1
|
Schmied G, Kappen J, Del Río M, Moser WK, Gundale MJ, Hilmers T, Ambs D, Uhl E, Pretzsch H. Positive mixture effects in pine-oak forests during drought are context-dependent. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 40341707 DOI: 10.1111/plb.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/21/2025] [Indexed: 05/10/2025]
Abstract
The increasing severity and frequency of droughts will play a pivotal role in shaping future forest ecosystems worldwide. Trees growing in mixtures are thought to be less susceptible to drought stress, but evidence for such positive admixture effects remains limited. This study examines how interspecific neighbourhood structures affect the growth responses of pine and oak species under recurrent drought stress in two contrasting forest ecosystems. We sampled naturally occurring, unmanaged mixed stands of Gambel oak (Quercus gambelii) and ponderosa pine (Pinus ponderosa) in semi-arid Arizona, USA, and pedunculate oak (Quercus robur) and Scots pine (Pinus sylvestris) in sub-humid Bavaria, Germany. Tree growth responses to recurrent drought events were assessed across a wide gradient of species admixture. Species admixture significantly influenced tree growth responses to drought stress, but the effects varied by species and forest ecosystem. In semi-arid Arizona, increasing species admixture buffered trees, especially Gambel oak, against drought stress. In sub-humid Bavaria, the effects of species admixture on pedunculate oak and Scots pine were more variable. Our findings emphasize the positive mixture effects in semi-arid environments, likely due to distinct niche complementarity and facilitation. Under sub-humid conditions, the effects were less consistent, aligning with the stress-gradient hypothesis. This study provides valuable insights into the complex dynamics of pine-oak interactions under drought stress and emphasizes the relevance of complementary species admixtures for climate-smart forest management in the face of climate change.
Collapse
Affiliation(s)
- G Schmied
- Professorship of Tree Growth and Wood Physiology, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Chair for Forest Growth and Yield Science, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - J Kappen
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - M Del Río
- Instituto de Ciencias Forestales ICIFOR-INIA, CSIC, Madrid, Spain
| | - W K Moser
- USDA Forest Service, Rocky Mountain Research Station, Flagstaff, Arizona, USA
| | - M J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - T Hilmers
- Professorship of Tree Growth and Wood Physiology, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Chair for Forest Growth and Yield Science, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - D Ambs
- Professorship of Tree Growth and Wood Physiology, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Chair for Forest Growth and Yield Science, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - E Uhl
- Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Freising, Germany
| | - H Pretzsch
- Chair for Forest Growth and Yield Science, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Sustainable Forest Management Research Institute iuFOR, University of Valladolid, Valladolid, Spain
| |
Collapse
|
2
|
Sun X, Lu N, Qin J. Enhanced autumn phenology model incorporating agricultural drought. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175181. [PMID: 39094660 DOI: 10.1016/j.scitotenv.2024.175181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The impacts of various drought types on autumn phenology have yet to be extensively explored. We address the influence of pre-season agricultural and meteorological droughts on autumn phenology in the Northern Hemisphere. To this end, enhanced autumn phenology models incorporating drought factors was developed, contributing to a deeper understanding of these complex interactions. The study reveals that there was no significant trend of advancement or delay in the End of Season (EOS) across the Northern Hemisphere based on SIF estimates from 2001 to 2020. The cumulative and delayed impacts of pre-season agricultural drought on EOS were found to be more pronounced than those associated with meteorological drought. The analysis of various evaluation indexes shows that the performance of the Cooling Degree Days (CDD) model incorporating the Standardized Soil Moisture Drought Index (CDDSSMI) in simulating EOS in the Northern Hemisphere is >14 % higher than that of the standard CDD model. Additionally, the performance of the CDD model with the Standardized Precipitation Index (CDDSPI) in simulating EOS in the Northern Hemisphere is improved by >5.6 % compared to the standard CDD model. A comparison of future EOS projections across various models reveals that the CDD model significantly overestimates EOS in different scenarios (SSP245 and SSP585). The CDDSSMI model projects EOS approximately 7 days earlier than the CDD model, and the CDDSPI model projects EOS approximately 5 days earlier than the CDD model. This study highlights the diverse impacts of drought types on plant autumn phenology and underscores the significance of parameterizing drought impacts in autumn phenology models.
Collapse
Affiliation(s)
- Xupeng Sun
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Lu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jun Qin
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; Faculty of Geography, Yunnan Normal University, Kunming 650050, Yunnan, China.
| |
Collapse
|
3
|
Bai YH, Tang Z. Enhanced effects of species richness on resistance and resilience of global tree growth to prolonged drought. Proc Natl Acad Sci U S A 2024; 121:e2410467121. [PMID: 39302969 PMCID: PMC11441485 DOI: 10.1073/pnas.2410467121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
The increasing duration of drought induced by global climate change has reduced forest productivity. Biodiversity is believed to mitigate the effects of drought, thereby enhancing the stability of tree growth. However, the effects of species richness on tree growth stability under droughts with different durations remain uncertain. Here, we used tree ring data from 4,072 sites globally, combined with climate and plant richness data, to evaluate the effects of species richness on the resistance and resilience of trees to short-term and prolonged droughts. We found that species richness enhanced resistance but weakened resilience of trees to drought globally. Compared to short-term drought, species richness further increased tree growth during prolonged drought but reduced the growth afterward, resulting in stronger effects on resistance and resilience. In addition, as the degree of drought intensified and regional aridity levels increased, the effects of richness on resistance and resilience under short-term drought were enhanced, but these trends were reduced or even reversed under prolonged drought. These results reveal the global effects of species richness on resistance and resilience of tree growth to droughts with different durations and highlight that species richness plays a crucial role in resisting prolonged drought.
Collapse
Affiliation(s)
- Yun-Hao Bai
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing100871, China
| | - Zhiyao Tang
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing100871, China
| |
Collapse
|
4
|
Wang X, Xu T, Xu C, Liu H, Chen Z, Li Z, Li X, Wu X. Enhanced growth resistance but no decline in growth resilience under long-term extreme droughts. GLOBAL CHANGE BIOLOGY 2024; 30:e17038. [PMID: 37987223 DOI: 10.1111/gcb.17038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
The frequency, intensity, and duration of extreme droughts, with devastating impacts on tree growth and survival, have increased with climate change over the past decades. Assessing growth resistance and resilience to drought is a crucial prerequisite for understanding the responses of forest functioning to drought events. However, the responses of growth resistance and resilience to extreme droughts with different durations across different climatic zones remain unclear. Here, we investigated the spatiotemporal patterns in growth resistance and resilience in response to extreme droughts with different durations during 1901-2015, relying on tree-ring chronologies from 2389 forest stands over the mid- and high-latitudinal Northern Hemisphere, species-specific plant functional traits, and diverse climatic factors. The findings revealed that growth resistance and resilience under 1-year droughts were higher in humid regions than in arid regions. Significant higher growth resistance was observed under 2-year droughts than under 1-year droughts in both arid and humid regions, while growth resilience did not show a significant difference. Temporally, tree growth became less resistant and resilient to 1-year droughts in 1980-2015 than in 1901-1979 in both arid and humid regions. As drought duration lengthened, the predominant impacts of climatic factors on growth resistance and resilience weakened and instead foliar economic traits, plant hydraulic traits, and soil properties became much more important in both climatic regions; in addition, such trends were also observed temporally. Finally, we found that most of the Earth system models (ESMs) used in this study overestimated growth resistance and underestimated growth resilience under both 1-year and 2-year droughts. A comprehensive ecophysiological understanding of tree growth responses to longer and intensified drought events is urgently needed, and a specific emphasis should be placed on improving the performance of ESMs.
Collapse
Affiliation(s)
- Xiaona Wang
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing, China
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Taoran Xu
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing, China
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Chenxi Xu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Hongyan Liu
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Zhenju Chen
- Tree-Ring Laboratory, Research Station of Liaohe-River Plain Forest Ecosystem CFERN, College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Zongshan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ximeng Li
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Xiuchen Wu
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing, China
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining, China
| |
Collapse
|
5
|
Barkaoui K, Volaire F. Drought survival and recovery in grasses: Stress intensity and plant-plant interactions impact plant dehydration tolerance. PLANT, CELL & ENVIRONMENT 2023; 46:1489-1503. [PMID: 36655754 DOI: 10.1111/pce.14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Plant dehydration tolerance confers drought survival in grasses, but the mortality thresholds according to soil water content (SWC), vapour pressure deficit (VPD) and plant-plant interactions are little explored. We compared the dehydration dynamics of leaf meristems, which are the key surviving organs, plant mortality, and recovery of Mediterranean and temperate populations of two perennial grass species, Dactylis glomerata and Festuca arundinacea, grown in monocultures and mixtures under a low-VPD (1.5 kPa) versus a high-VPD drought (2.2 kPa). The lethal drought index (LD50 ), that is, SWC associated with 50% plant mortality, ranged from 2.87% (ψs = -1.68 MPa) to 2.19% (ψs = -4.47 MPa) and reached the lowest values under the low-VPD drought. Populations of D. glomerata were more dehydration-tolerant (lower LD50 ), survived and recovered better than F. arundinacea populations. Plant-plant interactions modified dehydration tolerance and improved post-drought recovery in mixtures compared with monocultures. Water content as low as 20.7%-36.1% in leaf meristems allowed 50% of plants to survive. We conclude that meristem dehydration causes plant mortality and that drought acclimation can increase dehydration tolerance. Genetic diversity, acclimation and plant-plant interactions are essential sources of dehydration tolerance variability to consider when predicting drought-induced mortality.
