1
|
Hacket-Pain A, Szymkowiak J, Journé V, Barczyk MK, Thomas PA, Lageard JGA, Kelly D, Bogdziewicz M. Growth decline in European beech associated with temperature-driven increase in reproductive allocation. Proc Natl Acad Sci U S A 2025; 122:e2423181122. [PMID: 39874289 PMCID: PMC11804683 DOI: 10.1073/pnas.2423181122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Climate change is impacting forests in complex ways, with indirect effects arising from interactions between tree growth and reproduction often overlooked. Our 43-y study of European beech (Fagus sylvatica) showed that rising summer temperatures since 2005 have led to more frequent seed production events. This shift increases reproductive effort but depletes the trees' stored resources due to insufficient recovery periods between seed crops. Consequently, annual tree ring increments have declined by 28%, dropping from a stable average of 1.60 mm y-1 between 1980 and 2005 to 1.16 mm y-1 thereafter. Importantly, this growth decline occurred without an accompanying trend in summer drought, indicating that altered reproductive patterns-not moisture stress-are driving the reduction. This creates a "perfect storm": Increased reproductive effort drains resources, viable seed output falls due to the loss of mast-seeding benefits via pollination and lower seed predation, and the ongoing growth decline reduces current carbon uptake and future reproductive potential. These compounding factors threaten the sustainability of Europe's most widespread forest tree. Our findings unveil a critical yet underrecognized indirect mechanism by which climate change endangers forest ecosystems, emphasizing the need to consider interactions between demographic processes when assessing species vulnerability to climate change.
Collapse
Affiliation(s)
- Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, LiverpoolL69 7ZT, United Kingdom
| | - Jakub Szymkowiak
- Population Ecology Research Unit, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614Poznan, Poland
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614Poznan, Poland
| | - Valentin Journé
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614Poznan, Poland
| | - Maciej K. Barczyk
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614Poznan, Poland
| | - Peter A. Thomas
- School of Life Sciences, Keele University, StaffordshireST5 5BG, United Kingdom
| | - Jonathan G. A. Lageard
- Department of Natural Sciences, Manchester Metropolitan University, ManchesterM1 5GD, United Kingdom
| | - Dave Kelly
- School of Biological Sciences, University of Canterbury, Christchurch8140, New Zealand
| | - Michał Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614Poznan, Poland
| |
Collapse
|
2
|
Journé V, Bogdziewicz M, Courbaud B, Kunstler G, Qiu T, Acuña MCA, Ascoli D, Bergeron Y, Berveiller D, Boivin T, Bonal R, Caignard T, Cailleret M, Calama R, Camarero JJ, Chang-Yang CH, Chave J, Chianucci F, Curt T, Cutini A, Das A, Daskalakou E, Davi H, Delpierre N, Delzon S, Dietze M, Calderon SD, Dormont L, Espelta JM, Farfan-Rios W, Fenner M, Franklin J, Gehring C, Gilbert G, Gratzer G, Greenberg CH, Guignabert A, Guo Q, Hacket-Pain A, Hampe A, Han Q, Hanley ME, Lambers JHR, Holík J, Hoshizaki K, Ibanez I, Johnstone JF, Knops JMH, Kobe RK, Kurokawa H, Lageard J, LaMontagne J, Ledwon M, Lefèvre F, Leininger T, Limousin JM, Lutz J, Macias D, Mårell A, McIntire E, Moran EV, Motta R, Myers J, Nagel TA, Naoe S, Noguchi M, Norghauer J, Oguro M, Ourcival JM, Parmenter R, Pearse I, Pérez-Ramos IM, Piechnik Ł, Podgórski T, Poulsen J, Redmond MD, Reid CD, Samonil P, Scher CL, Schlesinger WH, Seget B, Sharma S, Shibata M, Silman M, Steele M, Stephenson N, Straub J, Sutton S, Swenson JJ, Swift M, Thomas PA, Uriarte M, Vacchiano G, Whipple A, Whitham T, Wright SJ, Zhu K, Zimmerman J, Żywiec M, Clark JS. The Relationship Between Maturation Size and Maximum Tree Size From Tropical to Boreal Climates. Ecol Lett 2024; 27:e14500. [PMID: 39354911 DOI: 10.1111/ele.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/03/2024]
Abstract
The fundamental trade-off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape of this trade-off. Using seed production from five continents, we estimate tree maturation sizes for 486 tree species spanning tropical to boreal climates. Results show that a species' maturation size increases with maximum size, but in a non-proportional way: the largest species begin reproduction at smaller sizes than would be expected if maturation were simply proportional to maximum size. Furthermore, the decrease in relative maturation size is steepest in cold climates. These findings on maturation size drivers are key to accurately represent forests' responses to disturbance and climate change.
Collapse
Affiliation(s)
- Valentin Journé
- Universite Grenoble Alpes, Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Grenoble, France
| | - Michał Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Benoit Courbaud
- Universite Grenoble Alpes, Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Grenoble, France
| | - Georges Kunstler
- Universite Grenoble Alpes, Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Grenoble, France
| | - Tong Qiu
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Marie-Claire Aravena Acuña
- Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B. Houssay 200 (9410), Ushuaia, Tierra del Fuego, Argentina
| | - Davide Ascoli
- Department of Agriculture, Forest and Food Sciences, University of Torino, Turin, Italy
| | - Yves Bergeron
- Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, Quebec, Canada
| | - Daniel Berveiller
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Gif-sur-Yvette, France
| | - Thomas Boivin
- Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, Avignon, France
| | - Raul Bonal
- Universite Bordeaux, Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), biodiversity, Genes, and Communities (BIOGECO), Pessac, France
| | - Thomas Caignard
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Maxime Cailleret
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-En-Provence, France
| | - Rafael Calama
- ICIFOR (Forest Research Institute), INIA-CSIC, Madrid, Spain
| | - J Julio Camarero
- Instituto Pirenaico de Ecologla, Consejo Superior de Investigaciones Cientificas (IPE-CSIC), Zaragoza, Spain
| | - Chia-Hao Chang-Yang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jerome Chave
- Unité Evolution et Diversité Biologique (EDB), CNRS, IRD, UPS, Toulouse, France
| | | | - Thomas Curt
- Aix Marseille Universite, Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Aix-en-Provence, France
| | - Andrea Cutini
- Research Centre for Forestry and Wood, Arezzo, Italy
| | - Adrian Das
- USGS Western Ecological Research Center, Three Rivers, California, USA
| | - Evangelia Daskalakou
- Institute of Mediterranean and Forest Ecosystems, Hellenic Agricultural Organization, Athens, Greece
| | - Hendrik Davi
- Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, Avignon, France
| | - Nicolas Delpierre
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Gif-sur-Yvette, France
| | - Sylvain Delzon
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Michael Dietze
- Earth and Environment, Boston University, Boston, Massachusetts, USA
| | - Sergio Donoso Calderon
- Facultad de Ciencias Forestales y de la Conservacion de la Naturaleza (FCFCN), Universidad de Chile, Santiago, Chile
| | - Laurent Dormont
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Josep Maria Espelta
- Centre de Recerca Ecologica i Aplicacions Forestals (CREAF), Bellaterra, Catalunya, Spain
| | - William Farfan-Rios
- Biology Department, Center for Energy, Environment, and Sustainability, Wake Forest University, Winston Salem, North Carolina, USA
| | - Michael Fenner
- Biology Department, University of Southampton, Southampton, UK
| | - Jerry Franklin
- Forest Resources, University of Washington, Seattle, Washington, USA
| | - Catherine Gehring
- Department of Biological Sciences, Center for Adaptive Western Landscapes, Flagstaff, Arizona, USA
| | - Gregory Gilbert
- Department of Environmental Studies, University of California, Santa Cruz, California, USA
| | - Georg Gratzer
- Department of Forest- and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cathryn H Greenberg
- Bent Creek Experimental Forest, USDA Forest Service, Asheville, North Carolina, USA
| | - Arthur Guignabert
- INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, Villenave d'Ornon, France
| | - Qinfeng Guo
- Eastern Forest Environmental Threat Assessment Center, USDA Forest Service, Southern Research Station, Research Triangle Park, Durham, North Carolina, USA
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Arndt Hampe
- BIOGECO, INRAE, University of Bordeaux, Cestas, France
| | - Qingmin Han
- Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Japan
| | - Mick E Hanley
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | | | - Jan Holík
- Department of Forest Ecology, Silva Tarouca Research Institute, Brno, Czech Republic
| | - Kazuhiko Hoshizaki
- Department of Biological Environment, Akita Prefectural University, Akita, Japan
| | - Ines Ibanez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Jill F Johnstone
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, USA
| | - Johannes M H Knops
- Health and Environmental Sciences Department, Xian Jiaotong-Liverpool University, Suzhou, China
| | - Richard K Kobe
- Department of Plant Biology, Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, Michigan, USA
| | - Hiroko Kurokawa
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Jonathan Lageard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Jalene LaMontagne
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| | - Mateusz Ledwon
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - François Lefèvre
- Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, Avignon, France
| | | | | | - James Lutz
- Department of Wildland Resources, and The Ecology Center, Utah State University, Logan, Utah, USA
| | - Diana Macias
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Eliot McIntire
- Pacific Forestry Centre, Victoria, British Columbia, Canada
| | - Emily V Moran
- School of Natural Sciences, UC Merced, Merced, California, USA
| | - Renzo Motta
- Department of Agriculture, Forest and Food Sciences, University of Torino, Turin, Italy
| | - Jonathan Myers
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Thomas A Nagel
- Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Shoji Naoe
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, Japan
| | - Mahoko Noguchi
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, Japan
| | - Julian Norghauer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Michio Oguro
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | | | - Robert Parmenter
- Valles Caldera National Preserve, National Park Service, Jemez Springs, Jemez Springs, New Mexico, USA
| | - Ian Pearse
- Fort Collins Science Center, Fort Collins, Colorado, USA
| | - Ignacio M Pérez-Ramos
- Inst. de Recursos Naturales y Agrobiologia de Sevilla, Consejo Superior de Investigaciones Cientificas (IRNAS-CSIC), Andalucia, Spain
| | - Łukasz Piechnik
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - Tomasz Podgórski
- Department of GameManagement and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | | | - Miranda D Redmond
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, California, USA
| | - Chantal D Reid
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Pavel Samonil
- Department of Forest Ecology, Silva Tarouca Research Institute, Brno, Czech Republic
| | - C Lane Scher
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | | | - Barbara Seget
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - Shubhi Sharma
- Ecology and Evolutionary Biology Department, Yale University, New Haven, Connecticut, USA
| | - Mitsue Shibata
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Miles Silman
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Michael Steele
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, USA
| | - Nathan Stephenson
- USGS Western Ecological Research Center, Three Rivers, California, USA
| | - Jacob Straub
- Department of Environmental Science and Ecology, State University of New York-Brockport, Brockport, New York, USA
| | - Samantha Sutton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | | | - Margaret Swift
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Peter A Thomas
- School of Life Sciences, Keele University, Staffordshire, UK
| | - Maria Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Giorgio Vacchiano
- Department of Agricultural and Environmental Sciences-Production, Territory, Agroenergy (DISAA), University of Milan, Milano, Italy
| | - Amy Whipple
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Thomas Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Kai Zhu
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Jess Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, Puerto Rico, USA
| | - Magdalena Żywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - James S Clark
- Universite Grenoble Alpes, Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Grenoble, France
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
3
|
Qiu T, Clark JS, Kovach KR, Townsend PA, Swenson JJ. Remotely sensed crown nutrient concentrations modulate forest reproduction across the contiguous United States. Ecology 2024; 105:e4366. [PMID: 38961606 DOI: 10.1002/ecy.4366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/25/2024] [Accepted: 04/23/2024] [Indexed: 07/05/2024]
Abstract
Global forests are increasingly lost to climate change, disturbance, and human management. Evaluating forests' capacities to regenerate and colonize new habitats has to start with the seed production of individual trees and how it depends on nutrient access. Studies on the linkage between reproduction and foliar nutrients are limited to a few locations and few species, due to the large investment needed for field measurements on both variables. We synthesized tree fecundity estimates from the Masting Inference and Forecasting (MASTIF) network with foliar nutrient concentrations from hyperspectral remote sensing at the National Ecological Observatory Network (NEON) across the contiguous United States. We evaluated the relationships between seed production and foliar nutrients for 56,544 tree-years from 26 species at individual and community scales. We found a prevalent association between high foliar phosphorous (P) concentration and low individual seed production (ISP) across the continent. Within-species coefficients to nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) are related to species differences in nutrient demand, with distinct biogeographic patterns. Community seed production (CSP) decreased four orders of magnitude from the lowest to the highest foliar P. This first continental-scale study sheds light on the relationship between seed production and foliar nutrients, highlighting the potential of using combined Light Detection And Ranging (LiDAR) and hyperspectral remote sensing to evaluate forest regeneration. The fact that both ISP and CSP decline in the presence of high foliar P levels has immediate application in improving forest demographic and regeneration models by providing more realistic nutrient effects at multiple scales.
Collapse
Affiliation(s)
- Tong Qiu
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, Pennsylvania, USA
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - James S Clark
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), St. Martin-d'Heres, France
| | - Kyle R Kovach
- Department of Forest and Wildlife Ecology, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Philip A Townsend
- Department of Forest and Wildlife Ecology, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Jennifer J Swenson
- Center for Geospatial Analysis, The College of William and Mary, Williamsburg, Virginia, USA
| |
Collapse
|
4
|
Warner K, Sonti NF, Cook EM, Hallett RA, Hutyra LR, Reinmann AB. Urbanization exacerbates climate sensitivity of eastern United States broadleaf trees. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2970. [PMID: 38602711 DOI: 10.1002/eap.2970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/17/2024] [Indexed: 04/12/2024]
Abstract
Tree growth is a key mechanism driving carbon sequestration in forest ecosystems. Environmental conditions are important regulators of tree growth that can vary considerably between nearby urban and rural forests. For example, trees growing in cities often experience hotter and drier conditions than their rural counterparts while also being exposed to higher levels of light, pollution, and nutrient inputs. However, the extent to which these intrinsic differences in the growing conditions of trees in urban versus rural forests influence tree growth response to climate is not well known. In this study, we tested for differences in the climate sensitivity of tree growth between urban and rural forests along a latitudinal transect in the eastern United States that included Boston, Massachusetts, New York City, New York, and Baltimore, Maryland. Using dendrochronology analyses of tree cores from 55 white oak trees (Quercus alba), 55 red maple trees (Acer rubrum), and 41 red oak trees (Quercus rubra) we investigated the impacts of heat stress and water stress on the radial growth of individual trees. Across our three-city study, we found that tree growth was more closely correlated with climate stress in the cooler climate cities of Boston and New York than in Baltimore. Furthermore, heat stress was a significant hindrance to tree growth in higher latitudes while the impacts of water stress appeared to be more evenly distributed across latitudes. We also found that the growth of oak trees, but not red maple trees, in the urban sites of Boston and New York City was more adversely impacted by heat stress than their rural counterparts, but we did not see these urban-rural differences in Maryland. Trees provide a wide range of important ecosystem services and increasing tree canopy cover was typically an important component of urban sustainability strategies. In light of our findings that urbanization can influence how tree growth responds to a warming climate, we suggest that municipalities consider these interactions when developing their tree-planting palettes and when estimating the capacity of urban forests to contribute to broader sustainability goals in the future.
