ke Y, Zuo X, Luo W, Ren H, Gu Q, Wang H, Ma W, Knapp AK, Collins SL, Rudgers JA, Luo Y, Hautier Y, Wang C, Wang Z, Jiang Y, Han G, Gao Y, He N, Zhu J, Dong S, Xin X, Yu G, Smith MD, Li L, Han X. Contrasting drought sensitivity of Eurasian and North American grasslands. Nature 2025; 639:114-118. [PMID: 39880953 DOI: 10.1038/s41586-024-08478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/03/2024] [Indexed: 01/31/2025]
Abstract
Extreme droughts generally decrease productivity in grassland ecosystems1-3 with negative consequences for nature's contribution to people4-7. The extent to which this negative effect varies among grassland types and over time in response to multi-year extreme drought remains unclear. Here, using a coordinated distributed experiment that simulated four years of growing-season drought (around 66% rainfall reduction), we compared drought sensitivity within and among six representative grasslands spanning broad precipitation gradients in each of Eurasia and North America-two of the Northern Hemisphere's largest grass-dominated regions. Aboveground plant production declined substantially with drought in the Eurasian grasslands and the effects accumulated over time, while the declines were less severe and more muted over time in the North American grasslands. Drought effects on species richness shifted from positive to negative in Eurasia, but from negative to positive in North America over time. The differing responses of plant production in these grasslands were accompanied by less common (subordinate) plant species declining in Eurasian grasslands but increasing in North American grasslands. Our findings demonstrate the high production sensitivity of Eurasian compared with North American grasslands to extreme drought (43.6% versus 25.2% reduction), and the key role of subordinate species in determining impacts of extreme drought on grassland productivity.
Collapse
Affiliation(s)
- Qiang Yu
- School of Grassland Science, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Chong Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honghui Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuguang Ke
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoan Zuo
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, China
| | - Wentao Luo
- Liaoning Northwest Grassland Ecosystem National Observation and Research Station; Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Haiyan Ren
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Qian Gu
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Hongqiang Wang
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wang Ma
- Liaoning Northwest Grassland Ecosystem National Observation and Research Station; Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Alan K Knapp
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | | - Yiqi Luo
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Chengjie Wang
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhengwen Wang
- Liaoning Northwest Grassland Ecosystem National Observation and Research Station; Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yong Jiang
- School of Life Sciences, Hebei University, Baoding, China
| | - Guodong Han
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yingzhi Gao
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun, China
- Key Laboratory of Grassland Resources and Ecology of Western Arid Desert Area of the Ministry of Education, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| | - Nianpeng He
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Juntao Zhu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Shikui Dong
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Xiaoping Xin
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Melinda D Smith
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA.
| | - Linghao Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xingguo Han
- School of Life Sciences, Hebei University, Baoding, China.
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Karimi H, Binford M, Kleindl W, Starr G, Murphy BA, Desai AR, Fu CS, Dietze MC, Staudhammer C. Drivers of forest productivity in two regions of the United States: Relative impacts of management and environmental variables. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124040. [PMID: 39793498 DOI: 10.1016/j.jenvman.2025.124040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/09/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Climate, environmental conditions, and management strategies are key factors affecting forest net ecosystem production (NEP). However, little is known about the relationship between management approaches and regional to continental-scale forest productivity. In this study, we utilized forests of the U.S. Southeast (SEUS) and Pacific Northwest (PNW), two ecologically and socio-politically distinct regions, to answer the question: Does management exert a stronger influence on NEP than environmental factors? We estimated Geographically Weighted Regression models of NEP derived from the Ecosystem Demography Model as a function of soil, topography, climate, and forest management practices for the period 2000-2015 using 383 and 407 10 × 10 km2 landscapes in SEUS and PNW, respectively. Results showed that forest management practices were important in predicting NEP only in mountainous northeastern areas of the SEUS; in the PNW, NEP had a more complex relationship with management and was positively related to ecological, preservation, and passive management. Management, topography, and soil were more strongly correlated with NEP in the PNW than in the SEUS, in which 81%, 83%, and 83% of PNW locations showed significant relationships with at least one management, topography, or soil variable, repectively. In contrast, seasonal precipitation and temperature were stronger predictors of NEP in the SEUS than other drivers, with 99% and 84% of the locations influenced by at least one seasonal temperature or precipitation variable, respectively. The findings of this study may provide a valuable framework for forest management - climate change strategies that could be extended across regional scales.
Collapse
Affiliation(s)
- Hazhir Karimi
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Michael Binford
- Department of Geography, University of Florida, FL, 32611, USA
| | - William Kleindl
- Department of Land Resources and Environmental Sciences, Montana State University, MT, 59717, USA
| | - Gregory Starr
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Bailey A Murphy
- Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ankur R Desai
- Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Michael C Dietze
- Department of Earth & Environment, Boston University, Boston, MA, 01915, USA
| | - Christina Staudhammer
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
6
|
Chen L, Brun P, Buri P, Fatichi S, Gessler A, McCarthy MJ, Pellicciotti F, Stocker B, Karger DN. Global increase in the occurrence and impact of multiyear droughts. Science 2025; 387:278-284. [PMID: 39818908 DOI: 10.1126/science.ado4245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/07/2024] [Indexed: 01/19/2025]
Abstract
Persistent multiyear drought (MYD) events pose a growing threat to nature and humans in a changing climate. We identified and inventoried global MYDs by detecting spatiotemporally contiguous climatic anomalies, showing that MYDs have become drier, hotter, and led to increasingly diminished vegetation greenness. The global terrestrial land affected by MYDs has increased at a rate of 49,279 ± 14,771 square kilometers per year from 1980 to 2018. Temperate grasslands have exhibited the greatest declines in vegetation greenness during MYDs, whereas boreal and tropical forests have had comparably minor responses. With MYDs becoming more common, this global quantitative inventory of the occurrence, severity, trend, and impact of MYDs provides an important benchmark for facilitating more effective and collaborative preparedness toward mitigation of and adaptation to such extreme events.
Collapse
Affiliation(s)
- Liangzhi Chen
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Philipp Brun
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pascal Buri
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Simone Fatichi
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Michael James McCarthy
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Francesca Pellicciotti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Benjamin Stocker
- Institute of Geography, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Dirk Nikolaus Karger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
7
|
Feldman AF, Konings AG, Gentine P, Cattry M, Wang L, Smith WK, Biederman JA, Chatterjee A, Joiner J, Poulter B. Large global-scale vegetation sensitivity to daily rainfall variability. Nature 2024; 636:380-384. [PMID: 39663497 DOI: 10.1038/s41586-024-08232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/16/2024] [Indexed: 12/13/2024]
Abstract
Rainfall events are globally becoming less frequent but more intense under a changing climate, thereby shifting climatic conditions for terrestrial vegetation independent of annual rainfall totals1-3. However, it remains uncertain how changes in daily rainfall variability are affecting global vegetation photosynthesis and growth3-17. Here we use several satellite-based vegetation indices and field observations indicative of photosynthesis and growth, and find that global annual-scale vegetation indices are sensitive to the daily frequency and intensity of rainfall, independent of the total amount of rainfall per year. Specifically, we find that satellite-based vegetation indices are sensitive to daily rainfall variability across 42 per cent of the vegetated land surfaces. On average, the sensitivity of vegetation to daily rainfall variability is almost as large (95 per cent) as the sensitivity of vegetation to annual rainfall totals. Moreover, we find that wet-day frequency and intensity are projected to change with similar magnitudes and spatial extents as annual rainfall changes. Overall, our findings suggest that daily rainfall variability and its trends are affecting global vegetation photosynthesis, with potential implications for the carbon cycle and food security.
Collapse
Affiliation(s)
- Andrew F Feldman
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA.
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
| | | | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
| | - Mitra Cattry
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
| | - Lixin Wang
- Department of Earth and Environmental Sciences, Indiana University Indianapolis, Indianapolis, IN, USA
| | - William K Smith
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Joel A Biederman
- Agricultural Research Service, US Department of Agriculture, Tucson, AZ, USA
| | - Abhishek Chatterjee
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Joanna Joiner
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Benjamin Poulter
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| |
Collapse
|
8
|
Peng J, Tang J, Xie S, Wang Y, Liao J, Chen C, Sun C, Mao J, Zhou Q, Niu S. Evidence for the acclimation of ecosystem photosynthesis to soil moisture. Nat Commun 2024; 15:9795. [PMID: 39532886 PMCID: PMC11557970 DOI: 10.1038/s41467-024-54156-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Ecosystem gross primary productivity (GPP) is the largest carbon flux between the atmosphere and biosphere and is strongly influenced by soil moisture. However, the response and acclimation of GPP to soil moisture remain poorly understood, leading to large uncertainties in characterizing the impact of soil moisture on GPP in Earth system models. Here we analyze the GPP-soil moisture response curves at 143 sites from the global FLUXNET. We find that GPP at 108 sites exhibits hump-shaped response curves with increasing soil moisture, and an apparent optimum soil moisture (SM opt GPP , at which GPP reaches the maximum) exists widely with large variability among sites and biomes around the globe. Variation inSM opt GPP is mostly explained by local water availability, with drier ecosystems having lowerSM opt GPP than wetter ecosystems, reflecting the water acclimation ofSM opt GPP . This acclimation is further supported by a field experiment that only manipulates water and keeps other factors constant, which shows a downward shift inSM opt GPP after long-term water deficit, and thus a lower soil water requirement to maximize GPP. These results provide compelling evidence for the widespreadSM opt GPP and its acclimation, shedding new light on understanding and predicting carbon-climate feedbacks.
Collapse
Affiliation(s)
- Jinlong Peng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiwang Tang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shudi Xie
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiheng Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqiang Liao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanlian Sun
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinhua Mao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest University for Nationalities, Chengdu, 610041, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Wojciechowski AA, Blair JM, Collins SL, Baer SG. Heterogeneity promotes resilience in restored prairie: Implications for the environmental heterogeneity hypothesis. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3006. [PMID: 39030911 DOI: 10.1002/eap.3006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 07/22/2024]
Abstract
Enhancing resilience in formerly degraded ecosystems is an important goal of restoration ecology. However, evidence for the recovery of resilience and its underlying mechanisms require long-term experiments and comparison with reference ecosystems. We used data from an experimental prairie restoration that featured long-term soil heterogeneity manipulations and data from two long-term experiments located in a comparable remnant (reference) prairie to (1) quantify the recovery of ecosystem functioning (i.e., productivity) relative to remnant prairie, (2) compare the resilience of restored and remnant prairies to a natural drought, and (3) test whether soil heterogeneity enhances resilience of restored prairie. We compared sensitivity and legacy effects between prairie types (remnant and restored) and among four prairie sites that included two remnant prairie sites and prairie restored under homogeneous and heterogeneous soil conditions. We measured sensitivity and resilience as the proportional change in aboveground net primary productivity (ANPP) during and following drought (sensitivity and legacy effects, respectively) relative to average ANPP based on 4 pre-drought years (2014-2017). In nondrought years, total ANPP was similar between remnant and restored prairie, but remnant prairie had higher grass productivity and lower forb productivity compared with restored prairie. These ANPP patterns generally persisted during drought. The sensitivity of total ANPP to drought was similar between restored and remnant prairie, but grasses in the restored prairie were more sensitive to drought. Post-drought legacy effects were more positive in the restored prairie, and we attributed this to the more positive and less variable legacy response of forb ANPP in the restored prairie, especially in the heterogeneous soil treatment. Our results suggest that productivity recovers in restored prairie and exhibits similar sensitivity to drought as in remnant prairie. Furthermore, creating heterogeneity promotes forb productivity and enhances restored prairie resilience to drought.
Collapse
Affiliation(s)
- Ashley A Wojciechowski
- Kansas Biological Survey & Center for Ecological Research and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - John M Blair
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Sara G Baer
- Kansas Biological Survey & Center for Ecological Research and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
10
|
Zheng S, Peng D, Zhang B, Yu L, Pan Y, Wang Y, Feng X, Dou C. Temporal variation characteristics in the association between climate and vegetation in Northwest China. Sci Rep 2024; 14:17905. [PMID: 39095561 PMCID: PMC11297244 DOI: 10.1038/s41598-024-68066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Northwest China has undergone notable alterations in climate and vegetation growth in recent decades. Nevertheless, uncertainties persist concerning the response of different vegetation types to climate change and the underlying mechanisms. This study utilized the Normalized Difference Vegetation Index (NDVI) and three sets of meteorological data to investigate the interannual variations in the association between vegetation and climate (specifically precipitation and temperature) from 1982 to 2015. Several conclusions were drawn. (1) RNDVI-GP (relationship between Growing Season NDVI and precipitation) decreased significantly across all vegetation, while RNDVI-GT (relationship between Growing Season NDVI and temperature) showed an insignificant increase. (2) Trends of RNDVI-GP and RNDVI-GT exhibited great variations across various types of vegetation, with forests displaying notable downward trends in both indices. The grassland exhibited a declining trend in RNDVI-GP but an insignificant increase in RNDVI-GT, while no significant temporal changes in RNDVI-GP or RNDVI-GT were observed in the barren land. (3) The fluctuations in RNDVI-GP and RNDVI-GT closely aligned with variations in drought conditions. Specifically, in regions characterized by VPD (vapor pressure deficit) trends less than 0.02 hpa/yr, which are predominantly grasslands, a rise in SWV (soil water volume) tended to cause a reduction in RNDVI-GP but an increase in RNDVI-GT. However, a more negative trend in SWV was associated with a more negative trend in both RNDVI-GP and RNDVI-GT when the VPD trend exceeded 0.02 hPa/yr, primarily in forests. Our results underscore the variability in the relationship between climate change and vegetation across different vegetation types, as well as the role of drought in modulating these associations.