Collapse
Affiliation(s)
- Karim Barkaoui
- CIRAD, UMR ABSys, F-34398 Montpellier, France
- ABSys, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Florence Volaire
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, INRAE, Montpellier, France
| |
Collapse
|
6
|
Schmied G, Hilmers T, Mellert KH, Uhl E, Buness V, Ambs D, Steckel M, Biber P, Šeho M, Hoffmann YD, Pretzsch H. Nutrient regime modulates drought response patterns of three temperate tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161601. [PMID: 36646222 DOI: 10.1016/j.scitotenv.2023.161601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Against the backdrop of global change, the intensity, duration, and frequency of droughts are projected to increase and threaten forest ecosystems worldwide. Tree responses to drought are complex and likely to vary among species, drought characteristics, and site conditions. Here, we examined the drought response patterns of three major temperate tree species, s. fir (Abies alba), E. beech (Fagus sylvatica), and N. spruce (Picea abies), along an ecological gradient in the South - Central - East part of Germany that included a total of 37 sites with varying climatic and soil conditions. We relied on annual tree-ring data to assess the influence of different drought characteristics and (micro-) site conditions on components of tree resilience and to detect associated temporal changes. Our study revealed that nutrient regime, drought frequency, and hydraulic conditions in the previous and subsequent years were the main determinants of drought responses, with pronounced differences among species. Specifically, we found that (a) higher drought frequency was associated with higher resistance and resilience for N. spruce and E. beech; (b) more favorable climatic conditions in the two preceding and following years increased drought resilience and determined recovery potential of E. beech after extreme drought; (c) a site's nutrient regime, rather than micro-site differences in water availability, determined drought responses, with trees growing on sites with a balanced nutrient regime having a higher capacity to withstand extreme drought stress; (d) E. beech and N. spruce experienced a long-term decline in resilience. Our results indicate that trees under extreme drought stress benefit from a balanced nutrient supply and highlight the relevance of water availability immediately after droughts. Observed long-term trends confirm that N. spruce is suffering from persistent climatic changes, while s. fir is coping better. These findings might be especially relevant for monitoring, scenario analyses, and forest ecosystem management.
Collapse
Affiliation(s)
- Gerhard Schmied
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Torben Hilmers
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Karl-Heinz Mellert
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Enno Uhl
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Vincent Buness
- Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Dominik Ambs
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Mathias Steckel
- Forst Baden-Württemberg (AöR), State Forest Enterprise Baden-Württemberg, Germany
| | - Peter Biber
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Muhidin Šeho
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Yves-Daniel Hoffmann
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Hans Pretzsch
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| |
Collapse
|
7
|
Lewis K, Barros FDV, Moonlight PW, Hill TC, Oliveira RS, Schmidt IB, Sampaio AB, Pennington RT, Rowland L. Identifying hotspots for ecosystem restoration across heterogeneous tropical savannah-dominated regions. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210075. [PMID: 36373925 PMCID: PMC9661949 DOI: 10.1098/rstb.2021.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
There is high potential for ecosystem restoration across tropical savannah-dominated regions, but the benefits that could be gained from this restoration are rarely assessed. This study focuses on the Brazilian Cerrado, a highly species-rich savannah-dominated region, as an exemplar to review potential restoration benefits using three metrics: net biomass gains, plant species richness and ability to connect restored and native vegetation. Localized estimates of the most appropriate restoration vegetation type (grassland, savannah, woodland/forest) for pasturelands are produced. Carbon sequestration potential is significant for savannah and woodland/forest restoration in the seasonally dry tropics (net biomass gains of 58.2 ± 37.7 and 130.0 ± 69.4 Mg ha-1). Modelled restoration species richness gains were highest in the central and south-east of the Cerrado for savannahs and grasslands, and in the west and north-west for woodlands/forests. The potential to initiate restoration projects across the whole of the Cerrado is high and four hotspot areas are identified. We demonstrate that landscape restoration across all vegetation types within heterogeneous tropical savannah-dominated regions can maximize biodiversity and carbon gains. However, conservation of existing vegetation is essential to minimizing the cost and improving the chances of restoration success. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.
Collapse
Affiliation(s)
- Kennedy Lewis
- College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QE, UK
| | - Fernanda de V. Barros
- College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QE, UK
| | - Peter W. Moonlight
- College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QE, UK
- Tropical Diversity Section, Royal Botanic Gardens Edinburgh, Edinburgh EH3 5LR, UK
| | - Timothy C. Hill
- College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QE, UK
| | - Rafael S. Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, CEP 13083-970, Brazil
| | - Isabel B. Schmidt
- Department of Ecology, University of Brasília, Brasília, CEP 70.910-900, Brazil
| | - Alexandre B. Sampaio
- Centro Nacional de Avaliação da Biodiversidade e de Pesquisa e Conservação do Cerrado CBC, Instituto Chico Mendes de Conservação da Biodiversidade – ICMBio, University of Brasília, Brasília, CEP 70.670-350, Brazil
| | - R. Toby Pennington
- College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QE, UK
- Tropical Diversity Section, Royal Botanic Gardens Edinburgh, Edinburgh EH3 5LR, UK
| | - Lucy Rowland
- College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QE, UK
| |
Collapse
|
8
|
Frei ER, Gossner MM, Vitasse Y, Queloz V, Dubach V, Gessler A, Ginzler C, Hagedorn F, Meusburger K, Moor M, Samblás Vives E, Rigling A, Uitentuis I, von Arx G, Wohlgemuth T. European beech dieback after premature leaf senescence during the 2018 drought in northern Switzerland. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1132-1145. [PMID: 36103113 PMCID: PMC10092601 DOI: 10.1111/plb.13467] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
During the particularly severe hot summer drought in 2018, widespread premature leaf senescence was observed in several broadleaved tree species in Central Europe, particularly in European beech (Fagus sylvatica L.). For beech, it is yet unknown whether the drought evoked a decline towards tree mortality or whether trees can recover in the longer term. In this study, we monitored crown dieback, tree mortality and secondary drought damage symptoms in 963 initially live beech trees that exhibited either premature or normal leaf senescence in 2018 in three regions in northern Switzerland from 2018 to 2021. We related the observed damage to multiple climate- and stand-related parameters. Cumulative tree mortality continuously increased up to 7.2% and 1.3% in 2021 for trees with premature and normal leaf senescence in 2018, respectively. Mean crown dieback in surviving trees peaked at 29.2% in 2020 and 8.1% in 2019 for trees with premature and normal leaf senescence, respectively. Thereafter, trees showed first signs of recovery. Crown damage was more pronounced and recovery was slower for trees that showed premature leaf senescence in 2018, for trees growing on drier sites, and for larger trees. The presence of bleeding cankers peaked at 24.6% in 2019 and 10.7% in 2020 for trees with premature and normal leaf senescence, respectively. The presence of bark beetle holes peaked at 22.8% and 14.8% in 2021 for trees with premature and normal leaf senescence, respectively. Both secondary damage symptoms occurred more frequently in trees that had higher proportions of crown dieback and/or showed premature senescence in 2018. Our findings demonstrate context-specific differences in beech mortality and recovery reflecting the importance of regional and local climate and soil conditions. Adapting management to increase forest resilience is gaining importance, given the expected further beech decline on dry sites in northern Switzerland.