Collapse
Affiliation(s)
- Kayla Warner
- Environmental Sciences Initiative, CUNY Advanced Science Research Center, New York, New York, USA
- Department of Environmental Science, Barnard College, New York, New York, USA
| | - Nancy Falxa Sonti
- USDA Forest Service, Northern Research Station, Baltimore, Maryland, USA
| | - Elizabeth M Cook
- Department of Environmental Science, Barnard College, New York, New York, USA
| | - Richard A Hallett
- USDA Forest Service, Northern Research Station, Bayside, New York, USA
| | - Lucy R Hutyra
- Department of Earth and Environment, Boston University, Boston, Massachusetts, USA
| | - Andrew B Reinmann
- Environmental Sciences Initiative, CUNY Advanced Science Research Center, New York, New York, USA
- Department of Geography and Environmental Science, Hunter College, New York, New York, USA
- Institute for Sustainable Cities, Hunter College, New York, New York, USA
| |
Collapse
|
5
|
Qiu T, Aravena MC, Ascoli D, Bergeron Y, Bogdziewicz M, Boivin T, Bonal R, Caignard T, Cailleret M, Calama R, Calderon SD, Camarero JJ, Chang-Yang CH, Chave J, Chianucci F, Courbaud B, Cutini A, Das AJ, Delpierre N, Delzon S, Dietze M, Dormont L, Espelta JM, Fahey TJ, Farfan-Rios W, Franklin JF, Gehring CA, Gilbert GS, Gratzer G, Greenberg CH, Guignabert A, Guo Q, Hacket-Pain A, Hampe A, Han Q, Holik J, Hoshizaki K, Ibanez I, Johnstone JF, Journé V, Kitzberger T, Knops JMH, Kunstler G, Kurokawa H, Lageard JGA, LaMontagne JM, Lefevre F, Leininger T, Limousin JM, Lutz JA, Macias D, Marell A, McIntire EJB, Moore CM, Moran E, Motta R, Myers JA, Nagel TA, Naoe S, Noguchi M, Oguro M, Parmenter R, Pearse IS, Perez-Ramos IM, Piechnik L, Podgorski T, Poulsen J, Redmond MD, Reid CD, Rodman KC, Rodriguez-Sanchez F, Samonil P, Sanguinetti JD, Scher CL, Seget B, Sharma S, Shibata M, Silman M, Steele MA, Stephenson NL, Straub JN, Sutton S, Swenson JJ, Swift M, Thomas PA, Uriarte M, Vacchiano G, Whipple AV, Whitham TG, Wion AP, Wright SJ, Zhu K, Zimmerman JK, Zywiec M, Clark JS. Masting is uncommon in trees that depend on mutualist dispersers in the context of global climate and fertility gradients. NATURE PLANTS 2023:10.1038/s41477-023-01446-5. [PMID: 37386149 DOI: 10.1038/s41477-023-01446-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/17/2023] [Indexed: 07/01/2023]
Abstract
The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.
Collapse
Affiliation(s)
- Tong Qiu
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, USA.
| | - Marie-Claire Aravena
- Facultad de Ciencias Forestales y de la Conservacion de la Naturaleza (FCFCN), Universidad de Chile, La Pintana, Santiago, Chile
| | - Davide Ascoli
- Department of Agriculture, Forest and Food Sciences, University of Torino, Grugliasco, Torino, Italy
| | - Yves Bergeron
- Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, Quebec, Canada
| | - Michal Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Thomas Boivin
- Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, Avignon, France
| | - Raul Bonal
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Thomas Caignard
- Universite Bordeaux, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), Pessac, France
| | - Maxime Cailleret
- NRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| | - Rafael Calama
- Centro de Investigacion Forestal (INIA-CSIC), Madrid, Spain
| | - Sergio Donoso Calderon
- Facultad de Ciencias Forestales y de la Conservacion de la Naturaleza (FCFCN), Universidad de Chile, La Pintana, Santiago, Chile
| | - J Julio Camarero
- Instituto Pirenaico de Ecologla, Consejo Superior de Investigaciones Cientificas (IPE-CSIC), Zaragoza, Spain
| | - Chia-Hao Chang-Yang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jerome Chave
- Laboratoire Evolution et Diversite Biologique, Toulouse, France
| | | | - Benoit Courbaud
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), St. Martin-d'Heres, France
| | - Andrea Cutini
- Research Centre for Forestry and Wood, Arezzo, Italy
| | - Adrian J Das
- U.S. Geological Survey Western Ecological Research Center, Three Rivers, CA, USA
| | - Nicolas Delpierre
- Universite Paris-Saclay, Centre national de la recherche scientifique, AgroParisTech, Ecologie Systematique et Evolution, Orsay, France
| | - Sylvain Delzon
- Universite Bordeaux, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), Pessac, France
| | - Michael Dietze
- Earth and Environment, Boston University, Boston, MA, USA
| | - Laurent Dormont
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Josep Maria Espelta
- Centre de Recerca Ecologica i Aplicacions Forestals (CREAF), Bellaterra, Catalunya, Spain
| | | | - William Farfan-Rios
- Washington University in Saint Louis, Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, MO, USA
| | | | - Catherine A Gehring
- Department of Biological Sciences and Center for Adaptive Western Landscapes, Flagstaff, AZ, USA
| | - Gregory S Gilbert
- Department of Environmental Studies, University of California, Santa Cruz, CA, USA
| | - Georg Gratzer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Wien, Austria
| | | | | | - Qinfeng Guo
- Eastern Forest Environmental Threat Assessment Center, USDA Forest Service, Southern Research Station, Research Triangle Park, NC, USA
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Arndt Hampe
- Universite Bordeaux, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), Pessac, France
| | - Qingmin Han
- Department of Plant Ecology Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, Japan
| | - Jan Holik
- Department of Forest Ecology, Silva Tarouca Research Institute, Brno, Czech Republic
| | - Kazuhiko Hoshizaki
- Department of Biological Environment, Akita Prefectural University, Akita, Japan
| | - Ines Ibanez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Jill F Johnstone
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Valentin Journé
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), St. Martin-d'Heres, France
| | - Thomas Kitzberger
- Department of Ecology, Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Cientificas y Tecnicas - Universidad Nacional del Comahue), Bariloche, Argentina
| | - Johannes M H Knops
- Health and Environmental Sciences Department, Xian Jiaotong-Liverpool University, Suzhou, China
| | - Georges Kunstler
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), St. Martin-d'Heres, France
| | - Hiroko Kurokawa
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Japan, Ibaraki
| | - Jonathan G A Lageard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | | | - Francois Lefevre
- Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, Avignon, France
| | - Theodor Leininger
- USDA, Forest Service, Southern Research Station, Stoneville, MS, USA
| | | | - James A Lutz
- Department of Wildland Resources, and the Ecology Center, Utah State University, Logan, UT, USA
| | - Diana Macias
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | | | | | | - Emily Moran
- School of Natural Sciences, UC Merced, Merced, CA, USA
| | - Renzo Motta
- Department of Agriculture, Forest and Food Sciences, University of Torino, Grugliasco, Torino, Italy
| | - Jonathan A Myers
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
| | - Thomas A Nagel
- Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Shoji Naoe
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, Japan
| | - Mahoko Noguchi
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, Japan
| | - Michio Oguro
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Japan, Ibaraki
| | - Robert Parmenter
- Valles Caldera National Preserve, National Park Service, Jemez Springs, NM, USA
| | - Ian S Pearse
- U.S. Geological Survey Fort Collins Science Center, Fort Collins, CO, USA
| | - Ignacio M Perez-Ramos
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, Consejo Superior de Investigaciones Cientificas (IRNAS-CSIC), Seville, Andalucia, Spain
| | - Lukasz Piechnik
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - Tomasz Podgorski
- Mammal Research Institute, Polish Academy of Sciences, Bialowieza, Poland
| | - John Poulsen
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Miranda D Redmond
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
| | - Chantal D Reid
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Kyle C Rodman
- Ecological Restoration Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Pavel Samonil
- Department of Forest Ecology, Silva Tarouca Research Institute, Brno, Czech Republic
| | - Javier D Sanguinetti
- Bilogo Dpto. Conservacin y Manejo, Parque Nacional Lanin Elordi y Perito Moreno, San Marten de los Andes, Neuqun, Argentina
| | - C Lane Scher
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Barbara Seget
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - Shubhi Sharma
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Mitsue Shibata
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Japan, Ibaraki
| | - Miles Silman
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | | | - Nathan L Stephenson
- U.S. Geological Survey Western Ecological Research Center, Three Rivers, CA, USA
| | - Jacob N Straub
- Department of Environmental Science and Ecology, State University of New York-Brockport, Brockport, NY, USA
| | - Samantha Sutton
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - Margaret Swift
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Peter A Thomas
- School of Life Sciences, Keele University, Staffordshire, UK
| | - Maria Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Giorgio Vacchiano
- Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DISAA), University of Milan, Milano, Italy
| | - Amy V Whipple
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Andreas P Wion
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Kai Zhu
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, PR, USA
| | - Magdalena Zywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - James S Clark
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), St. Martin-d'Heres, France
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
6
|
Chen M, Zhang X, Li M, Cao Y. Species mixing enhances the resistance of Robinia pseudoacacia L. to drought events in semi-arid regions: Evidence from China's Loess Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161796. [PMID: 36702266 DOI: 10.1016/j.scitotenv.2023.161796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
As a potential planting strategy, species mixing increases biomass production, improves ecosystem service functions, and mitigates climate change. However, the effect of species mixing on tree growth and drought resilience in semi-arid areas remains unclear. Hence, we established tree-ring chronologies of Robinia pseudoacacia L. in pure Robinia pseudoacacia L. plantation (RP) and mixed plantations with Hippophae rhamnoides L. and Populus simonii Carr. at different proportions of 8:2 and 5:5 (RH 8:2, RH 5:5, RC 8:2, RC 5:5) in the typical semi-arid region of the Loess Plateau (LP), China. The mean annual growth, climate-growth relationships, and tree resilience (Rs) to drought, including resistance (Rt) and recovery (Rc), were analyzed using dendrochronological methods. The results showed that the growth of R. pseudoacacia L. in mixed plantations was lower when Palmer Drought Severity Index (PDSI) >0, but much higher than that in monoculture under drought stress (PDSI <0 or after drought event). Meanwhile, the relationship between PDSI and tree growth was significantly positive in the pure plantation, but weakened in the mixed plantations, indicating that species mixing alleviated drought stress to some extent. The resilience results showed that, although the Rc was higher in monoculture after drought events, species mixing could enhance Rt and mitigate the growth decline of R. pseudoacacia L. during drought events. Moreover, the Rt varied significantly among mixing species and proportions and was also affected by the magnitude and timing of drought. The RC 5:5 and RH 8:2 had higher resistance to moderate and severe drought stress. However, RC 8:2 and RH 5:5 could cope better with mild drought stress. These results indicate that species mixing can alleviate drought stress and improve the drought resistance. Therefore, it is necessary to expand species mixing to maximize plantation functions and minimize the potential impacts of warming and drought in semi-arid regions.
Collapse
Affiliation(s)
- Meng Chen
- College of forestry, Northwest A&F University, Yangling 712100, China
| | - Xu Zhang
- College of forestry, Northwest A&F University, Yangling 712100, China
| | - Ming Li
- College of forestry, Northwest A&F University, Yangling 712100, China
| | - Yang Cao
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China.
| |
Collapse
|
7
|
Tropical tree mortality has increased with rising atmospheric water stress. Nature 2022; 608:528-533. [PMID: 35585230 DOI: 10.1038/s41586-022-04737-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/06/2022] [Indexed: 12/20/2022]
Abstract
Evidence exists that tree mortality is accelerating in some regions of the tropics1,2, with profound consequences for the future of the tropical carbon sink and the global anthropogenic carbon budget left to limit peak global warming below 2 °C. However, the mechanisms that may be driving such mortality changes and whether particular species are especially vulnerable remain unclear3-8. Here we analyse a 49-year record of tree dynamics from 24 old-growth forest plots encompassing a broad climatic gradient across the Australian moist tropics and find that annual tree mortality risk has, on average, doubled across all plots and species over the last 35 years, indicating a potential halving in life expectancy and carbon residence time. Associated losses in biomass were not offset by gains from growth and recruitment. Plots in less moist local climates presented higher average mortality risk, but local mean climate did not predict the pace of temporal increase in mortality risk. Species varied in the trajectories of their mortality risk, with the highest average risk found nearer to the upper end of the atmospheric vapour pressure deficit niches of species. A long-term increase in vapour pressure deficit was evident across the region, suggesting that thresholds involving atmospheric water stress, driven by global warming, may be a primary cause of increasing tree mortality in moist tropical forests.
