1
|
Šantrůček J, Kubásek J, Janová J, ŠantrůčKOvá H, Altman J, Tumajer J, Hrádková M, Cienciala E. Response of leaf internal CO 2 concentration and intrinsic water-use efficiency in Norway spruce to century-long gradual CO 2 elevation. PHOTOSYNTHETICA 2025; 63:51-63. [PMID: 40270907 PMCID: PMC12012425 DOI: 10.32615/ps.2025.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/10/2025] [Indexed: 04/25/2025]
Abstract
The strategies of Norway spruce [Picea abies (L.) Karst.] to increasing atmospheric CO2 concentration (C a) are not entirely clear. Here, we reconstructed centennial trajectories of leaf internal CO2 concentration (C i) and intrinsic water-use efficiency (WUEi) from the amount of 13C in tree-ring cellulose. We collected 57 cores across elevations, soil, and atmospheric conditions in central Europe. Generally, WUEi and C i increased over the last 100 years and the C i/C a ratio remained almost constant. However, two groups were distinguished. The first group showed a quasi-linear response to C a and the sensitivity of C i to C a (s = dC i/dC a) ranged from 0 to 1. Trees in the second group showed nonmonotonic responses with extremes during the peak of industrial air pollution in the 1980s and s increase from -1 to +1.6. Our study shows a marked attenuation of the rise in WUEi during the 20th century leading to invariant WUEi in recent decades.
Collapse
Affiliation(s)
- J. Šantrůček
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - J. Kubásek
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - J. Janová
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - H. ŠantrůčKOvá
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - J. Altman
- Institute of Botany, AS CR, Zámek 1, 252 43 Průhonice, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6 – Suchdol, Czech Republic
| | - J. Tumajer
- IFER – Institute of Forest Ecosystem Research, Čs. armády 655, 254 01 Jílové u Prahy, Czech Republic
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 12843 Prague, Czech Republic
| | - M. Hrádková
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Institute of Botany, AS CR, Zámek 1, 252 43 Průhonice, Czech Republic
| | - E. Cienciala
- IFER – Institute of Forest Ecosystem Research, Čs. armády 655, 254 01 Jílové u Prahy, Czech Republic
| |
Collapse
|
2
|
Zhao N, Lu S, Li S, Li B, Yu X, Xu X. Enhancing the water use efficiency model predictions for Platycladus orientalis and Quercus variabilis: Integrating the dynamics of carbon dioxide concentration and soil water availability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178179. [PMID: 39721536 DOI: 10.1016/j.scitotenv.2024.178179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Water use efficiency (WUE) is a tracer for plants on the trade-off exchange of water and carbon dioxide between terrestrial ecosystems and the atmosphere; therefore, a dynamic investigation of WUE and its driving factors will be of great significance to optimize water and carbon fitness and predict the plants' response to climate change. In our study, a modified water use efficiency model was proposed to improve the quantification of carbon and water processes by adding a photosynthesis-gs simulation dependent on CO2 concentration and soil moisture to the photosynthetic transpiration model (noted as SMPTSB model). Actual measured water use efficiencies were respectively obtained by the gas exchange measurements (WUEge) and the δ13CWSC that defined as the carbon-heavy isotope of the water-soluble compound in leaves (WUEwsc) of three-year tree saplings of Platycladus orientalis (L.) Franco and Quercus variabilis Blume, which were cultured in an orthogonal treatment consisting of four ambient CO2 concentrations ([CO2]) and five soil volumetric water contents (SWC). Direct comparisons of the modeled and measured stomatal conductance and WUE further indicated that the modified WUE model makes carbon assimilation, stomatal conductance and WUE more sensitive to [CO2] and soil moisture. From this, the enhancement of WUE in P. orientalis and Q. variabilis saplings is expected to occur when the ambient CO2 concentration increases to 600 ppm - 700 ppm and the appropriate SWC reaches 60 % to 80 % of the field capacity for potted soil. In general, the water use efficiency model that accounts for the synergistic effects of environmental CO2 concentration and soil moisture can accurately identify the corresponding thresholds for the optimal efficiency of carbon and water use of vegetation, which is expected to provide a theoretical basis for predicting the corresponding forest management practices to address future climate change.
Collapse
Affiliation(s)
- Na Zhao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
| | - Shaowei Lu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
| | - Shaoning Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
| | - Bin Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
| | - Xinxiao Yu
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Xiaotian Xu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China.
| |
Collapse
|
3
|
Singh N, Tagliavini M, Tomelleri E, Montagnani L. Multi-decadal tree-ring stable isotope records of apple and pear trees indicate coherent ecophysiological responses to environmental changes in alpine valleys. FRONTIERS IN PLANT SCIENCE 2025; 15:1471415. [PMID: 39866325 PMCID: PMC11757252 DOI: 10.3389/fpls.2024.1471415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025]
Abstract
The ecophysiological and ecohydrological impacts of climate change and progressively increasing atmospheric carbon dioxide (CO2) concentration on agroecosystems are not well understood compared to the forest ecosystems. In this study, we utilized the presence of old apple and pear trees in the alpine valleys of Northern Italy (maintained for cultural heritage purposes) to investigate climate-scale physiological responses. We developed long-term tree-ring stable isotopic records (δ13C and δ18O) from apple (1976-2021) and pear trees (1943-2021). This allowed the reconstruction of key ecophysiological processes like the variations in intrinsic water use efficiency (iWUE), and we investigated how these trees responded to climate and CO2 changes over decades. Results showed a slight declining trend in carbon discrimination (Δ 13C) while intercellular CO2 concentration (Ci) for both species has been increasing since the late 1980s. Concurrently both species exhibited a rising trend in iWUE, with apple trees demonstrating higher efficiency, which appears to be primarily driven by the CO2-fertilization effect. The concomitant trends in tree-ring δ18O suggested a relatively stable local hydroclimate during the study period with some species-specific responses. Analyses further revealed that minimum growing season temperature, not precipitation was the most significant factor influencing the rise in iWUE alongside with CO2 fertilization effect. Analyses of species' δ13C coupled with their respective δ18O confirmed that the rise in iWUE was due to increased carbon assimilation rather than a decline in evapotranspiration. Moreover, coupled δ13C-δ18O analyses suggested increasing trends in carbon assimilation, with apple trees showing higher inter-decadal variations. These long-term records provide a unique opportunity to test and calibrate how these systems respond to recent and anticipated climate change.
Collapse
Affiliation(s)
- Nilendu Singh
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Bolzano, Italy
- Wadia Institute of Himalayan Geology, Dehradun, India
| | - Massimo Tagliavini
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Bolzano, Italy
| | - Enrico Tomelleri
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Bolzano, Italy
| | - Leonardo Montagnani
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Bolzano, Italy
| |
Collapse
|
4
|
Oulehle F, Kolář T, Rybníček M, Hruška J, Büntgen U, Trnka M. Complex imprint of air pollution in the basal area increments of three European tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175858. [PMID: 39209174 DOI: 10.1016/j.scitotenv.2024.175858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The impact of atmospheric pollution on the growth of European forest tree species, particularly European beech, Silver fir and Norway spruce, is examined in five mesic forests in the Czech Republic. Analyzing of basal area increment (BAI) patterns using linear mixed effect models reveals a complex interplay between atmospheric nitrogen (N) and sulphur (S) deposition, climatic variables and changing CO2 concentrations. Beech BAI responds positively to N deposition (in tandem with air CO2 concentration), with soil phosphorus (P) availability emerging as a significant factor influencing overall growth rates. Fir BAI, on the other hand, was particularly negatively influenced by S deposition, although recent growth acceleration suggests growth resilience in post-pollution period. This fir growth surge likely coincides with stimulation of P acquisition following the decline of acidic pollution. The consequence is the current highest productivity among the studied tree species. The growth dynamics of both conifers were closely linked to the stoichiometric imbalance of phosphorus in needles, indicating the possible sensitivity of exogenous controls on nutrient uptake. Furthermore, spruce BAI was positively linked to calcium availability across sites. Despite enhanced water-use efficiency under elevated CO2, spruce growth is constrained by precipitation deficit and demonstrates weakening resilience to increasing growing season air temperatures. Overall, these findings underscore the intricate relationships between atmospheric pollution, nutrient availability, and climatic factors in shaping the growth dynamics of European forest ecosystems. Thus, incorporating biogeochemical context of nutrient availability is essential for realistic modelling of tree growth in a changing climate.
Collapse
Affiliation(s)
- Filip Oulehle
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic; Czech Geological Survey, Klárov 3, 118 21 Prague, Czech Republic.
| | - Tomáš Kolář
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic; Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Michal Rybníček
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic; Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Jakub Hruška
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic; Czech Geological Survey, Klárov 3, 118 21 Prague, Czech Republic
| | - Ulf Büntgen
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Miroslav Trnka
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| |
Collapse
|
5
|
Arco Molina JG, Saurer M, Altmanova N, Treydte K, Dolezal J, Song JS, Altman J. Recent warming and increasing CO2 stimulate growth of dominant trees under no water limitation in South Korea. TREE PHYSIOLOGY 2024; 44:tpae103. [PMID: 39151030 DOI: 10.1093/treephys/tpae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/18/2024]
Abstract
Increases in temperatures and atmospheric CO2 concentration influence the growth performance of trees worldwide. The direction and intensity of tree growth and physiological responses to changing climate do, however, vary according to environmental conditions. Here we present complex, long-term, tree-physiological responses to unprecedented temperature increase in East Asia. For this purpose, we studied radial growth and isotopic (δ13C and δ18O) variations using tree-ring data for the past 100 yr of dominant Quercus mongolica trees from the cool-temperate forests from Hallasan, South Korea. Overall, we found that tree stem basal area increment, intercellular CO2 concentration and intrinsic water-use efficiency significantly increased over the last century. We observed, however, short-term variability in the trends of these variables among four periods identified by change point analysis. In comparison, δ18O did not show significant changes over time, suggesting no major hydrological changes in this precipitation-rich area. The strength and direction of growth-climate relationships also varied during the past 100 yr. Basal area increment (BAI) did not show significant relationships with the climate over the 1924-1949 and 1975-1999 periods. However, over 1950-1974, BAI was negatively affected by both temperature and precipitation, while after 2000, a temperature stimulus was observed. Finally, over the past two decades, the increase in Q. mongolica tree growth accelerated and was associated with high spring-summer temperatures and atmospheric CO2 concentrations and decreasing intrinsic water-use efficiency, δ18O and vapour pressure deficit, suggesting that the photosynthetic rate continued increasing under no water limitations. Our results indicate that the performance of dominant trees of one of the most widely distributed species in East Asia has benefited from recent global changes, mainly over the past two decades. Such findings are essential for projections of forest dynamics and carbon sequestration under climate change.
Collapse
Affiliation(s)
| | - Matthias Saurer
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Nela Altmanova
- Institute of Botany, Czech Academy of Sciences, Dukelská 135, Třeboň 379 01, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 37005, Czech Republic
| | - Kerstin Treydte
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Hochschulstrasse 4, Bern 3012, Switzerland
| | - Jiri Dolezal
- Institute of Botany, Czech Academy of Sciences, Dukelská 135, Třeboň 379 01, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 37005, Czech Republic
| | - Jong-Suk Song
- College of Natural Sciences, Andong National University, Gyeongsangbuk-do, 36729, Andong 760-749, Republic of Korea
| | - Jan Altman
- Institute of Botany, Czech Academy of Sciences, Dukelská 135, Třeboň 379 01, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Prague 6 - Suchdol, Czech Republic
| |
Collapse
|
6
|
Qi X, Treydte K, Saurer M, Fang K, An W, Lehmann M, Liu K, Wu Z, He HS, Du H, Li MH. Contrasting water-use strategies to climate warming in white birch and larch in a boreal permafrost region. TREE PHYSIOLOGY 2024; 44:tpae053. [PMID: 38769900 DOI: 10.1093/treephys/tpae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
The effects of rising atmospheric CO2 concentrations (Ca) with climate warming on intrinsic water-use efficiency and radial growth in boreal forests are still poorly understood. We measured tree-ring cellulose δ13C, δ18O, and tree-ring width in Larix dahurica (larch) and Betula platyphylla (white birch), and analyzed their relationships with climate variables in a boreal permafrost region of northeast China over past 68 years covering a pre-warming period (1951-1984; base period) and a warm period (1985-2018; warm period). We found that white birch but not larch significantly increased their radial growth over the warm period. The increased intrinsic water-use efficiency in both species was mainly driven by elevated Ca but not climate warming. White birch but not larch showed significantly positive correlations between tree-ring δ13C, δ18O and summer maximum temperature as well as vapor pressure deficit in the warm period, suggesting a strong stomatal response in the broad-leaved birch to temperature changes. The climate warming-induced radial growth enhancement in white birch is primarily associated with a conservative water-use strategy. In contrast, larch exhibits a profligate water-use strategy. It implies an advantage for white birch over larch in the warming permafrost regions.
Collapse
Affiliation(s)
- Xi Qi
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Renmin Street, Nanguan District, Changchun 130024, China
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Kerstin Treydte
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Keyan Fang
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, College of Geographical Sciences, Fujian Normal University, Shangsan Road, Cangshan District, Fuzhou 350007, China
| | - Wenling An
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beitucheng West Road, Chaoyang District, Beijing 100029, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Marco Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Kunyuan Liu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Renmin Street, Nanguan District, Changchun 130024, China
| | - Zhengfang Wu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Renmin Street, Nanguan District, Changchun 130024, China
| | - Hong S He
- School of Natural Resources, University of Missouri, 230 Jesse Hall, Columbia, MO 65211, USA
| | - Haibo Du
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Renmin Street, Nanguan District, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Renmin Street, Nanguan District, Changchun 130024, China
| | - Mai-He Li
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Renmin Street, Nanguan District, Changchun 130024, China
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
- School of Life Sciences, Hebei University, Wusi East Road, Lianchi District, Baoding 071000, China
| |
Collapse
|
7
|
Pernicová N, Urban O, Čáslavský J, Kolář T, Rybníček M, Sochová I, Peñuelas J, Bošeľa M, Trnka M. Impacts of elevated CO 2 levels and temperature on photosynthesis and stomatal closure along an altitudinal gradient are counteracted by the rising atmospheric vapor pressure deficit. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171173. [PMID: 38401718 DOI: 10.1016/j.scitotenv.2024.171173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The efficiency of water use in plants, a critical ecophysiological parameter closely related to water and carbon cycles, is essential for understanding the interactions between plants and their environment. This study investigates the effects of ongoing climate change and increasing atmospheric CO2 concentration on intrinsic (stomata-based; iWUE) and evaporative (transpiration-based; eWUE) water use efficiency in oak trees along a naturally small altitudinal gradient (130-630 m a.s.l.) of Vihorlat Mountains (eastern Slovakia, Central Europe). To assess changes in iWUE and eWUE values over the past 60 years (1961-2020), stable carbon isotope ratios in latewood cellulose (δ13Ccell) of annually resolved tree rings were analyzed. Such an approach was sensitive enough to distinguish tree responses to growth environments at different altitudes. Our findings revealed a rising trend in iWUE, particularly in oak trees at low and middle altitudes. However, this increase was negligible at high altitudes. Warmer and drier conditions at lower altitudes likely led to significant stomatal closure and enhanced efficiency in photosynthetic CO2 uptake due to rising CO2 concentration. Conversely, the increasing intracellular-to-ambient CO2 ratio (Ci/Ca) at higher altitudes indicated lower efficiency in photosynthetic CO2 uptake. In contrast to iWUE, eWUE showed no increasing trends over the last 60 years. This suggests that the positive impacts of elevated CO2 concentrations and temperature on photosynthesis and stomatal closure are counteracted by the rising atmospheric vapor pressure deficit (VPD). These differences underscore the importance of the correct interpretation of stomata-based and transpiration-based WUEs and highlight the necessity of atmospheric VPD correction when applying tree-ring δ13C-derived WUE at ecosystem and global levels.
