1
|
Nuralykyzy B, Nie J, Mei H, Zhang Y, Rogers KM, Li C, Yuan Y. Synergies between Carbon Sequestration, Nitrogen Utilization, and Mushroom Quality: A Comprehensive Review of Substrate, Fungi, and Soil Interactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40406890 DOI: 10.1021/acs.jafc.5c02295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Mushroom cultivation offers a sustainable approach by combining carbon sequestration, nitrogen use, and quality food production. This review synthesizes current knowledge on the synergistic interactions between substrate composition, fungal species, environmental factors, and their cumulative effects on the carbon and nitrogen cycles, mushroom yield, and nutritional quality. Key research gaps include the long-term impact of spent mushroom substrate (SMS) on soil carbon dynamics, limited use of fungal diversity, and the vulnerability of substrates and enzyme activity to climate change. To address these challenges, this review proposes strategies such as blending fast- and slow-decomposing agricultural waste, enriching substrates with biochar, and using genetically modified fungi to enhance lignin breakdown and stress tolerance. It also highlights promising species like Ganoderma lucidum and Trametes versicolor, and emphasizes interspecies microbial synergy. A systems-based approach combining C:N optimization, microbial interaction, and substrate innovation is recommended to improve productivity, reduce waste, and support carbon-neutral cultivation.
Collapse
Affiliation(s)
- Bayan Nuralykyzy
- State Key Laboratory for Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Jing Nie
- State Key Laboratory for Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Hanyi Mei
- State Key Laboratory for Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Yongzhi Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Karyne M Rogers
- State Key Laboratory for Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
- National Isotope Centre, GNS Science, 30 Grace-field Road, Lower Hutt 5040, New Zealand
| | - Chunlin Li
- State Key Laboratory for Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Yuwei Yuan
- State Key Laboratory for Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| |
Collapse
|
2
|
Zheng Y, Jin J, Armstrong R, Wood JL, Crawford DM, Franks AE, Tang C. Long-term free-air-CO 2-enrichment increases carbon distribution in the stable fraction in the deep layer of non-clay soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:179003. [PMID: 40054239 DOI: 10.1016/j.scitotenv.2025.179003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Elevated CO2 (eCO2) in the atmosphere can increase plant C input into soils. However, in dryland cropping systems, it remains unclear how eCO2 may alter soil organic C content and stability in relation to potential changes in microbial community composition and whether these changes may depend on soil type and depth. Using an eight-year free-air-CO2-enrichment (SoilFACE) system, this study addressed these questions in three farming soils including a sandy Calcarosol, a clay Vertosol and a silt loam Chromosol at depths of 0-40 cm. Long-term eCO2 did not change soil C content or its distribution in different C fractions in the top 30-cm soil. The majority of the relatively abundant bacterial taxa significantly affected by eCO2 in the 0-10 cm layer were copiotrophic; this also occurred to fungal community, except for the Calcarosol where some saprotrophs showed a decreasing trend. These changes in microbial taxa indicate that eCO2 accelerated the decomposition of both new and pre-existing C pools in the topsoil. Although eCO2 did not change soil C content in the 30-40 cm layer, it increased soil C content in the stable C fraction associated with particles < 50 μm in the Calcarosol (by 39%) and particles < 2 μm in the Chromosol (by 29%). In the 30-40 cm layer of the Calcarosol, many fungal saprotrophs were enriched, and the abundance of fungal community increased under eCO2. Further investigation is warranted on whether the enhanced stability subsoil C under eCO2 results from the leaching of stable organic molecules from the topsoil to the subsoil for buildup in the non-clay Calcarosol and Chromosol. Overall, these findings suggest that eCO2 is likely to enhance soil C stability in the deeper parts of the profile of non-clay soils.
Collapse
Affiliation(s)
- Yunyun Zheng
- La Trobe Institute for Sustainable Agriculture and Food, Department of Ecological, Plant and Animal Sciences, La Trobe University, Bundoora, VIC 3086, Australia; School of Agriculture and Food Sciences, The University of Queensland, Queensland 4072, Australia
| | - Jian Jin
- La Trobe Institute for Sustainable Agriculture and Food, Department of Ecological, Plant and Animal Sciences, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Roger Armstrong
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, Grains Innovation Centre, Horsham, VIC 3400, Australia
| | - Jennifer L Wood
- Department of Microbiology, Anatomy Physiology and Pharmacology, La Trobe University, Bundoora, VIC 3086, Australia; Centre for Future Landscapes, La Trobe University, Bundoora, VIC 3086, Australia
| | - Doug M Crawford
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, Ellinbank, VIC 3821, Australia
| | - Ashley E Franks
- Department of Microbiology, Anatomy Physiology and Pharmacology, La Trobe University, Bundoora, VIC 3086, Australia; Centre for Future Landscapes, La Trobe University, Bundoora, VIC 3086, Australia
| | - Caixian Tang
- La Trobe Institute for Sustainable Agriculture and Food, Department of Ecological, Plant and Animal Sciences, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
3
|
Liu Y, Liu Y, Zhang J, Dong J, Ren S. The impact of global change factors on the functional genes of soil nitrogen and methane cycles in grassland ecosystems: a meta-analysis. Oecologia 2024; 207:6. [PMID: 39652247 DOI: 10.1007/s00442-024-05651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024]
Abstract
Soil functional genes in grasslands are crucial for processes like nitrogen fixation, nitrification, denitrification, methane production, and oxidation, integral to nitrogen and methane cycles. However, the impact of global changes on these genes is not well understood. We reviewed 84 studies to examine the effects of nitrogen addition (N), warming (W), increased precipitation (PPT +), decreased precipitation (PPT-), and elevated CO2 (eCO2) on these functional genes. For nitrogen cycling, global changes mainly boost genes involved in nitrification but reduce those in denitrification, with nirK being the most sensitive. Most nitrogen fixation-related genes did not show a significant response. Among single factors, N and PPT + have the most significant effects. The impact of global changes on nitrogen cycling genes is largely additive, and their interaction with N is particularly influential. For methane cycling, global changes notably affect mcrA, while only PPT + significantly reduces pmoA. The magnitude and duration of global change treatments are more critical than the treatment form for nitrogen cycling genes. For methane cycling, the form and intensity of nitrogen addition, along with treatment duration, affect pmoA abundance. We also identified a competitive relationship between methane oxidation and nitrification and a complex coupling with denitrification. This study provides new insights into microbial responses in nitrogen and methane cycling under global changes, with significant implications for experimental design and management strategies in grassland ecosystems.
Collapse
Affiliation(s)
- Yuhan Liu
- Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yinghui Liu
- Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Jiaqi Zhang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jingyi Dong
- Beijing No.11 High School, Beijing, 100050, China
| | - Siyu Ren
- Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
4
|
Xia W, Rao Q, Liu J, Chen J, Xie P. Occurrence and characteristics of microplastics across the watershed of the world's third-largest river. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135998. [PMID: 39357362 DOI: 10.1016/j.jhazmat.2024.135998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
While rivers as primary conduits for land-based plastic particles transferring to their "ultimate" destination, the ocean, have garnered increasing attention, research on microplastic pollution at the scale of whole large river basins remains limited. Here we conducted a large-scale investigation of microplastic contamination in water and sediment of the world's third-largest river, the Yangtze River. We found concentrations of microplastics in water and sediment to be 5.13 items/L and 113.9 items/kg (dry weight), respectively. Moreover, microplastic pollution levels exhibited a clear decreasing trend from upstream to downstream. The detected microplastics were predominantly transparent in color, with fibrous shapes predominating, sizes mainly concentrated below 1 mm and composed primarily of PP and PE polymers. Our analysis results indicated that compared to geographical and water quality parameters, anthropogenic factors primarily determined the spatial distribution pattern of microplastics. Moreover, the microplastic abundance in sediment upstream of the dam was significantly higher than that in the downstream sediment, while the trend of microplastic concentrations in water was opposite. Therefore, more effort is needed to monitor microplastic contamination and their ecological environmental effects of sediment before dams in future research.
Collapse
Affiliation(s)
- Wulai Xia
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Qingyang Rao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Jiarui Liu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| |
Collapse
|
5
|
Zhao Z, Ren K, Gao Y, Zhao M, Zhou L, Huo S, Liu J. Changes in soil inorganic carbon following vegetation restoration in the cropland on the Loess Plateau in China: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123412. [PMID: 39577192 DOI: 10.1016/j.jenvman.2024.123412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Vegetation restoration in the cropland has been widely implemented to protect the ecological environment of the Loess Plateau, China. However, a quantitative and comprehensive understanding of the changes in soil inorganic carbon (SIC) after vegetation restoration is lacking. Based on 637 pieces of data from 35 studies on the Loess Plateau, we performed a meta-analysis to quantify the variations in SIC after vegetation restoration in the cropland and analyze the influences of environment factors on the variations in SIC. Overall, SIC significantly increased by 6.73% after vegetation restoration. The conversions of cropland to broadleaf forestland, coniferous forestland and grassland significantly increased the SIC contents by 3.16, 14.77 and 6.32%, respectively. The response ratio of SIC (RR-SIC) to vegetation restoration was positively related with restoration age, the response ratio of soil organic carbon and the soil pH respectively, but was significantly negatively correlated with mean annual precipitation and mean annual temperature. The results demonstrated that vegetation restoration in cropland has a high potential to SIC sequestration on the Loess Plateau. The relationship of RR-SIC with environmental factors indicated that the production of pedogenic inorganic carbon plays a crucial role in SIC sequestration after vegetation restoration in the cropland on the Loess Plateau. Our findings highlight that SIC is as vital to soil carbon sequestration as soil organic carbon after vegetation restoration, and SIC should not be neglected for assessing carbon sequestration capacity of vegetation restoration on the Loess Plateau.
Collapse
Affiliation(s)
- Zhenyu Zhao
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Keyu Ren
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Gao
- Breeding Base for State Key Lab. of Land Degradation and Ecological Restoration in Northwestern China, Key Lab. of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, 750021, China
| | - Mengfan Zhao
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Long Zhou
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shaofeng Huo
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiabin Liu
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Liu Y, Chen S, Zhou P, Li H, Wan Q, Lu Y, Li B. Differential impacts of microplastics on carbon and nitrogen cycling in plant-soil systems: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174655. [PMID: 39004375 DOI: 10.1016/j.scitotenv.2024.174655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Microplastics (MPs) are widely present in terrestrial ecosystems. However, how MPs impact carbon (C) and nitrogen (N) cycling within plant-soil system is still poorly understood. Here, we conducted a meta-analysis utilizing 3338 paired observations from 180 publications to estimate the effects of MPs on plant growth (biomass, nitrogen content, nitrogen uptake and nitrogen use efficiency), change in soil C content (total carbon (TC), soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC)), C losses (carbon dioxide (CO2) and methane), soil N content (total nitrogen, dissolved organic nitrogen, microbial biomass nitrogen, total dissolve nitrogen, ammonium, nitrate (NO3--N) and nitrite) and nitrogen losses (nitrous oxide, ammonia (NH3) volatilization and N leaching) comprehensively. Results showed that although MPs significantly increased CO2 emissions by 25.7 %, they also increased TC, SOC, MBC, DOC and CO2 by 53.3 %, 25.4 %, 19.6 % and 24.7 %, respectively, and thus increased soil carbon sink capacity. However, MPs significantly decreased NO3--N and NH3 volatilization by 14.7 % and 43.3 %, respectively. Meanwhile, MPs significantly decreased plant aboveground biomass, whereas no significant changes were detected in plant belowground biomass and plant N content. The impacts of MPs on soil C, N and plant growth varied depending on MP types, sizes, concentrations, and experimental durations, in part influenced by initial soil properties. Overall, although MPs enhanced soil carbon sink capacity, they may pose a significant threat to future agricultural productivity.