Collapse
|
8
|
Qiu T, Andrus R, Aravena MC, Ascoli D, Bergeron Y, Berretti R, Berveiller D, Bogdziewicz M, Boivin T, Bonal R, Bragg DC, Caignard T, Calama R, Camarero JJ, Chang-Yang CH, Cleavitt NL, Courbaud B, Courbet F, Curt T, Das AJ, Daskalakou E, Davi H, Delpierre N, Delzon S, Dietze M, Calderon SD, Dormont L, Espelta J, Fahey TJ, Farfan-Rios W, Gehring CA, Gilbert GS, Gratzer G, Greenberg CH, Guo Q, Hacket-Pain A, Hampe A, Han Q, Hille Ris Lambers J, Hoshizaki K, Ibanez I, Johnstone JF, Journé V, Kabeya D, Kilner CL, Kitzberger T, Knops JMH, Kobe RK, Kunstler G, Lageard JGA, LaMontagne JM, Ledwon M, Lefevre F, Leininger T, Limousin JM, Lutz JA, Macias D, McIntire EJB, Moore CM, Moran E, Motta R, Myers JA, Nagel TA, Noguchi K, Ourcival JM, Parmenter R, Pearse IS, Perez-Ramos IM, Piechnik L, Poulsen J, Poulton-Kamakura R, Redmond MD, Reid CD, Rodman KC, Rodriguez-Sanchez F, Sanguinetti JD, Scher CL, Schlesinger WH, Schmidt Van Marle H, Seget B, Sharma S, Silman M, Steele MA, Stephenson NL, Straub JN, Sun IF, Sutton S, Swenson JJ, Swift M, Thomas PA, Uriarte M, Vacchiano G, Veblen TT, Whipple AV, Whitham TG, Wion AP, Wright B, Wright SJ, Zhu K, Zimmerman JK, et alQiu T, Andrus R, Aravena MC, Ascoli D, Bergeron Y, Berretti R, Berveiller D, Bogdziewicz M, Boivin T, Bonal R, Bragg DC, Caignard T, Calama R, Camarero JJ, Chang-Yang CH, Cleavitt NL, Courbaud B, Courbet F, Curt T, Das AJ, Daskalakou E, Davi H, Delpierre N, Delzon S, Dietze M, Calderon SD, Dormont L, Espelta J, Fahey TJ, Farfan-Rios W, Gehring CA, Gilbert GS, Gratzer G, Greenberg CH, Guo Q, Hacket-Pain A, Hampe A, Han Q, Hille Ris Lambers J, Hoshizaki K, Ibanez I, Johnstone JF, Journé V, Kabeya D, Kilner CL, Kitzberger T, Knops JMH, Kobe RK, Kunstler G, Lageard JGA, LaMontagne JM, Ledwon M, Lefevre F, Leininger T, Limousin JM, Lutz JA, Macias D, McIntire EJB, Moore CM, Moran E, Motta R, Myers JA, Nagel TA, Noguchi K, Ourcival JM, Parmenter R, Pearse IS, Perez-Ramos IM, Piechnik L, Poulsen J, Poulton-Kamakura R, Redmond MD, Reid CD, Rodman KC, Rodriguez-Sanchez F, Sanguinetti JD, Scher CL, Schlesinger WH, Schmidt Van Marle H, Seget B, Sharma S, Silman M, Steele MA, Stephenson NL, Straub JN, Sun IF, Sutton S, Swenson JJ, Swift M, Thomas PA, Uriarte M, Vacchiano G, Veblen TT, Whipple AV, Whitham TG, Wion AP, Wright B, Wright SJ, Zhu K, Zimmerman JK, Zlotin R, Zywiec M, Clark JS. Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery. Nat Commun 2022; 13:2381. [PMID: 35501313 PMCID: PMC9061860 DOI: 10.1038/s41467-022-30037-9] [Show More Authors] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/13/2022] [Indexed: 11/09/2022] Open
Abstract
The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.
Collapse
Affiliation(s)
- Tong Qiu
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Robert Andrus
- Department of Geography, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Marie-Claire Aravena
- Universidad de Chile, Facultad de Ciencias Forestales y de la Conservacion de la Naturaleza (FCFCN), La Pintana, 8820808, Santiago, Chile
| | - Davide Ascoli
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095, Grugliasco, TO, Italy
| | - Yves Bergeron
- Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC, J9X 5E4, Canada
| | - Roberta Berretti
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095, Grugliasco, TO, Italy
| | - Daniel Berveiller
- Universite Paris-Saclay, Centre national de la recherche scientifique, AgroParisTech, Ecologie Systematique et Evolution, 91405, Orsay, France
| | - Michal Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | - Thomas Boivin
- Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, 84000, Avignon, France
| | - Raul Bonal
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, 28040, Madrid, Spain
| | - Don C Bragg
- USDA Forest Service, Southern Research Station, Monticello, AR, 71656, USA
| | - Thomas Caignard
- Universite Bordeaux, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), 33615, Pessac, France
| | - Rafael Calama
- Centro de Investigacion Forestal - Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA-CIFOR), 28040, Madrid, Spain
| | - J Julio Camarero
- Instituto Pirenaico de Ecologla, Consejo Superior de Investigaciones Cientificas (IPE-CSIC), 50059, Zaragoza, Spain
| | - Chia-Hao Chang-Yang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | | | - Benoit Courbaud
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), 38402, St. Martin-d'Heres, France
| | - Francois Courbet
- Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, 84000, Avignon, France
| | - Thomas Curt
- Aix Marseille universite, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), 13182, Aix-en-Provence, France
| | - Adrian J Das
- USGS Western Ecological Research Center, Three Rivers, CA, 93271, USA
| | | | - Hendrik Davi
- Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, 84000, Avignon, France
| | - Nicolas Delpierre
- Universite Paris-Saclay, Centre national de la recherche scientifique, AgroParisTech, Ecologie Systematique et Evolution, 91405, Orsay, France
| | - Sylvain Delzon
- Universite Bordeaux, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), 33615, Pessac, France
| | - Michael Dietze
- Earth and Environment, Boston University, Boston, MA, 02215, USA
| | - Sergio Donoso Calderon
- Universidad de Chile, Facultad de Ciencias Forestales y de la Conservacion de la Naturaleza (FCFCN), La Pintana, 8820808, Santiago, Chile
| | - Laurent Dormont
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Centre National de la Recherche Scientifique (CNRS), 34293, Montpellier, France
| | - Josep Espelta
- Centre de Recerca Ecologica i Aplicacions Forestals (CREAF), Bellaterra, Catalunya, 08193, Spain
| | - Timothy J Fahey
- Natural Resources, Cornell University, Ithaca, NY, 14853, USA
| | - William Farfan-Rios
- Washington University in Saint Louis, Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, MO, 63110, USA
| | - Catherine A Gehring
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Gregory S Gilbert
- Department of Environmental Studies, University of California, Santa Cruz, CA, 95064, USA
| | - Georg Gratzer
- Institute of Forest Ecology, Peter-Jordan-Strasse 82, 1190, Wien, Austria
| | - Cathryn H Greenberg
- Bent Creek Experimental Forest, USDA Forest Service, Asheville, NC, 28801, USA
| | - Qinfeng Guo
- Eastern Forest Environmental Threat Assessment Center, USDA Forest Service, Southern Research Station, Research Triangle Park, NC, 27709, USA
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Arndt Hampe
- Universite Bordeaux, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), 33615, Pessac, France
| | - Qingmin Han
- Department of Plant Ecology Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, 305-8687, Japan
| | | | - Kazuhiko Hoshizaki
- Department of Biological Environment, Akita Prefectural University, Akita, 010-0195, Japan
| | - Ines Ibanez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jill F Johnstone
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK, 99700, USA
| | - Valentin Journé
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), 38402, St. Martin-d'Heres, France
| | - Daisuke Kabeya
- Department of Plant Ecology Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, 305-8687, Japan
| | | | - Thomas Kitzberger
- Department of Ecology, Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Cientificas y Tecnicas - Universidad Nacional del Comahue), Quintral 1250, 8400, Bariloche, Argentina
| | - Johannes M H Knops
- Health and Environmental Sciences Department, Xian Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Richard K Kobe
- Department of Plant Biology, Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Georges Kunstler
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), 38402, St. Martin-d'Heres, France
| | - Jonathan G A Lageard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Jalene M LaMontagne
- Department of Biological Sciences, DePaul University, Chicago, IL, 60614, USA
| | - Mateusz Ledwon
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Slawkowska 17, 31-016, Krakow, Poland
| | - Francois Lefevre
- Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, 84000, Avignon, France
| | - Theodor Leininger
- USDA, Forest Service, Southern Research Station, PO Box 227, Stoneville, MS, 38776, USA
| | - Jean-Marc Limousin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - James A Lutz
- Department of Wildland Resources, and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Diana Macias
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | | | | | - Emily Moran
- School of Natural Sciences, UC Merced, Merced, CA, 95343, USA
| | - Renzo Motta
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095, Grugliasco, TO, Italy
| | - Jonathan A Myers
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Thomas A Nagel
- Department of forestry and renewable forest resources, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Kyotaro Noguchi
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, 020-0123, Japan
| | - Jean-Marc Ourcival
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Robert Parmenter
- Valles Caldera National Preserve, National Park Service, Jemez Springs, NM, 87025, USA
| | - Ian S Pearse
- Fort Collins Science Center, 2150 Centre Avenue Bldg C, Fort Collins, CO, 80526, USA
| | - Ignacio M Perez-Ramos
- Inst. de Recursos Naturales y Agrobiologia de Sevilla, Consejo Superior de Investigaciones Cientificas (IRNAS-CSIC), Seville, Andalucia, Spain
| | - Lukasz Piechnik
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Krakow, Poland
| | - John Poulsen
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | | | - Miranda D Redmond
- Department of Forest and Rangeland Stewardship, COlorado State University, Fort COllins, CO, USA
| | - Chantal D Reid
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Kyle C Rodman
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Javier D Sanguinetti
- Bilogo Dpto. Conservacin y Manejo Parque Nacional Lanin Elordi y Perito Moreno, 8370, San Marten de los Andes Neuqun, Argentina
| | - C Lane Scher
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | | | - Harald Schmidt Van Marle
- Universidad de Chile, Facultad de Ciencias Forestales y de la Conservacion de la Naturaleza (FCFCN), La Pintana, 8820808, Santiago, Chile
| | - Barbara Seget
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Krakow, Poland
| | - Shubhi Sharma
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Miles Silman
- Department of Biology, Wake Forest University, 1834 Wake Forest Rd, Winston-Salem, NC, 27106, USA
| | - Michael A Steele
- Department of Biology, Wilkes University, 84 West South Street, Wilkes-Barre, PA, 18766, USA
| | | | - Jacob N Straub
- Department of Environmental Science and Ecology, State University of New York-Brockport, Brockport, NY, 14420, USA
| | - I-Fang Sun
- Center for Interdisciplinary Research on Ecology and Sustainability, College of Environmental Studies, National Dong Hwa University, Hualien, Taiwan
| | - Samantha Sutton
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Jennifer J Swenson
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Margaret Swift
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Peter A Thomas
- School of Life Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | - Maria Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia University, 1113 Schermerhorn Ext., 1200 Amsterdam Ave., New York, NY, 10027, USA
| | - Giorgio Vacchiano
- Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DISAA), University of Milan, 20133, Milano, Italy
| | - Thomas T Veblen
- Department of Geography, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Amy V Whipple
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Andreas P Wion
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, 80523, USA
| | - Boyd Wright
- Botany, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2350, Australia
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado 0843n03092, Balboa, Republic of Panama
| | - Kai Zhu
- Department of Environmental Studies, University of California, Santa Cruz, CA, 95064, USA
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, PR, 00936, USA
| | - Roman Zlotin
- Geography Department and Russian and East European Institute, Bloomington, IN, 47405, USA
| | - Magdalena Zywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Krakow, Poland
| | - James S Clark
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA.
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), 38402, St. Martin-d'Heres, France.
| |
Collapse
|
9
|
Journé V, Andrus R, Aravena MC, Ascoli D, Berretti R, Berveiller D, Bogdziewicz M, Boivin T, Bonal R, Caignard T, Calama R, Camarero JJ, Chang-Yang CH, Courbaud B, Courbet F, Curt T, Das AJ, Daskalakou E, Davi H, Delpierre N, Delzon S, Dietze M, Donoso Calderon S, Dormont L, Maria Espelta J, Fahey TJ, Farfan-Rios W, Gehring CA, Gilbert GS, Gratzer G, Greenberg CH, Guo Q, Hacket-Pain A, Hampe A, Han Q, Lambers JHR, Hoshizaki K, Ibanez I, Johnstone JF, Kabeya D, Kays R, Kitzberger T, Knops JMH, Kobe RK, Kunstler G, Lageard JGA, LaMontagne JM, Leininger T, Limousin JM, Lutz JA, Macias D, McIntire EJB, Moore CM, Moran E, Motta R, Myers JA, Nagel TA, Noguchi K, Ourcival JM, Parmenter R, Pearse IS, Perez-Ramos IM, Piechnik L, Poulsen J, Poulton-Kamakura R, Qiu T, Redmond MD, Reid CD, Rodman KC, Rodriguez-Sanchez F, Sanguinetti JD, Scher CL, Marle HSV, Seget B, Sharma S, Silman M, Steele MA, Stephenson NL, Straub JN, Swenson JJ, Swift M, Thomas PA, Uriarte M, Vacchiano G, Veblen TT, Whipple AV, Whitham TG, Wright B, Wright SJ, Zhu K, Zimmerman JK, Zlotin R, Zywiec M, Clark JS. Globally, tree fecundity exceeds productivity gradients. Ecol Lett 2022; 25:1471-1482. [PMID: 35460530 DOI: 10.1111/ele.14012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/30/2022]
Abstract
Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.