Collapse
Affiliation(s)
- Shijun Zheng
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Dailiang Peng
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China.
- International Research Center of Big Data for Sustainable Development Goals, Beijing, 100094, China.
| | - Bing Zhang
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
- International Research Center of Big Data for Sustainable Development Goals, Beijing, 100094, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Le Yu
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China.
| | - Yuhao Pan
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
- International Research Center of Big Data for Sustainable Development Goals, Beijing, 100094, China
| | - Yan Wang
- Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xuxiang Feng
- China Remote Sensing Satellite Ground Station (RSGS), Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Changyong Dou
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
- International Research Center of Big Data for Sustainable Development Goals, Beijing, 100094, China
| |
Collapse
|
11
|
Terry TJ, Sala OE, Ferrenberg S, Reed SC, Osborne B, Jordan S, Lee S, Adler PB. Disturbance amplifies sensitivity of dryland productivity to precipitation variability. SCIENCE ADVANCES 2024; 10:eadm9732. [PMID: 39058780 PMCID: PMC11277371 DOI: 10.1126/sciadv.adm9732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Variability of the terrestrial global carbon sink is largely determined by the response of dryland productivity to annual precipitation. Despite extensive disturbance in drylands, how disturbance alters productivity-precipitation relationships remains poorly understood. Using remote-sensing to pair more than 5600 km of natural gas pipeline corridors with neighboring undisturbed areas in North American drylands, we found that disturbance reduced average annual production 6 to 29% and caused up to a fivefold increase in the sensitivity of net primary productivity (NPP) to interannual variation in precipitation. Disturbance impacts were larger and longer-lasting at locations with higher precipitation (>450 mm mean annual precipitation). Disturbance effects on NPP dynamics were mostly explained by shifts from woody to herbaceous vegetation. Severe disturbance will amplify effects of increasing precipitation variability on NPP in drylands.
Collapse
Affiliation(s)
- Tyson J. Terry
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Osvaldo E. Sala
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Scott Ferrenberg
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT 59812, USA
| | - Sasha C. Reed
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT 84532, USA
| | - Brooke Osborne
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT 84532, USA
- Department of Environment and Society, Utah State University, Moab, UT 84532, USA
| | - Samuel Jordan
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Steven Lee
- U.S. Geological Survey, Western Ecological Research Center, Wawona, CA 95389, USA
| | - Peter B. Adler
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
12
|
Song L, Griffin-Nolan RJ, Muraina TO, Chen J, Te N, Shi Y, Whitney KD, Zhang B, Yu Q, Smith MD, Zuo X, Wang Z, Knapp AK, Han X, Collins SL, Luo W. Grassland sensitivity to drought is related to functional composition across East Asia and North America. Ecology 2024; 105:e4220. [PMID: 38037285 DOI: 10.1002/ecy.4220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/22/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Plant traits can be helpful for understanding grassland ecosystem responses to climate extremes, such as severe drought. However, intercontinental comparisons of how drought affects plant functional traits and ecosystem functioning are rare. The Extreme Drought in Grasslands experiment (EDGE) was established across the major grassland types in East Asia and North America (six sites on each continent) to measure variability in grassland ecosystem sensitivity to extreme, prolonged drought. At all sites, we quantified community-weighted mean functional composition and functional diversity of two leaf economic traits, specific leaf area and leaf nitrogen content, in response to drought. We found that experimental drought significantly increased community-weighted means of specific leaf area and leaf nitrogen content at all North American sites and at the wetter East Asian sites, but drought decreased community-weighted means of these traits at moderate to dry East Asian sites. Drought significantly decreased functional richness but increased functional evenness and dispersion at most East Asian and North American sites. Ecosystem drought sensitivity (percentage reduction in aboveground net primary productivity) positively correlated with community-weighted means of specific leaf area and leaf nitrogen content and negatively correlated with functional diversity (i.e., richness) on an intercontinental scale, but results differed within regions. These findings highlight both broad generalities but also unique responses to drought of community-weighted trait means as well as their functional diversity across grassland ecosystems.
Collapse
Affiliation(s)
- Lin Song
- Liaoning Northwest Grassland Ecosystem National Observation and Research Station; Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Robert J Griffin-Nolan
- Department of Biology Biological Sciences, Santa Clara California State University, Chico, California, USA
| | - Taofeek O Muraina
- Department of Animal Health and Production, Oyo State College of Agriculture and Technology, Igbo-Ora, Nigeria
| | - Jiaqi Chen
- Liaoning Northwest Grassland Ecosystem National Observation and Research Station; Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Niwu Te
- Liaoning Northwest Grassland Ecosystem National Observation and Research Station; Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yuan Shi
- Liaoning Northwest Grassland Ecosystem National Observation and Research Station; Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Kenneth D Whitney
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Bingchuan Zhang
- Liaoning Northwest Grassland Ecosystem National Observation and Research Station; Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Qiang Yu
- School of Grassland Science, Beijing Forestry University, Beijing, China
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Melinda D Smith
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Xiaoan Zuo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, China
| | - Zhengwen Wang
- Liaoning Northwest Grassland Ecosystem National Observation and Research Station; Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Alan K Knapp
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Xingguo Han
- Liaoning Northwest Grassland Ecosystem National Observation and Research Station; Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Wentao Luo
- Liaoning Northwest Grassland Ecosystem National Observation and Research Station; Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
13
|
Smith MD, Wilkins KD, Holdrege MC, Wilfahrt P, Collins SL, Knapp AK, Sala OE, Dukes JS, Phillips RP, Yahdjian L, Gherardi LA, Ohlert T, Beier C, Fraser LH, Jentsch A, Loik ME, Maestre FT, Power SA, Yu Q, Felton AJ, Munson SM, Luo Y, Abdoli H, Abedi M, Alados CL, Alberti J, Alon M, An H, Anacker B, Anderson M, Auge H, Bachle S, Bahalkeh K, Bahn M, Batbaatar A, Bauerle T, Beard KH, Behn K, Beil I, Biancari L, Blindow I, Bondaruk VF, Borer ET, Bork EW, Bruschetti CM, Byrne KM, Cahill Jr. JF, Calvo DA, Carbognani M, Cardoni A, Carlyle CN, Castillo-Garcia M, Chang SX, Chieppa J, Cianciaruso MV, Cohen O, Cordeiro AL, Cusack DF, Dahlke S, Daleo P, D'Antonio CM, Dietterich LH, S. Doherty T, Dubbert M, Ebeling A, Eisenhauer N, Fischer FM, Forte TGW, Gebauer T, Gozalo B, Greenville AC, Guidoni-Martins KG, Hannusch HJ, Vatsø Haugum S, Hautier Y, Hefting M, Henry HAL, Hoss D, Ingrisch J, Iribarne O, Isbell F, Johnson Y, Jordan S, Kelly EF, Kimmel K, Kreyling J, Kröel-Dulay G, Kröpfl A, Kübert A, Kulmatiski A, Lamb EG, Larsen KS, Larson J, Lawson J, Leder CV, Linstädter A, Liu J, Liu S, Lodge AG, Longo G, et alSmith MD, Wilkins KD, Holdrege MC, Wilfahrt P, Collins SL, Knapp AK, Sala OE, Dukes JS, Phillips RP, Yahdjian L, Gherardi LA, Ohlert T, Beier C, Fraser LH, Jentsch A, Loik ME, Maestre FT, Power SA, Yu Q, Felton AJ, Munson SM, Luo Y, Abdoli H, Abedi M, Alados CL, Alberti J, Alon M, An H, Anacker B, Anderson M, Auge H, Bachle S, Bahalkeh K, Bahn M, Batbaatar A, Bauerle T, Beard KH, Behn K, Beil I, Biancari L, Blindow I, Bondaruk VF, Borer ET, Bork EW, Bruschetti CM, Byrne KM, Cahill Jr. JF, Calvo DA, Carbognani M, Cardoni A, Carlyle CN, Castillo-Garcia M, Chang SX, Chieppa J, Cianciaruso MV, Cohen O, Cordeiro AL, Cusack DF, Dahlke S, Daleo P, D'Antonio CM, Dietterich LH, S. Doherty T, Dubbert M, Ebeling A, Eisenhauer N, Fischer FM, Forte TGW, Gebauer T, Gozalo B, Greenville AC, Guidoni-Martins KG, Hannusch HJ, Vatsø Haugum S, Hautier Y, Hefting M, Henry HAL, Hoss D, Ingrisch J, Iribarne O, Isbell F, Johnson Y, Jordan S, Kelly EF, Kimmel K, Kreyling J, Kröel-Dulay G, Kröpfl A, Kübert A, Kulmatiski A, Lamb EG, Larsen KS, Larson J, Lawson J, Leder CV, Linstädter A, Liu J, Liu S, Lodge AG, Longo G, Loydi A, Luan J, Curtis Lubbe F, Macfarlane C, Mackie-Haas K, Malyshev AV, Maturano-Ruiz A, Merchant T, Metcalfe DB, Mori AS, Mudongo E, Newman GS, Nielsen UN, Nimmo D, Niu Y, Nobre P, O'Connor RC, Ogaya R, Oñatibia GR, Orbán I, Osborne B, Otfinowski R, Pärtel M, Penuelas J, Peri PL, Peter G, Petraglia A, Picon-Cochard C, Pillar VD, Piñeiro-Guerra JM, Ploughe LW, Plowes RM, Portales-Reyes C, Prober SM, Pueyo Y, Reed SC, Ritchie EG, Rodríguez DA, Rogers WE, Roscher C, Sánchez AM, Santos BA, Cecilia Scarfó M, Seabloom EW, Shi B, Souza L, Stampfli A, Standish RJ, Sternberg M, Sun W, Sünnemann M, Tedder M, Thorvaldsen P, Tian D, Tielbörger K, Valdecantos A, van den Brink L, Vandvik V, Vankoughnett MR, Guri Velle L, Wang C, Wang Y, Wardle GM, Werner C, Wei C, Wiehl G, Williams JL, Wolf AA, Zeiter M, Zhang F, Zhu J, Zong N, Zuo X. Extreme drought impacts have been underestimated in grasslands and shrublands globally. Proc Natl Acad Sci U S A 2024; 121:e2309881120. [PMID: 38190514 PMCID: PMC10823251 DOI: 10.1073/pnas.2309881120] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/06/2023] [Indexed: 01/10/2024] Open
Abstract
Climate change is increasing the frequency and severity of short-term (~1 y) drought events-the most common duration of drought-globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function-aboveground net primary production (ANPP)-was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought.
Collapse
Affiliation(s)
- Melinda D. Smith
- Department of Biology, Colorado State University, Fort Collins, CO80523
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO80523
| | | | - Martin C. Holdrege
- Department of Wildland Resource and the Ecology Center, Utah State University, Logan, UT84322
| | - Peter Wilfahrt
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN55108
| | - Scott L. Collins
- Department of Biology, University of New Mexico, Albuquerque, NM87131
| | - Alan K. Knapp
- Department of Biology, Colorado State University, Fort Collins, CO80523
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO80523
| | - Osvaldo E. Sala
- School of Life Sciences, Global Drylands Center, Arizona State University, Tempe, AZ85281
| | - Jeffrey S. Dukes
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA94305
| | | | - Laura Yahdjian
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), National Scientific and Technical Research Council (CONICET), Faculty of Agronomy, University of Buenos Aires, Buenos AiresC1417DSE, Argentina
| | - Laureano A. Gherardi
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA94720
| | - Timothy Ohlert
- Department of Biology, Colorado State University, Fort Collins, CO80523
| | - Claus Beier
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C1958, Denmark
| | - Lauchlan H. Fraser
- Department of Natural Resource Science, Thompson Rivers University, Kamloops, BCV2C 0C8, Canada
| | - Anke Jentsch
- Department of Disturbance Ecology and Vegetation Dynamics, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth95447, Germany
| | - Michael E. Loik
- Department of Environmental Studies, University of California, Santa Cruz, CA95064
| | - Fernando T. Maestre
- Departamento de Ecologia, Universidad de Alicante, 03690 Alicante, Spain
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef”, Universidad de Alicante, 03690 Alicante, Spain
| | - Sally A. Power
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW2751, Australia
| | - Qiang Yu
- School of Grassland Science, Beijing Forestry University, Beijing100083, China
| | - Andrew J. Felton
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT59717
| | - Seth M. Munson
- U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, AZ86001
| | - Yiqi Luo
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| | - Hamed Abdoli
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor46417-76489, Iran
| | - Mehdi Abedi
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor46417-76489, Iran
| | - Concepción L. Alados
- Departamento de Biodiversidad y Restauración, Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza50059, Spain
| | - Juan Alberti
- Laboratorio de Ecología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigación Ciencia y Técnica (CONICET), CC 1260 Correo Central, Mar del PlataB7600WAG, Argentina
| | - Moshe Alon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Hui An
- School of Ecology and Environment, Ningxia University, Yinchuan750021, China
| | - Brian Anacker
- City of Boulder Open Space and Mountain Parks, Boulder, CO80301
| | - Maggie Anderson
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN55108
| | - Harald Auge
- Department of Community Ecology, Helmholtz-Centre for Environmental Research–UFZ, Halle06120, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig04103, Germany
| | - Seton Bachle
- Division of Biology, Kansas State University, Manhattan, KS66506
- LI-COR Biosciences, 4647 Superior Street, Lincoln, NE68505
| | - Khadijeh Bahalkeh
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor46417-76489, Iran
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck6020, Austria
| | - Amgaa Batbaatar
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2E9, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, ABT6G 2P5, Canada
| | - Taryn Bauerle
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| | - Karen H. Beard
- Department of Wildland Resource and the Ecology Center, Utah State University, Logan, UT84322
| | - Kai Behn
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Bonn53115, Germany
| | - Ilka Beil
- Institute of Botany and Landscape Ecology, Department of Experimental Plant Ecology, University of Greifswald, GreifswaldD-17498, Germany
| | - Lucio Biancari
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), National Scientific and Technical Research Council (CONICET), Faculty of Agronomy, University of Buenos Aires, Buenos AiresC1417DSE, Argentina
| | - Irmgard Blindow
- Biological Station of Hiddensee, Department of Biology, University of Greifswald, KlosterD-18565, Germany
| | - Viviana Florencia Bondaruk
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), National Scientific and Technical Research Council (CONICET), Faculty of Agronomy, University of Buenos Aires, Buenos AiresC1417DSE, Argentina
| | - Elizabeth T. Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN55108
| | - Edward W. Bork
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, ABT6G 2P5, Canada
| | - Carlos Martin Bruschetti
- Laboratorio de Ecología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigación Ciencia y Técnica (CONICET), CC 1260 Correo Central, Mar del PlataB7600WAG, Argentina
| | - Kerry M. Byrne
- Department of Environmental Science and Management, California State Polytechnic University, Humboldt, Arcata, CA95521
| | - James F. Cahill Jr.