Collapse
Affiliation(s)
- Yige Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Siyi Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Pengyu Zhou
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Haochen Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Quan Wan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Ying Lu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Bo Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| |
Collapse
|
7
|
Bao S, Yi J, Xian B, Rao C, Xiang D, Tang W, Fang T. Global analysis of the adverse effects of micro- and nanoplastics on intestinal health and microbiota of fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134157. [PMID: 38569337 DOI: 10.1016/j.jhazmat.2024.134157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The wide occurrence of micro- and nanoplastics (MPs/NPs) within aquatic ecosystems has raised increasing concerns regarding their potential effects on aquatic organisms. However, the effects of MPs/NPs on intestinal health and microbiota of fish remain controversial, and there is a lack of comprehensive understanding regarding how the impact of MPs/NPs is influenced by MPs/NPs characteristics and experimental designs. Here, we conducted a global analysis to synthesize the effects of MPs/NPs on 47 variables associated with fish intestinal health and microbiota from 118 studies. We found that MPs/NPs generally exerted obvious adverse effects on intestinal histological structure, permeability, digestive function, immune and oxidative-antioxidative systems. By contrast, MPs/NPs showed slight effects on intestinal microbial variables. Further, we observed that the responses of intestinal variables to MPs/NPs were significantly regulated by MPs/NPs characteristics and experimental designs. For instance, polyvinyl chloride plastics showed higher toxicity to fish gut than polyethylene and polystyrene did. Additionally, larval fish appeared to be more sensitive to MPs/NPs than juvenile fish. Collectively, this study highlights the potential impacts of MPs/NPs on intestinal health and microbiota of fish, and underscores the determinant role of MPs/NPs characteristics and experimental designs in MPs/NPs toxicity.
Collapse
Affiliation(s)
- Shaopan Bao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jia Yi
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430072, China.
| | - Bo Xian
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenyang Rao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dongfang Xiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Luo W, Zhang Q, Wang P, Luo J, She C, Guo X, Yuan J, Sun Y, Guo R, Li Z, Liu J, Tao J. Unveiling the impacts moso bamboo invasion on litter and soil properties: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168532. [PMID: 37972783 DOI: 10.1016/j.scitotenv.2023.168532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Moso bamboo invasion potentially alters litter, soil properties and soil microbial communities in forest ecosystems. However, the overall direction and magnitude of this alteration at a large spatial scale remain unclear. Here, we conducted a meta-analysis of 72 experimental studies on the impact of moso bamboo invasion on litter, soil physicochemical properties, and soil microbial communities. Overall, the moso bamboo invasion increased litter decomposition, soil pH, and NH4+-N, while concurrently leading to a decrease in soil bulk density, soil electrical conductivity, soil TN: TP ratio, soil NO3--N, and available potassium. Moreover, we observed that the invasion significantly enhanced soil microbial biomass nitrogen, fungal ACE diversity index, fungal biomass, and bacterial Shannon diversity index, while decreasing the ratio of Gram-positive to Gram-negative bacteria and the biomass of Gram-positive bacteria. Furthermore, we identified the primary factors influencing specific soil properties and microbial community responses to moso bamboo invasion. Specifically, the response of NH4+-N, NO3--N, soil bulk density, fungal diversity and pH were found to be primarily influenced by climatic factors (mean annual temperature, mean annual precipitation), topographic factors (aspect), and invasion stage, respectively. In addition, we further revealed a close relationship between soil physicochemical properties and microbial communities during moso bamboo invasion. Specifically, the response of soil microbial biomass nitrogen was positively correlated with the responses of soil organic nitrogen and total nitrogen content, Gram-positive bacteria biomass was positively correlated with soil total nitrogen but negatively correlated with soil pH. Meanwhile, soil bacterial diversity showed a significant positive correlation with soil pH but exhibited a negative correlation with soil SOC. Our study suggests that macro-climatic conditions, local microenvironment, and invasion stage co-regulate the important effects of moso bamboo invasion on litter, soil physicochemical properties, and microbial communities.
Collapse
Affiliation(s)
- Weixue Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| | - Qingyu Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Peng Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Jie Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Chunyan She
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Xuman Guo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Jiajia Yuan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuhong Sun
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Ruming Guo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Zongfeng Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| | - Jinchun Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| | - Jianping Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| |
Collapse
|
9
|
Yu H, Han M, Cai C, Lv F, Teng Y, Zou L, Ding G, Bai X, Yao J, Ni K, Zhu C. Soil organic carbon stability and exogenous nitrogen fertilizer influence the priming effect of paddy soil under long-term exposure to elevated atmospheric CO 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102313-102322. [PMID: 37665443 DOI: 10.1007/s11356-023-29485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
Soil organic carbon (SOC) stability and dynamics are greatly influenced by long-term elevated atmospheric CO2 [CO2]. The priming effect (PE) is vital in SOC stability and dynamics, but its role in paddy soil under long-term elevated [CO2] remains unclear. To examine how SOC stability changed in paddy soil after long-term elevated atmospheric CO2 enrichment, the PE was quantified through a 13C-glucose-induced experiment with different N levels for topsoil (0-20 cm) from paddy free-air CO2 enrichment (FACE) platform. Compared with the ambient CO2 concentration ([CO2]), 10 years of elevated [CO2] (500 µmol·mol-1) significantly increased SOC and TN content by 18.4% and 19.0%, respectively, while the C/N ratio was not changed. The labile C fractions including dissolved organic carbon (DOC) and readily oxidizable organic carbon (ROC), but excluding microbial biomass C (MBC), accumulated faster than SOC in paddy soil, which implied the reduced SOC stability for long-term elevated [CO2] enrichment. With the decline of SOC stability, the exogenously induced cumulative specific PE (PE per gram of SOC) remarkably increased by 41.1-72.7% for elevated [CO2] fumigation. The cumulative PE, especially the cumulative specific PE, was found significantly linearly correlated with the ROC content or ROC/SOC ratio (labile SOC pool). Furthermore, the application of nitrogen fertilizer slowed down the PE under elevated [CO2] condition. Our results showed that long-term elevated [CO2] enrichment reduced SOC stability and, together with exogenous nitrogen fertilizer, regulated the PE in paddy soil.
Collapse
Affiliation(s)
- Hongyan Yu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Mixue Han
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Chuang Cai
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Fu Lv
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yue Teng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Luyi Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Guoqing Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xuejia Bai
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Junhou Yao
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Kang Ni
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Hangzhou, 310008, China
| | - Chunwu Zhu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
10
|
Feng J, Yu D, Sinsabaugh RL, Moorhead DL, Andersen MN, Smith P, Song Y, Li X, Huang Q, Liu YR, Chen J. Trade-offs in carbon-degrading enzyme activities limit long-term soil carbon sequestration with biochar addition. Biol Rev Camb Philos Soc 2023; 98:1184-1199. [PMID: 36914985 DOI: 10.1111/brv.12949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023]
Abstract
Biochar amendment is one of the most promising agricultural approaches to tackle climate change by enhancing soil carbon (C) sequestration. Microbial-mediated decomposition processes are fundamental for the fate and persistence of sequestered C in soil, but the underlying mechanisms are uncertain. Here, we synthesise 923 observations regarding the effects of biochar addition (over periods ranging from several weeks to several years) on soil C-degrading enzyme activities from 130 articles across five continents worldwide. Our results showed that biochar addition increased soil ligninase activity targeting complex phenolic macromolecules by 7.1%, but suppressed cellulase activity degrading simpler polysaccharides by 8.3%. These shifts in enzyme activities explained the most variation of changes in soil C sequestration across a wide range of climatic, edaphic and experimental conditions, with biochar-induced shift in ligninase:cellulase ratio correlating negatively with soil C sequestration. Specifically, short-term (<1 year) biochar addition significantly reduced cellulase activity by 4.6% and enhanced soil organic C sequestration by 87.5%, whereas no significant responses were observed for ligninase activity and ligninase:cellulase ratio. However, long-term (≥1 year) biochar addition significantly enhanced ligninase activity by 5.2% and ligninase:cellulase ratio by 36.1%, leading to a smaller increase in soil organic C sequestration (25.1%). These results suggest that shifts in enzyme activities increased ligninase:cellulase ratio with time after biochar addition, limiting long-term soil C sequestration with biochar addition. Our work provides novel evidence to explain the diminished soil C sequestration with long-term biochar addition and suggests that earlier studies may have overestimated soil C sequestration with biochar addition by failing to consider the physiological acclimation of soil microorganisms over time.
Collapse
Affiliation(s)
- Jiao Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dailin Yu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Robert L Sinsabaugh
- Department of Biology, University of New Mexico, Albuquerque, NM, 87102, USA
| | - Daryl L Moorhead
- Department of Environmental Sciences, University of Toledo, Toledo, OH, 43537, USA
| | - Mathias Neumann Andersen
- Department of Agroecology, Aarhus University, Blichers Allé 20, Tjele, 8830, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, 4000, Denmark
- Sino-Danish Center for Education and Research, Eastern Yanqihu Campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, 101400, China
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Yanting Song
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinqi Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan, 430070, China
| | - Ji Chen
- Department of Agroecology, Aarhus University, Blichers Allé 20, Tjele, 8830, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, 4000, Denmark
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| |
Collapse
|
11
|
Wang X, Zhang J, Mao W, Guan P, Wang Y, Chen Y, Liu W, Guo W, Yao Y, Hu Z, Xin M, Ni Z, Sun Q, Peng H. Association mapping identifies loci and candidate genes for grain-related traits in spring wheat in response to heat stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111676. [PMID: 36933836 DOI: 10.1016/j.plantsci.2023.111676] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/05/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Heat stress is a limiting factor in wheat production along with global warming. Development of heat-tolerant wheat varieties and generation of suitable pre-breeding materials are the major goals in current wheat breeding programs. Our understanding on the genetic basis of thermotolerance remains sparse. In this study, we genotyped a collection of 211 core spring wheat accessions and conducted field trials to evaluate the grain-related traits under heat stress and non-stress conditions in two different locations for three consecutive years. Based on SNP datasets and grain-related traits, we performed genome-wide association study (GWAS) to detect stable loci related to thermotolerance. Thirty-three quantitative trait loci (QTL) were identified, nine of them are the same loci as previous studies, and 24 are potentially novel loci. Functional candidate genes at these QTL are predicted and proved to be relevant to heat stress and grain-related traits such as TaELF3-A1 (1A) for earliness per se (Eps), TaHSFA1-B1 (5B) influencing heat tolerance and TaVIN2-A1 (6A) for grain size. Functional markers of TaELF3-A1 were detected and converted to KASP markers, with their function and genetic diversity being analyzed in the natural populations. In addition, our results unveiled favor alleles controlling agronomic traits and/or heat stress tolerance. In summary, we provide insights into heritable correlation between yield and heat stress tolerance, which will accelerate the development of new cultivars with high and stable yield of wheat in the future.
