1
|
Browne DJ, Crooks P, Smith C, Doolan DL. Differential reactivity of SARS-CoV-2 S-protein T-cell epitopes in vaccinated versus naturally infected individuals. Clin Transl Immunology 2025; 14:e70031. [PMID: 40342296 PMCID: PMC12056234 DOI: 10.1002/cti2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/20/2025] [Accepted: 03/18/2025] [Indexed: 05/11/2025] Open
Abstract
Objectives Vaccine-induced protective immunity against SARS-CoV-2 has proved difficult to sustain. Robust T-cell responses are thought to play an important role, but T-cell responses against the SARS-CoV-2 spike protein (S-protein), the core vaccine antigen, following vaccination or natural infection are incompletely understood. Methods Herein, the reactivity of 170 putative SARS-CoV-2 S-protein CD8+ and CD4+ T-cell peptide epitopes in the same individuals prior to vaccination, after COVID-19 vaccination, and again following subsequent natural infection was assayed using a high-throughput reverse transcription-quantitative PCR (HTS-RT-qPCR) assay. Results The profile of immunoreactive SARS-CoV-2 S-protein epitopes differed between vaccination and natural infection. Vaccine-induced immunoreactive epitopes were localised primarily into two extra-domanial regions. In contrast, epitopes recognised following natural infection were spread across the antigen. Furthermore, T-cell epitopes in naïve individuals were primarily recognised in association with HLA-A, while natural infection shifted epitope associations towards HLA-B, particularly the B7 supertype. Conclusion This study provides insight into T-cell responses against the SARS-CoV-2 S-protein following vaccination and subsequent natural infection.
Collapse
Affiliation(s)
- Daniel J Browne
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQLDAustralia
| | - Pauline Crooks
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of ImmunologyQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of ImmunologyQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
- Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQLDAustralia
- Institute for Molecular BioscienceThe University of QueenslandSt LuciaQLDAustralia
| |
Collapse
|
2
|
Boquett JA, Sauter J, Schmidt AH, Maiers M, Hollenbach JA. Human leukocyte antigen variation is associated with cytomegalovirus serostatus in healthy individuals. Am J Hum Genet 2025; 112:913-926. [PMID: 40049169 DOI: 10.1016/j.ajhg.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 03/12/2025] Open
Abstract
Cytomegalovirus (CMV) is a common β-herpes virus worldwide with an estimated seroprevalence among the general population of 83%. Primary infection is usually benign; however, CMV can cause severe morbidity in newborns in whom it is acquired congenitally, as well as immunocompromised individuals. Understanding the role of immunogenetic variation in risk for CMV infection can provide insight into the immune control of this ubiquitous pathogen. Here, we evaluated the association of human leukocyte antigen (HLA) genetic variation with CMV seropositivity in more than 518,000 individuals from two independent cohorts. We found three HLA class II alleles (HLA-DRB1∗04:03 with risk; HLA-DRB1∗01:03 and HLA-DRB1∗07:01 with protection) to be significantly associated with CMV serostatus across both cohorts and in multiple population subgroups. Interestingly, HLA-DRB1∗04:03 and HLA-DRB1∗01:03, the alleles with the strongest observed effect, are relatively rare, while common homologous alleles show no association with CMV. We show that these differences are mediated by changes in charge and volume to two key pockets in the peptide-binding groove of the HLA molecule, providing a structural basis for the observed association. Our results provide population-scale evidence for the role of HLA in mediating infection with this ubiquitous human virus and a framework for understanding immunological conditions necessary for efficient viral control.
Collapse
Affiliation(s)
- Juliano A Boquett
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Martin Maiers
- CIBMTR (Center for International Blood and Marrow Transplant Research), NMDP, Minneapolis, MN, USA
| | - Jill A Hollenbach
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Sim MJW, Long EO. The peptide selectivity model: Interpreting NK cell KIR-HLA-I binding interactions and their associations to human diseases. Trends Immunol 2024; 45:959-970. [PMID: 39578117 DOI: 10.1016/j.it.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/24/2024]
Abstract
Combinations of the highly polymorphic KIR and HLA-I genes are associated with numerous human diseases. Interpreting these associations requires a molecular understanding of the multiple killer-cell immunoglobulin-like receptor (KIR)-human leukocyte antigen-1 (HLA-I) receptor-ligand interactions on natural killer (NK) cells and identifying the salient features that underlie disease risk. We hypothesize that a critical discriminating factor in KIR-HLA-I interactions is the selective detection of HLA-I-bound peptides by KIRs. We propose a 'peptide selectivity model', where high-avidity KIR-HLA-I interactions reflect low selectivity for peptides conferring consistent NK cell inhibition across different tissue immunopeptidomes. Conversely, lower-avidity interactions (including those with activating KIRs) are more dependent on HLA-I-bound peptide sequence, requiring an appreciation of how HLA-I immunopeptidomes influence KIR binding and regulate NK cell function. Relevant to understanding NK cell function and pathology, we interpret known KIR-HLA-I combinations and their associations with certain human diseases in the context of this 'peptide selectivity model'.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, OX3 7DQ, UK.
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, 20852, USA
| |
Collapse
|
4
|
Serrano-Rísquez C, Omar M, Rallón N, Benito JM, Gómez-Vidal A, Márquez FJ, Alján M, Rivero-Juárez A, Pérez-Valero I, Rivero A, Sinangil F, Saulle I, Biasin M, Clerici M, Forthal D, Saéz ME, Caruz A. Impact of Human Leukocyte Antigen Allele-Killer Cell Immunoglobulin-like Receptor Partners on Sexually Transmitted Human Immunodeficiency Virus Type 1 Infection. J Infect Dis 2024; 230:e1077-e1081. [PMID: 39208444 PMCID: PMC11566224 DOI: 10.1093/infdis/jiae436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Human leukocyte antigen (HLA) class I/killer cell immunoglobulin-like receptor (KIR) genotypes influence human immunodeficiency virus type 1 (HIV-1) disease progression and viral load, but their role in primary infection is uncertain. Inconsistent results from previous studies suggest that the inoculum size and transmission route-parenteral versus sexual-may influence this association. We conducted a genome-wide association study in a population of people with HIV-1 and HIV-1-exposed seronegative individuals exposed to the virus through the sexual route. Our data do not support any role of the HLA/KIR system in susceptibility to sexually transmitted HIV-1 infection. The genetics basis of HIV-1 viral load and disease progression are distinct from the genetics of HIV resistance, a paradox worth exploring.
