1
|
Zhu X, Zhao S, Lin S, Wang J, Leng S. The impact of soil acidification on cementing substances and aggregate stability. PLoS One 2025; 20:e0318417. [PMID: 40239164 PMCID: PMC12002804 DOI: 10.1371/journal.pone.0318417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/15/2025] [Indexed: 04/18/2025] Open
Abstract
The excessive utilization of chemical fertilizers, particularly nitrogen fertilizers, is leading to decline in the pH level of the black soil in Jilin Province. Acidification of black soil leads to reduced salt base saturation, decreased organic matter content, and increased soil degradation, which, in turn, leads to diminshed aggregate stability and poor soil structure, negatively affecting soil fertility. As a result, the sustainability of food production and farmland ecosystem stability are at risk. The precise relationship between alterations in cementing substances and changes in soil aggregate stability during the acidification of black soil remains unclear, and the ultrasonic thermal difference method allows for the quantitative description of changes in soil aggregate stability. Therefore, this study employed the ultrasonic thermal difference method to investigate the impact of acidification on the stability of black soil aggregates and their cementing substances through a simulated fertilizer drenching experiment, thus elucidate the relationship between primary cementing materials and the stability of aggregates under varying degrees of black soil acidification, and to provides theoretical basis and data for alleviating and preventing acidification of black soil in Jilin Province. The results disclosed a gradual decline in soil organic carbon (SOC) levels during the acidification experiment, while water-soluble organic carbon (WSOC) first increased and then decreased. After 25 years of simulated leaching, SOC decreased by 1.34% and WSOC declined by 15.63%. Acidification has a minimal impact on Fe-Al bonded organic carbon but significantly reduces calcium-bonded organic carbon by 17.07% over 25 years. The content of exchangeable Ca2+ and Mg²⁺ decreases as acidification intensifies. After 25 years, exchangeable Ca2+ and Mg²⁺ decreased by 9.42% and 7.00%, respectively. The acidification of the test soil resulted in a 46.5% reduction in the aggregate stability energy (E) of water-stable microaggregates, with an average decrease of 14.04 J/g for every 0.1 unit decrease in pH. Additionally, the soil critical stabilization energy (Ecrit) exhibited a 51.48% reduction. The results demonstrated that a decrease of 0.32 J/g in E was associated with a 0.1 unit decrease in pH on average. Furthermore, the multivariate linear regression analysis revealed that the reduction in soil organic carbon (SOC) content contributed the most to the decline in E, followed by Calcium bond-bound soil organic carbon (Ca-SOC). Notably, Ca-SOC exerted the greatest influence on the reduction in sand grain Ecrit, followed by SOC.
Collapse
Affiliation(s)
- Xiaoxu Zhu
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Shengchen Zhao
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Siqi Lin
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jihong Wang
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Su Leng
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
2
|
Carfora A, Lucibelli F, Di Lillo P, Mazzucchiello SM, Saccone G, Salvemini M, Varone M, Volpe G, Aceto S. Genetic responses of plants to urban environmental challenges. PLANTA 2025; 261:102. [PMID: 40183929 PMCID: PMC11971160 DOI: 10.1007/s00425-025-04678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
MAIN CONCLUSION This review aims to describe the main genetic adaptations of plants to abiotic and biotic stressors in urban landscapes through modulation of gene expression and genotypic changes. Urbanization deeply impacts biodiversity through ecosystem alteration and habitat fragmentation, creating novel environmental challenges for plant species. Plants have evolved cellular, molecular, and biochemical strategies to cope with the diverse biotic and abiotic stresses associated with urbanization. However, many of these defense and resistance mechanisms remain poorly understood. Addressing these knowledge gaps is crucial for advancing our understanding of urban biodiversity and elucidating the ecological and evolutionary dynamics of species in urban landscapes. As sessile organisms, plants depend heavily on modifications in gene expression as a rapid and efficient strategy to survive urban stressors. At the same time, the urban environment pressures induced plant species to evolve genotypic adaptations that enhance their survival and growth in these contexts. This review explores the different genetic responses of plants to urbanization. We focus on key abiotic challenges, such as air pollution, elevated CO2 levels, heavy metal contamination, heat and drought stress, salinity, and biotic stresses caused by herbivorous insects. By examining these genetic mechanisms induced by urban stressors, we aim to analyze the molecular pathways and genetic patterns underlying the adaptation of plant species to urban environments. This knowledge is a valuable tool for enhancing the selection and propagation of adaptive traits in plant populations, supporting species conservation efforts, and promoting urban biodiversity.
Collapse
Grants
- Project code CN_00000033 National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- Concession Decree No. 1034 of 17 June 2022 adopted by the Italian Ministry of University National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- Research National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- CUP H43C22000530001 National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- Project title "National Biodiversity Future Center - NBFC" National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union –
- Università degli Studi di Napoli Federico II
Collapse
Affiliation(s)
- Angela Carfora
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy.
| | - Francesca Lucibelli
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy.
| | - Paola Di Lillo
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | | | - Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Marianna Varone
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Gennaro Volpe
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy.
| |
Collapse
|
3
|
Ao Q, Li H, Yang L, Li Q, Long F, Xiao Y, Zuo W. Projecting the global potential distribution of nine Rhododendron Subgenus Hymenanthes species under different climate change scenarios. Sci Rep 2025; 15:3459. [PMID: 39870697 PMCID: PMC11772581 DOI: 10.1038/s41598-025-87617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/21/2025] [Indexed: 01/29/2025] Open
Abstract
As one of China's most treasured traditional flowers, Rhododendron Subgen. Hymenanthes is renowned worldwide for its evergreen foliage, vibrant flowers, and significant ornamental, landscaping, and economic value. However, climate change poses a serious threat to its future, leading to population declines and endangerment of some species. Despite the ecological and economic importance of Rhododendron Subgen. Hymenanthes, the future distribution of suitable habitats and the most effective strategies for its conservation and utilization remain unclear. This study employs the MaxEnt model, which is well-known for its reliability in predicting species distribution under changing environmental conditions, to predict the potential global distribution of nine species of Rhododendron Subgen. Hymenanthes. The goal is to provide a solid foundation for their conservation, cultivation management, and breeding. The results indicate that, under future climate scenarios, suitable habitat areas for four species (R. irroratum, R. agastum, R. decorum, and R. arboreum) will significantly decrease, while suitable habitats for the remaining five species (R. delavayi, R. fortunei, R. calophytum, R. simiarum, and R. wardii) will experience slight expansion. Temperature and precipitation are identified as key environmental factors influencing the growth and distribution of these species, affecting their ability to colonize new regions. The migration direction of the expanding regions for all nine species is consistent, with their centroids shifting towards the northwest. These findings provide critical insights for developing targeted conservation strategies, including identifying potential refugia and prioritizing conservation areas under future climate conditions.
Collapse
Affiliation(s)
- Qian Ao
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Huie Li
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China.
| | - Lan Yang
- College of forestry, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Qian Li
- College of forestry, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Fenfang Long
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yang Xiao
- College of forestry, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Weiwei Zuo
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| |
Collapse
|
4
|
Wu Z, Wang W, Zhu W, Zhang P, Chang R, Wang G. Shrub ecosystem structure in response to anthropogenic climate change: A global synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176202. [PMID: 39265690 DOI: 10.1016/j.scitotenv.2024.176202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Anthropogenic warming is predicted to alter ecological boundaries in energy-limited shrub ecosystems. Yet we still lack a sound understanding of the structural changes that shrub ecosystems are undergoing on a global scale and the factors driving them. To that end, here we collected studies of shrub dynamics from 227 sites worldwide to conduct a quantitative review, including the rate of advancing shrubline (their upslope shift), the rates of shrub cover and recruitment changes. Our results revealed that shrub expanded (e.g. shrubline shifts, shrub cover and recruitment increase) at the vast majority of sites (84 %); in contrast, they remained stable in 10 % of sites and descended at just 6 % of them. The mean global shift rate of shrubline was 1.22 m/year, being significantly faster in subarctic (> 60°N) than temperate (< 60°N) regions, and likewise more quickly in wet (total annual precipitation >400 mm) than dry (total annual precipitation <400 mm) areas; the annual change rates of shrub cover and recruitment increased by 0.89 % and 2.02 %. Shrubs communities have expanded rapidly in response to ongoing climate warming. The combination of autumn precipitation and winter temperature largely contributed to the general shift rates of shrubline, while the shrub cover and recruitment were mainly affected by summer temperature and precipitation in both spring and autumn. Furthermore, the site-specific pace of their expansion probably depends on a combination of local climatic and non-climatic drivers (such as fine-scale environmental conditions, disturbance, their interactions, and dispersal limitation). The increase of shrub distribution may alter the function and albedo of the ecosystems at high-latitude and -elevation regions, resulting in the feedback on climate.
Collapse
Affiliation(s)
- Zhehong Wu
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhi Wang
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Wanze Zhu
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Peipei Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ruiying Chang
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Genxu Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Sánchez-Fibla M, Moulin-Frier C, Solé R. Cooperative control of environmental extremes by artificial intelligent agents. J R Soc Interface 2024; 21:20240344. [PMID: 39501770 PMCID: PMC11538903 DOI: 10.1098/rsif.2024.0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 11/09/2024] Open
Abstract
Humans have been able to tackle biosphere complexities by acting as ecosystem engineers, profoundly changing the flows of matter, energy and information. This includes major innovations that allowed to reduce and control the impact of extreme events. Modelling the evolution of such adaptive dynamics can be challenging, given the potentially large number of individual and environmental variables involved. This article shows how to address this problem by using fire as the source of extreme events. We implement a simulated environment where fire propagates on a spatial landscape, and a group of artificial agents learn how to harvest and exploit trees while avoiding the damaging effects of fire spreading. The agents need to solve a conflict to reach a group-level optimal state: while tree harvesting reduces the propagation of fires, it also reduces the availability of resources provided by trees. It is shown that the system displays two major evolutionary innovations that end up in an ecological engineering strategy that favours high biomass along with the suppression of large fires. The implications for potential artificial intelligence management of complex ecosystems are discussed.
Collapse
Affiliation(s)
- Martí Sánchez-Fibla
- AI-ML group, Universitat Pompeu Fabra, Barcelona08018, Spain
- Artificial Intelligence Research Institute (IIIA-CSIC), Campus de la UAB, Bellaterra, Barcelona08193, Spain
| | | | - Ricard Solé
- Complex Systems Lab, Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona08003, Spain
- Institucio Catalana de Recerca i Estudis Avançats, Lluis Companys 23, Barcelona08010, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
| |
Collapse
|
6
|
Liu X, Heinzle J, Tian Y, Salas E, Kwatcho Kengdo S, Borken W, Schindlbacher A, Wanek W. Long-term soil warming changes the profile of primary metabolites in fine roots of Norway spruce in a temperate montane forest. PLANT, CELL & ENVIRONMENT 2024; 47:4212-4226. [PMID: 38935880 DOI: 10.1111/pce.15019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Climate warming poses major threats to temperate forests, but the response of tree root metabolism has largely remained unclear. We examined the impact of long-term soil warming (>14 years, +4°C) on the fine root metabolome across three seasons for 2 years in an old spruce forest, using a liquid chromatography-mass spectrometry platform for primary metabolite analysis. A total of 44 primary metabolites were identified in roots (19 amino acids, 12 organic acids and 13 sugars). Warming increased the concentration of total amino acids and of total sugars by 15% and 21%, respectively, but not organic acids. We found that soil warming and sampling date, along with their interaction, directly influenced the primary metabolite profiles. Specifically, in warming plots, concentrations of arginine, glycine, lysine, threonine, tryptophan, mannose, ribose, fructose, glucose and oxaloacetic acid increased by 51.4%, 19.9%, 21.5%, 19.3%, 22.1%, 23.0%, 38.0%, 40.7%, 19.8% and 16.7%, respectively. Rather than being driven by single compounds, changes in metabolite profiles reflected a general up- or downregulation of most metabolic pathway network. This emphasises the importance of metabolomics approaches in investigating root metabolic pathways and understanding the effects of climate change on tree root metabolism.