Collapse
Affiliation(s)
- Xiaobo Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinbo Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China; Institute of Crop Germplasm Resource, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Weiwei Mao
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Panfeng Guan
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yongfa Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wangqing Liu
- Crop Research Institute of Ningxia Academy of Agriculture and Forestry Sciences, Ningxia, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
12
|
Qu Q, Xu H, Ai Z, Wang M, Wang G, Liu G, Geissen V, Ritsema CJ, Xue S. Impacts of extreme weather events on terrestrial carbon and nitrogen cycling: A global meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120996. [PMID: 36608729 DOI: 10.1016/j.envpol.2022.120996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Some weather events like drought, increased precipitation, and warming exert substantial impact on the terrestrial C and N cycling. However, it remains largely unclear about the effect of extreme weather events (extreme drought, heavy rainfall, extreme heat, and extreme cold) on terrestrial C and N cycling. This study aims to analyze the responses of pools and fluxes of C and N in plants, soil, and microbes to extreme weather events by conducting a global meta-analysis of 656 pairwise observations. Results showed that extreme weather events (extreme drought, heavy rainfall, and extreme heat) decreased plant biomass and C flux, and extreme drought and heavy rainfall decreased the plant N pool and soil N flux. These results suggest that extreme weather events weaken the C and N cycling process in terrestrial ecosystems. However, this study did not determine the impact of extreme cold on ecosystem C and N cycling. Additional field experiments are needed to reveal the effects of extreme cold on global C and N cycling patterns.
Collapse
Affiliation(s)
- Qing Qu
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China; Institute of Soil and Water Conservation, Northwest A & F University, Yangling, 712100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zemin Ai
- College of Geomatics, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Minggang Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Guoliang Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China; Institute of Soil and Water Conservation, Northwest A & F University, Yangling, 712100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guobin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China; Institute of Soil and Water Conservation, Northwest A & F University, Yangling, 712100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Violette Geissen
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700 AA Wageningen, Netherlands
| | - Coen J Ritsema
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700 AA Wageningen, Netherlands
| | - Sha Xue
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China; Institute of Soil and Water Conservation, Northwest A & F University, Yangling, 712100, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Maschler J, Bialic‐Murphy L, Wan J, Andresen LC, Zohner CM, Reich PB, Lüscher A, Schneider MK, Müller C, Moser G, Dukes JS, Schmidt IK, Bilton MC, Zhu K, Crowther TW. Links across ecological scales: Plant biomass responses to elevated CO 2. GLOBAL CHANGE BIOLOGY 2022; 28:6115-6134. [PMID: 36069191 PMCID: PMC9825951 DOI: 10.1111/gcb.16351] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/06/2022] [Indexed: 06/04/2023]
Abstract
The degree to which elevated CO2 concentrations (e[CO2 ]) increase the amount of carbon (C) assimilated by vegetation plays a key role in climate change. However, due to the short-term nature of CO2 enrichment experiments and the lack of reconciliation between different ecological scales, the effect of e[CO2 ] on plant biomass stocks remains a major uncertainty in future climate projections. Here, we review the effect of e[CO2 ] on plant biomass across multiple levels of ecological organization, scaling from physiological responses to changes in population-, community-, ecosystem-, and global-scale dynamics. We find that evidence for a sustained biomass response to e[CO2 ] varies across ecological scales, leading to diverging conclusions about the responses of individuals, populations, communities, and ecosystems. While the distinct focus of every scale reveals new mechanisms driving biomass accumulation under e[CO2 ], none of them provides a full picture of all relevant processes. For example, while physiological evidence suggests a possible long-term basis for increased biomass accumulation under e[CO2 ] through sustained photosynthetic stimulation, population-scale evidence indicates that a possible e[CO2 ]-induced increase in mortality rates might potentially outweigh the effect of increases in plant growth rates on biomass levels. Evidence at the global scale may indicate that e[CO2 ] has contributed to increased biomass cover over recent decades, but due to the difficulty to disentangle the effect of e[CO2 ] from a variety of climatic and land-use-related drivers of plant biomass stocks, it remains unclear whether nutrient limitations or other ecological mechanisms operating at finer scales will dampen the e[CO2 ] effect over time. By exploring these discrepancies, we identify key research gaps in our understanding of the effect of e[CO2 ] on plant biomass and highlight the need to integrate knowledge across scales of ecological organization so that large-scale modeling can represent the finer-scale mechanisms needed to constrain our understanding of future terrestrial C storage.
Collapse
Affiliation(s)
- Julia Maschler
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | - Lalasia Bialic‐Murphy
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | - Joe Wan
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | | | - Constantin M. Zohner
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | - Peter B. Reich
- Department of Forest ResourcesUniversity of MinnesotaSt. PaulMinnesotaUSA
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
- Institute for Global Change Biology, and School for the Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | - Andreas Lüscher
- ETH ZurichInstitute of Agricultural ScienceZurichSwitzerland
- Agroscope, Forage Production and Grassland SystemsZurichSwitzerland
| | - Manuel K. Schneider
- ETH ZurichInstitute of Agricultural ScienceZurichSwitzerland
- Agroscope, Forage Production and Grassland SystemsZurichSwitzerland
| | - Christoph Müller
- Institute of Plant EcologyJustus Liebig UniversityGiessenGermany
- School of Biology and Environmental Science and Earth InstituteUniversity College DublinDublinIreland
| | - Gerald Moser
- Institute of Plant EcologyJustus Liebig UniversityGiessenGermany
| | - Jeffrey S. Dukes
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteIndianaUSA
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Department of Global EcologyCarnegie Institution for ScienceStanfordCaliforniaUSA
| | - Inger Kappel Schmidt
- Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Mark C. Bilton
- Department of Agriculture and Natural Resources SciencesNamibia University of Science and Technology (NUST)WindhoekNamibia
| | - Kai Zhu
- Department of Environmental StudiesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Thomas W. Crowther
- Institute of Integrative BiologyETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| |
Collapse
|
14
|
Huntington TG, Shanley JB. A systematic increase in the slope of the concentration discharge relation for dissolved organic carbon in a forested catchment in Vermont, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156954. [PMID: 35760172 DOI: 10.1016/j.scitotenv.2022.156954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The production, mobilization and fluvial transport of dissolved organic carbon (DOC) in temperate forests are important components of the carbon cycle that are influenced by ongoing changes in climate. Numerous studies have reported temporal trends in stream water DOC concentrations and have attributed changes in concentrations to climatic and hydrologic variables. Fewer studies have reported trends in concentration-discharge (C-Q) relations for DOC. The goal of this study was to detect and quantify changes in DOC concentration and slope of the C-Q relation from 1991 to 2018 in an intensively sampled forested research watershed in northern Vermont. Stream water DOC concentration and slope of the C-Q relation increased over time as did precipitation, stream discharge, and air temperature. The increases in DOC concentration and slope of the C-Q were substantially greater in the summer and fall (autumn) than in winter and spring. The largest increases in the magnitude of C-Q slopes occurred in the December, October and September. The increases in slope of the C-Q relation in summer and fall were larger for baseflow than for storm flow. The increases in DOC concentration and slope of the C-Q relation over time may be related to increasing temperature, longer growing seasons, and associated increases in production and microbial decomposition of soil organic matter that supplies DOC for mobilization to streams. The results suggest that in a changing climate, C-Q relations may not necessarily be stationary and therefore analyses that attempt to estimate future DOC concentrations and loads should consider potentially changing C-Q relations over time.
Collapse
Affiliation(s)
- Thomas G Huntington
- U. S. Geological Survey, New England Water Science Center, 196 Whitten Rd., Augusta, Maine 04330, USA.
| | - James B Shanley
- U. S. Geological Survey, New England Water Science Center, 87 State Street, Montpelier, VT 05602, USA
| |
Collapse
|
15
|
Feng J, He K, Zhang Q, Han M, Zhu B. Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. GLOBAL CHANGE BIOLOGY 2022; 28:3426-3440. [PMID: 35092113 DOI: 10.1111/gcb.16107] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Global changes can alter plant inputs from both above- and belowground, which, thus, may differently affect soil carbon and microbial communities. However, the general patterns of how plant input changes affect them in forests remain unclear. By conducting a meta-analysis of 3193 observations from 166 experiments worldwide, we found that alterations in aboveground litter and/or root inputs had profound effects on soil carbon and microbial communities in forest ecosystems. Litter addition stimulated soil organic carbon (SOC) pools and microbial biomass, whereas removal of litter, roots or both (no inputs) decreased them. The increased SOC under litter addition suggested that aboveground litter inputs benefit SOC sequestration despite accelerated decomposition. Unlike root removal, litter alterations and no inputs altered particulate organic carbon, whereas all detrital treatments did not significantly change mineral-associated organic carbon. In addition, detrital treatments contrastingly altered soil microbial community, with litter addition or removal shifting it toward fungi, whereas root removal shifting it toward bacteria. Furthermore, the responses of soil carbon and microbial biomass to litter alterations positively correlated with litter input rate and total litter input, suggesting that litter input quantity is a critical controller of belowground processes. Taken together, these findings provide critical insights into understanding how altered plant productivity and allocation affects soil carbon cycling, microbial communities and functioning of forest ecosystems under global changes. Future studies can take full advantage of the existing plant detritus experiments and should focus on the relative roles of litter and roots in forming SOC and its fractions.
Collapse
Affiliation(s)
- Jiguang Feng
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Keyi He
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Qiufang Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Mengguang Han
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
16
|
Qian H, Zhang N, Chen J, Chen C, Hungate BA, Ruan J, Huang S, Cheng K, Song Z, Hou P, Zhang B, Zhang J, Wang Z, Zhang X, Li G, Liu Z, Wang S, Zhou G, Zhang W, Ding Y, van Groenigen KJ, Jiang Y. Unexpected Parabolic Temperature Dependency of CH 4 Emissions from Rice Paddies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4871-4881. [PMID: 35369697 DOI: 10.1021/acs.est.2c00738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Global warming is expected to affect methane (CH4) emissions from rice paddies, one of the largest human-induced sources of this potent greenhouse gas. However, the large variability in warming impacts on CH4 emissions makes it difficult to extrapolate the experimental results over large regions. Here, we show, through meta-analysis and multi-site warming experiments using the free air temperature increase facility, that warming stimulates CH4 emissions most strongly at background air temperatures during the flooded stage of ∼26 °C, with smaller responses of CH4 emissions to warming at lower and higher temperatures. This pattern can be explained by divergent warming responses of plant growth, methanogens, and methanotrophs. The effects of warming on rice biomass decreased with the background air temperature. Warming increased the abundance of methanogens more strongly at the medium air temperature site than the low and high air temperature sites. In contrast, the effects of warming on the abundance of methanotrophs were similar across the three temperature sites. We estimate that 1 °C warming will increase CH4 emissions from paddies in China by 12.6%─substantially higher than the estimates obtained from leading ecosystem models. Our findings challenge model assumptions and suggest that the estimates of future paddy CH4 emissions need to consider both plant and microbial responses to warming.