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2E9, Canada
| | - Dianela A. Calvo
- Universidad Nacional de Río Negro, Centro de Estudios Ambientales desde la NorPatagonia (CEANPa), Sede Atlántica–CONICET, Viedma8500, Argentina
| | - Michele Carbognani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, ParmaI-43124, Italy
| | - Augusto Cardoni
- Laboratorio de Ecología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigación Ciencia y Técnica (CONICET), CC 1260 Correo Central, Mar del PlataB7600WAG, Argentina
| | - Cameron N. Carlyle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, ABT6G 2P5, Canada
| | - Miguel Castillo-Garcia
- Departamento de Biodiversidad y Restauración, Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza50059, Spain
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, Edmonton, ABT6G 2E3, Canada
| | - Jeff Chieppa
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW2751, Australia
| | | | - Ofer Cohen
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Amanda L. Cordeiro
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO80523
| | - Daniela F. Cusack
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO80523
| | - Sven Dahlke
- Biological Station of Hiddensee, Department of Biology, University of Greifswald, KlosterD-18565, Germany
| | - Pedro Daleo
- Laboratorio de Ecología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigación Ciencia y Técnica (CONICET), CC 1260 Correo Central, Mar del PlataB7600WAG, Argentina
| | - Carla M. D'Antonio
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA93106
| | - Lee H. Dietterich
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO80523
- US Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS39180
| | - Tim S. Doherty
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW2006, Australia
| | - Maren Dubbert
- Isotope Biogeochemistry and GasFluxes, Leibniz-Zentrum fürAgrarlandschaftsforschung (ZALF), Müncheberg15374, Germany
| | - Anne Ebeling
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena07743, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig04103, Germany
- Institute of Biology, Leipzig University, Leipzig04103, Germany
| | - Felícia M. Fischer
- Institute of Biology, Leipzig University, Leipzig04103, Germany
- Centro de Investigaciones sobre Desertificación, Consejo Superior de Investigaciones Científicas (CSIC)-Universitat Valencia (UV) - Generalitat Valenciana (GV),Valencia46113, Spain
| | - T'ai G. W. Forte
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, ParmaI-43124, Italy
| | - Tobias Gebauer
- Geobotany, Faculty of Biology, University of Freiburg, FreiburgD-79104, Germany
| | - Beatriz Gozalo
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef”, Universidad de Alicante, 03690 Alicante, Spain
| | - Aaron C. Greenville
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW2006, Australia
| | | | - Heather J. Hannusch
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX77843
| | - Siri Vatsø Haugum
- Department of Biological Sciences, University of Bergen, Bergen5007, Norway
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, 3584 CH, Netherlands
| | - Mariet Hefting
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, 3584 CH, Netherlands
| | - Hugh A. L. Henry
- Department of Biology, University of Western Ontario, London, ONN6A 5B7, Canada
| | - Daniela Hoss
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig04103, Germany
- Institute of Biology, Leipzig University, Leipzig04103, Germany
- Department of Ecology, Universidade Federal do Rio Grande do Sul, Porto Alegre91501-970, Brazil
| | - Johannes Ingrisch
- Department of Ecology, University of Innsbruck, Innsbruck6020, Austria
| | - Oscar Iribarne
- Laboratorio de Ecología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP)-Consejo Nacional de Investigación Ciencia y Técnica (CONICET), CC 1260 Correo Central, Mar del PlataB7600WAG, Argentina
| | - Forest Isbell
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN55108
| | - Yari Johnson
- U.S. Army Corps of Engineers, Sacramento, CA95814
| | - Samuel Jordan
- School of Life Sciences, Global Drylands Center, Arizona State University, Tempe, AZ85281
| | - Eugene F. Kelly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO80523
| | - Kaitlin Kimmel
- Global Water Security Center, The University of Alabama, Tuscaloosa, AL35487
| | - Juergen Kreyling
- Institute of Botany and Landscape Ecology, Department of Experimental Plant Ecology, University of Greifswald, GreifswaldD-17498, Germany
| | - György Kröel-Dulay
- Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót2163, Hungary
| | - Alicia Kröpfl
- Departamento de Gestión Agropecuaria, Universidad Nacional del Comahue, Centro Universitario Regional Zona Atlántica, Viedma85009, Argentina
| | - Angelika Kübert
- Ecosystem Physiology, Faculty of Environment and Natural Resources, Albert-Ludwig-University of Freiburg, Freiburg79110, Germany
| | - Andrew Kulmatiski
- Department of Wildland Resource and the Ecology Center, Utah State University, Logan, UT84322
| | - Eric G. Lamb
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SKS7N5A8, Canada
| | - Klaus Steenberg Larsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C1958, Denmark
| | - Julie Larson
- Range and Meadow Forage Management Research, Eastern Oregon Agricultural Research Center, US Department of Agriculture (USDA)-Agricultural Research Service, Burns, OR97720
| | - Jason Lawson
- Brackenridge Field Laboratory, University of Texas, Austin, TX78747
| | - Cintia V. Leder
- Universidad Nacional de Río Negro, Centro de Estudios Ambientales desde la NorPatagonia (CEANPa), Sede Atlántica–CONICET, Viedma8500, Argentina
| | - Anja Linstädter
- Department of Biodiversity Research and Systematic Botany, University of Potsdam, Potsdam14469, Germany
| | - Jielin Liu
- Prataculture Research Institute, Heilongjiang Academy of Agricultural Sciences, Haerbin150086, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing100091, China
| | - Alexandra G. Lodge
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX77843
| | - Grisel Longo
- Programa de Posgrado en Desarrollo y Medio Ambiente–Universidade Federal da Paraíba, Cidade Universitária, Castelo Branco, João Pessoa, PB58051-900, Brazil
| | - Alejandro Loydi
- Centro de Recursos Naturales Renovables de la Zona Semiárida–CONICET, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur,Bahía Blanca8000FTN, Argentina
| | - Junwei Luan
- Institute of Resources and Environment, International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration and Beijing for Bamboo and Rattan Science and Technology, Beijing100102, China
| | | | - Craig Macfarlane
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Environment, Wembley, WA6913, Australia
| | - Kathleen Mackie-Haas
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences,Zollikofen3052, Switzerland
| | - Andrey V. Malyshev
- Institute of Botany and Landscape Ecology, Department of Experimental Plant Ecology, University of Greifswald, GreifswaldD-17498, Germany
| | - Adrián Maturano-Ruiz
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef”, Universidad de Alicante, 03690 Alicante, Spain
| | - Thomas Merchant
- Department of Ecology and Evolutionary Biology, Institute for Arctic and Alpine Research, University of Colorado,Boulder, CO80309
| | - Daniel B. Metcalfe
- Department of Ecology and Environmental Science, Umeå University, UmeåS-901 87, Sweden
| | - Akira S. Mori
- Research Center for Advanced Science and Technology, University of Tokyo,Meguro, Tokyo153-8904, Japan
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama240-8501, Japan
| | - Edwin Mudongo
- Conservancy-Communities Living Among Wildlife Sustainably (CLAWS) Botswana, Seronga00000, Botswana
| | - Gregory S. Newman
- School of Biological Sciences, University of Oklahoma, Norman, OK73019
| | - Uffe N. Nielsen
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW2751, Australia
| | - Dale Nimmo
- Gulbali Institute, Charles Sturt University, Albury, NSW2640, Australia
| | - Yujie Niu
- Department of Disturbance Ecology and Vegetation Dynamics, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth95447, Germany
| | - Paola Nobre
- Department of Ecology, Universidade Federal de Goiás, Goiânia, GO74690-900, Brazil
| | - Rory C. O'Connor
- Range and Meadow Forage Management Research, Eastern Oregon Agricultural Research Center, US Department of Agriculture (USDA)-Agricultural Research Service, Burns, OR97720
| | - Romà Ogaya
- Global Ecology Unit Center for Ecological Research and Forestry Applications (CREAF)-National Research Council (CSIC)-Universitat Autonoma de Barcelona (UAB), National Research Council (CSIC), Bellaterra, Catalonia08194, Spain
- Center for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès, Barcelona, Catalonia08193, Spain
| | - Gastón R. Oñatibia
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), National Scientific and Technical Research Council (CONICET), Faculty of Agronomy, University of Buenos Aires, Buenos AiresC1417DSE, Argentina
| | - Ildikó Orbán
- Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót2163, Hungary
- Department of Biodiversity Research and Systematic Botany, University of Potsdam, Potsdam14469, Germany
| | - Brooke Osborne
- Department of Environment and Society, Utah State University, Moab, UT84532
| | - Rafael Otfinowski
- Department of Biology, The University of Winnipeg, Winnipeg, MBR3B 2E9, Canada
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, TartuEE50409, Estonia
| | - Josep Penuelas
- Global Ecology Unit Center for Ecological Research and Forestry Applications (CREAF)-National Research Council (CSIC)-Universitat Autonoma de Barcelona (UAB), National Research Council (CSIC), Bellaterra, Catalonia08194, Spain
- Center for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès, Barcelona, Catalonia08193, Spain
| | - Pablo L. Peri
- Instituto Nacional de Tecnología Agropecuaria–Universidad Nacional d ela Patagonia Austral–CONICET, Río Gallegos, Caleta OliviaZ9011, Argentina
| | - Guadalupe Peter
- Universidad Nacional de Río Negro, Centro de Estudios Ambientales desde la NorPatagonia (CEANPa), Sede Atlántica–CONICET, Viedma8500, Argentina
| | - Alessandro Petraglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, ParmaI-43124, Italy
| | - Catherine Picon-Cochard
- Université Clermont Auvergne, National Research Institute for Agriculture, Food and the Environment, VetAgro Sup, Research Unit for Grassland Ecosystems, Clermont-Ferrand63000, France
| | - Valério D. Pillar
- Department of Ecology, Universidade Federal do Rio Grande do Sul, Porto Alegre91501-970, Brazil
| | - Juan Manuel Piñeiro-Guerra
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), National Scientific and Technical Research Council (CONICET), Faculty of Agronomy, University of Buenos Aires, Buenos AiresC1417DSE, Argentina
- Laboratório de Ecologia Aplicada e Conservação, Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Cidade Universitária, Castelo Branco, João Pessoa, PB58051-900, Brazil
| | - Laura W. Ploughe
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
| | - Robert M. Plowes
- Brackenridge Field Laboratory, University of Texas, Austin, TX78747
| | | | - Suzanne M. Prober
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Environment, Wembley, WA6913, Australia
| | - Yolanda Pueyo
- Departamento de Biodiversidad y Restauración, Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza50059, Spain
| | - Sasha C. Reed
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT84532
| | - Euan G. Ritchie
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC3125, Australia
| | - Dana Aylén Rodríguez
- Centro de Recursos Naturales Renovables de la Zona Semiárida–CONICET, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur,Bahía Blanca8000FTN, Argentina
| | - William E. Rogers
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX77843
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig04103, Germany
- Department of Physiological Diversity, Helmholtz-Centre for Environmental Research–UFZ, Leipzig04318, Germany
| | - Ana M. Sánchez
- Department of Biology and Geology, Rey Juan Carlos University, Madrid28032, Spain
| | - Bráulio A. Santos
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Cidade Universitária, Castelo Branco, João Pessoa, PB58051-900, Brazil
| | - María Cecilia Scarfó
- Centro de Recursos Naturales Renovables de la Zona Semiárida–CONICET, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur,Bahía Blanca8000FTN, Argentina
| | - Eric W. Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN55108
| | - Baoku Shi
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun130024, China
| | - Lara Souza
- School of Biological Sciences, University of Oklahoma, Norman, OK73019
- Oklahoma Biological Survey, University of Oklahoma, Norman, OK73019
| | - Andreas Stampfli
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences,Zollikofen3052, Switzerland
- Institute of Plant Sciences, University of Bern, Bern3013, Switzerland
- Oeschger Center for Climate Change Research, University of Bern, Bern3012, Switzerland
| | - Rachel J. Standish
- Institute of Plant Sciences, University of Bern, Bern3013, Switzerland
- Environmental and Conservation Sciences, Murdoch University,Murdoch, WA6150, Australia
| | - Marcelo Sternberg
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun130024, China
| | - Marie Sünnemann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig04103, Germany
- Institute of Biology, Leipzig University, Leipzig04103, Germany
| | - Michelle Tedder
- School of Life Sciences, University of Kwazulu-Natal, Pietermaritzburg3201, South Africa
| | - Pål Thorvaldsen
- Norwegian Institute of Bioeconomy Research, Department of Landscape and Biodiversity, Tjøtta8860, Norway
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing100101, China
| | - Katja Tielbörger
- Plant Ecology Group, Department of Biology, University of Tübingen, Tübingen72076, Germany
| | - Alejandro Valdecantos
- Departamento de Ecologia, Universidad de Alicante, 03690 Alicante, Spain
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef”, Universidad de Alicante, 03690 Alicante, Spain
| | - Liesbeth van den Brink
- Plant Ecology Group, Department of Biology, University of Tübingen, Tübingen72076, Germany
| | - Vigdis Vandvik
- Department of Biological Sciences, University of Bergen, Bergen5007, Norway
| | - Mathew R. Vankoughnett
- Nova Scotia Community College, Annapolis Valley Campus, Applied Research, Middleton,NSB0S 1P0, Canada
| | | | - Changhui Wang
- College of Grassland Science, Shanxi Agricultural University, Jinzhong030801, China
| | - Yi Wang
- Institute of Resources and Environment, International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration and Beijing for Bamboo and Rattan Science and Technology, Beijing100102, China
| | - Glenda M. Wardle
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW2006, Australia
| | - Christiane Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, Albert-Ludwig-University of Freiburg, Freiburg79110, Germany
| | - Cunzheng Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
| | - Georg Wiehl
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Environment, Wembley, WA6913, Australia
| | - Jennifer L. Williams
- Department of Geography and Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Amelia A. Wolf
- Department of Integrative Biology, University of Texas, Austin, TX78712
| | - Michaela Zeiter
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences,Zollikofen3052, Switzerland
- Institute of Plant Sciences, University of Bern, Bern3013, Switzerland
- Oeschger Center for Climate Change Research, University of Bern, Bern3012, Switzerland
| | - Fawei Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai810008, China
| | - Juntao Zhu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing100101, China
| | - Ning Zong
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing100101, China
| | - Xiaoan Zuo
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou730000, China
| |
Collapse
|
14
|
Xu S, Wang J, Sayer EJ, Lam SK, Lai DYF. Precipitation change affects forest soil carbon inputs and pools: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168171. [PMID: 37923258 DOI: 10.1016/j.scitotenv.2023.168171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The impacts of precipitation change on forest carbon (C) storage will have global consequences, as forests play a major role in sequestering anthropogenic CO2. Although forest soils are one of the largest terrestrial C pools, there is great uncertainty around the response of forest soil organic carbon (SOC) to precipitation change, which limits our ability to predict future forest C storage. To address this, we conducted a meta-analysis to determine the effect of drought and irrigation experiments on SOC pools, plant C inputs and the soil environment based on 161 studies across 139 forest sites worldwide. Overall, forest SOC content was not affected by precipitation change, but both drought and irrigation altered plant C inputs and soil properties associated with SOC formation and storage. Drought may enhance SOC stability by altering soil aggregate fractions, but the effect of irrigation on SOC fractions remains unexplored. The apparent insensitivity of SOC to precipitation change can be explained by the short duration of most experiments and by biome-specific responses of C inputs and pools to drought or irrigation. Importantly, we demonstrate that SOC content is more likely to decline under irrigation at drier temperate sites, but that dry forests are currently underrepresented across experimental studies. Thus, our meta-analysis advances research into the impacts of precipitation change in forests by revealing important differences among forest biomes, which are likely linked to plant adaptation to extant conditions. We further demonstrate important knowledge gaps around how precipitation change will affect SOC stability, as too few studies currently consider distinct soil C pools. To accurately predict future SOC storage in forests, there is an urgent need for coordinated studies of different soil C pools and fractions across existing sites, as well as new experiments in underrepresented forest types.