Collapse
Affiliation(s)
- Xiaofei Liu
- Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
- Key Laboratory of Humid Subtropical Eco-Geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Jakob Heinzle
- Department of Forest Ecology and Soils, Federal Research and Training Centre for Forests, Natural Hazards and Landscape-BFW, Vienna, Austria
| | - Ye Tian
- Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Erika Salas
- Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Steve Kwatcho Kengdo
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (Bayceer), University of Bayreuth, Bayreuth, Germany
| | - Werner Borken
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (Bayceer), University of Bayreuth, Bayreuth, Germany
| | - Andreas Schindlbacher
- Department of Forest Ecology and Soils, Federal Research and Training Centre for Forests, Natural Hazards and Landscape-BFW, Vienna, Austria
| | - Wolfgang Wanek
- Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Cuartero J, Querejeta JI, Prieto I, Frey B, Alguacil MM. Warming and rainfall reduction alter soil microbial diversity and co-occurrence networks and enhance pathogenic fungi in dryland soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175006. [PMID: 39069184 DOI: 10.1016/j.scitotenv.2024.175006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
In this 9-year manipulative field experiment, we examined the impacts of experimental warming (2 °C, W), rainfall reduction (30 % decrease in annual rainfall, RR), and their combination (W + RR) on soil microbial communities and native vegetation in a semi-arid shrubland in south-eastern Spain. Warming had strong negative effects on plant performance across five coexisting native shrub species, consistently reducing their aboveground biomass growth and long-term survival. The impacts of rainfall reduction on plant growth and survival were species-specific and more variable. Warming strongly altered the soil microbial community alpha-diversity and changed the co-occurrence network structure. The relative abundance of symbiotic arbuscular mycorrhizal fungi (AMF) increased under W and W + RR, which could help buffer the direct negative impacts of climate change on their host plants nutrition and enhance their resistance to heat and drought stress. Indicator microbial taxa analyses evidenced that the marked sequence abundance of many plant pathogenic fungi, such as Phaeoacremonium, Cyberlindnera, Acremonium, Occultifur, Neodevriesia and Stagonosporopsis, increased significantly in the W and W + RR treatments. Moreover, the relative abundance of fungal animal pathogens and mycoparasites in soil also increased significantly under climate warming. Our findings indicate that warmer and drier conditions sustained over several years can alter the soil microbial community structure, composition, and network topology. The projected warmer and drier climate favours pathogenic fungi, which could offset the benefits of increased AMF abundance under warming and further aggravate the severe detrimental impacts of increased abiotic stress on native vegetation performance and ecosystem services in drylands.
Collapse
Affiliation(s)
- J Cuartero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland.
| | - J I Querejeta
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - I Prieto
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas, Murcia, Spain; Area de Ecología, Facultad de Ciencias Biológicas y Ambientales, Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - B Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - M M Alguacil
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas, Murcia, Spain
| |
Collapse
|
8
|
Yue Y, Huang Y, Liu W, Yang X, Wang L. Predicting the Global Potential Suitable Areas of Sweet Osmanthus ( Osmanthus fragrans) Under Current and Future Climate Scenarios. Ecol Evol 2024; 14:e70435. [PMID: 39502463 PMCID: PMC11537704 DOI: 10.1002/ece3.70435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Osmanthus fragrans is a valuable landscaping tree that is appreciated worldwide. However, the optimal environmental conditions for O. fragrans cultivation have yet to be studied in detail, which hinders the preservation of wild resources of this plant and its commercial exploitation. The maximum entropy model was applied to assess the significance of environment variables influencing O. fragrans distribution. Combining data from 629 global distribution points for O. fragrans, predictions were made on the potential effects of climate change on the geographical distribution of suitable habitats for this species in the present and the future. The results indicated that O. fragrans preferred a warm and humid growing environment. Under the current climatic conditions, the potential habitats for O. fragrans were mostly located in the eastern coastal areas of the continents at medium and low latitudes. The main environmental variables that affected its distribution were the precipitation during the warmest quarter, the temperature seasonality, and the mean temperature of the warmest quarter. The analysis indicated that the continuation of current trends in climate change will result in the further reduction of suitable habitats for O. fragrans growth, and the global centroid will shift to the southeast. These findings provided insight into the impact of climate change on O. fragrans habitats, as well as provide guidance for the conservation of wild resources of this species and the breeding of more climate change-resistant varieties for the future.
Collapse
Affiliation(s)
- Yuanzheng Yue
- State Key Laboratory of Tree Genetics and BreedingNanjing Forestry UniversityNanjingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of Landscape ArchitectureNanjing Forestry UniversityNanjingChina
| | - Yingyu Huang
- State Key Laboratory of Tree Genetics and BreedingNanjing Forestry UniversityNanjingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of Landscape ArchitectureNanjing Forestry UniversityNanjingChina
| | - Wei Liu
- School of Horticulture and Landscape ArchitectureJinling Institute of TechnologyNanjingChina
| | - Xiulian Yang
- State Key Laboratory of Tree Genetics and BreedingNanjing Forestry UniversityNanjingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of Landscape ArchitectureNanjing Forestry UniversityNanjingChina
| | - Lianggui Wang
- State Key Laboratory of Tree Genetics and BreedingNanjing Forestry UniversityNanjingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of Landscape ArchitectureNanjing Forestry UniversityNanjingChina
| |
Collapse
|
9
|
Patiabadi Z, Razmkabir M, EsmailizadehKoshkoiyeh A, Moradi MH, Rashidi A, Mahmoudi P. Whole-genome scan for selection signature associated with temperature adaptation in Iranian sheep breeds. PLoS One 2024; 19:e0309023. [PMID: 39150936 PMCID: PMC11329119 DOI: 10.1371/journal.pone.0309023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/31/2024] [Indexed: 08/18/2024] Open
Abstract
The present study aimed to identify the selection signature associated with temperature adaptation in Iranian sheep breeds raised in cold and hot environments. The Illumina HD ovine SNP600K BeadChip genomic arrays were utilized to analyze 114 animals from eight Iranian sheep breeds, namely Ghezel, Afshari, Shall, Sanjabi, Lori-Bakhtiari, Karakul, Kermani, and Balochi. All animals were classified into two groups: cold-weather breeds and hot-weather breeds, based on the environments to which they are adapted and the regions where they have been raised for many years. The unbiased FST (Theta) and hapFLK tests were used to identify the selection signatures. The results revealed five genomic regions on chromosomes 2, 10, 11, 13, and 14 using the FST test, and three genomic regions on chromosomes 10, 14, and 15 using the hapFLK test to be under selection in cold and hot groups. Further exploration of these genomic regions revealed that most of these regions overlapped with genes previously identified to affect cold and heat stress, nervous system function, cell division and gene expression, skin growth and development, embryo and skeletal development, adaptation to hypoxia conditions, and the immune system. These regions overlapped with QTLs that had previously been identified as being associated with various important economic traits, such as body weight, skin color, and horn characteristics. The gene ontology and gene network analyses revealed significant pathways and networks that distinguished Iranian cold and hot climates sheep breeds from each other. We identified positively selected genomic regions in Iranian sheep associated with pathways related to cell division, biological processes, cellular responses to calcium ions, metal ions and inorganic substances. This study represents the initial effort to identify selective sweeps linked to temperature adaptation in Iranian indigenous sheep breeds. It may provide valuable insights into the genomic regions involved in climate adaptation in sheep.
Collapse
Affiliation(s)
- Zahra Patiabadi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Mohammad Razmkabir
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | | | | | - Amir Rashidi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Peyman Mahmoudi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
10
|
Bacelar E, Pinto T, Anjos R, Morais MC, Oliveira I, Vilela A, Cosme F. Impacts of Climate Change and Mitigation Strategies for Some Abiotic and Biotic Constraints Influencing Fruit Growth and Quality. PLANTS (BASEL, SWITZERLAND) 2024; 13:1942. [PMID: 39065469 PMCID: PMC11280748 DOI: 10.3390/plants13141942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Factors such as extreme temperatures, light radiation, and nutritional condition influence the physiological, biochemical, and molecular processes associated with fruit development and its quality. Besides abiotic stresses, biotic constraints can also affect fruit growth and quality. Moreover, there can be interactions between stressful conditions. However, it is challenging to predict and generalize the risks of climate change scenarios on seasonal patterns of growth, development, yield, and quality of fruit species because their responses are often highly complex and involve changes at multiple levels. Advancements in genetic editing technologies hold great potential for the agricultural sector, particularly in enhancing fruit crop traits. These improvements can be tailored to meet consumer preferences, which is crucial for commercial success. Canopy management and innovative training systems are also key factors that contribute to maximizing yield efficiency and improving fruit quality, which are essential for the competitiveness of orchards. Moreover, the creation of habitats that support pollinators is a critical aspect of sustainable agriculture, as they play a significant role in the production of many crops, including fruits. Incorporating these strategies allows fruit growers to adapt to changing climate conditions, which is increasingly important for the stability of food production. By investing in these areas, fruit growers can stay ahead of challenges and opportunities in the industry, ultimately leading to increased success and profitability. In this review, we aim to provide an updated overview of the current knowledge on this important topic. We also provide recommendations for future research.
Collapse
Affiliation(s)
- Eunice Bacelar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Teresa Pinto
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Rosário Anjos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Maria Cristina Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Ivo Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Alice Vilela
- Chemistry Research Centre–Vila Real (CQ-VR), Department of Agronomy, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| | - Fernanda Cosme
- Chemistry Research Centre–Vila Real (CQ-VR), Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| |
Collapse
|
11
|
Sucharitakul P, Wu WM, Zhang Y, Peng BY, Gao J, Wang L, Hou D. Exposure Pathways and Toxicity of Microplastics in Terrestrial Insects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11887-11900. [PMID: 38885123 DOI: 10.1021/acs.est.4c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The detrimental effects of plastics on aquatic organisms, including those of macroplastics, microplastics, and nanoplastics, have been well established. However, knowledge on the interaction between plastics and terrestrial insects is limited. To develop effective strategies for mitigating the impact of plastic pollution on terrestrial ecosystems, it is necessary to understand the toxicity effects and influencing factors of plastic ingestion by insects. An overview of current knowledge regarding plastic ingestion by terrestrial insects is provided in this Review, and the factors influencing this interaction are identified. The pathways through which insects interact with plastics, which can lead to plastic accumulation and microplastic transfer to higher trophic levels, are also discussed using an overview and a conceptual model. The diverse impacts of plastic exposure on insects are discussed, and the challenges in existing studies, such as a limited focus on certain plastic types, are identified. Further research on standardized methods for sampling and analysis is crucial for reliable research, and long-term monitoring is essential to assess plastic trends and ecological impacts in terrestrial ecosystems. The mechanisms underlying these effects need to be uncovered, and their potential long-term consequences for insect populations and ecosystems require evaluation.
Collapse
Affiliation(s)
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305-4020, United States
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Ran W, Chen J, Zhao Y, Zhang N, Luo G, Zhao Z, Song Y. Global climate change-driven impacts on the Asian distribution of Limassolla leafhoppers, with implications for biological and environmental conservation. Ecol Evol 2024; 14:e70003. [PMID: 39026963 PMCID: PMC11257772 DOI: 10.1002/ece3.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Knowing the impacts of global climate change on the habitat suitability distribution of Limassolla leafhoppers contributes to understanding the feedback of organisms on climate change from a macroecological perspective, and provides important scientific basis for protecting the ecological environment and biodiversity. However, there is limited knowledge on this aspect. Thus, our study aimed to address this gap by analyzing Asian habitat suitability and centroid shifts of Limassolla based on 19 bioclimatic variables and occurrence records. Selecting five ecological niche models with the outstanding predictive performance (Maxlike, generalized linear model, generalized additive model, random forest, and maximum entropy) along with their ensemble model from 12 models, the current habitat suitability of Limassolla and its future habitat suitability under two Shared Socio-economic Pathways (SSP1-2.6 and SSP5-8.5) in the 2050s and 2090s were predicted. The results showed that the prediction results of the five models are generally consistent. Based on ensemble model, 11 potential biodiversity hotspots with high suitability were identified. With climate change, the suitable range of Limassolla will experience both expansion and contraction. In SSP5-8.52050s, the expansion area is 118.56 × 104 km2, while the contraction area is 25.40 × 104 km2; in SSP1-2.62090s, the expansion area is 91.71 × 104 km2, and the contraction area is 26.54 × 104 km2. Furthermore, the distribution core of Limassolla will shift toward higher latitudes in the northeast direction, and the precipitation of warmest quarter was found to have the greatest impact on the distribution of Limassolla. Our research results supported our four hypotheses. Finally, this research suggests establishing ecological reserves in identified contraction to prevent habitat loss, enhancing the protection of biodiversity hotspots, and pursuing a sustainable development path with reduced emissions.