Collapse
Affiliation(s)
- E. R. Frei
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- WSL Institute for Snow and Avalanche Research SLFDavos DorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
- Climate Change and Extremes in Alpine Regions Research Centre CERCDavos DorfSwitzerland
| | - M. M. Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
- Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
| | - Y. Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| | - V. Queloz
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| | - V. Dubach
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - A. Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
- Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
| | - C. Ginzler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| | - F. Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| | - K. Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| | - M. Moor
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - E. Samblás Vives
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Autonomous University of Barcelona (UAB)Cerdanyola del VallesSpain
| | - A. Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
- Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
| | - I. Uitentuis
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - G. von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
| | - T. Wohlgemuth
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| |
Collapse
|
9
|
Ribeyre Z, Messier C, Nolet P. No stress memory pattern was detected in sugar maple and white spruce seedlings subjected to experimental droughts. Ecosphere 2022. [DOI: 10.1002/ecs2.4332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Zoé Ribeyre
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Centre d'étude de la Forêt (CEF) University of Québec en Outaouais (UQO) Ripon Quebec Canada
| | - Christian Messier
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Centre d'étude de la Forêt (CEF) University of Québec en Outaouais (UQO) Ripon Quebec Canada
- Département des Sciences Biologiques, Centre d'Étude de la Forêt (CEF) University of Québec à Montréal (UQAM) Montreal Quebec Canada
| | - Philippe Nolet
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Centre d'étude de la Forêt (CEF) University of Québec en Outaouais (UQO) Ripon Quebec Canada
| |
Collapse
|
10
|
Van Passel J, de Keersmaecker W, Bernardino PN, Jing X, Umlauf N, Van Meerbeek K, Somers B. Climatic legacy effects on the drought response of the Amazon rainforest. GLOBAL CHANGE BIOLOGY 2022; 28:5808-5819. [PMID: 35808855 DOI: 10.1111/gcb.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Extreme precipitation and drought events are predicted to become more intense and more frequent over the Amazon rainforest. Because changes in forest dynamics could prompt strong feedback loops to the global climate, it is of crucial importance to gain insight into the response of tropical forests to these recurring extreme climatic events. Here, we evaluated the Amazon forest stability (resistance and resilience) to drought in the context of past dry and wet climatic events using MODIS EVI satellite imagery and cumulative water deficit anomalies. We observed large spatial differences in the occurrence of extreme climatic events from 1980 to 2019, with an increase in drought frequency in the central and northern Amazon and drought intensity in the southern Amazon basin. An increasing trend in the occurrence of wet events was found in the western, southern, and eastern Amazon. Furthermore, we found significant legacy effects of previous climatic events on the forest drought response. An extreme drought closely preceding another drought decreased forest resilience, whereas the occurrence of a recent drier-than-usual event also decreased the forest resistance to later droughts. Both wetter-than-usual and extreme wet events preceding an extreme drought increased the resistance of the forest, and with similar effects sizes as dry events, indicating that wet and dry events have similarly sized legacy effects on the drought response of tropical forests. Our results indicate that the predicted increase in drought frequency and intensity can have negative consequences for the functioning of the Amazon forest. However, more frequent wet periods in combination with these droughts could counteract their negative impact. Finally, we also found that more stable forests according to the alternative stable states theory are also more resistant and resilient to individual droughts, showing a positive relationship between the equilibrium and non-equilibrium stability dynamics.
Collapse
Affiliation(s)
- Johanna Van Passel
- Division of Forest, Nature and Landscape, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - Wanda de Keersmaecker
- Vlaamse Instelling Voor Technologisch Onderzoek (VITO) Research Organisation, Mol, Belgium
| | - Paulo N Bernardino
- Division of Forest, Nature and Landscape, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - Xin Jing
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Nikolaus Umlauf
- Department of Statistics, Faculty of Economics and Statistics, Universität Innsbruck, Innsbruck, Austria
| | - Koenraad Van Meerbeek
- Division of Forest, Nature and Landscape, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - Ben Somers
- Division of Forest, Nature and Landscape, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Müller LM, Bahn M. Drought legacies and ecosystem responses to subsequent drought. GLOBAL CHANGE BIOLOGY 2022; 28:5086-5103. [PMID: 35607942 PMCID: PMC9542112 DOI: 10.1111/gcb.16270] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 05/19/2023]
Abstract
Climate change is expected to increase the frequency and severity of droughts. These events, which can cause significant perturbations of terrestrial ecosystems and potentially long-term impacts on ecosystem structure and functioning after the drought has subsided are often called 'drought legacies'. While the immediate effects of drought on ecosystems have been comparatively well characterized, our broader understanding of drought legacies is just emerging. Drought legacies can relate to all aspects of ecosystem structure and functioning, involving changes at the species and the community scale as well as alterations of soil properties. This has consequences for ecosystem responses to subsequent drought. Here, we synthesize current knowledge on drought legacies and the underlying mechanisms. We highlight the relevance of legacy duration to different ecosystem processes using examples of carbon cycling and community composition. We present hypotheses characterizing how intrinsic (i.e. biotic and abiotic properties and processes) and extrinsic (i.e. drought timing, severity, and frequency) factors could alter resilience trajectories under scenarios of recurrent drought events. We propose ways for improving our understanding of drought legacies and their implications for subsequent drought events, needed to assess the longer-term consequences of droughts on ecosystem structure and functioning.
Collapse
Affiliation(s)
- Lena M. Müller
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - Michael Bahn
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
12
|
Hu Y, Xiang W, Schäfer KVR, Lei P, Deng X, Forrester DI, Fang X, Zeng Y, Ouyang S, Chen L, Peng C. Photosynthetic and hydraulic traits influence forest resistance and resilience to drought stress across different biomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154517. [PMID: 35278541 DOI: 10.1016/j.scitotenv.2022.154517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Drought events lead to depressions in gross primary productivity (GPP) of forest ecosystems. Photosynthetic and hydraulic traits are important factors governing GPP variation. However, how these functional traits affect GPP responses to drought has not been well understood. We quantified the capacity of GPP to withstand changes during droughts (GPP_resistance) and its post-drought responses (GPP_resilience) using eddy covariance data from the FLUXNET2015 dataset, and investigated how functional traits of dominant tree species that comprised >80% of the biomass (or composition) influenced GPP_resistance or GPP_resilience. Light-saturated photosynthetic rate of dominant tree species was negatively related to GPP_resistance, and was positively correlated with GPP_resilience. Forests dominated by species with higher hydraulic safety margins (HSM), smaller vessel diameter (Vdia) and lower sensitivity of canopy stomatal conductance per unit land area (Gs) to droughts had a higher GPP_resistance, while those dominated by species with lower HSM, larger Vdia and higher sensitivity of Gs to droughts exhibited a higher GPP_resilience. Differences in functional traits of forests located in diverse climate regions led to distinct GPP sensitivities to droughts. Forests located in humid regions had a higher GPP_resilience while those in arid regions exhibited a higher GPP_resistance. Forest GPP_resistance was negatively related to drought intensity, and GPP_resilience was negatively related to drought duration. Our findings highlight the significant role of functional traits in governing forest resistance and resilience to droughts. Overall, forests dominated by species with higher hydraulic safety were more resistant to droughts, while forests containing species with higher photosynthetic and hydraulic efficiency recovered better from drought stress.
Collapse
Affiliation(s)
- Yanting Hu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Wenhua Xiang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China.
| | - Karina V R Schäfer
- Department of Earth and Environmental Sciences, Rutgers University, 195 University Avenue, Newark 07102, NJ, USA
| | - Pifeng Lei
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Xiangwen Deng
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - David I Forrester
- Swiss Federal Institute of Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Xi Fang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Yelin Zeng
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Shuai Ouyang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Changhui Peng
- Department of Biological Sciences, Institute of Environment Sciences, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
13
|
Singh A, Baker PJ, Kasel S, Trouvé R, Stewart SB, Nitschke CR. The role of climatic variability on Eucalyptus regeneration in southeastern Australia. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Asbjornsen H, McIntire CD, Vadeboncoeur MA, Jennings KA, Coble AP, Berry ZC. Sensitivity and threshold dynamics of Pinus strobus and Quercus spp. in response to experimental and naturally occurring severe droughts. TREE PHYSIOLOGY 2021; 41:1819-1835. [PMID: 33904579 DOI: 10.1093/treephys/tpab056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Increased drought frequency and severity are a pervasive global threat, yet the capacity of mesic temperate forests to maintain resilience in response to drought remains poorly understood. We deployed a throughfall removal experiment to simulate a once in a century drought in New Hampshire, USA, which coupled with the region-wide 2016 drought, intensified moisture stress beyond that experienced in the lifetimes of our study trees. To assess the sensitivity and threshold dynamics of two dominant northeastern tree genera (Quercus and Pinus), we monitored sap flux density (Js), leaf water potential and gas exchange, growth and intrinsic water-use efficiency (iWUE) for one pretreatment year (2015) and two treatment years (2016-17). Results showed that Js in pine (Pinus strobus L.) declined abruptly at a soil moisture threshold of 0.15 m3 m-3, whereas oak's (Quercus rubra L. and Quercus velutina Lam.) threshold was 0.11 m3 m-3-a finding consistent with pine's more isohydric strategy. Nevertheless, once oaks' moisture threshold was surpassed, Js declined abruptly, suggesting that while oaks are well adapted to moderate drought, they are highly susceptible to extreme drought. The radial growth reduction in response to the 2016 drought was more than twice as great for pine as for oaks (50 vs 18%, respectively). Despite relatively high precipitation in 2017, the oaks' growth continued to decline (low recovery), whereas pine showed neutral (treatment) or improved (control) growth. The iWUE increased in 2016 for both treatment and control pines, but only in treatment oaks. Notably, pines exhibited a significant linear relationship between iWUE and precipitation across years, whereas the oaks only showed a response during the driest conditions, further underscoring the different sensitivity thresholds for these species. Our results provide new insights into how interactions between temperate forest tree species' contrasting physiologies and soil moisture thresholds influence their responses and resilience to extreme drought.