Collapse
Affiliation(s)
- Carmen Serrano-Rísquez
- Unidad de Inmunogenética, Genética, Departamento de Biología Experimental, Universidad de Jaén
| | - Mohamed Omar
- Servicio de Enfermedades Infecciosas y Microbiología Clínica, Complejo Hospitalario de Jaén
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid
| | - José Miguel Benito
- HIV and Viral Hepatitis Research Laboratory, Hospital Universitario Rey Juan Carlos, Móstoles, Madrid
| | - Amparo Gómez-Vidal
- Servicio de Enfermedades Infecciosas y Microbiología Clínica, Complejo Hospitalario de Jaén
| | - Francisco J Márquez
- Unidad de Inmunogenética, Genética, Departamento de Biología Experimental, Universidad de Jaén
| | - Martina Alján
- Unidad de Inmunogenética, Genética, Departamento de Biología Experimental, Universidad de Jaén
| | - Antonio Rivero-Juárez
- Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba
- Centro de Investigacion Biomedica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Pérez-Valero
- Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba
- Centro de Investigacion Biomedica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Rivero
- Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba
- Centro de Investigacion Biomedica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Faruk Sinangil
- HIV Vaccine Program, Global Solutions for Infectious Diseases, Lafayette, California
| | - Irma Saulle
- Dipartimento di Scienze Biomediche e Cliniche
| | - Mara Biasin
- Dipartimento di Scienze Biomediche e Cliniche
| | - Mario Clerici
- Dipartimento di Fisiopatologia Medico-Chirurgica e Trapianti, Università degli Studi di Milano
- Laboratori di Neuroimaging, Dipartamento di Medicina Molecolare e Digitale nella Medicina Riabilitativa di Precisione, Istituto di Ricerca SM Nascente IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Donald Forthal
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California, Irvine
| | - Maria Eugenia Saéz
- Departamento de Investigacion Clinica, Centro Andaluz de Bioinformática, Sevilla, Spain
| | - Antonio Caruz
- Unidad de Inmunogenética, Genética, Departamento de Biología Experimental, Universidad de Jaén
| |
Collapse
|
5
|
Naidoo KK, Altfeld M. The Role of Natural Killer Cells and Their Metabolism in HIV-1 Infection. Viruses 2024; 16:1584. [PMID: 39459918 PMCID: PMC11512232 DOI: 10.3390/v16101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Natural killer (NK) cells are multifaceted innate effector cells that critically influence antiviral immunity, and several protective NK cell features that modulate HIV-1 acquisition and viral control have been described. Chronic HIV-1 infection leads to NK cell impairment that has been associated with metabolic dysregulations. Therapeutic approaches targeting cellular immune metabolism represent potential novel interventions to reverse defective NK cell function in people living with HIV.
Collapse
Affiliation(s)
- Kewreshini K. Naidoo
- Department of Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Marcus Altfeld
- Department of Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
- German Center for Infection Disease (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20251 Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
6
|
Piersma SJ. Tissue-specific features of innate lymphoid cells in antiviral defense. Cell Mol Immunol 2024; 21:1036-1050. [PMID: 38684766 PMCID: PMC11364677 DOI: 10.1038/s41423-024-01161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Innate lymphocytes (ILCs) rapidly respond to and protect against invading pathogens and cancer. ILCs include natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer (LTi) cells and include type I, type II, and type III immune cells. While NK cells have been well recognized for their role in antiviral immunity, other ILC subtypes are emerging as players in antiviral defense. Each ILC subset has specialized functions that uniquely impact the antiviral immunity and health of the host depending on the tissue microenvironment. This review focuses on the specialized functions of each ILC subtype and their roles in antiviral immune responses across tissues. Several viruses within infection-prone tissues will be highlighted to provide an overview of the extent of the ILC immunity within tissues and emphasize common versus virus-specific responses.
Collapse
Affiliation(s)
- Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Nelson GW, van Duijn J, Yuki Y, Pau MG, Tomaka F, Lavreys L, DeRosa SC, McElrath MJ, Kirk GD, Michael NL, Haas DW, Deeks SG, Wolinsky S, Walker B, Barouch DH, Stieh D, Carrington M. Prediction of differential Gag versus Env responses to a mosaic HIV-1 vaccine regimen by HLA class I alleles. J Virol 2024; 98:e0028124. [PMID: 39046263 PMCID: PMC11338073 DOI: 10.1128/jvi.00281-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024] Open
Abstract
HLA class I variation has the strongest effect genome-wide on outcome after HIV infection, and as such, an understanding of the impact of HLA polymorphism on response to HIV vaccination may inform vaccine design. We sought HLA associations with HIV-directed immunogenicity in the phase 1/2a APPROACH vaccine trial, which tested vaccine regimens containing mosaic inserts in Ad26 and MVA vectors, with or without a trimeric gp140 protein. While there were no HLA allelic associations with the overall cellular immune response to the vaccine assessed by ELISpot (Gag, Pol, and Env combined), significant associations with differential response to Gag compared to Env antigens were observed. Notably, HLA class I alleles known to associate with disease susceptibility in HIV natural history cohorts are associated with stronger Env-directed responses, whereas protective alleles are associated with stronger Gag-directed responses. Mean viral loads determined for each HLA allele in untreated individuals correlated negatively with the strength of the Gag response minus the Env response in Black vaccinees based on both ELISpot and CD8+ T cell ICS responses. As the association of T cell responses to conserved Gag epitopes with lower viral load in untreated individuals is well established, our data raise the possibility that the Ad26.Mos.HIV vaccine may induce more effective cellular responses in those with HLA alleles that confer improved virologic control in untreated HIV infection.IMPORTANCENo vaccine tested to date has shown sufficient efficacy against HIV infection. A vaccine that induces robust responses in one individual may fail to do so in another individual due to variation in HLA class I genes, loci central to the immune response. Extensive data have shown the strong effect of HLA variation on outcome after HIV infection, but very little is known about the effect of such variation on HIV vaccine success. Here, we identify a link between the effect of HLA variation on HIV disease outcome and immune responses to an HIV vaccine. HLA variants associated with better HIV control after infection also induce stronger responses against the HIV Gag protein relative to the Env protein after vaccination. Given the virologic control conferred by responses to Gag in natural history of HIV infection, these data suggest that HLA alleles conferring protection after HIV infection may also support a more effective cellular response to HIV vaccination.