Collapse
Affiliation(s)
- Valentin Journé
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), St. Martin-d'Heres, France
| | - Robert Andrus
- Department of Geography, University of Colorado Boulder, Boulder, Colorado, USA
| | - Marie-Claire Aravena
- Universidad de Chile, Facultad de Ciencias Forestales y de la Conservacion de la Naturaleza (FCFCN), Santiago, Chile
| | - Davide Ascoli
- Department of Agriculture, Forest and Food Sciences, University of Torino, Grugliasco, TO, Italy
| | - Roberta Berretti
- Department of Agriculture, Forest and Food Sciences, University of Torino, Grugliasco, TO, Italy
| | - Daniel Berveiller
- Universite Paris-Saclay, Centre national de la recherche scientifique, AgroParisTech, Ecologie Systematique et Evolution, Orsay, France
| | - Michal Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Thomas Boivin
- Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, Avignon, France
| | - Raul Bonal
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Thomas Caignard
- Universite Bordeaux, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), Pessac, France
| | - Rafael Calama
- Centro de Investigacion Forestal (INIA-CSIC), Madrid, Spain
| | - Jesús Julio Camarero
- Instituto Pirenaico de Ecologla, Consejo Superior de Investigaciones Cientificas (IPE-CSIC), Zaragoza, Spain
| | - Chia-Hao Chang-Yang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Benoit Courbaud
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), St. Martin-d'Heres, France
| | - Francois Courbet
- Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, Avignon, France
| | - Thomas Curt
- Aix Marseille universite, Institut National de Recherche pour Agriculture, Alimentation et Environnement (IN-RAE), Aix-en-Provence, France
| | - Adrian J Das
- USGS Western Ecological Research Center, Three Rivers, California, USA
| | - Evangelia Daskalakou
- Institute of Mediterranean and Forest Ecosystems, HellenicAgricultural Organization ¨ DEMETER¨, Athens, Greece
| | - Hendrik Davi
- Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, Avignon, France
| | - Nicolas Delpierre
- Universite Paris-Saclay, Centre national de la recherche scientifique, AgroParisTech, Ecologie Systematique et Evolution, Orsay, France
| | - Sylvain Delzon
- Universite Bordeaux, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), Pessac, France
| | - Michael Dietze
- Earth and Environment, Boston University, Boston, Massachusetts, USA
| | - Sergio Donoso Calderon
- Universidad de Chile, Facultad de Ciencias Forestales y de la Conservacion de la Naturaleza (FCFCN), Santiago, Chile
| | - Laurent Dormont
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Josep Maria Espelta
- Centre de Recerca Ecologica i Aplicacions Forestals (CREAF), Bellaterra, Catalunya, Spain
| | - Timothy J Fahey
- Natural Resources, Cornell University, Ithaca, New York, USA
| | - William Farfan-Rios
- Center for Conservation and Sustainable Development, Washington University in Saint Louis, Missouri Botanical Garden, St. Louis, Missouri, USA
| | - Catherine A Gehring
- Department of Biological Sciences and Center for Adaptive Western Landscapes, University of Northern Arizona, Flagstaff, Arizona, USA
| | - Gregory S Gilbert
- Department of Environmental Studies, University of California, Santa Cruz, California, USA
| | - Georg Gratzer
- University of Natural Resources and Life Sciences and Institute of Forest Ecology, Wien, Austria
| | - Cathryn H Greenberg
- Bent Creek Experimental Forest, USDA Forest Service, Asheville, North Carolina, USA
| | - Qinfeng Guo
- Eastern Forest Environmental Threat Assessment Center, USDA Forest Service, Southern Research Station, Asheville, North Carolina, USA
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Arndt Hampe
- Universite Bordeaux, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), Pessac, France
| | - Qingmin Han
- Department of Plant Ecology Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, Japan
| | | | - Kazuhiko Hoshizaki
- Department of Biological Environment, Akita Prefectural University, Akita, Japan
| | - Ines Ibanez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Jill F Johnstone
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, USA
| | - Daisuke Kabeya
- Department of Plant Ecology Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, Japan
| | - Roland Kays
- Department of Forestry and Environmental Resources, NC State University, Raleigh, North Carolina, USA
| | - Thomas Kitzberger
- Department of Ecology, Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Cientificas y Tecnicas - Universidad Nacional del Comahue), Bariloche, Argentina
| | - Johannes M H Knops
- Health and Environmental Sciences Department, Xian Jiaotong-Liverpool University, Suzhou, China
| | - Richard K Kobe
- Department of Plant Biology, Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, Michigan, USA
| | - Georges Kunstler
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), St. Martin-d'Heres, France
| | - Jonathan G A Lageard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Jalene M LaMontagne
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| | - Theodor Leininger
- USDA, Forest Service, Southern Research Station, Stoneville, Mississippi, USA
| | | | - James A Lutz
- Department of Wildland Resources, and the Ecology Center, Utah State University, Logan, Utah, USA
| | - Diana Macias
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | | | | | - Emily Moran
- School of Natural Sciences, UC Merced, Merced, California, USA
| | - Renzo Motta
- Department of Agriculture, Forest and Food Sciences, University of Torino, Grugliasco, TO, Italy
| | - Jonathan A Myers
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Thomas A Nagel
- Department of forestry and renewable forest resources, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Kyotaro Noguchi
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, Japan
| | | | - Robert Parmenter
- Valles Caldera National Preserve, National Park Service, Jemez Springs, New Mexico, USA
| | - Ian S Pearse
- Fort Collins Science Center, Fort Collins, Colorado, USA
| | - Ignacio M Perez-Ramos
- Inst. de Recursos Naturales y Agrobiologia de Sevilla, Consejo Superior de Investigaciones Cientificas (IRNAS-CSIC), Seville, Andalucia, Spain
| | - Lukasz Piechnik
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - John Poulsen
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | | | - Tong Qiu
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Miranda D Redmond
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado, USA
| | - Chantal D Reid
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Kyle C Rodman
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Javier D Sanguinetti
- Bilogo Dpto. Conservacin y Manejo Parque Nacional Lanin Elordi y Perito Moreno 8370, San Marten de los Andes, Argentina
| | - C Lane Scher
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Harald Schmidt Van Marle
- Universidad de Chile, Facultad de Ciencias Forestales y de la Conservacion de la Naturaleza (FCFCN), Santiago, Chile
| | - Barbara Seget
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - Shubhi Sharma
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Miles Silman
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Michael A Steele
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, USA
| | | | - Jacob N Straub
- Department of Environmental Science and Ecology, State University of New York-Brockport, Brockport, New York, USA
| | - Jennifer J Swenson
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Margaret Swift
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Peter A Thomas
- School of Life Sciences, Keele University, Staffordshire, UK
| | - Maria Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Giorgio Vacchiano
- Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DISAA), University of Milan, Milano, Italy
| | - Thomas T Veblen
- Department of Geography, University of Colorado Boulder, Boulder, Colorado, USA
| | - Amy V Whipple
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Boyd Wright
- Botany, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Kai Zhu
- Department of Environmental Studies, University of California, Santa Cruz, California, USA
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, Puerto Rico, USA
| | - Roman Zlotin
- Geography Department and Russian and East European Institute, Bloomington, Indiana, USA
| | - Magdalena Zywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - James S Clark
- Universite Grenoble Alpes, Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), St. Martin-d'Heres, France.,Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
10
|
Applying a Portable Backpack Lidar to Measure and Locate Trees in a Nature Forest Plot: Accuracy and Error Analyses. REMOTE SENSING 2022. [DOI: 10.3390/rs14081806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Accurate tree positioning and measurement of structural parameters are the basis of forest inventory and mapping, which are important for forest biomass calculation and community dynamics analyses. Portable backpack lidar that integrates the simultaneous localization and mapping (SLAM) technique with a global navigation satellite system receiver has greater flexibility for tree inventory than terrestrial laser scanning, but it has never been used to measure and map forest structure in a large area (>101 hectares) with high tree density. In the present study, we used the LiBackpack DG50 backpack lidar system to obtain the point cloud data of a 10 ha plot of subtropical evergreen broadleaved forest, and applied these data to quantify errors and related factors in the diameter at breast height (DBH) measurements and positioning for more than 1900 individual trees. We found an average error of 4.19 cm in the DBH measurements obtained by lidar, compared with manual field measurements. The incompleteness of the tree stem point clouds was the main factor that caused the DBH measurement errors, and the field DBH measurements and density of the point clouds also had significant impacts. The average tree positioning error was 4.64 m, and it was significantly affected by the distance and route length from the measured trees to the data acquisition start position, whereas it was affected little by the habitat complexity and characteristics of tree stems. The tree positioning measurement error led to increases in the mean value and variability of paired-tree distance error as the sample plot scale increased. We corrected the errors based on the estimates of predictive models. After correction, the DBH measurement error decreased by 31.3%, the tree positioning error decreased by 44.3%, and the paired-tree distance error decreased by 56.3%. As the sample plot scale increased, the accumulated paired-tree distance error stabilized gradually.
Collapse
|
11
|
Bauman D, Fortunel C, Cernusak LA, Bentley LP, McMahon SM, Rifai SW, Aguirre-Gutiérrez J, Oliveras I, Bradford M, Laurance SGW, Delhaye G, Hutchinson MF, Dempsey R, McNellis BE, Santos-Andrade PE, Ninantay-Rivera HR, Chambi Paucar JR, Phillips OL, Malhi Y. Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits. GLOBAL CHANGE BIOLOGY 2022; 28:1414-1432. [PMID: 34741793 DOI: 10.1111/gcb.15982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
A better understanding of how climate affects growth in tree species is essential for improved predictions of forest dynamics under climate change. Long-term climate averages (mean climate) drive spatial variations in species' baseline growth rates, whereas deviations from these averages over time (anomalies) can create growth variation around the local baseline. However, the rarity of long-term tree census data spanning climatic gradients has so far limited our understanding of their respective role, especially in tropical systems. Furthermore, tree growth sensitivity to climate is likely to vary widely among species, and the ecological strategies underlying these differences remain poorly understood. Here, we utilize an exceptional dataset of 49 years of growth data for 509 tree species across 23 tropical rainforest plots along a climatic gradient to examine how multiannual tree growth responds to both climate means and anomalies, and how species' functional traits mediate these growth responses to climate. We show that anomalous increases in atmospheric evaporative demand and solar radiation consistently reduced tree growth. Drier forests and fast-growing species were more sensitive to water stress anomalies. In addition, species traits related to water use and photosynthesis partly explained differences in growth sensitivity to both climate means and anomalies. Our study demonstrates that both climate means and anomalies shape tree growth in tropical forests and that species traits can provide insights into understanding these demographic responses to climate change, offering a promising way forward to forecast tropical forest dynamics under different climate trajectories.
Collapse
Affiliation(s)
- David Bauman
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Claire Fortunel
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Lucas A Cernusak
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Lisa P Bentley
- Department of Biology, Sonoma State University, Rohnert Park, California, USA
| | - Sean M McMahon
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Sami W Rifai
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, California, USA
| | - Jesús Aguirre-Gutiérrez
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Biodiversity Dynamics, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Imma Oliveras
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Matt Bradford
- CSIRO Land and Water, Tropical Forest Research Centre, Atherton, Queensland, Australia
| | - Susan G W Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Guillaume Delhaye
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Michael F Hutchinson
- Fenner School of Environment and Society, The Australian National University, Canberra, Australia
| | - Raymond Dempsey
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Brandon E McNellis
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, USA
| | | | | | | | | | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Species and Competition Interact to Influence Seasonal Stem Growth in Temperate Eucalypts. FORESTS 2022. [DOI: 10.3390/f13020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insights on tree species and competition effects on seasonal stem growth are critical to understanding the impacts of changing climates on tree productivity, particularly for eucalypts species that occur in narrow climatic niches and have unreliable tree rings. To improve our understanding of climate effects on forest productivity, we examined the relative importance of species, competition and climate to the seasonal stem growth of co-occurring temperate eucalypts. We measured monthly stem growth of three eucalypts (Eucalyptus obliqua, E. radiata, and E. rubida) over four years in a natural mixed-species forest in south-eastern Australia, examining the relative influences of species, competition index (CI) and climate variables on the seasonal basal area increment (BAI). Seasonal BAI varied with species and CI, and was greatest in spring and/or autumn, and lowest in summer. Our study highlights the interactive effects of species and competition on the seasonal stem growth of temperate eucalypts, clearly indicating that competitive effects are strongest when conditions are favourable to growth (spring and autumn), and least pronounced in summer, when reduced BAI was associated with less rainfall. Thus, our study indicates that management to reduce inter-tree competition would have minimal influence on stem growth during less favourable (i.e., drier) periods.
Collapse
|
13
|
North American tree migration paced by climate in the West, lagging in the East. Proc Natl Acad Sci U S A 2022; 119:2116691118. [PMID: 34983867 PMCID: PMC8784119 DOI: 10.1073/pnas.2116691118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Suitable habitats for forest trees may be shifting fast with recent climate change. Studies tracking the shift in suitable habitat for forests have been inconclusive, in part because responses in tree fecundity and seedling establishment can diverge. Analysis of both components at a continental scale reveals a poleward migration of northern species that is in progress now. Recruitment and fecundity both contribute to poleward spread in the West, while fecundity limits spread in the East, despite a fecundity hotspot in the Southeast. Fecundity limitation on population spread can confront conservation and management efforts with persistent disequilibrium between forest diversity and rapid climate change. Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.
Collapse
|
14
|
Qiu T, Sharma S, Woodall CW, Clark JS. Niche Shifts From Trees to Fecundity to Recruitment That Determine Species Response to Climate Change. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.719141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anticipating the next generation of forests requires understanding of recruitment responses to habitat change. Tree distribution and abundance depend not only on climate, but also on habitat variables, such as soils and drainage, and on competition beneath a shaded canopy. Recent analyses show that North American tree species are migrating in response to climate change, which is exposing each population to novel climate-habitat interactions (CHI). Because CHI have not been estimated for either adult trees or regeneration (recruits per year per adult basal area), we cannot evaluate migration potential into the future. Using the Masting Inference and Forecasting (MASTIF) network of tree fecundity and new continent-wide observations of tree recruitment, we quantify impacts for redistribution across life stages from adults to fecundity to recruitment. We jointly modeled response of adult abundance and recruitment rate to climate/habitat conditions, combined with fecundity sensitivity, to evaluate if shifting CHI explain community reorganization. To compare climate effects with tree fecundity, which is estimated from trees and thus is "conditional" on tree presence, we demonstrate how to quantify this conditional status for regeneration. We found that fecundity was regulated by temperature to a greater degree than other stages, yet exhibited limited responses to moisture deficit. Recruitment rate expressed strong sensitivities to CHI, more like adults than fecundity, but still with substantial differences. Communities reorganized from adults to fecundity, but there was a re-coalescence of groups as seedling recruitment partially reverted to community structure similar to that of adults. Results provide the first estimates of continent-wide community sensitivity and their implications for reorganization across three life-history stages under climate change.
Collapse
|
15
|
Qiu T, Aravena MC, Andrus R, Ascoli D, Bergeron Y, Berretti R, Bogdziewicz M, Boivin T, Bonal R, Caignard T, Calama R, Julio Camarero J, Clark CJ, Courbaud B, Delzon S, Donoso Calderon S, Farfan-Rios W, Gehring CA, Gilbert GS, Greenberg CH, Guo Q, Hille Ris Lambers J, Hoshizaki K, Ibanez I, Journé V, Kilner CL, Kobe RK, Koenig WD, Kunstler G, LaMontagne JM, Ledwon M, Lutz JA, Motta R, Myers JA, Nagel TA, Nuñez CL, Pearse IS, Piechnik Ł, Poulsen JR, Poulton-Kamakura R, Redmond MD, Reid CD, Rodman KC, Scher CL, Schmidt Van Marle H, Seget B, Sharma S, Silman M, Swenson JJ, Swift M, Uriarte M, Vacchiano G, Veblen TT, Whipple AV, Whitham TG, Wion AP, Wright SJ, Zhu K, Zimmerman JK, Żywiec M, Clark JS. Is there tree senescence? The fecundity evidence. Proc Natl Acad Sci U S A 2021; 118:e2106130118. [PMID: 34400503 PMCID: PMC8403963 DOI: 10.1073/pnas.2106130118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size-fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.