Collapse
Affiliation(s)
- Heidi Asbjornsen
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Earth Systems Research Center, University of New Hampshire, 8 College Rd, Durham, NH 03824, USA
| | - Cameron D McIntire
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- State and Private Forestry, USDA Forest Service, 271 Mast Road, Durham, NH 03824, USA
| | - Matthew A Vadeboncoeur
- Earth Systems Research Center, University of New Hampshire, 8 College Rd, Durham, NH 03824, USA
| | - Katie A Jennings
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Earth Systems Research Center, University of New Hampshire, 8 College Rd, Durham, NH 03824, USA
| | - Adam P Coble
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Private Forests Division, Oregon Department of Forestry, 2600 State St, Salem, OR 97310, USA
| | - Z Carter Berry
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
15
|
Liu Q, Peng C, Schneider R, Cyr D, Liu Z, Zhou X, Kneeshaw D. TRIPLEX-Mortality model for simulating drought-induced tree mortality in boreal forests: Model development and evaluation. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Seifarth J, Inamine H, Buckling A, Shea K. Duration and timing interactions of early‐life stress and the potential for recovery. Ecosphere 2021. [DOI: 10.1002/ecs2.3620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jack Seifarth
- Department of Biology The Pennsylvania State University University Park Pennsylvania16801USA
| | - Hidetoshi Inamine
- Department of Biology The Pennsylvania State University University Park Pennsylvania16801USA
| | - Angus Buckling
- Department of Biosciences University of Exeter Penryn Campus PenrynTR10 9FEUK
| | - Katriona Shea
- Department of Biology The Pennsylvania State University University Park Pennsylvania16801USA
| |
Collapse
|
17
|
Ahrens CW, Rymer PD, Tissue DT. Intra-specific trait variation remains hidden in the environment. THE NEW PHYTOLOGIST 2021; 229:1183-1185. [PMID: 33105042 DOI: 10.1111/nph.16959] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Collin W Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|
18
|
Gessler A, Bottero A, Marshall J, Arend M. The way back: recovery of trees from drought and its implication for acclimation. THE NEW PHYTOLOGIST 2020; 228:1704-1709. [PMID: 32452535 DOI: 10.1111/nph.16703] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitätsstrasse 16, Zurich, 8092, Switzerland
- SwissForestLab, Birmensdorf, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Alessandra Bottero
- Forest Dynamics, Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
- SwissForestLab, Birmensdorf, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - John Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogens ekologi och skötsel, Umeå, 901 83, Sweden
| | - Matthias Arend
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, Basel, 4056, Switzerland
| |
Collapse
|
19
|
Nikinmaa L, Lindner M, Cantarello E, Jump AS, Seidl R, Winkel G, Muys B. Reviewing the Use of Resilience Concepts in Forest Sciences. CURRENT FORESTRY REPORTS 2020; 6:61-80. [PMID: 35747899 PMCID: PMC7612878 DOI: 10.1007/s40725-020-00110-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
PURPOSE OF REVIEW Resilience is a key concept to deal with an uncertain future in forestry. In recent years, it has received increasing attention from both research and practice. However, a common understanding of what resilience means in a forestry context and how to operationalise it is lacking. Here, we conducted a systematic review of the recent forest science literature on resilience in the forestry context, synthesizing how resilience is defined and assessed. RECENT FINDINGS Based on a detailed review of 255 studies, we analysed how the concepts of engineering resilience, ecological resilience and social-ecological resilience are used in forest sciences. A clear majority of the studies applied the concept of engineering resilience, quantifying resilience as the recovery time after a disturbance. The two most used indicators for engineering resilience were basal area increment and vegetation cover, whereas ecological resilience studies frequently focus on vegetation cover and tree density. In contrast, important social-ecological resilience indicators used in the literature are socioeconomic diversity and stock of natural resources. In the context of global change, we expected an increase in studies adopting the more holistic social-ecological resilience concept, but this was not the observed trend. SUMMARY Our analysis points to the nestedness of these three resilience concepts, suggesting that they are complementary rather than contradictory. It also means that the variety of resilience approaches does not need to be an obstacle for operationalisation of the concept. We provide guidance for choosing the most suitable resilience concept and indicators based on the management, disturbance and application context.
Collapse
Affiliation(s)
- L. Nikinmaa
- European Forest Institute, Platz der Vereinten Nationen 7, 53113 Bonn, Germany
- Division of Forest, Nature and Landscape, KU Leuven, Celestijnenlaan 200E, Box 2411, 3001 Leuven, Belgium
| | - M. Lindner
- European Forest Institute, Platz der Vereinten Nationen 7, 53113 Bonn, Germany
| | - E. Cantarello
- Department of Life and Environmental Sciences, Bournemouth University, Poole BH12 5BB, UK
| | - A. S. Jump
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - R. Seidl
- Institute of Silviculture, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences in Vienna, Peter Jordan Str. 82, 1190 Vienna, Austria
- Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - G. Winkel
- European Forest Institute, Platz der Vereinten Nationen 7, 53113 Bonn, Germany
| | - B. Muys
- Division of Forest, Nature and Landscape, KU Leuven, Celestijnenlaan 200E, Box 2411, 3001 Leuven, Belgium
| |
Collapse
|
20
|
DeSoto L, Cailleret M, Sterck F, Jansen S, Kramer K, Robert EMR, Aakala T, Amoroso MM, Bigler C, Camarero JJ, Čufar K, Gea-Izquierdo G, Gillner S, Haavik LJ, Hereş AM, Kane JM, Kharuk VI, Kitzberger T, Klein T, Levanič T, Linares JC, Mäkinen H, Oberhuber W, Papadopoulos A, Rohner B, Sangüesa-Barreda G, Stojanovic DB, Suárez ML, Villalba R, Martínez-Vilalta J. Low growth resilience to drought is related to future mortality risk in trees. Nat Commun 2020; 11:545. [PMID: 31992718 PMCID: PMC6987235 DOI: 10.1038/s41467-020-14300-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/05/2019] [Indexed: 11/23/2022] Open
Abstract
Severe droughts have the potential to reduce forest productivity and trigger tree mortality. Most trees face several drought events during their life and therefore resilience to dry conditions may be crucial to long-term survival. We assessed how growth resilience to severe droughts, including its components resistance and recovery, is related to the ability to survive future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites (22 species, >3,500 trees). We found that, across the variety of regions and species sampled, trees that died during water shortages were less resilient to previous non-lethal droughts, relative to coexisting surviving trees of the same species. In angiosperms, drought-related mortality risk is associated with lower resistance (low capacity to reduce impact of the initial drought), while it is related to reduced recovery (low capacity to attain pre-drought growth rates) in gymnosperms. The different resilience strategies in these two taxonomic groups open new avenues to improve our understanding and prediction of drought-induced mortality.
Collapse
Affiliation(s)
- Lucía DeSoto
- Estación Experimental de Zonas Áridas, Spanish National Research Council (EEZA-CSIC), Almería, Spain.
- Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal.
| | - Maxime Cailleret
- INRAE, Université Aix-Marseille, UMR Recover, Aix-en-Provence, France
- Forest Ecology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Koen Kramer
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
- Land Life Company, Amsterdam, Netherlands
| | - Elisabeth M R Robert
- CREAF, Bellaterrra (Cerdanyola del Vallès), Catalonia, Spain
- Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Wood Biology and Xylarium, Royal Museum for Central Africa (RMCA), Tervuren, Belgium
| | - Tuomas Aakala
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Mariano M Amoroso
- Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural (IRNAD), Universidad Nacional de Río Negro, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Negro, Argentina
| | - Christof Bigler
- Forest Ecology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - J Julio Camarero
- Instituto Pirenaico de Ecología, Spanish National Research Council (IPE-CSIC), Zaragoza, Spain
| | - Katarina Čufar
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Guillermo Gea-Izquierdo
- Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Sten Gillner
- Institute of Forest Botany and Forest Zoology, TU Dresden, Dresden, Germany
| | | | - Ana-Maria Hereş
- Department of Forest Sciences, Transilvania University of Brasov, Brasov, Romania
- BC3 - Basque Centre for Climate Change, Leioa, Spain
| | - Jeffrey M Kane
- Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA, USA
| | - Vyacheslav I Kharuk
- Sukachev Institute of Forest, Siberian Division of the Russian Academy of Sciences (RAS), Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk, Russia
| | - Thomas Kitzberger
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBOMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bariloche, Argentina
- Department of Ecology, Universidad Nacional del Comahue, Río Negro, Argentina
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Levanič
- Department of Yield and Silviculture, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Juan C Linares
- Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, Seville, Spain
| | - Harri Mäkinen
- Natural Resources Institute Finland (Luke), Espoo, Finland
| | - Walter Oberhuber
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | | | - Brigitte Rohner
- Forest Ecology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | | | - Dejan B Stojanovic
- Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
| | - Maria Laura Suárez
- Grupo Ecología Forestal, CONICET - INTA, EEA Bariloche, Bariloche, Argentina
| | - Ricardo Villalba
- Instituto Argentino de Nivología Glaciología y Ciencias Ambientales (IANIGLA-CONICET), Mendoza, Argentina
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterrra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterrra (Cerdanyola del Vallès), Catalonia, Spain
| |
Collapse
|
21
|
Blackman CJ, Creek D, Maier C, Aspinwall MJ, Drake JE, Pfautsch S, O'Grady A, Delzon S, Medlyn BE, Tissue DT, Choat B. Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure. TREE PHYSIOLOGY 2019; 39:910-924. [PMID: 30865274 DOI: 10.1093/treephys/tpz016] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/01/2019] [Indexed: 05/17/2023]
Abstract
Drought-induced tree mortality alters forest structure and function, yet our ability to predict when and how different species die during drought remains limited. Here, we explore how stomatal control and drought tolerance traits influence the duration of drought stress leading to critical levels of hydraulic failure. We examined the growth and physiological responses of four woody plant species (three angiosperms and one conifer) representing a range of water-use and drought tolerance traits over the course of two controlled drought-recovery cycles followed by an extended dry-down. At the end of the final dry-down phase, we measured changes in biomass ratios and leaf carbohydrates. During the first and second drought phases, plants of all species closed their stomata in response to decreasing water potential, but only the conifer species avoided water potentials associated with xylem embolism as a result of early stomatal closure relative to thresholds of hydraulic dysfunction. The time it took plants to reach critical levels of water stress during the final dry-down was similar among the angiosperms (ranging from 39 to 57 days to stemP88) and longer in the conifer (156 days to stemP50). Plant dry-down time was influenced by a number of factors including species stomatal-hydraulic safety margin (gsP90 - stemP50), as well as leaf succulence and minimum stomatal conductance. Leaf carbohydrate reserves (starch) were not depleted at the end of the final dry-down in any species, irrespective of the duration of drought. These findings highlight the need to consider multiple structural and functional traits when predicting the timing of hydraulic failure in plants.