Collapse
Affiliation(s)
- Haoyu Qian
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Junjie Chen
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Changqing Chen
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona 86011, United States
| | - Junmei Ruan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shan Huang
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kun Cheng
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenwei Song
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pengfu Hou
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bin Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jun Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhen Wang
- International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
| | - Xiuying Zhang
- International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
| | - Ganghua Li
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenghui Liu
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Songhan Wang
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiyao Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China
| | - Weijian Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanfeng Ding
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Kees Jan van Groenigen
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, U.K
| | - Yu Jiang
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Wang H, Li J, Chen H, Liu H, Nie M. Enzymic moderations of bacterial and fungal communities on short- and long-term warming impacts on soil organic carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150197. [PMID: 34798739 DOI: 10.1016/j.scitotenv.2021.150197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Microbial communities play critical roles in soil carbon-warming feedback, but our understanding of their linkages to soil carbon (C) pools in response to short- and long-term warming is deficient. Here, by conducting a meta-analysis of 150 studies, we show that short-term (<5 years) warming mainly affects soil labile carbon (LC) pools by changing bacterial community structure, while long-term (≥5 years) warming promotes the decomposition of recalcitrant C (RC) pools by increasing fungal biomass and decreasing actinobacterial biomass. Specifically, under short-term warming, significant increases in actinobacterial biomass (+15.9%) and the G+/G- ratio (+8.0%) were accompanied by an increase in carbon-degrading enzyme activities and a decrease in LC (-5.9%). Under long-term warming, the fungal biomass (+20.4%) and related POX (phenol oxidase) activity (+34.9%) increased significantly, while actinobacterial biomass (-20.1%), RC (-18.8%) and SOC (-6.7%) decreased. Meanwhile, we observed that warming impacts on soil microbial communities can be predicted by ecosystem type, the magnitude of warming, pH and elevation. Latitude and warming duration contributed the most to explaining the responses of LC and RC, respectively, across studies. Given that RC accounts for a substantial fraction of global soil C pools, the decline in RC pools greatly contributes to soil C degradation. Our findings suggest that different microbial groups may mediate the temporal dynamics of the decomposition of different soil C components and highlight that incorporating the temporal responses of soil microorganisms will improve predictions of the long-term dynamics of soil C pools in a warmer world.
Collapse
Affiliation(s)
- Hui Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Jinquan Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongyang Chen
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Hao Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Zhao X, He C, Liu WS, Liu WX, Liu QY, Bai W, Li LJ, Lal R, Zhang HL. Responses of soil pH to no-till and the factors affecting it: A global meta-analysis. GLOBAL CHANGE BIOLOGY 2022; 28:154-166. [PMID: 34651373 DOI: 10.1111/gcb.15930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
No-till (NT) is a sustainable option because of its benefits in controlling erosion, saving labor, and mitigating climate change. However, a comprehensive assessment of soil pH response to NT is still lacking. Thus, a global meta-analysis was conducted to determine the effects of NT on soil pH and to identify the influential factors and possible consequences based on the analysis of 114 publications. When comparing tillage practices, the results indicated an overall significant decrease by 1.33 ± 0.28% in soil pH under NT than that under conventional tillage (p < .05). Soil texture, NT duration, mean annual temperature (MAT), and initial soil pH are the critical factors affecting soil pH under NT. Specifically, with significant variations among subgroups, when compared to conventional tillage, the soil under NT had lower relative changes in soil pH observed on clay loam soil (-2.44%), long-term implementation (-2.11% for more than 15 years), medium MAT (-1.87% in the range of 8-16℃), neutral soil pH (-2.28% for 6.5 < initial soil pH < 7.5), mean annual precipitation (-1.95% in the range of 600-1200 mm), in topsoil layers (-2.03% for 0-20 cm), with crop rotation (-1.98%), N fertilizer input (the same for NT and conventional tillage) of 100-200 kg N ha-1 (-1.83%), or crop residue retention (-1.52%). Changes in organic matter decomposition under undisturbed soil and with crop residue retention might lead to a higher concentration of H+ and lower of basic cations (i.e., calcium, magnesium, and potassium), which decrease the soil pH, and consequently, impact nutrient dynamics (i.e., soil phosphorus) in the surface layer under NT. Furthermore, soil acidification may be aggravated by NT within site-specific conditions and improper fertilizer and crop residue management and consequently leading to adverse effects on soil nutrient availability. Thus, there is a need to identify strategies to ameliorate soil acidification under NT to minimize the adverse consequences.
Collapse
Affiliation(s)
- Xin Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Cong He
- College of Agronomy and Biotechnology, China Agricultural University, Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Wen-Sheng Liu
- College of Agronomy and Biotechnology, China Agricultural University, Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Wen-Xuan Liu
- College of Agronomy and Biotechnology, China Agricultural University, Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Qiu-Yue Liu
- College of Agronomy and Biotechnology, China Agricultural University, Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Wei Bai
- Liaoning Academy of Agriculture Sciences, Shenyang, China
| | - Li-Jun Li
- Agronomy College, Inner Mongolia Agricultural University, Hohhot, China
| | - Rattan Lal
- CFAES Rattan Lal Center for Carbon Management and Sequestration, School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| | - Hai-Lin Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| |
Collapse
|
19
|
Hou P, Jiang Y, Yan L, Petropoulos E, Wang J, Xue L, Yang L, Chen D. Effect of fertilization on nitrogen losses through surface runoffs in Chinese farmlands: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148554. [PMID: 34171810 DOI: 10.1016/j.scitotenv.2021.148554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/30/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Surface runoff is the main cause of farmland nitrogen (N) losses in plain areas, which adversely affect water quality. The impact of fertilization on N runoff loss often varies. A meta-analysis was performed using 245 observations from 31 studies in China, to estimate the response of N loss in both paddy and upland fields subjected to different fertilization strategies, and investigate the link between N runoffs, soil properties, as well as precipitation in the planting season. The results showed that compared to the control (without fertilization), N losses subjected to fertilization increased from 3.31 kg/ha to 10.03 kg/ha and from 3.00 kg/ha to 11.24 kg/ha in paddy and upland fields respectively. Importantly, paddy N loss was significantly correlated with fertilizer type and N application rate (predictors); in upland fields N application rate and seasonal precipitation were the main driving factors. For the N application rate, N loss increased with increase in rates for both paddies and upland fields. Moreover, the N loss from upland fields increased with the precipitation during planting season. Between the three fertilizers used in paddies, the increase in loss of CRF (controlled release fertilizer) or OF (organic fertilizer) was lower than that of CF (inorganic chemical fertilizer) with the lowest value in CRF. Subset analysis showed that the effect of CRF and OF in paddies was not affected by the predictors, revealing the steadily controlling property of CRF and OF in paddies. Also, all the predictors had an insignificant impact to N loss risk in paddies during the high application rate. Overall, the results confirm the importance of N dosage in N runoff loss from farmland. Fertilizer type is a key consideration for N loss control in paddies, while the seasonal precipitation should not be ignored in upland fields.
Collapse
Affiliation(s)
- Pengfu Hou
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of China, Nanjing 210014, China; Nanjing Agricultural University, Nanjing 210095, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| | - Yu Jiang
- Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Yan
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of China, Nanjing 210014, China; School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | | | - Jinyang Wang
- Nanjing Agricultural University, Nanjing 210095, China
| | - Lihong Xue
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of China, Nanjing 210014, China; Nanjing Agricultural University, Nanjing 210095, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China.
| | - Linzhang Yang
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of China, Nanjing 210014, China; Nanjing Agricultural University, Nanjing 210095, China
| | - Deli Chen
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, VIC 3010, Australia
| |
Collapse
|
20
|
Huntington TG, Wieczorek ME. An increase in the slope of the concentration-discharge relation for total organic carbon in major rivers in New England, 1973 to 2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146149. [PMID: 33714100 DOI: 10.1016/j.scitotenv.2021.146149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
The mobilization and transport of organic carbon (OC) in rivers and delivery to the near-coastal ocean are important processes in the carbon cycle that are affected by both climate and anthropogenic activities. Riverine OC transport can affect carbon sequestration, contaminant transport, ocean acidification, the formation of toxic disinfection by-products, ocean temperature and phytoplankton productivity. There have been many studies reporting temporal trends in OC concentrations in comparatively small streams with minimal anthropogenic influences but there have been fewer studies on larger rivers and fewer still that have investigated changes in OC concentration-discharge (C-Q) relations. This study examined changes in C-Q relations for total organic carbon (TOC) from 1973 to 2019 in 8 rivers in New England, USA. TOC concentrations declined in all rivers, and in most rivers, and in most seasons, the slope of the C-Q relation increased between 1973 to 1995 and 1996 to 2019. The increase in C-Q slope between periods may be related to changes in the magnitude of TOC sources. The most likely sources to have changed are wastewater inputs, urban runoff, production through photosynthesis in aquatic systems, and runoff from agricultural and forestry practices. Changes in wetland abundance and changes in sulfate concentrations can be ruled out as drivers of the observed changes in C-Q.
Collapse
Affiliation(s)
- Thomas G Huntington
- U.S. Geological Survey, New England Water Science Center, 196 Whitten Rd., Augusta, ME 04330, USA.
| | - Michael E Wieczorek
- U.S. Geological Survey, Maryland-Delaware-D.C. Water Science Center, 5522 Research Park Drive, Catonsville, MD 21228, USA.
| |
Collapse
|
21
|
Meeran K, Ingrisch J, Reinthaler D, Canarini A, Müller L, Pötsch EM, Richter A, Wanek W, Bahn M. Warming and elevated CO 2 intensify drought and recovery responses of grassland carbon allocation to soil respiration. GLOBAL CHANGE BIOLOGY 2021; 27:3230-3243. [PMID: 33811716 DOI: 10.1111/gcb.15628] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 05/26/2023]
Abstract
Photosynthesis and soil respiration represent the two largest fluxes of CO2 in terrestrial ecosystems and are tightly linked through belowground carbon (C) allocation. Drought has been suggested to impact the allocation of recently assimilated C to soil respiration; however, it is largely unknown how drought effects are altered by a future warmer climate under elevated atmospheric CO2 (eT_eCO2 ). In a multifactor experiment on managed C3 grassland, we studied the individual and interactive effects of drought and eT_eCO2 (drought, eT_eCO2 , drought × eT_eCO2 ) on ecosystem C dynamics. We performed two in situ 13 CO2 pulse-labeling campaigns to trace the fate of recent C during peak drought and recovery. eT_eCO2 increased soil respiration and the fraction of recently assimilated C in soil respiration. During drought, plant C uptake was reduced by c. 50% in both ambient and eT_eCO2 conditions. Soil respiration and the amount and proportion of 13 C respired from soil were reduced (by 32%, 70% and 30%, respectively), the effect being more pronounced under eT_eCO2 (50%, 84%, 70%). Under drought, the diel coupling of photosynthesis and SR persisted only in the eT_eCO2 scenario, likely caused by dynamic shifts in the use of freshly assimilated C between storage and respiration. Drought did not affect the fraction of recent C remaining in plant biomass under ambient and eT_eCO2 , but reduced the small fraction remaining in soil under eT_eCO2 . After rewetting, C uptake and the proportion of recent C in soil respiration recovered more rapidly under eT_eCO2 compared to ambient conditions. Overall, our findings suggest that in a warmer climate under elevated CO2 drought effects on the fate of recent C will be amplified and the coupling of photosynthesis and soil respiration will be sustained. To predict the future dynamics of terrestrial C cycling, such interactive effects of multiple global change factors should be considered.