Collapse
Affiliation(s)
- Shan Xu
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Emma J Sayer
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom; Smithsonian Tropical Research Institute, P.O. Box 0843-03092, Balboa, Ancon, Panama, Republic of Panama
| | - Shu Kee Lam
- School of Agriculture and Food, University of Melbourne, Melbourne, Australia
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Centre for Environmental Policy and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
15
|
Dong G, Chen S, Liu K, Wang W, Hou H, Gao L, Zhang F, Su H. Spatiotemporal variation in sensitivity of urban vegetation growth and greenness to vegetation water content: Evidence from Chinese megacities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167090. [PMID: 37716675 DOI: 10.1016/j.scitotenv.2023.167090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Understanding the sensitivity of vegetation growth and greenness to vegetation water content change is crucial for elucidating the mechanism of terrestrial ecosystems response to water availability change caused by climate change. Nevertheless, we still have limited knowledge of such aspects in urban in different climatic contexts under the influence of human activities. In this study, we employed Google Earth Engine (GEE), remote sensing satellite imagery, meteorological data, and Vegetation Photosynthesis Model (VPM) to explore the spatiotemporal pattern of vegetation growth and greenness sensitivity to vegetation water content in three megacities (Beijing, Shanghai, and Guangzhou) located in eastern China from 2001 to 2020. We found a significant increase (slope > 0, p < 0.05) in the sensitivity of urban vegetation growth and greenness to vegetation water content (SLSWI). This indicates the increasing dependence of urban vegetation ecosystems on vegetation water resources. Moreover, evident spatial heterogeneity was observed in both SLSWI and the trends of SLSWI, and spatial heterogeneity in SLSWI and the trends of SLSWI was also present among identical vegetation types within the same city. Additionally, both SLSWI of vegetation growth and greenness and the trend of SLSWI showed obvious spatial distribution differences (e.g., standard deviations of trends in SLSWI of open evergreen needle-leaved forest of GPP is 14.36 × 10-2 and standard deviations of trends in SLSWI of open evergreen needle-leaved forest of EVI is 10.16 × 10-2), closely associated with factors such as vegetation type, climatic conditions, and anthropogenic influences.
Collapse
Affiliation(s)
- Guannan Dong
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohui Chen
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Liu
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Weimin Wang
- Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China; Guangdong Greater Bay Area, Change and Comprehensive Treatment of Regional Ecology and Environment, National Observation and Research Station, Shenzhen 518049, China; State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Rapid Urbanization Region, Shenzhen 518049, China
| | - Haoran Hou
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Gao
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Furong Zhang
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Su
- Department of Civil, Environmental & Geomatics Engineering, College of Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
16
|
Li J, Deng L, Peñuelas J, Wu J, Shangguan Z, Sardans J, Peng C, Kuzyakov Y. C:N:P stoichiometry of plants, soils, and microorganisms: Response to altered precipitation. GLOBAL CHANGE BIOLOGY 2023; 29:7051-7071. [PMID: 37787740 DOI: 10.1111/gcb.16959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 10/04/2023]
Abstract
Precipitation changes modify C, N, and P cycles, which regulate the functions and structure of terrestrial ecosystems. Although altered precipitation affects above- and belowground C:N:P stoichiometry, considerable uncertainties remain regarding plant-microbial nutrient allocation strategies under increased (IPPT) and decreased (DPPT) precipitation. We meta-analyzed 827 observations from 235 field studies to investigate the effects of IPPT and DPPT on the C:N:P stoichiometry of plants, soils, and microorganisms. DPPT reduced leaf C:N ratio, but increased the leaf and root N:P ratios reflecting stronger decrease of P compared with N mobility in soil under drought. IPPT increased microbial biomass C (+13%), N (+15%), P (26%), and the C:N ratio, whereas DPPT decreased microbial biomass N (-12%) and the N:P ratio. The C:N and N:P ratios of plant leaves were more sensitive to medium DPPT than to IPPT because drought increased plant N content, particularly in humid areas. The responses of plant and soil C:N:P stoichiometry to altered precipitation did not fit the double asymmetry model with a positive asymmetry under IPPT and a negative asymmetry under extreme DPPT. Soil microorganisms were more sensitive to IPPT than to DPPT, but they were more sensitive to extreme DPPT than extreme IPPT, consistent with the double asymmetry model. Soil microorganisms maintained stoichiometric homeostasis, whereas N:P ratios of plants follow that of the soils under altered precipitation. In conclusion, specific N allocation strategies of plants and microbial communities as well as N and P availability in soil critically mediate C:N:P stoichiometry by altered precipitation that need to be considered by prediction of ecosystem functions and C cycling under future climate change scenarios.
Collapse
Affiliation(s)
- Jiwei Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- College of Forestry, Northwest A&F University, Yangling, China
| | - Lei Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- College of Forestry, Northwest A&F University, Yangling, China
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Barcelona, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
| | - Jianzhao Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Jordi Sardans
- CREAF, Cerdanyola del Vallès, Barcelona, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
| | - Changhui Peng
- Center of CEF/ESCER, Department of Biological Science, University of Quebec at Montreal, Montreal, Quebec, Canada
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Goettingen, Göttingen, Germany
- Department of Agricultural Soil Science, University of Goettingen, Göttingen, Germany
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
17
|
Hallam J, Harris NC. What's going to be on the menu with global environmental changes? GLOBAL CHANGE BIOLOGY 2023; 29:5744-5759. [PMID: 37458101 DOI: 10.1111/gcb.16866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/13/2023] [Indexed: 07/18/2023]
Abstract
Ongoing anthropogenic change is altering the planet at an unprecedented rate, threatening biodiversity, and ecosystem functioning. Species are responding to abiotic pressures at both individual and population levels, with changes affecting trophic interactions through consumptive pathways. Collectively, these impacts alter the goods and services that natural ecosystems will provide to society, as well as the persistence of all species. Here, we describe the physiological and behavioral responses of species to global changes on individual and population levels that result in detectable changes in diet across terrestrial and marine ecosystems. We illustrate shifts in the dynamics of food webs with implications for animal communities. Additionally, we highlight the myriad of tools available for researchers to investigate the dynamics of consumption patterns and trophic interactions, arguing that diet data are a crucial component of ecological studies on global change. We suggest that a holistic approach integrating the complexities of diet choice and trophic interactions with environmental drivers may be more robust at resolving trends in biodiversity, predicting food web responses, and potentially identifying early warning signs of diversity loss. Ultimately, despite the growing body of long-term ecological datasets, there remains a dearth of diet ecology studies across temporal scales, a shortcoming that must be resolved to elucidate vulnerabilities to changing biophysical conditions.
Collapse
Affiliation(s)
- Jane Hallam
- Applied Wildlife Ecology Lab, Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Nyeema C Harris
- Applied Wildlife Ecology Lab, Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Wang J, Grimm NB, Lawler SP, Dong X. Changing climate and reorganized species interactions modify community responses to climate variability. Proc Natl Acad Sci U S A 2023; 120:e2218501120. [PMID: 37722049 PMCID: PMC10523507 DOI: 10.1073/pnas.2218501120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 08/07/2023] [Indexed: 09/20/2023] Open
Abstract
While an array of ecological mechanisms has been shown to stabilize natural community dynamics, how the effectiveness of these mechanisms-including both their direction (stabilizing vs. destabilizing) and strength-shifts under a changing climate remains unknown. Using a 35-y dataset (1985 to 2019) from a desert stream in central Arizona (USA), we found that as annual mean air temperature rose 1°C and annual mean precipitation reduced by 40% over the last two decades, macroinvertebrate communities experienced dramatic changes, from relatively stable states during the first 15 y of this study to wildly fluctuating states highly sensitive to climate variability in the last 10 y. Asynchronous species responses to climatic variability, the primary mechanism historically undergirding community stability, greatly weakened. The emerging climate regime-specifically, concurrent warming and prolonged multiyear drought-resulted in community-wide synchronous responses and reduced taxa richness. Diversity loss and new establishment of competitors reorganized species interactions. Unlike manipulative experiments that often suggest stabilizing roles of species interactions, we found that reorganized species interactions switched from stabilizing to destabilizing influences, further amplifying community fluctuations. Our study provides evidence of climate change-induced modifications of mechanisms underpinning long-term community stability, resulting in an overall destabilizing effect.
Collapse
Affiliation(s)
- Junna Wang
- Department of Environmental Science and Policy, University of California, Davis, CA95616
| | - Nancy B. Grimm
- School of Life Sciences, Arizona State University, Tempe, AZ85287
| | - Sharon P. Lawler
- Department of Entomology & Nematology, University of California, Davis, CA95616
| | - Xiaoli Dong
- Department of Environmental Science and Policy, University of California, Davis, CA95616
| |
Collapse
|
19
|
Sasaki T, Collins SL, Rudgers JA, Batdelger G, Baasandai E, Kinugasa T. Dryland sensitivity to climate change and variability using nonlinear dynamics. Proc Natl Acad Sci U S A 2023; 120:e2305050120. [PMID: 37603760 PMCID: PMC10587894 DOI: 10.1073/pnas.2305050120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Primary productivity response to climatic drivers varies temporally, indicating state-dependent interactions between climate and productivity. Previous studies primarily employed equation-based approaches to clarify this relationship, ignoring the state-dependent nature of ecological dynamics. Here, using 40 y of climate and productivity data from 48 grassland sites across Mongolia, we applied an equation-free, nonlinear time-series analysis to reveal sensitivity patterns of productivity to climate change and variability and clarify underlying mechanisms. We showed that productivity responded positively to annual precipitation in mesic regions but negatively in arid regions, with the opposite pattern observed for annual mean temperature. Furthermore, productivity responded negatively to decreasing annual aridity that integrated precipitation and temperature across Mongolia. Productivity responded negatively to interannual variability in precipitation and aridity in mesic regions but positively in arid regions. Overall, interannual temperature variability enhanced productivity. These response patterns are largely unrecognized; however, two mechanisms are inferable. First, time-delayed climate effects modify annual productivity responses to annual climate conditions. Notably, our results suggest that the sensitivity of annual productivity to increasing annual precipitation and decreasing annual aridity can even be negative when the negative time-delayed effects of annual precipitation and aridity on productivity prevail across time. Second, the proportion of plant species resistant to water and temperature stresses at a site determines the sensitivity of productivity to climate variability. Thus, we highlight the importance of nonlinear, state-dependent sensitivity of productivity to climate change and variability, accurately forecasting potential biosphere feedback to the climate system.