Collapse
Affiliation(s)
- Chris J Blackman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Danielle Creek
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Chelsea Maier
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Michael J Aspinwall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL, USA
| | - John E Drake
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
- Forest and Natural Resources Management, SUNY-ESF, 1 Forestry Drive, Syracuse, NY, USA
| | - Sebastian Pfautsch
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
- School of Social Science and Psychology (Urban Studies), Western Sydney University, Locked Bag 1797, Penrith, NSW, Australia
| | | | | | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| |
Collapse
|
22
|
Brodersen CR, Roddy AB, Wason JW, McElrone AJ. Functional Status of Xylem Through Time. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:407-433. [PMID: 30822114 DOI: 10.1146/annurev-arplant-050718-100455] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Water transport in vascular plants represents a critical component of terrestrial water cycles and supplies the water needed for the exchange of CO2 in the atmosphere for photosynthesis. Yet, many fundamental principles of water transport are difficult to assess given the scale and location of plant xylem. Here we review the mechanistic principles that underpin long-distance water transport in vascular plants, with a focus on woody species. We also discuss the recent development of noninvasive tools to study the functional status of xylem networks in planta. Limitations of current methods to detect drought-induced xylem blockages (e.g., embolisms) and quantify corresponding declines in sap flow, and the coordination of hydraulic dysfunction with other physiological processes are assessed. Future avenues of research focused on cross-validation of plant hydraulics methods are discussed, as well as a proposed fundamental shift in the theory and methodology used to characterize and measure plant water use.
Collapse
Affiliation(s)
- Craig R Brodersen
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06511, USA;
| | - Adam B Roddy
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06511, USA;
| | - Jay W Wason
- School of Forest Resources, University of Maine, Orono, Maine 04469, USA
| | - Andrew J McElrone
- US Department of Agriculture, Agricultural Research Service, Davis, California 95616, USA
- Department of Viticulture and Enology, University of California, Davis, California 95616, USA
| |
Collapse
|
23
|
Nolan RH, Sinclair J, Waters CM, Mitchell PJ, Eldridge DJ, Paul KI, Roxburgh S, Butler DW, Ramp D. Risks to carbon dynamics in semi-arid woodlands of eastern Australia under current and future climates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 235:500-510. [PMID: 30711835 DOI: 10.1016/j.jenvman.2019.01.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/17/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Extreme disturbance events, such as wildfire and drought, have large impacts on carbon storage and sequestration of forests and woodlands globally. Here, we present a modelling approach that assesses the relative impact of disturbances on carbon storage and sequestration, and how this will alter under climate change. Our case study is semi-arid Australia where large areas of land are managed to offset over 122 million tonnes of anthropogenic carbon emissions over a 100-year period. These carbon offsets include mature vegetation that has been protected from clearing and regenerating vegetation on degraded agricultural land. We use a Bayesian Network model to combine multiple probabilistic models of the risk posed by fire, drought, grazing and recruitment failure to carbon dynamics. The model is parameterised from a review of relevant literature and additional quantitative analyses presented here. We found that the risk of vegetation becoming a net source of carbon due to a mortality event, or failing to realise maximum sequestration potential, through recruitment failure in regenerating vegetation, was primarily a function of rainfall in this semi-arid environment. However, the relative size of an emissions event varied across vegetation communities depending on plant attributes, specifically resprouting capacity. Modelled climate change effects were variable, depending on the climate change projection used. Under 'best-case' or 'most-likely' climate scenarios for 2050, similar or increased projections of mean annual precipitation, associated with a build-up of fuel, were expected to drive an increase in fire activity (a 40-160% increase), but a decrease in drought (a 20-35% decrease). Under a 'worst-case' climate scenario, fire activity was expected to decline (a 37% decrease), but drought conditions remain similar (a 5% decrease). These projected changes to the frequency of drought and fire increase the risk that vegetation used for carbon offsetting will fail to provide anticipated amounts of carbon abatement over their lifetime.
Collapse
Affiliation(s)
- Rachael H Nolan
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Jennifer Sinclair
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia; GreenCollar, The Rocks, Sydney, NSW, 2000, Australia
| | - Cathleen M Waters
- New South Wales Department of Primary Industries, Climate Research, Orange, New South Wales, 2800, Australia
| | | | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW, 2052, Australia
| | - Keryn I Paul
- CSIRO Land and Water Flagship, Canberra, Australian Capital Territory, 2601, Australia
| | - Stephen Roxburgh
- CSIRO Land and Water Flagship, Canberra, Australian Capital Territory, 2601, Australia
| | - Don W Butler
- Queensland Herbarium, Toowong, Queensland, 4066, Australia
| | - Daniel Ramp
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
24
|
Hogan JA, McMahon SM, Buzzard V, Michaletz ST, Enquist BJ, Thompson J, Swenson NG, Zimmerman JK. Drought and the interannual variability of stem growth in an aseasonal, everwet forest. Biotropica 2019. [DOI: 10.1111/btp.12624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- J. Aaron Hogan
- Department of Biological Sciences Department of Biological Sciences International Center for Tropical Botany Florida International University Miami Florida
- Department of Environmental Sciences University of Puerto Rico – Río Piedras San Juan Puerto Rico
| | - Sean M. McMahon
- Smithsonian Environmental Research Center Edgewater Maryland
| | - Vanessa Buzzard
- Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona
| | - Sean T. Michaletz
- Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona
- Biosphere 2 University of Arizona Tucson Arizona
- Department of Botany and Biodiversity Research Centre University of British Columbia Vancouver British Columbia Canada
| | - Brian J. Enquist
- Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona
| | - Jill Thompson
- Centre for Ecology & Hydrology Penicuik Midlothian UK
| | - Nathan G. Swenson
- Department of Ecology and Evolutionary Biology University of Maryland College Park Maryland
| | - Jess K. Zimmerman
- Department of Environmental Sciences University of Puerto Rico – Río Piedras San Juan Puerto Rico
| |
Collapse
|
25
|
Extending the osmometer method for assessing drought tolerance in herbaceous species. Oecologia 2019; 189:353-363. [PMID: 30627784 DOI: 10.1007/s00442-019-04336-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
Abstract
Community-scale surveys of plant drought tolerance are essential for understanding semi-arid ecosystems and community responses to climate change. Thus, there is a need for an accurate and rapid methodology for assessing drought tolerance strategies across plant functional types. The osmometer method for predicting leaf osmotic potential at full turgor (πo), a key metric of leaf-level drought tolerance, has resulted in a 50-fold increase in the measurement speed of this trait; however, the applicability of this method has only been tested in woody species and crops. Here, we assess the osmometer method for use in herbaceous grassland species and test whether πo is an appropriate plant trait for understanding drought strategies of herbaceous species as well as species distributions along climate gradients. Our model for predicting leaf turgor loss point (πTLP) from πo (πTLP = 0.80πo-0.845) is nearly identical to the model previously presented for woody species. Additionally, πo was highly correlated with πTLP for graminoid species (πtlp = 0.944πo-0.611; r2 = 0.96), a plant functional group previously flagged for having the potential to cause erroneous measurements when using an osmometer. We report that πo, measured with an osmometer, is well correlated with other traits linked to drought tolerance (namely, leaf dry matter content and leaf vulnerability to hydraulic failure) as well as climate extremes linked to water availability. The validation of the osmometer method in an herb-dominated ecosystem paves the way for rapid community-scale surveys of drought tolerance across plant functional groups, which could improve trait-based predictions of ecosystem responses to climate change.