Collapse
Affiliation(s)
- George W. Nelson
- Basic Science Program
Frederick National Laboratory for Cancer Research, National Cancer
Institute and Laboratory of Integrative Cancer Immunology, Center for
Cancer Research, National Cancer
Institute, Bethesda,
Maryland, USA
| | | | - Yuko Yuki
- Basic Science Program
Frederick National Laboratory for Cancer Research, National Cancer
Institute and Laboratory of Integrative Cancer Immunology, Center for
Cancer Research, National Cancer
Institute, Bethesda,
Maryland, USA
| | - Maria G. Pau
- Janssen Vaccines
& Prevention,
Leiden, the Netherlands
| | - Frank Tomaka
- Janssen Research and
Development, Titusville,
New Jersey, USA
| | | | - Steven C. DeRosa
- Department of
Laboratory Medicine and Pathology, University of
Washington, Seattle,
Washington, USA
- Division of Vaccine
and Infectious Disease, Fred Hutchinson Cancer
Center, Seattle,
Washington, USA
| | - M. Juliana McElrath
- Department of
Laboratory Medicine and Pathology, University of
Washington, Seattle,
Washington, USA
- Division of Vaccine
and Infectious Disease, Fred Hutchinson Cancer
Center, Seattle,
Washington, USA
- Department of
Medicine, Division of Allergy and Infectious Diseases, University of
Washington, Seattle,
Washington, USA
| | - Gregory D. Kirk
- Department of
Epidemiology, Bloomberg School of Public Health, Johns Hopkins
University, Baltimore,
Maryland, USA
| | - Nelson L. Michael
- US Military HIV
Research Program, Walter Reed Army Institute of
Research, Silver Spring,
Maryland, USA
| | - David W. Haas
- Department of
Medicine, Vanderbilt University School of
Medicine, Nashville,
Tennessee, USA
| | - Steven G. Deeks
- Department of
Medicine, University of California,
San Francisco, California,
USA
| | - Steven Wolinsky
- Division of
Infectious Diseases, Department of Medicine, The Feinberg School of
Medicine, Northwestern University,
Chicago, Illinois, USA
| | - Bruce Walker
- Ragon Institute of
Massachusetts General Hospital, Massachusetts Institute of Technology
and Harvard University,
Cambridge, Massachusetts,
USA
| | - Dan H. Barouch
- Ragon Institute of
Massachusetts General Hospital, Massachusetts Institute of Technology
and Harvard University,
Cambridge, Massachusetts,
USA
- Center for Virology
and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston,
Massachusetts, USA
- Harvard Medical
School, Boston,
Massachusetts, USA
| | - Daniel Stieh
- Janssen Vaccines
& Prevention,
Leiden, the Netherlands
| | - Mary Carrington
- Ragon Institute of
Massachusetts General Hospital, Massachusetts Institute of Technology
and Harvard University,
Cambridge, Massachusetts,
USA
| |
Collapse
|
8
|
Al Meslamani AZ. Antiretroviral therapy response: exploring the potential influence of SARS-CoV-2. Expert Rev Clin Pharmacol 2024; 17:533-536. [PMID: 38390721 DOI: 10.1080/17512433.2024.2322984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Affiliation(s)
- Ahmad Z Al Meslamani
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Zou Y, Pan M, Zhou T, Yan L, Chen Y, Yun J, Wang Z, Guo H, Zhang K, Xiong W. Critical COVID-19, Victivallaceae abundance, and celiac disease: A mediation Mendelian randomization study. PLoS One 2024; 19:e0301998. [PMID: 38701071 PMCID: PMC11068179 DOI: 10.1371/journal.pone.0301998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Celiac disease exhibits a higher prevalence among patients with coronavirus disease 2019. However, the potential influence of COVID-19 on celiac disease remains uncertain. Considering the significant association between gut microbiota alterations, COVID-19 and celiac disease, the two-step Mendelian randomization method was employed to investigate the genetic causality between COVID-19 and celiac disease, with gut microbiota as the potential mediators. We employed the genome-wide association study to select genetic instrumental variables associated with the exposure. Subsequently, these variables were utilized to evaluate the impact of COVID-19 on the risk of celiac disease and its potential influence on gut microbiota. Employing a two-step Mendelian randomization approach enabled the examination of potential causal relationships, encompassing: 1) the effects of COVID-19 infection, hospitalized COVID-19 and critical COVID-19 on the risk of celiac disease; 2) the influence of gut microbiota on celiac disease; and 3) the mediating impact of the gut microbiota between COVID-19 and the risk of celiac disease. Our findings revealed a significant association between critical COVID-19 and an elevated risk of celiac disease (inverse variance weighted [IVW]: P = 0.035). Furthermore, we observed an inverse correlation between critical COVID-19 and the abundance of Victivallaceae (IVW: P = 0.045). Notably, an increased Victivallaceae abundance exhibits a protective effect against the risk of celiac disease (IVW: P = 0.016). In conclusion, our analysis provides genetic evidence supporting the causal connection between critical COVID-19 and lower Victivallaceae abundance, thereby increasing the risk of celiac disease.
Collapse
Affiliation(s)
- Yuxin Zou
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Manyi Pan
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyu Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifeng Yan
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntian Chen
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Yun
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihua Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaqi Guo
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Zhang
- Department of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Rodriguez I, Rossi NM, Keskus AG, Xie Y, Ahmad T, Bryant A, Lou H, Paredes JG, Milano R, Rao N, Tulsyan S, Boland JF, Luo W, Liu J, O'Hanlon T, Bess J, Mukhina V, Gaykalova D, Yuki Y, Malik L, Billingsley KJ, Blauwendraat C, Carrington M, Yeager M, Mirabello L, Kolmogorov M, Dean M. Insights into the mechanisms and structure of breakage-fusion-bridge cycles in cervical cancer using long-read sequencing. Am J Hum Genet 2024; 111:544-561. [PMID: 38307027 PMCID: PMC10940022 DOI: 10.1016/j.ajhg.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024] Open
Abstract
Cervical cancer is caused by human papillomavirus (HPV) infection, has few approved targeted therapeutics, and is the most common cause of cancer death in low-resource countries. We characterized 19 cervical and four head and neck cancer cell lines using long-read DNA and RNA sequencing and identified the HPV types, HPV integration sites, chromosomal alterations, and cancer driver mutations. Structural variation analysis revealed telomeric deletions associated with DNA inversions resulting from breakage-fusion-bridge (BFB) cycles. BFB is a common mechanism of chromosomal alterations in cancer, and our study applies long-read sequencing to this important chromosomal rearrangement type. Analysis of the inversion sites revealed staggered ends consistent with exonuclease digestion of the DNA after breakage. Some BFB events are complex, involving inter- or intra-chromosomal insertions or rearrangements. None of the BFB breakpoints had telomere sequences added to resolve the dicentric chromosomes, and only one BFB breakpoint showed chromothripsis. Five cell lines have a chromosomal region 11q BFB event, with YAP1-BIRC3-BIRC2 amplification. Indeed, YAP1 amplification is associated with a 10-year-earlier age of diagnosis of cervical cancer and is three times more common in African American women. This suggests that individuals with cervical cancer and YAP1-BIRC3-BIRC2 amplification, especially those of African ancestry, might benefit from targeted therapy. In summary, we uncovered valuable insights into the mechanisms and consequences of BFB cycles in cervical cancer using long-read sequencing.
Collapse
Affiliation(s)
- Isabel Rodriguez
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Nicole M Rossi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Ayse G Keskus
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Yi Xie
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Tanveer Ahmad
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Asher Bryant
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Hong Lou
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jesica Godinez Paredes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Rose Milano
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Nina Rao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Sonam Tulsyan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Joseph F Boland
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Wen Luo
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jia Liu
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Tim O'Hanlon
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jazmyn Bess
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Vera Mukhina
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medical Center, Baltimore, MD, USA
| | - Daria Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical System, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Yuko Yuki
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Laksh Malik
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | | | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Mary Carrington
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Meredith Yeager
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mikhail Kolmogorov
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
11
|
Viard M, O’hUigin C, Yuki Y, Bashirova AA, Collins DR, Urbach JM, Wolinsky S, Buchbinder S, Kirk GD, Goedert JJ, Michael NL, Haas DW, Deeks SG, Walker BD, Yu X, Carrington M. Impact of HLA class I functional divergence on HIV control. Science 2024; 383:319-325. [PMID: 38236978 PMCID: PMC11395297 DOI: 10.1126/science.adk0777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
Heterozygosity of Human leukocyte antigen (HLA) class I genes is linked to beneficial outcomes after HIV infection, presumably through greater breadth of HIV epitope presentation and cytotoxic T cell response. Distinct allotype pairs, however, differ in the extent to which they bind shared sets of peptides. We developed a functional divergence metric that measures pairwise complementarity of allotype-associated peptide binding profiles. Greater functional divergence for pairs of HLA-A and/or HLA-B allotypes was associated with slower AIDS progression and independently with enhanced viral load control. The metric predicts immune breadth at the peptide level rather than gene level and redefines HLA heterozygosity as a continuum differentially affecting disease outcome. Functional divergence may affect response to additional infections, vaccination, immunotherapy, and other diseases where HLA heterozygote advantage occurs.
