1
|
Lin V, Cheung M, Gowthaman R, Eisenberg M, Baker B, Pierce B. TCR3d 2.0: expanding the T cell receptor structure database with new structures, tools and interactions. Nucleic Acids Res 2025; 53:D604-D608. [PMID: 39329260 PMCID: PMC11701517 DOI: 10.1093/nar/gkae840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Recognition of antigens by T cell receptors (TCRs) is a key component of adaptive immunity. Understanding the structures of these TCR interactions provides major insights into immune protection and diseases, and enables design of therapeutics, vaccines and predictive modeling algorithms. Previously, we released TCR3d, a database and resource for structures of TCRs and their recognition. Due to the growth of available structures and categories of complexes, the content of TCR3d has expanded substantially in the past 5 years. This expansion includes new tables dedicated to TCR mimic antibody complex structures, TCR-CD3 complexes and annotated Class I and II peptide-MHC complexes. Additionally, tools are available for users to calculate docking geometries for input TCR and TCR mimic complex structures. The core tables of TCR-peptide-MHC complexes have grown by 50%, and include binding affinity data for experimentally determined structures. These major content and feature updates enhance TCR3d as a resource for immunology, therapeutics and structural biology research, and enable advanced approaches for predictive TCR modeling and design. TCR3d is available at: https://tcr3d.ibbr.umd.edu.
Collapse
Affiliation(s)
- Valerie Lin
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Melyssa Cheung
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ragul Gowthaman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Maya Eisenberg
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brian G Pierce
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Pressley KR, Schwegman L, De Oca Arena MM, Huizar CC, Zamvil SS, Forsthuber TG. HLA-transgenic mouse models to study autoimmune central nervous system diseases. Autoimmunity 2024; 57:2387414. [PMID: 39167553 PMCID: PMC11470778 DOI: 10.1080/08916934.2024.2387414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
It is known that certain human leukocyte antigen (HLA) genes are associated with autoimmune central nervous system (CNS) diseases, such as multiple sclerosis (MS), but their exact role in disease susceptibility and etiopathogenesis remains unclear. The best studied HLA-associated autoimmune CNS disease is MS, and thus will be the primary focus of this review. Other HLA-associated autoimmune CNS diseases, such as autoimmune encephalitis and neuromyelitis optica will be discussed. The lack of animal models to accurately capture the complex human autoimmune response remains a major challenge. HLA transgenic (tg) mice provide researchers with powerful tools to investigate the underlying mechanisms promoting susceptibility and progression of HLA-associated autoimmune CNS diseases, as well as for elucidating the myelin epitopes potentially targeted by T cells in autoimmune disease patients. We will discuss the potential role(s) of autoimmune disease-associated HLA alleles in autoimmune CNS diseases and highlight information provided by studies using HLA tg mice to investigate the underlying pathological mechanisms and opportunities to use these models for development of novel therapies.
Collapse
Affiliation(s)
- Kyle R. Pressley
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Lance Schwegman
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | | - Carol Chase Huizar
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Scott S. Zamvil
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
3
|
Wu D, Yin R, Chen G, Ribeiro-Filho HV, Cheung M, Robbins PF, Mariuzza RA, Pierce BG. Structural characterization and AlphaFold modeling of human T cell receptor recognition of NRAS cancer neoantigens. SCIENCE ADVANCES 2024; 10:eadq6150. [PMID: 39576860 PMCID: PMC11584006 DOI: 10.1126/sciadv.adq6150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024]
Abstract
T cell receptors (TCRs) that recognize cancer neoantigens are important for anticancer immune responses and immunotherapy. Understanding the structural basis of TCR recognition of neoantigens provides insights into their exquisite specificity and can enable design of optimized TCRs. We determined crystal structures of a human TCR in complex with NRAS Q61K and Q61R neoantigen peptides and HLA-A1 major histocompatibility complex (MHC), revealing the molecular underpinnings for dual recognition and specificity versus wild-type NRAS peptide. We then used multiple versions of AlphaFold to model the corresponding complex structures, given the challenge of immune recognition for such methods. One implementation of AlphaFold2 (TCRmodel2) with additional sampling was able to generate accurate models of the complexes, while AlphaFold3 also showed strong performance, although success was lower for other complexes. This study provides insights into TCR recognition of a shared cancer neoantigen as well as the utility and practical considerations for using AlphaFold to model TCR-peptide-MHC complexes.
Collapse
MESH Headings
- Humans
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/chemistry
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/metabolism
- Membrane Proteins/chemistry
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Models, Molecular
- GTP Phosphohydrolases/metabolism
- GTP Phosphohydrolases/chemistry
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/immunology
- Protein Binding
- Neoplasms/immunology
- Neoplasms/genetics
- Neoplasms/metabolism
- Crystallography, X-Ray
- Protein Conformation
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
Collapse
Affiliation(s)
- Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Rui Yin
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Helder V. Ribeiro-Filho
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas 13083-100, Brazil
| | - Melyssa Cheung
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Paul F. Robbins
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Roy A. Mariuzza
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Brian G. Pierce
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
4
|
Deng S, Xu Z, Wang M, Hu J, Liu Z, Zhu F, Zheng P, Kombe Kombe AJ, Zhang H, Wu S, Jin T. Structural insights into immune escape at killer T cell epitope by SARS-CoV-2 Spike Y453F variants. J Biol Chem 2024; 300:107563. [PMID: 39002680 PMCID: PMC11342781 DOI: 10.1016/j.jbc.2024.107563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
CD8+ T cell immunity, mediated by human leukocyte antigen (HLA) and T cell receptor (TCR), plays a critical role in conferring immune memory and protection against viral pathogens. The emergence of SARS-CoV-2 variants poses a serious challenge to the efficacy of current vaccines. Whereas numerous SARS-CoV-2 mutations associated with immune escape from CD8+ T cells have been documented, the molecular effects of most mutations on epitope-specific TCR recognition remain largely unexplored. Here, we studied an HLA-A24-restricted NYN epitope (Spike448-456) that elicits broad CD8+ T cell responses in COVID-19 patients characterized by a common TCR repertoire. Four natural mutations, N450K, L452Q, L452R, and Y453F, arose within the NYN epitope and have been transmitted in certain viral lineages. Our findings indicate that these mutations have minimal impact on the epitope's presentation by cell surface HLA, yet they diminish the affinities of their respective peptide-HLA complexes (pHLAs) for NYN peptide-specific TCRs, particularly L452R and Y453F. Furthermore, we determined the crystal structure of HLA-A24 loaded with the Y453F peptide (NYNYLFRLF), and subsequently a ternary structure of the public TCRNYN-I complexed to the original NYN-HLA-A24 (NYNYLYRLF). Our structural analysis unveiled that despite competent presentation by HLA, the mutant Y453F peptide failed to establish a stable TCR-pHLA ternary complex due to reduced peptide: TCR contacts. This study supports the idea that cellular immunity restriction is an important driving force behind viral evolution.
Collapse
MESH Headings
- Humans
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- SARS-CoV-2/immunology
- Immune Evasion
- CD8-Positive T-Lymphocytes/immunology
- COVID-19/immunology
- COVID-19/virology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/chemistry
- Mutation
- Crystallography, X-Ray
Collapse
Affiliation(s)
- Shasha Deng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Zhihao Xu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meihua Wang
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Hu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peiyi Zheng
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | - Songquan Wu
- College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, P.R. China; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; College of Medicine, Lishui University, Lishui, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China.
| |
Collapse
|
5
|
Patel A, Kutuzov MA, Dustin ML, van der Merwe PA, Dushek O. Regulation of temporal cytokine production by co-stimulation receptors in TCR-T cells is lost in CAR-T cells. IMMUNOTHERAPY ADVANCES 2024; 4:ltae004. [PMID: 38978751 PMCID: PMC11228853 DOI: 10.1093/immadv/ltae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
CD8+ T cells contribute to immune responses by producing cytokines when their T-cell receptors (TCRs) recognise peptide antigens on major-histocompability-complex class I. However, excessive cytokine production can be harmful. For example, cytokine release syndrome is a common toxicity observed in treatments that activate T cells, including chimeric antigen receptor (CAR)-T-cell therapy. While the engagement of costimulatory receptors is well known to enhance cytokine production, we have limited knowledge of their ability to regulate the kinetics of cytokine production by CAR-T cells. Here we compare early (0-12 h) and late (12-20 h) production of IFN-gg, IL-2, and TNF-a production by T cells stimulated via TCR or CARs in the presence or absence ligands for CD2, LFA-1, CD28, CD27, and 4-1BB. For T cells expressing TCRs and 1st-generation CARs, activation by antigen alone was sufficient to stimulate early cytokine production, while co-stimulation by CD2 and 4-1BB was required to maintain late cytokine production. In contrast, T cells expressing 2nd-generation CARs, which have intrinsic costimulatory signalling motifs, produce high levels of cytokines in both early and late periods in the absence of costimulatory receptor ligands. Losing the requirement for costimulation for sustained cytokine production may contribute to the effectiveness and/or toxicity of 2nd-generation CAR-T-cell therapy.
Collapse
Affiliation(s)
- Ashna Patel
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Mikhail A Kutuzov
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Michael L Dustin
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | | | - Omer Dushek
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
6
|
Wu D, Yin R, Chen G, Ribeiro-Filho HV, Cheung M, Robbins PF, Mariuzza RA, Pierce BG. Structural characterization and AlphaFold modeling of human T cell receptor recognition of NRAS cancer neoantigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595215. [PMID: 38826362 PMCID: PMC11142219 DOI: 10.1101/2024.05.21.595215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
T cell receptors (TCRs) that recognize cancer neoantigens are important for anti-cancer immune responses and immunotherapy. Understanding the structural basis of TCR recognition of neoantigens provides insights into their exquisite specificity and can enable design of optimized TCRs. We determined crystal structures of a human TCR in complex with NRAS Q61K and Q61R neoantigen peptides and HLA-A1 MHC, revealing the molecular underpinnings for dual recognition and specificity versus wild-type NRAS peptide. We then used multiple versions of AlphaFold to model the corresponding complex structures, given the challenge of immune recognition for such methods. Interestingly, one implementation of AlphaFold2 (TCRmodel2) was able to generate accurate models of the complexes, while AlphaFold3 also showed strong performance, although success was lower for other complexes. This study provides insights into TCR recognition of a shared cancer neoantigen, as well as the utility and practical considerations for using AlphaFold to model TCR-peptide-MHC complexes.
Collapse
Affiliation(s)
- Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Rui Yin
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Helder V. Ribeiro-Filho
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas 13083-100, Brazil
| | - Melyssa Cheung
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Paul F. Robbins
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Roy A. Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Brian G. Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
7
|
Chen J, Zhao B, Lin S, Sun H, Mao X, Wang M, Chu Y, Hong L, Wei D, Li M, Xiong Y. TEPCAM: Prediction of T-cell receptor-epitope binding specificity via interpretable deep learning. Protein Sci 2024; 33:e4841. [PMID: 37983648 PMCID: PMC10731497 DOI: 10.1002/pro.4841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
The recognition of T-cell receptor (TCR) on the surface of T cell to specific epitope presented by the major histocompatibility complex is the key to trigger the immune response. Identifying the binding rules of TCR-epitope pair is crucial for developing immunotherapies, including neoantigen vaccine and drugs. Accurate prediction of TCR-epitope binding specificity via deep learning remains challenging, especially in test cases which are unseen in the training set. Here, we propose TEPCAM (TCR-EPitope identification based on Cross-Attention and Multi-channel convolution), a deep learning model that incorporates self-attention, cross-attention mechanism, and multi-channel convolution to improve the generalizability and enhance the model interpretability. Experimental results demonstrate that our model outperformed several state-of-the-art models on two challenging tasks including a strictly split dataset and an external dataset. Furthermore, the model can learn some interaction patterns between TCR and epitope by extracting the interpretable matrix from cross-attention layer and mapping them to the three-dimensional structures. The source code and data are freely available at https://github.com/Chenjw99/TEPCAM.