Collapse
Affiliation(s)
- Takehiro Sasaki
- Graduate School of Environment and Information Sciences, Yokohama National University, Hodogaya, Yokohama240-8501, Japan
| | - Scott L. Collins
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, NM87131
| | - Jennifer A. Rudgers
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, NM87131
| | - Gantsetseg Batdelger
- Information and Research Institute of Meteorology, Hydrology and Environment of Mongolia, Ulaanbaatar15160, Mongolia
| | - Erdenetsetseg Baasandai
- Information and Research Institute of Meteorology, Hydrology and Environment of Mongolia, Ulaanbaatar15160, Mongolia
| | | |
Collapse
|
20
|
Huang X, He M, Guo Z, Li L, Hou F. Effects of grazing and precipitation addition induced by functional groups on the relationship between aboveground biomass and species richness of a typical steppe. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117924. [PMID: 37060693 DOI: 10.1016/j.jenvman.2023.117924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Several studies have explored the influence of grazing or precipitation addition (PA), two important components of human activities and global climate change on the structure and function of communities. However, the response of communities to a combination of grazing and PA remains largely unexplored. We investigated the impact of grazing and PA on the relationship between aboveground biomass (AGB) and species richness (SR) of communities in three-year field experiments conducted in a typical steppe in the Loess Plateau, using a split-plot design with grazing as the main-plot factor and PA as the split-plot factor. AGB and SR have response threshold value to PA, which was decreased by grazing for AGB, but increased for SR. This indicates that implementing grazing management strategies is conducive to strengthening the protection of biodiversity in arid and semi-arid grasslands. Grazing promoted the AGB-SR coupling of the community by increasing the SR of medium drought tolerance (MD), low drought tolerance, and grazing tolerant functional groups. Grazing also accelerated the AGB-SR decoupling of the community by changing the AGB of high drought tolerance, MD, high grazing tolerance, and medium grazing tolerance functional groups. PA mediated changes in MD and SR of both drought and grazing tolerant functional groups and AGB of low grazing tolerance promoted the coupling of AGB-SR of the community. The Two-dimension functional groups classification method reflects the changes of AGB and SR in communities more reasonable than the division of single-factor functional groups.
Collapse
Affiliation(s)
- Xiaojuan Huang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou, 730020, China
| | - Meiyue He
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou, 730020, China
| | - Zhaoxia Guo
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou, 730020, China
| | - Lan Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou, 730020, China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
21
|
Brown RF, Collins SL. As above, not so below: Long-term dynamics of net primary production across a dryland transition zone. GLOBAL CHANGE BIOLOGY 2023; 29:3941-3953. [PMID: 37095743 DOI: 10.1111/gcb.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
Drylands are key contributors to interannual variation in the terrestrial carbon sink, which has been attributed primarily to broad-scale climatic anomalies that disproportionately affect net primary production (NPP) in these ecosystems. Current knowledge around the patterns and controls of NPP is based largely on measurements of aboveground net primary production (ANPP), particularly in the context of altered precipitation regimes. Limited evidence suggests belowground net primary production (BNPP), a major input to the terrestrial carbon pool, may respond differently than ANPP to precipitation, as well as other drivers of environmental change, such as nitrogen deposition and fire. Yet long-term measurements of BNPP are rare, contributing to uncertainty in carbon cycle assessments. Here, we used 16 years of annual NPP measurements to investigate responses of ANPP and BNPP to several environmental change drivers across a grassland-shrubland transition zone in the northern Chihuahuan Desert. ANPP was positively correlated with annual precipitation across this landscape; however, this relationship was weaker within sites. BNPP, on the other hand, was weakly correlated with precipitation only in Chihuahuan Desert shrubland. Although NPP generally exhibited similar trends among sites, temporal correlations between ANPP and BNPP within sites were weak. We found chronic nitrogen enrichment stimulated ANPP, whereas a one-time prescribed burn reduced ANPP for nearly a decade. Surprisingly, BNPP was largely unaffected by these factors. Together, our results suggest that BNPP is driven by a different set of controls than ANPP. Furthermore, our findings imply belowground production cannot be inferred from aboveground measurements in dryland ecosystems. Improving understanding around the patterns and controls of dryland NPP at interannual to decadal scales is fundamentally important because of their measurable impact on the global carbon cycle. This study underscores the need for more long-term measurements of BNPP to improve assessments of the terrestrial carbon sink, particularly in the context of ongoing environmental change.
Collapse
Affiliation(s)
- Renée F Brown
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
22
|
Felton AJ, Goldsmith GR. Timing and magnitude of drought impacts on carbon uptake across a grassland biome. GLOBAL CHANGE BIOLOGY 2023; 29:2790-2803. [PMID: 36792968 DOI: 10.1111/gcb.16637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 05/31/2023]
Abstract
Although drought is known to negatively impact grassland functioning, the timing and magnitude of these impacts within a growing season remain unresolved. Previous small-scale assessments indicate grasslands may only respond to drought during narrow periods within a year; however, large-scale assessments are now needed to uncover the general patterns and determinants of this timing. We combined remote sensing datasets of gross primary productivity and weather to assess the timing and magnitude of grassland responses to drought at 5 km2 temporal resolution across two expansive ecoregions of the western US Great Plains biome: the C4 -dominated shortgrass steppe and the C3 -dominated northern mixed prairies. Across over 700,000 pixel-year combinations covering more than 600,000 km2 , we studied how the driest years between 2003-2020 altered the daily and bi-weekly dynamics of grassland carbon (C) uptake. Reductions to C uptake intensified into the early summer during drought and peaked in mid- and late June in both ecoregions. Stimulation of spring C uptake during drought was small and insufficient to compensate for losses during summer. Thus, total grassland C uptake was consistently reduced by drought across both ecoregions; however, reductions were twice as large across the more southern and warmer shortgrass steppe. Across the biome, increased summer vapor pressure deficit (VPD) was strongly linked to peak reductions in vegetation greenness during drought. Rising VPD will likely exacerbate reductions in C uptake during drought across the western US Great Plains, with these reductions greatest during the warmest months and in the warmest locations. High spatiotemporal resolution analyses of grassland response to drought over large areas provide both generalizable insights and new opportunities for basic and applied ecosystem science in these water-limited ecoregions amid climate change.
Collapse
Affiliation(s)
- Andrew J Felton
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Gregory R Goldsmith
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| |
Collapse
|
23
|
Rafalska A, Walkiewicz A, Osborne B, Klumpp K, Bieganowski A. Variation in methane uptake by grassland soils in the context of climate change - A review of effects and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162127. [PMID: 36764535 DOI: 10.1016/j.scitotenv.2023.162127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Grassland soils are climate-dependent ecosystems that have a significant greenhouse gas mitigating function through their ability to store large amounts of carbon (C). However, what is often not recognized is that they can also exhibit a high methane (CH4) uptake capacity that could be influenced by future increases in atmospheric carbon dioxide (CO2) concentration and variations in temperature and water availability. While there is a wealth of information on C sequestration in grasslands there is less consensus on how climate change impacts on CH4 uptake or the underlying mechanisms involved. To address this, we assessed existing knowledge on the impact of climate change components on CH4 uptake by grassland soils. Increases in precipitation associated with soils with a high background soil moisture content generally resulted in a reduction in CH4 uptake or even net emissions, while the effect was opposite in soils with a relatively low background moisture content. Initially wet grasslands subject to the combined effects of warming and water deficits may absorb more CH4, mainly due to increased gas diffusivity. However, in the longer-term heat and drought stress may reduce the activity of methanotrophs when the mean soil moisture content is below the optimum for their survival. Enhanced plant productivity and growth under elevated CO2, increased soil moisture and changed nutrient concentrations, can differentially affect methanotrophic activity, which is often reduced by increasing N deposition. Our estimations showed that CH4 uptake in grassland soils can change from -57.7 % to +6.1 % by increased precipitation, from -37.3 % to +85.3 % by elevated temperatures, from +0.87 % to +92.4 % by decreased precipitation, and from -66.7 % to +27.3 % by elevated CO2. In conclusion, the analysis suggests that grasslands under the influence of warming and drought may absorb even more CH4, mainly because of reduced soil water contents and increased gas diffusivity.
Collapse
Affiliation(s)
- Adrianna Rafalska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Anna Walkiewicz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Bruce Osborne
- UCD School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Katja Klumpp
- INRAE, University of Clermont Auvergne, VetAgro Sup, UREP Unité de Recherche sur l'Ecosystème Prairial, 63000 Clermont-Ferrand, France
| | - Andrzej Bieganowski
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
24
|
Pérez-Cembranos A, Pérez-Mellado V. Long-Term Seed Dispersal within an Asymmetric Lizard-Plant Interaction. Animals (Basel) 2023; 13:ani13060973. [PMID: 36978515 PMCID: PMC10044582 DOI: 10.3390/ani13060973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
During the last 24 years, the mutualistic interaction between the dead horse arum, Helicodiceros muscivorus, and the Balearic lizard, Podarcis lilfordi, was studied on Aire Island (Balearic Islands, Spain). From a small population of a hundred plants, the dead horse arum expanded extraordinarily throughout the island, reaching the highest known densities of the species and occupying areas of the island where it was not previously present. The current abundance of plants is a direct effect of the frugivorous activity of the Balearic lizard, which is the main, if not the only, effective seed disperser of the plant on Aire Island. However, abiotic factors predominated over biotic factors in driving abundance of plants. Over the years, plant densities varied significantly depending on the aridity of the island, with higher densities recorded in drier years. Lizards’ frugivorous activity and dispersal intensity was inversely correlated with annual rainfall. We found higher dispersal intensity in years with lower rainfall. We propose that the years of lower rainfall are those in which there is a lower prey availability. In such years, lizards compensate the shortage of other trophic resources with a more intense consumption of dead horse arum fruits. The mutualistic interaction is therefore asymmetric, since there is a greater influence of the frugivorous activity of the lizards on the plants than of the plants on lizards. It is, in short, a system chronically out of balance.
Collapse
|
25
|
Luo W, Muraina TO, Griffin-Nolan RJ, Ma W, Song L, Fu W, Yu Q, Knapp AK, Wang Z, Han X, Collins SL. Responses of a semiarid grassland to recurrent drought are linked to community functional composition. Ecology 2023; 104:e3920. [PMID: 36416074 DOI: 10.1002/ecy.3920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022]
Abstract
Recurrent droughts are an inevitable consequence of climate change, yet how grasslands respond to such events is unclear. We conducted a 6-year rainfall manipulation experiment in a semiarid grassland that consisted of an initial 2-year drought (2015-2016), followed by a recovery period (2017-2018) and, finally, a second 2-year drought (2019-2020). In each year, we estimated aboveground net primary productivity (ANPP), species richness, community-weighted mean (CWM) plant traits, and several indices of functional diversity. The initial drought led to reduced ANPP, which was primarily driven by limited growth of forbs in the first year and grasses in the second year. Total ANPP completely recovered as the rapid recovery of grass productivity compensated for the slow recovery of forb productivity. The subsequent drought led to a greater reduction in total ANPP than the initial drought due to the greater decline of both grass and forb productivity. The structural equation models revealed that soil moisture influenced ANPP responses directly during the initial drought, and indirectly during the subsequent drought by lowering functional diversity, which resulted in reduced total ANPP. Additionally, ANPP was positively influenced by CWM plant height and leaf nitrogen during the recovery period and recurrent drought, respectively. Overall, the greater impact of the second drought on ecosystem function than the initial drought, as well as the underlying differential mechanism, underscores the need for an understanding of how increased drought frequency may alter semiarid grassland functioning.
Collapse
Affiliation(s)
- Wentao Luo
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Taofeek O Muraina
- Department of Animal Health and Production, Oyo State College of Agriculture and Technology, Igbo-Ora, Nigeria
| | | | - Wang Ma
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Lin Song
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Wei Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qiang Yu
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Alan K Knapp
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Zhengwen Wang
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xingguo Han
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.,State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
26
|
Griffin-Nolan RJ, Felton AJ, Slette IJ, Smith MD, Knapp AK. Traits that distinguish dominant species across aridity gradients differ from those that respond to soil moisture. Oecologia 2023; 201:311-322. [PMID: 36640197 DOI: 10.1007/s00442-023-05315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Many plant traits respond to changes in water availability and might be useful for understanding ecosystem properties such as net primary production (NPP). This is especially evident in grasslands where NPP is water-limited and primarily determined by the traits of dominant species. We measured root and shoot morphology, leaf hydraulic traits, and NPP of four dominant North American prairie grasses in response to four levels of soil moisture in a greenhouse experiment. We expected that traits of species from drier regions would be more responsive to reduced water availability and that this would make these species more resistant to low soil moisture than species from wetter regions. All four species grew taller, produced more biomass, and increased total root length in wetter treatments. Each species reduced its leaf turgor loss point (TLP) in drier conditions, but only two species (one xeric, one mesic) maintained leaf water potential above TLP. We identified a suite of traits that clearly distinguished species from one another, but, surprisingly, these traits were relatively unresponsive to reduced soil moisture. Specifically, more xeric species produced thinner roots with higher specific root length and had a lower root mass fraction. This suggest that root traits are critical for distinguishing species from one another but might not respond strongly to changing water availability, though this warrants further investigation in the field. Overall, we found that NPP of these dominant grass species responded similarly to varying levels of soil moisture despite differences in species morphology, physiology, and habitat of origin.