Collapse
Affiliation(s)
- Mathias Viard
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute; Bethesda, MD, USA
| | - Colm O’hUigin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute; Bethesda, MD, USA
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute; Bethesda, MD, USA
| | - Arman A. Bashirova
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute; Bethesda, MD, USA
| | - David R. Collins
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA, USA
| | - Jonathan M. Urbach
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA, USA
| | - Steven Wolinsky
- Division of Infectious Diseases, Department of Medicine, The Feinberg School of Medicine, Northwestern University; Chicago, IL, USA
| | - Susan Buchbinder
- HIV Research Section, San Francisco Department of Public Health; San Francisco, CA, USA
| | - Gregory D. Kirk
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University; Baltimore, MD, USA
| | - James J. Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health; Bethesda, MD, USA
| | - Nelson L. Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research; Silver Spring, MD, USA
| | - David W. Haas
- Department of Medicine, Vanderbilt University School of Medicine; Nashville, TN, USA
| | - Steven G. Deeks
- Department of Medicine, University of California; San Francisco, CA, USA
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Xu Yu
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute; Bethesda, MD, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA, USA
| |
Collapse
|
12
|
French AR, Cron RQ, Cooper MA. Immunology of Cytokine Storm Syndromes: Natural Killer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:145-159. [PMID: 39117813 DOI: 10.1007/978-3-031-59815-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Natural killer (NK) cells are innate immune lymphocytes that rapidly produce cytokines upon activation and kill target cells. NK cells have been of particular interest in primary hemophagocytic lymphohistiocytosis (pHLH) since all of the genetic defects associated with this disorder cause diminished cytotoxic capacity of NK cells and T lymphocytes, and assays of NK cell killing are used clinically for the diagnosis of HLH. Herein, we review human NK cell biology and the significance of alterations in NK cell function in the diagnosis and pathogenesis of HLH.
Collapse
Affiliation(s)
- Anthony R French
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randy Q Cron
- Department of Pediatrics, Division of Rheumatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Balas A, Moreno-Hidalgo MÁ, de la Calle-Prieto F, Vicario JL, Arsuaga M, Trigo E, de Miguel-Buckley R, Bellón T, Díaz-Menéndez M. Coronavirus-19 disease risk and protective factors associated with HLA/KIR polymorphisms in Ecuadorian patients residing in Madrid. Hum Immunol 2023; 84:571-577. [PMID: 37777360 DOI: 10.1016/j.humimm.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Immigrants represented 21.8% of cases in a Spanish cohort of hospitalised patients with COVID-19, a proportion exceeding the percentage of immigrants in that area's total population. Among the ethnic-related genetic risk factors for COVID-19, human leukocyte antigen (HLA) genotypes in diverse populations might bias the response to SARS-CoV-2 infection and/or progression. Similarly, genetic differences in natural killer-activating and inhibitory receptors could play a role in the immune system's response to the viral infection. METHODS We characterised HLA alleles and KIR genes in 52 Ecuadorian patients hospitalised for moderate and severe COVID-19 and 87 Ecuadorian controls from the general population living in the same area. RESULTS There was a significantly increased frequency of the HLA-B*39 antigen and the activating KIR2DS4 receptor in the presence of its HLA-C*04 ligand in the COVID-19 group when compared with the control group. In contrast, there was a significant reduction in the frequency of carriers of KIR2DL1 and of the KIR3DL1/Bw4 receptor/ligand combination among COVID-19 group. On the other hand, HLA-A*24:02 and HLA-DRB1*09:01 alleles showed significantly lower frequencies specifically in the severe COVID-19 group. CONCLUSION HLA-B*39 alleles might be genetic risk factors for developing COVID-19 in Ecuadorian individuals. In the presence of its ligand C*04, the natural killer-activating receptor KIR2DS4 might also increase the risk of developing COVID-19, while, in the presence of HLA-Bw4 alleles, the inhibitory receptor KIR3DL1 might play a protective role. Patients with COVID-19 who carry HLA-A*24:02 and HLA-DRB1*09:01 alleles might be protected against more severe forms of COVID-19.
Collapse
Affiliation(s)
- Antonio Balas
- Histocompatibility Unit, Centro de Transfusion de la Comunidad de Madrid, Madrid, Spain
| | | | - Fernando de la Calle-Prieto
- National Referral Unit for Imported Tropical Diseases and Travel Medicine, Infectious Diseases Department, Hospital Universitario La Paz-Carlos III, IdiPAZ, CIBERINFEC, Madrid, Spain
| | - José Luis Vicario
- Histocompatibility Unit, Centro de Transfusion de la Comunidad de Madrid, Madrid, Spain
| | - Marta Arsuaga
- National Referral Unit for Imported Tropical Diseases and Travel Medicine, Infectious Diseases Department, Hospital Universitario La Paz-Carlos III, IdiPAZ, CIBERINFEC, Madrid, Spain
| | - Elena Trigo
- National Referral Unit for Imported Tropical Diseases and Travel Medicine, Infectious Diseases Department, Hospital Universitario La Paz-Carlos III, IdiPAZ, CIBERINFEC, Madrid, Spain
| | - Rosa de Miguel-Buckley
- National Referral Unit for Imported Tropical Diseases and Travel Medicine, Infectious Diseases Department, Hospital Universitario La Paz-Carlos III, IdiPAZ, CIBERINFEC, Madrid, Spain
| | - Teresa Bellón
- Institute for Health Research Hospital Universitario La Paz (IdiPAZ), Madrid, Spain.
| | - Marta Díaz-Menéndez
- National Referral Unit for Imported Tropical Diseases and Travel Medicine, Infectious Diseases Department, Hospital Universitario La Paz-Carlos III, IdiPAZ, CIBERINFEC, Madrid, Spain
| |
Collapse
|
14
|
Tsai YY, Qu C, Bonner JD, Sanz-Pamplona R, Lindsey SS, Melas M, McDonnell KJ, Idos GE, Walker CP, Tsang KK, Da Silva DM, Moratalla-Navarro F, Maoz A, Rennert HS, Kast WM, Greenson JK, Moreno V, Rennert G, Gruber SB, Schmit SL. Heterozygote advantage at HLA class I and II loci and reduced risk of colorectal cancer. Front Immunol 2023; 14:1268117. [PMID: 37942321 PMCID: PMC10627840 DOI: 10.3389/fimmu.2023.1268117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Objective Reduced diversity at Human Leukocyte Antigen (HLA) loci may adversely affect the host's ability to recognize tumor neoantigens and subsequently increase disease burden. We hypothesized that increased heterozygosity at HLA loci is associated with a reduced risk of developing colorectal cancer (CRC). Methods We imputed HLA class I and II four-digit alleles using genotype data from a population-based study of 5,406 cases and 4,635 controls from the Molecular Epidemiology of Colorectal Cancer Study (MECC). Heterozygosity at each HLA locus and the number of heterozygous genotypes at HLA class -I (A, B, and C) and HLA class -II loci (DQB1, DRB1, and DPB1) were quantified. Logistic regression analysis was used to estimate the risk of CRC associated with HLA heterozygosity. Individuals with homozygous genotypes for all loci served as the reference category, and the analyses were adjusted for sex, age, genotyping platform, and ancestry. Further, we investigated associations between HLA diversity and tumor-associated T cell repertoire features, as measured by tumor infiltrating lymphocytes (TILs; N=2,839) and immunosequencing (N=2,357). Results Individuals with all heterozygous genotypes at all three class I genes had a reduced odds of CRC (OR: 0.74; 95% CI: 0.56-0.97, p= 0.031). A similar association was observed for class II loci, with an OR of 0.75 (95% CI: 0.60-0.95, p= 0.016). For class-I and class-II combined, individuals with all heterozygous genotypes had significantly lower odds of developing CRC (OR: 0.66, 95% CI: 0.49-0.87, p= 0.004) than those with 0 or one heterozygous genotype. HLA class I and/or II diversity was associated with higher T cell receptor (TCR) abundance and lower TCR clonality, but results were not statistically significant. Conclusion Our findings support a heterozygote advantage for the HLA class-I and -II loci, indicating an important role for HLA genetic variability in the etiology of CRC.