Collapse
Affiliation(s)
- Junwei Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Bowen Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shenggeng Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Heqi Sun
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xueying Mao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Meng Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Yanyi Chu
- Department of PathologyStanford University School of MedicineStandfordCaliforniaUSA
| | - Liang Hong
- Institute of Natural Sciences, Shanghai Jiao Tong UniversityShanghaiChina
- Artificial Intelligence Biomedical Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong UniversityShanghaiChina
| | - Dong‐Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Artificial Intelligence Biomedical Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
8
|
Wither MJ, White WL, Pendyala S, Leanza PJ, Fowler DM, Kueh HY. Antigen perception in T cells by long-term Erk and NFAT signaling dynamics. Proc Natl Acad Sci U S A 2023; 120:e2308366120. [PMID: 38113261 PMCID: PMC10756264 DOI: 10.1073/pnas.2308366120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023] Open
Abstract
Immune system threat detection hinges on T cells' ability to perceive varying peptide-major histocompatibility complex (pMHC) antigens. As the Erk and NFAT pathways link T cell receptor engagement to gene regulation, their signaling dynamics may convey information about pMHC inputs. To test this idea, we developed a dual reporter mouse strain and a quantitative imaging assay that, together, enable simultaneous monitoring of Erk and NFAT dynamics in live T cells over day-long timescales as they respond to varying pMHC inputs. Both pathways initially activate uniformly across various pMHC inputs but diverge only over longer (9+ h) timescales, enabling independent encoding of pMHC affinity and dose. These late signaling dynamics are decoded via multiple temporal and combinatorial mechanisms to generate pMHC-specific transcriptional responses. Our findings underscore the importance of long timescale signaling dynamics in antigen perception and establish a framework for understanding T cell responses under diverse contexts.
Collapse
Affiliation(s)
- Matthew J. Wither
- University of Washington, Department of Bioengineering, Seattle, WA98195
| | - William L. White
- University of Washington, Department of Bioengineering, Seattle, WA98195
| | - Sriram Pendyala
- University of Washington, Department of Genome Sciences, Seattle, WA98195
| | - Paul J. Leanza
- University of Washington, Department of Bioengineering, Seattle, WA98195
| | - Douglas M. Fowler
- University of Washington, Department of Genome Sciences, Seattle, WA98195
| | - Hao Yuan Kueh
- University of Washington, Department of Bioengineering, Seattle, WA98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA98109
| |
Collapse
|
9
|
Mariuzza RA, Wu D, Pierce BG. Structural basis for T cell recognition of cancer neoantigens and implications for predicting neoepitope immunogenicity. Front Immunol 2023; 14:1303304. [PMID: 38045695 PMCID: PMC10693334 DOI: 10.3389/fimmu.2023.1303304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Adoptive cell therapy (ACT) with tumor-specific T cells has been shown to mediate durable cancer regression. Tumor-specific T cells are also the basis of other therapies, notably cancer vaccines. The main target of tumor-specific T cells are neoantigens resulting from mutations in self-antigens over the course of malignant transformation. The detection of neoantigens presents a major challenge to T cells because of their high structural similarity to self-antigens, and the need to avoid autoimmunity. How different a neoantigen must be from its wild-type parent for it to induce a T cell response is poorly understood. Here we review recent structural and biophysical studies of T cell receptor (TCR) recognition of shared cancer neoantigens derived from oncogenes, including p53R175H, KRASG12D, KRASG12V, HHATp8F, and PIK3CAH1047L. These studies have revealed that, in some cases, the oncogenic mutation improves antigen presentation by strengthening peptide-MHC binding. In other cases, the mutation is detected by direct interactions with TCR, or by energetically driven or other indirect strategies not requiring direct TCR contacts with the mutation. We also review antibodies designed to recognize peptide-MHC on cell surfaces (TCR-mimic antibodies) as an alternative to TCRs for targeting cancer neoantigens. Finally, we review recent computational advances in this area, including efforts to predict neoepitope immunogenicity and how these efforts may be advanced by structural information on peptide-MHC binding and peptide-MHC recognition by TCRs.
Collapse
Affiliation(s)
- Roy A. Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, United States
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Brian G. Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, United States
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
10
|
Yamamoto H, Miyashita Y, Minamiguchi H, Hosomichi K, Yoshida S, Kioka H, Shinomiya H, Nagata H, Onoue K, Kawasaki M, Kuramoto Y, Nomura A, Toma Y, Watanabe T, Yamada T, Ishihara Y, Nagata M, Kato H, Hakui H, Saito Y, Asano Y, Sakata Y. Human leukocyte antigen-DQ risk heterodimeric haplotypes of left ventricular dysfunction in cardiac sarcoidosis: an autoimmune view of its role. Sci Rep 2023; 13:19767. [PMID: 37957180 PMCID: PMC10643531 DOI: 10.1038/s41598-023-46915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 11/07/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiac sarcoidosis (CS) is the scarring of heart muscles by autoimmunity, leading to heart abnormalities and patients with sarcoidosis with cardiac involvements have poor prognoses. Due to the small number of patients, it is difficult to stratify all patients of CS by human leukocyte antigen (HLA) analysis. We focused on the structure of antigen-recognizing pockets in heterodimeric HLA-class II, in addition to DNA sequences, and extracted high-affinity combinations of antigenic epitopes from candidate autoantigen proteins and HLA. Four HLA heterodimer-haplotypes (DQA1*05:03/05:05/05:06/05:08-DQB1*03:01) were identified in 10 of 68 cases. Nine of the 10 patients had low left ventricular ejection fraction (< 50%). Fourteen amino-acid sequences constituting four HLA anchor pockets encoded by the HLA haplotypes were all common, suggesting DQA1*05:0X-DQB1*03:01 exhibit one group of heterodimeric haplotypes. The heterodimeric haplotypes recognized eight epitopes from different proteins. Assuming that autoimmune mechanisms might be activated by molecular mimicry, we searched for bacterial species having peptide sequences homologous to the eight epitopes. Within the peptide epitopes form the SLC25A4 and DSG2, high-homology sequences were found in Cutibacterium acnes and Mycobacterium tuberculosis, respectively. In this study, we detected the risk heterodimeric haplotypes of ventricular dysfunction in CS by searching for high-affinity HLA-class II and antigenic epitopes from candidate cardiac proteins.
Collapse
Affiliation(s)
- Hironori Yamamoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yohei Miyashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Hitoshi Minamiguchi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Shohei Yoshida
- Department of Cardiovascular Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hidetaka Kioka
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruki Shinomiya
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruno Nagata
- Department of Cardiovascular Medicine, University of the Ryukyus Graduate School of Medicine, Nakagami, Okinawa, 903-0215, Japan
| | - Kenji Onoue
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Masato Kawasaki
- Department of Cardiology, Osaka General Medical Center, Osaka, Osaka, 558-8558, Japan
| | - Yuki Kuramoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akihiro Nomura
- Innovative Research Center, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8641, Japan
| | - Yuichiro Toma
- Department of Cardiovascular Medicine, University of the Ryukyus Graduate School of Medicine, Nakagami, Okinawa, 903-0215, Japan
| | - Tetsuya Watanabe
- Department of Cardiology, Osaka General Medical Center, Osaka, Osaka, 558-8558, Japan
| | - Takahisa Yamada
- Department of Cardiology, Osaka General Medical Center, Osaka, Osaka, 558-8558, Japan
| | - Yasuki Ishihara
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- The 1st Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Miho Nagata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Medical Ethics and Medical Genetics, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, 606-8501, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hideyuki Hakui
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Prefecture Seiwa Medical Center, Nara, Nara, 636-0802, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, 564-8565, Japan.
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Choy C, Chen J, Li J, Gallagher DT, Lu J, Wu D, Zou A, Hemani H, Baptiste BA, Wichmann E, Yang Q, Ciffelo J, Yin R, McKelvy J, Melvin D, Wallace T, Dunn C, Nguyen C, Chia CW, Fan J, Ruffolo J, Zukley L, Shi G, Amano T, An Y, Meirelles O, Wu WW, Chou CK, Shen RF, Willis RA, Ko MSH, Liu YT, De S, Pierce BG, Ferrucci L, Egan J, Mariuzza R, Weng NP. SARS-CoV-2 infection establishes a stable and age-independent CD8 + T cell response against a dominant nucleocapsid epitope using restricted T cell receptors. Nat Commun 2023; 14:6725. [PMID: 37872153 PMCID: PMC10593757 DOI: 10.1038/s41467-023-42430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
The resolution of SARS-CoV-2 replication hinges on cell-mediated immunity, wherein CD8+ T cells play a vital role. Nonetheless, the characterization of the specificity and TCR composition of CD8+ T cells targeting non-spike protein of SARS-CoV-2 before and after infection remains incomplete. Here, we analyzed CD8+ T cells recognizing six epitopes from the SARS-CoV-2 nucleocapsid (N) protein and found that SARS-CoV-2 infection slightly increased the frequencies of N-recognizing CD8+ T cells but significantly enhanced activation-induced proliferation compared to that of the uninfected donors. The frequencies of N-specific CD8+ T cells and their proliferative response to stimulation did not decrease over one year. We identified the N222-230 peptide (LLLDRLNQL, referred to as LLL thereafter) as a dominant epitope that elicited the greatest proliferative response from both convalescent and uninfected donors. Single-cell sequencing of T cell receptors (TCR) from LLL-specific CD8+ T cells revealed highly restricted Vα gene usage (TRAV12-2) with limited CDR3α motifs, supported by structural characterization of the TCR-LLL-HLA-A2 complex. Lastly, transcriptome analysis of LLL-specific CD8+ T cells from donors who had expansion (expanders) or no expansion (non-expanders) after in vitro stimulation identified increased chromatin modification and innate immune functions of CD8+ T cells in non-expanders. These results suggests that SARS-CoV-2 infection induces LLL-specific CD8+ T cell responses with a restricted TCR repertoire.
Collapse
Affiliation(s)
- Cecily Choy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Joseph Chen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jiangyuan Li
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - D Travis Gallagher
- National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Jian Lu
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Daichao Wu
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Ainslee Zou
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Humza Hemani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Beverly A Baptiste
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Emily Wichmann
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Qian Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jeffrey Ciffelo
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Rui Yin
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Julia McKelvy
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Denise Melvin
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Tonya Wallace
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Christopher Dunn
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Cuong Nguyen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Chee W Chia
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jinshui Fan
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jeannie Ruffolo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Linda Zukley
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | | | | | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Osorio Meirelles
- Laboratory of Epidemiology & Population Sciences, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Wells W Wu
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Silver Spring, MD, USA
| | - Chao-Kai Chou
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Silver Spring, MD, USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Silver Spring, MD, USA
| | - Richard A Willis
- NIH Tetramer Core Facility at Emory University, Atlanta, GA, USA
| | | | | | - Supriyo De
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Brian G Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Josephine Egan
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Roy Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Nan-Ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA.
| |
Collapse
|
12
|
Ogata S, Tsuji R, Moritaka A, Ito S, Mochizuki S. Modification of the antigenicity of cancer cells by conjugates consisting of hyaluronic acid and foreign antigens. Biomater Sci 2023; 11:5809-5818. [PMID: 37522638 DOI: 10.1039/d3bm00439b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Tumor-specific cytotoxic T-lymphocytes (CTLs) recognize tumor-associated antigens presented on major histocompatibility complex (MHC) class I molecules. However, it is difficult to induce potent CTLs by vaccination because the antigenicity is not so high, compared with that of foreign antigens derived from viruses and microbes. The affinity of binding to MHC class I molecules is proportional to the antigenicity of the antigen that they are presenting. Here, we prepared several conjugates consisting of hyaluronic acid (HA) as a carrier to cancer cells and ovalbumin (OVA) as a foreign protein and changed the antigens on cancer cells from intrinsic antigens to OVA fragments. The conjugate containing multiple HA and OVA molecules (100k4HA-3OVA) adopted a highly condensed structure and was well recognized by recombinant CD44 molecules in quartz crystal microbalance analysis and incorporated into cancer cells (CT26 cells). A mixture of CT26 cells treated with 100k4HA-3OVA and splenocytes including OVA-specific CTLs induced abundant secretion of IFN-γ into the supernatant. At 48 h after mixing with the CTLs, almost all CT26 cells had died. These results indicate that 100k4HA-3OVA is actively internalized into the cells through interaction between HA and CD44. Subsequently, CT26 cells present not only self-antigens, but also OVA fragments on MHC class I molecules and are recognized by OVA-specific CTLs. We thus succeeded in modifying the antigenicity from self- to non-self-antigens on cancer cells. Therefore, this foreign-antigen delivery using HA to cancer cells, followed by antigen replacement, could be used as a novel strategy for treating cancers.