Collapse
Affiliation(s)
| | | | - David Reinthaler
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Alberto Canarini
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Lena Müller
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Erich M Pötsch
- Institute of Plant Production and Cultural Landscape, Agricultural Research and Education Centre, Raumberg-Gumpenstein, Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Wolfgang Wanek
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
22
|
Li J, Bååth E, Pei J, Fang C, Nie M. Temperature adaptation of soil microbial respiration in alpine, boreal and tropical soils: An application of the square root (Ratkowsky) model. GLOBAL CHANGE BIOLOGY 2021; 27:1281-1292. [PMID: 33295059 DOI: 10.1111/gcb.15476] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Warming is expected to stimulate soil microbial respiration triggering a positive soil carbon-climate feedback loop while a consensus remains elusive regarding the magnitude of this feedback. This is partly due to our limited understanding of the temperature-adaptive response of soil microbial respiration, especially over broad climatic scales. We used the square root (Ratkowsky) model to calculate the minimum temperature for soil microbial respiration (Tmin , which describes the temperature adaptation of soil microbial respiration) of 298 soil samples from alpine grasslands on the Tibetan Plateau and forest ecosystems across China with a mean annual temperature (MAT) range from -6°C to +25°C. The instantaneous soil microbial respiration was determined between 4°C and 28°C. The square root model could well fit the temperature effect on soil microbial respiration for each individual soil, with R2 higher than 0.98 for all soils. Tmin ranged from -8.1°C to -0.1°C and increased linearly with increasing MAT (R2 = 0.68). MAT dominantly regulated Tmin variation when accounting simultaneously for multiple other drivers (mean annual precipitation, soil pH and carbon quality); an independent experiment showed that carbon availability had no significant effect on Tmin . Using the relationship between Tmin and MAT, soil microbial respiration after an increased MAT could be estimated, resulting in a relative increase in respiration with decreasing MAT. Thus, soil microbial respiration responses are adapted to long-term temperature differences in MAT. We suggest that Tmin = -5 + 0.2 × MAT, that is, every 1°C rise in MAT is estimated to increase Tmin of respiration by approximately 0.2°C, could be used as a first approximation to incorporate temperature adaptation of soil microbial respiration in model predictions. Our results can be used to predict future changes in the response of soil microbial respiration to temperature over different levels of warming and across broad geographic scales with different MAT.
Collapse
Affiliation(s)
- Jinquan Li
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Erland Bååth
- Department of Biology, Section of Microbial Ecology, Lund University, Lund, Sweden
| | - Junmin Pei
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Changming Fang
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Ming Nie
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Dong J, Hunt J, Delhaize E, Zheng SJ, Jin CW, Tang C. Impacts of elevated CO 2 on plant resistance to nutrient deficiency and toxic ions via root exudates: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142434. [PMID: 33254908 DOI: 10.1016/j.scitotenv.2020.142434] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Elevated atmospheric CO2 (eCO2) concentration can increase root exudation into soils, which improves plant tolerance to abiotic stresses. This review used a meta-analysis to assess effect sizes of eCO2 on both efflux rates and total amounts of some specific root exudates, and dissected whether eCO2 enhances plant's resistance to nutrient deficiency and ion toxicity via root exudates. Elevated CO2 did not affect efflux rates of total dissolved organic carbon, a measure of combined root exudates per unit of root biomass or length, but increased the efflux amount of root systems per plant by 31% which is likely attributed to increased root biomass (29%). Elevated CO2 increased efflux rates of soluble-sugars, carboxylates, and citrate by 47%, 111%, and 16%, respectively, but did not affect those of amino acids and malate. The increased carbon allocation to roots, increased plant requirements of mineral nutrients, and heightened detoxification responses to toxic ions under eCO2 collectively contribute to the increased efflux rates despite lacking molecular evidence. The increased efflux rates of root exudates under eCO2 were closely associated with improved nutrient uptake whilst less studies have validated the associations between root exudates and resistance to toxic ions of plants when grown under eCO2. Future studies are required to reveal how climate change (eCO2) affect the efflux of specific root exudates, particularly organic anions, the corresponding nutrient uptake and toxic ion resistance from plant molecular biology and soil microbial ecology perspectives.
Collapse
Affiliation(s)
- Jinlong Dong
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, VIC 3086, Australia; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China.
| | - James Hunt
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, VIC 3086, Australia.
| | | | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, VIC 3086, Australia.
| |
Collapse
|
24
|
Han Y, Feng J, Han M, Zhu B. Responses of arbuscular mycorrhizal fungi to nitrogen addition: A meta-analysis. GLOBAL CHANGE BIOLOGY 2020; 26:7229-7241. [PMID: 32981218 DOI: 10.1111/gcb.15369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/11/2020] [Indexed: 05/02/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi play important roles in carbon (C), nitrogen (N) and phosphorus (P) cycling of terrestrial ecosystems. The impact of increasing N deposition on AM fungi will inevitably affect ecosystem processes. However, generalizable patterns of how N deposition affects AM fungi remains poorly understood. Here we conducted a global-scale meta-analysis from 94 publications and 101 sites to investigate the responses of AM fungi to N addition, including abundance in both intra-radical (host roots) and extra-radical portion (soil), richness and diversity. We also explored the mechanisms of N addition affecting AM fungi by the trait-based guilds method. Results showed that N addition significantly decreased AM fungal overall abundance (-8.0%). However, the response of abundance in intra-radical portion was not consistent with that in extra-radical portion: root colonization decreased (-11.6%) significantly, whereas extra-radical hyphae length density did not change significantly. Different AM fungal guilds showed different responses to N addition: both the abundance (spore density) and relative abundance of the rhizophilic guild decreased significantly under N addition (-29.8% and -12.0%, respectively), while the abundance and relative abundance of the edaphophilic guild had insignificant response to N addition. Such inconsistent responses of rhizophilic and edaphophilic guilds were mainly moderated by the change of soil pH and the response of root biomass, respectively. Moreover, N addition had an insignificant negative effect on AM fungal richness and diversity, which was strongly related with the relative availability of soil P (i.e. soil available N/P ratio). Collectively, this meta-analysis highlights that considering trait-based AM fungal guilds, soil P availability and host plant C allocation can greatly improve our understanding of the nuanced dynamics of AM fungal communities under increasing N deposition.
Collapse
Affiliation(s)
- Yunfeng Han
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Jiguang Feng
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Mengguang Han
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
25
|
Wynn JG, Duvert C, Bird MI, Munksgaard NC, Setterfield SA, Hutley LB. Land transformation in tropical savannas preferentially decomposes newly added biomass, whether C 3 or C 4 derived. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02192. [PMID: 32510803 DOI: 10.1002/eap.2192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/20/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
As tropical savannas are undergoing rapid conversion to other land uses, native C3 -C4 vegetation mixtures are often transformed to C3 - or C4 -dominant systems, resulting in poorly understood changes to the soil carbon (C) cycle. Conventional models of the soil C cycle are based on assumptions that more labile components of the heterogenous soil organic C (SOC) pool decompose at faster rates. Meanwhile, previous work has suggested that the C4 -derived component of SOC is more labile than C3 -derived SOC. Here we report on long-term (18 months) soil incubations from native and transformed tropical savannas of northern Australia. We test the hypothesis that, regardless of the type of land conversion, the C4 component of SOC will be preferentially decomposed. We measured changes in the SOC and pyrogenic carbon (PyC) pools, as well as the carbon isotope composition of SOC, PyC and respired CO2 , from 63 soil cores collected intact from different land use change scenarios. Our results show that land use change had no consistent effect on the size of the SOC pool, but strong effects on SOC decomposition rates, with slower decomposition rates at C4 -invaded sites. While we confirm that native savanna soils preferentially decomposed C4 -derived SOC, we also show that transformed savanna soils preferentially decomposed the newly added pool of labile SOC, regardless of whether it was C4 -derived (grass) or C3 -derived (forestry) biomass. Furthermore, we provide evidence that in these fire-prone landscapes, the nature of the PyC pool can shed light on past vegetation composition: while the PyC pool in C4 -dominant sites was mainly derived from C3 biomass, PyC in C3-dominant sites and native savannas was mainly derived from C4 biomass. We develop a framework to systematically assess the effects of recent land use change vs. prior vegetation composition.
Collapse
Affiliation(s)
- Jonathan G Wynn
- Division of Earth Sciences, National Science Foundation, Alexandria, Virginia, 22314, USA
| | - Clément Duvert
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, North Territory, Australia
| | - Michael I Bird
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Niels C Munksgaard
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Samantha A Setterfield
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Lindsay B Hutley
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, North Territory, Australia
| |
Collapse
|
26
|
Liao C, Li D, Huang L, Yue P, Liu F, Tian Q. Higher carbon sequestration potential and stability for deep soil compared to surface soil regardless of nitrogen addition in a subtropical forest. PeerJ 2020; 8:e9128. [PMID: 32435542 PMCID: PMC7224229 DOI: 10.7717/peerj.9128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
Background Labile carbon input could stimulate soil organic carbon (SOC) mineralization through priming effect, resulting in soil carbon (C) loss. Meanwhile, labile C could also be transformed by microorganisms in soil as the processes of new C sequestration and stabilization. Previous studies showed the magnitude of priming effect could be affected by soil depth and nitrogen (N). However, it remains unknown how the soil depth and N availability affect the amount and stability of the new sequestrated C, which complicates the prediction of C dynamics. Methods A 20-day incubation experiment was conducted by adding 13C labeled glucose and NH4NO3 to study the effects of soil depth and nitrogen addition on the net C sequestration. SOC was fractioned into seven fractions and grouped into three functional C pools to assess the stabilization of the new sequestrated C. Results Our results showed that glucose addition caused positive priming in both soil depths, and N addition significantly reduced the priming effect. After 20 days of incubation, deep soil had a higher C sequestration potential (48% glucose-C) than surface soil (43% glucose-C). The C sequestration potential was not affected by N addition in both soil depths. Positive net C sequestration was observed with higher amount of retained glucose-C than that of stimulated mineralized SOC for both soil depths. The distribution of new sequestrated C in the seven fractions was significantly affected by soil depth, but not N addition. Compared to deep soil, the new C in surface soil was more distributed in the non-protected C pool (including water extracted organic C, light fraction and sand fraction) and less distributed in the clay fraction. These results suggested that the new C in deep soil was more stable than that in surface soil. Compared to the native SOC for both soil depths, the new sequestrated C was more distributed in non-protected C pool and less distributed in biochemically protected C pool (non-hydrolyzable silt and clay fractions). The higher carbon sequestration potential and stability in deep soil suggested that deep soil has a greater role on C sequestration in forest ecosystems.
Collapse
Affiliation(s)
- Chang Liao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,College of science, Tibet University, Lasa, China
| | - Lin Huang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pengyun Yue
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Qiuxiang Tian
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
27
|
Lu X. A meta-analysis of the effects of crop residue return on crop yields and water use efficiency. PLoS One 2020; 15:e0231740. [PMID: 32339184 PMCID: PMC7185903 DOI: 10.1371/journal.pone.0231740] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/30/2020] [Indexed: 11/21/2022] Open
Abstract
After harvesting agricultural crops, the residue can be returned to the soil as mulch. This study performed a meta-analysis of previous research to investigate the effects of crop residue return and other factors on crop yields and water use efficiency (WUE). Overall, the results show that crop residue return increases crop yields by 5.0% relative to crops grown without it. The greatest increases in yield for crops grown with returned residue were associated with average annual temperatures < 10 °C (yield increase = 7.6%), rainfall ≥ 800 mm (9.5%), plowing depth ≥ 20 cm (6.5%), corn crops (8.0%), growth of a single crop per year (10.1%), no irrigation (11.9%), nitrogen (N), and potassium (K) fertilization (20.0%), and low nitrogen application rates of 0–100 kg N ha-1 (10.8%). The effects of crop residue return on crop yields were found to vary according to the following soil properties: organic matter content ≥ 15 g kg-1 (yield increase = 9.4%), available nitrogen content ≥ 100 mg kg-1 (10.3%), and pH ≤ 6.5 (11.2%). The greatest magnitudes of increase in WUE associated with crop residue return were associated with corn (yield increase = 13.7%), medium nitrogen content (100–150 kg ha-1; 23.3%), high soil organic matter (≥ 15 g kg-1; 25.5%) and low air temperatures (< 10 °C; 19.9%). In addition, our results suggest that crop residue return might be most effective in increasing crop yields and WUE in corn crops, crops with a tillage depth ≥ 20 cm, crops grown with moderate nitrogen fertilization (0–150 kg ha-1), growth of a single crop per year, high soil organic matter content (≥ 15 g kg-1), and cold conditions (< 10 °C). Overall, the results of this meta-analysis suggest that crop residue return can increase crop yields and WUE, with the relationship being mainly affected by climatic conditions, plowing depth, fertilization management, crop types, and soil properties.