Collapse
Affiliation(s)
- Ya-Yu Tsai
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Chenxu Qu
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Joseph D. Bonner
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Rebeca Sanz-Pamplona
- Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Hospital Universitario Lozano Blesa, Aragon Health Research Institute (IISA), ARAID Foundation, Aragon Government, Zaragoza, Spain
| | - Sidney S. Lindsey
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Marilena Melas
- Molecular Diagnostics, New York Genome Center, New York, NY, United States
| | - Kevin J. McDonnell
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Gregory E. Idos
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Christopher P. Walker
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Kevin K. Tsang
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Diane M. Da Silva
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Ferran Moratalla-Navarro
- Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona, Barcelona, Spain
| | - Asaf Maoz
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Hedy S. Rennert
- B. Rappaport Faculty of Medicine, Technion and the Association for Promotion of Research in Precision Medicine (APRPM), Haifa, Israel
| | - W. Martin Kast
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Joel K. Greenson
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Victor Moreno
- Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona, Barcelona, Spain
| | - Gad Rennert
- B. Rappaport Faculty of Medicine, Technion and the Association for Promotion of Research in Precision Medicine (APRPM), Haifa, Israel
| | - Stephen B. Gruber
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Stephanie L. Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, United States
| |
Collapse
|
15
|
Tay GK, Alnaqbi H, Chehadeh S, Peramo B, Mustafa F, Rizvi TA, Mahboub BH, Uddin M, Alkaabi N, Alefishat E, Jelinek HF, Alsafar H. HLA class I associations with the severity of COVID-19 disease in the United Arab Emirates. PLoS One 2023; 18:e0285712. [PMID: 37708194 PMCID: PMC10501655 DOI: 10.1371/journal.pone.0285712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/29/2023] [Indexed: 09/16/2023] Open
Abstract
SARS-CoV-2 appears to induce diverse innate and adaptive immune responses, resulting in different clinical manifestations of COVID-19. Due to their function in presenting viral peptides and initiating the adaptive immune response, certain Human Leucocyte Antigen (HLA) alleles may influence the susceptibility to severe SARS-CoV-2 infection. In this study, 92 COVID-19 patients from 15 different nationalities, with mild (n = 30), moderate (n = 35), and severe (n = 27) SARS-CoV-2 infection, living in the United Arab Emirates (UAE) were genotyped for the Class I HLA -A, -C, and -B alleles using next-generation sequencing (NGS) between the period of May 2020 to June 2020. Alleles and inferred haplotype frequencies in the hospitalized patient group (those with moderate to severe disease, n = 62) were compared to non-hospitalized patients (mild or asymptomatic, n = 30). An interesting trend was noted between the severity of COVID-19 and the HLA-C*04 (P = 0.0077) as well as HLA-B*35 (P = 0.0051) alleles. The class I haplotype HLA-C*04-B*35 was also significantly associated (P = 0.0049). The involvement of inflammation, HLA-C*04, and HLA-B*35 in COVID-19 severity highlights the potential roles of both the adaptive and innate immune responses against SARS-CoV-2. Both alleles have been linked to several respiratory diseases, including pulmonary arterial hypertension along with infections caused by the coronavirus and influenza. This study, therefore, supports the potential use of HLA testing in prioritizing public healthcare interventions for patients at risk of COVID-19 infection and disease progression, in addition to providing personalized immunotherapeutic targets.
Collapse
Affiliation(s)
- Guan K. Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Psychiatry, UWA Medical School, The University of Western Australia, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Halima Alnaqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sarah Chehadeh
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | | | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Tahir A. Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam H. Mahboub
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pulmonary Medicine, Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Maimunah Uddin
- Department of Pediatric Infectious Disease, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Nawal Alkaabi
- Department of Pediatric Infectious Disease, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Eman Alefishat
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Herbert F. Jelinek
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center of Heath Engineering Innovation, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | | |
Collapse
|
16
|
Rodriguez I, Rossi NM, Keskus A, Xie Y, Ahmad T, Bryant A, Lou H, Paredes JG, Milano R, Rao N, Tulsyan S, Boland JF, Luo W, Liu J, O’Hanlon T, Bess J, Mukhina V, Gaykalova D, Yuki Y, Malik L, Billingsley K, Blauwendraat C, Carrington M, Yeager M, Mirabello L, Kolmogorov M, Dean M. Insights into the Mechanisms and Structure of Breakage-Fusion-Bridge Cycles in Cervical Cancer using Long-Read Sequencing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.21.23294276. [PMID: 37662332 PMCID: PMC10473792 DOI: 10.1101/2023.08.21.23294276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cervical cancer is caused by human papillomavirus (HPV) infection, has few approved targeted therapeutics, and is the most common cause of cancer death in low-resource countries. We characterized 19 cervical and four head and neck cell lines using long-read DNA and RNA sequencing and identified the HPV types, HPV integration sites, chromosomal alterations, and cancer driver mutations. Structural variation analysis revealed telomeric deletions associated with DNA inversions resulting from breakage-fusion-bridge (BFB) cycles. BFB is a common mechanism of chromosomal alterations in cancer, and this is one of the first analyses of these events using long-read sequencing. Analysis of the inversion sites revealed staggered ends consistent with exonuclease digestion of the DNA after breakage. Some BFB events are complex, involving inter- or intra-chromosomal insertions or rearrangements. None of the BFB breakpoints had telomere sequences added to resolve the dicentric chromosomes and only one BFB breakpoint showed chromothripsis. Five cell lines have a Chr11q BFB event, with YAP1/BIRC2/BIRC3 gene amplification. Indeed, YAP1 amplification is associated with a 10-year earlier age of diagnosis of cervical cancer and is three times more common in African American women. This suggests that cervical cancer patients with YAP1/BIRC2/BIRC3-amplification, especially those of African American ancestry, might benefit from targeted therapy. In summary, we uncovered new insights into the mechanisms and consequences of BFB cycles in cervical cancer using long-read sequencing.