Collapse
Affiliation(s)
- Natálie Pernicová
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic; Mendel University in Brno, Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Otmar Urban
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic.
| | - Josef Čáslavský
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic
| | - Tomáš Kolář
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic; Mendel University in Brno, Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Michal Rybníček
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic; Mendel University in Brno, Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Irena Sochová
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic; Mendel University in Brno, Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Josep Peñuelas
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic; CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra 08193, Catalonia, Spain; CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain
| | - Michal Bošeľa
- Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, SK-960 01 Zvolen, Slovakia
| | - Miroslav Trnka
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic; Mendel University in Brno, Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| |
Collapse
|
8
|
Vitali V, Schuler P, Holloway-Phillips M, D'Odorico P, Guidi C, Klesse S, Lehmann MM, Meusburger K, Schaub M, Zweifel R, Gessler A, Saurer M. Finding balance: Tree-ring isotopes differentiate between acclimation and stress-induced imbalance in a long-term irrigation experiment. GLOBAL CHANGE BIOLOGY 2024; 30:e17237. [PMID: 38488024 DOI: 10.1111/gcb.17237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Scots pine (Pinus sylvestris L.) is a common European tree species, and understanding its acclimation to the rapidly changing climate through physiological, biochemical or structural adjustments is vital for predicting future growth. We investigated a long-term irrigation experiment at a naturally dry forest in Switzerland, comparing Scots pine trees that have been continuously irrigated for 17 years (irrigated) with those for which irrigation was interrupted after 10 years (stop) and non-irrigated trees (control), using tree growth, xylogenesis, wood anatomy, and carbon, oxygen and hydrogen stable isotope measurements in the water, sugars and cellulose of plant tissues. The dendrochronological analyses highlighted three distinct acclimation phases to the treatments: irrigated trees experienced (i) a significant growth increase in the first 4 years of treatment, (ii) high growth rates but with a declining trend in the following 8 years and finally (iii) a regression to pre-irrigation growth rates, suggesting the development of a new growth limitation (i.e. acclimation). The introduction of the stop treatment resulted in further growth reductions to below-control levels during the third phase. Irrigated trees showed longer growth periods and lower tree-ring δ13 C values, reflecting lower stomatal restrictions than control trees. Their strong tree-ring δ18 O and δ2 H (O-H) relationship reflected the hydrological signature similarly to the control. On the contrary, the stop trees had lower growth rates, conservative wood anatomical traits, and a weak O-H relationship, indicating a physiological imbalance. Tree vitality (identified by crown transparency) significantly modulated growth, wood anatomical traits and tree-ring δ13 C, with low-vitality trees of all treatments performing similarly regardless of water availability. We thus provide quantitative indicators for assessing physiological imbalance and tree acclimation after environmental stresses. We also show that tree vitality is crucial in shaping such responses. These findings are fundamental for the early assessment of ecosystem imbalances and decline under climate change.
Collapse
Affiliation(s)
- Valentina Vitali
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Philipp Schuler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Petra D'Odorico
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Claudia Guidi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Stefan Klesse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Katrin Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
9
|
Kong R, Zhang Z, Yu Z, Huang R, Zhang Y, Chen X, Xu CY. Increasing sensitivity of dryland water use efficiency to soil water content due to rising atmospheric CO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167087. [PMID: 37716683 DOI: 10.1016/j.scitotenv.2023.167087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Examining the intricate interplay between ecosystem carbon-water coupling and soil moisture sensitivity serves as a crucial approach to effectively assess the dilemma arising from escalating global carbon emissions and concomitant water scarcity. Using the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ), this study investigated the potential effects of climate change and soil water content (SWC) on terrestrial ecosystem water use efficiency (WUE) across China from 1982 to 2060. The results revealed that: (1) WUE was higher in South China and Northeast China, but lower in Northwest China and it had shown a significant upward trend in the past 40 years, especially in Northwest China where grasslands were widely distributed. The increase in WUE was mainly closely related to the greening of vegetation. In the past 40 years, the area of net primary productivity (NPP), evapotranspiration (ET), and WUE showing an upward trend accounted for 85.85 %, 63.66 %, and 83.88 % of the total area of the country, respectively. Although ET also showed an increasing trend nationwide, the increase of NPP was more obvious; (2) The control experiment showed that WUE showed a significant increase trend in arid and semi-arid areas of Northwest China with the increase of CO2 concentration, while SWC showed a significant drying trend, but both WUE and SWC showed an increasing trend in humid areas. The sensitivity of WUE to SWC was enhanced in arid and semi-arid areas, and the effect of soil drought was partially offset by the increase of WUE; (3) Future climate projections also indicated that the CO2 fertilization effect will contribute to an increase in WUE while causing drier soil moisture conditions in the arid and semi-arid regions. Especially under the SSP5-8.5 scenario, CO2 fertilization in Northwest China contributed more than 14 % to WUE from 2015 to 2060, while the impact on SWC depletion exceeded 3 %. This highlights the potential implications of rising atmospheric CO2 concentration, as it may promote a significant rise in WUE and exacerbate the drying of soil moisture in these areas. These findings emphasize the need for careful attention and consideration in managing water resources in arid and semi-arid regions in the face of future climate change.
Collapse
Affiliation(s)
- Rui Kong
- State Key Laboratory of Hydrology-Water Resources and Hydraulics Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Zengxin Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulics Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; Joint Innovation Center for Modern Forestry Studies, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Zejiang Yu
- State Key Laboratory of Hydrology-Water Resources and Hydraulics Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Richao Huang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Ying Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulics Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Xi Chen
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Chong-Yu Xu
- Department of Geosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
10
|
Liang J, Krauss KW, Finnigan J, Stuart-Williams H, Farquhar GD, Ball MC. Linking water use efficiency with water use strategy from leaves to communities. THE NEW PHYTOLOGIST 2023; 240:1735-1742. [PMID: 37823336 DOI: 10.1111/nph.19308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
Limitations and utility of three measures of water use characteristics were evaluated: water use efficiency (WUE), intrinsic WUE and marginal water cost of carbon gain ( ∂ E / ∂ A ) estimated, respectively, as ratios of assimilation (A) to transpiration (E), of A to stomatal conductance (gs ) and of sensitivities of E and A with variation in gs . Only the measure ∂ E / ∂ A estimates water use strategy in a way that integrates carbon gain relative to water use under varying environmental conditions across scales from leaves to communities. This insight provides updated and simplified ways of estimating ∂ E / ∂ A and adds depth to understanding ways that plants balance water expenditure against carbon gain, uniquely providing a mechanistic means of predicting water use characteristics under changing environmental scenarios.
Collapse
Affiliation(s)
- Jie Liang
- Plant Science Division, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Ken W Krauss
- Wetland and Aquatic Research Center, US Geological Survey, 70506, LA, Lafayette, USA
| | - John Finnigan
- Plant Science Division, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Hilary Stuart-Williams
- Plant Science Division, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Graham D Farquhar
- Plant Science Division, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
11
|
Bassett KR, Östlund L, Gundale MJ, Fridman J, Jämtgård S. Forest inventory tree core archive reveals changes in boreal wood traits over seven decades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165795. [PMID: 37499833 DOI: 10.1016/j.scitotenv.2023.165795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Boreal forests play an important role in the global carbon (C) cycle, and there is great interest in understanding how they respond to environmental change, including nitrogen (N) and water limitation, which could impact future forest growth and C storage. Utilizing tree cores archived by the Swedish National Forest Inventory, we measured stemwood traits, including stable N and C isotope composition which provides valuable information related to N availability and water stress, respectively, as well as N and C content, and C/N ratio over 1950-2017 in two central Swedish counties covering an area of ca. 55,000 sq. km (n = 1038). We tested the hypothesis that wood traits are changing over time, and that temporal patterns would differ depending on alternative dendrochronological reconstruction methods, i.e. the commonly applied "single tree method" (STM) or a conceptually stronger "multiple tree method" (MTM). Averaged across all MTMs, our data showed that all five wood traits for Picea abies and Pinus sylvestris changed over time. Wood δ15N strongly declined, indicating progressive nitrogen limitation. The decline in δ13C tracked the known atmospheric δ13CO2 signal, suggesting no change in water stress occurred. Additionally, wood N significantly increased, while C and C/N ratios declined over time. Furthermore, wood trait patterns sometimes differed between dendrochronological methods. The most notable difference was for δ15N, where the slope was much shallower for the STM compared to MTMs for both species, indicating that mobility of contemporary N is problematic when using the STM, resulting in substantially less sensitivity to detect historical signals. Our study indicates strong temporal changes in boreal wood traits and also indicates that the field of dendroecology should adopt new methods and archiving practices for studying highly mobile element cycles, such as nitrogen, which are critical for understanding environmental change in high latitude ecosystems.
Collapse
Affiliation(s)
- Kelley R Bassett
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE901-83 Umeå, Sweden.
| | - Lars Östlund
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE901-83 Umeå, Sweden
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE901-83 Umeå, Sweden
| | - Jonas Fridman
- Department of Forest Resource Management, Swedish University of Agricultural Sciences, SE901-83 Umeå, Sweden
| | - Sandra Jämtgård
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE901-83 Umeå, Sweden
| |
Collapse
|
12
|
Li F, Xiao J, Chen J, Ballantyne A, Jin K, Li B, Abraha M, John R. Global water use efficiency saturation due to increased vapor pressure deficit. Science 2023; 381:672-677. [PMID: 37561856 DOI: 10.1126/science.adf5041] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/06/2023] [Indexed: 08/12/2023]
Abstract
The ratio of carbon assimilation to water evapotranspiration (ET) of an ecosystem, referred to as ecosystem water use efficiency (WUEeco), is widely expected to increase because of the rising atmospheric carbon dioxide concentration (Ca). However, little is known about the interactive effects of rising Ca and climate change on WUEeco. On the basis of upscaled estimates from machine learning methods and global FLUXNET observations, we show that global WUEeco has not risen since 2001 because of the asymmetric effects of an increased vapor pressure deficit (VPD), which depressed photosynthesis and enhanced ET. An undiminished ET trend indicates that rising temperature and VPD may play a more important role in regulating ET than declining stomatal conductance. Projected increases in VPD are predicted to affect the future coupling of the terrestrial carbon and water cycles.
Collapse
Affiliation(s)
- Fei Li
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
- Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI 48823, USA
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
| | - Jiquan Chen
- Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI 48823, USA
| | - Ashley Ballantyne
- Department of Ecosystem and Conservation Science, University of Montana, Missoula, MT 59801, USA
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, 91190 Gif-sur-Yvette, France
| | - Ke Jin
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Bing Li
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Michael Abraha
- Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI 48823, USA
| | - Ranjeet John
- Department of Biology and Department of Sustainability, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
13
|
Churakova Sidorova OV, Porter TJ, Zharkov MS, Fonti MV, Barinov VV, Taynik AV, Kirdyanov AV, Knorre AA, Wegmann M, Trushkina TV, Koshurnikova NN, Vaganov EA, Myglan VS, Siegwolf RTW, Saurer M. Climate impacts on tree-ring stable isotopes across the Northern Hemispheric boreal zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161644. [PMID: 36707005 DOI: 10.1016/j.scitotenv.2023.161644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Boreal regions are changing rapidly with anthropogenic global warming. In order to assess risks and impacts of this process, it is crucial to put these observed changes into a long-term perspective. Summer air temperature variability can be well reconstructed from conifer tree rings. While the application of stable isotopes can potentially provide complementary climatic information over different seasons. In this study, we developed new triple stable isotope chronologies in tree-ring cellulose (δ13Ctrc, δ18Otrc, δ2Htrc) from a study site in Canada. Additionally, we performed regional aggregated analysis of available stable isotope chronologies from 6 conifers' tree species across high-latitudinal (HL) and - altitudinal (HA) as well as Siberian (SIB) transects of the Northern Hemispheric boreal zone. Our results show that summer air temperature still plays an important role in determining tree-ring isotope variability at 11 out of 24 sites for δ13Ctrc, 6 out of 18 sites for δ18Otrc and 1 out of 6 sites for δ2Htrc. Precipitation, relative humidity and vapor pressure deficit are significantly and consistently recorded in both δ13Ctrc and δ18Otrc along HL. Summer sunshine duration is captured by all isotopes, mainly for HL and HA transects, indicating an indirect link with an increase in air and leaf temperature. A mixed temperature-precipitation signal is preserved in δ13Ctrc and δ18Otrc along SIB transect. The δ2Htrc data obtained for HL-transect provide information not only about growing seasonal moisture and temperature, but also capture autumn, winter and spring sunshine duration signals. We conclude that a combination of triple stable isotopes in tree-ring studies can provide a comprehensive description of climate variability across the boreal forest zone and improve ecohydrological reconstructions.