Collapse
Affiliation(s)
- Soichi Ogata
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan.
| | - Reika Tsuji
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan.
| | - Atsushi Moritaka
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan.
| | - Shoya Ito
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan.
| | - Shinichi Mochizuki
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan.
| |
Collapse
|
13
|
Wither MJ, White WL, Pendyala S, Leanza PJ, Fowler D, Kueh HY. Antigen perception in T cells by long-term Erk and NFAT signaling dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543260. [PMID: 37333368 PMCID: PMC10274683 DOI: 10.1101/2023.06.01.543260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Immune system threat detection hinges on T cells' ability to perceive varying peptide major-histocompatibility complex (pMHC) antigens. As the Erk and NFAT pathways link T cell receptor engagement to gene regulation, their signaling dynamics may convey information about pMHC inputs. To test this idea, we developed a dual reporter mouse strain and a quantitative imaging assay that, together, enable simultaneous monitoring of Erk and NFAT dynamics in live T cells over day-long timescales as they respond to varying pMHC inputs. Both pathways initially activate uniformly across various pMHC inputs, but diverge only over longer (9+ hrs) timescales, enabling independent encoding of pMHC affinity and dose. These late signaling dynamics are decoded via multiple temporal and combinatorial mechanisms to generate pMHC-specific transcriptional responses. Our findings underscore the importance of long timescale signaling dynamics in antigen perception, and establish a framework for understanding T cell responses under diverse contexts. SIGNIFICANCE STATEMENT To counter diverse pathogens, T cells mount distinct responses to varying peptide-major histocompatibility complex ligands (pMHCs). They perceive the affinity of pMHCs for the T cell receptor (TCR), which reflects its foreignness, as well as pMHC abundance. By tracking signaling responses in single living cells to different pMHCs, we find that T cells can independently perceive pMHC affinity vs dose, and encode this information through the dynamics of Erk and NFAT signaling pathways downstream of the TCR. These dynamics are jointly decoded by gene regulatory mechanisms to produce pMHC-specific activation responses. Our work reveals how T cells can elicit tailored functional responses to diverse threats and how dysregulation of these responses may lead to immune pathologies.
Collapse
|
14
|
Yin R, Ribeiro-Filho HV, Lin V, Gowthaman R, Cheung M, Pierce BG. TCRmodel2: high-resolution modeling of T cell receptor recognition using deep learning. Nucleic Acids Res 2023:7151345. [PMID: 37140040 DOI: 10.1093/nar/gkad356] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/08/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023] Open
Abstract
The cellular immune system, which is a critical component of human immunity, uses T cell receptors (TCRs) to recognize antigenic proteins in the form of peptides presented by major histocompatibility complex (MHC) proteins. Accurate definition of the structural basis of TCRs and their engagement of peptide-MHCs can provide major insights into normal and aberrant immunity, and can help guide the design of vaccines and immunotherapeutics. Given the limited amount of experimentally determined TCR-peptide-MHC structures and the vast amount of TCRs within each individual as well as antigenic targets, accurate computational modeling approaches are needed. Here, we report a major update to our web server, TCRmodel, which was originally developed to model unbound TCRs from sequence, to now model TCR-peptide-MHC complexes from sequence, utilizing several adaptations of AlphaFold. This method, named TCRmodel2, allows users to submit sequences through an easy-to-use interface and shows similar or greater accuracy than AlphaFold and other methods to model TCR-peptide-MHC complexes based on benchmarking. It can generate models of complexes in 15 minutes, and output models are provided with confidence scores and an integrated molecular viewer. TCRmodel2 is available at https://tcrmodel.ibbr.umd.edu.
Collapse
Affiliation(s)
- Rui Yin
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Helder V Ribeiro-Filho
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas 13083-100, Brazil
| | - Valerie Lin
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Thomas S. Wootton High School, Rockville, MD 20850, USA
| | - Ragul Gowthaman
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Melyssa Cheung
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Transgenic HA-1-Specific CD8 + T-Lymphocytes Selectively Target Leukemic Cells. Cancers (Basel) 2023; 15:cancers15051592. [PMID: 36900382 PMCID: PMC10000933 DOI: 10.3390/cancers15051592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
A significant share of allogeneic hematopoietic stem cell transplantations (allo-HSCT) results in the relapse of malignant disease. The T cell immune response to minor histocompatibility antigens (MiHAs) promotes a favorable graft-versus-leukemia response. The immunogenic MiHA HA-1 is a promising target for leukemia immunotherapy, as it is predominantly expressed in hematopoietic tissues and presented by the common HLA A*02:01 allele. Adoptive transfer of HA-1-specific modified CD8+ T cells could complement allo-HSCT from HA-1- donors to HA-1+ recipients. Using bioinformatic analysis and a reporter T cell line, we discovered 13 T cell receptors (TCRs) specific for HA-1. Their affinities were measured by the response of the TCR-transduced reporter cell lines to HA-1+ cells. The studied TCRs showed no cross-reactivity to the panel of donor peripheral mononuclear blood cells with 28 common HLA alleles. CD8+ T cells after endogenous TCR knock out and introduction of transgenic HA-1-specific TCR were able to lyse hematopoietic cells from HA-1+ patients with acute myeloid, T-, and B-cell lymphocytic leukemia (n = 15). No cytotoxic effect was observed on cells from HA-1- or HLA-A*02-negative donors (n = 10). The results support the use of HA-1 as a target for post-transplant T cell therapy.
Collapse
|
16
|
Petrova GV, Naumov YN, Naumova EN, Gorski J. Role of cross-reactivity in cellular immune targeting of influenza A M1 58-66 variant peptide epitopes. Front Immunol 2022; 13:956103. [PMID: 36211433 PMCID: PMC9539824 DOI: 10.3389/fimmu.2022.956103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
The immunologic significance of cross-reactivity of TCR recognition of peptide:MHC complexes is still poorly understood. We have described TCR cross-reactivity in a system involving polyclonal CD8 T cell recognition of the well characterized influenza viral M158-66 epitope. While M158-66 is generally conserved between influenza A isolates, error-prone transcription generates stable variant RNA during infection which could act as novel epitopes. If packaged and viable, variant genomic RNA generates an influenza quasispecies. The stable RNA variants would generate a new transmissible epitope that can select a specific repertoire, which itself should have cross-reactive properties. We tested two candidate peptides in which Thr65 is changed to Ala (A65) or Ser (S65) using recall responses to identify responding T cell clonotypes. Both peptides generated large polyclonal T cell repertoires of their own with repertoire characteristics and cross-reactivity patterns like that observed for the M158-66 repertoire. Both substitutions could be present in viral genomes or mRNA at sufficient frequency during an infection to drive immunity. Peptides from the resulting protein would be a target for CD8 cells irrespective of virus viability or transmissibility. These data support the hypothesis that cross-reactivity is important for immunity against RNA virus infections.
Collapse
Affiliation(s)
- Galina V. Petrova
- The Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, United States
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Elena N. Naumova
- Division of Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Jack Gorski
- The Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
17
|
Britain DM, Town JP, Weiner OD. Progressive enhancement of kinetic proofreading in T cell antigen discrimination from receptor activation to DAG generation. eLife 2022; 11:e75263. [PMID: 36125261 PMCID: PMC9536835 DOI: 10.7554/elife.75263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
T cells use kinetic proofreading to discriminate antigens by converting small changes in antigen-binding lifetime into large differences in cell activation, but where in the signaling cascade this computation is performed is unknown. Previously, we developed a light-gated immune receptor to probe the role of ligand kinetics in T cell antigen signaling. We found significant kinetic proofreading at the level of the signaling lipid diacylglycerol (DAG) but lacked the ability to determine where the multiple signaling steps required for kinetic discrimination originate in the upstream signaling cascade (Tiseher and Weiner, 2019). Here, we uncover where kinetic proofreading is executed by adapting our optogenetic system for robust activation of early signaling events. We find the strength of kinetic proofreading progressively increases from Zap70 recruitment to LAT clustering to downstream DAG generation. Leveraging the ability of our system to rapidly disengage ligand binding, we also measure slower reset rates for downstream signaling events. These data suggest a distributed kinetic proofreading mechanism, with proofreading steps both at the receptor and at slower resetting downstream signaling complexes that could help balance antigen sensitivity and discrimination.
Collapse
Affiliation(s)
- Derek M Britain
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Jason P Town
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Orion David Weiner
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
18
|
Wu D, Kolesnikov A, Yin R, Guest JD, Gowthaman R, Shmelev A, Serdyuk Y, Dianov DV, Efimov GA, Pierce BG, Mariuzza RA. Structural assessment of HLA-A2-restricted SARS-CoV-2 spike epitopes recognized by public and private T-cell receptors. Nat Commun 2022; 13:19. [PMID: 35013235 PMCID: PMC8748687 DOI: 10.1038/s41467-021-27669-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
T cells play a vital role in combatting SARS-CoV-2 and forming long-term memory responses. Whereas extensive structural information is available on neutralizing antibodies against SARS-CoV-2, such information on SARS-CoV-2-specific T-cell receptors (TCRs) bound to their peptide-MHC targets is lacking. Here we determine the structures of a public and a private TCR from COVID-19 convalescent patients in complex with HLA-A2 and two SARS-CoV-2 spike protein epitopes (YLQ and RLQ). The structures reveal the basis for selection of particular TRAV and TRBV germline genes by the public but not the private TCR, and for the ability of the TCRs to recognize natural variants of RLQ but not YLQ. Neither TCR recognizes homologous epitopes from human seasonal coronaviruses. By elucidating the mechanism for TCR recognition of an immunodominant yet variable epitope (YLQ) and a conserved but less commonly targeted epitope (RLQ), this study can inform prospective efforts to design vaccines to elicit pan-coronavirus immunity.
Collapse
MESH Headings
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/virology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- COVID-19/immunology
- COVID-19/virology
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Immunodominant Epitopes/immunology
- Immunodominant Epitopes/metabolism
- Jurkat Cells
- K562 Cells
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
- Protein Binding
- Protein Conformation
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- SARS-CoV-2/immunology
- SARS-CoV-2/metabolism
- SARS-CoV-2/physiology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Surface Plasmon Resonance/methods
Collapse
Affiliation(s)
- Daichao Wu
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Alexander Kolesnikov
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Rui Yin
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Johnathan D Guest
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Ragul Gowthaman
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Anton Shmelev
- National Research Center for Hematology, Moscow, Russia
| | - Yana Serdyuk
- National Research Center for Hematology, Moscow, Russia
| | | | | | - Brian G Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| | - Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
19
|
Perez MAS, Cuendet MA, Röhrig UF, Michielin O, Zoete V. Structural Prediction of Peptide-MHC Binding Modes. Methods Mol Biol 2022; 2405:245-282. [PMID: 35298818 DOI: 10.1007/978-1-0716-1855-4_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The immune system is constantly protecting its host from the invasion of pathogens and the development of cancer cells. The specific CD8+ T-cell immune response against virus-infected cells and tumor cells is based on the T-cell receptor recognition of antigenic peptides bound to class I major histocompatibility complexes (MHC) at the surface of antigen presenting cells. Consequently, the peptide binding specificities of the highly polymorphic MHC have important implications for the design of vaccines, for the treatment of autoimmune diseases, and for personalized cancer immunotherapy. Evidence-based machine-learning approaches have been successfully used for the prediction of peptide binders and are currently being developed for the prediction of peptide immunogenicity. However, understanding and modeling the structural details of peptide/MHC binding is crucial for a better understanding of the molecular mechanisms triggering the immunological processes, estimating peptide/MHC affinity using universal physics-based approaches, and driving the design of novel peptide ligands. Unfortunately, due to the large diversity of MHC allotypes and possible peptides, the growing number of 3D structures of peptide/MHC (pMHC) complexes in the Protein Data Bank only covers a small fraction of the possibilities. Consequently, there is a growing need for rapid and efficient approaches to predict 3D structures of pMHC complexes. Here, we review the key characteristics of the 3D structure of pMHC complexes before listing databases and other sources of information on pMHC structures and MHC specificities. Finally, we discuss some of the most prominent pMHC docking software.