Collapse
Affiliation(s)
- Isabel Rodriguez
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Nicole M. Rossi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Ayse Keskus
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Yi Xie
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Tanveer Ahmad
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Asher Bryant
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Hong Lou
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Jesica Godinez Paredes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Rose Milano
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Nina Rao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Sonam Tulsyan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Joseph F. Boland
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Wen Luo
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Jia Liu
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Tim O’Hanlon
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Jazmyn Bess
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Vera Mukhina
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medical Center, Baltimore, MD, USA
| | - Daria Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical System, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Laksh Malik
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA and Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
| | - Kimberley Billingsley
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA and Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA and Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, Maryland, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Meredith Yeager
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mikhail Kolmogorov
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
17
|
Augusto DG, Murdolo LD, Chatzileontiadou DSM, Sabatino JJ, Yusufali T, Peyser ND, Butcher X, Kizer K, Guthrie K, Murray VW, Pae V, Sarvadhavabhatla S, Beltran F, Gill GS, Lynch KL, Yun C, Maguire CT, Peluso MJ, Hoh R, Henrich TJ, Deeks SG, Davidson M, Lu S, Goldberg SA, Kelly JD, Martin JN, Vierra-Green CA, Spellman SR, Langton DJ, Dewar-Oldis MJ, Smith C, Barnard PJ, Lee S, Marcus GM, Olgin JE, Pletcher MJ, Maiers M, Gras S, Hollenbach JA. A common allele of HLA is associated with asymptomatic SARS-CoV-2 infection. Nature 2023; 620:128-136. [PMID: 37468623 PMCID: PMC10396966 DOI: 10.1038/s41586-023-06331-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
Studies have demonstrated that at least 20% of individuals infected with SARS-CoV-2 remain asymptomatic1-4. Although most global efforts have focused on severe illness in COVID-19, examining asymptomatic infection provides a unique opportunity to consider early immunological features that promote rapid viral clearance. Here, postulating that variation in the human leukocyte antigen (HLA) loci may underly processes mediating asymptomatic infection, we enrolled 29,947 individuals, for whom high-resolution HLA genotyping data were available, in a smartphone-based study designed to track COVID-19 symptoms and outcomes. Our discovery cohort (n = 1,428) comprised unvaccinated individuals who reported a positive test result for SARS-CoV-2. We tested for association of five HLA loci with disease course and identified a strong association between HLA-B*15:01 and asymptomatic infection, observed in two independent cohorts. Suggesting that this genetic association is due to pre-existing T cell immunity, we show that T cells from pre-pandemic samples from individuals carrying HLA-B*15:01 were reactive to the immunodominant SARS-CoV-2 S-derived peptide NQKLIANQF. The majority of the reactive T cells displayed a memory phenotype, were highly polyfunctional and were cross-reactive to a peptide derived from seasonal coronaviruses. The crystal structure of HLA-B*15:01-peptide complexes demonstrates that the peptides NQKLIANQF and NQKLIANAF (from OC43-CoV and HKU1-CoV) share a similar ability to be stabilized and presented by HLA-B*15:01. Finally, we show that the structural similarity of the peptides underpins T cell cross-reactivity of high-affinity public T cell receptors, providing the molecular basis for HLA-B*15:01-mediated pre-existing immunity.
Collapse
Affiliation(s)
- Danillo G Augusto
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, USA
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Lawton D Murdolo
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Demetra S M Chatzileontiadou
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Joseph J Sabatino
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Tasneem Yusufali
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Noah D Peyser
- Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Xochitl Butcher
- Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Kerry Kizer
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Karoline Guthrie
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Victoria W Murray
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Vivian Pae
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Sannidhi Sarvadhavabhatla
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Fiona Beltran
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Gurjot S Gill
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Kara L Lynch
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Cassandra Yun
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Colin T Maguire
- Clinical and Translational Science Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Michelle Davidson
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Sarah A Goldberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - J Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- F.I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Cynthia A Vierra-Green
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN, USA
| | - Stephen R Spellman
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN, USA
| | | | - Michael J Dewar-Oldis
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development Brisbane, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Peter J Barnard
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Sulggi Lee
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Gregory M Marcus
- Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jeffrey E Olgin
- Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Mark J Pletcher
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Division of General Internal Medicine, University of California, San Francisco, CA, USA
| | - Martin Maiers
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN, USA
| | - Stephanie Gras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jill A Hollenbach
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| |
Collapse
|
18
|
Naruse TK, Konishi-Takemura M, Yanagida R, Sharma G, Vajpayee M, Terunuma H, Mehra NK, Kaur G, Kimura A. Killer cell immunoglobulin-like receptor three domains long cytoplasmic tail 1 gene *007 may modulate disease progression of human immunodeficiency virus-1 infection in the Japanese population. Int J Immunogenet 2023; 50:48-52. [PMID: 36807537 DOI: 10.1111/iji.12617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023]
Abstract
One of the KIR allele, KIR3DL1*007, was associated with the progression to acquired immunodeficiency syndrome and not with the susceptibility to HIV-1 infection in the Japanese and Indian populations, implying that KIR3DL1*007-positive NK cells might eliminate HIV-infected cells less effectively than NK cells bearing the other KIR3DL1 alleles or KIR3DS1 alleles.
Collapse
Affiliation(s)
- Taeko K Naruse
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Makiko Konishi-Takemura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Risa Yanagida
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gaurav Sharma
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhu Vajpayee
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Narinder K Mehra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Gurvinder Kaur
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
19
|
Lima ÉRG, Queiroz MAF, Lima SS, Machado LFA, Cayres-Vallinoto IMV, Vallinoto ACR, Figueiredo FADPL, Guerreiro JF, Guimarães Ishak MDO, Ishak R. CCR5∆32 and SDF1 3'A: Gene Variants, Expression and Influence on Biological Markers for the Clinical Progression to AIDS among HIV-1 Virus Controllers in a Mixed Population of the Amazon Region of Brazil. Int J Mol Sci 2023; 24:ijms24054958. [PMID: 36902388 PMCID: PMC10003039 DOI: 10.3390/ijms24054958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 03/08/2023] Open
Abstract
CCR5Δ32 and SDF1-3'A polymorphisms were investigated in a cohort of viremia controllers, without the use of therapy, along with their influence on CD4+ T lymphocytes (TLs), CD8+ TLs, and plasma viral load (VL). The samples were analyzed from 32 HIV-1-infected individuals classified as viremia controllers 1 and 2 and viremia non-controllers, from both sexes, mostly heterosexuals, paired with 300 individuals from a control group. CCR5∆32 polymorphism was identified by PCR amplification of a fragment of 189 bp for the wild-type allele and 157 bp for the allele with the ∆32 deletion. SDF1-3'A polymorphism was identified by PCR, followed by enzymatic digestion (restriction fragment length polymorphism) with the Msp I enzyme. The relative quantification of gene expression was performed by real-time PCR. The distribution of allele and genotype frequencies did not show significant differences between the groups. The gene expression of CCR5 and SDF1 was not different between the profiles of AIDS progression. There was no significant correlation between the progression markers (CD4+ TL/CD8+ TL and VL) and the CCR5∆32 polymorphism carrier status. The 3'A allele variant was associated with a marked loss of CD4+ TLs and a higher plasma VL. Neither CCR5∆32 nor SDF1-3'A was associated with viremia control or the controlling phenotype.