Collapse
Affiliation(s)
- Olga V Churakova Sidorova
- Siberian Federal University, 660041 Svobodny 79, Krasnoyarsk, Russian Federation; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; Kasan Federal University, Institute of Geology and Petroleum Technology, Kremlyovskaya str. 18, Kazan 420008, Russian Federation.
| | - Trevor J Porter
- Department of Geography, Geomatics and Environment, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Mikhail S Zharkov
- Siberian Federal University, 660041 Svobodny 79, Krasnoyarsk, Russian Federation
| | - Marina V Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Valentin V Barinov
- Siberian Federal University, 660041 Svobodny 79, Krasnoyarsk, Russian Federation
| | - Anna V Taynik
- Siberian Federal University, 660041 Svobodny 79, Krasnoyarsk, Russian Federation
| | - Alexander V Kirdyanov
- Siberian Federal University, 660041 Svobodny 79, Krasnoyarsk, Russian Federation; Sukachev Institute of Forest SB RAS, Federal Research Center 'Krasnoyarsk Science Center SB RAS', 660036 Krasnoyarsk, Akademgorodok, Russian Federation
| | - Anastasya A Knorre
- Siberian Federal University, 660041 Svobodny 79, Krasnoyarsk, Russian Federation; Science Department, National Park "Krasnoyarsk Stolby", 660006 Krasnoyarsk, Russian Federation
| | - Martin Wegmann
- École Polytechnique Fédérale de Lausanne EPFL, Limnology center, 1015 Lausanne, Switzerland
| | - Tatyana V Trushkina
- Reshetnev Siberian State University of Science and Technology, Krasnoyarsky Rabochy 31, 660037 Krasnoyarsk, Russian Federation
| | | | - Eugene A Vaganov
- Siberian Federal University, 660041 Svobodny 79, Krasnoyarsk, Russian Federation; Sukachev Institute of Forest SB RAS, Federal Research Center 'Krasnoyarsk Science Center SB RAS', 660036 Krasnoyarsk, Akademgorodok, Russian Federation
| | - Vladimir S Myglan
- Siberian Federal University, 660041 Svobodny 79, Krasnoyarsk, Russian Federation
| | - Rolf T W Siegwolf
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland.
| |
Collapse
|
14
|
Hong Y, Liu X, Camarero JJ, Xu G, Zhang L, Zeng X, Aritsara ANA, Zhang Y, Wang W, Xing X, Lu Q. The effects of intrinsic water-use efficiency and climate on wood anatomy. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023:10.1007/s00484-023-02475-7. [PMID: 37072578 DOI: 10.1007/s00484-023-02475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Climate warming may induce growth decline in warm-temperate areas subjected to seasonal soil moisture deficit, whereas increasing atmospheric CO2 concentration (Ca) is expected to enhance tree growth. An accurate understanding of tree growth and physiological processes responding to climate warming and increasing Ca is critical. Here, we analyzed tree-ring stable carbon isotope and wood anatomical traits of Pinus tabuliformis from Qinling Mountains in China to understand how lumen diameter (LD) determining potential hydraulic conductivity and cell-wall thickness (CWT) determining carbon storage responded to climate and Ca. The effects of climate and Ca on intrinsic water-use efficiency (iWUE) were isolated, and iWUE values due to only-climate (iWUEClim) and only-CO2 effects (iWUECO2) were obtained. During a low-iWUE period, the influences of climate on earlywood (EW) LD and latewood (LW) CWT prevailed. During a high-iWUE period, CO2 fertilization promoted cell enlargement and carbon storage but this was counteracted by a negative influence of climate warming. The limiting direct effects of iWUEClim and indirect effects of climate on EW LD were greater than on LW CWT. P. tabuliformis in temperate forests will face a decline of growth and carbon fixation, but will produce embolism-resistant tracheids with narrow lumen responding to future hotter droughts.
Collapse
Affiliation(s)
- Yixue Hong
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiaohong Liu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, 50092, Spain
| | - Guobao Xu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Lingnan Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaomin Zeng
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Amy Ny Aina Aritsara
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Yu Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenzhi Wang
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaoyu Xing
- Qinling National Botanical Garden, Xi'an, 710061, China
| | - Qiangqiang Lu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
- Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| |
Collapse
|
15
|
Wu Y, Wang W, Li W, Zhao S, Wang S, Liu T. Assessment of the spatiotemporal characteristics of vegetation water use efficiency in response to drought in Inner Mongolia, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6345-6357. [PMID: 35996049 DOI: 10.1007/s11356-022-22622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Ecosystem water use efficiency (eWUE) can be used to obtain a better comprehension of the ecosystem water-carbon cycle. This study aimed to characterize the regional-scale responses and adaptations of different vegetation categories to drought changes and the spatiotemporal characteristics of WUE and associated drought factors for nine vegetation categories in Inner Mongolia, China, from 2000 to 2020. This study estimated drought, the association between drought and eWUE among varying vegetation categories, and the differences in eWUE between the drought stage and the post-drought stage by analyzing the spatiotemporal variations in eWUE of different vegetation categories based on MODIS ET (evapotranspiration), GPP (gross primary productivity), and temperature vegetation drought index data. The results illustrated the following: (1) the multi-year mean eWUE from 2000 to 2020 was 1.03 g·m-2·mm-1, with an overall significantly increasing trend of 0.008 g·m-2·mm-1 and eWUE decreasing from northeast to southwest. (2) The rank of vegetation types in Inner Mongolia according to multi-year mean eWUE was evergreen coniferous forest > savanna > evergreen broadleaf forest > forested grassland > farmland > deciduous broadleaf forest > mixed forest > closed scrub > grassland. All vegetation categories illustrated an increasing trend in eWUE over time. (3) eWUE was inversely associated with drought in the drought stage and a clear effect of drought legacy was identified in which harsh drought impacted the eWUE of the ecosystem, whereas eWUE was positively associated with drought. (4) The eWUE values of ecosystems increased significantly after drought, indicating that ecosystems that are adapted to drought show high capacity to recovery from drought stress.
Collapse
Affiliation(s)
- Yingjie Wu
- China Institute of Water Resources and Hydropower Research, Yinshanbeilu National Field Research Station of Desert Steppe Eco-Hydrological System, Beijing, 100038, China
- Institute of Water Resources for Pastoral Area Ministry of Water Resources, Hohhot, 010020, Inner Mongolia, China
| | - Wenjun Wang
- China Institute of Water Resources and Hydropower Research, Yinshanbeilu National Field Research Station of Desert Steppe Eco-Hydrological System, Beijing, 100038, China.
- Institute of Water Resources for Pastoral Area Ministry of Water Resources, Hohhot, 010020, Inner Mongolia, China.
| | - Wei Li
- China Institute of Water Resources and Hydropower Research, Yinshanbeilu National Field Research Station of Desert Steppe Eco-Hydrological System, Beijing, 100038, China
- Institute of Water Resources for Pastoral Area Ministry of Water Resources, Hohhot, 010020, Inner Mongolia, China
| | - Shuixia Zhao
- China Institute of Water Resources and Hydropower Research, Yinshanbeilu National Field Research Station of Desert Steppe Eco-Hydrological System, Beijing, 100038, China
- Institute of Water Resources for Pastoral Area Ministry of Water Resources, Hohhot, 010020, Inner Mongolia, China
| | - Sinan Wang
- China Institute of Water Resources and Hydropower Research, Yinshanbeilu National Field Research Station of Desert Steppe Eco-Hydrological System, Beijing, 100038, China
- Institute of Water Resources for Pastoral Area Ministry of Water Resources, Hohhot, 010020, Inner Mongolia, China
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Tiejun Liu
- China Institute of Water Resources and Hydropower Research, Yinshanbeilu National Field Research Station of Desert Steppe Eco-Hydrological System, Beijing, 100038, China
- Institute of Water Resources for Pastoral Area Ministry of Water Resources, Hohhot, 010020, Inner Mongolia, China
| |
Collapse
|
16
|
Sensuła B, Wilczyński S. Dynamics Changes in Basal Area Increment, Carbon Isotopes Composition and Water Use Efficiency in Pine as Response to Water and Heat Stress in Silesia, Poland. PLANTS (BASEL, SWITZERLAND) 2022; 11:3569. [PMID: 36559682 PMCID: PMC9786147 DOI: 10.3390/plants11243569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Trees can be used as archives of changes in the environment. In this paper, we present the results of the analysis of the impact of water stress and increase in air temperature on BAI and carbon stable isotopic composition and water use efficiency of pine. Dendrochronological methods together with mass spectrometry techniques give a possibility to conduct a detailed investigation of pine growing in four industrial forests in Silesia (Poland). Detailed analysis-based bootstrap and moving correlation between climatic indices (temperature, precipitation, and Standardized Precipitation-Evapotranspiration Index) and tree parameters give the chance to check if the climatic signals recorded by trees can be hidden or modified over a longer period of time. Trees have been found to be very sensitive to weather conditions, but their sensitivity can be modified and masked by the effect of pollution. Scots pine trees at all sites systematically increased the basal area increment (BAI) and the intrinsic water use efficiency (iWUE) and decreased δ13C in the last century. Furthermore, their sensitivity to the climatic factor remained at a relatively high level. Industrial pollution caused a small reduction in the wood growth of pines and an increase in the heterogeneity of annual growth responses of trees. The main factors influencing the formation of wood in the pines were thermal conditions in the winter season and pluvial conditions in the previous autumn, and also in spring and summer in the year of tree ring formation. The impact of thermal and pluvial conditions in the year of tree ring formation has also been reflected in the isotopic composition of tree rings and water use efficiency. Three different scenarios of trees' reaction link to the reduction of stomata conductance or changes in photosynthesis rate as the response to climate changes in the last 40 years have been proposed.
Collapse
Affiliation(s)
- Barbara Sensuła
- Institute of Physics-Center for Science and Education, The Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Sławomir Wilczyński
- Department of Forest Ecosystem Protection, the University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Kraków, Poland
| |
Collapse
|
17
|
Urrutia-Jalabert R, Barichivich J, Szejner P, Rozas V, Lara A. Ecophysiological responses of Nothofagus obliqua forests to recent climate drying across the Mediterranean-Temperate biome transition in south-central Chile. JOURNAL OF GEOPHYSICAL RESEARCH. BIOGEOSCIENCES 2022; 128:2022jg007293. [PMID: 37484604 PMCID: PMC7614787 DOI: 10.1029/2022jg007293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/02/2023] [Indexed: 07/25/2023]
Abstract
The forests of south-central Chile are facing a drying climate and a megadrought that started in 2010. This study addressed the physiological responses of five Nothofagus obliqua stands across the Mediterranean-Temperate gradient (35.9 ° -40.3° S) using carbon isotope discrimination (Δ13 C) and intrinsic water use efficiency (iWUE) in tree rings during 1967-2017. Moreover, δ18O was evaluated in the northernmost site to better understand the effects of the megadrought in this drier location. These forests have become more efficient in their use of water. However, trees from the densest stand are discriminating more against 13C, probably due to reduced photosynthetic rates associated with increasing competition. The strongest associations between climate and Δ13C were found in the northernmost stand, suggesting that warmer and drier conditions could have reduced 13C discrimination. Tree growth in this site has not decreased, and δ18O was negatively related to annual rainfall. However, a shift in this relationship was found since 2007, when both precipitation and δ18O decreased, while correlations between δ18O and growth increased. This implies that tree growth and δ18O are coupled in recent years, but precipitation is not the cause, suggesting that trees probably changed their water source to deeper and more depleted pools. Our research demonstrates that forests are not reducing their growth in central Chile, mainly due to a shift towards the use of deeper water sources. Despite a common climate trend across the gradient, there is a non-uniform response of N. obliqua forests to climate drying, being their response site specific. Keywords: Tree rings, stable isotopes, tree physiology, climate gradient, megadrought, climate change.
Collapse
Affiliation(s)
- Rocío Urrutia-Jalabert
- Departamento de Ciencias Naturales y Tecnología, Universidad de Aysén, Coyhaique, Chile
- Laboratorio de Dendrocronología y Cambio Global, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, Chile
- Centro de Ciencia del Clima y la Resiliencia, CR2, Santiago, Chile
| | - Jonathan Barichivich
- Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CRNS/CEA/UVSQ, France
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Paul Szejner
- Departamento de Ciencias Ambientales y del suelo, Instituto de Geología, Universidad Nacional Autónoma de México. Ciudad Universitaria CDMX, México
| | - Vicente Rozas
- iuFOR-EiFAB, Área de Botánica, Campus Duques de Soria, Universidad de Valladolid, 42004 Soria, Spain
| | - Antonio Lara
- Laboratorio de Dendrocronología y Cambio Global, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, Chile
- Centro de Ciencia del Clima y la Resiliencia, CR2, Santiago, Chile
- Fundación Centro de los Bosques Nativos FORECOS, Valdivia, Chile
| |
Collapse
|
18
|
Laffitte B, Seyler BC, Wang W, Li P, Du J, Tang Y. Declining tree growth rates despite increasing water-use efficiency under elevated CO 2 reveals a possible global overestimation of CO 2 fertilization effect. Heliyon 2022; 8:e11219. [PMID: 36339991 PMCID: PMC9626951 DOI: 10.1016/j.heliyon.2022.e11219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Though rising atmospheric CO2 concentrations (Ca) harm the environment and society, they may also raise photosynthetic rates and enhance intrinsic water-use efficiency (iWUE). Numerous short-term studies have investigated tree growth under elevated CO2 (eCO2) conditions, but no long-duration study has investigated eCO2 impacts on tree growth and iWUE under natural conditions. Utilizing a new dendrochronological experimental design in a heavily-touristed nature preserve in Southwest China (Jiuzhaigou National Nature Reserve), we compared tree growth (e.g., basal area increment) and iWUE in two biophysically and environmentally similar valleys with contrasting anthropogenic activities. Trees in the control valley with ambient CO2 benefited from increasing Ca, possibly due to the CO2 fertilization effect and optimal environmental conditions. However, trees in the treatment valley with intensive tourism experienced comparatively higher localized eCO2 and growth rate declines. While iWUE increased (1959–2017) in the control (25.3%) and treatment sites (47.8%), declining tree growth rates in the treatment site was likely because comparatively extreme CO2 exposure levels encouraged stomatal closures. As the first long-term study investigating eCO2 impacts on tree growth and iWUE under natural conditions, we demonstrate that increased forest iWUE is unlikely to overcome negative drought stress and rising temperature impacts. Thus, forest potential for mitigating eCO2 and global climate change is likely overestimated, particularly under dry temperate conditions.
Collapse
Affiliation(s)
- Benjamin Laffitte
- Department of Environment, College of Architecture and Environment, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China
| | - Barnabas C. Seyler
- Department of Environment, College of Architecture and Environment, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China
| | - Wenzhi Wang
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Pengbo Li
- Department of Environment, College of Architecture and Environment, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China
| | - Jie Du
- Jiuzhaigou Administrative Bureau, Zhangzha, Jiuzhaigou, Sichuan 623402, China
| | - Ya Tang
- Department of Environment, College of Architecture and Environment, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China,Corresponding author.
| |
Collapse
|
19
|
Treml V, Tumajer J, Jandová K, Oulehle F, Rydval M, Čada V, Treydte K, Mašek J, Vondrovicová L, Lhotáková Z, Svoboda M. Increasing water-use efficiency mediates effects of atmospheric carbon, sulfur, and nitrogen on growth variability of central European conifers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156483. [PMID: 35675888 DOI: 10.1016/j.scitotenv.2022.156483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Climate controls forest biomass production through direct effects on cambial activity and indirectly through interactions with CO2, air pollution, and nutrient availability. The atmospheric concentration of CO2, sulfur and nitrogen deposition can also exert a significant indirect control on wood formation since these factors influence the stomatal regulation of transpiration and carbon uptake, that is, intrinsic water use efficiency (iWUE). Here we provide 120-year long tree-ring time series of iWUE, stem growth, climatic and combined sulfur and nitrogen (SN) deposition trends for two common tree species, Pinus sylvestris (PISY) and Picea abies (PCAB), at their lower and upper distribution margins in Central Europe. The main goals were to explain iWUE trends using theoretical scenarios including climatic and SN deposition data, and to assess the contribution of climate and iWUE to the observed growth trends. Our results showed that after a notable increase in iWUE between the 1950s and 1980s, this positive trend subsequently slowed down. The substantial rise of iWUE since the 1950s resulted from a combination of an accelerated increase in atmospheric CO2 concentrations (Ca) and a stable level of leaf intercellular CO2 (Ci). The offset of observed iWUE values above the trajectory of a constant Ci/Ca scenario was explained by trends in SN deposition (all sites) together with the variation of drought conditions (low-elevation sites only). Increasing iWUE over the 20th and 21st centuries improved tree growth at low-elevation drought-sensitive sites. In contrast, at high-elevation PCAB sites, growth was mainly stimulated by recent warming. We propose that SN pollution should be considered in order to explain the steep increase in iWUE of conifers in the 20th century throughout Central Europe and other regions with a significant SN deposition history.