Collapse
Affiliation(s)
- Marta A S Perez
- Computer-aided Molecular Engineering Group, Department of Oncology UNIL-CHUV, Lausanne University, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michel A Cuendet
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Precision Oncology Center, Lausanne, Switzerland
| | - Ute F Röhrig
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Olivier Michielin
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Precision Oncology Center, Lausanne, Switzerland.
| | - Vincent Zoete
- Computer-aided Molecular Engineering Group, Department of Oncology UNIL-CHUV, Lausanne University, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
20
|
Laghmouchi A, Graça NAG, Voorberg J. Emerging Concepts in Immune Thrombotic Thrombocytopenic Purpura. Front Immunol 2021; 12:757192. [PMID: 34858410 PMCID: PMC8631936 DOI: 10.3389/fimmu.2021.757192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
Immune thrombotic thrombocytopenic purpura (iTTP) is an autoimmune disorder of which the etiology is not fully understood. Autoantibodies targeting ADAMTS13 in iTTP patients have extensively been studied, the immunological mechanisms leading to the breach of tolerance remain to be uncovered. This review addresses the current knowledge on genetic factors associated with the development of iTTP and the interplay between the patient's immune system and environmental factors in the induction of autoimmunity against ADAMTS13. HLA-DRB1*11 has been identified as a risk factor for iTTP in the Caucasian population. Interestingly, HLA-DRB1*08:03 was recently identified as a risk factor in the Japanese population. Combined in vitro and in silico MHC class II peptide presentation approaches suggest that an ADAMTS13-derived peptide may bind to both HLA-DRB1*11 and HLA-DRB1*08:03 through different anchor-residues. It is apparent that iTTP is associated with the presence of infectious microorganisms, viruses being the most widely associated with development of iTTP. Infections may potentially lead to loss of tolerance resulting in the shift from immune homeostasis to autoimmunity. In the model we propose in this review, infections disrupt the epithelial barriers in the gut or lung, promoting exposure of antigen presenting cells in the mucosa-associated lymphoid tissue to the microorganisms. This may result in breach of tolerance through the presentation of microorganism-derived peptides that are homologous to ADAMTS13 on risk alleles for iTTP.
Collapse
Affiliation(s)
| | | | - Jan Voorberg
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, Netherlands
| |
Collapse
|
21
|
T Cell Receptor Genotype and Ubash3a Determine Susceptibility to Rat Autoimmune Diabetes. Genes (Basel) 2021; 12:genes12060852. [PMID: 34205929 PMCID: PMC8227067 DOI: 10.3390/genes12060852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Genetic analyses of human type 1 diabetes (T1D) have yet to reveal a complete pathophysiologic mechanism. Inbred rats with a high-risk class II major histocompatibility complex (MHC) haplotype (RT1B/Du) can illuminate such mechanisms. Using T1D-susceptible LEW.1WR1 rats that express RT1B/Du and a susceptible allele of the Ubd promoter, we demonstrate that germline knockout of Tcrb-V13S1A1, which encodes the Vβ13a T cell receptor β chain, completely prevents diabetes. Using the RT1B/Du-identical LEW.1W rat, which does not develop T1D despite also having the same Tcrb-V13S1A1 β chain gene but a different allele at the Ubd locus, we show that knockout of the Ubash3a regulatory gene renders these resistant rats relatively susceptible to diabetes. In silico structural modeling of the susceptible allele of the Vβ13a TCR and its class II RT1u ligand suggests a mechanism by which a germline TCR β chain gene could promote susceptibility to T1D in the absence of downstream immunoregulation like that provided by UBASH3A. Together these data demonstrate the critical contribution of the Vβ13a TCR to the autoimmune synapse in T1D and the regulation of the response by UBASH3A. These experiments dissect the mechanisms by which MHC class II heterodimers, TCR and regulatory element interact to induce autoimmunity.
Collapse
|
22
|
Pettmann J, Huhn A, Abu Shah E, Kutuzov MA, Wilson DB, Dustin ML, Davis SJ, van der Merwe PA, Dushek O. The discriminatory power of the T cell receptor. eLife 2021; 10:e67092. [PMID: 34030769 PMCID: PMC8219380 DOI: 10.7554/elife.67092] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/15/2021] [Indexed: 12/20/2022] Open
Abstract
T cells use their T cell receptors (TCRs) to discriminate between lower-affinity self and higher-affinity non-self peptides presented on major histocompatibility complex (pMHC) antigens. Although the discriminatory power of the TCR is widely believed to be near-perfect, technical difficulties have hampered efforts to precisely quantify it. Here, we describe a method for measuring very low TCR/pMHC affinities and use it to measure the discriminatory power of the TCR and the factors affecting it. We find that TCR discrimination, although enhanced compared with conventional cell-surface receptors, is imperfect: primary human T cells can respond to pMHC with affinities as low as KD ∼ 1 mM. The kinetic proofreading mechanism fit our data, providing the first estimates of both the time delay (2.8 s) and number of biochemical steps (2.67) that are consistent with the extraordinary sensitivity of antigen recognition. Our findings explain why self pMHC frequently induce autoimmune diseases and anti-tumour responses, and suggest ways to modify TCR discrimination.
Collapse
Affiliation(s)
- Johannes Pettmann
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Radcliffe Department of Medicine, Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
| | - Anna Huhn
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Enas Abu Shah
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Kennedy Institute of Rheumatology, University of OxfordOxfordUnited Kingdom
| | - Mikhail A Kutuzov
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Daniel B Wilson
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Boston University, Department of Mathematics and StatisticsBostonUnited States
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of OxfordOxfordUnited Kingdom
| | - Simon J Davis
- Radcliffe Department of Medicine, Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
| | | | - Omer Dushek
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
23
|
Mamedov AE, Filimonova IN, Smirnov IV, Belogurov AA. Peculiarities of the Presentation of the Encephalitogenic MBP Peptide by HLA-DR Complexes Providing Protection and Predisposition to Multiple Sclerosis. Acta Naturae 2021; 13:127-133. [PMID: 33959392 PMCID: PMC8084299 DOI: 10.32607/actanaturae.11008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/05/2020] [Indexed: 12/02/2022] Open
Abstract
Predisposition to multiple sclerosis (MS), a chronic autoimmune disease of the central nervous system, is due to various factors. The genetic component is considered one of the most important factors. HLA class II genes contribute the most to the development of MS. The HLA-DRB1*15 allele group is considered one of the main genetic risk factors predisposing to MS. The group of HLA-DRB1*01 alleles was shown to have a protective effect against this disease in the Russian population. In this work, we compared the binding of the encephalitogenic fragment of the myelin basic protein (MBP) to two HLA-DR complexes that provide protection against and predisposition to MS: HLA-DR1 (HLA-DRB1*0101) and HLA-DR15 (HLA-DRB1*1501), respectively. We found that the myelin peptide MBP88-100 binds to HLA-DR1 at a rate almost an order of magnitude lower than the viral peptide of hemagglutinin (HA). The same was true for the binding of MBP85-97 to HLA-DR15 in comparison with viral pp65. The structure of the C-terminal part of the peptide plays a key role in the binding to HLA-DR1 for equally high-affinity N-terminal regions of the peptides. The IC50 of the myelin peptide MBP88-100 competing with viral HA for binding to HLA-DR1 is almost an order of magnitude higher than that of HA. As for HA, the same was also true for the binding of MBP85-97 to HLA-DR15 in comparison with viral pp65. Thus, autoantigenic MBP cannot compete with the viral peptide for binding to protective HLA-DR1. However, it is more competitive than viral peptide for HLA-DR15.
Collapse
Affiliation(s)
- A. E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - I. N. Filimonova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - I. V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
- Institute of Fundamental Medicine and Biology, Kazan (Volga) Federal University, Kazan, 420008 Russia
| | - A. A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
- Lomonosov Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
24
|
Tamouza R, Krishnamoorthy R, Leboyer M. Understanding the genetic contribution of the human leukocyte antigen system to common major psychiatric disorders in a world pandemic context. Brain Behav Immun 2021; 91:731-739. [PMID: 33031918 PMCID: PMC7534661 DOI: 10.1016/j.bbi.2020.09.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/01/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022] Open
Abstract
The human leukocyte antigen (HLA) is a complex genetic system that encodes proteins which predominantly regulate immune/inflammatory processes. It can be involved in a variety of immuno-inflammatory disorders ranging from infections to autoimmunity and cancers. The HLA system is also suggested to be involved in neurodevelopment and neuroplasticity, especially through microglia regulation and synaptic pruning. Consequently, this highly polymorphic gene region has recently emerged as a major player in the etiology of several major psychiatric disorders, such as schizophrenia, autism spectrum disorder and bipolar disorder and with less evidence for major depressive disorders and attention deficit hyperactivity disorder. We thus review here the role of HLA genes in particular subgroups of psychiatric disorders and foresee their potential implication in future research. In particular, given the prominent role that the HLA system plays in the regulation of viral infection, this review is particularly timely in the context of the Covid-19 pandemic.
Collapse
Affiliation(s)
- Ryad Tamouza
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie Translationnelle, F-94010 Creteil, France; AP-HP, Hopital Henri Mondor, Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), F-94010, France; Fondation FondaMental, Créteil, France.
| | | | - Marion Leboyer
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie Translationnelle, F-94010 Creteil, France; AP-HP, Hopital Henri Mondor, Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), F-94010, France; Fondation FondaMental, Créteil, France
| |
Collapse
|
25
|
Lee CH, Salio M, Napolitani G, Ogg G, Simmons A, Koohy H. Predicting Cross-Reactivity and Antigen Specificity of T Cell Receptors. Front Immunol 2020; 11:565096. [PMID: 33193332 PMCID: PMC7642207 DOI: 10.3389/fimmu.2020.565096] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Adaptive immune recognition is mediated by specific interactions between heterodimeric T cell receptors (TCRs) and their cognate peptide-MHC (pMHC) ligands, and the methods to accurately predict TCR:pMHC interaction would have profound clinical, therapeutic and pharmaceutical applications. Herein, we review recent developments in predicting cross-reactivity and antigen specificity of TCR recognition. We discuss current experimental and computational approaches to investigate cross-reactivity and antigen-specificity of TCRs and highlight how integrating kinetic, biophysical and structural features may offer valuable insights in modeling immunogenicity. We further underscore the close inter-relationship of these two interconnected notions and the need to investigate each in the light of the other for a better understanding of T cell responsiveness for the effective clinical applications.
Collapse
Affiliation(s)
- Chloe H. Lee
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Giorgio Napolitani
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Graham Ogg
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, United Kingdom
| | - Hashem Koohy
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Gowthaman R, Pierce BG. TCR3d: The T cell receptor structural repertoire database. Bioinformatics 2020; 35:5323-5325. [PMID: 31240309 PMCID: PMC6954642 DOI: 10.1093/bioinformatics/btz517] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/31/2019] [Accepted: 06/20/2019] [Indexed: 12/31/2022] Open
Abstract
Summary T cell receptors (TCRs) are critical molecules of the adaptive immune system, capable of recognizing diverse antigens, including peptides, lipids and small molecules, and represent a rapidly growing class of therapeutics. Determining the structural and mechanistic basis of TCR targeting of antigens is a major challenge, as each individual has a vast and diverse repertoire of TCRs. Despite shared general recognition modes, diversity in TCR sequence and recognition represents a challenge to predictive modeling and computational techniques being developed to predict antigen specificity and mechanistic basis of TCR targeting. To this end, we have developed the TCR3d database, a resource containing all known TCR structures, with a particular focus on antigen recognition. TCR3d provides key information on antigen binding mode, interface features, loop sequences and germline gene usage. Users can interactively view TCR complex structures, search sequences of interest against known structures and sequences, and download curated datasets of structurally characterized TCR complexes. This database is updated on a weekly basis, and can serve the community as a centralized resource for those studying T cell receptors and their recognition. Availability and implementation The TCR3d database is available at https://tcr3d.ibbr.umd.edu/.