Collapse
Affiliation(s)
- Xingli Lu
- College of Agronomy, Ningxia University, Yinchuan, Ningxia, China
- * E-mail:
| |
Collapse
|
28
|
Chen J, Elsgaard L, van Groenigen KJ, Olesen JE, Liang Z, Jiang Y, Laerke PE, Zhang Y, Luo Y, Hungate BA, Sinsabaugh RL, Jørgensen U. Soil carbon loss with warming: New evidence from carbon-degrading enzymes. GLOBAL CHANGE BIOLOGY 2020; 26:1944-1952. [PMID: 31909849 DOI: 10.1111/gcb.14986] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Climate warming affects soil carbon (C) dynamics, with possible serious consequences for soil C stocks and atmospheric CO2 concentrations. However, the mechanisms underlying changes in soil C storage are not well understood, hampering long-term predictions of climate C-feedbacks. The activity of the extracellular enzymes ligninase and cellulase can be used to track changes in the predominant C sources of soil microbes and can thus provide mechanistic insights into soil C loss pathways. Here we show, using meta-analysis, that reductions in soil C stocks with warming are associated with increased ratios of ligninase to cellulase activity. Furthermore, whereas long-term (≥5 years) warming reduced the soil recalcitrant C pool by 14%, short-term warming had no significant effect. Together, these results suggest that warming stimulates microbial utilization of recalcitrant C pools, possibly exacerbating long-term climate-C feedbacks.
Collapse
Affiliation(s)
- Ji Chen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- Center for Circular Bioeconomy, Aarhus University, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Lars Elsgaard
- Department of Agroecology, Aarhus University, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Kees Jan van Groenigen
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Jørgen E Olesen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Zhi Liang
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Yu Jiang
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Poul E Laerke
- Department of Agroecology, Aarhus University, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Yuefang Zhang
- Jiangsu Academy of Agricultural Sciences, East China Scientific Observing and Experimental Station of Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Yiqi Luo
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Uffe Jørgensen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- Center for Circular Bioeconomy, Aarhus University, Tjele, Denmark
| |
Collapse
|
29
|
Han M, Zhu B. Changes in soil greenhouse gas fluxes by land use change from primary forest. GLOBAL CHANGE BIOLOGY 2020; 26:2656-2667. [PMID: 31930624 DOI: 10.1111/gcb.14993] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Primary forest conversion is a worldwide serious problem associated with human disturbance and climate change. Land use change from primary forest to plantation, grassland or agricultural land may lead to profound alteration in the emission of soil greenhouse gases (GHG). Here, we conducted a global meta-analysis concerning the effects of primary forest conversion on soil GHG emissions and explored the potential mechanisms from 101 studies. Our results showed that conversion of primary forest significantly decreased soil CO2 efflux and increased soil CH4 efflux, but had no effect on soil N2 O efflux. However, the effect of primary forest conversion on soil GHG emissions was not consistent across different types of land use change. For example, soil CO2 efflux did not respond to the conversion from primary forest to grassland. Soil N2 O efflux showed a prominent increase within the initial stage after conversion of primary forest and then decreased over time while the responses of soil CO2 and CH4 effluxes were consistently negative or positive across different elapsed time intervals. Moreover, either within or across all types of primary forest conversion, the response of soil CO2 efflux was mainly moderated by changes in soil microbial biomass carbon and root biomass while the responses of soil N2 O and CH4 effluxes were related to the changes in soil nitrate and soil aeration-related factors (soil water content and bulk density), respectively. Collectively, our findings highlight the significant effects of primary forest conversion on soil GHG emissions, enhance our knowledge on the potential mechanisms driving these effects and improve future models of soil GHG emissions after land use change from primary forest.
Collapse
Affiliation(s)
- Mengguang Han
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
30
|
Qian H, Huang S, Chen J, Wang L, Hungate BA, van Kessel C, Zhang J, Deng A, Jiang Y, van Groenigen KJ, Zhang W. Lower-than-expected CH 4 emissions from rice paddies with rising CO 2 concentrations. GLOBAL CHANGE BIOLOGY 2020; 26:2368-2376. [PMID: 32003939 DOI: 10.1111/gcb.14984] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Elevated atmospheric CO2 (eCO2 ) generally increases carbon input in rice paddy soils and stimulates the growth of methane-producing microorganisms. Therefore, eCO2 is widely expected to increase methane (CH4 ) emissions from rice agriculture, a major source of anthropogenic CH4 . Agricultural practices strongly affect CH4 emissions from rice paddies as well, but whether these practices modulate effects of eCO2 is unclear. Here we show, by combining a series of experiments and meta-analyses, that whereas eCO2 strongly increased CH4 emissions from paddies without straw incorporation, it tended to reduce CH4 emissions from paddy soils with straw incorporation. Our experiments also identified the microbial processes underlying these results: eCO2 increased methane-consuming microorganisms more strongly in soils with straw incorporation than in soils without straw, with the opposite pattern for methane-producing microorganisms. Accounting for the interaction between CO2 and straw management, we estimate that eCO2 increases global CH4 emissions from rice paddies by 3.7%, an order of magnitude lower than previous estimates. Our results suggest that the effect of eCO2 on CH4 emissions from rice paddies is smaller than previously thought and underline the need for judicious agricultural management to curb future CH4 emissions.
Collapse
Affiliation(s)
- Haoyu Qian
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shan Huang
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
| | - Jin Chen
- Soil and Fertilizer & Resources and Environmental Institute, Jiangxi Academy of Agricultural Science, Nanchang, China
| | - Ling Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Chris van Kessel
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Jun Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Aixing Deng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yu Jiang
- Jiangsu Collaborative Innovation Center for Modern Crop Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, China
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Kees Jan van Groenigen
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Weijian Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
31
|
Hu Z, Chen X, Yao J, Zhu C, Zhu J, Liu M. Plant-mediated effects of elevated CO 2 and rice cultivars on soil carbon dynamics in a paddy soil. THE NEW PHYTOLOGIST 2020; 225:2368-2379. [PMID: 31667850 DOI: 10.1111/nph.16298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Soil organic carbon (SOC) sequestration under elevated CO2 concentration (eCO2 ) is a function of carbon (C) input and C retention. Nitrogen (N) limitation in natural ecosystems can constrain plant responses to eCO2 and their subsequent effects on SOC, but the effect of eCO2 on SOC in N-enriched agroecosystems with cultivars highly responsive to eCO2 is largely unknown. We reported results of SOC dynamics from a field free-air CO2 enrichment experiment with two rice cultivars having distinct photosynthetic capacities under eCO2 . A reciprocal incubation experiment was further conducted to disentangle the effect of changes in litter quality and soil microbial community on litter-derived C dynamics. eCO2 significantly increased total SOC content, dissolved organic C and particulate organic C under the strongly responsive cultivar, likely due to enhanced organic C inputs originated from CO2 stimulation of shoot and root biomass. Increases in the residue C : N ratio and fungal abundance induced by eCO2 under the strongly responsive cultivar reduced C losses from decomposition, possibly through increasing microbial C use efficiency. Our findings suggest that applications of high-yielding cultivars may substantially enhance soil C sequestration in rice paddies under future CO2 scenarios.
Collapse
Affiliation(s)
- Zhengkun Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory for Solid Organic Waste Resource Utilization, Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, China
| | - Xiaoyun Chen
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory for Solid Organic Waste Resource Utilization, Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, China
| | - Junneng Yao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory for Solid Organic Waste Resource Utilization, Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, China
| | - Chunwu Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Manqiang Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory for Solid Organic Waste Resource Utilization, Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, China
| |
Collapse
|
32
|
Meng C, Tian D, Zeng H, Li Z, Chen HYH, Niu S. Global meta-analysis on the responses of soil extracellular enzyme activities to warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135992. [PMID: 31841928 DOI: 10.1016/j.scitotenv.2019.135992] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/30/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Soil enzymes play critical roles in the decomposition of organic matter and determine the availability of soil nutrients, however, there are significant uncertainties in regard to how enzymatic responses to global warming. To reveal the general response patterns and controlling factors of various extracellular enzyme activities (EEA), we collected data from 78 peer-reviewed papers to investigate the responses of extracellular enzyme activities (EEA), including β-1,4-glucosidase (BG), β-d-cellobiosidase (CBH), β-1,4-xylosidase (XYL), leucine amino peptidase (LAP), N-acetyl-glucosaminidase (NAG), urease (URE), phosphatase (PHO), peroxidase (PER), phenol oxidase (POX), and polyphenol oxidase (PPO), to experimental warming. Our results showed that warming treatments increased soil temperature by 1.9 °C on average. The oxidative EEA, calculated as the sum of PER, POX and PPO, was on average stimulated by 9.4% under warming. However, the responses of C acquisition EEA (the sum of BG, CBH and XYL), N acquisition EEA (the sum of LAP, NAG and URE), and P acquisition EEA to warming had large variations across studies. The warming effects on C, N, P acquisition EEA and oxidative EEA tended to increase with soil warming magnitude and duration as well as the mean annual temperature. The response of C acquisition EEA to warming was positively correlated with fungal biomass, while that of P acquisition EEA had positive relationships with fungi: bacteria ratios. The response of oxidative EEA was negatively correlated with the abundance of gram-positive bacterial biomass. Our results suggested that warming consistently stimulated oxidative EEA, but had diverse effects on hydrolytic EEA, which were dependent on the warming magnitude or duration, or environmental factors. The observed relationships between changes in microbial traits and extracellular enzymes suggested that microbial compositions drive changes in enzyme decomposition under warming. Thus, incorporation of microbial modification in biogeochemistry models is essential to better predict ecosystem carbon and nutrient dynamics.
Collapse
Affiliation(s)
- Cheng Meng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Hui Zeng
- Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Zhaolei Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, People's Republic of China
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; Department of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
33
|
Xu S, Sheng C, Tian C. Changing soil carbon: influencing factors, sequestration strategy and research direction. CARBON BALANCE AND MANAGEMENT 2020; 15:2. [PMID: 32067129 PMCID: PMC7227295 DOI: 10.1186/s13021-020-0137-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/08/2020] [Indexed: 05/28/2023]
Abstract
Soil carbon (C) plays a critical role in the global C cycle and has a profound effect on climate change. To obtain an in-depth and comprehensive understanding of global soil C changes and better manage soil C, all meta-analysis results published during 2001-2019 relative to soil C were collected and synthesized. The effects of 33 influencing factors on soil C were analyzed, compared and classified into 5 grades according to their effects on soil C. The effects of different categories of influencing factors, including land use change (LUC), management and climate change, on soil C and the underlying mechanism were compared and discussed. We propose that natural ecosystems have the capacity to buffer soil C changes and that increasing C inputs is one of the best measures to sequester C. Furthermore, a comparison between the meta-analyses and previous studies related to soil C based on bibliometric analysis suggested that studies on wetland soil C, soil C budgets and the effects of pollution and pesticides on soil C should be strengthened in future research.