Collapse
Affiliation(s)
- Tong Qiu
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Marie-Claire Aravena
- Universidad de Chile, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza (FCFCN), La Pintana, 8820808 Santiago, Chile
| | - Robert Andrus
- Department of Geography, University of Colorado, Boulder, CO 80309
| | - Davide Ascoli
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095 Grugliasco, TO, Italy
| | - Yves Bergeron
- Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC J9X 5E4, Canada
- Department of Biological Sciences, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC H2L 2C4, Canada
| | - Roberta Berretti
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095 Grugliasco, TO, Italy
| | - Michal Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Thomas Boivin
- l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Ecologie des Forets Mediterranennes, 84000 Avignon, France
| | - Raul Bonal
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, 28040 Madrid, Spain
| | - Thomas Caignard
- Université Bordeaux, l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), 33615 Pessac, France
| | - Rafael Calama
- Centro de Investigación Forestal - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CIFOR), 28040 Madrid, Spain
| | - J Julio Camarero
- Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), 50059 Zaragoza, Spain
| | - Connie J Clark
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Benoit Courbaud
- Université Grenoble Alpes, l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Laboratoire EcoSystémes et Sociétés En Montagne (LESSEM), 38402 St.-Martin-d'Heres, France
| | - Sylvain Delzon
- Université Bordeaux, l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), 33615 Pessac, France
| | - Sergio Donoso Calderon
- Universidad de Chile, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza (FCFCN), La Pintana, 8820808 Santiago, Chile
| | - William Farfan-Rios
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, Washington University in Saint Louis, St. Louis, MO 63110
| | - Catherine A Gehring
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011
| | - Gregory S Gilbert
- Department of Environmental Studies, University of California, Santa Cruz, CA 95064
| | - Cathryn H Greenberg
- Bent Creek Experimental Forest, US Department of Agriculture Forest Service, Asheville, NC 28801
| | - Qinfeng Guo
- Eastern Forest Environmental Threat Assessment Center, US Department of Agriculture Forest Service, Research Triangle Park, NC 27709
| | - Janneke Hille Ris Lambers
- Department of Environmental Systems Science, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland
| | - Kazuhiko Hoshizaki
- Department of Biological Environment, Akita Prefectural University, Akita 010-0195, Japan
| | - Ines Ibanez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109
| | - Valentin Journé
- Université Grenoble Alpes, l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Laboratoire EcoSystémes et Sociétés En Montagne (LESSEM), 38402 St.-Martin-d'Heres, France
| | | | - Richard K Kobe
- Department of Plant Biology, Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824
- Department of Forestry, Michigan State University, East Lansing, MI 48824
| | - Walter D Koenig
- Hastings Reservation, University of California Berkeley, Carmel Valley, CA 93924
| | - Georges Kunstler
- Université Grenoble Alpes, l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Laboratoire EcoSystémes et Sociétés En Montagne (LESSEM), 38402 St.-Martin-d'Heres, France
| | | | - Mateusz Ledwon
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, 31-016 Krakow, Poland
| | - James A Lutz
- Department of Wildland Resources, Utah State University, Logan, UT 84322
- Ecology Center, Utah State University, Logan, UT 84322
| | - Renzo Motta
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095 Grugliasco, TO, Italy
| | - Jonathan A Myers
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Thomas A Nagel
- Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Chase L Nuñez
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, 78457 Konstanz, Germany
| | - Ian S Pearse
- US Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526
| | - Łukasz Piechnik
- W. Szafer Institute of Botany, Polish Academy of Sciences, 31-512 Krakow, Poland
| | - John R Poulsen
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | | | - Miranda D Redmond
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523
| | - Chantal D Reid
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Kyle C Rodman
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706
| | - C Lane Scher
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Harald Schmidt Van Marle
- Universidad de Chile, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza (FCFCN), La Pintana, 8820808 Santiago, Chile
| | - Barbara Seget
- W. Szafer Institute of Botany, Polish Academy of Sciences, 31-512 Krakow, Poland
| | - Shubhi Sharma
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Miles Silman
- Department of Biology, Wake Forest University, Winston-Salem, NC 27106
| | | | - Margaret Swift
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Maria Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027
| | - Giorgio Vacchiano
- Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DISAA), University of Milan, 20133 Milano, Italy
| | - Thomas T Veblen
- Department of Geography, University of Colorado, Boulder, CO 80309
| | - Amy V Whipple
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011
| | - Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011
| | - Andreas P Wion
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama
| | - Kai Zhu
- Department of Environmental Studies, University of California, Santa Cruz, CA 95064
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, Puerto Rico, United States 00936
| | - Magdalena Żywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, 31-512 Krakow, Poland
| | - James S Clark
- Nicholas School of the Environment, Duke University, Durham, NC 27708;
- Université Grenoble Alpes, l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Laboratoire EcoSystémes et Sociétés En Montagne (LESSEM), 38402 St.-Martin-d'Heres, France
| |
Collapse
|
16
|
Continent-wide synthesis of the long-term population dynamics of quaking aspen in the face of accelerating human impacts. Oecologia 2021; 197:25-42. [PMID: 34365517 DOI: 10.1007/s00442-021-05013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
In recent decades, climate change has disrupted forest functioning by promoting large-scale mortality events, declines in productivity and reduced regeneration. Understanding the temporal dynamics and spatial extent of these changes is critical given the essential ecosystem services provided by forests. As the most widespread tree species in North America, quaking aspen (Populus tremuloides) is well suited for studying the dynamics of tree populations during a period of unprecedented climate change. Synthesizing continent-wide data, we show that mortality rates of mature aspen stems have increased over the past two-to-three decades, while relative gains in aspen basal area have decreased during the same period. Patterns were pervasive across multiple stand size classes and composition types in western North America biomes, suggesting that trends in demographic rates were not simply a reflection of stand development and succession. Our review of the literature revealed that increased aspen mortality and reduced growth rates were most often associated with hotter, drier conditions, whereas reduced recruitment was most often associated with herbivory. Furthermore, interactions between climate and competition, as well as climate and insect herbivory, had important, context-dependent effects on mortality and growth, respectively. Our analyses of aspen across its entire geographic range indicate that this important tree species is experiencing substantial increases in mortality and decreases in population growth rates across multiple biomes. If such trends are not accompanied by increased recruitment, we expect that the reduced dominance of aspen in forests will lead to major declines in the many essential ecosystem services it provides.
Collapse
|
17
|
Clark JS, Andrus R, Aubry-Kientz M, Bergeron Y, Bogdziewicz M, Bragg DC, Brockway D, Cleavitt NL, Cohen S, Courbaud B, Daley R, Das AJ, Dietze M, Fahey TJ, Fer I, Franklin JF, Gehring CA, Gilbert GS, Greenberg CH, Guo Q, HilleRisLambers J, Ibanez I, Johnstone J, Kilner CL, Knops J, Koenig WD, Kunstler G, LaMontagne JM, Legg KL, Luongo J, Lutz JA, Macias D, McIntire EJB, Messaoud Y, Moore CM, Moran E, Myers JA, Myers OB, Nunez C, Parmenter R, Pearse S, Pearson S, Poulton-Kamakura R, Ready E, Redmond MD, Reid CD, Rodman KC, Scher CL, Schlesinger WH, Schwantes AM, Shanahan E, Sharma S, Steele MA, Stephenson NL, Sutton S, Swenson JJ, Swift M, Veblen TT, Whipple AV, Whitham TG, Wion AP, Zhu K, Zlotin R. Continent-wide tree fecundity driven by indirect climate effects. Nat Commun 2021; 12:1242. [PMID: 33623042 PMCID: PMC7902660 DOI: 10.1038/s41467-020-20836-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023] Open
Abstract
Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
Collapse
Affiliation(s)
- James S. Clark
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA ,grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Robert Andrus
- grid.266190.a0000000096214564Department of Geography, University of Colorado Boulder, Boulder, CO USA
| | - Melaine Aubry-Kientz
- grid.266096.d0000 0001 0049 1282School of Natural Sciences, University of California, Merced, Merced, CA USA
| | - Yves Bergeron
- grid.265695.bForest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC Canada
| | - Michal Bogdziewicz
- grid.5633.30000 0001 2097 3545Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Don C. Bragg
- grid.497399.90000 0001 2106 5338USDA Forest Service, Southern Research Station, Monticello, AR USA
| | - Dale Brockway
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Auburn, AL USA
| | - Natalie L. Cleavitt
- grid.5386.8000000041936877XNatural Resources, Cornell University, Ithaca, NY USA
| | - Susan Cohen
- grid.10698.360000000122483208Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Benoit Courbaud
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Robert Daley
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Adrian J. Das
- grid.2865.90000000121546924USGS Western Ecological Research Center, Three Rivers, CA USA
| | - Michael Dietze
- grid.189504.10000 0004 1936 7558Earth and Environment, Boston University, Boston, MA USA
| | - Timothy J. Fahey
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Auburn, AL USA
| | - Istem Fer
- grid.8657.c0000 0001 2253 8678Finnish Meteorological Institute, Helsinki, Finland
| | - Jerry F. Franklin
- grid.34477.330000000122986657Forest Resources, University of Washington, Seattle, WA USA
| | - Catherine A. Gehring
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Gregory S. Gilbert
- grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Santa Cruz, CA USA
| | - Cathryn H. Greenberg
- grid.472551.00000 0004 0404 3120USDA Forest Service, Bent Creek Experimental Forest, Asheville, NC USA
| | - Qinfeng Guo
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Eastern Forest Environmental Threat Assessment Center, Research Triangle Park, NC USA
| | - Janneke HilleRisLambers
- grid.34477.330000000122986657Department of Biology, University of Washington, Seattle, WA USA
| | - Ines Ibanez
- grid.214458.e0000000086837370School for Environment and Sustainability, University of Michigan, Ann Arbor, MI USA
| | - Jill Johnstone
- grid.25152.310000 0001 2154 235XDepartment of Biology, University of Saskatchewan, Saskatoon, SK Canada
| | - Christopher L. Kilner
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Johannes Knops
- grid.440701.60000 0004 1765 4000Health and Environmental Sciences Department, Xian Jiaotong-Liverpool University, Suzhou, China
| | - Walter D. Koenig
- grid.47840.3f0000 0001 2181 7878Hastings Reservation, University of California Berkeley, Carmel Valley, CA USA
| | - Georges Kunstler
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Jalene M. LaMontagne
- grid.254920.80000 0001 0707 2013Department of Biological Sciences, DePaul University, Chicago, IL USA
| | - Kristin L. Legg
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Jordan Luongo
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - James A. Lutz
- grid.53857.3c0000 0001 2185 8768Department of Wildland Resources, Utah State University Ecology Center, Logan, UT USA
| | - Diana Macias
- grid.266832.b0000 0001 2188 8502Department of Biology, University of New Mexico, Albuquerque, NM USA
| | | | - Yassine Messaoud
- grid.265704.20000 0001 0665 6279Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec Canada
| | - Christopher M. Moore
- grid.254333.00000 0001 2296 8213Department of Biology, Colby College, Waterville, ME USA
| | - Emily Moran
- grid.266190.a0000000096214564Department of Geography, University of Colorado Boulder, Boulder, CO USA
| | - Jonathan A. Myers
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Orrin B. Myers
- grid.266832.b0000 0001 2188 8502University of New Mexico, Albuquerque, NM USA
| | - Chase Nunez
- grid.507516.00000 0004 7661 536XDepartment for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Robert Parmenter
- grid.454846.f0000 0001 2331 3972Valles Caldera National Preserve, National Park Service, Jemez Springs, NM USA
| | - Sam Pearse
- grid.2865.90000000121546924Fort Collins Science Center, Fort Collins, CO USA
| | - Scott Pearson
- grid.435676.50000 0000 8528 5973Department of Natural Sciences, Mars Hill University, Mars Hill, NC USA
| | - Renata Poulton-Kamakura
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Ethan Ready
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Miranda D. Redmond
- grid.47894.360000 0004 1936 8083Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO USA
| | - Chantal D. Reid
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Kyle C. Rodman
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - C. Lane Scher
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - William H. Schlesinger
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Amanda M. Schwantes
- grid.17063.330000 0001 2157 2938Ecology and Evolutionary Biology, University of Toronto, Toronto, ON Canada
| | - Erin Shanahan
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Shubhi Sharma
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Michael A. Steele
- grid.268256.d0000 0000 8510 1943Department of Biology, Wilkes University, Wilkes-Barre, PA USA
| | - Nathan L. Stephenson
- grid.2865.90000000121546924USGS Western Ecological Research Center, Three Rivers, CA USA
| | - Samantha Sutton
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Jennifer J. Swenson
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Margaret Swift
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Thomas T. Veblen
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Amy V. Whipple
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Thomas G. Whitham
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Andreas P. Wion
- grid.47894.360000 0004 1936 8083Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO USA
| | - Kai Zhu
- grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Santa Cruz, CA USA
| | - Roman Zlotin
- grid.411377.70000 0001 0790 959XGeography Department and Russian and East European Institute, Bloomington, IN USA
| |
Collapse
|
18
|
Chen K, Jiao L, Liu X, Qi C, Xue R. Evaluation of the response stability of two dominant conifer species to climate change in the southern margin of the Tengger Desert. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2020.e01439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
19
|
Rollinson CR, Alexander MR, Dye AW, Moore DJP, Pederson N, Trouet V. Climate sensitivity of understory trees differs from overstory trees in temperate mesic forests. Ecology 2020; 102:e03264. [PMID: 33325555 DOI: 10.1002/ecy.3264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 11/07/2022]
Abstract
The response of understory trees to climate variability is key to understanding current and future forest dynamics. However, analyses of climatic effects on tree growth have primarily focused on the upper canopy, leaving understory dynamics unresolved. We analyzed differences in climate sensitivity based on canopy position of four common tree species (Acer rubrum, Fagus grandifolia, Quercus rubra, and Tsuga canadensis) using growth information from 1,084 trees across eight sites in the northeastern United States. Effects of canopy position on climate response varied, but were significant and often nonlinear, for all four species. Compared to overstory trees, understory trees showed stronger reductions in growth at high temperatures and varied shifts in precipitation response. This contradicts the prevailing assumption that climate responses, particularly to temperature, of understory trees are buffered by the overstory. Forest growth trajectories are uncertain in compositionally and structurally complex forests, and future demography and regeneration dynamics may be misinferred if not all canopy levels are represented in future forecasts.