Collapse
Affiliation(s)
- Ragul Gowthaman
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| |
Collapse
|
27
|
Lu J, Van Laethem F, Saba I, Chu J, Tikhonova AN, Bhattacharya A, Singer A, Sun PD. Structure of MHC-Independent TCRs and Their Recognition of Native Antigen CD155. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:3351-3359. [PMID: 32321756 PMCID: PMC7390066 DOI: 10.4049/jimmunol.1901084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/02/2020] [Indexed: 01/07/2023]
Abstract
During normal T cell development in the thymus, αβ TCRs signal immature thymocytes to differentiate into mature T cells by binding to peptide-MHC ligands together with CD4/CD8 coreceptors. Conversely, in MHC and CD4/CD8 coreceptor-deficient mice, the thymus generates mature T cells expressing MHC-independent TCRs that recognize native conformational epitopes rather than linear antigenic-peptides presented by MHC. To date, no structural information of MHC-independent TCRs is available, and their structural recognition of non-MHC ligand remains unknown. To our knowledge in this study, we determined the first structures of two murine MHC-independent TCRs (A11 and B12A) that bind with high nanomolar affinities to mouse adhesion receptor CD155. Solution binding demonstrated the Vαβ-domain is responsible for MHC-independent B12A recognition of its ligand. Analysis of A11 and B12A sequences against various MHC-restricted and -independent TCR sequence repertoires showed that individual V-genes of A11 and B12A did not exhibit preference against MHC-restriction. Likewise, CDR3 alone did not discriminate against MHC binding, suggesting VDJ recombination together with Vα/Vβ pairing determine their MHC-independent specificity for CD155. The structures of A11 and B12A TCR are nearly identical to those of MHC-restricted TCR, including the conformations of CDR1 and 2. Mutational analysis, together with negative-staining electron microscopy images, showed that the CDR regions of A11 and B12A recognized epitopes on D1 domain of CD155, a region also involved in CD155 binding to poliovirus and Tactile in human. Taken together, MHC-independent TCRs adopt canonical TCR structures to recognize native Ags, highlighting the importance of thymic selection in determining TCR ligand specificity.
Collapse
Affiliation(s)
- Jinghua Lu
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland 20852
| | - François Van Laethem
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892
| | - Ingrid Saba
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892
| | - Jonathan Chu
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland 20852
| | | | - Abhisek Bhattacharya
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892
| | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892
| | - Peter D. Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland 20852
| |
Collapse
|
28
|
Wu D, Gallagher DT, Gowthaman R, Pierce BG, Mariuzza RA. Structural basis for oligoclonal T cell recognition of a shared p53 cancer neoantigen. Nat Commun 2020; 11:2908. [PMID: 32518267 PMCID: PMC7283474 DOI: 10.1038/s41467-020-16755-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/19/2020] [Indexed: 01/21/2023] Open
Abstract
Adoptive cell therapy (ACT) with tumor-specific T cells can mediate cancer regression. The main target of tumor-specific T cells are neoantigens arising from mutations in self-proteins. Although the majority of cancer neoantigens are unique to each patient, and therefore not broadly useful for ACT, some are shared. We studied oligoclonal T-cell receptors (TCRs) that recognize a shared neoepitope arising from a driver mutation in the p53 oncogene (p53R175H) presented by HLA-A2. Here we report structures of wild-type and mutant p53-HLA-A2 ligands, as well as structures of three tumor-specific TCRs bound to p53R175H-HLA-A2. These structures reveal how a driver mutation in p53 rendered a self-peptide visible to T cells. The TCRs employ structurally distinct strategies that are highly focused on the mutation to discriminate between mutant and wild-type p53. The TCR-p53R175H-HLA-A2 complexes provide a framework for designing TCRs to improve potency for ACT without sacrificing specificity.
Collapse
Affiliation(s)
- Daichao Wu
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Histology and Embryology, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - D Travis Gallagher
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- National Institute of Standards and Technology, Gaitherburg, MD, 20899, USA
| | - Ragul Gowthaman
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Brian G Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
29
|
Mamedov A, Vorobyeva N, Filimonova I, Zakharova M, Kiselev I, Bashinskaya V, Baulina N, Boyko A, Favorov A, Kulakova O, Ziganshin R, Smirnov I, Poroshina A, Shilovskiy I, Khaitov M, Sykulev Y, Favorova O, Vlassov V, Gabibov A, Belogurov A. Protective Allele for Multiple Sclerosis HLA-DRB1*01:01 Provides Kinetic Discrimination of Myelin and Exogenous Antigenic Peptides. Front Immunol 2020; 10:3088. [PMID: 32010139 PMCID: PMC6978714 DOI: 10.3389/fimmu.2019.03088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
Risk of the development of multiple sclerosis (MS) is known to be increased in individuals bearing distinct class II human leukocyte antigen (HLA) variants, whereas some of them may have a protective effect. Here we analyzed distribution of a highly polymorphous HLA-DRB1 locus in more than one thousand relapsing-remitting MS patients and healthy individuals of Russian ethnicity. Carriage of HLA-DRB1*15 and HLA-DRB1*03 alleles was associated with MS risk, whereas carriage of HLA-DRB1*01 and HLA-DRB1*11 was found to be protective. Analysis of genotypes revealed the compensatory effect of risk and resistance alleles in trans. We have identified previously unknown MBP153-161 peptide located at the C-terminus of MBP protein and MBP90-98 peptide that bound to recombinant HLA-DRB1*01:01 protein with affinity comparable to that of classical antigenic peptide 306-318 from the hemagglutinin (HA) of the influenza virus demonstrating the ability of HLA-DRB1*01:01 to present newly identified MBP153-161 and MBP90-98 peptides. Measurements of kinetic parameters of MBP and HA peptides binding to HLA-DRB1*01:01 catalyzed by HLA-DM revealed a significantly lower rate of CLIP exchange for MBP153-161 and MBP90-98 peptides as opposed to HA peptide. Analysis of the binding of chimeric MBP-HA peptides demonstrated that the observed difference between MBP153-161, MBP90-98, and HA peptide epitopes is caused by the lack of anchor residues in the C-terminal part of the MBP peptides resulting in a moderate occupation of P6/7 and P9 pockets of HLA-DRB1*01:01 by MBP153-161 and MBP90-98 peptides in contrast to HA308-316 peptide. This leads to the P1 and P4 docking failure and rapid peptide dissociation and release of empty HLA-DM-HLA-DR complex. We would like to propose that protective properties of the HLA-DRB1*01 allele could be directly linked to the ability of HLA-DRB1*01:01 to kinetically discriminate between antigenic exogenous peptides and endogenous MBP derived peptides.
Collapse
Affiliation(s)
- Azad Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Ioanna Filimonova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ivan Kiselev
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Natalia Baulina
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexey Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia.,Neuroimmunological Department of the Federal Center of Cerebrovascular Diseases and Stroke, Moscow, Russia
| | - Alexander Favorov
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, MD, United States.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Olga Kulakova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Rustam Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ivan Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Fundamental Medicine and Biology, Kazan (Volga) Federal University, Kazan, Russia
| | - Alina Poroshina
- National Research Center Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Igor Shilovskiy
- National Research Center Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Musa Khaitov
- National Research Center Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Yuri Sykulev
- Department of Microbiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Olga Favorova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Department of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Department of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
30
|
Gowthaman R, Pierce BG. TCRmodel: high resolution modeling of T cell receptors from sequence. Nucleic Acids Res 2019; 46:W396-W401. [PMID: 29790966 PMCID: PMC6030954 DOI: 10.1093/nar/gky432] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023] Open
Abstract
T cell receptors (TCRs), along with antibodies, are responsible for specific antigen recognition in the adaptive immune response, and millions of unique TCRs are estimated to be present in each individual. Understanding the structural basis of TCR targeting has implications in vaccine design, autoimmunity, as well as T cell therapies for cancer. Given advances in deep sequencing leading to immune repertoire-level TCR sequence data, fast and accurate modeling methods are needed to elucidate shared and unique 3D structural features of these molecules which lead to their antigen targeting and cross-reactivity. We developed a new algorithm in the program Rosetta to model TCRs from sequence, and implemented this functionality in a web server, TCRmodel. This web server provides an easy to use interface, and models are generated quickly that users can investigate in the browser and download. Benchmarking of this method using a set of nonredundant recently released TCR crystal structures shows that models are accurate and compare favorably to models from another available modeling method. This server enables the community to obtain insights into TCRs of interest, and can be combined with methods to model and design TCR recognition of antigens. The TCRmodel server is available at: http://tcrmodel.ibbr.umd.edu/.
Collapse
Affiliation(s)
- Ragul Gowthaman
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
31
|
Rangarajan S, He Y, Chen Y, Kerzic MC, Ma B, Gowthaman R, Pierce BG, Nussinov R, Mariuzza RA, Orban J. Peptide-MHC (pMHC) binding to a human antiviral T cell receptor induces long-range allosteric communication between pMHC- and CD3-binding sites. J Biol Chem 2018; 293:15991-16005. [PMID: 30135211 PMCID: PMC6187629 DOI: 10.1074/jbc.ra118.003832] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
T cells generate adaptive immune responses mediated by the T cell receptor (TCR)-CD3 complex comprising an αβ TCR heterodimer noncovalently associated with three CD3 dimers. In early T cell activation, αβ TCR engagement by peptide-major histocompatibility complex (pMHC) is first communicated to the CD3 signaling apparatus of the TCR-CD3 complex, but the underlying mechanism is incompletely understood. It is possible that pMHC binding induces allosteric changes in TCR conformation or dynamics that are then relayed to CD3. Here, we carried out NMR analysis and molecular dynamics (MD) simulations of both the α and β chains of a human antiviral TCR (A6) that recognizes the Tax antigen from human T cell lymphotropic virus-1 bound to the MHC class I molecule HLA-A2. We observed pMHC-induced NMR signal perturbations in the TCR variable (V) domains that propagated to three distinct sites in the constant (C) domains: 1) the Cβ FG loop projecting from the Vβ/Cβ interface; 2) a cluster of Cβ residues near the Cβ αA helix, a region involved in interactions with CD3; and 3) the Cα AB loop at the membrane-proximal base of the TCR. A biological role for each of these allosteric sites is supported by previous mutational and functional studies of TCR signaling. Moreover, the pattern of long-range, ligand-induced changes in TCR A6 revealed by NMR was broadly similar to that predicted by the MD simulations. We propose that the unique structure of the TCR β chain enables allosteric communication between the TCR-binding sites for pMHC and CD3.
Collapse
MESH Headings
- Allosteric Regulation
- Animals
- Binding Sites
- Gene Products, tax/chemistry
- Gene Products, tax/metabolism
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/metabolism
- Human T-lymphotropic virus 1/chemistry
- Humans
- Mice
- Molecular Dynamics Simulation
- Protein Binding
- Protein Conformation
- Receptor-CD3 Complex, Antigen, T-Cell/chemistry
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
Collapse
Affiliation(s)
- Sneha Rangarajan
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
- the Departments of Cell Biology and Molecular Genetics and
| | - Yanan He
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
- Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, and
| | - Yihong Chen
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Melissa C Kerzic
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Buyong Ma
- the Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702
| | - Ragul Gowthaman
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
- the Departments of Cell Biology and Molecular Genetics and
| | - Brian G Pierce
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
- the Departments of Cell Biology and Molecular Genetics and
| | - Ruth Nussinov
- the Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702
| | - Roy A Mariuzza
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850,
- the Departments of Cell Biology and Molecular Genetics and
| | - John Orban
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850,
- Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, and
| |
Collapse
|
32
|
Shahine A, Van Rhijn I, Cheng TY, Iwany S, Gras S, Moody DB, Rossjohn J. A molecular basis of human T cell receptor autoreactivity toward self-phospholipids. Sci Immunol 2018; 2:2/16/eaao1384. [PMID: 29054999 PMCID: PMC6649662 DOI: 10.1126/sciimmunol.aao1384] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022]
Abstract
Human T cell autoreactivity toward lipid antigens presented by CD1 proteins can manifest in numerous diseases, including psoriasis, contact hypersensitivities, and allergies. However, the molecular mechanisms for regulating T cell autoreactivity toward lipid antigens remain unclear. We determined the basis for T cell receptor (TCR) autoreactivity toward CD1b bound to self-phospholipids. The spectrum of self-antigens captured by CD1b skews toward abundant membrane phospholipids such as phosphatidylcholine and phosphatidylethanolamine. However, TCRs can specifically recognize rare phospholipids, including phosphatidylglycerol (PG). The structure of an autoreactive TCR bound to CD1b-PG shows that discrimination occurs through a marked induced fit movement of PG so that its polar head group fits snugly into the cationic cup of the TCR. Conversely, TCR binding toward ubiquitous self-phospholipids was sterically or electrostatically repelled. Accordingly, we describe a mechanism of TCR autoreactivity toward rare phospholipids and avoidance of autoreactivity to the most abundant self-phospholipids.