Collapse
|
26
|
Creek D, Blackman CJ, Brodribb TJ, Choat B, Tissue DT. Coordination between leaf, stem, and root hydraulics and gas exchange in three arid-zone angiosperms during severe drought and recovery. PLANT, CELL & ENVIRONMENT 2018; 41:2869-2881. [PMID: 30106477 DOI: 10.1111/pce.13418] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/30/2018] [Indexed: 05/13/2023]
Abstract
The ability to resist hydraulic dysfunction in leaves, stems, and roots strongly influences whether plants survive and recover from drought. However, the coordination of hydraulic function among different organs within species and their links to gas exchange during drought and recovery remains understudied. Here, we examine the interaction between gas exchange and hydraulic function in the leaves, stems, and roots of three semiarid evergreen species exposed to a cycle of severe water stress (associated with substantial cavitation) and recovery. In all species, stomatal closure occurred at water potentials well before 50% loss of stem hydraulic conductance, while in two species, leaves and/or roots were more vulnerable than stems. Following soil rewetting, leaf-level photosynthesis (Anet ) returned to prestress levels within 2-4 weeks, whereas stomatal conductance and canopy transpiration were slower to recover. The recovery of Anet was decoupled from the recovery of leaf, stem, and root hydraulics, which remained impaired throughout the recovery period. Our results suggest that in addition to high embolism resistance, early stomatal closure and hydraulic vulnerability segmentation confers drought tolerance in these arid zone species. The lack of substantial embolism refilling within all major organs suggests that vulnerability of the vascular system to drought-induced dysfunction is a defining trait for predicting postdrought recovery.
Collapse
Affiliation(s)
- Danielle Creek
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, Australia
| | - Chris J Blackman
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, Australia
| | - Timothy J Brodribb
- School of Biological Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, Australia
| |
Collapse
|
27
|
O'Brien MJ, Peréz-Aviles D, Powers JS. Resilience of seed production to a severe El Niño-induced drought across functional groups and dispersal types. GLOBAL CHANGE BIOLOGY 2018; 24:5270-5280. [PMID: 30080318 DOI: 10.1111/gcb.14416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/13/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
More frequent and severe El Niño Southern Oscillations (ENSO) are causing episodic periods of decreased rainfall. Although the effects of these ENSO-induced droughts on tree growth and mortality have been well studied, the impacts on other demographic rates such as reproduction are less well known. We use a four-year seed rain dataset encompassing the most severe ENSO-induced drought in more than 30 years to assess the resilience (i.e., resistance and recovery) of the seed composition and abundance of three forest types in a tropical dry forest. We found that forest types showed distinct differences in the timing, duration, and intensity of drought during the ENSO event, which likely mediated seed composition shifts and resilience. Drought-deciduous species were particularly sensitive to the drought with overall poor resilience of seed production, whereby seed abundance of this functional group failed to recover to predrought levels even two years after the drought. Liana and wind-dispersed species were able to maintain seed production both during and after drought, suggesting that ENSO events promote early successional species or species with a colonization strategy. Combined, these results suggest that ENSO-induced drought mediates the establishment of functional groups and dispersal types suited for early successional conditions with more open canopies and reduced competition among plants. The effects of the ENSO-induced drought on seed composition and abundance were still evident two years after the event suggesting the recovery of seed production requires multiple years that may lead to shifts in forest composition and structure in the long term, with potential consequences for higher trophic levels like frugivores.
Collapse
Affiliation(s)
- Michael J O'Brien
- Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich, Switzerland
- URPP Global Change and Biodiversity, University of Zurich, Zurich, Switzerland
| | - Daniel Peréz-Aviles
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota
| | - Jennifer S Powers
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
28
|
Gao S, Liu R, Zhou T, Fang W, Yi C, Lu R, Zhao X, Luo H. Dynamic responses of tree-ring growth to multiple dimensions of drought. GLOBAL CHANGE BIOLOGY 2018; 24:5380-5390. [PMID: 29963735 DOI: 10.1111/gcb.14367] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/07/2018] [Indexed: 05/25/2023]
Abstract
Droughts, which are characterized by multiple dimensions including frequency, duration, severity, and onset timing, can impact tree stem radial growth profoundly. Different dimensions of drought influence tree stem radial growth independently or jointly, which makes the development of accurate predictions a formidable challenge. Measurement-based tree-ring data have obvious advantages for studying the drought responses of trees. Here, we explored the use of abundant tree-ring records for quantifying regional response patterns to key dimensions of drought. Specifically, we designed a series of regional-scaled "natural experiments," based on 357 tree-ring chronologies from Southwest USA and location-matched monthly water balance anomalies, to reveal how tree-ring responds to each dimension of drought. Our results showed that tree-ring was affected significantly more by the water balance condition in the current hydrological year than that in the prior hydrological year. Within the current hydrological year, increased drought frequency (number of dry months) and duration (maximum number of consecutive dry months) resulted in "cumulative effects" which amplified the impacts of drought on trees and reduced the drought resistance of trees. Drought events that occurred in the pregrowing seasons strongly affected subsequent tree stem radial growth. Both the onset timing and severity of drought increased "legacy effects" on tree stem radial growth, which reduced the drought resilience of trees. These results indicated that the drought impact on trees is a dynamic process: even when the total water deficits are the same, differences among the drought processes could lead to considerably different responses from trees. This study thus provides a conceptual framework and probabilistic patterns of tree-ring growth response to multiple dimensions of drought regimes, which in turn may have a wide range of implications for predictions, uncertainty assessment, and forest management.
Collapse
Affiliation(s)
- Shan Gao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing, China
- School of Earth and Environmental Sciences, Queens College, City University of New York, Queens, New York
| | - Ruishun Liu
- College of Resources and Environment, Northwest A&F University, Yangling, China
| | - Tao Zhou
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing, China
| | - Wei Fang
- School of Earth and Environmental Sciences, Queens College, City University of New York, Queens, New York
| | - Chuixiang Yi
- School of Earth and Environmental Sciences, Queens College, City University of New York, Queens, New York
- Earth and Environmental Sciences Department, the Graduate Center of the City University of New York, New York City, New York
| | - Ruijie Lu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Xiang Zhao
- State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing, China
| | - Hui Luo
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing, China
| |
Collapse
|
29
|
Asbjornsen H, Campbell JL, Jennings KA, Vadeboncoeur MA, McIntire C, Templer PH, Phillips RP, Bauerle TL, Dietze MC, Frey SD, Groffman PM, Guerrieri R, Hanson PJ, Kelsey EP, Knapp AK, McDowell NG, Meir P, Novick KA, Ollinger SV, Pockman WT, Schaberg PG, Wullschleger SD, Smith MD, Rustad LE. Guidelines and considerations for designing field experiments simulating precipitation extremes in forest ecosystems. Methods Ecol Evol 2018. [DOI: 10.1111/2041-210x.13094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Heidi Asbjornsen
- Department of Natural Resources and the EnvironmentUniversity of New Hampshire Durham New Hampshire
- Earth Systems Research CenterInstitute for Earth, Oceans, and SpaceUniversity of New Hampshire Durham New Hampshire
| | - John L. Campbell
- Northern Research StationUSDA Forest Service Durham New Hampshire
| | - Katie A. Jennings
- Department of Natural Resources and the EnvironmentUniversity of New Hampshire Durham New Hampshire
- Earth Systems Research CenterInstitute for Earth, Oceans, and SpaceUniversity of New Hampshire Durham New Hampshire
| | - Matthew A. Vadeboncoeur
- Earth Systems Research CenterInstitute for Earth, Oceans, and SpaceUniversity of New Hampshire Durham New Hampshire
| | - Cameron McIntire
- Department of Natural Resources and the EnvironmentUniversity of New Hampshire Durham New Hampshire
| | | | | | - Taryn L. Bauerle
- School of Integrative Plant ScienceCornell University Ithaca New York
| | - Michael C. Dietze
- Department of Earth and EnvironmentBoston University Boston Massachusetts
| | - Serita D. Frey
- Department of Natural Resources and the EnvironmentUniversity of New Hampshire Durham New Hampshire
| | - Peter M. Groffman
- Department of Earth and Environmental SciencesAdvanced Science Research Center at the Graduate Center of the City University of New York and Brooklyn College New York New York
| | - Rosella Guerrieri
- Centre for Ecological Research and Forestry Applications (CREAF)Universidad Autonoma de Barcelona Barcelona Spain
| | - Paul J. Hanson
- Environmental Sciences DivisionOak Ridge National Laboratory Oak Ridge Tennessee