Collapse
Affiliation(s)
- Shangqi Xu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Road, Changchun, 130102, China
| | - Chunlei Sheng
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Road, Changchun, 130102, China.
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Road, Changchun, 130102, China.
| |
Collapse
|
34
|
Ricard MF, Viglizzo EF. Improving carbon sequestration estimation through accounting carbon stored in grassland soil. MethodsX 2019; 7:100761. [PMID: 32021820 PMCID: PMC6992986 DOI: 10.1016/j.mex.2019.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/02/2019] [Indexed: 10/29/2022] Open
Abstract
Based on international guidelines, the elaboration of national carbon (C) budgets in many countries has tended to set aside the capacity of grazing lands to sequester C as soil organic carbon (SOC). A widely applied simple method assumes a steady state for SOC stocks in grasslands and a long-term equilibrium between annual C gains and losses. This article presents a theoretical method based on the annual conversion of belowground biomass into SOC to include the capacity of grazing-land soils to sequester C in greenhouse gases (GHG) calculations. Average figures from both methods can be combined with land-use/land-cover data to reassess the net C sequestration of the rural sector from a country. The results of said method were validated with empirical values based on peer-reviewed literature that provided annual data on SOC sequestration. This methodology offers important differences over pre-existing GHG landscape approach calculation methods: •improves the estimation about the capacity of grazing-land soils to sequester C assuming these lands are not in a steady state and•counts C gains when considering that grazing lands are managed at low livestock densities.
Collapse
Affiliation(s)
- M F Ricard
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa - Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza 109, L6300, Santa Rosa, La Pampa, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Uruguay 151 (L6300), La Pampa, Argentina
| | - E F Viglizzo
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa - Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza 109, L6300, Santa Rosa, La Pampa, Argentina.,GPS Grupo de Países Productores del Sur, Billinghurst 2565 - 4º floor (C1425DTY), Ciudad Autónoma de Buenos Aires, Argentina.,Universidad Austral, Paraguay 1950 (S2000FZF), Rosario, Santa Fe, Argentina
| |
Collapse
|
35
|
Viglizzo EF, Ricard MF, Taboada MA, Vázquez-Amábile G. Reassessing the role of grazing lands in carbon-balance estimations: Meta-analysis and review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:531-542. [PMID: 30682606 DOI: 10.1016/j.scitotenv.2019.01.130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 05/21/2023]
Abstract
Assuming a steady state between carbon (C) gains and losses, greenhouse gases (GHG) inventories that follow a widely used simplified procedure (IPCC Tier 1) tend to underestimate the capacity of soils in grazing-land to sequester C. In this study we compared the C balance reported by (i) national inventories that followed the simplified method (Tier 1) of IPCC (1996/2006), with (ii) an alternative estimation derived from the meta-analysis of science-based, peer-reviewed data. We used the global databases (i) EDGAR 4.2 to get data on GHG emissions due to land conversion and livestock/crop production, and (ii) HYDE 3.1 to obtain historical series on land-use/land cover (LULC). In terms of sequestration, our study was focused on C storage as soil organic carbon (SOC) in rural lands of four countries (Argentina, Brazil, Paraguay and Uruguay) within the so-called MERCOSUR region. Supported by a large body of scientific evidence, we hypothesized that C gains and losses in grazing lands are not in balance and that C gains tend to be higher than C losses at low livestock densities. We applied a two-way procedure to test our hypothesis: i) a theoretical one based on the annual conversion of belowground biomass into SOC; and ii) an empirical one supported by peer-reviewed data on SOC sequestration. Average figures from both methods were combined with LULC data to reassess the net C balance in the study countries. Our results show that grazing lands generate C surpluses that could not only offset rural emissions, but could also partially or totally offset the emissions of non-rural sectors. The potential of grazing lands to sequester and store soil C should be reconsidered in order to improve assessments in future GHG inventory reports.
Collapse
Affiliation(s)
- E F Viglizzo
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ciencias de la Tierra y Ambientales de La Pampa, Mendoza 109, L6302EPA, Santa Rosa, La Pampa, Argentina; GPS Grupo de Países Productores del Sur, Billinghurst 2564-4° floor, C1425DTZ Ciudad Autónoma de Buenos Aires, Argentina; Universidad Austral, Paraguay 1950, S2000FZF Rosario, Santa Fe, Argentina.
| | - M F Ricard
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ciencias de la Tierra y Ambientales de La Pampa, Mendoza 109, L6302EPA, Santa Rosa, La Pampa, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Uruguay 151, L6300 La Pampa, Argentina
| | - M A Taboada
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ciencias de la Tierra y Ambientales de La Pampa, Mendoza 109, L6302EPA, Santa Rosa, La Pampa, Argentina; Instituto de Suelos, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y de los Reseros s/n, B1686, Hurlingham, Buenos Aires, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martin 4453, C1417DSE Buenos Aires, Argentina
| | - G Vázquez-Amábile
- Asociación Argentina de Consorcios Regionales de Experimentación Agrícola, Av. Córdoba 1233-5° floor, C1055AAC Ciudad de Buenos Aires, Argentina; Facultad de Ciencias Agrarias y Forestales, Universidad de La Plata, Diagonal 113 N°469-3° floor, B1900 La Plata, Argentina
| |
Collapse
|
36
|
Xu Q, Jin J, Wang X, Armstrong R, Tang C. Susceptibility of soil organic carbon to priming after long-term CO 2 fumigation is mediated by soil texture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1112-1120. [PMID: 30677878 DOI: 10.1016/j.scitotenv.2018.11.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Elevated CO2 (eCO2) may enhance soil organic carbon (SOC) sequestration via greater input of photosynthetic carbon (C). However, greater rhizodeposits under eCO2 may stimulate microbial decomposition of native SOC. This study aimed to examine the status and stability of SOC in three Australian cropping soils after long-term CO2 enrichment. Samples (0-5 cm) of Chromosol, Vertosol and Calcarosol soils were collected from an 8-year Free-air CO2 Enrichment (SoilFACE) experiment and were used to examine SOC dynamics by physical fractionation and incubation with 13C-glucose. Compared to the ambient CO2 (aCO2) (390-400 μmol mol-1), 8 years of elevated CO2 (eCO2) (550 μmol mol-1) did not increase SOC concentration of all soils, but changed SOC distribution with 12% more C in coarse soil fractions and 5% less C in fine fractions. Elevated CO2 also enhanced the susceptibility of SOC to 13C-glucose-induced priming, but this effect was only significant in the coarse-textured Calcarosol topsoil. The eCO2 history increased labile C (coarse C fraction, +13%) and soil pH (+0.25 units), and decreased available N (-30%) in the Calcarosol, which stimulated microbial biomass C by 28%, leading to an enhanced priming effect. Despite with greater total primed C, the Chromosol that had the highest amount of native C, had lower primed C per unit of SOC when compared to the low-C Calcarosol. In conclusion, the effect of long-term eCO2 enrichment on soil C and N availability in cropping soils depended on soil type with the coarse-textured Calcarosol soil being more susceptible to substrate-induced decomposition of its SOC.
Collapse
Affiliation(s)
- Qiao Xu
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne, VIC 3086, Australia
| | - Jian Jin
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne, VIC 3086, Australia
| | - Xiaojuan Wang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne, VIC 3086, Australia
| | - Roger Armstrong
- Department of Economic Development, Jobs, Transport and Resources, Horsham, VIC 3401, Australia
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
37
|
Zhou G, Luo Q, Chen Y, He M, Zhou L, Frank D, He Y, Fu Y, Zhang B, Zhou X. Effects of livestock grazing on grassland carbon storage and release override impacts associated with global climate change. GLOBAL CHANGE BIOLOGY 2019; 25:1119-1132. [PMID: 30466147 DOI: 10.1111/gcb.14533] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Predicting future carbon (C) dynamics in grassland ecosystems requires knowledge of how grazing and global climate change (e.g., warming, elevated CO2 , increased precipitation, drought, and N fertilization) interact to influence C storage and release. Here, we synthesized data from 223 grassland studies to quantify the individual and interactive effects of herbivores and climate change on ecosystem C pools and soil respiration (Rs). Our results showed that grazing overrode global climate change factors in regulating grassland C storage and release (i.e., Rs). Specifically, grazing significantly decreased aboveground plant C pool (APCP), belowground plant C pool (BPCP), soil C pool (SCP), and Rs by 19.1%, 6.4%, 3.1%, and 4.6%, respectively, while overall effects of all global climate change factors increased APCP, BPCP, and Rs by 6.5%, 15.3%, and 3.4% but had no significant effect on SCP. However, the combined effects of grazing with global climate change factors also significantly decreased APCP, SCP, and Rs by 4.0%, 4.7%, and 2.7%, respectively but had no effect on BPCP. Most of the interactions between grazing and global climate change factors on APCP, BPCP, SCP, and Rs were additive instead of synergistic or antagonistic. Our findings highlight the dominant effects of grazing on C storage and Rs when compared with the suite of global climate change factors. Therefore, incorporating the dominant effect of herbivore grazing into Earth System Models is necessary to accurately predict climate-grassland feedbacks in the Anthropocene.