Collapse
Affiliation(s)
| | | | - Alex W Dye
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, 97333, USA
| | - David J P Moore
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, 85721, USA
| | - Neil Pederson
- Harvard University, Petersham, Massachusetts, 01366, USA
| | - Valerie Trouet
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
20
|
Lorts CM, Lasky JR. Competition × drought interactions change phenotypic plasticity and the direction of selection on Arabidopsis traits. THE NEW PHYTOLOGIST 2020; 227:1060-1072. [PMID: 32267968 DOI: 10.1111/nph.16593] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Populations often exhibit genetic diversity in traits involved in responses to abiotic stressors, but what maintains this diversity is unclear. Arabidopsis thaliana exhibits high within-population variation in drought response. One hypothesis is that competition, varying at small scales, promotes diversity in resource use strategies. However, little is known about natural variation in competition effects on Arabidopsis physiology. We imposed drought and competition treatments on diverse genotypes. We measured resource economics traits, physiology, and fitness to characterize plasticity and selection in response to treatments. Plastic responses to competition differed depending on moisture availability. We observed genotype-drought-competition interactions for relative fitness: competition had little effect on relative fitness under well-watered conditions, whereas competition caused rank changes in fitness under drought. Early flowering was always selected. Higher δ13 C was selected only in the harshest treatment (drought and competition). Competitive context significantly changed the direction of selection on aboveground biomass and inflorescence height in well-watered environments. Our results highlight how local biotic conditions modify abiotic selection, in some cases promoting diversity in abiotic stress response. The ability of populations to adapt to environmental change may thus depend on small-scale biotic heterogeneity.
Collapse
Affiliation(s)
- Claire M Lorts
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
21
|
McLaughlin BC, Blakey R, Weitz AP, Feng X, Brown BJ, Ackerly DD, Dawson TE, Thompson SE. Weather underground: Subsurface hydrologic processes mediate tree vulnerability to extreme climatic drought. GLOBAL CHANGE BIOLOGY 2020; 26:3091-3107. [PMID: 32056344 DOI: 10.1111/gcb.15026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Drought extent and severity have increased and are predicted to continue to increase in many parts of the world. Understanding tree vulnerability to drought at both individual and species levels is key to ongoing forest management and preparation for future transitions in community composition. The influence of subsurface hydrologic processes is particularly important in water-limited ecosystems, and is an under-studied aspect of tree drought vulnerability. With California's 2013-2016 extraordinary drought as a natural experiment, we studied four co-occurring woodland tree species, blue oak (Quercus douglasii), valley oak (Quercus lobata), gray pine (Pinus sabiniana), and California juniper (Juniperus californica), examining drought vulnerability as a function of climate, lithology and hydrology using regional aerial dieback surveys and site-scale field surveys. We found that in addition to climatic drought severity (i.e., rainfall), subsurface processes explained variation in drought vulnerability within and across species at both scales. Regionally for blue oak, severity of dieback was related to the bedrock lithology, with higher mortality on igneous and metamorphic substrates, and to regional reductions in groundwater. At the site scale, access to deep subsurface water, evidenced by stem water stable isotope composition, was related to canopy condition across all species. Along hillslope gradients, channel locations supported similar environments in terms of water stress across a wide climatic gradient, indicating that subsurface hydrology mediates species' experience of drought, and that areas associated with persistent access to subsurface hydrologic resources may provide important refugia at species' xeric range edges. Despite this persistent overall influence of the subsurface environment, individual species showed markedly different response patterns. We argue that hydrologic niche segregation can be a useful lens through which to interpret these differences in vulnerability to climatic drought and climate change.
Collapse
Affiliation(s)
| | - Rachel Blakey
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrew P Weitz
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Brittni J Brown
- Department of Natural Resources and Society, University of Idaho, Moscow, ID, USA
| | - David D Ackerly
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Sally E Thompson
- Department of Civil, Environmental and Mining Engineering, University of Western Australia, Crawley, WA, Australia
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
22
|
Tree height explains mortality risk during an intense drought. Nat Commun 2019; 10:4385. [PMID: 31558795 PMCID: PMC6763443 DOI: 10.1038/s41467-019-12380-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
Forest mortality is accelerating due to climate change and the largest trees may be at the greatest risk, threatening critical ecological, economic, and social benefits. Here, we combine high-resolution airborne LiDAR and optical data to track tree-level mortality rates for ~2 million trees in California over 8 years, showing that tree height is the strongest predictor of mortality during extreme drought. Large trees die at twice the rate of small trees and environmental gradients of temperature, water, and competition control the intensity of the height-mortality relationship. These findings suggest that future persistent drought may cause widespread mortality of the largest trees on Earth.
Collapse
|
23
|
Ibáñez I, Acharya K, Juno E, Karounos C, Lee BR, McCollum C, Schaffer-Morrison S, Tourville J. Forest resilience under global environmental change: Do we have the information we need? A systematic review. PLoS One 2019; 14:e0222207. [PMID: 31513607 PMCID: PMC6742408 DOI: 10.1371/journal.pone.0222207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/23/2019] [Indexed: 12/28/2022] Open
Abstract
The capacity of forests to recover after disturbance, i.e., their resilience, determines their ability to persist and function over time. Many variables, natural and managerial, affect forest resilience. Thus, understanding their effects is critical for the development of sound forest conservation and management strategies, especially in the context of ongoing global environmental changes. We conducted a representative review, meta-analysis, of the forest literature in this topic (search terms “forest AND resilience”). We aimed to identify natural conditions that promote or jeopardize resilience, assess the efficacy of post-disturbance management practices on forest recovery, and evaluate forest resilience under current environmental changes. We surveyed more than 2,500 articles and selected the 156 studies (724 observations) that compared and quantified forest recovery after disturbance under different contexts. Context of recovery included: resource gradients (moisture and fertility), post-disturbance biomass reduction treatments, species richness gradients, incidence of a second disturbance, and disturbance severity. Metrics of recovery varied from individual tree growth and reproduction, to population abundance, to species richness and cover. Analyses show management practices only favored recovery through increased reproduction (seed production) and abundance of recruitment stages. Higher moisture conditions favored recovery, particularly in dry temperate regions; and in boreal forests, this positive effect increased with regional humidity. Biomass reduction treatments were only effective in increasing resilience after a drought. Early recruiting plant stages benefited from increased severity, while disturbance severity was associated with lower recovery of remaining adult trees. This quantitative review provides insight into the natural conditions and management practices under which forest resilience is enhanced and highlights conditions that could jeopardize future resilience. We also identified important knowledge gaps, such as the role of diversity in determining forest resilience and the lack of data in many regions.
Collapse
Affiliation(s)
- Inés Ibáñez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - Kirk Acharya
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Edith Juno
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christopher Karounos
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Benjamin R. Lee
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Caleb McCollum
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Samuel Schaffer-Morrison
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jordon Tourville
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
24
|
Rodríguez‐Buriticá S, Winkler DE, Webb RH, Venable DL. Local temporal trajectories explain population‐level responses to climate change in saguaro (
Carnegiea gigantea
). Ecosphere 2019. [DOI: 10.1002/ecs2.2844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Susana Rodríguez‐Buriticá
- Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona 85721 USA
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt Bogotá D.C. Colombia
| | - Daniel E. Winkler
- U.S. Geological Survey Southwest Biological Science Center Moab Utah 84532 USA
| | - Robert H. Webb
- School of Natural Resources University of Arizona Tucson Arizona 85721 USA
| | - D. Lawrence Venable
- Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona 85721 USA
| |
Collapse
|
25
|
Direct, ECOC, ND and END Frameworks—Which One Is the Best? An Empirical Study of Sentinel-2A MSIL1C Image Classification for Arid-Land Vegetation Mapping in the Ili River Delta, Kazakhstan. REMOTE SENSING 2019. [DOI: 10.3390/rs11161953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To facilitate the advances in Sentinel-2A products for land cover from Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat imagery, Sentinel-2A MultiSpectral Instrument Level-1C (MSIL1C) images are investigated for large-scale vegetation mapping in an arid land environment that is located in the Ili River delta, Kazakhstan. For accurate classification purposes, multi-resolution segmentation (MRS) based extended object-guided morphological profiles (EOMPs) are proposed and then compared with conventional morphological profiles (MPs), MPs with partial reconstruction (MPPR), object-guided MPs (OMPs), OMPs with mean values (OMPsM), and object-oriented (OO)-based image classification techniques. Popular classifiers, such as C4.5, an extremely randomized decision tree (ERDT), random forest (RaF), rotation forest (RoF), classification via random forest regression (CVRFR), ExtraTrees, and radial basis function (RBF) kernel-based support vector machines (SVMs) are adopted to answer the question of whether nested dichotomies (ND) and ensembles of ND (END) are truly superior to direct and error-correcting output code (ECOC) multiclass classification frameworks. Finally, based on the results, the following conclusions are drawn: 1) the superior performance of OO-based techniques over MPs, MPPR, OMPs, and OMPsM is clear for Sentinel-2A MSIL1C image classification, while the best results are achieved by the proposed EOMPs; 2) the superior performance of ND, ND with class balancing (NDCB), ND with data balancing (NDDB), ND with random-pair selection (NDRPS), and ND with further centroid (NDFC) over direct and ECOC frameworks is not confirmed, especially in the cases of using weak classifiers for low-dimensional datasets; 3) from computationally efficient, high accuracy, redundant to data dimensionality and easy of implementations points of view, END, ENDCB, ENDDB, and ENDRPS are alternative choices to direct and ECOC frameworks; 4) surprisingly, because in the ensemble learning (EL) theorem, “weaker” classifiers (ERDT here) always have a better chance of reaching the trade-off between diversity and accuracy than “stronger” classifies (RaF, ExtraTrees, and SVM here), END with ERDT (END-ERDT) achieves the best performance with less than a 0.5% difference in the overall accuracy (OA) values, but is 100 to 10000 times faster than END with RaF and ExtraTrees, and ECOC with SVM while using different datasets with various dimensions; and, 5) Sentinel-2A MSIL1C is better choice than the land cover products from MODIS and Landsat imagery for vegetation species mapping in an arid land environment, where the vegetation species are critically important, but sparsely distributed.
Collapse
|
26
|
Lasky JR. Eco-evolutionary community turnover following environmental change. Evol Appl 2019; 12:1434-1448. [PMID: 31417625 PMCID: PMC6691227 DOI: 10.1111/eva.12776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
Co-occurring species often differ in intraspecific genetic diversity, which in turn can affect adaptation in response to environmental change. Specifically, the simultaneous evolutionary responses of co-occurring species to temporal environmental change may influence community dynamics. Local adaptation along environmental gradients combined with gene flow can enhance genetic diversity of traits within populations. Quantitative genetic theory shows that having greater gene flow results in (a) lower equilibrium population size due to maladaptive immigrant genotypes (migration load), but (b) faster adaptation to changing environments. Here, I build off this theory to study community dynamics of locally adapted species in response to temporal environmental changes akin to warming temperatures. Although an abrupt environmental change leaves all species initially maladapted, high gene flow species subsequently adapt faster due to greater genetic diversity. As a result, species can transiently reverse their relative abundances, but sometimes only after long lag periods. If constant temporal environmental change is applied, the community exhibits a shift toward stable dominance by species with intermediate gene flow. Notably, fast-adapting high gene flow species can increase in absolute abundance under environmental change (although often only for a transient period) because the change suppresses superior competitors with lower gene flow. This eco-evolutionary competitive release stabilizes ecosystem function. The eco-evolutionary community turnover studied here parallels the purely ecological successional dynamics following disturbances. My results demonstrate how interspecific variation in life history can have far-reaching impacts on eco-evolutionary community response to environmental change.
Collapse
Affiliation(s)
- Jesse R. Lasky
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvania
| |
Collapse
|
27
|
Clark JS, Nuñez CL, Tomasek B. Foodwebs based on unreliable foundations: spatiotemporal masting merged with consumer movement, storage, and diet. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1381] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James S. Clark
- Nicholas School of the Environment Duke University Durham North Carolina 27708 USA
- Department of Statistical Science Duke University Durham North Carolina 27708 USA
| | - Chase L. Nuñez
- Nicholas School of the Environment Duke University Durham North Carolina 27708 USA
| | - Bradley Tomasek
- Nicholas School of the Environment Duke University Durham North Carolina 27708 USA
| |
Collapse
|
28
|
Climate Effect on Ponderosa Pine Radial Growth Varies with Tree Density and Shrub Removal. FORESTS 2019. [DOI: 10.3390/f10060477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With increasing temperatures and projected changes in moisture availability for the Mediterranean climate of northern California, empirical evidence of the long-term responses of forests to climate are important for managing these ecosystems. We can assess forest treatment strategies to improve climate resilience by examining past responses to climate for both managed and unmanaged plantations. Using an experimental, long-term density and shrub removal study of ponderosa pine (Pinus ponderosa Lawson & C. Lawson) on a poor-quality site with low water-holding capacity and high runoff of the North Coastal mountain range in California, we examined the relationships between radial growth and climate for these trees over a common interval of 1977–2011. Resistance indices, defined here as the ratio between current year radial growth and the performance of the four previous years, were correlated to climatic variables during the same years. We found that all treatments’ radial growth benefited from seasonal spring moisture availability during the current growing year. Conversely, high spring and early summer temperatures had detrimental effects on growth. High-density treatments with manzanita understories were sensitive to summer droughts while lower densities and treatments with full shrub removal were not. The explanatory power of the climate regression models was generally more consistent for the same shrub treatments across the four different densities. The resistance indices for the lower density and complete shrub removal treatment groups were less dependent on previous years’ climatic conditions. We conclude that, for ponderosa pine plantations with significant manzanita encroachment, understory removal and heavy thinning treatments increase subsequent growth for remaining trees and decrease sensitivity to climate.
Collapse
|
29
|
Nuñez CL, Clark JS, Clark CJ, Poulsen JR. Low-intensity logging and hunting have long-term effects on seed dispersal but not fecundity in Afrotropical forests. AOB PLANTS 2019; 11:ply074. [PMID: 30697404 PMCID: PMC6346634 DOI: 10.1093/aobpla/ply074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/10/2018] [Indexed: 05/23/2023]
Abstract
Hunting and logging, ubiquitous human disturbances in tropical forests, have the potential to alter the ecological processes that govern population recruitment and community composition. Hunting-induced declines in populations of seed-dispersing animals are expected to reduce dispersal of the tree species that rely on them, resulting in potentially greater distance- and density-dependent mortality. At the same time, selective logging may alter competitive interactions among tree species, releasing remaining trees from light, nutrient or space limitations. Taken together, these disturbances may alter the community composition of tropical forests, with implications for carbon storage, biodiversity conservation and ecosystem function. To evaluate the effects of hunting and logging on tree fecundity and seed dispersal, we use 3 years of seed rain data from a large-scale observational experiment in previously logged, hunted and protected forests in northern Republic of Congo (Brazzaville). We find that low-intensity logging had a meaningful long-term effect on species-specific seed dispersal distances, though the direction and magnitude varied and was not congruent within dispersal vector. Tree fecundity increased with tree diameter, but did not differ appreciably across disturbance regimes. The species-specific dispersal responses to logging in this study point towards the long-lasting toll of disturbance on ecological function and highlight the necessity of conserving intact forest.