Collapse
Affiliation(s)
- Robert J Griffin-Nolan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA. .,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA. .,Department of Biology, Santa Clara University, Santa Clara, CA, 95053, USA.
| | - Andrew J Felton
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA.,Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA.,Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Ingrid J Slette
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA.,Long Term Ecological Research Network Office, National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, CA, 93101, USA
| | - Melinda D Smith
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Alan K Knapp
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
27
|
Chang Q, He H, Ren X, Zhang L, Feng L, Lv Y, Zhang M, Xu Q, Liu W, Zhang Y, Wang T. Soil moisture drives the spatiotemporal patterns of asymmetry in vegetation productivity responses across China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158819. [PMID: 36116661 DOI: 10.1016/j.scitotenv.2022.158819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Increasingly drastic global change is expected to cause hydroclimatic changes, which will influence vegetation productivity and pose a threat to the terrestrial carbon sink. Asymmetry represents an imbalance between vegetation growth and loss of growth during dry and wet periods, respectively. However, the mechanisms of asymmetric plant responses to hydrological changes remain poorly understood. Here, we examined the spatiotemporal patterns of asymmetric responses of vegetation productivity across terrestrial ecosystems in China. We analyzed several observational and satellite-based datasets of plant productivity and several reanalyzed datasets of hydroclimatic variables from 2001 to 2020, and used a random forest model to assess the importance of hydroclimatic variables for these responses. Our results showed that the productivity of >50 % of China's vegetated areas showed a more positive asymmetry (2.3 ± 9.4 %) over the study period, which were distributed broadly in northwest China (mainly grasslands and sparse vegetation ecosystems). Negative asymmetries were most common in forest ecosystems in northeast China. We demonstrated that one-third of vegetated areas tended to exhibit significant changes in asymmetry during 2001-2020. The trend towards stronger positive asymmetry (0.95 % yr-1) was higher than that towards stronger negative asymmetry (-0.55 % yr-1), which is beneficial for the carbon sink. We further showed that in China, soil moisture was a more important driver of spatiotemporal changes in asymmetric productivity than precipitation. We identified thresholds of surface soil moisture (20-30 %, volume water content) and root-zone soil moisture (200-350 mm, equivalent water height) that were associated with changes in asymmetry. Our findings highlight the necessity of considering the dynamic responses of vegetation to hydrological factors in order to fully understand the physiological growth processes of plants and avoid the possible loss of productivity due to future climate change.
Collapse
Affiliation(s)
- Qingqing Chang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Ecological Science Data Center, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglin He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Ecological Science Data Center, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoli Ren
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Ecological Science Data Center, Beijing 100101, China
| | - Li Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Ecological Science Data Center, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Feng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Ecological Science Data Center, Beijing 100101, China
| | - Yan Lv
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Ecological Science Data Center, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyu Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Ecological Science Data Center, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Ecological Science Data Center, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weihua Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Ecological Science Data Center, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Zhang
- National Ecological Science Data Center, Beijing 100101, China; State Key Laboratory of Grassland Agro-ecosystems, School of Ecology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Tianxiang Wang
- National Ecological Science Data Center, Beijing 100101, China; State Key Laboratory of Grassland Agro-ecosystems, School of Ecology, Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
28
|
Zhu Z, Wang H, Harrison SP, Prentice IC, Qiao S, Tan S. Optimality principles explaining divergent responses of alpine vegetation to environmental change. GLOBAL CHANGE BIOLOGY 2023; 29:126-142. [PMID: 36176241 PMCID: PMC10092415 DOI: 10.1111/gcb.16459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Recent increases in vegetation greenness over much of the world reflect increasing CO2 globally and warming in cold areas. However, the strength of the response to both CO2 and warming in those areas appears to be declining for unclear reasons, contributing to large uncertainties in predicting how vegetation will respond to future global changes. Here, we investigated the changes of satellite-observed peak season absorbed photosynthetically active radiation (Fmax ) on the Tibetan Plateau between 1982 and 2016. Although climate trends are similar across the Plateau, we identified robust divergent responses (a greening of 0.31 ± 0.14% year-1 in drier regions and a browning of 0.12 ± 0.08% year-1 in wetter regions). Using an eco-evolutionary optimality (EEO) concept of plant acclimation/adaptation, we propose a parsimonious modelling framework that quantitatively explains these changes in terms of water and energy limitations. Our model captured the variations in Fmax with a correlation coefficient (r) of .76 and a root mean squared error of .12 and predicted the divergent trends of greening (0.32 ± 0.19% year-1 ) and browning (0.07 ± 0.06% year-1 ). We also predicted the observed reduced sensitivities of Fmax to precipitation and temperature. The model allows us to explain these changes: Enhanced growing season cumulative radiation has opposite effects on water use and energy uptake. Increased precipitation has an overwhelmingly positive effect in drier regions, whereas warming reduces Fmax in wetter regions by increasing the cost of building and maintaining leaf area. Rising CO2 stimulates vegetation growth by enhancing water-use efficiency, but its effect on photosynthesis saturates. The large decrease in the sensitivity of vegetation to climate reflects a shift from water to energy limitation. Our study demonstrates the potential of EEO approaches to reveal the mechanisms underlying recent trends in vegetation greenness and provides further insight into the response of alpine ecosystems to ongoing climate change.
Collapse
Affiliation(s)
- Ziqi Zhu
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modelling, Institute for Global Change StudiesTsinghua UniversityBeijingChina
| | - Han Wang
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modelling, Institute for Global Change StudiesTsinghua UniversityBeijingChina
| | - Sandy P. Harrison
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modelling, Institute for Global Change StudiesTsinghua UniversityBeijingChina
- School of Archaeology, Geography and Environmental Sciences (SAGES)University of ReadingReadingUK
| | - Iain Colin Prentice
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modelling, Institute for Global Change StudiesTsinghua UniversityBeijingChina
- Georgina Mace Centre for the Living Planet, Department of Life SciencesImperial College LondonAscotUK
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Shengchao Qiao
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modelling, Institute for Global Change StudiesTsinghua UniversityBeijingChina
| | - Shen Tan
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modelling, Institute for Global Change StudiesTsinghua UniversityBeijingChina
| |
Collapse
|
29
|
Responses of grassland productivity to mowing intensity and precipitation variability in a temperate steppe. Oecologia 2023; 201:259-268. [PMID: 36507970 DOI: 10.1007/s00442-022-05305-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Mowing for hay is an important land use in grasslands that is affected by precipitation variability, due to the water-limited nature of these ecosystems. Past land use and precipitation conditions can have legacy effects on ecosystem functions, potentially altering responses to both mowing and precipitation. Nonetheless, it is still unclear how natural variation in precipitation will affect plant responses to changes in mowing intensity. We conducted a seven-year field experiment with three mowing intensity treatments compared to the traditional mowing intensity (5 cm stubble height) as a control: increased mowing (2 cm stubble), decreased mowing (8 cm stubble) and ceased mowing. Decreased mowing increased both plant aboveground net primary productivity [ANPP] and forage yield across the whole community, driven by increases in graminoids, mainly owing to the positive response of plants to precipitation. Both mowing disturbance and precipitation variability had legacy effects on plant ANPP; however, these responses differed among the whole community, graminoid, and forb levels. Current-year community-wide ANPP [ANPPn] was positively associated with current-year precipitation [PPTn] in all mowing treatments, driven by positive precipitation responses of the dominant graminoids. For forbs, however, ANPPn was negatively associated with prior-year growing season precipitation [PPTn-1] across mowing treatments, potentially due to lagged competition with the dominant graminoids. Our results suggest that the response of the dominant graminoids is the primary factor determining the response of ANPP to mowing and precipitation variability in these grassland ecosystems, and highlight that decreasing mowing intensity may maximize both herder's income and grassland sustainability.
Collapse
|
30
|
Hu Z, Dakos V, Rietkerk M. Using functional indicators to detect state changes in terrestrial ecosystems. Trends Ecol Evol 2022; 37:1036-1045. [PMID: 36008160 DOI: 10.1016/j.tree.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 01/12/2023]
Abstract
Indicators to predict ecosystem state change are urgently needed to cope with the degradation of ecosystem services caused by global change. With the development of new technologies for measuring ecosystem function with fine spatiotemporal resolution over broad areas, we are in the era of 'big data'. However, it is unclear how large, emerging datasets can be used to anticipate ecosystem state change. We propose the construction of indicators based on functional variables (flows) and state variables (pools) to predict future ecosystem state changes. The indicators identified here may be useful signals for doing so. In addition, functional indicators have explicit ecological meanings that can identify the ecological mechanism that is causing state changes, and can thus be used to improve ecosystem models.
Collapse
Affiliation(s)
- Zhongmin Hu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong 519082, China.
| | - Vasilis Dakos
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université de Montpellier, Ecole Pratique des Hautes Etudes (EPHE), Montpellier, France
| | - Max Rietkerk
- Copernicus Institute of Sustainable Development, Utrecht University, 3508, TC, Utrecht, The Netherlands
| |
Collapse
|
31
|
Jordan SE, Palmquist KA, Burke IC, Lauenroth WK. Small effects of livestock grazing intensification on diversity, abundance, and composition in a dryland plant community. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2693. [PMID: 35708008 DOI: 10.1002/eap.2693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/21/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Livestock grazing is a globally important land use and has the potential to significantly influence plant community structure and ecosystem function, yet several critical knowledge gaps remain on the direction and magnitude of grazing impacts. Furthermore, much of our understanding of the long-term effects on plant community composition and structure are based on grazer exclusion experiments, which explicitly avoid characterizing effects along grazing intensity gradients. We sampled big sagebrush plant communities using 68 plots located along grazing intensity gradients to determine how grazing intensity influences multiple aspects of plant community structure over time. This was accomplished by sampling plant communities at different distances from 17 artificial watering sources, using distance from water and cow dung density as proxies for grazing intensity at individual plots. Total vegetation cover and total grass cover were negatively related to grazing intensity, and cover of annual forbs, exotic cover, and exotic richness were positively related to grazing intensity. In contrast, species richness and composition, bunchgrass biomass, shrub density and size, percentage cover of bare ground, litter, and biological soil crusts did not vary along our grazing intensity gradients, in spite of our expectations to the contrary. Our results suggest that the effects of livestock grazing over multiple decades (mean = 46 years) in our sites are relatively small, especially for native perennial species, and that the big sagebrush plant communities we sampled are somewhat resistant to livestock grazing. Collectively, our findings are consistent with existing evidence that indicates the stability of the big sagebrush plant functional type composition under current grazing management regimes.
Collapse
Affiliation(s)
- Samuel E Jordan
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Kyle A Palmquist
- Department of Biological Sciences, Marshall University, Huntington, West Virginia, USA
| | - Ingrid C Burke
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
32
|
Zhan C, Orth R, Migliavacca M, Zaehle S, Reichstein M, Engel J, Rammig A, Winkler AJ. Emergence of the physiological effects of elevated CO 2 on land-atmosphere exchange of carbon and water. GLOBAL CHANGE BIOLOGY 2022; 28:7313-7326. [PMID: 36097831 DOI: 10.1111/gcb.16397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Elevated atmospheric CO2 (eCO2 ) influences the carbon assimilation rate and stomatal conductance of plants, thereby affecting the global cycles of carbon and water. Yet, the detection of these physiological effects of eCO2 in observational data remains challenging, because natural variations and confounding factors (e.g., warming) can overshadow the eCO2 effects in observational data of real-world ecosystems. In this study, we aim at developing a method to detect the emergence of the physiological CO2 effects on various variables related to carbon and water fluxes. We mimic the observational setting in ecosystems using a comprehensive process-based land surface model QUINCY to simulate the leaf-level effects of increasing atmospheric CO2 concentrations and their century-long propagation through the terrestrial carbon and water cycles across different climate regimes and biomes. We then develop a statistical method based on the signal-to-noise ratio to detect the emergence of the eCO2 effects. The eCO2 effect on gross primary productivity (GPP) emerges at relatively low CO2 increase (∆[CO2 ] ~ 20 ppm) where the leaf area index is relatively high. Compared to GPP, the eCO2 effect causing reduced transpiration water flux (normalized to leaf area) emerges only at relatively high CO2 increase (∆[CO2 ] >> 40 ppm), due to the high sensitivity to climate variability and thus lower signal-to-noise ratio. In general, the response to eCO2 is detectable earlier for variables related to the carbon cycle than the water cycle, when plant productivity is not limited by climatic constraints, and stronger in forest-dominated rather than in grass-dominated ecosystems. Our results provide a step toward when and where we expect to detect physiological CO2 effects in in-situ flux measurements, how to detect them and encourage future efforts to improve the understanding and quantification of these effects in observations of terrestrial carbon and water dynamics.