Collapse
Affiliation(s)
- Weiwei Ran
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
- State Engineering Technology Institute for Karst Desertification ControlGuiyangChina
| | - Jiajia Chen
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
- State Engineering Technology Institute for Karst Desertification ControlGuiyangChina
| | - Yuanqi Zhao
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
- State Engineering Technology Institute for Karst Desertification ControlGuiyangChina
| | - Ni Zhang
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
- State Engineering Technology Institute for Karst Desertification ControlGuiyangChina
| | - Guimei Luo
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
- State Engineering Technology Institute for Karst Desertification ControlGuiyangChina
| | - Zhibing Zhao
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
- State Engineering Technology Institute for Karst Desertification ControlGuiyangChina
- School of Food Science and EngineeringGuiyang UniversityGuiyangChina
| | - Yuehua Song
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
- State Engineering Technology Institute for Karst Desertification ControlGuiyangChina
| |
Collapse
|
13
|
Maull V, Solé R. Biodiversity as a firewall to engineered microbiomes for restoration and conservation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231526. [PMID: 39100153 PMCID: PMC11296081 DOI: 10.1098/rsos.231526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 08/06/2024]
Abstract
The possibility of abrupt transitions threatens to poise ecosystems into irreversibly degraded states. Synthetic biology has recently been proposed to prevent them from crossing tipping points. However, there is little understanding of the impact of such intervention on the resident communities. Can such modification have 'unintended consequences', such as loss of species? Here, we address this problem by using a mathematical model that allows us to simulate this intervention scenario explicitly. We show how the indirect effect of damping the decay of shared resources results in biodiversity increase, and last but not least, the successful incorporation of the synthetic within the ecological network and very small-positive changes in the population size of the resident community. Furthermore, extensions and implications for future restoration and terraformation strategies are discussed.
Collapse
Affiliation(s)
- Victor Maull
- ICREA-Complex Systems Lab, UPF-PRBB, Dr. Aiguader 80, Barcelona08003, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Passeig Maritim de la Barceloneta 37, Barcelona08003, Spain
| | - Ricard Solé
- ICREA-Complex Systems Lab, UPF-PRBB, Dr. Aiguader 80, Barcelona08003, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Passeig Maritim de la Barceloneta 37, Barcelona08003, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
| |
Collapse
|
14
|
Bonanno G, Veneziano V. Seed dormancy, climate changes, desertification and soil use transformation threaten the Mediterranean endemic monospecific plant Petagnaea gussonei. Sci Rep 2024; 14:8235. [PMID: 38589665 PMCID: PMC11001949 DOI: 10.1038/s41598-024-58948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
This study investigated the germination capacity (endogenous factor) of Petagnaea gussonei (Spreng.) Rauschert, an endemic monospecific plant considered as a relict species of the ancient Mediterranean Tertiary flora. This investigation focused also on the temporal trends of soil-use, climate and desertification (exogenous factors) across the natural range of P. gussonei. The final germination percentage showed low values between 14 and 32%, the latter obtained with GA3 and agar at 10 °C. The rising temperatures in the study area will further increase the dormancy of P. gussonei, whose germination capacity was lower and slower at temperatures higher than 10 °C. A further limiting factor of P. gussonei is its dormancy, which seems to be morpho-physiological. Regarding climate trends, in the period 1931-2020, the average temperature increased by 0.5 °C, from 15.4 to 15.9 °C, in line with the projected climate changes throughout the twenty-first century across the Mediterranean region. The average annual rainfall showed a relatively constant value of c. 900 mm, but extreme events grew considerably in the period 1991-2020. Similarly, the land affected by desertification expanded in an alarming way, by increasing from 21.2% in 2000 to 47.3% in 2020. Soil-use changes created also a complex impacting mosaic where c. 40% are agricultural areas. The effective conservation of P. gussonei should be multilateral by relying on germplasm banks, improving landscape connectivity and vegetation cover, and promoting climate policies.
Collapse
Affiliation(s)
- Giuseppe Bonanno
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Antonino Longo 19, 95125, Catania, Italy.
| | - Vincenzo Veneziano
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Antonino Longo 19, 95125, Catania, Italy
| |
Collapse
|
15
|
Zapata-Hernández G, Gajardo-Rojas M, Calderón-Seguel M, Muñoz AA, Yáñez KP, Requier F, Fontúrbel FE, Ormeño-Arriagada PI, Arrieta H. Advances and knowledge gaps on climate change impacts on honey bees and beekeeping: A systematic review. GLOBAL CHANGE BIOLOGY 2024; 30:e17219. [PMID: 38450832 DOI: 10.1111/gcb.17219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 03/08/2024]
Abstract
The Western honey bee Apis mellifera is a managed species that provides diverse hive products and contributing to wild plant pollination, as well as being a critical component of crop pollination systems worldwide. High mortality rates have been reported in different continents attributed to different factors, including pesticides, pests, diseases, and lack of floral resources. Furthermore, climate change has been identified as a potential driver negatively impacting pollinators, but it is still unclear how it could affect honey bee populations. In this context, we carried out a systematic review to synthesize the effects of climate change on honey bees and beekeeping activities. A total of 90 articles were identified, providing insight into potential impacts (negative, neutral, and positive) on honey bees and beekeeping. Interest in climate change's impact on honey bees has increased in the last decade, with studies mainly focusing on honey bee individuals, using empirical and experimental approaches, and performed at short-spatial (<10 km) and temporal (<5 years) scales. Moreover, environmental analyses were mainly based on short-term data (weather) and concentrated on only a few countries. Environmental variables such as temperature, precipitation, and wind were widely studied and had generalized negative effects on different biological and ecological aspects of honey bees. Food reserves, plant-pollinator networks, mortality, gene expression, and metabolism were negatively impacted. Knowledge gaps included a lack of studies at the apiary and beekeeper level, a limited number of predictive and perception studies, poor representation of large-spatial and mid-term scales, a lack of climate analysis, and a poor understanding of the potential impacts of pests and diseases. Finally, climate change's impacts on global beekeeping are still an emergent issue. This is mainly due to their diverse effects on honey bees and the potential necessity of implementing adaptation measures to sustain this activity under complex environmental scenarios.
Collapse
Affiliation(s)
- Germán Zapata-Hernández
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Martina Gajardo-Rojas
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Matías Calderón-Seguel
- Departamento de Ciencias Sociales, Facultad de Ciencias Sociales, Universidad de Tarapacá, Iquique, Chile
| | - Ariel A Muñoz
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro de Ciencia del Clima y la Resiliencia, Santiago, Chile
| | - Karen P Yáñez
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Fabrice Requier
- CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Francisco E Fontúrbel
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Pablo I Ormeño-Arriagada
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Departamento de Informática, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Héctor Arrieta
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
16
|
Russo D, Jones G, Polizzi M, Meola V, Cistrone L. Higher and bigger: How riparian bats react to climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169733. [PMID: 38171455 DOI: 10.1016/j.scitotenv.2023.169733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
The altitudinal distribution of animals and changes in their body size are effective indicators of climate change. Bats are sensitive to climate change due to their dependence on temperature during critical life stages. However, long-term studies documenting responses over extended periods are rare. We present a 24-year investigation of Myotis daubentonii, a riparian bat known for altitudinal sexual segregation, along a river course in Central Italy. While males occupy the entire river course, females are confined to downstream warmer areas supporting successful reproduction due to improved foraging site productivity. In 2000, females were absent above 900 m a.s.l in our study area. We hypothesise that a) this altitude threshold is now higher, due to thermal gradient changes along the river course; and b) thermoregulatory costs for reproductive females have declined, leading to increased energy investment in offspring and subsequent generational growth in bat body size. Confirming our hypotheses, females exhibited a 175-m upward shift in altitude limit. Furthermore, we found a concurrent increase in body size (but not condition). Temperatures increased in the 24 years, likely allowing females to extend their range to higher elevations and favouring an increase in newborn body mass. Riparian vegetation remained unchanged, excluding habitat quality changes as the cause for the observed responses. The rapid female elevation rise might imply future disruption of established social structures, altering intra- and intersexual competition for roosts and food. Given the global decline in insect populations, larger bats might face future difficulties in finding food to sustain their body size, increasing mortality. However, the full impact of such changes on bat fitness remains unexplored and warrants further investigation, including other bat populations. This knowledge is crucial for informing conservation in the face of ongoing climate change and preserving the ecosystem services bats deliver in riparian ecosystems.
Collapse
Affiliation(s)
- Danilo Russo
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di Agraria, Università degli Studi di Napoli Federico II, via Università, 100, 80055 Portici, Napoli, Italy; University of Bristol, School of Biological Sciences, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Gareth Jones
- University of Bristol, School of Biological Sciences, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Marta Polizzi
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro, 00185 Roma, Italy
| | - Vincenzo Meola
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di Agraria, Università degli Studi di Napoli Federico II, via Università, 100, 80055 Portici, Napoli, Italy
| | - Luca Cistrone
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di Agraria, Università degli Studi di Napoli Federico II, via Università, 100, 80055 Portici, Napoli, Italy
| |
Collapse
|
17
|
Cristóbal-Perez EJ, Barrantes G, Cascante-Marín A, Hanson P, Picado B, Gamboa-Barrantes N, Rojas-Malavasi G, Zumbado MA, Madrigal-Brenes R, Martén-Rodríguez S, Quesada M, Fuchs EJ. Elevational and seasonal patterns of plant pollinator networks in two highland tropical ecosystems in Costa Rica. PLoS One 2024; 19:e0295258. [PMID: 38206918 PMCID: PMC10783733 DOI: 10.1371/journal.pone.0295258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/18/2023] [Indexed: 01/13/2024] Open
Abstract
Many plant species in high montane ecosystems rely on animal pollination for sexual reproduction, however, our understanding of plant-pollinator interactions in tropical montane habitats is still limited. We compared species diversity and composition of blooming plants and floral visitors, and the structure of plant-floral visitor networks between the Montane Forest and Paramo ecosystems in Costa Rica. We also studied the influence of seasonality on species composition and interaction structure. Given the severe climatic conditions experienced by organisms in habitats above treeline, we expected lower plant and insect richness, as well as less specialized and smaller pollination networks in the Paramo than in Montane Forest where climatic conditions are milder and understory plants are better protected. Accordingly, we found that blooming plants and floral visitor species richness was higher in the Montane Forest than in the Paramo, and in both ecosystems species richness of blooming plants and floral visitors was higher in the rainy season than in the dry season. Interaction networks in the Paramo were smaller and more nested, with lower levels of specialization and modularity than those in the Montane Forest, but there were no seasonal differences within either ecosystem. Beta diversity analyses indicate that differences between ecosystems are likely explained by species turnover, whereas within the Montane Forest differences between seasons are more likely explained by the rewiring of interactions. Results indicate that the decrease in species diversity with elevation affects network structure, increasing nestedness and reducing specialization and modularity.
Collapse
Affiliation(s)
- E. Jacob Cristóbal-Perez
- Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica
- Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
- Laboratorio Binacional de Análisis y Síntesis Ecológica, UNAM-UCR, México, Costa Rica
| | - Gilbert Barrantes
- Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica
- Laboratorio Binacional de Análisis y Síntesis Ecológica, UNAM-UCR, México, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Alfredo Cascante-Marín
- Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica
- Laboratorio Binacional de Análisis y Síntesis Ecológica, UNAM-UCR, México, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Paul Hanson
- Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Beatriz Picado
- Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Nicole Gamboa-Barrantes
- Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Geovanna Rojas-Malavasi
- Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Manuel A. Zumbado
- Investigador Colaborador, Museo de Zoología, Universidad de Costa Rica, San José, Costa Rica
| | - Ruth Madrigal-Brenes
- Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica
- Laboratorio Binacional de Análisis y Síntesis Ecológica, UNAM-UCR, México, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Silvana Martén-Rodríguez
- Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
- Laboratorio Binacional de Análisis y Síntesis Ecológica, UNAM-UCR, México, Costa Rica
- Laboratorio de Ecología Evolutiva de Plantas, Escuela Nacional de Estudios Superiores–Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Mauricio Quesada
- Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
- Laboratorio Binacional de Análisis y Síntesis Ecológica, UNAM-UCR, México, Costa Rica
| | - Eric J. Fuchs
- Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica
- Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
- Laboratorio Binacional de Análisis y Síntesis Ecológica, UNAM-UCR, México, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
18
|
Suhaimi AH, Kobayashi MJ, Satake A, Ng CC, Lee SL, Muhammad N, Numata S, Otani T, Kondo T, Tani N, Yeoh SH. An ecological transcriptome approach to capture the molecular and physiological mechanisms of mass flowering in Shorea curtisii. PeerJ 2023; 11:e16368. [PMID: 38047035 PMCID: PMC10693236 DOI: 10.7717/peerj.16368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/08/2023] [Indexed: 12/05/2023] Open
Abstract
Climatic factors have commonly been attributed as the trigger of general flowering, a unique community-level mass flowering phenomenon involving most dipterocarp species that forms the foundation of Southeast Asian tropical rainforests. This intriguing flowering event is often succeeded by mast fruiting, which provides a temporary yet substantial burst of food resources for animals, particularly frugivores. However, the physiological mechanism that triggers general flowering, particularly in dipterocarp species, is not well understood largely due to its irregular and unpredictable occurrences in the tall and dense forests. To shed light on this mechanism, we employed ecological transcriptomic analyses on an RNA-seq dataset of a general flowering species, Shorea curtisii (Dipterocarpaceae), sequenced from leaves and buds collected at multiple vegetative and flowering phenological stages. We assembled 64,219 unigenes from the transcriptome of which 1,730 and 3,559 were differentially expressed in the leaf and the bud, respectively. Differentially expressed unigene clusters were found to be enriched with homologs of Arabidopsis thaliana genes associated with response to biotic and abiotic stresses, nutrient level, and hormonal treatments. When combined with rainfall data, our transcriptome data reveals that the trees were responding to a brief period of drought prior to the elevated expression of key floral promoters and followed by differential expression of unigenes that indicates physiological changes associated with the transition from vegetative to reproductive stages. Our study is timely for a representative general flowering dipterocarp species that occurs in forests that are under the constant threat of deforestation and climate change as it pinpoints important climate sensitive and flowering-related homologs and offers a glimpse into the cascade of gene expression before and after the onset of floral initiation.