Collapse
Affiliation(s)
- Chase L Nuñez
- University Program in Ecology, Duke University, Durham, USA
- Nicholas School of the Environment, Duke University, Durham, USA
- Corresponding author’s e-mail address:
| | - James S Clark
- University Program in Ecology, Duke University, Durham, USA
- Nicholas School of the Environment, Duke University, Durham, USA
| | - Connie J Clark
- Nicholas School of the Environment, Duke University, Durham, USA
| | - John R Poulsen
- University Program in Ecology, Duke University, Durham, USA
- Nicholas School of the Environment, Duke University, Durham, USA
| |
Collapse
|
30
|
Jiang X, Huang JG, Cheng J, Dawson A, Stadt KJ, Comeau PG, Chen HYH. Interspecific variation in growth responses to tree size, competition and climate of western Canadian boreal mixed forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1070-1078. [PMID: 29727933 DOI: 10.1016/j.scitotenv.2018.03.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Tree growth of boreal forest plays an important role on global carbon (C) cycle, while tree growth in the western Canadian boreal mixed forests has been predicted to be negatively affected by regional drought. Individual tree growth can be controlled by many factors, such as competition, climate, tree size and age. However, information about contributions of different factors to tree growth is still limited in this region. In order to address this uncertainty, tree rings of two dominant tree species, trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench.) Voss), were sampled from boreal mixed forest stands distributed across Alberta, Canada. Tree growth rates over different time intervals (10years interval, 1998-2007; 20years interval, 1988-2007; 30years interval, 1978-2007) were calculated to study the effects of different factors (tree size, competition, climate, and age) on tree growth. Results indicated that tree growth of two species were both primarily affected by competition or tree size, while climatic indices showed less effects on tree growth. Growth of trembling aspen was significantly affected by inter- and intraspecific competition, while growth of white spruce was primarily influenced by tree size, followed by competition. Positive relationship was found between growth of white spruce and competition index of coniferous group, suggesting an intraspecific mutualism mechanism within coniferous group. Our results further suggested that competition driven succession was the primary process of forest composition shift in the western Canadian boreal mixed forest. Although drought stress increased tree mortality, decline of stem density under climate change released competition stress of surviving trees, which in turn sustained growth of surviving trees. Therefore, climatic indices showed fewer effects on growth of dominant tree species compared to other factors in our study.
Collapse
Affiliation(s)
- Xinyu Jiang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Jian-Guo Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Jiong Cheng
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Andria Dawson
- Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
| | - Kenneth J Stadt
- Forest Management Branch, Sustainable Resource Development, Edmonton, Alberta, Canada
| | - Philip G Comeau
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada
| |
Collapse
|
31
|
Park A, Talbot C. Information Underload: Ecological Complexity, Incomplete Knowledge, and Data Deficits Create Challenges for the Assisted Migration of Forest Trees. Bioscience 2018. [DOI: 10.1093/biosci/biy001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrew Park
- Department of Biology at the University of Winnipeg, in Manitoba, Canada
| | - Carolyn Talbot
- Technology and Public Policy at the University of Winnipeg
| |
Collapse
|
32
|
Collin A, Messier C, Kembel SW, Bélanger N. Can sugar maple establish into the boreal forest? Insights from seedlings under various canopies in southern Quebec. Ecosphere 2018. [DOI: 10.1002/ecs2.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Alexandre Collin
- Centre d’étude de la forêt Université du Québec à Montréal C.P. 8888, Succ. Centre‐Ville Montréal H3C 3P8 QuébecCanada
| | - Christian Messier
- Centre d’étude de la forêt Université du Québec à Montréal C.P. 8888, Succ. Centre‐Ville Montréal H3C 3P8 QuébecCanada
- Institut des Sciences de la Forêt Tempérée Université du Québec en Outaouais 58 rue Principale Ripon J0V 1V0 QuébecCanada
| | - Steven W. Kembel
- Centre d’étude de la forêt Université du Québec à Montréal C.P. 8888, Succ. Centre‐Ville Montréal H3C 3P8 QuébecCanada
- Département des Sciences Biologiques Université du Québec à Montréal C.P. 8888, Succ. Centre‐Ville Montréal H3C 3P8 QuébecCanada
| | - Nicolas Bélanger
- Centre d’étude de la forêt Université du Québec à Montréal C.P. 8888, Succ. Centre‐Ville Montréal H3C 3P8 QuébecCanada
- UER Science et Technologie, Téluq Université du Québec 5800 rue Saint‐Denis, Bureau 1105 Montréal H2S 3L5 QuébecCanada
| |
Collapse
|
33
|
Bloom TDS, Flower A, DeChaine EG. Why georeferencing matters: Introducing a practical protocol to prepare species occurrence records for spatial analysis. Ecol Evol 2017; 8:765-777. [PMID: 29321912 PMCID: PMC5756859 DOI: 10.1002/ece3.3516] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/31/2017] [Accepted: 09/02/2017] [Indexed: 02/03/2023] Open
Abstract
Species Distribution Models (SDMs) are widely used to understand environmental controls on species' ranges and to forecast species range shifts in response to climatic changes. The quality of input data is crucial determinant of the model's accuracy. While museum records can be useful sources of presence data for many species, they do not always include accurate geographic coordinates. Therefore, actual locations must be verified through the process of georeferencing. We present a practical, standardized manual georeferencing method (the Spatial Analysis Georeferencing Accuracy (SAGA) protocol) to classify the spatial resolution of museum records specifically for building improved SDMs. We used the high-elevation plant Saxifraga austromontana Wiegand (Saxifragaceae) as a case study to test the effect of using this protocol when developing an SDM. In MAXENT, we generated and compared SDMs using a comprehensive occurrence dataset that had undergone three different levels of georeferencing: (1) trained using all publicly available herbarium records of the species, minus outliers (2) trained using herbarium records claimed to be previously georeferenced, and (3) trained using herbarium records that we have manually georeferenced to a ≤ 1-km resolution using the SAGA protocol. Model predictions of suitable habitat for S. austromontana differed greatly depending on georeferencing level. The SDMs fitted with presence locations georeferenced using SAGA outperformed all others. Differences among models were exacerbated for future distribution predictions. Under rapid climate change, accurately forecasting the response of species becomes increasingly important. Failure to georeference location data and cull inaccurate samples leads to erroneous model output, limiting the utility of spatial analyses. We present a simple, standardized georeferencing method to be adopted by curators, ecologists, and modelers to improve the geographic accuracy of museum records and SDM predictions.
Collapse
Affiliation(s)
- Trevor D S Bloom
- Department of Biology Western Washington University Bellingham WA USA
| | - Aquila Flower
- Department of Environmental Studies Western Washington University Bellingham WA USA
| | - Eric G DeChaine
- Department of Biology Western Washington University Bellingham WA USA
| |
Collapse
|
34
|
Ruiz-Benito P, Ratcliffe S, Zavala MA, Martínez-Vilalta J, Vilà-Cabrera A, Lloret F, Madrigal-González J, Wirth C, Greenwood S, Kändler G, Lehtonen A, Kattge J, Dahlgren J, Jump AS. Climate- and successional-related changes in functional composition of European forests are strongly driven by tree mortality. GLOBAL CHANGE BIOLOGY 2017; 23:4162-4176. [PMID: 28418105 DOI: 10.1111/gcb.13728] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/06/2017] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
Intense droughts combined with increased temperatures are one of the major threats to forest persistence in the 21st century. Despite the direct impact of climate change on forest growth and shifts in species abundance, the effect of altered demography on changes in the composition of functional traits is not well known. We sought to (1) quantify the recent changes in functional composition of European forests; (2) identify the relative importance of climate change, mean climate and forest development for changes in functional composition; and (3) analyse the roles of tree mortality and growth underlying any functional changes in different forest types. We quantified changes in functional composition from the 1980s to the 2000s across Europe by two dimensions of functional trait variation: the first dimension was mainly related to changes in leaf mass per area and wood density (partially related to the trait differences between angiosperms and gymnosperms), and the second dimension was related to changes in maximum tree height. Our results indicate that climate change and mean climatic effects strongly interacted with forest development and it was not possible to completely disentangle their effects. Where recent climate change was not too extreme, the patterns of functional change generally followed the expected patterns under secondary succession (e.g. towards late-successional short-statured hardwoods in Mediterranean forests and taller gymnosperms in boreal forests) and latitudinal gradients (e.g. larger proportion of gymnosperm-like strategies at low water availability in forests formerly dominated by broad-leaved deciduous species). Recent climate change generally favoured the dominance of angiosperm-like related traits under increased temperature and intense droughts. Our results show functional composition changes over relatively short time scales in European forests. These changes are largely determined by tree mortality, which should be further investigated and modelled to adequately predict the impacts of climate change on forest function.
Collapse
Affiliation(s)
- Paloma Ruiz-Benito
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
- Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| | - Sophia Ratcliffe
- Department of Systematic Botany and Functional Biodiversity, Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Miguel A Zavala
- Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| | - Jordi Martínez-Vilalta
- CREAF, Campus de Bellaterra (UAB) Edifici C, Cerdanyola del Vallès, Spain
- Universidad Autònoma Barcelona, Cerdanyola del Vallès, Spain
| | - Albert Vilà-Cabrera
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, UK
| | - Francisco Lloret
- CREAF, Campus de Bellaterra (UAB) Edifici C, Cerdanyola del Vallès, Spain
- Universidad Autònoma Barcelona, Cerdanyola del Vallès, Spain
| | - Jaime Madrigal-González
- Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| | - Christian Wirth
- Department of Systematic Botany and Functional Biodiversity, Institute of Biology, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, UK
| | - Sarah Greenwood
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Gerald Kändler
- Forest Research Institute Baden-Wurttemberg, Freiburg, Germany
| | | | - Jens Kattge
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, UK
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Jonas Dahlgren
- Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Alistair S Jump
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
- CREAF, Campus de Bellaterra (UAB) Edifici C, Cerdanyola del Vallès, Spain
| |
Collapse
|
35
|
Gleason KE, Bradford JB, Bottero A, D'Amato AW, Fraver S, Palik BJ, Battaglia MA, Iverson L, Kenefic L, Kern CC. Competition amplifies drought stress in forests across broad climatic and compositional gradients. Ecosphere 2017. [DOI: 10.1002/ecs2.1849] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Kelly E. Gleason
- Southwest Biological Science Center US Geological Survey Flagstaff Arizona 86011 USA
| | - John B. Bradford
- Southwest Biological Science Center US Geological Survey Flagstaff Arizona 86011 USA
| | - Alessandra Bottero
- Department of Forest Resources University of Minnesota Minneapolis Minnesota 55455 USA
| | - Anthony W. D'Amato
- Rubenstein School of Environment and Natural Resources University of Vermont 204E Aiken Center Burlington Vermont 05405 USA
| | - Shawn Fraver
- School of Forest Resources University of Maine 5755 Nutting Hall Orono Maine 04469‐5755 USA
| | - Brian J. Palik
- Northern Research Station USDA Forest Service 1831 Highway 169 E Grand Rapids Minnesota 80526 USA
| | - Michael A. Battaglia
- Rocky Mountain Research Station USDA Forest Service 240 West Prospect Road Fort Collins Colorado 80526 USA
| | - Louis Iverson
- 3 Northern Research Station USDA Forest Service 59 Main Road Delaware Ohio 43015 USA
| | - Laura Kenefic
- Center for Ecosystem Change Northern Research Station USDA Forest Service 686 Government Road Bradley Maine 04411 USA
| | - Christel C. Kern
- Northern Research Station USDA Forest Service 5985 Highway K Rhinelander Wisconsin 54501 USA
| |
Collapse
|
36
|
Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer CPO. Forest disturbances under climate change. NATURE CLIMATE CHANGE 2017; 7:395-402. [PMID: 28861124 PMCID: PMC5572641 DOI: 10.1038/nclimate3303] [Citation(s) in RCA: 614] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 04/24/2017] [Indexed: 05/14/2023]
Abstract
Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests.