Collapse
Affiliation(s)
- Guiyao Zhou
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem Research, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Qin Luo
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem Research, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yajie Chen
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem Research, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Miao He
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem Research, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Lingyan Zhou
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem Research, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Douglas Frank
- Department of Biology, Syracuse University, Syracuse, New York
| | - Yanghui He
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem Research, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuling Fu
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem Research, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Baocheng Zhang
- College of Agriculture and Life Science, ZunYi Normal University, Zunyi, China
| | - Xuhui Zhou
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem Research, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| |
Collapse
|
38
|
Jiang Y, Qian H, Wang L, Feng J, Huang S, Hungate BA, van Kessel C, Horwath WR, Zhang X, Qin X, Li Y, Feng X, Zhang J, Deng A, Zheng C, Song Z, Hu S, van Groenigen KJ, Zhang W. Limited potential of harvest index improvement to reduce methane emissions from rice paddies. GLOBAL CHANGE BIOLOGY 2019; 25:686-698. [PMID: 30449058 DOI: 10.1111/gcb.14529] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/16/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Rice is a staple food for nearly half of the world's population, but rice paddies constitute a major source of anthropogenic CH4 emissions. Root exudates from growing rice plants are an important substrate for methane-producing microorganisms. Therefore, breeding efforts optimizing rice plant photosynthate allocation to grains, i.e., increasing harvest index (HI), are widely expected to reduce CH4 emissions with higher yield. Here we show, by combining a series of experiments, meta-analyses and an expert survey, that the potential of CH4 mitigation from rice paddies through HI improvement is in fact small. Whereas HI improvement reduced CH4 emissions under continuously flooded (CF) irrigation, it did not affect CH4 emissions in systems with intermittent irrigation (II). We estimate that future plant breeding efforts aimed at HI improvement to the theoretical maximum value will reduce CH4 emissions in CF systems by 4.4%. However, CF systems currently make up only a small fraction of the total rice growing area (i.e., 27% of the Chinese rice paddy area). Thus, to achieve substantial CH4 mitigation from rice agriculture, alternative plant breeding strategies may be needed, along with alternative management.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Institute of Applied Ecology, Nanjing Agricultural University, Nanjing, China
| | - Haoyu Qian
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Ling Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jinfei Feng
- China National Rice Research Institute, Hangzhou, China
| | - Shan Huang
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona
| | - Chris van Kessel
- Department of Plant Sciences, University of California, Davis, California
| | - William R Horwath
- Department of Land, Air & Water Resources, University of California, Davis, California
| | - Xingyue Zhang
- Department of Land, Air & Water Resources, University of California, Davis, California
| | - Xiaobo Qin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Yue Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Xiaomin Feng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Jun Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Aixing Deng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Chenyan Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Zhenwei Song
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina
| | | | - Weijian Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| |
Collapse
|
39
|
Jiang Y, Qian H, Huang S, Zhang X, Wang L, Zhang L, Shen M, Xiao X, Chen F, Zhang H, Lu C, Li C, Zhang J, Deng A, van Groenigen KJ, Zhang W. Acclimation of methane emissions from rice paddy fields to straw addition. SCIENCE ADVANCES 2019; 5:eaau9038. [PMID: 30746466 PMCID: PMC6357747 DOI: 10.1126/sciadv.aau9038] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 12/06/2018] [Indexed: 05/15/2023]
Abstract
Straw incorporation is a common long-term practice to improve soil fertility in croplands worldwide. However, straw amendments often increase methane (CH4) emissions from rice paddies, one of the main sources of anthropogenic CH4. Intergovernmental Panel on Climate Change (IPCC) methodologies to estimate CH4 emissions from rice agriculture assume that the effect of straw addition remains constant over time. Here, we show through a series of experiments and meta-analysis that these CH4 emissions acclimate. Effects of long-term (>5 years) straw application on CH4 emissions were, on average, 48% lower than IPCC estimates. Long-term straw incorporation increased soil methanotrophic abundance and rice root size, suggesting an increase in CH4 oxidation rates through improved O2 transport into the rhizosphere. Our results suggest that recent model projections may have overestimated CH4 emissions from rice agriculture and that CH4 emission estimates can be improved by considering the duration of straw incorporation and other management practices.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4 RJ, UK
| | - Haoyu Qian
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China
| | - Shan Huang
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xingyue Zhang
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA 95616, USA
| | - Ling Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Li Zhang
- Institute of Applied Ecology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingxing Shen
- Institute of Agricultural Sciences in Taihu Lake District, Jiangsu Academy of Agricultural Sciences, Suzhou 215100, China
| | - Xiaoping Xiao
- Institute of Soil and Fertilizer, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Fu Chen
- College of Agronomy and Biotechnology, Key Laboratory of Farming System, Ministry of Agriculture of China, China Agricultural University, Beijing 100193, China
| | - Hailin Zhang
- College of Agronomy and Biotechnology, Key Laboratory of Farming System, Ministry of Agriculture of China, China Agricultural University, Beijing 100193, China
| | - Changying Lu
- Institute of Agricultural Sciences in Taihu Lake District, Jiangsu Academy of Agricultural Sciences, Suzhou 215100, China
| | - Chao Li
- Institute of Soil and Fertilizer, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jun Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China
| | - Aixing Deng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China
| | - Kees Jan van Groenigen
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4 RJ, UK
- Corresponding author. (W.Z.); (K.J.V.G.)
| | - Weijian Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China
- Corresponding author. (W.Z.); (K.J.V.G.)
| |
Collapse
|
40
|
Chen J, Luo Y, García-Palacios P, Cao J, Dacal M, Zhou X, Li J, Xia J, Niu S, Yang H, Shelton S, Guo W, van Groenigen KJ. Differential responses of carbon-degrading enzyme activities to warming: Implications for soil respiration. GLOBAL CHANGE BIOLOGY 2018; 24:4816-4826. [PMID: 29999577 DOI: 10.1111/gcb.14394] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Extracellular enzymes catalyze rate-limiting steps in soil organic matter decomposition, and their activities (EEAs) play a key role in determining soil respiration (SR). Both EEAs and SR are highly sensitive to temperature, but their responses to climate warming remain poorly understood. Here, we present a meta-analysis on the response of soil cellulase and ligninase activities and SR to warming, synthesizing data from 56 studies. We found that warming significantly enhanced ligninase activity by 21.4% but had no effect on cellulase activity. Increases in ligninase activity were positively correlated with changes in SR, while no such relationship was found for cellulase. The warming response of ligninase activity was more closely related to the responses of SR than a wide range of environmental and experimental methodological factors. Furthermore, warming effects on ligninase activity increased with experiment duration. These results suggest that soil microorganisms sustain long-term increases in SR with warming by gradually increasing the degradation of the recalcitrant carbon pool.
Collapse
Affiliation(s)
- Ji Chen
- Center for Ecological and Environmental Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- Aarhus University Centre for Circular Bioeconomy, Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
- Department for Earth System Science, Tsinghua University, Beijing, China
| | - Pablo García-Palacios
- Departamento de Biología y Geología, Física y Química Inorgánica y Analítica, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Junji Cao
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
| | - Marina Dacal
- Departamento de Biología y Geología, Física y Química Inorgánica y Analítica, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Xuhui Zhou
- Center for Global Change and Ecological Forecasting, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Jianwei Li
- Department of Agriculture and Environmental Sciences, Tennessee State University, Nashville, Tennessee
| | - Jianyang Xia
- Center for Global Change and Ecological Forecasting, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Shuli Niu
- Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Huiyi Yang
- College of Engineering Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Shelby Shelton
- Department of Emergency Medicine, University of Colorado Denver, Denver, Colorado
| | - Wei Guo
- Department of Earth and Environmental Sciences, Xi'an Jiaotong University, Xi'an, China
| | | |
Collapse
|
41
|
Carrillo Y, Dijkstra F, LeCain D, Blumenthal D, Pendall E. Elevated CO2
and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria. Ecol Lett 2018; 21:1639-1648. [DOI: 10.1111/ele.13140] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/30/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Yolima Carrillo
- Hawkesbury Institute for the Environment; Western Sydney University; Penrith 2570 NSW Australia
| | - Feike Dijkstra
- Centre for Carbon, Water and Food; School of Life and Environmental Sciences; The University of Sydney; Camden 2570 NSW Australia
| | - Dan LeCain
- Rangeland Resources & Systems Research Unit; Agricultural Research Service; United States Department of Agriculture; Fort Collins Colorado 80526 USA
| | - Dana Blumenthal
- Rangeland Resources & Systems Research Unit; Agricultural Research Service; United States Department of Agriculture; Fort Collins Colorado 80526 USA
| | - Elise Pendall
- Hawkesbury Institute for the Environment; Western Sydney University; Penrith 2570 NSW Australia
| |
Collapse
|
42
|
Mayer A, Hausfather Z, Jones AD, Silver WL. The potential of agricultural land management to contribute to lower global surface temperatures. SCIENCE ADVANCES 2018; 4:eaaq0932. [PMID: 30167456 PMCID: PMC6114992 DOI: 10.1126/sciadv.aaq0932] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 07/23/2018] [Indexed: 06/01/2023]
Abstract
Removal of atmospheric carbon dioxide (CO2) combined with emission reduction is necessary to keep climate warming below the internationally agreed upon 2°C target. Soil organic carbon sequestration through agricultural management has been proposed as a means to lower atmospheric CO2 concentration, but the magnitude needed to meaningfully lower temperature is unknown. We show that sequestration of 0.68 Pg C year-1 for 85 years could lower global temperature by 0.1°C in 2100 when combined with a low emission trajectory [Representative Concentration Pathway (RCP) 2.6]. This value is potentially achievable using existing agricultural management approaches, without decreasing land area for food production. Existing agricultural mitigation approaches could lower global temperature by up to 0.26°C under RCP 2.6 or as much as 25% of remaining warming to 2°C. This declines to 0.14°C under RCP 8.5. Results were sensitive to assumptions regarding the duration of carbon sequestration rates, which is poorly constrained by data. Results provide a framework for the potential role of agricultural soil organic carbon sequestration in climate change mitigation.
Collapse
Affiliation(s)
- Allegra Mayer
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zeke Hausfather
- Energy and Resources Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew D. Jones
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94705, USA
| | - Whendee L. Silver
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
43
|
Chen J, Luo Y, van Groenigen KJ, Hungate BA, Cao J, Zhou X, Wang RW. A keystone microbial enzyme for nitrogen control of soil carbon storage. SCIENCE ADVANCES 2018; 4:eaaq1689. [PMID: 30140736 PMCID: PMC6105232 DOI: 10.1126/sciadv.aaq1689] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 07/15/2018] [Indexed: 05/18/2023]
Abstract
Agricultural and industrial activities have increased atmospheric nitrogen (N) deposition to ecosystems worldwide. N deposition can stimulate plant growth and soil carbon (C) input, enhancing soil C storage. Changes in microbial decomposition could also influence soil C storage, yet this influence has been difficult to discern, partly because of the variable effects of added N on the microbial enzymes involved. We show, using meta-analysis, that added N reduced the activity of lignin-modifying enzymes (LMEs), and that this N-induced enzyme suppression was associated with increases in soil C. In contrast, N-induced changes in cellulase activity were unrelated to changes in soil C. Moreover, the effects of added soil N on LME activity accounted for more of the variation in responses of soil C than a wide range of other environmental and experimental factors. Our results suggest that, through responses of a single enzyme system to added N, soil microorganisms drive long-term changes in soil C accumulation. Incorporating this microbial influence on ecosystem biogeochemistry into Earth system models could improve predictions of ecosystem C dynamics.
Collapse
Affiliation(s)
- Ji Chen
- Center for Ecological and Environmental Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an 710072, China
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG) and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
- Aarhus University Centre for Circular Bioeconomy, Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - Yiqi Luo
- Department for Earth System Science, Tsinghua University, Beijing 100084, China
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, AZ 86011, USA
- Corresponding author.
| | - Kees Jan van Groenigen
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, UK
| | - Bruce A. Hungate
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, AZ 86011, USA
| | - Junji Cao
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG) and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
- Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xuhui Zhou
- Center for Global Change and Ecological Forecasting, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200437, China
| | - Rui-wu Wang
- Center for Ecological and Environmental Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
44
|
Chaves JE, Melis A. Engineering isoprene synthesis in cyanobacteria. FEBS Lett 2018; 592:2059-2069. [PMID: 29689603 DOI: 10.1002/1873-3468.13052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/21/2018] [Accepted: 04/05/2018] [Indexed: 11/05/2022]
Abstract
The renewable production of isoprene (Isp) hydrocarbons, to serve as fuel and synthetic chemistry feedstock, has attracted interest in the field recently. Isp (C5 H8 ) is naturally produced from sunlight, CO2 and H2 O photosynthetically in terrestrial plant chloroplasts via the terpenoid biosynthetic pathway and emitted in the atmosphere as a response to heat stress. Efforts to institute a high capacity continuous and renewable process have included heterologous expression of the Isp synthesis pathway in photosynthetic microorganisms. This review examines the premise and promise emanating from this relatively new research effort. Also examined are the metabolic engineering approaches applied in the quest of renewable Isp hydrocarbons production, the progress achieved so far, and barriers encountered along the way.
Collapse
Affiliation(s)
- Julie E Chaves
- Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Anastasios Melis
- Plant and Microbial Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
45
|
Shifting from a fertilization-dominated to a warming-dominated period. Nat Ecol Evol 2017; 1:1438-1445. [DOI: 10.1038/s41559-017-0274-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/10/2017] [Indexed: 11/08/2022]
|