Collapse
Affiliation(s)
- Ahmad Husaini Suhaimi
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Masaki J. Kobayashi
- Forestry Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ching Ching Ng
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Soon Leong Lee
- Forestry Biotechnology Division, Forest Research Institute Malaysia, Selangor, Malaysia
| | - Norwati Muhammad
- Forestry Biotechnology Division, Forest Research Institute Malaysia, Selangor, Malaysia
| | - Shinya Numata
- Department of Tourism Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Tatsuya Otani
- Shikoku Research Center, Forestry Research and Management Organization, Kochi, Japan
| | - Toshiaki Kondo
- Bio-Resources and Utilization Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Naoki Tani
- Forestry Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Suat Hui Yeoh
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Feng L, Cao B, Wang X. Response of soil extracellular enzyme activity and stoichiometry to short-term warming and phosphorus addition in desert steppe. PeerJ 2023; 11:e16227. [PMID: 37872947 PMCID: PMC10590576 DOI: 10.7717/peerj.16227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/12/2023] [Indexed: 10/25/2023] Open
Abstract
Background Phosphorus (P) is regarded as one of the major limiting factors in grassland ecosystems. Soil available phosphorus deficiency could affect soil extracellular enzyme activity, which is essential for microbial metabolism. Yet it is still unclear how soil available phosphorus affects soil extracellular enzyme activity and microbial nutrient limitation of desert steppe in the context of climate warming. Methods This study carried out a short-term open-top chambers (OTCs) experiment in a desert steppe to examine the effects of warming, P addition, and their interaction on soil properties, the activities of soil extracellular enzymes, and stoichiometries. Results The findings demonstrated that soil acquisition enzyme stoichiometry of C: N: P was 1.2:1:1.5 in this experiment region, which deviated from the global mean scale (1:1:1). Warming increased soil AN (ammonium nitrogen and nitrate nitrogen) contents and decreased microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN). Phosphorus addition raised soil available phosphorus and microbial biomass phosphorus (MBP) contents. Soil extracellular enzyme activities and stoichiometries in desert steppe are largely impacted by soil AN, MBC: MBP, and MBN: MBP. These results revealed that the changes of soil available nutrients and stoichiometries induced by short-term warming and P addition could influence soil microbial activities and alleviate soil microbial carbon and phosphorus limitation. Our findings highlight that soil available phosphorus played a critical role in regulating soil extracellular enzyme activity and microbial nutrient limitation of desert steppe. Further research on soil microbial communities should explore the microbiological mechanisms underlying these findings.
Collapse
Affiliation(s)
- Lingxia Feng
- School of Agriculture, Ningxia University, Yinchuan, China
- State Key Laboratory Cultivation Base for Northwest Degraded Ecosystem Recovery and Reconstruction, Yinchuan, China
| | - Bing Cao
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Xiaojia Wang
- School of Agriculture, Ningxia University, Yinchuan, China
- State Key Laboratory Cultivation Base for Northwest Degraded Ecosystem Recovery and Reconstruction, Yinchuan, China
| |
Collapse
|
20
|
Saixiyala, Chen L, Yi F, Qiu X, Sun H, Cao H, Baoyin T, Ye X, Huang Z. Warming in combination with increased precipitation mediate the sexual and clonal reproduction in the desert steppe dominant species Stipa breviflora. BMC PLANT BIOLOGY 2023; 23:474. [PMID: 37807079 PMCID: PMC10561481 DOI: 10.1186/s12870-023-04439-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/01/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Clonal plants can successfully adapt to various ecosystems. A trade-off between sexual and clonal reproduction is generally assumed in clonal plants, which may be influenced both by the characteristics of the plant itself and environmental conditions. Currently, it is unclear how climate change, and specifically warming and increased precipitation, might affect sexual and clonal reproduction in clonal plants. Therefore, this study aimed to investigate both the sexual and clonal reproduction responses of Stipa breviflora to warming and increased precipitation. A controlled experiment was conducted by inducing increases in precipitation (ambient condition, 25% and 50% increases) and warming (ambient temperature, 1.5 °C and 3.0 °C increases). RESULTS Warming significantly influenced both the ratio of reproductive ramet shoot biomass to total shoot biomass, and the ratio of reproductive ramet number to total ramet number. Additionally, the ratio of reproductive ramet shoot biomass to total shoot biomass was also significantly affected by increased precipitation. Increased precipitation benefited sexual reproduction, while effects of warming on reproductive and/or vegetative ramets varied from negative to positive depending on precipitation conditions. There was no relationship between the number or shoot biomass of reproductive ramets and vegetative ramets. Reproductive ramets displayed greater sensitivity to climate change than vegetative ramets. CONCLUSIONS The findings of our study suggest that there was no trade-off between sexual and clonal reproduction in S. breviflora. The combined impact of warming and increased precipitation promoted sexual reproduction but did not inhibit clonal reproduction. Clonal plants with the capacity for both sexual and clonal reproduction, may cope with climate change well via clonal reproduction, ensuring their survival.
Collapse
Affiliation(s)
- Saixiyala
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Lingling Chen
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Fengyan Yi
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010030, China
| | - Xiao Qiu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010030, China
| | - Hailian Sun
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010030, China
| | - Hongxia Cao
- Suzhou Vocational Technical College, Suzhou, 234099, China
| | - Taogetao Baoyin
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| | - Xuehua Ye
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing, 100093, China.
| | - Zhenying Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing, 100093, China
| |
Collapse
|
21
|
Wang B, Chen W, Tian D, Li Z, Wang J, Fu Z, Luo Y, Piao S, Yu G, Niu S. Dryness limits vegetation pace to cope with temperature change in warm regions. GLOBAL CHANGE BIOLOGY 2023; 29:4750-4757. [PMID: 37381593 DOI: 10.1111/gcb.16842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 06/30/2023]
Abstract
Climate change leads to increasing temperature and more extreme hot and drought events. Ecosystem capability to cope with climate warming depends on vegetation's adjusting pace with temperature change. How environmental stresses impair such a vegetation pace has not been carefully investigated. Here we show that dryness substantially dampens vegetation pace in warm regions to adjust the optimal temperature of gross primary production (GPP) (T opt GPP ) in response to change in temperature over space and time.T opt GPP spatially converges to an increase of 1.01°C (95% CI: 0.97, 1.05) per 1°C increase in the yearly maximum temperature (Tmax ) across humid or cold sites worldwide (37o S-79o N) but only 0.59°C (95% CI: 0.46, 0.74) per 1°C increase in Tmax across dry and warm sites.T opt GPP temporally changes by 0.81°C (95% CI: 0.75, 0.87) per 1°C interannual variation in Tmax at humid or cold sites and 0.42°C (95% CI: 0.17, 0.66) at dry and warm sites. Regardless of the water limitation, the maximum GPP (GPPmax ) similarly increases by 0.23 g C m-2 day-1 per 1°C increase inT opt GPP in either humid or dry areas. Our results indicate that the future climate warming likely stimulates vegetation productivity more substantially in humid than water-limited regions.
Collapse
Affiliation(s)
- Bingxue Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
| | - Weinan Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
| | - Zhaolei Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
| | - Zheng Fu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
| | - Yiqi Luo
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Shilong Piao
- Key Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Robertson RD, De Pinto A, Cenacchi N. Assessing the future global distribution of land ecosystems as determined by climate change and cropland incursion. CLIMATIC CHANGE 2023; 176:108. [PMID: 37520165 PMCID: PMC10382346 DOI: 10.1007/s10584-023-03584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
The geographic distribution of natural ecosystems is affected by both climate and cropland. Discussions of future land use/land cover usually focus on how cropland expands and displaces natural vegetation especially as climate change impacts become stronger. Less commonly considered is the direct influence of climate change on natural ecosystems simultaneously with cropland incursion. We combine a natural vegetation model responsive to climate with a cropland allocation algorithm to assess the relative importance of climate change compared to cropland incursion. Globally, the model indicates that climate change drives larger gains and losses than cropland incursion. For example, in the Amazonian rainforests, more than one sixth of the forest area could be lost due to climate change with cropland playing virtually no role. Our findings suggest that policies to protect specific ecosystems may be undercut by climate change and that localized analyses that fully account for the impacts of a changing climate on natural vegetation and agriculture are necessary to formulate policies that preserve natural ecosystems over the long term. Supplementary Information The online version contains supplementary material available at 10.1007/s10584-023-03584-3.
Collapse
Affiliation(s)
| | | | - Nicola Cenacchi
- International Food Policy Research Institute, Washington, DC USA
| |
Collapse
|
23
|
Kiebacher T, Meier M, Kipfer T, Roth T. Thermophilisation of communities differs between land plant lineages, land use types and elevation. Sci Rep 2023; 13:11395. [PMID: 37452104 PMCID: PMC10349125 DOI: 10.1038/s41598-023-38195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Bryophytes provide key ecosystem services at the global scale such as carbon storage and primary production in resource limited habitats, but compared to vascular plants knowledge on how these organisms face recent climate warming is fragmentary. This is particularly critical because bryophytes differ fundamentally from vascular plants in their ecophysiological and biological characteristics, so that community alterations most likely have different dynamics. In a comparative approach, we analysed thermophilisation of bryophyte and vascular plant communities in 1146 permanent plots distributed along an elevational gradient of nearly 3.000 m in Switzerland (Central Europe) that were visited in 5-years intervals between 2001 and 2021. We estimated thermophilisation from changes in unweighted mean temperature indicator values of species, compared it to expected thermophilisation rates given the shift of isotherms and addressed differences between the two lineages, major land use types (managed grasslands, forests, unmanaged open areas), life strategy types (long- and short-lived species) and in elevation. Thermophilisation of bryophyte communities was on average 2.1 times higher than of vascular plant communities and at high elevations it approximated the expected rate given the shift of isotherms. Thermophilisation of both, bryophyte and vascular plant communities was not driven by a loss of cryophilic species but by an increase in thermophilic and mesophilic species, indicating an in-filling process. Furthermore, our data show that thermophilisation is higher in managed grasslands than in forests. We suggest that the higher responsiveness of bryophytes compared to vascular plants depends on their poikilohydry and dispersal capacity and that lower thermophilisation of forests communities is related to the buffering effect of microclimatic conditions in the interior of forests. Our study emphasises the heterogeneity of climate warming effects on plants because response dynamics differ between taxonomic groups as well as between land use types and along elevational gradients.
Collapse
Affiliation(s)
- Thomas Kiebacher
- Department of Botany, Stuttgart State Museum of Natural History, Rosenstein 1, 70191, Stuttgart, Germany.
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Markus Meier
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Tabea Kipfer
- Hintermann & Weber AG, Austrasse 2a, 4153, Reinach, Switzerland
| | - Tobias Roth
- Hintermann & Weber AG, Austrasse 2a, 4153, Reinach, Switzerland
- Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
24
|
Lamy K, Tran A, Portafaix T, Leroux MD, Baldet T. Impact of regional climate change on the mosquito vector Aedes albopictus in a tropical island environment: La Réunion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162484. [PMID: 36889019 DOI: 10.1016/j.scitotenv.2023.162484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The recent expansion of Aedes albopictus across continents in both tropical and temperate regions and the exponential growth of dengue cases over the past 50 years represent a significant risk to human health. Although climate change is not the only factor responsible for the increase and spread of dengue cases worldwide, it might increase the risk of disease transmission at global and regional scale. Here we show that regional and local variations in climate can induce differential impacts on the abundance of Ae. albopictus. We use the instructive example of Réunion Island with its varied climatic and environmental conditions and benefiting from the availability of meteorological, climatic, entomological and epidemiological data. Temperature and precipitation data based on regional climate model simulations (3 km × 3 km) are used as inputs to a mosquito population model for three different climate emission scenarios. Our objective is to study the impact of climate change on the life cycle dynamics of Ae. albopictus in the 2070-2100 time horizon. Our results show the joint influence of temperature and precipitation on Ae. albopictus abundance as a function of elevation and geographical subregion. At low-elevations areas, decreasing precipitation is expected to have a negative impact on environmental carrying capacity and, consequently, on Ae. albopictus abundance. At mid- and high-elevations, decreasing precipitation is expected to be counterbalanced by a significant warming, leading to faster development rates at all life stages, and consequently increasing the abundance of this important dengue vector in 2070-2100.