Collapse
Affiliation(s)
- Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Ildiko Van Rhijn
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, Netherlands
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Iwany
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - D Branch Moody
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
33
|
Wun KS, Reijneveld JF, Cheng TY, Ladell K, Uldrich AP, Le Nours J, Miners KL, McLaren JE, Grant EJ, Haigh OL, Watkins TS, Suliman S, Iwany S, Jimenez J, Calderon R, Tamara KL, Leon SR, Murray MB, Mayfield JA, Altman JD, Purcell AW, Miles JJ, Godfrey DI, Gras S, Price DA, Van Rhijn I, Moody DB, Rossjohn J. T cell autoreactivity directed toward CD1c itself rather than toward carried self lipids. Nat Immunol 2018; 19:397-406. [PMID: 29531339 PMCID: PMC6475884 DOI: 10.1038/s41590-018-0065-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
The hallmark function of αβ T cell antigen receptors (TCRs) involves the highly specific co-recognition of a major histocompatibility complex molecule and its carried peptide. However, the molecular basis of the interactions of TCRs with the lipid antigen-presenting molecule CD1c is unknown. We identified frequent staining of human T cells with CD1c tetramers across numerous subjects. Whereas TCRs typically show high specificity for antigen, both tetramer binding and autoreactivity occurred with CD1c in complex with numerous, chemically diverse self lipids. Such extreme polyspecificity was attributable to binding of the TCR over the closed surface of CD1c, with the TCR covering the portal where lipids normally protrude. The TCR essentially failed to contact lipids because they were fully seated within CD1c. These data demonstrate the sequestration of lipids within CD1c as a mechanism of autoreactivity and point to small lipid size as a determinant of autoreactive T cell responses.
Collapse
Affiliation(s)
- Kwok S Wun
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Josephine F Reijneveld
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Brigham and Women's Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, MA, USA
| | - Tan-Yun Cheng
- Brigham and Women's Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, MA, USA
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Emma J Grant
- Division of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Oscar L Haigh
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Thomas S Watkins
- Centre for Biodiscovery and Molecular Development of Therapeutics and Centre for Biosecurity and Tropical Infectious Diseases Australian Institute of Tropical Health and Medicine, James Cook University, Cairn, Australia
| | - Sara Suliman
- Brigham and Women's Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, MA, USA
| | - Sarah Iwany
- Brigham and Women's Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Megan B Murray
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob A Mayfield
- Brigham and Women's Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, MA, USA
| | - John D Altman
- Emory University School of Medicine, Atlanta, GA, USA
| | - Anthony W Purcell
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - John J Miles
- Centre for Biodiscovery and Molecular Development of Therapeutics and Centre for Biosecurity and Tropical Infectious Diseases Australian Institute of Tropical Health and Medicine, James Cook University, Cairn, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie Gras
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - David A Price
- Division of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Ildiko Van Rhijn
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Brigham and Women's Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, MA, USA
| | - D Branch Moody
- Brigham and Women's Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, MA, USA.
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia.
- Division of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK.
| |
Collapse
|
34
|
Yair-Sabag S, Tedeschi V, Vitulano C, Barnea E, Glaser F, Melamed Kadosh D, Taurog JD, Fiorillo MT, Sorrentino R, Admon A. The Peptide Repertoire of HLA-B27 may include Ligands with Lysine at P2 Anchor Position. Proteomics 2018; 18:e1700249. [DOI: 10.1002/pmic.201700249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/21/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Shira Yair-Sabag
- Department of Biology; Technion-Israel Institute of Technology; Haifa Israel
| | - Valentina Tedeschi
- Department of Biology and Biotechnology “C. Darwin”; Sapienza University of Rome; Rome Italy
| | - Carolina Vitulano
- Department of Biology and Biotechnology “C. Darwin”; Sapienza University of Rome; Rome Italy
| | - Eilon Barnea
- Department of Biology; Technion-Israel Institute of Technology; Haifa Israel
| | - Fabian Glaser
- Bioinformatics Knowledge Unit; The Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering; Technion-Israel Institute of Technology; Haifa Israel
| | | | - Joel D. Taurog
- Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas USA
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology “C. Darwin”; Sapienza University of Rome; Rome Italy
| | - Rosa Sorrentino
- Department of Biology and Biotechnology “C. Darwin”; Sapienza University of Rome; Rome Italy
| | - Arie Admon
- Department of Biology; Technion-Israel Institute of Technology; Haifa Israel
| |
Collapse
|
35
|
Alvaro-Benito M, Morrison E, Wieczorek M, Sticht J, Freund C. Human leukocyte Antigen-DM polymorphisms in autoimmune diseases. Open Biol 2017; 6:rsob.160165. [PMID: 27534821 PMCID: PMC5008016 DOI: 10.1098/rsob.160165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022] Open
Abstract
Classical MHC class II (MHCII) proteins present peptides for CD4+ T-cell surveillance and are by far the most prominent risk factor for a number of autoimmune disorders. To date, many studies have shown that this link between particular MHCII alleles and disease depends on the MHCII's particular ability to bind and present certain peptides in specific physiological contexts. However, less attention has been paid to the non-classical MHCII molecule human leucocyte antigen-DM, which catalyses peptide exchange on classical MHCII proteins acting as a peptide editor. DM function impacts the presentation of both antigenic peptides in the periphery and key self-peptides during T-cell development in the thymus. In this way, DM activity directly influences the response to pathogens, as well as mechanisms of self-tolerance acquisition. While decreased DM editing of particular MHCII proteins has been proposed to be related to autoimmune disorders, no experimental evidence for different DM catalytic properties had been reported until recently. Biochemical and structural investigations, together with new animal models of loss of DM activity, have provided an attractive foundation for identifying different catalytic efficiencies for DM allotypes. Here, we revisit the current knowledge of DM function and discuss how DM function may impart autoimmunity at the organism level.
Collapse
Affiliation(s)
- Miguel Alvaro-Benito
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Eliot Morrison
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marek Wieczorek
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jana Sticht
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
36
|
Antunes DA, Rigo MM, Freitas MV, Mendes MFA, Sinigaglia M, Lizée G, Kavraki LE, Selin LK, Cornberg M, Vieira GF. Interpreting T-Cell Cross-reactivity through Structure: Implications for TCR-Based Cancer Immunotherapy. Front Immunol 2017; 8:1210. [PMID: 29046675 PMCID: PMC5632759 DOI: 10.3389/fimmu.2017.01210] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/12/2017] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has become one of the most promising avenues for cancer treatment, making use of the patient’s own immune system to eliminate cancer cells. Clinical trials with T-cell-based immunotherapies have shown dramatic tumor regressions, being effective in multiple cancer types and for many different patients. Unfortunately, this progress was tempered by reports of serious (even fatal) side effects. Such therapies rely on the use of cytotoxic T-cell lymphocytes, an essential part of the adaptive immune system. Cytotoxic T-cells are regularly involved in surveillance and are capable of both eliminating diseased cells and generating protective immunological memory. The specificity of a given T-cell is determined through the structural interaction between the T-cell receptor (TCR) and a peptide-loaded major histocompatibility complex (MHC); i.e., an intracellular peptide–ligand displayed at the cell surface by an MHC molecule. However, a given TCR can recognize different peptide–MHC (pMHC) complexes, which can sometimes trigger an unwanted response that is referred to as T-cell cross-reactivity. This has become a major safety issue in TCR-based immunotherapies, following reports of melanoma-specific T-cells causing cytotoxic damage to healthy tissues (e.g., heart and nervous system). T-cell cross-reactivity has been extensively studied in the context of viral immunology and tissue transplantation. Growing evidence suggests that it is largely driven by structural similarities of seemingly unrelated pMHC complexes. Here, we review recent reports about the existence of pMHC “hot-spots” for cross-reactivity and propose the existence of a TCR interaction profile (i.e., a refinement of a more general TCR footprint in which some amino acid residues are more important than others in triggering T-cell cross-reactivity). We also make use of available structural data and pMHC models to interpret previously reported cross-reactivity patterns among virus-derived peptides. Our study provides further evidence that structural analyses of pMHC complexes can be used to assess the intrinsic likelihood of cross-reactivity among peptide-targets. Furthermore, we hypothesize that some apparent inconsistencies in reported cross-reactivities, such as a preferential directionality, might also be driven by particular structural features of the targeted pMHC complex. Finally, we explain why TCR-based immunotherapy provides a special context in which meaningful T-cell cross-reactivity predictions can be made.
Collapse
Affiliation(s)
- Dinler A Antunes
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Kavraki Lab, Department of Computer Science, Rice University, Houston, TX, United States
| | - Maurício M Rigo
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Laboratório de Imunologia Celular e Molecular, Instituto de Pesquisas Biomédicas (IPB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Martiela V Freitas
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marcus F A Mendes
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marialva Sinigaglia
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Gregory Lizée
- Lizée Lab, Department of Melanoma Medical Oncology - Research, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States
| | - Lydia E Kavraki
- Kavraki Lab, Department of Computer Science, Rice University, Houston, TX, United States
| | - Liisa K Selin
- Selin Lab, Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Markus Cornberg
- Cornberg Lab, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, Hannover, Germany
| | - Gustavo F Vieira
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Porto Alegre, Brazil
| |
Collapse
|
37
|
Chen G, Yang X, Ko A, Sun X, Gao M, Zhang Y, Shi A, Mariuzza RA, Weng NP. Sequence and Structural Analyses Reveal Distinct and Highly Diverse Human CD8 + TCR Repertoires to Immunodominant Viral Antigens. Cell Rep 2017; 19:569-583. [PMID: 28423320 DOI: 10.1016/j.celrep.2017.03.072] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 02/02/2017] [Accepted: 03/24/2017] [Indexed: 01/07/2023] Open
Abstract
A diverse T cell receptor (TCR) repertoire is essential for controlling viral infections. However, information about TCR repertoires to defined viral antigens is limited. We performed a comprehensive analysis of CD8+ TCR repertoires for two dominant viral epitopes: pp65495-503 (NLV) of cytomegalovirus and M158-66 (GIL) of influenza A virus. The highly individualized repertoires (87-5,533 α or β clonotypes per subject) comprised thousands of unique TCRα and TCRβ sequences and dozens of distinct complementary determining region (CDR)3α and CDR3β motifs. However, diversity is effectively restricted by preferential V-J combinations, CDR3 lengths, and CDR3α/CDR3β pairings. Structures of two GIL-specific TCRs bound to GIL-HLA-A2 provided a potential explanation for the lower diversity of GIL-specific versus NLV-specific repertoires. These anti-viral TCRs occupied up to 3.4% of the CD8+ TCRβ repertoire, ensuring broad T cell responses to single epitopes. Our portrait of two anti-viral TCR repertoires may inform the development of predictors of immune protection.