Collapse
Affiliation(s)
- Érica Ribeiro Gomes Lima
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Maria Alice Freitas Queiroz
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Correspondence: ; Tel.: +55-91-98864-4259
| | - Sandra Souza Lima
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | | | | | | | | | - João Farias Guerreiro
- Human and Medical Genetics Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | | | - Ricardo Ishak
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
20
|
Impaired protective role of HLA-B*57:01/58:01 in HIV-1 CRF01_AE infection: a cohort study in Vietnam. Int J Infect Dis 2023; 128:20-31. [PMID: 36549550 DOI: 10.1016/j.ijid.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Human Leukocyte Antigen HLA-B*57:01 and B*58:01 are considered anti-HIV-1 protective alleles. HLA-B*57:01/58:01-restricted HIV-1 Gag TW10 (TSTLQEQIGW, Gag residues 240-249) epitope-specific CD8+ T cell responses that frequently select for a Gag escape mutation, T242N, with viral fitness cost are crucial for HIV-1 control. Although this finding has been observed in cohorts where HIV-1 subtype B or C predominates, the protective impact of HLA-B*57:01/58:01 has not been reported in Southeast Asian countries where HIV-1 CRF01_AE is the major circulating strain. Here, the effect of HLA-B*57:01/58:01 on CRF01_AE infection was investigated. METHODS The correlation of HLA-B*57:01/58:01 with viral load and CD4 counts were analyzed in the CRF01_AE-infected Vietnamese cohort (N = 280). The impact of the T242N mutation on CRF01_AE replication capacity was assessed. RESULTS HLA-B*57:01/58:01-positive individuals mostly had HIV-1 with T242N (62/63) but showed neither a significant reduction in viral load nor increased CD4 counts relative to B*57:01/58:01-negative participants. In vitro and in vivo analyses revealed a significant reduction in viral fitness of CRF01_AE with T242N. In silico analysis indicated reduced presentation of epitopes in the context of CRF01_AE compared to subtype B or C in 10/16 HLA-B*57:01/58:01-restricted HIV-1 epitopes. CONCLUSION The protective impact of HLA-B*57:01/58:01 on CRF01_AE infection is impaired despite strong suppressive pressure by TW10-specific CD8+ T cells.
Collapse
|
21
|
A Case Report: False-Negative HIV Antibody Test in a Patient Presenting With an Unusual Case of Cytomegalovirus Oropharyngeal Ulcerations. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2023. [DOI: 10.1097/ipc.0000000000001241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
22
|
Wcisel DJ, Dornburg A, McConnell SC, Hernandez KM, Andrade J, de Jong JLO, Litman GW, Yoder JA. A highly diverse set of novel immunoglobulin-like transcript (NILT) genes in zebrafish indicates a wide range of functions with complex relationships to mammalian receptors. Immunogenetics 2023; 75:53-69. [PMID: 35869336 PMCID: PMC9845131 DOI: 10.1007/s00251-022-01270-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/01/2022] [Indexed: 01/21/2023]
Abstract
Multiple novel immunoglobulin-like transcripts (NILTs) have been identified from salmon, trout, and carp. NILTs typically encode activating or inhibitory transmembrane receptors with extracellular immunoglobulin (Ig) domains. Although predicted to provide immune recognition in ray-finned fish, we currently lack a definitive framework of NILT diversity, thereby limiting our predictions for their evolutionary origin and function. In order to better understand the diversity of NILTs and their possible roles in immune function, we identified five NILT loci in the Atlantic salmon (Salmo salar) genome, defined 86 NILT Ig domains within a 3-Mbp region of zebrafish (Danio rerio) chromosome 1, and described 41 NILT Ig domains as part of an alternative haplotype for this same genomic region. We then identified transcripts encoded by 43 different NILT genes which reflect an unprecedented diversity of Ig domain sequences and combinations for a family of non-recombining receptors within a single species. Zebrafish NILTs include a sole putative activating receptor but extensive inhibitory and secreted forms as well as membrane-bound forms with no known signaling motifs. These results reveal a higher level of genetic complexity, interindividual variation, and sequence diversity for NILTs than previously described, suggesting that this gene family likely plays multiple roles in host immunity.
Collapse
Affiliation(s)
- Dustin J Wcisel
- Department of Molecular Biomedical Sciences, Comparative Medicine Institute, and Center for Human Health and the Environment, North Carolina State University, Raleigh, 27607, NC, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, 28223, NC, USA
| | - Sean C McConnell
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Kyle M Hernandez
- Center for Translational Data Science and Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Jorge Andrade
- Center for Research Informatics, University of Chicago, Chicago, IL, USA
- Current Affiliation: Kite Pharma, Santa Monica, 90404, CA, USA
| | - Jill L O de Jong
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Gary W Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, 33701, FL, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, Comparative Medicine Institute, and Center for Human Health and the Environment, North Carolina State University, Raleigh, 27607, NC, USA.
| |
Collapse
|
23
|
Ricci A, Roviello GN. Exploring the Protective Effect of Food Drugs against Viral Diseases: Interaction of Functional Food Ingredients and SARS-CoV-2, Influenza Virus, and HSV. Life (Basel) 2023; 13:402. [PMID: 36836758 PMCID: PMC9966545 DOI: 10.3390/life13020402] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
A complex network of processes inside the human immune system provides resistance against a wide range of pathologies. These defenses form an innate and adaptive immunity, in which certain immune components work together to counteract infections. In addition to inherited variables, the susceptibility to diseases may be influenced by factors such as lifestyle choices and aging, as well as environmental determinants. It has been shown that certain dietary chemical components regulate signal transduction and cell morphologies which, in turn, have consequences on pathophysiology. The consumption of some functional foods may increase immune cell activity, defending us against a number of diseases, including those caused by viruses. Here, we investigate a range of functional foods, often marketed as immune system boosters, in an attempt to find indications of their potential protective role against diseases caused by viruses, such as the influenza viruses (A and B), herpes simplex virus (HSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in some cases mediated by gut microbiota. We also discuss the molecular mechanisms that govern the protective effects of some functional foods and their molecular constituents. The main message of this review is that discovering foods that are able to strengthen the immune system can be a winning weapon against viral diseases. In addition, understanding how the dietary components function can aid in the development of novel strategies for maintaining human bodily health and keeping our immune systems strong.
Collapse
Affiliation(s)
- Andrea Ricci
- Studio Nutrizione e Benessere, Via Giuseppe Verdi 1, 84043 Agropoli, Italy
| | - Giovanni N. Roviello
- Italian National Council for Research (IBB-CNR), Area Di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
24
|
Srivastava A, Hollenbach JA. The immunogenetics of COVID-19. Immunogenetics 2022; 75:309-320. [PMID: 36534127 PMCID: PMC9762652 DOI: 10.1007/s00251-022-01284-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
The worldwide coronavirus disease 2019 pandemic was sparked by the severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2) that first surfaced in December 2019 (COVID-19). The effects of COVID-19 differ substantially not just between patients individually but also between populations with different ancestries. In humans, the human leukocyte antigen (HLA) system coordinates immune regulation. Since HLA molecules are a major component of antigen-presenting pathway, they play an important role in determining susceptibility to infectious disease. It is likely that differential susceptibility to SARS-CoV-2 infection and/or disease course in COVID-19 in different individuals could be influenced by the variations in the HLA genes which are associated with various immune responses to SARS-CoV-2. A growing number of studies have identified a connection between HLA variation and diverse COVID-19 outcomes. Here, we review research investigating the impact of HLA on individual responses to SARS-CoV-2 infection and/or progression, also discussing the significance of MHC-related immunological patterns and its use in vaccine design.