Collapse
Affiliation(s)
- K Lamy
- LACy, Laboratoire de l'Atmosphère et des Cyclones (UMR 8105 CNRS, Université de La Réunion, Météo-France), Saint-Denis de La Réunion, France.
| | - A Tran
- CIRAD, UMR TETIS, Sainte-Clotilde, La Réunion, France
| | - T Portafaix
- LACy, Laboratoire de l'Atmosphère et des Cyclones (UMR 8105 CNRS, Université de La Réunion, Météo-France), Saint-Denis de La Réunion, France
| | - M D Leroux
- Météo-France, Direction Interrégionale pour l'Océan Indien, Saint-Denis de La Réunion, France
| | - T Baldet
- ASTRE, Univ. Montpellier, Cirad, INRA, Sainte-Clotilde, La Réunion, France
| |
Collapse
|
25
|
Harvey JA, Dong Y. Climate Change, Extreme Temperatures and Sex-Related Responses in Spiders. BIOLOGY 2023; 12:biology12040615. [PMID: 37106814 PMCID: PMC10136024 DOI: 10.3390/biology12040615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Climatic extremes, such as heat waves, are increasing in frequency, intensity and duration under anthropogenic climate change. These extreme events pose a great threat to many organisms, and especially ectotherms, which are susceptible to high temperatures. In nature, many ectotherms, such as insects, may seek cooler microclimates and 'ride out´ extreme temperatures, especially when these are transient and unpredictable. However, some ectotherms, such as web-building spiders, may be more prone to heat-related mortality than more motile organisms. Adult females in many spider families are sedentary and build webs in micro-habitats where they spend their entire lives. Under extreme heat, they may be limited in their ability to move vertically or horizontally to find cooler microhabitats. Males, on the other hand, are often nomadic, have broader spatial distributions, and thus might be better able to escape exposure to heat. However, life-history traits in spiders such as the relative body size of males and females and spatial ecology also vary across different taxonomic groups based on their phylogeny. This may make different species or families more or less susceptible to heat waves and exposure to very high temperatures. Selection to extreme temperatures may drive adaptive responses in female physiology, morphology or web site selection in species that build small or exposed webs. Male spiders may be better able to avoid heat-related stress than females by seeking refuge under objects such as bark or rocks with cooler microclimates. Here, we discuss these aspects in detail and propose research focusing on male and female spider behavior and reproduction across different taxa exposed to temperature extremes.
Collapse
Affiliation(s)
- Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Yuting Dong
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
26
|
Cui G, Pugnaire FI, Yang L, Zhao W, Ale R, Shen W, Luo T, Liang E, Zhang L. Shrub-mediated effects on soil nitrogen determines shrub-herbaceous interactions in drylands of the Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2023; 14:1137365. [PMID: 36844071 PMCID: PMC9950575 DOI: 10.3389/fpls.2023.1137365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Shrub promotes the survival, growth and reproduction of understory species by buffering the environmental extremes and improving limited resources (i.e., facilitation effect) in arid and semiarid regions. However, the importance of soil water and nutrient availability on shrub facilitation, and its trend along a drought gradient have been relatively less addressed in water-limited systems. METHODS We investigated species richness, plant size, soil total nitrogen and dominant grass leaf δ13C within and outside the dominant leguminous cushion-like shrub Caragana versicolor along a water deficit gradient in drylands of Tibetan Plateau. RESULTS We found that C. versicolor increased grass species richness but had a negative effect on annual and perennial forbs. Along the water deficit gradient, plant interaction assessed by species richness (RIIspecies) showed a unimodal pattern with shift from increase to decrease, while plant interaction assessed by plant size (RIIsize) did not vary significantly. The effect of C. versicolor on soil nitrogen, rather than water availability, determined its overall effect on understory species richness. Neither the effect of C. versicolor on soil nitrogen nor water availability affected plant size. DISCUSSION Our study suggests that the drying tendency in association with the recent warming trends observed in drylands of Tibetan Plateau, will likely hinder the facilitation effect of nurse leguminous shrub on understories if moisture availability crosses a critical minimum threshold.
Collapse
Affiliation(s)
- Guangshuai Cui
- State Key Laboratory of Tibetan Plateau Earth System Science, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Almería, Spain
| | - Francisco I. Pugnaire
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Almería, Spain
| | - Liu Yang
- State Key Laboratory of Tibetan Plateau Earth System Science, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wanglin Zhao
- State Key Laboratory of Tibetan Plateau Earth System Science, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Rita Ale
- State Key Laboratory of Tibetan Plateau Earth System Science, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Wei Shen
- State Key Laboratory of Tibetan Plateau Earth System Science, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Tianxiang Luo
- State Key Laboratory of Tibetan Plateau Earth System Science, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System Science, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Lin Zhang
- State Key Laboratory of Tibetan Plateau Earth System Science, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Institute of Science and Technology Information of Tibet Autonomous Region, Lhasa, China
| |
Collapse
|
27
|
Rojas-Botero S, Teixeira LH, Kollmann J. Low precipitation due to climate change consistently reduces multifunctionality of urban grasslands in mesocosms. PLoS One 2023; 18:e0275044. [PMID: 36735650 PMCID: PMC9897532 DOI: 10.1371/journal.pone.0275044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Urban grasslands are crucial for biodiversity and ecosystem services in cities, while little is known about their multifunctionality under climate change. Thus, we investigated the effects of simulated climate change, i.e., increased [CO2] and temperature, and reduced precipitation, on individual functions and overall multifunctionality in mesocosm grasslands sown with forbs and grasses in four different proportions aiming at mimicking road verge grassland patches. Climate change scenarios RCP2.6 (control) and RCP8.5 (worst-case) were simulated in walk-in climate chambers of an ecotron facility, and watering was manipulated for normal vs. reduced precipitation. We measured eight indicator variables of ecosystem functions based on below- and aboveground characteristics. The young grassland communities responded to higher [CO2] and warmer conditions with increased vegetation cover, height, flower production, and soil respiration. Lower precipitation affected carbon cycling in the ecosystem by reducing biomass production and soil respiration. In turn, the water regulation capacity of the grasslands depended on precipitation interacting with climate change scenario, given the enhanced water efficiency resulting from increased [CO2] under RCP8.5. Multifunctionality was negatively affected by reduced precipitation, especially under RCP2.6. Trade-offs arose among single functions that performed best in either grass- or forb-dominated grasslands. Grasslands with an even ratio of plant functional types coped better with climate change and thus are good options for increasing the benefits of urban green infrastructure. Overall, the study provides experimental evidence of the effects of climate change on the functionality of urban ecosystems. Designing the composition of urban grasslands based on ecological theory may increase their resilience to global change.
Collapse
Affiliation(s)
- Sandra Rojas-Botero
- Chair of Restoration Ecology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- * E-mail:
| | - Leonardo H. Teixeira
- Chair of Restoration Ecology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Johannes Kollmann
- Chair of Restoration Ecology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
28
|
Sytiuk A, Hamard S, Céréghino R, Dorrepaal E, Geissel H, Küttim M, Lamentowicz M, Tuittila ES, Jassey VEJ. Linkages between Sphagnum metabolites and peatland CO 2 uptake are sensitive to seasonality in warming trends. THE NEW PHYTOLOGIST 2023; 237:1164-1178. [PMID: 36336780 PMCID: PMC10108112 DOI: 10.1111/nph.18601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Plants produce a wide diversity of metabolites. Yet, our understanding of how shifts in plant metabolites as a response to climate change feedback on ecosystem processes remains scarce. Here, we test to what extent climate warming shifts the seasonality of metabolites produced by Sphagnum mosses, and what are the consequences of these shifts for peatland C uptake. We used a reciprocal transplant experiment along a climate gradient in Europe to simulate climate change. We evaluated the responses of primary and secondary metabolites in five Sphagnum species and related their responses to gross ecosystem productivity (GEP). When transplanted to a warmer climate, Sphagnum species showed consistent responses to warming, with an upregulation of either their primary or secondary metabolite according to seasons. Moreover, these shifts were correlated to changes in GEP, especially in spring and autumn. Our results indicate that the Sphagnum metabolome is very plastic and sensitive to warming. We also show that warming-induced changes in the seasonality of Sphagnum metabolites have consequences on peatland GEP. Our findings demonstrate the capacity for plant metabolic plasticity to impact ecosystem C processes and reveal a further mechanism through which Sphagnum could shape peatland responses to climate change.
Collapse
Affiliation(s)
- Anna Sytiuk
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Samuel Hamard
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Régis Céréghino
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Ellen Dorrepaal
- Department of Ecology and Environmental Science, Climate Impacts Research CentreUmeå UniversitySE‐981 07AbiskoSweden
| | - Honorine Geissel
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| | - Martin Küttim
- Institute of Ecology, School of Natural Sciences and HealthTallinn UniversityUus‐Sadama 510120TallinnEstonia
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological SciencesAdam Mickiewicz University in PoznańBogumiła Krygowskiego 1061‐680PoznańPoland
| | - Eeva Stiina Tuittila
- School of Forest SciencesUniversity of Eastern FinlandJoensuu CampusFI‐80100JoensuuFinland
| | - Vincent E. J. Jassey
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE)Université Paul Sabatier, CNRSF‐31000ToulouseFrance
| |
Collapse
|
29
|
Feng J, Jia T, Wang Z, Zhu W. Differences of energy adaptation strategies in Tupaia belangeri between Pianma and Tengchong region by metabolomics of liver: Role of warmer temperature. Front Physiol 2022; 13:1068636. [PMID: 36467696 PMCID: PMC9713704 DOI: 10.3389/fphys.2022.1068636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2024] Open
Abstract
Global warming is becoming the future climate trend and will have a significant impact on small mammals, and they will also adapt at the physiological levels in response to climate change, among which the adaptation of energetics is the key to their survival. In order to investigate the physiological adaptation strategies in Tupaia belangeri affected by the climate change and to predict their possible fate under future global warming, we designed a metabonomic study in T. belangeri between two different places, including Pianma (PM, annual average temperature 15.01°C) and Tengchong (TC, annual average temperature 20.32°C), to analyze the differences of liver metabolite. Moreover, the changes of resting metabolic rate, body temperature, uncoupling protein 1content (UCP1) and other energy indicators in T. belangeri between the two places were also measured. The results showed that T. belangeri in warm areas (TC) reduced the concentrations of energy metabolites in the liver, such as pyruvic acid, fructose 6-phosphate, citric acid, malic acid, fumaric acid etc., so their energy metabolism intensity was also reduced, indicating that important energy metabolism pathway of glycolysis and tricarboxylic acid cycle (TCA) pathway reduced in T. belangeri from warmer habitat. Furthermore, brown adipose tissue (BAT) mass, UCP1 content and RMR in TC also decreased significantly, but their body temperature increased. All of the results suggested that T. belangeri adapt to the impact of warm temperature by reducing energy expenditure and increasing body temperature. In conclusion, our research had broadened our understanding of the physiological adaptation strategies to cope with climate change, and also provided a preliminary insight into the fate of T. belangeri for the future global warming climate.