Collapse
Affiliation(s)
- Chunhui Zhan
- Department for Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - René Orth
- Department for Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Mirco Migliavacca
- Department for Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
- European Commission, Joint Research Centre, Ispra, Italy
| | - Sönke Zaehle
- Department of Biogeochemical Signals, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Markus Reichstein
- Department for Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Jan Engel
- Department of Biogeochemical Signals, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Anja Rammig
- Land Surface-Atmosphere Interactions, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Alexander J Winkler
- Department for Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
33
|
Zeng X, Hu Z, Chen A, Yuan W, Hou G, Han D, Liang M, Di K, Cao R, Luo D. The global decline in the sensitivity of vegetation productivity to precipitation from 2001 to 2018. GLOBAL CHANGE BIOLOGY 2022; 28:6823-6833. [PMID: 36054066 DOI: 10.1111/gcb.16403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The sensitivity of vegetation productivity to precipitation (Sppt ) is a key metric for understanding the variations in vegetation productivity under changing precipitation and predicting future changes in ecosystem functions. However, a comprehensive assessment of Sppt over all the global land is lacking. Here, we investigated spatial patterns and temporal changes of Sppt across the global land from 2001 to 2018 with multiple streams of satellite observations. We found consistent spatial patterns of Sppt with different satellite products: Sppt was highest in dry regions while low in humid regions. Grassland and shrubland showed the highest Sppt , and evergreen needle-leaf forest and wetland showed the lowest. Temporally, Sppt showed a generally declining trend over the past two decades (p < .05), yet with clear spatial heterogeneities. The decline in Sppt was especially noticeable in North America and Europe, likely due to the increase in precipitation. In central Russia and Australia, however, Sppt showed an increasing trend. Biome-wise, most ecosystem types exhibited significant decrease in Sppt , while grassland, evergreen broadleaf forest, and mixed forest showed slight increases or non-significant changes in Sppt . Our finding of the overall decline in Sppt implies a potential stabilization mechanism for ecosystem productivity under climate change. However, the revealed Sppt increase for some regions and ecosystem types, in particular global grasslands, suggests that grasslands might be increasingly vulnerable to climatic variability with continuing global climate change.
Collapse
Affiliation(s)
- Xiang Zeng
- School of Geography, South China Normal University, Guangzhou, China
| | - Zhongmin Hu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong, China
| | - Anping Chen
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Wenping Yuan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong, China
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Zhuhai Key Laboratory of Dynamics Urban Climate and Ecology, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Guolong Hou
- School of Geography, South China Normal University, Guangzhou, China
| | - Daorui Han
- School of Geography, South China Normal University, Guangzhou, China
| | - Minqi Liang
- School of Geography, South China Normal University, Guangzhou, China
| | - Kai Di
- School of Geography, South China Normal University, Guangzhou, China
| | - Ruochen Cao
- International Institute for Earth System Sciences, Nanjing University, Nanjing, China
| | - Dengnan Luo
- School of Geography, South China Normal University, Guangzhou, China
| |
Collapse
|
34
|
Felton AJ, Shriver RK, Stemkovski M, Bradford JB, Suding KN, Adler PB. Climate disequilibrium dominates uncertainty in long-term projections of primary productivity. Ecol Lett 2022; 25:2688-2698. [PMID: 36269682 DOI: 10.1111/ele.14132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
Abstract
Rapid climate change may exceed ecosystems' capacities to respond through processes including phenotypic plasticity, compositional turnover and evolutionary adaption. However, consequences of the resulting climate disequilibria for ecosystem functioning are rarely considered in projections of climate change impacts. Combining statistical models fit to historical climate data and remotely-sensed estimates of herbaceous net primary productivity with an ensemble of climate models, we demonstrate that assumptions concerning the magnitude of climate disequilibrium are a dominant source of uncertainty: models assuming maximum disequilibrium project widespread decreases in productivity in the western US by 2100, while models assuming minimal disequilibrium project productivity increases. Uncertainty related to climate disequilibrium is larger than uncertainties from variation among climate models or emissions pathways. A better understanding of processes that regulate climate disequilibria is essential for improving long-term projections of ecological responses and informing management to maintain ecosystem functioning at historical baselines.
Collapse
Affiliation(s)
- Andrew J Felton
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah, USA.,Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Robert K Shriver
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah, USA.,Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada, USA
| | | | - John B Bradford
- US Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, USA
| | - Katharine N Suding
- Department of Ecology and Evolutionary Biology, and Institute of Alpine and Arctic Research, University of Colorado, Boulder, Colorado, USA
| | - Peter B Adler
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah, USA
| |
Collapse
|
35
|
Wood DJA, Stoy PC, Powell SL, Beever EA. Antecedent climatic conditions spanning several years influence multiple land-surface phenology events in semi-arid environments. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1007010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecological processes are complex, often exhibiting non-linear, interactive, or hierarchical relationships. Furthermore, models identifying drivers of phenology are constrained by uncertainty regarding predictors, interactions across scales, and legacy impacts of prior climate conditions. Nonetheless, measuring and modeling ecosystem processes such as phenology remains critical for management of ecological systems and the social systems they support. We used random forest models to assess which combination of climate, location, edaphic, vegetation composition, and disturbance variables best predict several phenological responses in three dominant land cover types in the U.S. Northwestern Great Plains (NWP). We derived phenological measures from the 25-year series of AVHRR satellite data and characterized climatic predictors (i.e., multiple moisture and/or temperature based variables) over seasonal and annual timeframes within the current year and up to 4 years prior. We found that antecedent conditions, from seasons to years before the current, were strongly associated with phenological measures, apparently mediating the responses of communities to current-year conditions. For example, at least one measure of antecedent-moisture availability [precipitation or vapor pressure deficit (VPD)] over multiple years was a key predictor of all productivity measures. Variables including longer-term lags or prior year sums, such as multi-year-cumulative moisture conditions of maximum VPD, were top predictors for start of season. Productivity measures were also associated with contextual variables such as soil characteristics and vegetation composition. Phenology is a key process that profoundly affects organism-environment relationships, spatio-temporal patterns in ecosystem structure and function, and other ecosystem dynamics. Phenology, however, is complex, and is mediated by lagged effects, interactions, and a diversity of potential drivers; nonetheless, the incorporation of antecedent conditions and contextual variables can improve models of phenology.
Collapse
|
36
|
Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2. Nat Commun 2022; 13:4875. [PMID: 35985990 PMCID: PMC9391480 DOI: 10.1038/s41467-022-32631-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
Water availability plays a critical role in shaping terrestrial ecosystems, particularly in low- and mid-latitude regions. The sensitivity of vegetation growth to precipitation strongly regulates global vegetation dynamics and their responses to drought, yet sensitivity changes in response to climate change remain poorly understood. Here we use long-term satellite observations combined with a dynamic statistical learning approach to examine changes in the sensitivity of vegetation greenness to precipitation over the past four decades. We observe a robust increase in precipitation sensitivity (0.624% yr−1) for drylands, and a decrease (−0.618% yr−1) for wet regions. Using model simulations, we show that the contrasting trends between dry and wet regions are caused by elevated atmospheric CO2 (eCO2). eCO2 universally decreases the precipitation sensitivity by reducing leaf-level transpiration, particularly in wet regions. However, in drylands, this leaf-level transpiration reduction is overridden at the canopy scale by a large proportional increase in leaf area. The increased sensitivity for global drylands implies a potential decrease in ecosystem stability and greater impacts of droughts in these vulnerable ecosystems under continued global change. Changes in vegetation responses to precipitation may be hydroclimate dependent. Here the authors reveal contrasting trends of vegetation sensitivity to precipitation in drylands vs. wetter ecosystems over the last 4 decades and identify increased CO2 as a major contributing factor.
Collapse
|
37
|
Pérez‐Ruiz ER, Vivoni ER, Sala OE. Seasonal carryover of water and effects on carbon dynamics in a dryland ecosystem. Ecosphere 2022. [DOI: 10.1002/ecs2.4189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Eli R. Pérez‐Ruiz
- School of Earth and Space Exploration Arizona State University Tempe Arizona USA
- Departamento de Ingeniería Civil y Ambiental Universidad Autónoma de Ciudad Juárez Ciudad Juárez Mexico
| | - Enrique R. Vivoni
- School of Earth and Space Exploration Arizona State University Tempe Arizona USA
- School of Sustainable Engineering and the Built Environment Arizona State University Tempe Arizona USA
| | - Osvaldo E. Sala
- School of Life Sciences Arizona State University Tempe Arizona USA
- School of Sustainability Arizona State University Tempe Arizona USA
| |
Collapse
|
38
|
Oliveira BF, Moore FC, Dong X. Biodiversity mediates ecosystem sensitivity to climate variability. Commun Biol 2022; 5:628. [PMID: 35761028 PMCID: PMC9237054 DOI: 10.1038/s42003-022-03573-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022] Open
Abstract
A rich body of evidence from local-scale experiments and observational studies has revealed stabilizing effects of biodiversity on ecosystem functioning. However, whether these effects emerge across entire regions and continents remains largely overlooked. Here we combine data on the distribution of more than 57,500 plant species and remote-sensing observations throughout the entire Western Hemisphere to investigate the role of multiple facets of plant diversity (species richness, phylogenetic diversity, and functional diversity) in mediating the sensitivity of ecosystems to climate variability at the regional-scale over the past 20 years. We show that, across multiple biomes, regions of greater plant diversity exhibit lower sensitivity (more stable over time) to temperature variability at the interannual and seasonal-scales. While these areas can display lower sensitivity to interannual variability in precipitation, they emerge as highly sensitive to precipitation seasonality. Conserving landscapes of greater diversity may help stabilize ecosystem functioning under climate change, possibly securing the continuous provisions of productivity-related ecosystem service to people. With the help of spatial autoregressive models, the relationship between multiple facets of plant biodiversity and ecosystem sensitivity to climate variability is explored on a landscape-scale.
Collapse
Affiliation(s)
- Brunno F Oliveira
- Environmental Science and Policy Department, University of California Davis, Davis, CA, USA. .,Centre for the Synthesis and Analysis of Biodiversity (CESAB), FRB, Montpellier, France.
| | - Frances C Moore
- Environmental Science and Policy Department, University of California Davis, Davis, CA, USA
| | - Xiaoli Dong
- Environmental Science and Policy Department, University of California Davis, Davis, CA, USA
| |
Collapse
|
39
|
Fernandes VMC, Rudgers JA, Collins SL, Garcia-Pichel F. Rainfall pulse regime drives biomass and community composition in biological soil crusts. Ecology 2022; 103:e3744. [PMID: 35522227 DOI: 10.1002/ecy.3744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/19/2022] [Accepted: 03/30/2022] [Indexed: 11/07/2022]
Abstract
Future climates will alter the frequency and size of rain events in drylands, potentially affecting soil microbes that generate carbon feedbacks to climate, but field tests are rare. Topsoils in drylands are commonly colonized by biological soil crusts (biocrusts), photosynthesis-based communities that provide services ranging from soil fertilization to stabilization against erosion. We quantified responses of biocrust microbial communities to twelve years of altered rainfall regimes, with 60 mm of additional rain per year delivered either as small (5 mm) weekly rains or large (20 mm) monthly rains during the summer monsoon season. Rain addition promoted microbial diversity, suppressed the dominant cyanobacterium, Microcoleus vaginatus, and enhanced nitrogen-fixing taxa, but did not consistently increase microbial biomass. The addition of many small rain events increased microbial biomass, whereas few, large events did not. These results alter the physiological paradigm that biocrusts are most limited by the amount of rainfall and instead predict that regimes enriched in small rain events will boost cyanobacterial biocrusts and enhance their beneficial services to drylands. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vanessa M C Fernandes
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, and School of Life Sciences, Arizona State University, AZ, USA.,Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, and School of Life Sciences, Arizona State University, AZ, USA
| |
Collapse
|
40
|
Tree growth sensitivity to climate varies across a seasonal precipitation gradient. Oecologia 2022; 198:933-946. [DOI: 10.1007/s00442-022-05156-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
41
|
Castillioni K, Patten MA, Souza L. Precipitation effects on grassland plant performance are lessened by hay harvest. Sci Rep 2022; 12:3282. [PMID: 35228587 PMCID: PMC8885915 DOI: 10.1038/s41598-022-06961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/24/2021] [Indexed: 11/09/2022] Open
Abstract
Climate and human management, such as hay harvest, shape grasslands. With both disturbances co-occurring, understanding how these ecosystems respond to these combined drivers may aid in projecting future changes in grasslands. We used an experimental precipitation gradient combined with mimicked acute hay harvest (clipping once a year) to examine (1) whether hay harvest influences precipitation effects on plant performance (cover and height) and (2) the role of inter-specific responses in influencing plant performance. We found that hay harvest reduced the strength of precipitation effects on plant performance through changes in bare-ground soil cover. Species performance were mainly influenced by change in abiotic factors, often responding negatively, as hay harvest increased bare-ground amount. Conversely, altered precipitation without hay harvest promoted plant species performance through abiotic factors change first, followed by biotic. Most species, including the dominant grass Schizachyrium scoparium, increased their performance with greater leaf area index (proxy for canopy structure). Our experiment demonstrates that plant performance responds directly to abiotic factors with hay harvest, but indirectly without hay harvest. Positive effects of increasing precipitation were likely due to microhabitat amelioration and resource acquisition, thus inclusion of hay harvest as a disturbance lessens positive impacts of biotic variables on species performance to climate change.