Collapse
Affiliation(s)
- Václav Treml
- Faculty of Science, Charles University, Prague, Czechia.
| | - Jan Tumajer
- Faculty of Science, Charles University, Prague, Czechia
| | | | | | - Miloš Rydval
- Faculty of Forestry and Wood Science, Czech University of Life Science, Prague, Czechia
| | - Vojtěch Čada
- Faculty of Forestry and Wood Science, Czech University of Life Science, Prague, Czechia
| | - Kerstin Treydte
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jiří Mašek
- Faculty of Science, Charles University, Prague, Czechia
| | | | | | - Miroslav Svoboda
- Faculty of Forestry and Wood Science, Czech University of Life Science, Prague, Czechia
| |
Collapse
|
20
|
Inherent Water-Use Efficiency of Different Forest Ecosystems and Its Relations to Climatic Variables. FORESTS 2022. [DOI: 10.3390/f13050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Inherent water-use efficiency (IWUE) is a vital parameter connecting the carbon and water cycles. However, the factors influencing the IWUE in different forest ecosystems are still a subject of debate. In this work, FLUXNET platform measurements of 67 forest sites were used to detect trends of the IWUE of four forest ecosystems, namely deciduous broadleaf forests (DBF), evergreen broadleaf forests (EBF), needle-leaf forests (ENF), and mixed forests (MF). The IWUE differed significantly among different forest ecosystems and positively correlated with temperature and solar radiation. The IWUE of EBF was the highest at 32.02 g·C·Kg·H2O−1. The values of DBF and MF were similar and higher than that of ENF. With increasing latitude, the IWUE increased first and then decreased, with a maximum of 35° N. The IWUE of EBF was negatively correlated with precipitation and leaf area index. Temperature and solar radiation were the main factors controlling the IWUE of forest ecosystems, whereas precipitation was the major factor controlling the inter-annual variation in the ΔIWUE of forest ecosystems. Our results provide a scientific basis for the study of forest carbon sinks, forest eco-hydrological processes, and forest ecosystem responses to global climatic changes.
Collapse
|
21
|
Age-Related Changes in Water and Nitrogen Utilization in Crop Trees and Understory Vegetation in a Hinoki Cypress Plantation Forest in Kochi City, Southern Japan. NITROGEN 2022. [DOI: 10.3390/nitrogen3020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Age-related changes in water and nitrogen utilization of crop and understory vegetation in a hinoki cypress plantation forest were investigated from the age of 21 to 46 years in Kochi City, southern Japan. Nitrogen concentration in the leaf litter of hinoki cypress showed a decreasing trend with forest age. The leaf δ15N of hinoki cypress was related to a quadratic function and increased from the age of 21 to 26 years and then decreased to the age of 46 years. These results suggest that older hinoki cypress trees utilize soil nitrogen sources with lower δ15N values, and the competition for soil nitrogen with understory vegetation should be stronger. Carbon isotope discrimination (Δ13C) of hinoki cypress decreased from the age of 21 to 30 years and then increased to the age of 46 years. In contrast, the intrinsic water-use efficiency (iWUE) of hinoki cypress increased from the age of 21 to 36 years and then decreased to the age of 46 years. These findings suggest that hinoki cypress trees in the earlier time increased their iWUE by reducing stomatal opening. In the earlier time, the stomatal opening of understory vegetation increased due to higher soil water availability with decreasing stand density of crop trees. In the later time, the iWUE of hinoki cypress decreased due to lower photosynthetic capacity with nitrogen limitation. These results suggest that the increase in the iWUE of hinoki cypress in response to elevated atmospheric carbon dioxide levels should be smaller in the later time because of stronger competition with understory vegetation for soil nitrogen resources.
Collapse
|
22
|
Wieloch T, Grabner M, Augusti A, Serk H, Ehlers I, Yu J, Schleucher J. Metabolism is a major driver of hydrogen isotope fractionation recorded in tree-ring glucose of Pinus nigra. THE NEW PHYTOLOGIST 2022; 234:449-461. [PMID: 35114006 PMCID: PMC9306475 DOI: 10.1111/nph.18014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/24/2022] [Indexed: 05/13/2023]
Abstract
Stable isotope abundances convey valuable information about plant physiological processes and underlying environmental controls. Central gaps in our mechanistic understanding of hydrogen isotope abundances impede their widespread application within the plant and biogeosciences. To address these gaps, we analysed intramolecular deuterium abundances in glucose of Pinus nigra extracted from an annually resolved tree-ring series (1961-1995). We found fractionation signals (i.e. temporal variability in deuterium abundance) at glucose H1 and H2 introduced by closely related metabolic processes. Regression analysis indicates that these signals (and thus metabolism) respond to drought and atmospheric CO2 concentration beyond a response change point. They explain ≈ 60% of the whole-molecule deuterium variability. Altered metabolism is associated with below-average yet not exceptionally low growth. We propose the signals are introduced at the leaf level by changes in sucrose-to-starch carbon partitioning and anaplerotic carbon flux into the Calvin-Benson cycle. In conclusion, metabolism can be the main driver of hydrogen isotope variation in plant glucose.
Collapse
Affiliation(s)
- Thomas Wieloch
- Department of Medical Biochemistry and BiophysicsUmeå University901 87UmeåSweden
| | - Michael Grabner
- Institute of Wood Technology and Renewable MaterialsUniversity of Natural Resources and Life Sciences Vienna3430Tulln an der DonauAustria
| | - Angela Augusti
- Research Institute on Terrestrial EcosystemsNational Research CouncilPorano (TR)05010Italy
| | - Henrik Serk
- Department of Medical Biochemistry and BiophysicsUmeå University901 87UmeåSweden
| | - Ina Ehlers
- Department of Medical Biochemistry and BiophysicsUmeå University901 87UmeåSweden
| | - Jun Yu
- Department of Mathematics and Mathematical StatisticsUmeå University901 87UmeåSweden
| | - Jürgen Schleucher
- Department of Medical Biochemistry and BiophysicsUmeå University901 87UmeåSweden
| |
Collapse
|
23
|
Vitali V, Martínez-Sancho E, Treydte K, Andreu-Hayles L, Dorado-Liñán I, Gutierrez E, Helle G, Leuenberger M, Loader NJ, Rinne-Garmston KT, Schleser GH, Allen S, Waterhouse JS, Saurer M, Lehmann MM. The unknown third - Hydrogen isotopes in tree-ring cellulose across Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152281. [PMID: 34942249 DOI: 10.1016/j.scitotenv.2021.152281] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
This is the first Europe-wide comprehensive assessment of the climatological and physiological information recorded by hydrogen isotope ratios in tree-ring cellulose (δ2Hc) based on a unique collection of annually resolved 100-year tree-ring records of two genera (Pinus and Quercus) from 17 sites (36°N to 68°N). We observed that the high-frequency climate signals in the δ2Hc chronologies were weaker than those recorded in carbon (δ13Cc) and oxygen isotope signals (δ18Oc) but similar to the tree-ring width ones (TRW). The δ2Hc climate signal strength varied across the continent and was stronger and more consistent for Pinus than for Quercus. For both genera, years with extremely dry summer conditions caused a significant 2H-enrichment in tree-ring cellulose. The δ2Hc inter-annual variability was strongly site-specific, as a result of the imprinting of climate and hydrology, but also physiological mechanisms and tree growth. To differentiate between environmental and physiological signals in δ2Hc, we investigated its relationships with δ18Oc and TRW. We found significant negative relationships between δ2Hc and TRW (7 sites), and positive ones between δ2Hc and δ18Oc (10 sites). The strength of these relationships was nonlinearly related to temperature and precipitation. Mechanistic δ2Hc models performed well for both genera at continental scale simulating average values, but they failed on capturing year-to-year δ2Hc variations. Our results suggest that the information recorded by δ2Hc is significantly different from that of δ18Oc, and has a stronger physiological component independent from climate, possibly related to the use of carbohydrate reserves for growth. Advancements in the understanding of 2H-fractionations and their relationships with climate, physiology, and species-specific traits are needed to improve the modelling and interpretation accuracy of δ2Hc. Such advancements could lead to new insights into trees' carbon allocation mechanisms, and responses to abiotic and biotic stress conditions.
Collapse
Affiliation(s)
- V Vitali
- Stable Isotope Research Center (SIRC), Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Forest Dynamics, CH-8903 Birmensdorf, Switzerland.
| | - E Martínez-Sancho
- Dendrosciences, Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Forest Dynamics, CH-8903 Birmensdorf, Switzerland
| | - K Treydte
- Dendrosciences, Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Forest Dynamics, CH-8903 Birmensdorf, Switzerland
| | - L Andreu-Hayles
- Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA; CREAF, Bellaterra (Cerdanyola del Vall.s), Barcelona, Spain; ICREA, Pg. Llu.s Companys 23, Barcelona, Spain
| | - I Dorado-Liñán
- Department of Systems and Natural Resources, Universidad Politécnica de Madrid, Madrid, Spain
| | - E Gutierrez
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - G Helle
- German Research Centre for Geosciences, Section 4.3 Climate Dynamics and Landscape Evolution, Telegrafenberg, 14473 Potsdam, Germany
| | - M Leuenberger
- Climate and Environmental Physics Division and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - N J Loader
- Department of Geography, Swansea University, Swansea, UK
| | | | - G H Schleser
- FZJ Research Center Jülich, Institute of Bio- and Geosciences, Agrosphere (IBG-3), 52425 Jülich, Germany
| | - S Allen
- Department of Natural Resources and Environmental Science, University of Nevada Reno, 1664 N Virginia St., Reno, NV 89557, USA
| | - J S Waterhouse
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - M Saurer
- Stable Isotope Research Center (SIRC), Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Forest Dynamics, CH-8903 Birmensdorf, Switzerland
| | - M M Lehmann
- Stable Isotope Research Center (SIRC), Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Forest Dynamics, CH-8903 Birmensdorf, Switzerland
| |
Collapse
|
24
|
Fiorella RP, Kannenberg SA, Anderegg WRL, Monson RK, Ehleringer JR. Heterogeneous isotope effects decouple conifer leaf and branch sugar δ 18O and δ 13C. Oecologia 2022; 198:357-370. [PMID: 35107645 DOI: 10.1007/s00442-022-05121-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
Isotope ratios of tree-ring cellulose are a prominent tool to reconstruct paleoclimate and plant responses to environmental variation. Current models for cellulose isotope ratios assume a transfer of the environmental signals recorded in bulk leaf water to carbohydrates and ultimately into stem cellulose. However, the isotopic signal of carbohydrates exported from leaf to branch may deviate from mean leaf values if spatial heterogeneity in isotope ratios exists in the leaf. We tested whether the isotopic heterogeneity previously observed along the length of a ponderosa pine (Pinus ponderosa) leaf water was preserved in photosynthetic products. We observed an increase in both sugar and bulk tissue δ18O values along the needle, but the increase in carbohydrate δ18O values was dampened relative to the trend observed in leaf water. In contrast, δ13C values of both sugar and bulk organic matter were invariant along the needle. Phloem-exported sugar measured in the branch below the needles did not match whole-needle values of δ18O or δ13C. Instead, there was a near-constant offset observed between the branch and needle sugar δ13C values, while branch δ18O values were most similar to δ18O values observed for sugar at the base of the needle. The observed offset between the branch and needle sugar δ18O values likely arises from partial isotope oxygen exchange between sugars and water during phloem loading and transport. An improved understanding of the conditions producing differential δ13C and δ18O isotope effects between branch phloem and needle sugars could improve tree-ring-based climate reconstructions.
Collapse
Affiliation(s)
- Richard P Fiorella
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA.
- Global Change and Sustainability Center, University of Utah, Salt Lake City, UT, 84112, USA.
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Steven A Kannenberg
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - William R L Anderegg
- Global Change and Sustainability Center, University of Utah, Salt Lake City, UT, 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Russell K Monson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Laboratory of Tree Ring Research, University of Arizona, Tucson, AZ, 85721, USA
| | - James R Ehleringer
- Global Change and Sustainability Center, University of Utah, Salt Lake City, UT, 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
25
|
Farahat E, Cherubini P, Saurer M, Gärtner H. Wood anatomy and tree-ring stable isotopes indicate a recent decline in water-use efficiency in the desert tree Moringa peregrina. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:127-137. [PMID: 34633523 DOI: 10.1007/s00484-021-02198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The ability of desert plants to adapt to future climate changes and maximize their water-use efficiency will determine their survival. This study uses wood anatomy and δ13C and δ18O isotope analyses to investigate how Moringa peregrina trees in the Egyptian desert have responded to the environment over the last 10 years. Our results show that M. peregrina tree-ring widths (TRWs) have generally declined over the last decade, although individual series are characterized by high variability and low Rbars. Vessel lumen area percentages (VLA%) are low in wet years but increase significantly in dry years, such as the period 2017-2020. Stable δ13C isotope values decrease between 2010 (- 23.4‰) and 2020 (- 24.9‰), reflecting an unexpected response to an increase in drought conditions. The mean δ18O value (± standard error, SE) for the first ten rings of each tree from bark to pith (2020-2010) is 33.0 ‰ ± 0.85 with a range of 29.2-36.3‰, which indicates a common drought signal. The intrinsic water-use efficiency (iWUE) declines gradually with time, from 130.0 µmol mol-1 in 2010 to 119.4 µmol mol-1 in 2020. The intercellular carbon concentration (Ci) and Ci/Ca ratio increase over the same period, likely as a result of decreasing iWUE. The results show that M. peregrina trees seem to cool their leaves and the boundary air at the cost of saving water.