Collapse
Affiliation(s)
- Jiahong Feng
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Ting Jia
- Yunnan College of Business Management, Kunming, China
| | - Zhengkun Wang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy Ministry of Education, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, China
| | - Wanlong Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy Ministry of Education, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, China
| |
Collapse
|
30
|
Ganjurjav H, Hu G, Gornish E, Zhang Y, Li Y, Yan Y, Wu H, Yan J, He S, Danjiu L, Gao Q. Warming and spring precipitation addition change plant growth pattern but have minor effects on growing season mean gross ecosystem productivity in an alpine meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156712. [PMID: 35709997 DOI: 10.1016/j.scitotenv.2022.156712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Gross ecosystem productivity (GEP) plays an important role in global carbon cycling. However, how plant phenology and growth rate regulate GEP under climate change is unclear. Based on an in situ manipulative experiment using open top chambers from 2015 to 2018, we measured whole year warming and spring precipitation addition effects on plant phenology, plant growth rate and GEP. Our results showed that warming delayed plant green up (4 days) and withering (5 days), while spring precipitation addition advanced green up 13 days and did not change withering. Warming delayed the timing of the fast-growing phase 7 days, shortened length of the fast-growing phase 7 days and marginally increased the growth rate. Spring precipitation addition advanced the timing of the fast-growing phase 6 days, but did not change the length of the fast-growing phase or the growth rate. Both whole year warming and spring precipitation addition have not significantly affected growing season mean GEP. GEP is positively correlated with plant growth rate and negatively correlated with the length of the fast-growing phase. We provide an evidence that although warming did not change growing season mean productivity, it delayed plant fast-growing phase. Our findings suggest that management approaches for increasing water availability before the fast-growing phase should be intensified to increase ecosystem carbon uptake and grass supply for animal husbandry in spring.
Collapse
Affiliation(s)
- Hasbagan Ganjurjav
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Guozheng Hu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Elise Gornish
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Yong Zhang
- National Plateau Wetlands Research Center, College of Wetlands, Southwest Forestry University, Kunming, China
| | - Yu Li
- School of Tourism and Land Resource, Chongqing Technology and Business University, Chongqing, China
| | - Yulong Yan
- CECEP Engineering Technology Research Institute, Beijing, China
| | - Hongbao Wu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Jun Yan
- Nagqu Grassland Station, Nagqu, China
| | | | | | - Qingzhu Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China.
| |
Collapse
|
31
|
Yu H, Chen Y, Zhou G, Xu Z. Coordination of leaf functional traits under climatic warming in an arid ecosystem. BMC PLANT BIOLOGY 2022; 22:439. [PMID: 36100908 PMCID: PMC9472406 DOI: 10.1186/s12870-022-03818-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/24/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Climatic warming is increasing regionally and globally, and results concerning warming and its consequent drought impacts have been reported extensively. However, due to a lack of quantitative analysis of warming severities, it is still unclear how warming and warming-induced drought influence leaf functional traits, particularly how the traits coordinate with each other to cope with climatic change. To address these uncertainties, we performed a field experiment with ambient, moderate and severe warming regimes in an arid ecosystem over 4 years. RESULTS Severe warming significantly reduced the specific leaf area and net photosynthetic rate with a relatively stable change and even enhancement under moderate warming, especially showing species-specific performance. The current results largely indicate that a coordinated trade-off can exist between plant functional traits in plant communities in a dryland ecosystem under ambient temperature conditions, which is strongly amplified by moderate warming but diminished or even eliminated by severe warming. Based on the present findings and recent results in the relevant literature, we advance the ecological conceptual models (e.g., LES and CSR) in the response to climatic warming in arid grassland communities, where the few key species play a crucial role by balancing their functional performances to cope with environmental change. CONCLUSION Our results highlight the importance of coordination and/or trade-off between leaf functional traits for understanding patterns of climatic change-induced vegetation degradation and suggest that the plant community composition in these drylands could be shifted under future climate change.
Collapse
Affiliation(s)
- Hongying Yu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingting Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhuji, 311800, China
| | - Guangsheng Zhou
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, 100081, China.
| | - Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
32
|
Solé R, Levin S. Ecological complexity and the biosphere: the next 30 years. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210376. [PMID: 35757877 PMCID: PMC9234814 DOI: 10.1098/rstb.2021.0376] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Global warming, habitat loss and overexploitation of limited resources are leading to alarming biodiversity declines. Ecosystems are complex adaptive systems that display multiple alternative states and can shift from one to another in abrupt ways. Some of these tipping points have been identified and predicted by mathematical and computational models. Moreover, multiple scales are involved and potential mitigation or intervention scenarios are tied to particular levels of complexity, from cells to human–environment coupled systems. In dealing with a biosphere where humans are part of a complex, endangered ecological network, novel theoretical and engineering approaches need to be considered. At the centre of most research efforts is biodiversity, which is essential to maintain community resilience and ecosystem services. What can be done to mitigate, counterbalance or prevent tipping points? Using a 30-year window, we explore recent approaches to sense, preserve and restore ecosystem resilience as well as a number of proposed interventions (from afforestation to bioengineering) directed to mitigate or reverse ecosystem collapse. The year 2050 is taken as a representative future horizon that combines a time scale where deep ecological changes will occur and proposed solutions might be effective. This article is part of the theme issue ‘Ecological complexity and the biosphere: the next 30 years’.
Collapse
Affiliation(s)
- Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 80, Barcelona 08003, Spain.,Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, Barcelona 08003, Spain.,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Simon Levin
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
33
|
Crous KY, Uddling J, De Kauwe MG. Temperature responses of photosynthesis and respiration in evergreen trees from boreal to tropical latitudes. THE NEW PHYTOLOGIST 2022; 234:353-374. [PMID: 35007351 PMCID: PMC9994441 DOI: 10.1111/nph.17951] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/03/2021] [Indexed: 05/29/2023]
Abstract
Evergreen species are widespread across the globe, representing two major plant functional forms in terrestrial models. We reviewed and analysed the responses of photosynthesis and respiration to warming in 101 evergreen species from boreal to tropical biomes. Summertime temperatures affected both latitudinal gas exchange rates and the degree of responsiveness to experimental warming. The decrease in net photosynthesis at 25°C (Anet25 ) was larger with warming in tropical climates than cooler ones. Respiration at 25°C (R25 ) was reduced by 14% in response to warming across species and biomes. Gymnosperms were more sensitive to greater amounts of warming than broadleaved evergreens, with Anet25 and R25 reduced c. 30-40% with > 10°C warming. While standardised rates of carboxylation (Vcmax25 ) and electron transport (Jmax25 ) adjusted to warming, the magnitude of this adjustment was not related to warming amount (range 0.6-16°C). The temperature optimum of photosynthesis (ToptA ) increased on average 0.34°C per °C warming. The combination of more constrained acclimation of photosynthesis and increasing respiration rates with warming could possibly result in a reduced carbon sink in future warmer climates. The predictable patterns of thermal acclimation across biomes provide a strong basis to improve modelling predictions of the future terrestrial carbon sink with warming.
Collapse
Affiliation(s)
- Kristine Y. Crous
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
| | - Johan Uddling
- Department of Biological and Environmental SciencesUniversity of GothenburgPO Box 461GothenburgSE‐405 30Sweden
| | | |
Collapse
|
34
|
Identifying the Factors behind Climate Diversification and Refugial Capacity in Mountain Landscapes: The Key Role of Forests. REMOTE SENSING 2022. [DOI: 10.3390/rs14071708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies have shown the importance of small-scale climate diversification and climate microrefugia for organisms to escape or suffer less from the impact of current climate change. These situations are common in topographically complex terrains like mountains, where many climate-forcing factors vary at a fine spatial resolution. We investigated this effect in a high roughness area of a southern European range (the Pyrenees), with the aid of a network of miniaturized temperature and relative humidity sensors distributed across 2100 m of elevation difference. We modeled the minimum (Tn) and maximum (Tx) temperatures above- and below-ground, and maximum vapor pressure deficit (VPDmax), as a function of several topographic and vegetation variables derived from ALS-LiDAR data and Landsat series. Microclimatic models had a good fit, working better in soil than in air, and for Tn than for Tx. Topographic variables (including elevation) had a larger effect on above-ground Tn, and vegetation variables on Tx. Forest canopy had a significant effect not only on the spatial diversity of microclimatic metrics but also on their refugial capacity, either stabilizing thermal ranges or offsetting free-air extreme temperatures and VPDmax. Our integrative approach provided an overview of microclimatic differences between air and soil, forests and open areas, and highlighted the importance of preserving and managing forests to mitigate the impacts of climate change on biodiversity. Remote-sensing can provide essential tools to detect areas that accumulate different factors extensively promoting refugial capacity, which should be prioritized based on their high resilience.
Collapse
|
35
|
Brzozowski M, Pełechaty M, Bogawski P. A winner or a loser in climate change? Modelling the past, current, and future potential distributions of a rare charophyte species. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
36
|
Functional and Taxonomic Effects of Organic Amendments on the Restoration of Semiarid Quarry Soils. mSystems 2021; 6:e0075221. [PMID: 34812648 PMCID: PMC8609970 DOI: 10.1128/msystems.00752-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The application of organic amendments to mining soils has been shown to be a successful method of restoration, improving key physicochemical soil properties. However, there is a lack of a clear understanding of the soil bacterial community taxonomic and functional changes that are brought about by these treatments. We present further metagenomic sequencing (MGS) profiling of the effects of different restoration treatments applied to degraded, arid quarry soils in southern Spain which had previously been profiled only with 16S rRNA gene (16S) and physicochemical analyses. Both taxonomic and functional MGS profiles showed clear separation of organic treatment amendments from control samples, and although taxonomic differences were quite clear, functional redundancy was higher than expected and the majority of the latter signal came from the aggregation of minor (<0.1%) community differences. Significant taxonomic differences were seen with the presumably less-biased MGS-for example, the phylum Actinobacteria and the two genera Chloracidobacterium (Acidobacteria) and Paenibacillus (Firmicutes) were determined to be major players by the MGS and this was consistent with their potential functional roles. The former phylum was much less present, and the latter two genera were either minor components or not detected in the 16S data. Mapping of reads to MetaCyc/BioCyc categories showed overall slightly higher biosynthesis and degradation capabilities in all treatments versus control soils, with sewage amendments showing highest values and vegetable-based amendments being at intermediate levels, matching higher nutrient levels, respiration rates, enzyme activities, and bacterial biomass previously observed in the treated soils. IMPORTANCE The restoration of soils impacted by human activities poses specific challenges regarding the reestablishment of functional microbial communities which will further support the reintroduction of plant species. Organic fertilizers, originating from either treated sewage or vegetable wastes, have shown promise in restoration experiments; however, we still do not have a clear understanding of the functional and taxonomic changes that occur during these treatments. We used metagenomics to profile restoration treatments applied to degraded, arid quarry soils in southern Spain. We found that the assortments of individual functions and taxa within each soil could clearly identify treatments, while at the same time they demonstrated high functional redundancy. Functions grouped into higher pathways tended to match physicochemical measurements made on the same soils. In contrast, significant taxonomic differences were seen when the treatments were previously studied with a single marker gene, highlighting the advantage of metagenomic analysis for complex soil communities.
Collapse
|
37
|
Cai M, An C, Guy C, Lu C, Mafakheri F. Assessing the regional biogenic methanol emission from spring wheat during the growing season: A Canadian case study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117602. [PMID: 34182392 DOI: 10.1016/j.envpol.2021.117602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
As a volatile organic compound existing in the atmosphere, methanol plays a key role in atmospheric chemistry due to its comparatively high abundance and long lifetime. Croplands are a significant source of biogenic methanol, but there is a lack of systematic assessment for the production and emission of methanol from crops in various phases. In this study, methanol emissions from spring wheat during the growing period were estimated using a developed emission model. The temporal and spatial variations of methanol emissions of spring wheat in a Canadian province were investigated. The averaged methanol emission of spring wheat is found to be 37.94 ± 7.5 μg·m-2·h-1, increasing from north to south and exhibiting phenological peak to valley characteristics. Moreover, cold crop districts are projected to be with higher increase in air temperature and consequent methanol emissions during 2020-2099. Furthermore, the seasonality of methanol emissions is found to be positively correlated to concentrations of CO, filterable particulate matter, and PM10 but negatively related to NO2 and O3. The uncertainty and sensitivity analysis results suggest that methanol emissions show a Gamma probabilistic distribution, and growth length, air temperature, solar radiation and leafage are the most important influencing variables. In most cases, methanol emissions increase with air temperature in the range of 3-35 °C while the excessive temperature may result in decreased methanol emissions because of inactivated enzyme activity or increased instant methanol emissions due to heat injury. Notably, induced emission might be the major source of biogenic methanol of mature leaves. The results of this study can be used to develop appropriate strategies for regional emission management of cropping systems.