Collapse
Affiliation(s)
- Guobing Chen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Xinbo Yang
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Annette Ko
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Xiaoping Sun
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Mingming Gao
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Yongqing Zhang
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Alvin Shi
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Nan-Ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
38
|
Tuusa J, Raasakka A, Ruskamo S, Kursula P. Myelin-derived and putative molecular mimic peptides share structural properties in aqueous and membrane-like environments. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s40893-017-0021-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Li CW, Osman R, Menconi F, Concepcion ES, Tomer Y. Flexible peptide recognition by HLA-DR triggers specific autoimmune T-cell responses in autoimmune thyroiditis and diabetes. J Autoimmun 2017; 76:1-9. [PMID: 27670087 PMCID: PMC5752120 DOI: 10.1016/j.jaut.2016.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 11/18/2022]
Abstract
Autoimmune polyglandular syndrome 3 variant (APS3v) refers to the co-occurrence of autoimmune thyroiditis (AITD) and type 1 diabetes (T1D) within the same individual. HLA class II confers the strongest susceptibility to APS3v. We previously identified a unique amino acid signature of the HLA-DR pocket (designated APS3v HLA-DR pocket) that predisposes to APS3v. We hypothesized that both thyroid and islet peptides can be presented by the unique APS3v HLA-DR pocket, triggering AITD + T1D together. To test this hypothesis we screened islet and thyroid peptides for their ability to bind to the APS3v HLA-DR pocket. Virtual screen of all possible thyroglobulin (Tg), thyroid-stimulating hormone receptor (TSHR), thyroid peroxidase (TPO), insulin (Ins), and glutamic acid decarboxylase 65 (GAD65) peptides identified 36 peptides that bound to this unique pocket. In vitro binding assays using baculovirus-produced recombinant APS3v HLA-DR identified 11 thyroid/islet peptides (of the 36 predicted binders) that bound with high affinity. By immunizing humanized HLA-DR3 mice carrying the APS3v HLA-DR pocket we identified 4 peptides (Tg.1571, GAD.492, TPO.758, TPO.338) that were presented by antigen presenting cells and elicited T-cell response. We conclude that both thyroid and islet peptides can bind to this flexible APS3v HLA-DR pocket and induce thyroid and islet specific T-cell responses. These findings set the stage to developing specific inhibitors of the APS3v HLA-DR pocket as a precision medicine approach to treating or preventing APS3v in patients that carry this genetic HLA-DR pocket variant.
Collapse
Affiliation(s)
- Cheuk Wun Li
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Roman Osman
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Erlinda S Concepcion
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yaron Tomer
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
40
|
Clement M, Pearson JA, Gras S, van den Berg HA, Lissina A, Llewellyn-Lacey S, Willis MD, Dockree T, McLaren JE, Ekeruche-Makinde J, Gostick E, Robertson NP, Rossjohn J, Burrows SR, Price DA, Wong FS, Peakman M, Skowera A, Wooldridge L. Targeted suppression of autoreactive CD8 + T-cell activation using blocking anti-CD8 antibodies. Sci Rep 2016; 6:35332. [PMID: 27748447 PMCID: PMC5066216 DOI: 10.1038/srep35332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/09/2016] [Indexed: 01/12/2023] Open
Abstract
CD8+ T-cells play a role in the pathogenesis of autoimmune diseases such as multiple sclerosis and type 1 diabetes. However, drugs that target the entire CD8+ T-cell population are not desirable because the associated lack of specificity can lead to unwanted consequences, most notably an enhanced susceptibility to infection. Here, we show that autoreactive CD8+ T-cells are highly dependent on CD8 for ligand-induced activation via the T-cell receptor (TCR). In contrast, pathogen-specific CD8+ T-cells are relatively CD8-independent. These generic differences relate to an intrinsic dichotomy that segregates self-derived and exogenous antigen-specific TCRs according to the monomeric interaction affinity with cognate peptide-major histocompatibility complex class I (pMHCI). As a consequence, “blocking” anti-CD8 antibodies can suppress autoreactive CD8+ T-cell activation in a relatively selective manner. These findings provide a rational basis for the development and in vivo assessment of novel therapeutic strategies that preferentially target disease-relevant autoimmune responses within the CD8+ T-cell compartment.
Collapse
Affiliation(s)
- Mathew Clement
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - James A Pearson
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | | | - Anya Lissina
- Faculty of Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | - Mark D Willis
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff CF14 4XN, UK
| | - Tamsin Dockree
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Julia Ekeruche-Makinde
- Mucosal Infection and Immunity Group, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Neil P Robertson
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff CF14 4XN, UK
| | - Jamie Rossjohn
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK.,Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Scott R Burrows
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - David A Price
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Mark Peakman
- Department of Immunobiology, King's College London, London SE1 9RT, UK
| | - Ania Skowera
- Department of Immunobiology, King's College London, London SE1 9RT, UK
| | - Linda Wooldridge
- Faculty of Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
41
|
Yang J, Sheng G, Xiao D, Shi H, Wu W, Lu H, Cao H, Li L. The frequency and skewed T-cell receptor beta-chain variable patterns of peripheral CD4(+)CD25(+) regulatory T-cells are associated with hepatitis B e antigen seroconversion of chronic hepatitis B patients during antiviral treatment. Cell Mol Immunol 2016; 13:678-687. [PMID: 26899927 PMCID: PMC5037272 DOI: 10.1038/cmi.2015.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/07/2015] [Accepted: 11/08/2015] [Indexed: 02/08/2023] Open
Abstract
The frequency and T-cell receptor beta-chain variable (TCRBV) patterns of peripheral CD4(+)CD25(+) regulatory T-cells (Tregs) are ambiguously altered in chronic hepatitis B (CHB) patients following tenofovir disoproxil fumarate (TDF) treatment. Moreover, the clinical significance of these parameters in relation to hepatitis B e antigen (HBeAg) seroconversion (SC) is largely unknown. In this study, the circulation of Tregs in HBeAg-positive CHB patients was determined by flow cytometry, and the molecular profiles of frequent TCRBV patterns of Tregs were analyzed using a gene melting spectral pattern. The parameters, such as Treg frequency, the number of skewed TCRBV patterns, hepatitis B virus (HBV) DNA levels, and alanine aminotransferase (ALT) levels, were analyzed by comparing their associations in seroconverting and non-seroconverting patients following TDF treatment. The Treg frequency was significantly correlated with the ALT level in seroconverting but not in non-seroconverting patients. Similarly, skewed TCRBV patterns were remarkably associated with HBV DNA levels in the SC group. Six TCRBV families (BV3, BV11, BV12, BV14, BV20, and BV24) were more prevalent than other TCRBV members in seroconverting patients pretreated with TDF, while BV12, BV15, and BV22 were predominant in non-seroconverting patients during TDF treatment. Taken together, the preferential TCRBV patterns may be associated with immune responses related to SC. The dynamic frequency and skewed TCRBV patterns of peripheral Tregs could contribute to predicting SC in CHB patients. Moreover, the conserved TCRBV complementarity-determining region (CDR3) motif may be targeted to develop personalized immunotherapy for CHB patients.
Collapse
MESH Headings
- Adult
- Alanine Transaminase/metabolism
- Amino Acid Motifs
- Antigens, CD/metabolism
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Complementarity Determining Regions/immunology
- Conserved Sequence
- DNA, Viral/blood
- Hepatitis B e Antigens/immunology
- Hepatitis B, Chronic/blood
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/virology
- Humans
- Interleukin-2 Receptor alpha Subunit/metabolism
- Kinetics
- Longitudinal Studies
- Lymphocyte Count
- Middle Aged
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Seroconversion/drug effects
- T-Lymphocytes, Regulatory/immunology
- Young Adult
Collapse
|
42
|
Liu H, Zhao ZG, Xing LQ, Zhang LM, Niu CY. Post-shock mesenteric lymph drainage ameliorates cellular immune function in rats following hemorrhagic shock. Inflammation 2015; 38:584-94. [PMID: 24986445 DOI: 10.1007/s10753-014-9965-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Disturbance of immunity is an important factor to modulate inflammatory responses after severe shock. Post-shock mesenteric lymph (PSML) return plays an adverse role in multiple organ injuries induced by the hemorrhagic shock, and the inflammatory factors are involved in this process. However, whether the PSML can exacerbate immune dysfunctions that modulate inflammatory response to the hemorrhagic shock remains unknown. In the present study, the effects of PSML drainage on the distribution of T lymphocyte subgroup, the release of inflammatory factors, and apoptosis of thymocytes were investigated; the effect of PSML on the specific parameters of cellular immune function was also determined. Results showed that PSML drainage reduced the increased levels of CD3+, CD3+CD4+, CD4+CD25+ lymphocytes, IFN-γ, and the ratios of CD3 + CD4+/CD3 + CD4- in blood of the shocked rats at 3 h after resuscitation; PSML drainage also abolished the decreased IL-4 level and restored the higher ratio of IFN-γ/IL-4 to normal levels. Tissue injury, including enlarged intermembrance space and edema with congestion in the medulla, increased apoptotic cells and bax expression, decreased number of cells in the S phase, and bcl-2 expression were observed in the thymus after hemorrhagic shock. PSML drainage reversed these effects. In particular, PSML drainage increased the proliferation index and decreased p53 expression of thymocytes. These results suggest that hyperimmunity occurred at early stages of hemorrhagic shock with resuscitation and that PSML drainage could markedly improve cellular immune function that is responsible for the reduced inflammatory responses.
Collapse
Affiliation(s)
- Hua Liu
- Institute of Microcirculation, Hebei North University, 11 Diamond South Road, Hebei, 075000, Zhangjiakou, People's Republic of China
| | | | | | | | | |
Collapse
|
43
|
Yang X, Gao M, Chen G, Pierce BG, Lu J, Weng NP, Mariuzza RA. Structural Basis for Clonal Diversity of the Public T Cell Response to a Dominant Human Cytomegalovirus Epitope. J Biol Chem 2015; 290:29106-19. [PMID: 26429912 DOI: 10.1074/jbc.m115.691311] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 11/06/2022] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous and persistent human pathogen that is kept in check by CD8(+) cytotoxic T lymphocytes. Individuals expressing the major histocompatibility complex (MHC) class I molecule HLA-A2 produce cytotoxic T lymphocytes bearing T cell receptors (TCRs) that recognize the immunodominant CMV epitope NLVPMVATV (NLV). The NLV-specific T cell repertoire is characterized by a high prevalence of TCRs that are frequently observed in multiple unrelated individuals. These public TCRs feature identical, or nearly identical, complementarity-determining region 3α (CDR3α) and/or CDR3β sequences. The TCRs may express public CDR3α motifs alone, public CDR3β motifs alone, or dual public CDR3αβ motifs. In addition, the same public CDR3α motif may pair with different CDR3β motifs (and the reverse), giving rise to highly diverse NLV-specific TCR repertoires. To investigate the structural underpinnings of this clonal diversity, we determined crystal structures of two public TCRs (C7 and C25) in complex with NLV·HLA-A2. These TCRs utilize completely different CDR3α and CDR3β motifs that, in addition, can associate with multiple variable α and variable β regions in NLV-specific T cell repertoires. The C7·NLV·HLA-A2 and C25·NLV·HLA-A2 complexes exhibit divergent TCR footprints on peptide-MHC such that C25 is more focused on the central portion of the NLV peptide than is C7. These structures combined with molecular modeling show how the public CDR3α motif of C25 may associate with different variable α regions and how the public CDR3α motif of C7 may pair with different CDR3β motifs. This interchangeability of TCR V regions and CDR3 motifs permits multiple structural solutions to binding an identical peptide-MHC ligand and thereby the generation of a clonally diverse public T cell response to CMV.
Collapse
Affiliation(s)
- Xinbo Yang
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Mingming Gao
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Guobing Chen
- Lymphocyte Differentiation Section, Laboratory of Molecular Biology and Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224, and
| | - Brian G Pierce
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850
| | - Jinghua Lu
- Structural Immunology Section, Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Nan-Ping Weng
- Lymphocyte Differentiation Section, Laboratory of Molecular Biology and Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224, and
| | - Roy A Mariuzza
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742,
| |
Collapse
|
44
|
Sonntag K, Eckert F, Welker C, Müller H, Müller F, Zips D, Sipos B, Klein R, Blank G, Feuchtinger T, Schumm M, Handgretinger R, Schilbach K. Chronic graft-versus-host-disease in CD34(+)-humanized NSG mice is associated with human susceptibility HLA haplotypes for autoimmune disease. J Autoimmun 2015; 62:55-66. [PMID: 26143958 DOI: 10.1016/j.jaut.2015.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/27/2015] [Accepted: 06/07/2015] [Indexed: 11/26/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is a significant hurdle to long-term hematopoietic stem-cell transplantation success. Insights into the pathogenesis and mechanistical investigations of novel therapeutic strategies are limited as appropriate animal models are missing. The immunodeficient NSG mouse - when humanized with human bone marrow, fetal liver and thymus (BLT NSG) - is prone for cGVHD, yet mainly affects the skin. In contrast, the NSG mouse humanized exclusively with CD34(+)-selected, CD3(+)-depleted stem cells (CD34(+)NSG) has neither been described for acute nor chronic GVHD so far. This is the first report about the development of systemic autoimmune cGVHD ≥24 weeks post stem cell receipt involving lung, liver, skin, gingiva and intestine in two NSG cohorts humanized with CD34(+) grafts from different donors. Affected mice presented with sclerodermatous skin, fibrotic lung, severe hepatitis, and massive dental malformation/loss. CD4(+)-dominated, TH2-biased, bulky T-cell infiltrates featured highly skewed T cell receptor (TCR) repertoires, clonal expansions, and autoreactive TCRs. In affected tissues profibrotic IL-13 and -4 dominated over TH1 cytokines IFN-γ and TNF-α. Thus, the time point of manifestation and the phenotype match human systemic pleiotropic sclerodermatous GVHD. The CD34(+)NSG-model's intrinsic deficiency of thymus, thymus-derived regulatory T cells (nTreg) and B cells emphasizes the role of the genetic polymorphism and the cytokines in the pathogenesis of cGVHD. Importantly, the only factor discriminating diseased versus non-diseased CD34(+)NSG cohorts were two risk HLA haplotypes that in human mediate susceptibility for autoimmune disease (psoriasis). Thus, the CD34(+)NSG model may serve as a platform for addressing issues related to the pathophysiology and treatment of human autoimmunity and chronic GVHD.