Collapse
Affiliation(s)
- Emad Farahat
- Botany and Microbiology Department, Faculty of Science, Helwan University, P.O. 11790, Cairo, Egypt.
| | - Paolo Cherubini
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Matthias Saurer
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Holger Gärtner
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
26
|
Vitali V, Klesse S, Weigt R, Treydte K, Frank D, Saurer M, Siegwolf RTW. High-frequency stable isotope signals in uneven-aged forests as proxy for physiological responses to climate in Central Europe. TREE PHYSIOLOGY 2021; 41:2046-2062. [PMID: 33960372 DOI: 10.1093/treephys/tpab062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Picea abies (L.) Karst. and Fagus sylvatica (L.) are important tree species in Europe, and the foreseen increase in temperature and vapour pressure deficit (VPD) could increase the vulnerability of these species. However, their physiological performance under climate change at temperate and productive sites is not yet fully understood, especially in uneven-aged stands. Therefore, we investigated tree-ring width and stable isotope chronologies (δ13C/δ18O) of these two species at 10 sites along a climate gradient in Central Europe. In these uneven-aged stands, we compared the year-to-year variability of dominant and suppressed trees for the last 80 years in relation to the sites' spatial distribution and climate. δ18O and δ13C were generally consistent across sites and species, showing high sensitivity to summer VPD, whereas climate correlations with radial growth varied much more and depended on mean local climate. We found no significant differences between dominant and suppressed trees in the response of stable isotope ratios to climate variability, especially within the annual high-frequency signals. In addition, we observed a strikingly high coherence of the high-frequency δ18O variations across long distances with significant correlations above 1500 km, whereas the spatial agreement of δ13C variations was weaker (~700 km). We applied a dual-isotope approach that is based on known theoretical understanding of isotope fractionations to translate the observed changes into physiological components, mainly photosynthetic assimilation rate and stomatal conductance. When separating the chronologies in two time windows and investigating the shifts in isotopes ratios, a significant enrichment of either or both isotope ratios over the last decades can be observed. These results, translated by the dual-isotope approach, indicate a general climate-driven decrease in stomatal conductance. This improved understanding of the physiological mechanisms controlling the short-term variation of the isotopic signature will help to define the performance of these tree species under future climate.
Collapse
Affiliation(s)
- Valentina Vitali
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
| | - Stefan Klesse
- Swiss Forest Protection, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
- Forest Resources and Management, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
| | - Rosemarie Weigt
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
- Ecosystem Fluxes Group, Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Kerstin Treydte
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
| | - David Frank
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
- Laboratory of Tree-Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ 85721, USA
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
- Ecosystem Fluxes Group, Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Rolf T W Siegwolf
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
- Ecosystem Fluxes Group, Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
27
|
Papú S, Berli F, Piccoli P, Patón D, Ortega Rodriguez DR, Roig FA. Physiological, biochemical, and anatomical responses of Araucaria araucana seedlings to controlled water restriction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:47-56. [PMID: 34034160 DOI: 10.1016/j.plaphy.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Water stress triggers acclimation responses and can damage plants, which varies by species and stress levels. Ongoing climate change is projected to result in longer and more intense water stress conditions leading to an alarming increase in drought-induced forest decline. The aim of this study was to evaluate the physiological responses of leaves and stem wood anatomy from Araucaria araucana pot-grown three-year old seedlings, a conifer tree from northwestern Patagonia. Plants were subjected to moderate and severe water restriction regimes and compared to well-watered controls. Severe water stress reduced relative leaf water content and triggered an accumulation of free proline in leaves, regardless of age. Epicuticular wax extrusions increased in apical leaf stomata while photosynthetic pigments decreased, resulting in differential oxidative damage. The concentration of phenolic compounds was not affected by water restrictions. Plants exposed to restricted water regimes showed diminished middle leaf biomass and expansion (~60% of total leaves), increased stem wood density, and experienced 7% and 30% mortality rates under moderate and severe water stress, respectively. Our findings suggest that under moderate water stress, analogous to short-term droughts, A. araucana seedlings activate physiological mechanisms that allow them to withstand short periods of drought, while more severe water stress and longer droughts can be severely harmful.
Collapse
Affiliation(s)
- S Papú
- Argentine Institute of Nivology, Glaciology and Environmental Sciences (IANIGLA, CONICET-Universidad Nacional de Cuyo), 5500, Mendoza, Argentina.
| | - F Berli
- Agricultural Biology Institute of Mendoza (IBAM, CONICET-Universidad Nacional de Cuyo), 5507, Mendoza, Argentina
| | - P Piccoli
- Agricultural Biology Institute of Mendoza (IBAM, CONICET-Universidad Nacional de Cuyo), 5507, Mendoza, Argentina
| | - D Patón
- Plant Biology, Ecology and Earth Sciences, Faculty of Sciences, University of Extremadura, Avda. de Elvas s/n, 06071, Badajoz, Spain
| | - D R Ortega Rodriguez
- Universidade de Sao Paulo, Escola Superior de Agricultura Luiz de Queiroz, Department of Forest Resource, 13418-900, Piracicaba, Brazil
| | - F A Roig
- Argentine Institute of Nivology, Glaciology and Environmental Sciences (IANIGLA, CONICET-Universidad Nacional de Cuyo), 5500, Mendoza, Argentina; Universidade de Sao Paulo, Escola Superior de Agricultura Luiz de Queiroz, Department of Forest Resource, 13418-900, Piracicaba, Brazil; Hémera Centro de Observación de la Tierra, Facultad de Ciencias, Universidad Mayor, José Toribio Medina 29, Santiago, 8340589, Chile
| |
Collapse
|
28
|
Beaulne J, Boucher É, Garneau M, Magnan G. Paludification reduces black spruce growth rate but does not alter tree water use efficiency in Canadian boreal forested peatlands. FOREST ECOSYSTEMS 2021; 8:28. [PMID: 34721933 PMCID: PMC8550502 DOI: 10.1186/s40663-021-00307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Black spruce (Picea mariana (Mill.) BSP)-forested peatlands are widespread ecosystems in boreal North America in which peat accumulation, known as the paludification process, has been shown to induce forest growth decline. The continuously evolving environmental conditions (e.g., water table rise, increasing peat thickness) in paludified forests may require tree growth mechanism adjustments over time. In this study, we investigate tree ecophysiological mechanisms along a paludification gradient in a boreal forested peatland of eastern Canada by combining peat-based and tree-ring analyses. Carbon and oxygen stable isotopes in tree rings are used to document changes in carbon assimilation rates, stomatal conductance, and water use efficiency. In addition, paleohydrological analyses are performed to evaluate the dynamical ecophysiological adjustments of black spruce trees to site-specific water table variations. RESULTS Increasing peat accumulation considerably impacts forest growth, but no significant differences in tree water use efficiency (iWUE) are found between the study sites. Tree-ring isotopic analysis indicates no iWUE decrease over the last 100 years, but rather an important increase at each site up to the 1980s, before iWUE stabilized. Surprisingly, inferred basal area increments do not reflect such trends. Therefore, iWUE variations do not reflect tree ecophysiological adjustments required by changes in growing conditions. Local water table variations induce no changes in ecophysiological mechanisms, but a synchronous shift in iWUE is observed at all sites in the mid-1980s. CONCLUSIONS Our study shows that paludification induces black spruce growth decline without altering tree water use efficiency in boreal forested peatlands. These findings highlight that failing to account for paludification-related carbon use and allocation could result in the overestimation of aboveground biomass production in paludified sites. Further research on carbon allocation strategies is of utmost importance to understand the carbon sink capacity of these widespread ecosystems in the context of climate change, and to make appropriate forest management decisions in the boreal biome. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s40663-021-00307-x.
Collapse
Affiliation(s)
- Joannie Beaulne
- Geotop Research Center, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
- Department of Geography, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
- GRIL-UQAM, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
| | - Étienne Boucher
- Geotop Research Center, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
- Department of Geography, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
- Centre d’études nordiques, Université Laval, Montréal, Québec G1V 0A6 Canada
| | - Michelle Garneau
- Geotop Research Center, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
- Department of Geography, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
- GRIL-UQAM, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
- Centre d’études nordiques, Université Laval, Montréal, Québec G1V 0A6 Canada
| | - Gabriel Magnan
- Geotop Research Center, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
- Department of Geography, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
- GRIL-UQAM, Université du Québec à Montréal, Montréal, Québec H3C 3P8 Canada
| |
Collapse
|
29
|
Belmecheri S, Maxwell RS, Taylor AH, Davis KJ, Guerrieri R, Moore DJP, Rayback SA. Precipitation alters the CO 2 effect on water-use efficiency of temperate forests. GLOBAL CHANGE BIOLOGY 2021; 27:1560-1571. [PMID: 33464665 DOI: 10.1111/gcb.15491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 05/08/2023]
Abstract
Increasing water-use efficiency (WUE), the ratio of carbon gain to water loss, is a key mechanism that enhances carbon uptake by terrestrial vegetation under rising atmospheric CO2 (ca ). Existing theory and empirical evidence suggest a proportional WUE increase in response to rising ca as plants maintain a relatively constant ratio between the leaf intercellular (ci ) and ambient (ca ) partial CO2 pressure (ci /ca ). This has been hypothesized as the main driver of the strengthening of the terrestrial carbon sink over the recent decades. However, proportionality may not characterize CO2 effects on WUE on longer time-scales and the role of climate in modulating these effects is uncertain. Here, we evaluate long-term WUE responses to ca and climate from 1901 to 2012 CE by reconstructing intrinsic WUE (iWUE, the ratio of photosynthesis to stomatal conductance) using carbon isotopes in tree rings across temperate forests in the northeastern USA. We show that iWUE increased steadily from 1901 to 1975 CE but remained constant thereafter despite continuously rising ca . This finding is consistent with a passive physiological response to ca and coincides with a shift to significantly wetter conditions across the region. Tree physiology was driven by summer moisture at multi-decadal time-scales and did not maintain a constant ci /ca in response to rising ca indicating that a point was reached where rising CO2 had a diminishing effect on tree iWUE. Our results challenge the mechanism, magnitude, and persistence of CO2 's effect on iWUE with significant implications for projections of terrestrial productivity under a changing climate.
Collapse
Affiliation(s)
- Soumaya Belmecheri
- Laboratory of Tree Ring Research, University of Arizona, Tucson, AZ, USA
| | | | - Alan H Taylor
- Department of Geography and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA, USA
| | - Kenneth J Davis
- Department of Meteorology and Atmospheric Science and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA, USA
| | - Rossella Guerrieri
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - David J P Moore
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Shelly A Rayback
- Department of Geography, University of Vermont, Burlington, VT, USA
| |
Collapse
|
30
|
Walker AP, De Kauwe MG, Bastos A, Belmecheri S, Georgiou K, Keeling RF, McMahon SM, Medlyn BE, Moore DJP, Norby RJ, Zaehle S, Anderson-Teixeira KJ, Battipaglia G, Brienen RJW, Cabugao KG, Cailleret M, Campbell E, Canadell JG, Ciais P, Craig ME, Ellsworth DS, Farquhar GD, Fatichi S, Fisher JB, Frank DC, Graven H, Gu L, Haverd V, Heilman K, Heimann M, Hungate BA, Iversen CM, Joos F, Jiang M, Keenan TF, Knauer J, Körner C, Leshyk VO, Leuzinger S, Liu Y, MacBean N, Malhi Y, McVicar TR, Penuelas J, Pongratz J, Powell AS, Riutta T, Sabot MEB, Schleucher J, Sitch S, Smith WK, Sulman B, Taylor B, Terrer C, Torn MS, Treseder KK, Trugman AT, Trumbore SE, van Mantgem PJ, Voelker SL, Whelan ME, Zuidema PA. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO 2. THE NEW PHYTOLOGIST 2021; 229:2413-2445. [PMID: 32789857 DOI: 10.1111/nph.16866] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/06/2020] [Indexed: 05/22/2023]
Abstract
Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2 ] (iCO2 ) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2 , albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
Collapse
Affiliation(s)
- Anthony P Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, 2052, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ana Bastos
- Ludwig Maximilians University of Munich, Luisenstr. 37, Munich, 80333, Germany
| | - Soumaya Belmecheri
- Laboratory of Tree Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Katerina Georgiou
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Ralph F Keeling
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92093, USA
| | - Sean M McMahon
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - David J P Moore
- School of Natural Resources and the Environment, 1064 East Lowell Street, Tucson, AZ, 85721, USA
| | - Richard J Norby
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07745, Germany
| | - Kristina J Anderson-Teixeira
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, MRC 5535, Front Royal, VA, 22630, USA
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
| | - Giovanna Battipaglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania, Caserta, 81100, Italy
| | | | - Kristine G Cabugao
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Maxime Cailleret
- INRAE, UMR RECOVER, Aix-Marseille Université, 3275 route de Cézanne, Aix-en-Provence Cedex 5, 13182, France
- Swiss Federal Institute for Forest Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Elliott Campbell
- Department of Geography, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Josep G Canadell
- CSIRO Oceans and Atmosphere, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, F-91191, France
| | - Matthew E Craig
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Graham D Farquhar
- Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Simone Fatichi
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
- Institute of Environmental Engineering, ETH Zurich, Stefano-Franscini Platz 5, Zurich, 8093, Switzerland
| | - Joshua B Fisher
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - David C Frank
- Laboratory of Tree Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Heather Graven
- Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Vanessa Haverd
- CSIRO Oceans and Atmosphere, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Kelly Heilman
- Laboratory of Tree Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Martin Heimann
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07745, Germany
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Fortunat Joos
- Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstr. 5, Bern, CH-3012, Switzerland
| | - Mingkai Jiang
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Trevor F Keenan
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, 94720, USA
- Earth and Environmental Sciences Area, Lawrence Berkeley National Lab., Berkeley, CA, 94720, USA
| | - Jürgen Knauer
- CSIRO Oceans and Atmosphere, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Christian Körner
- Department of Environmental Sciences, Botany, University of Basel, Basel, 4056, Switzerland
| | - Victor O Leshyk
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Sebastian Leuzinger
- School of Science, Auckland University of Technology, Auckland, 1142, New Zealand
| | - Yao Liu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Natasha MacBean
- Department of Geography, Indiana University, Bloomington, IN, 47405, USA
| | - Yadvinder Malhi
- School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | - Tim R McVicar
- CSIRO Land and Water, GPO Box 1700, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Climate Extremes, 142 Mills Rd, Australian National University, Canberra, ACT, 2601, Australia
| | - Josep Penuelas
- CSIC, Global Ecology CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, 08193, Spain
| | - Julia Pongratz
- Ludwig Maximilians University of Munich, Luisenstr. 37, Munich, 80333, Germany
- Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany
| | - A Shafer Powell
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Terhi Riutta
- School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | - Manon E B Sabot
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, 2052, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Juergen Schleucher
- Department of Medical Biochemistry & Biophysics, Umeå University, Umea, 901 87, Sweden
| | - Stephen Sitch
- College of Life and Environmental Sciences, University of Exeter, Exeter, Laver Building, EX4 4QF, UK
| | - William K Smith
- School of Natural Resources and the Environment, 1064 East Lowell Street, Tucson, AZ, 85721, USA
| | - Benjamin Sulman
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Benton Taylor
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - César Terrer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Margaret S Torn
- Earth and Environmental Sciences Area, Lawrence Berkeley National Lab., Berkeley, CA, 94720, USA
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Anna T Trugman
- Department of Geography, 1832 Ellison Hall, Santa Barbara, CA, 93016, USA
| | - Susan E Trumbore
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07745, Germany
| | | | - Steve L Voelker
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Mary E Whelan
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901, USA
| | - Pieter A Zuidema
- Forest Ecology and Forest Management group, Wageningen University, PO Box 47, Wageningen, 6700 AA, the Netherlands
| |
Collapse
|
31
|
Mathias JM, Thomas RB. Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO 2 and modulated by climate and plant functional types. Proc Natl Acad Sci U S A 2021; 118:e2014286118. [PMID: 33558233 PMCID: PMC7896309 DOI: 10.1073/pnas.2014286118] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We conducted a meta-analysis of carbon and oxygen isotopes from tree ring chronologies representing 34 species across 10 biomes to better understand the environmental drivers and physiological mechanisms leading to historical changes in tree intrinsic water use efficiency (iWUE), or the ratio of net photosynthesis (Anet) to stomatal conductance (gs), over the last century. We show a ∼40% increase in tree iWUE globally since 1901, coinciding with a ∼34% increase in atmospheric CO2 (Ca), although mean iWUE, and the rates of increase, varied across biomes and leaf and wood functional types. While Ca was a dominant environmental driver of iWUE, the effects of increasing Ca were modulated either positively or negatively by climate, including vapor pressure deficit (VPD), temperature, and precipitation, and by leaf and wood functional types. A dual carbon-oxygen isotope approach revealed that increases in Anet dominated the observed increased iWUE in ∼83% of examined cases, supporting recent reports of global increases in Anet, whereas reductions in gs occurred in the remaining ∼17%. This meta-analysis provides a strong process-based framework for predicting changes in tree carbon gain and water loss across biomes and across wood and leaf functional types, and the interactions between Ca and other environmental factors have important implications for the coupled carbon-hydrologic cycles under future climate. Our results furthermore challenge the idea of widespread reductions in gs as the major driver of increasing tree iWUE and will better inform Earth system models regarding the role of trees in the global carbon and water cycles.