Collapse
Affiliation(s)
- Mengfan Cai
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - Christophe Guy
- Department of Chemical and Materials Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Chen Lu
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, SK S4S 0A2, Canada
| | - Fereshteh Mafakheri
- Concordia Institute for Information Systems Engineering, Concordia University, Montreal, H3G 1M8, Canada
| |
Collapse
|
38
|
Dissanayake DSB, Holleley CE, Georges A. Effects of natural nest temperatures on sex reversal and sex ratios in an Australian alpine skink. Sci Rep 2021; 11:20093. [PMID: 34635741 PMCID: PMC8505511 DOI: 10.1038/s41598-021-99702-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/27/2021] [Indexed: 01/12/2023] Open
Abstract
Altered climate regimes have the capacity to affect the physiology, development, ecology and behaviour of organisms dramatically, with consequential changes in individual fitness and so the ability of populations to persist under climatic change. More directly, extreme temperatures can directly skew the population sex ratio in some species, with substantial demographic consequences that influence the rate of population decline and recovery rates. In contrast, this is particularly true for species whose sex is determined entirely by temperature (TSD). The recent discovery of sex reversal in species with genotypic sex determination (GSD) due to extreme environmental temperatures in the wild broadens the range of species vulnerable to changing environmental temperatures through an influence on primary sex ratio. Here we document the levels of sex reversal in nests of the Australian alpine three-lined skink (Bassiana duperreyi), a species with sex chromosomes and sex reversal at temperatures below 20 °C and variation in rates of sex reversal with elevation. The frequency of sex reversal in nests of B. duperreyi ranged from 28.6% at the highest, coolest locations to zero at the lowest, warmest locations. Sex reversal in this alpine skink makes it a sensitive indicator of climate change, both in terms of changes in average temperatures and in terms of climatic variability.
Collapse
Affiliation(s)
- Duminda S B Dissanayake
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.,Australian National Wildlife Collection, CSIRO, Canberra, ACT, 2911, Australia
| | - Clare E Holleley
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.,Australian National Wildlife Collection, CSIRO, Canberra, ACT, 2911, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.
| |
Collapse
|
39
|
DeWeese KJ, Osborne MG. Understanding the metabolome and metagenome as extended phenotypes: The next frontier in macroalgae domestication and improvement. JOURNAL OF THE WORLD AQUACULTURE SOCIETY 2021; 52:1009-1030. [PMID: 34732977 PMCID: PMC8562568 DOI: 10.1111/jwas.12782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/25/2021] [Indexed: 06/01/2023]
Abstract
"Omics" techniques (including genomics, transcriptomics, metabolomics, proteomics, and metagenomics) have been employed with huge success in the improvement of agricultural crops. As marine aquaculture of macroalgae expands globally, biologists are working to domesticate species of macroalgae by applying these techniques tested in agriculture to wild macroalgae species. Metabolomics has revealed metabolites and pathways that influence agriculturally relevant traits in crops, allowing for informed crop crossing schemes and genomic improvement strategies that would be pivotal to inform selection on macroalgae for domestication. Advances in metagenomics have improved understanding of host-symbiont interactions and the potential for microbial organisms to improve crop outcomes. There is much room in the field of macroalgal biology for further research toward improvement of macroalgae cultivars in aquaculture using metabolomic and metagenomic analyses. To this end, this review discusses the application and necessary expansion of the omics tool kit for macroalgae domestication as we move to enhance seaweed farming worldwide.
Collapse
Affiliation(s)
- Kelly J DeWeese
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, California, Los Angeles
| | - Melisa G Osborne
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, California, Los Angeles
| |
Collapse
|
40
|
Bastazini VAG, Galiana N, Hillebrand H, Estiarte M, Ogaya R, Peñuelas J, Sommer U, Montoya JM. The impact of climate warming on species diversity across scales: Lessons from experimental meta-ecosystems. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2021; 30:1545-1554. [PMID: 36618082 PMCID: PMC7614025 DOI: 10.1111/geb.13308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/30/2021] [Indexed: 06/16/2023]
Abstract
AIM The aim was to evaluate the effects of climate warming on biodiversity across spatial scales (i.e., α-, β- and γ-diversity) and the effects of patch openness and experimental context on diversity responses. LOCATION Global. TIME PERIOD 1995-2017. MAJOR TAXA STUDIED Fungi, invertebrates, phytoplankton, plants, seaweed, soil microbes and zooplankton. METHODS We compiled data from warming experiments and conducted a meta-analysis to evaluate the effects of warming on different components of diversity (such as species richness and equivalent numbers) at different spatial scales (α-, β- and γ-diversity, partitioning β-diversity into species turnover and nestedness components). We also investigated how these effects were modulated by system openness, defined as the possibility of replicates being colonized by new species, and experimental context (duration, mean temperature change and ecosystem type). RESULTS Experimental warming did not affect local species richness (α-diversity) but decreased effective numbers of species by affecting species dominance. Warming increased species spatial turnover (β-diversity), although no significant changes were detected at the regional scale (γ-diversity). Site openness and experimental context did not significantly affect our results, despite significant heterogeneity in the effect sizes of α- and β-diversity. MAIN CONCLUSIONS Our meta-analysis shows that the effects of warming on biodiversity are scale dependent. The local and regional inventory diversity remain unaltered, whereas species composition across temperature gradients and the patterns of species dominance change with temperature, creating novel communities that might be harder to predict.
Collapse
Affiliation(s)
- Vinicius A. G. Bastazini
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, French National Center for Scientific Research and Paul Sabatier University, Moulis, France
| | - Núria Galiana
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, French National Center for Scientific Research and Paul Sabatier University, Moulis, France
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of Marine Environments (ICBM), Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg, Germany
- Alfred Wegener Institute (AWI), Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Marc Estiarte
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Romá Ogaya
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Ulrich Sommer
- GEOMAR Helmholtz Zentrum für Ozeanforschung Kiel, Kiel, Germany
| | - José M. Montoya
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, French National Center for Scientific Research and Paul Sabatier University, Moulis, France
| |
Collapse
|
41
|
Li J, Bian C, Yi Y, Yu H, You X, Shi Q. Temporal dynamics of teleost populations during the Pleistocene: a report from publicly available genome data. BMC Genomics 2021; 22:490. [PMID: 34193045 PMCID: PMC8247217 DOI: 10.1186/s12864-021-07816-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/14/2021] [Indexed: 12/04/2022] Open
Abstract
Background Global climate oscillation, as a selection dynamic, is an ecologically important element resulting in global biodiversity. During the glacial geological periods, most organisms suffered detrimental selection pressures (such as food shortage and habitat loss) and went through population declines. However, during the mild interglacial periods, many species re-flourished. These temporal dynamics of effective population sizes (Ne) provide essential information for understanding and predicting evolutionary outcomes during historical and ongoing global climate changes. Results Using high-quality genome assemblies and corresponding sequencing data, we applied the Pairwise Sequentially Markovian Coalescent (PSMC) method to quantify Ne changes of twelve representative teleost species from approximately 10 million years ago (mya) to 10 thousand years ago (kya). These results revealed multiple rounds of population contraction and expansion in most of the examined teleost species during the Neogene and the Quaternary periods. We observed that 83% (10/12) of the examined teleosts had experienced a drastic decline in Ne before the last glacial period (LGP, 110–12 kya), slightly earlier than the reported pattern of Ne changes in 38 avian species. In comparison with the peaks, almost all of the examined teleosts maintained long-term lower Ne values during the last few million years. This is consistent with increasingly dramatic glaciation during this period. Conclusion In summary, these findings provide a more comprehensive understanding of the historical Ne changes in teleosts. Results presented here could lead to the development of appropriate strategies to protect species in light of ongoing global climate changes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07816-7.
Collapse
Affiliation(s)
- Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, Guangdong, China.
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, Guangdong, China.,Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yunhai Yi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, Guangdong, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hui Yu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, Guangdong, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, Guangdong, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, Guangdong, China. .,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China. .,Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
42
|
Wu X, Liu H, Ru Z, Tu G, Xing L, Ding Y. Meta-analysis of the response of marine phytoplankton to nutrient addition and seawater warming. MARINE ENVIRONMENTAL RESEARCH 2021; 168:105294. [PMID: 33770674 DOI: 10.1016/j.marenvres.2021.105294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
As an indispensable part of the marine ecosystem, phytoplankton are important prey for zooplankton and various marine animals with important commercial value. The influence of seawater warming and eutrophication on phytoplankton communities is well known, but few studies have explained the effects of the interaction between temperature and nutrients on marine phytoplankton. Through meta-analysis and meta-regression, the phytoplankton responses to the effects of nutrient addition and seawater warming were evaluated in this study. Nitrogen (N) addition led to an increase in phytoplankton biomass, while phosphorus (P) had no significant effect on phytoplankton biomass. However, this result may be biased by the uneven distribution of the research area. N limitation is widespread in the areas where these collected studies were conducted, including many parts of North and South Atlantic and West Pacific Oceans. The key limiting nutrient in other areas lacking corresponding experiments, however, remain unclear. The effect of seawater warming was not significant, which indicates the uncertainty about the effect of temperature on phytoplankton. The results of ANOVA show that nutrient addition and seawater warming had similar effects in various marine habitats (coastal regions, estuaries and open seas), while salinity could have caused the difference in the N effects among the three habitats. Furthermore, our results showed that the impact of temperature depends on nutrient conditions, especially N status, which has rarely been considered before. This result demonstrated the importance of evaluating nutrient limitation patterns when studying climate warming. The impact of rising temperatures may need to be reevaluated because N limitation is common.
Collapse
Affiliation(s)
- Xuerong Wu
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Haifei Liu
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Zhiming Ru
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Gangqin Tu
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Liming Xing
- School of Environment, Beijing Normal University, Beijing, 100875, China; Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Yu Ding
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
43
|
Possen BJHM, Rousi M, Keski‐Saari S, Silfver T, Kontunen‐Soppela S, Oksanen E, Mikola J. New evidence for the importance of soil nitrogen on the survival and adaptation of silver birch to climate warming. Ecosphere 2021. [DOI: 10.1002/ecs2.3520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- B. J. H. M. Possen
- Ecology Section Royal HaskoningDHV Larixplein 1 Eindhoven5616 VBThe Netherlands
| | - M. Rousi
- Vantaa Research Unit Natural Resources Institute Finland P.O. Box 18 Vantaa01301Finland
| | - S. Keski‐Saari
- Department of Environmental and Biological Sciences University of Eastern Finland P.O. Box 111 Joensuu80101Finland
| | - T. Silfver
- Faculty of Biological and Environmental Sciences Ecosystems and Environment Research Programme University of Helsinki Niemenkatu 73 Lahti15140Finland
| | - S. Kontunen‐Soppela
- Department of Environmental and Biological Sciences University of Eastern Finland P.O. Box 111 Joensuu80101Finland
| | - E. Oksanen
- Department of Environmental and Biological Sciences University of Eastern Finland P.O. Box 111 Joensuu80101Finland
| | - J. Mikola
- Faculty of Biological and Environmental Sciences Ecosystems and Environment Research Programme University of Helsinki Niemenkatu 73 Lahti15140Finland
| |
Collapse
|
44
|
Xu Y, Dai J, Ge Q, Wang H, Tao Z. Comparison of chilling and heat requirements for leaf unfolding in deciduous woody species in temperate and subtropical China. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:393-403. [PMID: 32880063 DOI: 10.1007/s00484-020-02007-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 05/21/2023]
Abstract
Climate warming has advanced the spring phenology of many plant species by accelerating heat accumulation. However, delayed phenophases due to insufficient chilling have also been reported. Based on phenological observation data (1963-2010), we compared the effects of preseason chill and heat accumulation on leaf unfolding dates of four deciduous woody species (Lagerstroemia indica, Robinia pseudoacacia, Sophora japonica, and Ulmus pumila) in temperate and subtropical regions of China. Daily chill and heat accumulation were calculated by two chilling models (the Positive Utah Model and the Dynamic Model) and the Growing Degree Hour (GDH) Model. We determined the temporal trends in chill and heat accumulations for leaf unfolding of the four species. The results showed that there were shorter chilling periods in the subtropics than in temperate sites because the chilling period typically started later and ended earlier. There was no significant difference in the length of the forcing period in the different regions. The chilling requirements for leaf unfolding were higher in temperate regions (1344.9-1798.9 chilling units (CU) or 64.7-79.4 chilling portions (CP)) than in the subtropics (1145.9-1828.1 CU or 47.9-75.2 CP). Plants in the subtropics needed higher forcing temperatures (4135.8-10084.8 GDH) than those in temperate regions (3292.0-8383.6 GDH). The earlier-leafing species (e.g., U. pumila) had a lower heat requirement for leaf unfolding than the later-leafing species (e.g., L. indica). A significant increase in heat accumulation was found at all sites except Guiyang, while chill accumulation only increased in Beijing.