Collapse
|
42
|
Adelizzi R, O'Brien EA, Hoellrich M, Rudgers JA, Mann M, Fernandes VMC, Darrouzet-Nardi A, Stricker E. Disturbance to biocrusts decreased cyanobacteria, N-fixer abundance, and grass leaf N but increased fungal abundance. Ecology 2022; 103:e3656. [PMID: 35132623 DOI: 10.1002/ecy.3656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/17/2021] [Accepted: 07/07/2021] [Indexed: 11/06/2022]
Abstract
Interactions between plants and soil microbes influence plant nutrient transformations, including nitrogen (N) fixation, nutrient mineralization, and resource exchanges through fungal networks. Physical disturbances to soils can disrupt soil microbes and associated processes that support plant and microbial productivity. In low resource drylands, biological soil crusts ("biocrusts") occupy surface soils and house key autotrophic and diazotrophic bacteria, non-vascular plants, or lichens. Interactions among biocrusts, plants, and fungal networks between them are hypothesized to drive carbon and nutrient dynamics; however, comparisons across ecosystems are needed to generalize how soil disturbances alter microbial communities and their contributions to N pools and transformations. To evaluate linkages among plants, fungi, and biocrusts, we disturbed all unvegetated surfaces with human foot trampling twice yearly in dry conditions from 2013-2019 in cyanobacteria-dominated biocrusts in Chihuahuan Desert grassland and shrubland ecosystems. After five years, disturbance decreased the abundances of cyanobacteria (especially Microcoleus steenstrupii clade) and N-fixers (Scytonema sp., and Schizothrix sp.) by >77% and chlorophyll a by up to 55%, but conversely, increased soil fungal abundance by 50% compared to controls. Responses of root-associated fungi differed between the two dominant plant species and ecosystem types, with a maximum of 80% more aseptate hyphae in disturbed than control plots. Although disturbance did not affect 15 N tracer transfer from biocrusts to the dominant grass, Bouteloua eriopoda, disturbance increased available soil N by 65% in the shrubland, and decreased leaf N of B. eriopoda up to 16%, suggesting that although rapid N transfer during peak production was not affected by disturbance, over the long term, plant nutrient content was disrupted. Altogether, the shrubland may be more resilient to detrimental changes due to disturbance than grassland, and these results demonstrate that disturbances to soil microbial communities have potential to cause substantial changes in N pools by reducing and reordering biocrust taxa.
Collapse
Affiliation(s)
- Rose Adelizzi
- Department of Biology, Washington College, 300 Washington Ave, Chestertown, Maryland, United States
| | - Elizabeth A O'Brien
- Department of Ecology and Evolutionary Biology, University of Michigan, 500 S State St, Ann Arbor, Michigan, United States
| | - Mikaela Hoellrich
- Department of Plant and Environmental Sciences, New Mexico State University, MSC 3Q, Las Cruces, New Mexico, United States
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, MSC 03 2020, 1 University of New Mexico, Albuquerque, New Mexico, United States
| | - Michael Mann
- Department of Biology, University of New Mexico, MSC 03 2020, 1 University of New Mexico, Albuquerque, New Mexico, United States
| | - Vanessa Moreira Camara Fernandes
- Department of Biology, University of New Mexico, MSC 03 2020, 1 University of New Mexico, Albuquerque, New Mexico, United States
| | - Anthony Darrouzet-Nardi
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas, United States
| | - Eva Stricker
- Department of Biology, University of New Mexico, MSC 03 2020, 1 University of New Mexico, Albuquerque, New Mexico, United States
| |
Collapse
|
43
|
Wang C, Vera-Vélez R, Lamb EG, Wu J, Ren F. Global pattern and associated drivers of grassland productivity sensitivity to precipitation change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151224. [PMID: 34728201 DOI: 10.1016/j.scitotenv.2021.151224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Precipitation is a primary climatic determinant of grassland productivity, with many global change experiments manipulating precipitation. Here we examine the impacts of precipitation addition and reduction treatment intensity and duration on grassland above- (ANPP) and below- (BNPP) ground net primary productivity in a large-scale meta-analysis. We tested, 1) the double asymmetry model of sensitivity, specifically whether the sensitivity of productivity decreases with treatment intensity under increased precipitation and increases with treatment intensity under decreased precipitation, 2) whether the sensitivity of productivity to precipitation change decreases with treatment length, and 3) how the sensitivity of productivity changes with climate conditions. ANPP showed higher sensitivity than BNPP under increased precipitation but similar sensitivity to BNPP under decreased precipitation. The sensitivity of ANPP and BNPP decreased with increasing treatment intensity (e.g., percentage change in precipitation, ΔPPT) and leveled off in the long-term. With increased precipitation, the sensitivity of productivity decreased with increasing treatment length (e.g., experimental duration) and leveled off in the long-term, whereas the sensitivity increased with increasing treatment length under reduced precipitation. Furthermore, the sensitivity of productivity to precipitation change decreased with increasing mean annual precipitation and temperature. Finally, our meta-analysis shows that above- and belowground net primary productivity have asymmetric responses to precipitation change. Together these results highlight the complex mechanisms underlying the impacts of precipitation change, particularly the intensity and duration of such changes, on grassland productivity.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), No. 9 Shuguang Garden Middle Road, Haidian District, Beijing 100097, China.
| | - Roy Vera-Vélez
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Eric G Lamb
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Juying Wu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), No. 9 Shuguang Garden Middle Road, Haidian District, Beijing 100097, China
| | - Fei Ren
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016, China
| |
Collapse
|
44
|
Ru J, Wan S, Hui D, Song J, Wang J. Increased interannual precipitation variability enhances the carbon sink in a semiarid grassland. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingyi Ru
- School of Life Sciences Institute of Life Science and Green Development Hebei University Baoding Hebei 071002 China
| | - Shiqiang Wan
- School of Life Sciences Institute of Life Science and Green Development Hebei University Baoding Hebei 071002 China
| | - Dafeng Hui
- Department of Biological Sciences Tennessee State University Nashville Tennessee 37209 USA
| | - Jian Song
- School of Life Sciences Institute of Life Science and Green Development Hebei University Baoding Hebei 071002 China
| | - Jing Wang
- School of Life Sciences Institute of Life Science and Green Development Hebei University Baoding Hebei 071002 China
| |
Collapse
|
45
|
O'Keefe K, Bachle S, Keen R, Tooley EG, Nippert JB. Root traits reveal safety and efficiency differences in grasses and shrubs exposed to different fire regimes. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kimberly O'Keefe
- Division of Biological Sciences Saint Edward's University Austin TX USA
- Department of Botany University of Wisconsin Madison WI USA
| | - Seton Bachle
- Division of Biology Kansas State University Manhattan KS USA
| | - Rachel Keen
- Division of Biology Kansas State University Manhattan KS USA
| | - E. Greg Tooley
- Division of Biology Kansas State University Manhattan KS USA
| | | |
Collapse
|
46
|
Maron JL, Lightfoot DC, Rodriguez‐Cabal MA, Collins SL, Rudgers JA. Climate mediates long‐term impacts of rodent exclusion on desert plant communities. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- John L. Maron
- Division of Biological Sciences University of Montana Missoula MT 59812 USA
| | - David C. Lightfoot
- Museum of Southwestern Biology University of New Mexico Albuquerque NM 87131 USA
| | - Mariano A. Rodriguez‐Cabal
- Grupo de Ecología de Invasiones INIBIOMA ‐ CONICET Universidad Nacional del Comahue Av. de los Pioneros 2350 CP. 8400 Bariloche, Rio Negro Argentina
- Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont 05405 USA
| | - Scott L. Collins
- Department of Biology University of New Mexico Albuquerque NM 87131 USA
| | | |
Collapse
|
47
|
Ladwig LM, Bell-Dereske LP, Bell KC, Collins SL, Natvig DO, Taylor DL. Soil fungal composition changes with shrub encroachment in the northern Chihuahuan Desert. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Hou E, Litvak ME, Rudgers JA, Jiang L, Collins SL, Pockman WT, Hui D, Niu S, Luo Y. Divergent responses of primary production to increasing precipitation variability in global drylands. GLOBAL CHANGE BIOLOGY 2021; 27:5225-5237. [PMID: 34260799 DOI: 10.1111/gcb.15801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Interannual variability in precipitation has increased globally as climate warming intensifies. The increased variability impacts both terrestrial plant production and carbon (C) sequestration. However, mechanisms driving these changes are largely unknown. Here, we examined mechanisms underlying the response of aboveground net primary production (ANPP) to interannual precipitation variability in global drylands with mean annual precipitation (MAP) <500 mm year-1 , using a combined approach of data synthesis and process-based modeling. We found a hump-shaped response of ANPP to precipitation variability along the MAP gradient. The response was positive when MAP < ~300 mm year-1 and negative when MAP was higher than this threshold, with a positive peak at 140 mm year-1 . Transpiration and subsoil water content mirrored the response of ANPP to precipitation variability; evaporation responded negatively and water loss through runoff and drainage responded positively to precipitation variability. Mean annual temperature, soil type, and plant physiological traits all altered the magnitude but not the pattern of the response of ANPP to precipitation variability along the MAP gradient. By extrapolating to global drylands (<500 mm year-1 MAP), we estimated that ANPP would increase by 15.2 ± 6.0 Tg C year-1 in arid and hyper-arid lands and decrease by 2.1 ± 0.5 Tg C year-1 in dry sub-humid lands under future changes in interannual precipitation variability. Thus, increases in precipitation variability will enhance primary production in many drylands in the future.
Collapse
Affiliation(s)
- Enqing Hou
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Marcy E Litvak
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jennifer A Rudgers
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, New Mexico, USA
| | - Lifen Jiang
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Scott L Collins
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, New Mexico, USA
| | - William T Pockman
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, New Mexico, USA
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
49
|
Jiang L, Liang J, Lu X, Hou E, Hoffman FM, Luo Y. Country-level land carbon sink and its causing components by the middle of the twenty-first century. ECOLOGICAL PROCESSES 2021; 10:61. [PMID: 34540522 PMCID: PMC8438548 DOI: 10.1186/s13717-021-00328-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Countries have long been making efforts by reducing greenhouse-gas emissions to mitigate climate change. In the agreements of the United Nations Framework Convention on Climate Change, involved countries have committed to reduction targets. However, carbon (C) sink and its involving processes by natural ecosystems remain difficult to quantify. METHODS Using a transient traceability framework, we estimated country-level land C sink and its causing components by 2050 simulated by 12 Earth System Models involved in the Coupled Model Intercomparison Project Phase 5 (CMIP5) under RCP8.5. RESULTS The top 20 countries with highest C sink have the potential to sequester 62 Pg C in total, among which, Russia, Canada, USA, China, and Brazil sequester the most. This C sink consists of four components: production-driven change, turnover-driven change, change in instantaneous C storage potential, and interaction between production-driven change and turnover-driven change. The four components account for 49.5%, 28.1%, 14.5%, and 7.9% of the land C sink, respectively. CONCLUSION The model-based estimates highlight that land C sink potentially offsets a substantial proportion of greenhouse-gas emissions, especially for countries where net primary production (NPP) likely increases substantially and inherent residence time elongates.
Collapse
Affiliation(s)
- Lifen Jiang
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011 USA
| | - Junyi Liang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100083 China
| | - Xingjie Lu
- School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, 510275 Guangdong China
| | - Enqing Hou
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011 USA
| | - Forrest M. Hoffman
- Computational Sciences & Engineering Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011 USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011 USA
| |
Collapse
|
50
|
Cárdenas PA, Christensen E, Ernest SKM, Lightfoot DC, Schooley RL, Stapp P, Rudgers JA. Declines in rodent abundance and diversity track regional climate variability in North American drylands. GLOBAL CHANGE BIOLOGY 2021; 27:4005-4023. [PMID: 33942467 DOI: 10.1111/gcb.15672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Regional long-term monitoring can enhance the detection of biodiversity declines associated with climate change, improving future projections by reducing reliance on space-for-time substitution and increasing scalability. Rodents are diverse and important consumers in drylands, regions defined by the scarcity of water that cover 45% of Earth's land surface and face increasingly drier and more variable climates. We analyzed abundance data for 22 rodent species across grassland, shrubland, ecotone, and woodland ecosystems in the southwestern USA. Two time series (1995-2006 and 2004-2013) coincided with phases of the Pacific Decadal Oscillation (PDO), which influences drought in southwestern North America. Regionally, rodent species diversity declined 20%-35%, with greater losses during the later time period. Abundance also declined regionally, but only during 2004-2013, with losses of 5% of animals captured. During the first time series (wetter climate), plant productivity outranked climate variables as the best regional predictor of rodent abundance for 70% of taxa, whereas during the second period (drier climate), climate best explained variation in abundance for 60% of taxa. Temporal dynamics in diversity and abundance differed spatially among ecosystems, with the largest declines in woodlands and shrublands of central New Mexico and Colorado. Which species were winners or losers under increasing drought and amplified interannual variability in drought depended on ecosystem type and the phase of the PDO. Fewer taxa were significant winners (18%) than losers (30%) under drought, but the identities of winners and losers differed among ecosystems for 70% of taxa. Our results suggest that the sensitivities of rodent species to climate contributed to regional declines in diversity and abundance during 1995-2013. Whether these changes portend future declines in drought-sensitive consumers in the southwestern USA will depend on the climate during the next major PDO cycle.
Collapse
Affiliation(s)
- Pablo A Cárdenas
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Erica Christensen
- Jornada Experimental Range, New Mexico State University, Las Cruces, NM, USA
| | - S K Morgan Ernest
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - David C Lightfoot
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Robert L Schooley
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Paul Stapp
- Department of Biological Science, California State University, Fullerton, CA, USA
| | | |
Collapse
|