Collapse
Affiliation(s)
- Justin M Mathias
- Department of Biology, West Virginia University, Morgantown, WV 26506
| | - Richard B Thomas
- Department of Biology, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
32
|
Rayback SA, Belmecheri S, Gagen MH, Lini A, Gregory R, Jenkins C. North American temperate conifer (Tsuga canadensis) reveals a complex physiological response to climatic and anthropogenic stressors. THE NEW PHYTOLOGIST 2020; 228:1781-1795. [PMID: 33439504 DOI: 10.1111/nph.16811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/03/2020] [Indexed: 05/08/2023]
Abstract
Rising atmospheric CO2 (ca) is expected to promote tree growth and lower water loss via changes in leaf gas exchange. However, uncertainties remain if gas-exchange regulation strategies are homeostatic or dynamical in response to increasing ca, as well as evolving climate and pollution inputs. Using a suite of tree ring-based δ13C-derived physiological parameters (Δ13C, ci, iWUE) and tree growth from a mesic, low elevation stand of canopy-dominant Tsuga canadensis in north-eastern USA, we investigated the influence of rising ca, climate and pollution on, and characterised the dynamical regulation strategy of, leaf gas exchange at multidecadal scales. Isotopic and growth time series revealed an evolving physiological response in which the species shifted its leaf gas-exchange strategy dynamically (constant ci; constant ci/ca; constant ca - ci) in response to rising ca, moisture availability and site conditions over 111 yr. Tree iWUE plateaued after 1975, driven by greater moisture availability and a changing soil biogeochemistry that may have impaired a stomatal response. Results suggested that trees may exhibit more complex physiological responses to the changing environmental conditions over multidecadal periods, and complicating the parameterisation of Earth system models and the estimation of future carbon sink capacity and water balance in midlatitude forests and elsewhere.
Collapse
Affiliation(s)
- Shelly A Rayback
- Department of Geography, University of Vermont, 207 Old Mill Building, 94 University Place, Burlington, VT, 05405, USA
| | - Soumaya Belmecheri
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, 85721, USA
| | - Mary H Gagen
- Department of Geography, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Andrea Lini
- Department of Geology, University of Vermont, 319 Delehanty Hall, 180 Colchester Avenue, Burlington, VT, 05405, USA
| | - Rachel Gregory
- School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Catherine Jenkins
- School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
33
|
Xu H, Xiao J, Zhang Z, Ollinger SV, Hollinger DY, Pan Y, Wan J. Canopy photosynthetic capacity drives contrasting age dynamics of resource use efficiencies between mature temperate evergreen and deciduous forests. GLOBAL CHANGE BIOLOGY 2020; 26:6156-6167. [PMID: 33245613 DOI: 10.1111/gcb.15312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Forest resource use efficiencies (RUEs) can vary with tree age, but the nature of these trends and their underlying mechanisms are not well understood. Understanding the age dynamics of forest RUEs and their drivers is vital for assessing the trade-offs between forest functions and resource consumption, making rational management policy, and projecting ecosystem carbon dynamics. Here we used the FLUXNET2015 and AmeriFlux datasets and published literature to explore the age-dependent variability of forest light use efficiency (LUE) and inherent water use efficiency as well as their main regulatory variables in temperate regions. Our results showed that evergreen forest RUEs initially increased before reaching the mature stage (i.e., around 90 years old), and then gradually declined; in contrast, RUEs continuously increased with age for mature deciduous forests. Changing canopy photosynthetic capacity (Amax) was the primary cause of age-related changes in RUEs across temperate forest sites. More importantly, soil nitrogen (N) increased in mature deciduous forests through time but decreased in older evergreen forests. The age-dependent changes in soil N were closely linked with the age dynamics of Amax for mature temperate forests. Additionally, soil nutrient conditions played a greater role in deciduous forest RUEs than evergreen forest RUEs. This study highlights the importance of stand age and forest type on temperate forest RUEs over the long term.
Collapse
Affiliation(s)
- Hang Xu
- Jixian National Forest Ecosystem Observation and Research Station, CNERN, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of Soil and Water Conservation & Desertification Combating, State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
| | - Zhiqiang Zhang
- Jixian National Forest Ecosystem Observation and Research Station, CNERN, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of Soil and Water Conservation & Desertification Combating, State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Scott V Ollinger
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
| | | | - Yude Pan
- USDA Forest Service, Northern Research Station, Durham, NH, USA
| | - Jiaming Wan
- Jixian National Forest Ecosystem Observation and Research Station, CNERN, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of Soil and Water Conservation & Desertification Combating, State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
34
|
Impact of Recent Climate Change on Water-Use Efficiency Strategies of Larix sibirica in the Altai-Sayan Mountain Range. FORESTS 2020. [DOI: 10.3390/f11101103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A strong increase in the mean annual air temperature during the past 50 years by up to 0.54 °C was recorded in the Altai region (45°–52° N; 84°–99° E) compared to the global value of 0.07 °C over the period 1901–2008. The impact of the climatic changes on the hydrology are complex in these mountainous forest ecosystems and not fully understood. We aim to reveal differences in the intrinsic water-use efficiencies (iWUE) strategy by larch (Larix sibirica Ledeb.) derived from stable carbon isotopes at contrasting sites, ranging from the steppe (Ersin, Chadan) to high-elevation (Mongun, Koksu) sites of the Altai over the past century. The iWUE trends increased rapidly for all study sites except Chadan, where a decreasing trend after 2010 has been observed. This decline can be related to increased amount of precipitation compared to increased drought at the other sites. In general, the iWUE is increased up to 14% (1985–2019 compared to 1919–1984), which is lower compared to other studies across the globe likely due to harsh climatic conditions. Vapor pressure deficit and maximal air temperature are impacting Siberian larch significantly and affecting their iWUE differently at the high-elevated and steppe sites of the Altai over the past century.
Collapse
|
35
|
Churakova Sidorova OV, Corona C, Fonti MV, Guillet S, Saurer M, Siegwolf RTW, Stoffel M, Vaganov EA. Recent atmospheric drying in Siberia is not unprecedented over the last 1,500 years. Sci Rep 2020; 10:15024. [PMID: 32929148 PMCID: PMC7490406 DOI: 10.1038/s41598-020-71656-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/17/2020] [Indexed: 11/26/2022] Open
Abstract
Newly developed millennial δ13C larch tree-ring chronology from Siberia allows reconstruction of summer (July) vapor pressure deficit (VPD) changes in a temperature-limited environment. VPD increased recently, but does not yet exceed the maximum values reconstructed during the Medieval Warm Anomaly. The most humid conditions in the Siberian North were recorded in the Early Medieval Period and during the Little Ice Age. Increasing VPD under elevated air temperature affects the hydrology of these sensitive ecosystems by greater evapotranspiration rates. Further VPD increases will significantly affect Siberian forests most likely leading to drought and forest mortality even under additional access of thawed permafrost water. Adaptation strategies are needed for Siberian forest ecosystems to protect them in a warming world.
Collapse
Affiliation(s)
- O V Churakova Sidorova
- Siberian Federal University, Svobodny pr. 79, Krasnoyarsk, Russian Federation, 660041. .,Institute for Environmental Sciences, University of Geneva, 66 Bvd Carl Vogt, 1205, Geneva, Switzerland.
| | - C Corona
- Geolab, UMR 6042 CNRS, Université Clermont-Auvergne (UCA), 4 rue Ledru, 63057, Clermont-Ferrand, France
| | - M V Fonti
- Siberian Federal University, Svobodny pr. 79, Krasnoyarsk, Russian Federation, 660041.,Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - S Guillet
- Institute for Environmental Sciences, University of Geneva, 66 Bvd Carl Vogt, 1205, Geneva, Switzerland
| | - M Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - R T W Siegwolf
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - M Stoffel
- Institute for Environmental Sciences, University of Geneva, 66 Bvd Carl Vogt, 1205, Geneva, Switzerland.,Dendrolab.Ch, Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205, Geneva, Switzerland.,Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 66 Bvd Carl Vogt, 1205, Geneva, Switzerland
| | - E A Vaganov
- Siberian Federal University, Svobodny pr. 79, Krasnoyarsk, Russian Federation, 660041.,V.N. Sukachev Institute of Forest SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/28 Akademgorodok, Krasnoyarsk, Russian Federation, 660036
| |
Collapse
|
36
|
Vernay A, Tian X, Chi J, Linder S, Mäkelä A, Oren R, Peichl M, Stangl ZR, Tor-Ngern P, Marshall JD. Estimating canopy gross primary production by combining phloem stable isotopes with canopy and mesophyll conductances. PLANT, CELL & ENVIRONMENT 2020; 43:2124-2142. [PMID: 32596814 DOI: 10.1111/pce.13835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Gross primary production (GPP) is a key component of the forest carbon cycle. However, our knowledge of GPP at the stand scale remains uncertain, because estimates derived from eddy covariance (EC) rely on semi-empirical modelling and the assumptions of the EC technique are sometimes not fully met. We propose using the sap flux/isotope method as an alternative way to estimate canopy GPP, termed GPPiso/SF , at the stand scale and at daily resolution. It is based on canopy conductance inferred from sap flux and intrinsic water-use efficiency estimated from the stable carbon isotope composition of phloem contents. The GPPiso/SF estimate was further corrected for seasonal variations in photosynthetic capacity and mesophyll conductance. We compared our estimate of GPPiso/SF to the GPP derived from PRELES, a model parameterized with EC data. The comparisons were performed in a highly instrumented, boreal Scots pine forest in northern Sweden, including a nitrogen fertilized and a reference plot. The resulting annual and daily GPPiso/SF estimates agreed well with PRELES, in the fertilized plot and the reference plot. We discuss the GPPiso/SF method as an alternative which can be widely applied without terrain restrictions, where the assumptions of EC are not met.
Collapse
Affiliation(s)
- Antoine Vernay
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Xianglin Tian
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jinshu Chi
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Sune Linder
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Annikki Mäkelä
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Ram Oren
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Division of Environmental Science & Policy, Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
- Department of Civil & Environmental Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Matthias Peichl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Zsofia R Stangl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Pantana Tor-Ngern
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Environment, Health and Social Data Analytics Research Group, Chulalongkorn University, Bangkok, Thailand
| | - John D Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
37
|
Bright RM, Allen M, Antón-Fernández C, Belbo H, Dalsgaard L, Eisner S, Granhus A, Kjønaas OJ, Søgaard G, Astrup R. Evaluating the terrestrial carbon dioxide removal potential of improved forest management and accelerated forest conversion in Norway. GLOBAL CHANGE BIOLOGY 2020; 26:5087-5105. [PMID: 32559355 DOI: 10.1111/gcb.15228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
As a carbon dioxide removal measure, the Norwegian government is currently considering a policy of large-scale planting of spruce (Picea abies (L) H. Karst) on lands in various states of natural transition to a forest dominated by deciduous broadleaved tree species. Given the aspiration to bring emissions on balance with removals in the latter half of the 21st century in effort to limit the global mean temperature rise to "well below" 2°C, the effectiveness of such a policy is unclear given relatively low spruce growth rates in the region. Further convoluting the picture is the magnitude and relevance of surface albedo changes linked to such projects, which typically counteract the benefits of an enhanced forest CO2 sink in high-latitude regions. Here, we carry out a rigorous empirically based assessment of the terrestrial carbon dioxide removal (tCDR) potential of large-scale spruce planting in Norway, taking into account transient developments in both terrestrial carbon sinks and surface albedo over the 21st century and beyond. We find that surface albedo changes would likely play a negligible role in counteracting tCDR, yet given low forest growth rates in the region, notable tCDR benefits from such projects would not be realized until the second half of the 21st century, with maximum benefits occurring even later around 2150. We estimate Norway's total accumulated tCDR potential at 2100 and 2150 (including surface albedo changes) to be 447 (±240) and 852 (±295) Mt CO2 -eq. at mean net present values of US$ 12 (±3) and US$ 13 (±2) per ton CDR, respectively. For perspective, the accumulated tCDR potential at 2100 represents around 8 years of Norway's total current annual production-based (i.e., territorial) CO2 -eq. emissions.