| | - Eric P. Kelsey
- Department of Atmospheric Science and ChemistryPlymouth State University Plymouth New Hampshire
- Mount Washington Observatory North Conway New Hampshire
| | - Alan K. Knapp
- Department of Biology and Graduate Degree Program in EcologyColorado State University Fort Collins Colorado
| | | | - Patrick Meir
- Research School of BiologyAustralian National University Canberra ACT Australia
- School of GeosciencesUniversity of Edinburgh Edinburgh UK
| | - Kimberly A. Novick
- School of Public and Environmental AffairsIndiana University Bloomington Indiana
| | - Scott V. Ollinger
- Department of Natural Resources and the EnvironmentUniversity of New Hampshire Durham New Hampshire
| | - Will T. Pockman
- Department of BiologyUniversity of New Mexico Albuquerque New Mexico
| | | | - Stan D. Wullschleger
- Environmental Sciences DivisionOak Ridge National Laboratory Oak Ridge Tennessee
| | - Melinda D. Smith
- Department of Biology and Graduate Degree Program in EcologyColorado State University Fort Collins Colorado
| | | |
Collapse
|
30
|
O'Brien MJ, Pugnaire FI, Rodríguez-Echeverría S, Morillo JA, Martín-Usero F, López-Escoriza A, Aránega DJ, Armas C. Mimicking a rainfall gradient to test the role of soil microbiota for mediating plant responses to drier conditions. OIKOS 2018. [DOI: 10.1111/oik.05443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Michael J. O'Brien
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Carretera de Sacramento s/n, ES-04120 La Cañada; Almería Spain
- URPP Global Change and Biodiversity, Univ. of Zurich; Zurich Switzerland
| | - Francisco I. Pugnaire
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Carretera de Sacramento s/n, ES-04120 La Cañada; Almería Spain
| | | | - José A. Morillo
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Carretera de Sacramento s/n, ES-04120 La Cañada; Almería Spain
| | - Francisco Martín-Usero
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Carretera de Sacramento s/n, ES-04120 La Cañada; Almería Spain
| | - Almudena López-Escoriza
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Carretera de Sacramento s/n, ES-04120 La Cañada; Almería Spain
| | - Diego J. Aránega
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Carretera de Sacramento s/n, ES-04120 La Cañada; Almería Spain
| | - Cristina Armas
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Carretera de Sacramento s/n, ES-04120 La Cañada; Almería Spain
| |
Collapse
|
31
|
Duan H, Chaszar B, Lewis JD, Smith RA, Huxman TE, Tissue DT. CO2 and temperature effects on morphological and physiological traits affecting risk of drought-induced mortality. TREE PHYSIOLOGY 2018; 38:1138-1151. [PMID: 29701843 DOI: 10.1093/treephys/tpy037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Despite a wealth of eco-physiological assessments of plant response to extreme drought, few studies have addressed the interactive effects of global change factors on traits driving mortality. To understand the interaction between hydraulic and carbon metabolic traits influencing tree mortality, which may be independently influenced by atmospheric [CO2] and temperature, we grew Eucalyptus sideroxylon A. Cunn. ex Woolls from seed in a full-factorial [CO2] (280, 400 and 640 μmol mol-1, Cp, Ca and Ce, respectively) and temperature (ambient and ambient +4 °C, Ta and Te, respectively) experiment. Prior to drought, growth across treatment combinations resulted in significant variation in physiological and morphological traits, including photosynthesis (Asat), respiration (Rd), stomatal conductance, carbohydrate storage, biomass and leaf area (LA). Ce increased Asat, LA and leaf carbohydrate concentration compared with Ca, while Cp generated the opposite response; Te reduced Rd. However, upon imposition of drought, Te hastened mortality (9 days sooner compared with Ta), while Ce significantly exacerbated drought stress when combined with Te. Across treatments, earlier time-to-mortality was mainly associated with lower (more negative) leaf water potential (Ψl) during the initial drought phase, along with higher water loss across the first 3 weeks of water limitation. Among many variables, Ψl was more important than carbon status in predicting time-to-mortality across treatments, yet leaf starch was associated with residual variation within treatments. These results highlight the need to carefully consider the integration, interaction and hierarchy of traits contributing to mortality, along with their responses to environmental drivers. Both morphological traits, which influence soil resource extraction, and physiological traits, which affect water-for-carbon exchange to the atmosphere, must be considered to adequately predict plant response to drought. Researchers have struggled with assessing the relative importance of hydraulic and carbon metabolic traits in determining mortality, yet an integrated trait, time-dependent framework provides considerable insight into the risk of death from drought for trees.
Collapse
Affiliation(s)
- Honglang Duan
- Hawkesbury Institute for the Environment, Hawkesbury Campus, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Brian Chaszar
- Hawkesbury Institute for the Environment, Hawkesbury Campus, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - James D Lewis
- Hawkesbury Institute for the Environment, Hawkesbury Campus, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
- Louis Calder Center - Biological Field Station and Department of Biological Sciences, Fordham University, Armonk, NY, USA
| | - Renee A Smith
- Hawkesbury Institute for the Environment, Hawkesbury Campus, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Travis E Huxman
- School of Biological Sciences, University of California, Irvine, CA, USA
| | - David T Tissue
- Hawkesbury Institute for the Environment, Hawkesbury Campus, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| |
Collapse
|
32
|
Li X, Blackman CJ, Rymer PD, Quintans D, Duursma RA, Choat B, Medlyn BE, Tissue DT. Xylem embolism measured retrospectively is linked to canopy dieback in natural populations of Eucalyptus piperita following drought. TREE PHYSIOLOGY 2018; 38:1193-1199. [PMID: 29757423 DOI: 10.1093/treephys/tpy052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Manipulative experiments have suggested that embolism-induced hydraulic impairment underpins widespread tree mortality during extreme drought, yet in situ evidence is rare. One month after drought-induced leaf and branch dieback was observed in field populations of Eucalyptus piperita Sm. in the Blue Mountains (Australia), we measured the level of native stem embolism and characterized the extent of leaf death in co-occurring dieback and healthy (non-dieback) trees. We found that canopy dieback-affected trees showed significantly higher levels of native embolism (26%) in tertiary order branchlets than healthy trees (11%). Furthermore, there was a significant positive correlation (R2 = 0.51) between the level of leaf death and the level of native embolism recorded in branchlets from dieback-affected trees. This retrospective study suggests that hydraulic failure was the primary mechanism of leaf and branch dieback in response to a natural drought event in the field. It also suggests that post-drought embolism refilling is minimal or absent in this species of eucalypt.
Collapse
Affiliation(s)
- Ximeng Li
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Chris J Blackman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Desi Quintans
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Remko A Duursma
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| |
Collapse
|
33
|
Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE. Triggers of tree mortality under drought. Nature 2018; 558:531-539. [DOI: 10.1038/s41586-018-0240-x] [Citation(s) in RCA: 647] [Impact Index Per Article: 92.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
|
34
|
Nolan RH, Sinclair J, Eldridge DJ, Ramp D. Biophysical risks to carbon sequestration and storage in Australian drylands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 208:102-111. [PMID: 29248786 DOI: 10.1016/j.jenvman.2017.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
Carbon abatement schemes that reduce land clearing and promote revegetation are now an important component of climate change policy globally. There is considerable potential for these schemes to operate in drylands which are spatially extensive. However, projects in these environments risk failure through unplanned release of stored carbon to the atmosphere. In this review, we identify factors that may adversely affect the success of vegetation-based carbon abatement projects in dryland ecosystems, evaluate their likelihood of occurrence, and estimate the potential consequences for carbon storage and sequestration. We also evaluate management strategies to reduce risks posed to these carbon abatement projects. Identified risks were primarily disturbances, including unplanned fire, drought, and grazing. Revegetation projects also risk recruitment failure, thereby failing to reach projected rates of sequestration. Many of these risks are dependent on rainfall, which is highly variable in drylands and susceptible to further variation under climate change. Resprouting vegetation is likely to be less vulnerable to disturbance and have faster recovery rates upon release from disturbance. We conclude that there is a strong impetus for identifying management strategies and risk reduction mechanisms for carbon abatement projects. Risk mitigation would be enhanced by effective co-ordination of mitigation strategies at scales larger than individual abatement project boundaries, and by implementing risk assessment throughout project planning and implementation stages. Reduction of risk is vital for maximising carbon sequestration of individual projects and for reducing barriers to the establishment of new projects entering the market.