Collapse
Affiliation(s)
- Rupert Seidl
- Institute of Silviculture, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences (BOKU) Vienna, Peter Jordan Straße 82, 1190 Wien, Austria
| | - Dominik Thom
- Institute of Silviculture, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences (BOKU) Vienna, Peter Jordan Straße 82, 1190 Wien, Austria
| | - Markus Kautz
- Institute of Meteorology and Climate Research – Atmospheric Environmental Research (IMK–IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| | - Dario Martin-Benito
- Forest Ecology, Department of Environmental Sciences, Swiss Federal Institute of Technology, ETH Zurich, Universitätstrasse 16, CH-8092 Zürich, Switzerland
- INIA-CIFOR, Ctra. La Coruña km. 7.5, 28040 Madrid, Spain
| | - Mikko Peltoniemi
- Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Giorgio Vacchiano
- DISAFA, University of Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Jan Wild
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21 Praha 6 – Suchdol, Czech Republic
| | - Davide Ascoli
- Dipartimento di Agraria, University of Naples Federico II, via Università 100, 80055 Portici, Napoli, Italy
| | - Michal Petr
- Forest Research, Forestry Commission, Northern Research Station, Roslin EH25 9SY, UK
| | - Juha Honkaniemi
- Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Manfred J. Lexer
- Institute of Silviculture, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences (BOKU) Vienna, Peter Jordan Straße 82, 1190 Wien, Austria
| | - Volodymyr Trotsiuk
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, CZ-165 21 Praha 6 – Suchdol, Czech Republic
| | - Paola Mairota
- Department of Agri-Environmental and Territorial Sciences, University of Bari “Aldo Moro”, via Amendola 165/A, 70126 Bari, Italy
| | - Miroslav Svoboda
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, CZ-165 21 Praha 6 – Suchdol, Czech Republic
| | - Marek Fabrika
- Department of Forest Management and Geodesy, Technical University in Zvolen, T. G. Masaryka 24, Zvolen 96053, Slovakia
| | - Thomas A. Nagel
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, CZ-165 21 Praha 6 – Suchdol, Czech Republic
- Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Večna pot 83, Ljubljana 1000, Slovenia
| | | |
Collapse
|
37
|
Young DJN, Stevens JT, Earles JM, Moore J, Ellis A, Jirka AL, Latimer AM. Long‐term climate and competition explain forest mortality patterns under extreme drought. Ecol Lett 2016; 20:78-86. [DOI: 10.1111/ele.12711] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/22/2016] [Accepted: 11/04/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Derek J. N. Young
- Graduate Group in Ecology and Department of Plant Sciences University of California‐Davis Davis, CA, USA
| | - Jens T. Stevens
- John Muir Institute of the Environment University of California‐Davis Davis, CA, USA
| | - J. Mason Earles
- School of Forestry and Environmental Studies Yale University New Haven, CT, USA
| | - Jeffrey Moore
- USDA Forest Service Pacific Southwest Region Davis, CA, USA
| | - Adam Ellis
- USDA Forest Service Pacific Southwest Region Davis, CA, USA
| | - Amy L. Jirka
- USDA Forest Service Pacific Southwest Region Davis, CA, USA
| | - Andrew M. Latimer
- Department of Plant Sciences University of California‐Davis Davis, CA, USA
| |
Collapse
|
38
|
Collin A, Messier C, Bélanger N. Conifer Presence May Negatively Affect Sugar Maple’s Ability to Migrate into the Boreal Forest Through Reduced Foliar Nutritional Status. Ecosystems 2016. [DOI: 10.1007/s10021-016-0045-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Caldwell PV, Miniat CF, Elliott KJ, Swank WT, Brantley ST, Laseter SH. Declining water yield from forested mountain watersheds in response to climate change and forest mesophication. GLOBAL CHANGE BIOLOGY 2016; 22:2997-3012. [PMID: 27038309 DOI: 10.1111/gcb.13309] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
Climate change and forest disturbances are threatening the ability of forested mountain watersheds to provide the clean, reliable, and abundant fresh water necessary to support aquatic ecosystems and a growing human population. Here, we used 76 years of water yield, climate, and field plot vegetation measurements in six unmanaged, reference watersheds in the southern Appalachian Mountains of North Carolina, USA to determine whether water yield has changed over time, and to examine and attribute the causal mechanisms of change. We found that annual water yield increased in some watersheds from 1938 to the mid-1970s by as much as 55%, but this was followed by decreases up to 22% by 2013. Changes in forest evapotranspiration were consistent with, but opposite in direction to the changes in water yield, with decreases in evapotranspiration up to 31% by the mid-1970s followed by increases up to 29% until 2013. Vegetation survey data showed commensurate reductions in forest basal area until the mid-1970s and increases since that time accompanied by a shift in dominance from xerophytic oak and hickory species to several mesophytic species (i.e., mesophication) that use relatively more water. These changes in forest structure and species composition may have decreased water yield by as much as 18% in a given year since the mid-1970s after accounting for climate. Our results suggest that changes in climate and forest structure and species composition in unmanaged forests brought about by disturbance and natural community dynamics over time can result in large changes in water supply.
Collapse
Affiliation(s)
- Peter V Caldwell
- USDA Forest Service, Southern Research Station, Center for Forest Watershed Research, Coweeta Hydrologic Lab, 3160 Coweeta Lab Road, Otto, NC, 28734, USA
| | - Chelcy F Miniat
- USDA Forest Service, Southern Research Station, Center for Forest Watershed Research, Coweeta Hydrologic Lab, 3160 Coweeta Lab Road, Otto, NC, 28734, USA
| | - Katherine J Elliott
- USDA Forest Service, Southern Research Station, Center for Forest Watershed Research, Coweeta Hydrologic Lab, 3160 Coweeta Lab Road, Otto, NC, 28734, USA
| | - Wayne T Swank
- USDA Forest Service, Southern Research Station, Center for Forest Watershed Research, Coweeta Hydrologic Lab, 3160 Coweeta Lab Road, Otto, NC, 28734, USA
| | - Steven T Brantley
- USDA Forest Service, Southern Research Station, Center for Forest Watershed Research, Coweeta Hydrologic Lab, 3160 Coweeta Lab Road, Otto, NC, 28734, USA
| | - Stephanie H Laseter
- USDA Forest Service, Southern Research Station, Center for Forest Watershed Research, Coweeta Hydrologic Lab, 3160 Coweeta Lab Road, Otto, NC, 28734, USA
| |
Collapse
|
40
|
Clark JS, Iverson L, Woodall CW, Allen CD, Bell DM, Bragg DC, D'Amato AW, Davis FW, Hersh MH, Ibanez I, Jackson ST, Matthews S, Pederson N, Peters M, Schwartz MW, Waring KM, Zimmermann NE. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. GLOBAL CHANGE BIOLOGY 2016; 22:2329-2352. [PMID: 26898361 DOI: 10.1111/gcb.13160] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
We synthesize insights from current understanding of drought impacts at stand-to-biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand-level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the eastern US, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate-induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway. Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought-tolerant species and genotypes, artificial regeneration, and the development of multistructured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance.
Collapse
Affiliation(s)
- James S Clark
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Louis Iverson
- Forest Service, Northern Research Station, 359 Main Road, Delaware, OH, 43015, USA
| | | | - Craig D Allen
- U.S. Geological Survey, Fort Collins Science Center, Jemez Mountains Field Station, Los Alamos, NM, 87544, USA
| | - David M Bell
- Forest Service, Pacific Northwest Research Station, Corvallis, OR, 97331, USA
| | - Don C Bragg
- Forest Service, Southern Research Station, Monticello, AR, 71656, USA
| | - Anthony W D'Amato
- Rubenstein School of Environment and Natural Resources, University of Vermont, 04E Aiken Center, 81 Carrigan Dr., Burlington, VT, 05405, USA
| | - Frank W Davis
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA
| | - Michelle H Hersh
- Department of Biology, Sarah Lawrence College, New York, NY, 10708, USA
| | - Ines Ibanez
- School of Natural Resources and Environment, University of Michigan, 2546 Dana Building, Ann Arbor, MI, 48109, USA
| | - Stephen T Jackson
- U.S. Geological Survey, Southwest Climate Science Center and Department of Geosciences, University of Arizona, 1064 E. Lowell St., PO Box 210137, Tucson, AZ, 85721, USA
| | - Stephen Matthews
- School of Environment and Natural Resources, Ohio State University, Columbus, OH, 43210, USA
| | | | - Matthew Peters
- Forest Service, Northern Research Station, Delaware, OH, 43015, USA
| | - Mark W Schwartz
- Department of Environmental Science and Policy, UC Davis, Davis, CA, 93106, USA
| | - Kristen M Waring
- School of Forestry, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | | |
Collapse
|
41
|
Berdanier AB, Clark JS. Divergent reproductive allocation trade‐offs with canopy exposure across tree species in temperate forests. Ecosphere 2016. [DOI: 10.1002/ecs2.1313] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Aaron B. Berdanier
- University Program in Ecology Duke University Durham North Carolina 27708 USA
- Nicholas School of the Environment Duke University Durham North Carolina 27708 USA
| | - James S. Clark
- Nicholas School of the Environment Duke University Durham North Carolina 27708 USA
- Department of Statistical Science Duke University Durham North Carolina 27708 USA
| |
Collapse
|
42
|
Vulnerability of Commercial Tree Species to Water Stress in Logged Forests of the Guiana Shield. FORESTS 2016. [DOI: 10.3390/f7050105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Rollinson CR, Kaye MW, Canham CD. Interspecific variation in growth responses to climate and competition of five eastern tree species. Ecology 2016; 97:1003-1011. [DOI: 10.1890/15-1549.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/01/2015] [Indexed: 11/18/2022]
Affiliation(s)
- Christine R. Rollinson
- The Pennsylvania State University University Park Pennsylvania 16802 USA
- Boston University Boston Massachusetts 02215 USA
| | - Margot W. Kaye
- The Pennsylvania State University University Park Pennsylvania 16802 USA
| | | |
Collapse
|
44
|
Uriarte M, Lasky JR, Boukili VK, Chazdon RL. A trait‐mediated, neighbourhood approach to quantify climate impacts on successional dynamics of tropical rainforests. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12576] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- María Uriarte
- Department of Ecology, Evolution & Environmental Biology Columbia University New York NY 10027 USA
| | - Jesse R. Lasky
- Department of Ecology, Evolution & Environmental Biology Columbia University New York NY 10027 USA
| | - Vanessa K. Boukili
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT 06269 USA
| | - Robin L. Chazdon
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT 06269 USA
| |
Collapse
|
45
|
Campitelli BE, Des Marais DL, Juenger TE. Ecological interactions and the fitness effect of water-use efficiency: Competition and drought alter the impact of naturalMPK12alleles inArabidopsis. Ecol Lett 2016; 19:424-34. [DOI: 10.1111/ele.12575] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/17/2015] [Accepted: 01/05/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Brandon E. Campitelli
- Department of Integrative Biology; University of Texas at Austin; Austin TX 78712 USA
| | - David L. Des Marais
- Arnold Arboretum and Department of Organismic and Evolutionary Biology; Harvard University; Cambridge MA 02138 USA
| | - Thomas E. Juenger
- Department of Integrative Biology; University of Texas at Austin; Austin TX 78712 USA
| |
Collapse
|
46
|
Prasad AM. Macroscale intraspecific variation and environmental heterogeneity: analysis of cold and warm zone abundance, mortality, and regeneration distributions of four eastern US tree species. Ecol Evol 2015; 5:5033-48. [PMID: 26640680 PMCID: PMC4662312 DOI: 10.1002/ece3.1752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/08/2015] [Accepted: 08/22/2015] [Indexed: 02/01/2023] Open
Abstract
I test for macroscale intraspecific variation of abundance, mortality, and regeneration of four eastern US tree species (Tsuga canadensis,Betula lenta,Liriodendron tulipifera, and Quercus prinus) by splitting them into three climatic zones based on plant hardiness zones (PHZs). The primary goals of the analysis are to assess the differences in environmental heterogeneity and demographic responses among climatic zones, map regional species groups based on decision tree rules, and evaluate univariate and multivariate patterns of species demography with respect to environmental variables. I use the Forest Inventory Analysis (FIA) data to derive abundance, mortality, and regeneration indices and split the range into three climatic zones based on USDA PHZs: (1) cold adapted, leading region; (2) middle, well‐adapted region; and (3) warm adapted, trailing region. I employ decision tree ensemble methods to assess the importance of environmental predictors on the abundance of the species between the cold and warm zones and map zonal variations in species groups. Multivariate regression trees are used to simultaneously explore abundance, mortality, and regeneration in tandem to assess species vulnerability. Analyses point to the relative importance of climate in the warm adapted, trailing zone (especially moisture) compared to the cold adapted, leading zone. Higher mortality and lower regeneration patterns in the warm trailing zone point to its vulnerability to growing season temperature and precipitation changes that could figure more prominently in the future. This study highlights the need to account for intraspecific variation of demography in order to understand environmental heterogeneity and differential adaptation. It provides a methodology for assessing the vulnerability of tree species by delineating climatic zones based on easily available PHZ data, and FIA derived abundance, mortality, and regeneration indices as a proxy for overall growth and fitness. Based on decision tree rules, ecologically meaningful variations in species abundance among the climatic zones can be related to environmental variability and mapped.
Collapse
Affiliation(s)
- Anantha M Prasad
- Northern Research Station USDA Forest Service 359, Main Road Delaware Ohio 43015
| |
Collapse
|
47
|
Billings SA, Glaser SM, Boone AS, Stephen FM. Nonlinear tree growth dynamics predict resilience to disturbance. Ecosphere 2015. [DOI: 10.1890/es15-00176.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Warton DI, Blanchet FG, O'Hara RB, Ovaskainen O, Taskinen S, Walker SC, Hui FKC. So Many Variables: Joint Modeling in Community Ecology. Trends Ecol Evol 2015; 30:766-779. [PMID: 26519235 DOI: 10.1016/j.tree.2015.09.007] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 01/21/2023]
Abstract
Technological advances have enabled a new class of multivariate models for ecology, with the potential now to specify a statistical model for abundances jointly across many taxa, to simultaneously explore interactions across taxa and the response of abundance to environmental variables. Joint models can be used for several purposes of interest to ecologists, including estimating patterns of residual correlation across taxa, ordination, multivariate inference about environmental effects and environment-by-trait interactions, accounting for missing predictors, and improving predictions in situations where one can leverage knowledge of some species to predict others. We demonstrate this by example and discuss recent computation tools and future directions.
Collapse
Affiliation(s)
- David I Warton
- School of Mathematics and Statistics, and Evolution & Ecology Research Centre, The University of New South Wales (UNSW), Sydney, Australia.
| | | | - Robert B O'Hara
- Biodiversity and Climate Research Centre, Frankfurt, Germany
| | - Otso Ovaskainen
- Metapopulation Research Center, Department of Biosciences, University of Helsinki, Finland; Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Norway
| | - Sara Taskinen
- Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylä, Finland
| | - Steven C Walker
- Department of Mathematics and Statistics, McMaster University, Hamilton, Canada
| | - Francis K C Hui
- Mathematical Sciences Institute, Australian National University, Canberra, Australia
| |
Collapse
|
49
|
Allen CD, Breshears DD, McDowell NG. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015. [DOI: 10.1890/es15-00203.1] [Citation(s) in RCA: 1345] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
50
|
Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proc Natl Acad Sci U S A 2015; 112:4009-14. [PMID: 25775576 DOI: 10.1073/pnas.1420844112] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tree mortality, growth, and recruitment are essential components of forest dynamics and resiliency, for which there is great concern as climate change progresses at high latitudes. Tree mortality has been observed to increase over the past decades in many regions, but the causes of this increase are not well understood, and we know even less about long-term changes in growth and recruitment rates. Using a dataset of long-term (1958-2009) observations on 1,680 permanent sample plots from undisturbed natural forests in western Canada, we found that tree demographic rates have changed markedly over the last five decades. We observed a widespread, significant increase in tree mortality, a significant decrease in tree growth, and a similar but weaker trend of decreasing recruitment. However, these changes varied widely across tree size, forest age, ecozones, and species. We found that competition was the primary factor causing the long-term changes in tree mortality, growth, and recruitment. Regional climate had a weaker yet still significant effect on tree mortality, but little effect on tree growth and recruitment. This finding suggests that internal community-level processes-more so than external climatic factors-are driving forest dynamics.
Collapse
|