Collapse
Affiliation(s)
- Ryan M Bright
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Micky Allen
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | - Helmer Belbo
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | | | - Aksel Granhus
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | | | - Rasmus Astrup
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
38
|
Marchand W, Girardin MP, Hartmann H, Depardieu C, Isabel N, Gauthier S, Boucher É, Bergeron Y. Strong overestimation of water-use efficiency responses to rising CO 2 in tree-ring studies. GLOBAL CHANGE BIOLOGY 2020; 26:4538-4558. [PMID: 32421921 DOI: 10.1111/gcb.15166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
The carbon isotope ratio (δ13 C) in tree rings is commonly used to derive estimates of the assimilation-to-stomatal conductance rate of trees, that is, intrinsic water-use efficiency (iWUE). Recent studies have observed increased iWUE in response to rising atmospheric CO2 concentrations (Ca ), in many different species, genera and biomes. However, increasing rates of iWUE vary widely from one study to another, likely because numerous covarying factors are involved. Here, we quantified changes in iWUE of two widely distributed boreal conifers using tree samples from a forest inventory network that were collected across a wide range of growing conditions (assessed using the site index, SI), developmental stages and stand histories. Using tree-ring isotopes analysis, we assessed the magnitude of increase in iWUE after accounting for the effects of tree size, stand age, nitrogen deposition, climate and SI. We also estimated how growth conditions have modulated tree physiological responses to rising Ca . We found that increases in tree size and stand age greatly influenced iWUE. The effect of Ca on iWUE was strongly reduced after accounting for these two variables. iWUE increased in response to Ca , mostly in trees growing on fertile stands, whereas iWUE remained almost unchanged on poor sites. Our results suggest that past studies could have overestimated the CO2 effect on iWUE, potentially leading to biased inferences about the future net carbon balance of the boreal forest. We also observed that this CO2 effect is weakening, which could affect the future capacity of trees to resist and recover from drought episodes.
Collapse
Affiliation(s)
- William Marchand
- Centre d'étude de la forêt, Université du Québec à Montréal, Montreal, QC, Canada
- Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn Noranda, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Martin P Girardin
- Centre d'étude de la forêt, Université du Québec à Montréal, Montreal, QC, Canada
- Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn Noranda, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Henrik Hartmann
- Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, Germany
| | - Claire Depardieu
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
- Chaire de recherche du Canada en génomique forestière, Université Laval, Sainte-Foy, QC, Canada
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
- Chaire de recherche du Canada en génomique forestière, Université Laval, Sainte-Foy, QC, Canada
| | - Sylvie Gauthier
- Centre d'étude de la forêt, Université du Québec à Montréal, Montreal, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Étienne Boucher
- GEOTOP, Université du Québec à Montréal, Montreal, QC, Canada
- Department of Geography, Université du Québec à Montréal, Montreal, QC, Canada
- Centre d'Études Nordiques, Université Laval, Quebec City, QC, Canada
| | - Yves Bergeron
- Centre d'étude de la forêt, Université du Québec à Montréal, Montreal, QC, Canada
- Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn Noranda, QC, Canada
| |
Collapse
|
39
|
Guerrieri R, Vanguelova E, Pitman R, Benham S, Perks M, Morison JIL, Mencuccini M. Climate and atmospheric deposition effects on forest water-use efficiency and nitrogen availability across Britain. Sci Rep 2020; 10:12418. [PMID: 32709879 PMCID: PMC7381603 DOI: 10.1038/s41598-020-67562-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 06/08/2020] [Indexed: 11/09/2022] Open
Abstract
Rising atmospheric CO2 (ca) has been shown to increase forest carbon uptake. Yet, whether the ca-fertilization effect on forests is modulated by changes in sulphur (Sdep) and nitrogen (Ndep) deposition and how Ndep affects ecosystem N availability remains unclear. We explored spatial and temporal (over 30-years) changes in tree-ring δ13C-derived intrinsic water-use efficiency (iWUE), δ18O and δ15N for four species in twelve forests across climate and atmospheric deposition gradients in Britain. The increase in iWUE was not uniform across sites and species-specific underlying physiological mechanisms reflected the interactions between climate and atmospheric drivers (oak and Scots pine), but also an age effect (Sitka spruce). Most species showed no significant trends for tree-ring δ15N, suggesting no changes in N availability. Increase in iWUE was mostly associated with increase in temperature and decrease in moisture conditions across the South-North gradient and over 30-years. However, when excluding Sitka spruce (to account for age or stand development effects), variations in iWUE were significantly associated with changes in ca and Sdep. Our data suggest that overall climate had the prevailing effect on changes in iWUE across the investigated sites. Whereas, detection of Ndep, Sdep and ca signals was partially confounded by structural changes during stand development.
Collapse
Affiliation(s)
- Rossella Guerrieri
- Centre for Ecological Research and Forestry Applications, CREAF, c/o Universidad Autonoma de Barcelona, Edificio C, 08290, Cerdanyola, Barcelona, Spain.
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy.
| | - Elena Vanguelova
- Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, UK
| | - Rona Pitman
- Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, UK
| | - Sue Benham
- Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, UK
| | - Michael Perks
- Forest Research, Northern Research Station, Roslin, EH25 9SY, Midlothian, Scotland, UK
| | | | - Maurizio Mencuccini
- Centre for Ecological Research and Forestry Applications, CREAF, c/o Universidad Autonoma de Barcelona, Edificio C, 08290, Cerdanyola, Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
40
|
Dorado-Liñán I, Valbuena-Carabaña M, Cañellas I, Gil L, Gea-Izquierdo G. Climate Change Synchronizes Growth and iWUE Across Species in a Temperate-Submediterranean Mixed Oak Forest. FRONTIERS IN PLANT SCIENCE 2020; 11:706. [PMID: 32595660 PMCID: PMC7300280 DOI: 10.3389/fpls.2020.00706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Tree species have good tolerance to a range of environmental conditions, though their ability to respond and persist to environmental changes is dramatically reduced at the rear-edge distribution limits. At those edges, gene flow conferring adaptation is impaired due to lack of populations at lower latitudes. Thus, trees mainly rely on phenotypic changes to buffer against long-term environmental changes. Interspecific hybridization may offer an alternative mechanism in the generation of novel genetic recombinants that could be particularly valuable to ensure persistence in geographically isolated forests. In this paper, we take advantage of the longevity of a temperate-submediterranean mixed-oak forest to explore the long-term impact of environmental changes on two different oak species and their hybrid. Individual trees were genetically characterized and classified into three groups: pure Quercus petraea (Matt.), Liebl, pure Q. pyrenaica Willd, and hybrids. We calculated basal area increment and intrinsic water-use efficiency (iWUE) from tree-ring width and δ13C per genetic group, respectively. Tree-growth drivers were assessed using correlation analyses and generalized linear mixed models for two contrasting climatic periods: (1880-1915, colder with [CO2] < 303 ppm; and 1980-2015, warmer with [CO2] > 338 ppm). The three genetic groups have increased radial growth and iWUE during the last decades, being the least drought-tolerant QuPe the most sensitive species to water stress. However, no significant differences were found among genetic groups neither in mean growth rate nor in mean iWUE. Furthermore, little differences were found in the response to climate among groups. Genetic groups only differed in the relationship between δ13C and temperature and precipitation during the earlier period, but such a difference disappeared during the recent decades. Climate change may have promoted species-level convergence as a response to environment-induced growth limitations, which translated in synchronized growth and response to climate as well as a tighter stomatal control and increased iWUE across coexisting oak species.
Collapse
Affiliation(s)
- Isabel Dorado-Liñán
- Forest Research Centre, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CIFOR), Madrid, Spain
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - María Valbuena-Carabaña
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isabel Cañellas
- Forest Research Centre, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CIFOR), Madrid, Spain
| | - Luis Gil
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Guillermo Gea-Izquierdo
- Forest Research Centre, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CIFOR), Madrid, Spain
| |
Collapse
|
41
|
Voltas J, Aguilera M, Gutiérrez E, Shestakova TA. Shared drought responses among conifer species in the middle Siberian taiga are uncoupled from their contrasting water-use efficiency trajectories. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137590. [PMID: 32143049 DOI: 10.1016/j.scitotenv.2020.137590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/25/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
A shift from temperature-limited to water-limited tree performance is occurring at around 60°N latitude across the circumboreal biome, in concord with current warming trends. This shift is likely to induce extensive vegetation changes and forest die-back, and also to exacerbate biotic outbreaks and wildfires, affecting the global carbon budget. We used carbon isotope discrimination (Δ13C) in tree rings to analyze the long-term physiological responses of five representative species that coexist in the middle taiga of Western Siberia, including dark-needled, drought-susceptible (Abies sibirica, Picea obovata, Pinus sibirica) and light-needled, drought-resistant (Larix sibirica, Pinus sylvestris) conifers. We hypothesized that droughts are differentially imprinted in dark and light conifers, with stronger Δ13C-responsiveness in the latter reflecting a more conservative water use. We found similar Δ13C-climate relationships related to the moisture regime of the summer season across species, indicating shared drought responses; however, divergent intrinsic water-use efficiency (WUEi) trajectories from 1950 to 2013 were observed for pines (increasing by ca. 10%) and other conifers (increasing by ca. 25%). These contrasting patterns suggested the passive and active stomatal regulation of gas exchange in these trees, respectively, and led us to discard our initial hypothesis. Discriminant analysis shed light on the climate characteristics responsible for such differential behavior, with years having lower temperatures from May through August (3 °C colder on average) being responsible for reduced pine WUEi. This finding may be related to the higher plasticity of phenology of pines and the greater susceptibility of fir and spruce to cold damage and heat shock during the early growing season (late April-May). Together with recent negative growth trends and increasing ring-width vs. Δ13C coupling, these results indicate the greater susceptibility of spruce and fir, compared with pines and larch, in boreal ecosystems when transitioning from a temperature- to a moisture-sensitive regime.
Collapse
Affiliation(s)
- Jordi Voltas
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; Department of Crop and Forest Sciences, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Mònica Aguilera
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; Department of Crop and Forest Sciences, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Emilia Gutiérrez
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avda, Diagonal 643, 08028 Barcelona, Spain
| | | |
Collapse
|
42
|
Zhang B, Xu Q, Gao D, Jiang C, Liu F, Jiang J, Wang T. Altered water uptake patterns of Populus deltoides in mixed riparian forest stands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135956. [PMID: 31846884 DOI: 10.1016/j.scitotenv.2019.135956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Plant water uptake plays an important role in regulating ecosystem water balance and its productivity. However, previous studies regarding plant water uptake were primarily conducted in wet areas under seasonal drought conditions, with a limited understanding of the proportion and drivers of plant water uptake under humid conditions. Actually, climate change and variations in global precipitation patterns could simultaneously trigger seasonal drought and flooding. Therefore, it is critical to explore patterns and mechanisms for plant water uptake under humid conditions in wet regions. Here, we employed dual stable isotopes of hydrogen and oxygen coupled with a Bayesian mixing model (MixSIAR) to explore the water uptake patterns of Populus deltoides in two types of riparian forests (pure vs. mixed stand of P. deltoides), under different magnitudes of rainfall (7.9, 15.4 and 34.1 mm), in the Middle-Lower Reaches of the Yangtze River in China. We further used both partial correlation and variation partitioning analyses to determine the relative importance of soil variables and plant properties affecting the proportion of P. deltoides water uptake from different soil layers. Our results revealed that compared to pure stands, P. deltoides in mixed stands had a lower water uptake proportion from deep soil layers (60-80, 80-100 cm) and had higher water uptake from shallow soil layers (0-20, 20-40 cm) under 15.4 mm and 34.1 mm rainfall events. Our results also revealed that plant properties such as leaf biomass, fine root biomass, and diameter at breast height were the primary factors influencing water uptake by P. deltoides. This suggests that P. deltoides in mixed stands could increase the proportion of water uptake from shallow soil layers through altering plant attributes. These findings indicate that mixed stands could restrain frequent extreme rainfall events and subsequent flooding, suggesting more resilience towards future climatic variability.
Collapse
Affiliation(s)
- Beibei Zhang
- Key Laboratory of Forest Ecology and Environment of State Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Qing Xu
- Key Laboratory of Forest Ecology and Environment of State Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China.
| | - Deqiang Gao
- Key Laboratory of Forest Ecology and Environment of State Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | | | - Futing Liu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jing Jiang
- University of Calgary, Calgary T2N1N4, Canada
| | - Ting Wang
- Key Laboratory of Forest Ecology and Environment of State Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
43
|
Panthi S, Fan ZX, van der Sleen P, Zuidema PA. Long-term physiological and growth responses of Himalayan fir to environmental change are mediated by mean climate. GLOBAL CHANGE BIOLOGY 2020; 26:1778-1794. [PMID: 31696994 DOI: 10.1111/gcb.14910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
High-elevation forests are experiencing high rates of warming, in combination with CO2 rise and (sometimes) drying trends. In these montane systems, the effects of environmental changes on tree growth are also modified by elevation itself, thus complicating our ability to predict effects of future climate change. Tree-ring analysis along an elevation gradient allows quantifying effects of gradual and annual environmental changes. Here, we study long-term physiological (ratio of internal to ambient CO2 , i.e., Ci /Ca and intrinsic water-use efficiency, iWUE) and growth responses (tree-ring width) of Himalayan fir (Abies spectabilis) trees in response to warming, drying, and CO2 rise. Our study was conducted along elevational gradients in a dry and a wet region in the central Himalaya. We combined dendrochronology and stable carbon isotopes (δ13 C) to quantify long-term trends in Ci /Ca ratio and iWUE (δ13 C-derived), growth (mixed-effects models), and evaluate climate sensitivity (correlations). We found that iWUE increased over time at all elevations, with stronger increase in the dry region. Climate-growth relations showed growth-limiting effects of spring moisture (dry region) and summer temperature (wet region), and negative effects of temperature (dry region). We found negative growth trends at lower elevations (dry and wet regions), suggesting that continental-scale warming and regional drying reduced tree growth. This interpretation is supported by δ13 C-derived long-term physiological responses, which are consistent with responses to reduced moisture and increased vapor pressure deficit. At high elevations (wet region), we found positive growth trends, suggesting that warming has favored tree growth in regions where temperature most strongly limits growth. At lower elevations (dry and wet regions), the positive effects of CO2 rise did not mitigate the negative effects of warming and drying on tree growth. Our results raise concerns on the productivity of Himalayan fir forests at low and middle (<3,300 m) elevations as climate change progresses.
Collapse
Affiliation(s)
- Shankar Panthi
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden of the Chinese Academy of Sciences, Mengla, Yunnan, China
- Center for Plant Ecology, Chinese Academy of Sciences, Xishuangbanna, China
| | - Ze-Xin Fan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden of the Chinese Academy of Sciences, Mengla, Yunnan, China
- Center for Plant Ecology, Chinese Academy of Sciences, Xishuangbanna, China
- Ailaoshan Station of Subtropical Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden of the Chinese Academy of Sciences, Jingdong, Yunnan, China
| | - Peter van der Sleen
- Department of Wetland Ecology, Karlsruhe Institute of Technology, Rastatt, Germany
| | - Pieter A Zuidema
- Forest Ecology & Forest Management Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
44
|
Lavergne A, Voelker S, Csank A, Graven H, de Boer HJ, Daux V, Robertson I, Dorado-Liñán I, Martínez-Sancho E, Battipaglia G, Bloomfield KJ, Still CJ, Meinzer FC, Dawson TE, Julio Camarero J, Clisby R, Fang Y, Menzel A, Keen RM, Roden JS, Prentice IC. Historical changes in the stomatal limitation of photosynthesis: empirical support for an optimality principle. THE NEW PHYTOLOGIST 2020; 225:2484-2497. [PMID: 31696932 DOI: 10.1111/nph.16314] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/31/2019] [Indexed: 05/08/2023]
Abstract
The ratio of leaf internal (ci ) to ambient (ca ) partial pressure of CO2 , defined here as χ, is an index of adjustments in both leaf stomatal conductance and photosynthetic rate to environmental conditions. Measurements and proxies of this ratio can be used to constrain vegetation model uncertainties for predicting terrestrial carbon uptake and water use. We test a theory based on the least-cost optimality hypothesis for modelling historical changes in χ over the 1951-2014 period, across different tree species and environmental conditions, as reconstructed from stable carbon isotopic measurements across a global network of 103 absolutely dated tree-ring chronologies. The theory predicts optimal χ as a function of air temperature, vapour pressure deficit, ca and atmospheric pressure. The theoretical model predicts 39% of the variance in χ values across sites and years, but underestimates the intersite variability in the reconstructed χ trends, resulting in only 8% of the variance in χ trends across years explained by the model. Overall, our results support theoretical predictions that variations in χ are tightly regulated by the four environmental drivers. They also suggest that explicitly accounting for the effects of plant-available soil water and other site-specific characteristics might improve the predictions.