Collapse
Affiliation(s)
- Katja Sonntag
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany
| | - Franziska Eckert
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany; Department of Radiation Oncology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Christian Welker
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany
| | - Hartmut Müller
- Institute of Pathology, Eberhard Karls University Tübingen, Liebermeisterstraße 8, 72076 Tübingen, Germany
| | - Friederike Müller
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Bence Sipos
- Institute of Pathology, Eberhard Karls University Tübingen, Liebermeisterstraße 8, 72076 Tübingen, Germany
| | - Reinhild Klein
- Laboratory for Immunopathology, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| | - Gregor Blank
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany
| | - Tobias Feuchtinger
- Pediatric Hematology, Oncology and Stem Cell Transplantation Dr. von Hauner'sches Kinderspital, Ludwig-Maximilian-University Munich, Lindwurmstraße 4, 80337 München, Germany
| | - Michael Schumm
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany
| | - Rupert Handgretinger
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany
| | - Karin Schilbach
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany.
| |
Collapse
|
45
|
He Y, Rangarajan S, Kerzic M, Luo M, Chen Y, Wang Q, Yin Y, Workman CJ, Vignali KM, Vignali DAA, Mariuzza RA, Orban J. Identification of the Docking Site for CD3 on the T Cell Receptor β Chain by Solution NMR. J Biol Chem 2015; 290:19796-805. [PMID: 26109064 DOI: 10.1074/jbc.m115.663799] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 12/23/2022] Open
Abstract
The T cell receptor (TCR)-CD3 complex is composed of a genetically diverse αβ TCR heterodimer associated noncovalently with the invariant CD3 dimers CD3ϵγ, CD3ϵδ, and CD3ζζ. The TCR mediates peptide-MHC recognition, whereas the CD3 molecules transduce activation signals to the T cell. Although much is known about downstream T cell signaling pathways, the mechanism whereby TCR engagement by peptide-MHC initiates signaling is poorly understood. A key to solving this problem is defining the spatial organization of the TCR-CD3 complex and the interactions between its subunits. We have applied solution NMR methods to identify the docking site for CD3 on the β chain of a human autoimmune TCR. We demonstrate a low affinity but highly specific interaction between the extracellular domains of CD3 and the TCR constant β (Cβ) domain that requires both CD3ϵγ and CD3ϵδ subunits. The mainly hydrophilic docking site, comprising 9-11 solvent-accessible Cβ residues, is relatively small (∼400 Å(2)), consistent with the weak interaction between TCR and CD3 extracellular domains, and devoid of glycosylation sites. The docking site is centered on the αA and αB helices of Cβ, which are located at the base of the TCR. This positions CD3ϵγ and CD3ϵδ between the TCR and the T cell membrane, permitting us to distinguish among several possible models of TCR-CD3 association. We further correlate structural results from NMR with mutational data on TCR-CD3 interactions from cell-based assays.
Collapse
Affiliation(s)
- Yanan He
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, the Departments of Chemistry and Biochemistry and
| | - Sneha Rangarajan
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Melissa Kerzic
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Ming Luo
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China, and
| | - Yihong Chen
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Qian Wang
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Yiyuan Yin
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Creg J Workman
- the Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Kate M Vignali
- the Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Dario A A Vignali
- the Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Roy A Mariuzza
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742,
| | - John Orban
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, the Departments of Chemistry and Biochemistry and
| |
Collapse
|
46
|
Coeliac disease and rheumatoid arthritis: similar mechanisms, different antigens. Nat Rev Rheumatol 2015; 11:450-61. [PMID: 25986717 DOI: 10.1038/nrrheum.2015.59] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) and coeliac disease are inflammatory diseases that both have a strong association with class II HLAs: individuals carrying HLA-DQ2.5 and/or HLA-DQ8 alleles have an increased risk of developing coeliac disease, whereas those carrying HLA-DR shared epitope alleles exhibit an increased risk of developing RA. Although the molecular basis of the association with specific HLA molecules in RA remains poorly defined, an immune response against post-translationally modified protein antigens is a hallmark of each disease. In RA, understanding of the pathogenetic role of B-cell responses to citrullinated antigens, including vimentin, fibrinogen and α-enolase, is rapidly growing. Moreover, insight into the role of HLAs in the pathogenesis of coeliac disease has been considerably advanced by the identification of T-cell responses to deamidated gluten antigens presented in conjunction with predisposing HLA-DQ2.5 molecules. This article briefly reviews these advances and draws parallels between the immune mechanisms leading to RA and coeliac disease, which point to a crucial role for T-cell-B-cell cooperation in the development of full-blown disease. Finally, the ways in which these novel insights are being exploited therapeutically to re-establish tolerance in patients with RA and coeliac disease are described.
Collapse
|
47
|
Serre L, Fazilleau N, Guerder S. Central tolerance spares the private high-avidity CD4(+) T-cell repertoire specific for an islet antigen in NOD mice. Eur J Immunol 2015; 45:1946-56. [PMID: 25884569 DOI: 10.1002/eji.201445290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/17/2015] [Accepted: 04/14/2015] [Indexed: 11/09/2022]
Abstract
Although central tolerance induces the deletion of most autoreactive T cells, some autoreactive T cells escape thymic censorship. Whether potentially harmful autoreactive T cells present distinct TCRαβ features remains unclear. Here, we analyzed the TCRαβ repertoire of CD4(+) T cells specific for the S100β protein, an islet antigen associated with type 1 diabetes. We found that diabetes-resistant NOD mice deficient for thymus specific serine protease (TSSP), a protease that impairs class II antigen presentation by thymic stromal cells, were hyporesponsive to the immunodominant S100β1-15 epitope, as compared to wild-type NOD mice, due to intrathymic negative selection. In both TSSP-deficient and wild-type NOD mice, the TCRαβ repertoire of S100β-specific CD4(+) T cells though diverse showed a specific bias for dominant TCRα rearrangements with limited CDR3α diversity. These dominant TCRα chains were public since they were found in all mice. They were of intermediate- to low-avidity. In contrast, high-avidity T cells expressed unique TCRs specific to each individual (private TCRs) and were only found in wild-type NOD mice. Hence, in NOD mice, the autoreactive CD4(+) T-cell compartment has two major components, a dominant and public low-avidity TCRα repertoire and a private high-avidity CD4(+) T-cell repertoire; the latter is deleted by re-enforced negative selection.
Collapse
Affiliation(s)
- Laurent Serre
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.,INSERM, U1043, Toulouse, France.,CNRS, UMR5282, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Nicolas Fazilleau
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.,INSERM, U1043, Toulouse, France.,CNRS, UMR5282, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Sylvie Guerder
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.,INSERM, U1043, Toulouse, France.,CNRS, UMR5282, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
48
|
Benson RA, McInnes IB, Brewer JM, Garside P. Cellular imaging in rheumatic diseases. Nat Rev Rheumatol 2015; 11:357-67. [DOI: 10.1038/nrrheum.2015.34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
49
|
Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol 2014; 33:169-200. [PMID: 25493333 DOI: 10.1146/annurev-immunol-032414-112334] [Citation(s) in RCA: 560] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Major Histocompatibility Complex (MHC) locus encodes classical MHC class I and MHC class II molecules and nonclassical MHC-I molecules. The architecture of these molecules is ideally suited to capture and present an array of peptide antigens (Ags). In addition, the CD1 family members and MR1 are MHC class I-like molecules that bind lipid-based Ags and vitamin B precursors, respectively. These Ag-bound molecules are subsequently recognized by T cell antigen receptors (TCRs) expressed on the surface of T lymphocytes. Structural and associated functional studies have been highly informative in providing insight into these interactions, which are crucial to immunity, and how they can lead to aberrant T cell reactivity. Investigators have determined over thirty unique TCR-peptide-MHC-I complex structures and twenty unique TCR-peptide-MHC-II complex structures. These investigations have shown a broad consensus in docking geometry and provided insight into MHC restriction. Structural studies on TCR-mediated recognition of lipid and metabolite Ags have been mostly confined to TCRs from innate-like natural killer T cells and mucosal-associated invariant T cells, respectively. These studies revealed clear differences between TCR-lipid-CD1, TCR-metabolite-MR1, and TCR-peptide-MHC recognition. Accordingly, TCRs show remarkable structural and biological versatility in engaging different classes of Ag that are presented by polymorphic and monomorphic Ag-presenting molecules of the immune system.
Collapse
Affiliation(s)
- Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; ,
| | | | | | | | | | | |
Collapse
|
50
|
Dunbar J, Knapp B, Fuchs A, Shi J, Deane CM. Examining variable domain orientations in antigen receptors gives insight into TCR-like antibody design. PLoS Comput Biol 2014; 10:e1003852. [PMID: 25233457 PMCID: PMC4168974 DOI: 10.1371/journal.pcbi.1003852] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023] Open
Abstract
The variable domains of antibodies and T-Cell receptors (TCRs) share similar structures. Both molecules act as sensors for the immune system but recognise their respective antigens in different ways. Antibodies bind to a diverse set of antigenic shapes whilst TCRs only recognise linear peptides presented by a major histocompatibility complex (MHC). The antigen specificity and affinity of both receptors is determined primarily by the sequence and structure of their complementarity determining regions (CDRs). In antibodies the binding site is also known to be affected by the relative orientation of the variable domains, VH and VL. Here, the corresponding property for TCRs, the Vβ-Vα orientation, is investigated and compared with that of antibodies. We find that TCR and antibody orientations are distinct. General antibody orientations are found to be incompatible with binding to the MHC in a canonical TCR-like mode. Finally, factors that cause the orientation of TCRs and antibodies to be different are investigated. Packing of the long Vα CDR3 in the domain-domain interface is found to be influential. In antibodies, a similar packing affect can be achieved using a bulky residue at IMGT position 50 on the VH domain. Along with IMGT VH 50, other positions are identified that may help to promote a TCR-like orientation in antibodies. These positions should provide useful considerations in the engineering of therapeutic TCR-like antibodies. The immune system needs to be able to sense molecules that might be harmful to the organism. Such harmful molecules are known as antigens. Two classes of receptor proteins that mediate antigen recognition are antibodies and T-Cell receptors (TCRs). Antibodies are able to bind a diverse range of antigen shapes whilst TCRs are specialised to recognise a cell-surface protein, the pMHC. Antibodies that bind the pMHC are rarely created naturally. However, such TCR-like antibodies are of therapeutic importance. The binding regions of the TCR and the antibody have very similar three dimensional structures. Both consist of two independent units, domains, which associate and form the antigen binding site between them. This work examines how the two domains orientate with respect to one another in TCRs and antibodies. Our results show that the conformations that exist in TCRs and antibodies are distinct. Consequently it is difficult for an antibody to bind to a pMHC in the same way a TCR would. However, a similar conformation can be achieved in antibodies as in TCRs by the presence of certain amino-acids in the domain interface. This knowledge should aid the development of therapeutic TCR-like antibodies.
Collapse
Affiliation(s)
- James Dunbar
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Bernhard Knapp
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Angelika Fuchs
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Informatics, Penzberg, Germany
| | - Jiye Shi
- Informatics, UCB Pharma, Slough, United Kingdom
| | - Charlotte M. Deane
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|