Collapse
Affiliation(s)
- Rachael H Nolan
- Centre for Compassionate Conservation, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| | - Jennifer Sinclair
- Centre for Compassionate Conservation, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia; GreenCollar, The Rocks, Sydney, NSW 2000, Australia
| | - David J Eldridge
- School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW 2052, Australia
| | - Daniel Ramp
- Centre for Compassionate Conservation, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
35
|
Groundwater Depth and Soil Properties Are Associated with Variation in Vegetation of a Desert Riparian Ecosystem in an Arid Area of China. FORESTS 2018. [DOI: 10.3390/f9010034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Wagg C, O'Brien MJ, Vogel A, Scherer-Lorenzen M, Eisenhauer N, Schmid B, Weigelt A. Plant diversity maintains long-term ecosystem productivity under frequent drought by increasing short-term variation. Ecology 2017; 98:2952-2961. [DOI: 10.1002/ecy.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/01/2017] [Accepted: 08/24/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Cameron Wagg
- Department of Evolutionary Biology and Environmental Studies; University of Zürich; Winterthurerstr. 190 Zürich CH-8057 Switzerland
- Institute of Ecology; University of Jena; Dornburger Str. 159 Jena 07743 Germany
| | - Michael J. O'Brien
- Department of Evolutionary Biology and Environmental Studies; University of Zürich; Winterthurerstr. 190 Zürich CH-8057 Switzerland
- Estación Experimental de Zonas Áridas; Consejo Superior de Investigaciones Científicas; Carretera de Sacramento s/n, E-04120 La Cañada Almería Spain
| | - Anja Vogel
- Institute of Ecology; University of Jena; Dornburger Str. 159 Jena 07743 Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e Leipzig Germany
- Institute of Biology; Leipzig University; Deutscher Platz 5e Leipzig 04103 Germany
| | | | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e Leipzig Germany
- Institute of Biology; Leipzig University; Deutscher Platz 5e Leipzig 04103 Germany
| | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Studies; University of Zürich; Winterthurerstr. 190 Zürich CH-8057 Switzerland
| | - Alexandra Weigelt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e Leipzig Germany
- Institute of Biology; Leipzig University; Johannisallee 21 Leipzig 04103 Germany
| |
Collapse
|
37
|
O'Brien MJ, Ong R, Reynolds G. Intra-annual plasticity of growth mediates drought resilience over multiple years in tropical seedling communities. GLOBAL CHANGE BIOLOGY 2017; 23:4235-4244. [PMID: 28192618 DOI: 10.1111/gcb.13658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/28/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Precipitation patterns are changing across the globe causing more severe and frequent drought for many forest ecosystems. Although research has focused on the resistance of tree populations and communities to these novel precipitation regimes, resilience of forests is also contingent on recovery following drought, which remains poorly understood, especially in aseasonal tropical forests. We used rainfall exclusion shelters to manipulate the interannual frequency of drought for diverse seedling communities in a tropical forest and assessed resistance, recovery and resilience of seedling growth and mortality relative to everwet conditions. We found seedlings exposed to recurrent periods of drought altered their growth rates throughout the year relative to seedlings in everwet conditions. During drought periods, seedlings grew slower than seedlings in everwet conditions (i.e., resistance phase) while compensating with faster growth after drought (i.e., recovery phase). However, the response to frequent drought was species dependent as some species grew significantly slower with frequent drought relative to everwet conditions while others grew faster with frequent drought due to overcompensating growth during the recovery phase. In contrast, mortality was unrelated to rainfall conditions and instead correlated with differences in light. Intra-annual plasticity of growth and increased annual growth of some species led to an overall maintenance of growth rates of tropical seedling communities in response to more frequent drought. These results suggest these communities can potentially adapt to predicted climate change scenarios and that plasticity in the growth of species, and not solely changes in mortality rates among species, may contribute to shifts in community composition under drought.
Collapse
Affiliation(s)
- Michael J O'Brien
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, La Cañada, Almería, Spain
- South East Asia Rainforest Research Partnership (SEARRP), Danum Valley Field Centre, Lahad Datu, Sabah, Malaysia
| | - Robert Ong
- Forest Research Centre, Sepilok, Sandakan, Sabah, Malaysia
| | - Glen Reynolds
- South East Asia Rainforest Research Partnership (SEARRP), Danum Valley Field Centre, Lahad Datu, Sabah, Malaysia
| |
Collapse
|
38
|
Skelton RP, Brodribb TJ, McAdam SAM, Mitchell PJ. Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland. THE NEW PHYTOLOGIST 2017; 215:1399-1412. [PMID: 28620915 DOI: 10.1111/nph.14652] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/08/2017] [Indexed: 05/26/2023]
Abstract
Drought can cause major damage to plant communities, but species damage thresholds and postdrought recovery of forest productivity are not yet predictable. We used an El Niño drought event as a natural experiment to test whether postdrought recovery of gas exchange could be predicted by properties of the water transport system, or if metabolism, primarily high abscisic acid concentration, might delay recovery. We monitored detailed physiological responses, including shoot sapflow, leaf gas exchange, leaf water potential and foliar abscisic acid (ABA), during drought and through the subsequent rehydration period for a sample of eight canopy and understory species. Severe drought caused major declines in leaf water potential, elevated foliar ABA concentrations and reduced stomatal conductance and assimilation rates in our eight sample species. Leaf water potential surpassed levels associated with incipient loss of leaf hydraulic conductance in four species. Following heavy rainfall gas exchange in all species, except those trees predicted to have suffered hydraulic impairment, recovered to prestressed rates within 1 d. Recovery of plant gas exchange was rapid and could be predicted by the hydraulic safety margin, providing strong support for leaf vulnerability to water deficit as an index of damage under natural drought conditions.
Collapse
Affiliation(s)
- Robert P Skelton
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, 7005, Australia
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Scott A M McAdam
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, 7005, Australia
| | | |
Collapse
|
39
|
Jump AS, Ruiz-Benito P, Greenwood S, Allen CD, Kitzberger T, Fensham R, Martínez-Vilalta J, Lloret F. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. GLOBAL CHANGE BIOLOGY 2017; 23:3742-3757. [PMID: 28135022 DOI: 10.1111/gcb.13636] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/26/2016] [Indexed: 05/25/2023]
Abstract
Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes in forest distribution and function from regional to global scales.
Collapse
Affiliation(s)
- Alistair S Jump
- Biological and Environmental Sciences, University of Stirling, Scotland, FK9 4LA, UK
- CREAF, Campus de Bellaterra (UAB), Edifici C, Cerdanyola del Vallès 08193, Catalonia, Spain
| | - Paloma Ruiz-Benito
- Biological and Environmental Sciences, University of Stirling, Scotland, FK9 4LA, UK
- Forest Ecology and Restoration Group, Department of Life Sciences, Science Building, Universidad de Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid, Spain
| | - Sarah Greenwood
- Biological and Environmental Sciences, University of Stirling, Scotland, FK9 4LA, UK
| | - Craig D Allen
- U.S. Geological Survey, Fort Collins Science Center, New Mexico Landscapes Field Station, Los Alamos, NM, 87544, USA
| | - Thomas Kitzberger
- Laboratorio Ecotono, INIBIOMA, CONICET-Universidad Nacional del Comahue, Bariloche, 8400, Río Negro, Argentina
| | - Rod Fensham
- Queensland Herbarium, Environmental Protection Agency, Mt Coot-tha Road, Toowong, Qld, 4066, Australia
- School of Biological Sciences, University of Queensland, St Lucia, Qld, 4072, Australia
| | - Jordi Martínez-Vilalta
- CREAF, Campus de Bellaterra (UAB), Edifici C, Cerdanyola del Vallès 08193, Catalonia, Spain
- Autonomous University of Barcelona, Cerdanyola del Vallès 08193, Catalonia, Spain
| | - Francisco Lloret
- CREAF, Campus de Bellaterra (UAB), Edifici C, Cerdanyola del Vallès 08193, Catalonia, Spain
- Autonomous University of Barcelona, Cerdanyola del Vallès 08193, Catalonia, Spain
| |
Collapse
|
40
|
Affiliation(s)
- Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
41
|
Gazol A, Camarero JJ, Anderegg WRL, Vicente-Serrano SM. Impacts of droughts on the growth resilience of Northern Hemisphere forests. GLOBAL ECOLOGY AND BIOGEOGRAPHY 2017; 26:166-176. [PMID: 0 DOI: 10.1111/geb.12526] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- A. Gazol
- Instituto Pirenaico de Ecología; Consejo Superior de Investigaciones Científicas (IPE-CSIC); Zaragoza Spain
| | - J. J. Camarero
- Instituto Pirenaico de Ecología; Consejo Superior de Investigaciones Científicas (IPE-CSIC); Zaragoza Spain
| | - W. R. L. Anderegg
- Department of Biology; University of Utah; Salt Lake City UT USA
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ USA
| | - S. M. Vicente-Serrano
- Instituto Pirenaico de Ecología; Consejo Superior de Investigaciones Científicas (IPE-CSIC); Zaragoza Spain
| |
Collapse
|
42
|
Blackman CJ, Pfautsch S, Choat B, Delzon S, Gleason SM, Duursma RA. Toward an index of desiccation time to tree mortality under drought. PLANT, CELL & ENVIRONMENT 2016; 39:2342-5. [PMID: 27093688 DOI: 10.1111/pce.12758] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 04/07/2016] [Indexed: 05/21/2023]
Abstract
Research in plant hydraulics has provided important insights into plant responses to drought and species absolute drought tolerance. However, our ability to predict when plants will die from hydraulic failure under extreme drought is limited by a lack of knowledge with regards to the dynamics of plant desiccation following stomatal closure. Thus, we develop a simple hydraulics model based on branch-level traits that incorporates key aspects of allometry, rates of water loss and resistance to embolism thresholds in order to define species differences in the time it takes plants to desiccate from stomatal closure to lethal levels of drought stress.
Collapse
Affiliation(s)
- Chris J Blackman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Sebastian Pfautsch
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | | | - Sean M Gleason
- USDA-ARS, Water Management Research, 2150 Center Ave, Build D, Suite 320, Fort Collins, CO, 80526, United States
| | - Remko A Duursma
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|