Collapse
Affiliation(s)
- Aliénor Lavergne
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Department of Physics, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Steve Voelker
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Adam Csank
- Department of Geography, University of Nevada-Reno, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Heather Graven
- Department of Physics, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Grantham Institute - Climate Change and the Environment, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Hugo J de Boer
- Department of Environmental Sciences, Utrecht University, 3584 CB, Utrecht, the Netherlands
| | - Valérie Daux
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, 91191, Gif-sur-Yvette, France
| | - Iain Robertson
- Department of Geography, Swansea University, Swansea, SA2 8PP, UK
| | - Isabel Dorado-Liñán
- Forest Genetics and Ecophysiology Research Group, Technical University of Madrid, Madrid, 28040, Spain
| | - Elisabet Martínez-Sancho
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Giovanna Battipaglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Via Vivaldi, 81100, Caserta, Italy
| | - Keith J Bloomfield
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Christopher J Still
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331-5704, USA
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, 97331-8550, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California - Berkeley, Berkeley, CA, 94720-3200, USA
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), E-50192, Zaragoza, Spain
| | - Rory Clisby
- Department of Geography, Swansea University, Swansea, SA2 8PP, UK
| | - Yunting Fang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Annette Menzel
- Ecoclimatology, Department of Ecology and Ecosystem Management, Technical University of Munich, 85354, Freising, Germany
| | - Rachel M Keen
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - John S Roden
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA
| | - I Colin Prentice
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Grantham Institute - Climate Change and the Environment, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
45
|
Liu X, Feng X, Fu B. Changes in global terrestrial ecosystem water use efficiency are closely related to soil moisture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134165. [PMID: 31494420 DOI: 10.1016/j.scitotenv.2019.134165] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Ecosystem water use efficiency (WUE), defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), is an indicator of the tradeoff between carbon assimilation and water loss that is controlled by climate and ecosystem structure. However, how GPP and ET impact WUE remains poorly understood. In this study, we provide a global analysis of WUE trends from 1982 to 2011 using multi-model ensemble mean WUE values derived from seven process-based carbon cycle models and investigate the relative effects of leaf area index (LAI), soil moisture (SM), and vapor pressure deficit (VPD) on GPP and ET. Increasing WUE trend was derived for all models, with an average rate of 0.0057 ± 0.0018 g C·kg-1 H2O·yr-1 (p = 0.00), with a spatially increasing WUE across ~84% of the global land area, and increasing trends which are statistically significant over ~72% (p < 0.05). Spatially, GPP primarily dominated WUE variability in humid regions, i.e., boreal Eurasia, eastern America, and the tropics, whereas ET dominated WUE variability in dryland regions, i.e., northeast China, the Middle East, southern South America, and South Australia. Soil moisture is likely the most influential factor on GPP and ET variations, with ~63% and ~61% of the global land area dominated by SM, and therefore WUE, for GPP and ET respectively from 1982 to 2011. Our findings enrich the understanding of WUE trends and provide direct evidence for SM-induced variability in WUE.
Collapse
Affiliation(s)
- Xianfeng Liu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoming Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Bojie Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
46
|
El Masri B, Schwalm C, Huntzinger DN, Mao J, Shi X, Peng C, Fisher JB, Jain AK, Tian H, Poulter B, Michalak AM. Carbon and Water Use Efficiencies: A Comparative Analysis of Ten Terrestrial Ecosystem Models under Changing Climate. Sci Rep 2019; 9:14680. [PMID: 31604972 PMCID: PMC6789101 DOI: 10.1038/s41598-019-50808-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/12/2019] [Indexed: 11/08/2022] Open
Abstract
Terrestrial ecosystems carbon and water cycles are tightly coupled through photosynthesis and evapotranspiration processes. The ratios of carbon stored to carbon uptake and water loss to carbon gain are key ecophysiological indicators essential to assess the magnitude and response of the terrestrial plant to the changing climate. Here, we use estimates from 10 terrestrial ecosystem models to quantify the impacts of climate, atmospheric CO2 concentration, and nitrogen (N) deposition on water use efficiency (WUE), and carbon use efficiency (CUE). We find that across models, WUE increases over the 20th Century particularly due to CO2 fertilization and N deposition and compares favorably to experimental studies. Also, the results show a decrease in WUE with climate for the last 3 decades, in contrasts with up-scaled flux observations that demonstrate a constant WUE. Modeled WUE responds minimally to climate with modeled CUE exhibiting no clear trend across space and time. The divergence between simulated and observationally-constrained WUE and CUE is driven by modeled NPP and autotrophic respiration, nitrogen cycle, carbon allocation, and soil moisture dynamics in current ecosystem models. We suggest that carbon-modeling community needs to reexamine stomatal conductance schemes and the soil-vegetation interactions for more robust modeling of carbon and water cycles.
Collapse
Affiliation(s)
- Bassil El Masri
- Department of Earth and Environmental Sciences, Murray State University, Murray, KY, 42071, USA.
| | - Christopher Schwalm
- Woods Hole Research Center, Falmouth, MA, 02540, USA
- School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Deborah N Huntzinger
- School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Jiafu Mao
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Xiaoying Shi
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Changhui Peng
- Department of Biological Sciences, University of Quebec at Montreal, Montréal, QC, H3C 3J7, Canada
| | - Joshua B Fisher
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Atul K Jain
- Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hanqin Tian
- International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, 36849, USA
| | | | - Anna M Michalak
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
47
|
Lavergne A, Graven H, De Kauwe MG, Keenan TF, Medlyn BE, Prentice IC. Observed and modelled historical trends in the water-use efficiency of plants and ecosystems. GLOBAL CHANGE BIOLOGY 2019; 25:2242-2257. [PMID: 30933410 DOI: 10.1111/gcb.14634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/29/2019] [Accepted: 03/14/2019] [Indexed: 05/20/2023]
Abstract
Plant water-use efficiency (WUE, the carbon gained through photosynthesis per unit of water lost through transpiration) is a tracer of the plant physiological controls on the exchange of water and carbon dioxide between terrestrial ecosystems and the atmosphere. At the leaf level, rising CO2 concentrations tend to increase carbon uptake (in the absence of other limitations) and to reduce stomatal conductance, both effects leading to an increase in leaf WUE. At the ecosystem level, indirect effects (e.g. increased leaf area index, soil water savings) may amplify or dampen the direct effect of CO2 . Thus, the extent to which changes in leaf WUE translate to changes at the ecosystem scale remains unclear. The differences in the magnitude of increase in leaf versus ecosystem WUE as reported by several studies are much larger than would be expected with current understanding of tree physiology and scaling, indicating unresolved issues. Moreover, current vegetation models produce inconsistent and often unrealistic magnitudes and patterns of variability in leaf and ecosystem WUE, calling for a better assessment of the underlying approaches. Here, we review the causes of variations in observed and modelled historical trends in WUE over the continuum of scales from leaf to ecosystem, including methodological issues, with the aim of elucidating the reasons for discrepancies observed within and across spatial scales. We emphasize that even though physiological responses to changing environmental drivers should be interpreted differently depending on the observational scale, there are large uncertainties in each data set which are often underestimated. Assumptions made by the vegetation models about the main processes influencing WUE strongly impact the modelled historical trends. We provide recommendations for improving long-term observation-based estimates of WUE that will better inform the representation of WUE in vegetation models.
Collapse
Affiliation(s)
- Aliénor Lavergne
- Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Ascot, UK
| | - Heather Graven
- Department of Physics, Imperial College London, London, UK
- Grantham Institute - Climate Change and the Environment, Imperial College London, London, UK
| | - Martin G De Kauwe
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia
| | - Trevor F Keenan
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, California
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Iain Colin Prentice
- Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Ascot, UK
- Grantham Institute - Climate Change and the Environment, Imperial College London, London, UK
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
- Department of Earth System Science, Tsinghua University, Beijing, China
| |
Collapse
|
48
|
Effects of Climate Change at Treeline: Lessons from Space-for-Time Studies, Manipulative Experiments, and Long-Term Observational Records in the Central Austrian Alps. FORESTS 2019. [DOI: 10.3390/f10060508] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review summarizes the present knowledge about effects of climate change on conifers within the treeline ecotone of the Central Austrian Alps. After examining the treeline environment and the tree growth with respect to elevation, possible effects of climate change on carbon gain and water relations derived from space-for-time studies and manipulative experiments are outlined. Finally, long-term observational records are discussed, working towards conclusions on tree growth in a future, warmer environment. Increases in CO2 levels along with climate warming interact in complex ways on trees at the treeline. Because treeline trees are not carbon limited, climate warming (rather than the rising atmospheric CO2 level) causes alterations in the ecological functioning of the treeline ecotone in the Central Austrian Alps. Although the water uptake from soils is improved by further climate warming due to an increased permeability of root membranes and aquaporin-mediated changes in root conductivity, tree survival at the treeline also depends on competitiveness for belowground resources. The currently observed seedling re-establishment at the treeline in the Central European Alps is an invasion into potential habitats due to decreasing grazing pressure rather than an upward-migration due to climate warming, suggesting that the treeline in the Central Austrian Alps behaves in a conservative way. Nevertheless, to understand the altitude of the treeline, one must also consider seedling establishment. As there is a lack of knowledge on this particular topic within the treeline ecotone in the Central Austrian Alps, we conclude further research has to focus on the importance of this life stage for evaluating treeline shifts and limits in a changing environment.
Collapse
|
49
|
Csilléry K, Ovaskainen O, Sperisen C, Buchmann N, Widmer A, Gugerli F. Adaptation to local climate in multi-trait space: evidence from silver fir (Abies alba Mill.) populations across a heterogeneous environment. Heredity (Edinb) 2019; 124:77-92. [PMID: 31182819 DOI: 10.1038/s41437-019-0240-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023] Open
Abstract
Heterogeneous environments, such as mountainous landscapes, create spatially varying selection pressure that potentially affects several traits simultaneously across different life stages, yet little is known about the general patterns and drivers of adaptation in such complex settings. We studied silver fir (Abies alba Mill.) populations across Switzerland and characterized its mountainous landscape using downscaled historical climate data. We sampled 387 trees from 19 populations and genotyped them at 374 single-nucleotide polymorphisms (SNPs) to estimate their demographic distances. Seedling morphology, growth and phenology traits were recorded in a common garden, and a proxy for water use efficiency was estimated for adult trees. We tested whether populations have more strongly diverged at quantitative traits than expected based on genetic drift alone in a multi-trait framework, and identified potential environmental drivers of selection. We found two main responses to selection: (i) populations from warmer and more thermally stable locations have evolved towards a taller stature, and (ii) the growth timing of populations evolved towards two extreme strategies, 'start early and grow slowly' or 'start late and grow fast', driven by precipitation seasonality. Populations following the 'start early and grow slowly' strategy had higher water use efficiency and came from inner Alpine valleys characterized by pronounced summer droughts. Our results suggest that contrasting adaptive life-history strategies exist in silver fir across different life stages (seedling to adult), and that some of the characterized populations may provide suitable seed sources for tree growth under future climatic conditions.
Collapse
Affiliation(s)
- Katalin Csilléry
- Center for Adaptation to a Changing Environment, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland. .,Swiss Federal Research Institute WSL, Birmensdorf, Switzerland. .,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | - Otso Ovaskainen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Felix Gugerli
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
50
|
Arco Molina JG, Helle G, Hadad MA, Roig FA. Variations in the intrinsic water-use efficiency of north Patagonian forests under a present climate change scenario: tree age, site conditions and long-term environmental effects. TREE PHYSIOLOGY 2019; 39:661-678. [PMID: 30649565 DOI: 10.1093/treephys/tpy144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
The carbon isotope composition (δ13C) in tree rings were used to derive the intrinsic water-use efficiency (iWUE) of Araucaria araucana trees of northern Patagonia along a strong precipitation gradient. It is well known that climatic and ontogenetic factors affect growth performance of this species but little is known about their influence in the physiological responses, as iWUE. Thus, the main objective of this study was to assess the physiological reactions of young and adult trees from two open xeric and two moderately dense mesic A. araucana forests to the increases in atmospheric CO2 (Ca) and air temperature during the 20th century, and to relate these responses with radial tree growth. The results indicated that the iWUE and the intercellular CO2 concentration (Ci) increased 33% and 32% in average during the last century, respectively, but carbon isotope discrimination (∆13C) was more variable between sites and age classes. Trees from xeric sites presented greater iWUE and lower ∆13C and Ci values than those from mesic sites. In general, iWUE was strongly related with Ca and was significantly affected by mean summer maximum temperature. ∆13C from mesic sites seemed to be mainly affected by summer maximum temperature, while trees from xeric conditions did not show any influence. Tree age also presented a significant effect on iWUE. Adult trees showed higher iWUE values than young trees, indicating an incidence of the tree age and/or height, mainly in closed mesic forests. Moreover, some trees presented positive relationships between iWUE and radial tree growth, while others presented negative or no relationships, indicating that other factors may negatively influence tree growth. Broadly, the results demonstrate the incidence of climatic, environmental and ontogenetic variability in the tree responses; however, more studies are needed to better understand which forests will be more affected by actual and future climate changes.
Collapse
Affiliation(s)
- J G Arco Molina
- Laboratorio de Dendrocronología e Historia Ambiental, IANIGLA-CCT CONICET-Mendoza, Av. Ruiz Leal s/n, Mendoza, Argentina
| | - G Helle
- Section 5.2 Climate Dynamics and Landscape Evolution, GFZ-German Research Centre for Geosciences, Telegrafenberg, Potsdam, Germany
| | - M A Hadad
- CIGEOBIO-CONICET-San Juan, Universidad Nacional de San Juan, Av. Ignacio de la Roza 5900 Oeste, San Juan, Argentina
| | - F A Roig
- Laboratorio de Dendrocronología e Historia Ambiental, IANIGLA-CCT CONICET-Mendoza, Av. Ruiz Leal s/n, Mendoza, Argentina
| |
Collapse
|