Collapse
Affiliation(s)
- Yunjia Xu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junhu Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Quansheng Ge
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huanjiong Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Zexing Tao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
45
|
Zografou K, Swartz MT, Adamidis GC, Tilden VP, McKinney EN, Sewall BJ. Species traits affect phenological responses to climate change in a butterfly community. Sci Rep 2021; 11:3283. [PMID: 33558563 PMCID: PMC7870830 DOI: 10.1038/s41598-021-82723-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
Diverse taxa have undergone phenological shifts in response to anthropogenic climate change. While such shifts generally follow predicted patterns, they are not uniform, and interspecific variation may have important ecological consequences. We evaluated relationships among species' phenological shifts (mean flight date, duration of flight period), ecological traits (larval trophic specialization, larval diet composition, voltinism), and population trends in a butterfly community in Pennsylvania, USA, where the summer growing season has become warmer, wetter, and longer. Data were collected over 7-19 years from 18 species or species groups, including the extremely rare eastern regal fritillary Speyeria idalia idalia. Both the direction and magnitude of phenological change over time was linked to species traits. Polyphagous species advanced and prolonged the duration of their flight period while oligophagous species delayed and shortened theirs. Herb feeders advanced their flight periods while woody feeders delayed theirs. Multivoltine species consistently prolonged flight periods in response to warmer temperatures, while univoltine species were less consistent. Butterflies that shifted to longer flight durations, and those that had polyphagous diets and multivoltine reproductive strategies tended to decline in population. Our results suggest species' traits shape butterfly phenological responses to climate change, and are linked to important community impacts.
Collapse
Affiliation(s)
- Konstantina Zografou
- Department of Biology, Temple University, 1900 North 12th Street, Philadelphia, PA, 19122, USA.
| | - Mark T Swartz
- The Pennsylvania Department of Military and Veterans Affairs, Fort Indiantown Gap National Guard Training Center, Annville, PA, 17003, USA
| | - George C Adamidis
- Department of Biology, Temple University, 1900 North 12th Street, Philadelphia, PA, 19122, USA
| | - Virginia P Tilden
- The Pennsylvania Department of Military and Veterans Affairs, Fort Indiantown Gap National Guard Training Center, Annville, PA, 17003, USA
| | - Erika N McKinney
- The Pennsylvania Department of Military and Veterans Affairs, Fort Indiantown Gap National Guard Training Center, Annville, PA, 17003, USA
| | - Brent J Sewall
- Department of Biology, Temple University, 1900 North 12th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|
46
|
Egeru A, Magaya JP, Kuule DA, Siya A, Gidudu A, Barasa B, Namaalwa JJ. Savannah Phenological Dynamics Reveal Spatio-Temporal Landscape Heterogeneity in Karamoja Sub-region, Uganda. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.541170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phenological properties are critical in understanding global environmental change patterns. This study analyzed phenological dynamics in a savannah dominated semi-arid environment of Uganda. We used moderate-resolution imaging spectroradiometer normalized difference vegetation index (MODIS NDVI) imagery. TIMESAT program was used to analyse the imagery to determine key phenological metrics; onset of greenness (OGT), onset of greenness value, end of greenness time (EGT), end of greenness value, maximum NDVI, time of maximum NDVI, duration of greenup (DOG) and range of normalized difference vegetation index (RNDVI). Results showed that thicket and shrubs had the earliest OGT on day 85 ± 14, EGT on day 244 ± 32 and a DOG of 158 ± 25 days. Woodland had the highest NDVI value for maximum NDVI, OGT, EGT, and RNDVI. In the bushland, OGT occurs on average around day 90 ± 11, EGT on day 255 ± 33 with a DOG of 163 ± 36 days. The grassland showed that OGT occurs on day 96 ± 13, EGT on day 252 ± 36 with a total DOG of 156 ± 33 days. Early photosynthesis activity was observed in central to eastern Karamoja in the districts of Moroto and Kotido. There was a positive relationship between rainfall and NDVI across all vegetation cover types as well as between phenological parameters and season dynamics. Vegetation senescence in the sub-region occurs around August to mid-September (day 244–253). The varied phenophases observed in the sub-region reveal an inherent landscape heterogeneity that is beneficial to extensive pastoral livestock production. Continuous monitoring of savannah phenological patterns in the sub-region is required to decipher landscape ecosystem processes and functioning.
Collapse
|
47
|
Shu L, Qian X, Brock DA, Geist KS, Queller DC, Strassmann JE. Loss and resiliency of social amoeba symbiosis under simulated warming. Ecol Evol 2020; 10:13182-13189. [PMID: 33304528 PMCID: PMC7713973 DOI: 10.1002/ece3.6909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Anthropogenic global change is increasingly raising concerns about collapses of symbiotic interactions worldwide. Therefore, understanding how climate change affects symbioses remains a challenge and demands more study. Here, we look at how simulated warming affects the social ameba Dictyostelium discoideum and its relationship with its facultative bacterial symbionts, Paraburkholderia hayleyella and Paraburkholderia agricolaris. We cured and cross-infected ameba hosts with different symbionts. We found that warming significantly decreased D. discoideum's fitness, and we found no sign of local adaptation in two wild populations. Experimental warming had complex effects on these symbioses with responses determined by both symbiont and host. Neither of these facultative symbionts increases its hosts' thermal tolerance. The nearly obligate symbiont with a reduced genome, P. hayleyella, actually decreases D. discoideum's thermal tolerance and even causes symbiosis breakdown. Our study shows how facultative symbioses may have complex responses to global change.
Collapse
Affiliation(s)
- Longfei Shu
- Environmental Microbiomics Research CenterSchool of Environmental Science and EngineeringSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| | - Xinye Qian
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| | - Debra A. Brock
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| | | | - David C. Queller
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| | | |
Collapse
|
48
|
Li X, Zhang L, Luo T. Rainy season onset mainly drives the spatiotemporal variability of spring vegetation green-up across alpine dry ecosystems on the Tibetan Plateau. Sci Rep 2020; 10:18797. [PMID: 33139807 PMCID: PMC7606468 DOI: 10.1038/s41598-020-75991-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022] Open
Abstract
It is still debatable whether temperature or precipitation mainly triggers spring vegetation green-up (SVG) in alpine dry ecosystems on the Tibetan Plateau. As phenological sensitivity to the arrival of monsoon-season rainfall would allow plants to simultaneously avoid drought and frost damages in the early growing season, we hypothesize that rainy season onset (RSO) rather than temperature mainly drives the spatiotemporal variability of SVG across alpine dry ecosystems over the Tibetan Plateau. Dates of RSO and SVG across 67 target areas nearby 67 weather stations over the Tibetan Plateau were calculated from time-series data of daily mean temperature and precipitation (1974–2013) and of the Normalized Difference Vegetation Index from the Moderate Resolution Imaging Spectroradiometer (2001–2013), respectively. Satellite-derived SVG was validated by 7-year observations (2007–2013) for leaf emergence of dominant species in alpine meadows along elevations (4400–5200 m) in Damxung of Tibet. We found that SVG generally synchronized with or was somewhat later than RSO although seasonal air temperatures were already continuously above 0 °C in 1 month before SVG dates. In pooled data across sites and years, the analysis of linear mixed model indicated that RSO (F = 42.109) and its interactions with pre-SVG precipitation (F = 6.767) and temperature (F = 4.449) mainly explained the spatio-temporal variability of SVG, while pre-SVG temperature and its interaction with precipitation did not have significant effects on SVG. Our data supported the hypothesis, suggesting that synchronization of SVG and RSO is a general spring phenological strategy across alpine dry ecosystems under influence of monsoon climate.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, 16 Lin Cui Rd., Chaoyang District, Beijing, 100101, China
| | - Lin Zhang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, 16 Lin Cui Rd., Chaoyang District, Beijing, 100101, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China
| | - Tianxiang Luo
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, 16 Lin Cui Rd., Chaoyang District, Beijing, 100101, China. .,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China.
| |
Collapse
|
49
|
Smith S, Brauer CJ, Sasaki M, Unmack PJ, Guillot G, Laporte M, Bernatchez L, Beheregaray LB. Latitudinal variation in climate-associated genes imperils range edge populations. Mol Ecol 2020; 29:4337-4349. [PMID: 32930432 DOI: 10.1111/mec.15637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 11/28/2022]
Abstract
The ecological impacts of increasing global temperatures are evident in most ecosystems on Earth, but our understanding of how climatic variation influences natural selection and adaptive resilience across latitudes remains largely unknown. Latitudinal gradients allow testing general ecosystem-level theories relevant to climatic adaptation. We assessed differences in adaptive diversity of populations along a latitudinal region spanning highly variable temperate to subtropical climates. We generated and integrated information from environmental mapping, phenotypic variation and genome-wide data from across the geographical range of the rainbowfish Melanotaenia duboulayi, an emerging aquatic system for studies of climate change. We detected, after controlling for spatial population structure, strong interactions between genotypes and environment associated with variation in stream flow and temperature. Some of these hydroclimate-associated genes were found to interact within functional protein networks that contain genes of adaptive significance for projected future climates in rainbowfish. Hydroclimatic selection was also associated with variation in phenotypic traits, including traits known to affect fitness of rainbowfish exposed to different flow environments. Consistent with predictions from the "climatic variability hypothesis," populations exposed to extremes of important environmental variables showed stronger adaptive divergence and less variation in climate-associated genes compared to populations at the centre of the environmental gradient. Our findings suggest that populations that evolved at environmental range margins and at geographical range edges may be more vulnerable to changing climates, a finding with implications for predicting adaptive resilience and managing biodiversity under climate change.
Collapse
Affiliation(s)
- Steve Smith
- Molecular Ecology Lab, Flinders University, Bedford Park, SA, Australia.,Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Chris J Brauer
- Molecular Ecology Lab, Flinders University, Bedford Park, SA, Australia
| | - Minami Sasaki
- Molecular Ecology Lab, Flinders University, Bedford Park, SA, Australia
| | - Peter J Unmack
- Centre for Applied Water Science, University of Canberra, Bruce, ACT, Australia
| | - Gilles Guillot
- International Prevention Research Institute, Dardilly, France
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes, Université Laval Québec, Quebec City, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes, Université Laval Québec, Quebec City, QC, Canada
| | | |
Collapse
|
50
|
Rodríguez-Berbel N, Ortega R, Lucas-Borja ME, Solé-Benet A, Miralles I. Long-term effects of two organic amendments on bacterial communities of calcareous mediterranean soils degraded by mining. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110920. [PMID: 32579515 DOI: 10.1016/j.jenvman.2020.110920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
The application of organic amendments to improve the chemical and biological properties of degraded soils from calcareous quarries is necessary to accelerate restoration processes. The aim of this study is to assess the success of different restoration treatments in the long-term using two organic amendments (sewage sludge from urban waste water (SS) and compost from domestic solid waste (CW)). The chemical properties and bacterial communities of restored soils were compared with unamended soils (NA) and surrounding natural soils (NS) from a limestone quarry in a semi-arid ecosystem. After 10 years of the addition of organic amendments, the abundance of soil bacteria, diversity, and taxonomic composition at the phylum and genus level in each soil type was analysed by rRNA 16 S amplification (PCR), sequencing using Illumina, and comparison with the SILVA database using QIIME2 software. The relationships between soil bacterial taxa and chemical soil properties (pH, electrical conductivity (EC), total organic carbon (TOC), and total nitrogen content (TN)) were also studied, as well as the interrelations between soil bacterial taxa at the genus level or the next upper taxonomic level identified. The organic amendments changed the chemical properties of the restored soils, influencing the microbial communities of the restored soils. CW treatment was the organic amendment that most resembled NS, favouring in the long-term a greater diversity and proliferation of bacteria. Several bacterial communities, more abundant in NA and CW soils, were strongly correlated with each other (Craurococcus, Phaselicystis, Crossiella, etc.), forming a bacterial co-occurrence pattern (Co-occurrence pattern 1). Those bacteria showed high significant positive correlations with TOC, TN, and EC and negative correlations with the soil pH. In contrast, NA soils presented other groups of bacterial communities (Co-occurrence pattern 2) represented by Sphingomonas, Rubellimicrobium, Noviherbaspirillum, Psychroglaciecola and Caenimonas, which showed high significant positive correlations with soil pH and negative correlations with TOC, TN, and EC. The distance-based redundancy analysis indicated that SS soils remained in an intermediate stage of chemical and biological quality between NS and NA soils. Our results demonstrate that soil chemical properties and soil bacterial communities significantly changed with organic amendments in calcareous Mediterranean soils degraded by mining.
Collapse
Affiliation(s)
- N Rodríguez-Berbel
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120, Almería, Spain
| | - R Ortega
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120, Almería, Spain
| | - M E Lucas-Borja
- Escuela Técnica Superior Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071, Albacete, Spain
| | - A Solé-Benet
- EEZA-CSIC, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Carretera de Sacramento S/n, 04120, La Cañada de San Urbano, Almería, Spain
| | - I Miralles
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120, Almería, Spain.
| |
Collapse
|