Collapse
Affiliation(s)
- Anshika Srivastava
- grid.266102.10000 0001 2297 6811University of California San Francisco, San Francisco, CA USA
| | - Jill A. Hollenbach
- grid.266102.10000 0001 2297 6811University of California San Francisco, San Francisco, CA USA
| |
Collapse
|
25
|
Hu Q, Huang X, Jin Y, Zhang R, Zhao A, Wang Y, Zhou C, Liu W, Liu X, Li C, Fan G, Zhuo M, Wang X, Ling F, Luo W. Long-read assembly of major histocompatibility complex and killer cell immunoglobulin-like receptor genome regions in cynomolgus macaque. Biol Direct 2022; 17:36. [PMID: 36447238 PMCID: PMC9707422 DOI: 10.1186/s13062-022-00350-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) and the killer cell immunoglobulin-like receptors (KIR) are key regulators of immune responses. The cynomolgus macaque, an Old World monkey species, can be applied as an important preclinical model for studying human diseases, including coronavirus disease 2019 (COVID-19). Several MHC-KIR combinations have been associated with either a poor or good prognosis. Therefore, macaques with a well-characterized immunogenetic profile may improve drug evaluation and speed up vaccine development. At present, a complete overview of the MHC and KIR haplotype organizations in cynomolgus macaques is lacking, and characterization by conventional techniques is hampered by the extensive expansion of the macaque MHC-B region that complicates the discrimination between genes and alleles. METHODS We assembled complete MHC and KIR genomic regions of cynomolgus macaque using third-generation long-read sequencing approach. We identified functional Mafa-B loci at the transcriptome level using locus-specific amplification in a cohort of 33 Vietnamese cynomolgus macaques. RESULTS This is the first physical mapping of complete MHC and KIR gene regions in a Vietnamese cynomolgus macaque. Furthermore, we identified four functional Mafa-B loci (B2, B3, B5, and B6) and showed that alleles of the Mafa-I*01, -B*056, -B*034, and -B*001 functional lineages, respectively, are highly frequent in the Vietnamese cynomolgus macaque population. CONCLUSION The insights into the MHC and KIR haplotype organizations and the level of diversity may refine the selection of animals with specific genetic markers for future medical research.
Collapse
Affiliation(s)
- Qingxiu Hu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoqi Huang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yabin Jin
- The First People's Hospital of Foshan, Sun Yat-sen University, Foshan, 528000, China
| | - Rui Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Aimin Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yiping Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Chenyun Zhou
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Weixin Liu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xunwei Liu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Chunhua Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Min Zhuo
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoning Wang
- National Clinic Center of Geriatric, The Chinese PLA General Hospital, Beijing, 100853, China.
| | - Fei Ling
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Wei Luo
- The First People's Hospital of Foshan, Sun Yat-sen University, Foshan, 528000, China.
| |
Collapse
|
26
|
Augusto DG, Yusufali T, Sabatino JJ, Peyser ND, Murdolo LD, Butcher X, Murray V, Pae V, Sarvadhavabhatla S, Beltran F, Gill G, Lynch K, Yun C, Maguire C, Peluso MJ, Hoh R, Henrich TJ, Deeks SG, Davidson M, Lu S, Goldberg SA, Kelly JD, Martin JN, Viera-Green CA, Spellman SR, Langton DJ, Lee S, Marcus GM, Olgin JE, Pletcher MJ, Gras S, Maiers M, Hollenbach JA. A common allele of HLA mediates asymptomatic SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2021.05.13.21257065. [PMID: 34031661 PMCID: PMC8142661 DOI: 10.1101/2021.05.13.21257065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite some inconsistent reporting of symptoms, studies have demonstrated that at least 20% of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will remain asymptomatic. Although most global efforts have focused on understanding factors underlying severe illness in COVID-19 (coronavirus disease of 2019), the examination of asymptomatic infection provides a unique opportunity to consider early disease and immunologic features promoting rapid viral clearance. Owing to its critical role in the immune response, we postulated that variation in the human leukocyte antigen (HLA) loci may underly processes mediating asymptomatic infection. We enrolled 29,947 individuals registered in the National Marrow Donor Program for whom high-resolution HLA genotyping data were available in the UCSF Citizen Science smartphone-based study designed to track COVID-19 symptoms and outcomes. Our discovery cohort (n=1428) was comprised of unvaccinated, self-identified subjects who reported a positive test result for SARS-CoV-2. We tested for association of five HLA loci (HLA-A, -B, -C, -DRB1, -DQB1) with disease course and identified a strong association of HLA-B*15:01 with asymptomatic infection, and reproduced this association in two independent cohorts. Suggesting that this genetic association is due to pre-existing T-cell immunity, we show that T cells from pre-pandemic individuals carrying HLA-B*15:01 were reactive to the immunodominant SARS-CoV-2 S-derived peptide NQKLIANQF, and 100% of the reactive cells displayed memory phenotype. Finally, we characterize the protein structure of HLA-B*15:01-peptide complexes, demonstrating that the NQKLIANQF peptide from SARS-CoV-2, and the highly homologous NQKLIANAF from seasonal coronaviruses OC43-CoV and HKU1-CoV, share similar ability to be stabilized and presented by HLA-B*15:01, providing the molecular basis for T-cell cross-reactivity and HLA-B*15:01-mediated pre-existing immunity.
Collapse
Affiliation(s)
- Danillo G. Augusto
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Tasneem Yusufali
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Joseph J. Sabatino
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Noah D. Peyser
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lawton D. Murdolo
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Xochitl Butcher
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Victoria Murray
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Vivian Pae
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Sannidhi Sarvadhavabhatla
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Fiona Beltran
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Gurjot Gill
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kara Lynch
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Cassandra Yun
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Colin Maguire
- University of Utah, Clinical and Translational Science Institute, Salt Lake City, UT
| | - Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Timothy J. Henrich
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Michelle Davidson
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- F.I. Proctor Foundation, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Cynthia A. Viera-Green
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Stephen R. Spellman
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - David J. Langton
- ExplantLab, The Biosphere, Newcastle Helix, Newcastle-upon-Tyne, UK
| | - Sulggi Lee
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Gregory M. Marcus
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey E. Olgin
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Mark J. Pletcher
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Division of General Internal Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Stephanie Gras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | | | - Jill A. Hollenbach
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
27
|
de Sá NBR, de Souza NCS, Neira-Goulart M, Ribeiro-Alves M, Da Silva TP, Pilotto JH, Rolla VC, Giacoia-Gripp CBW, de Oliveira Pinto LM, Scott-Algara D, Morgado MG, Teixeira SLM. Inflammasome genetic variants are associated with tuberculosis, HIV-1 infection, and TB/HIV-immune reconstitution inflammatory syndrome outcomes. Front Cell Infect Microbiol 2022; 12:962059. [PMID: 36204643 PMCID: PMC9531132 DOI: 10.3389/fcimb.2022.962059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTuberculosis (TB) and AIDS are the leading causes of infectious diseases death worldwide. Here, we investigated the relationship between from single nucleotide polymorphisms (SNPs) of the NLRP3, CARD8, AIM2, CASP-1, IFI16, and IL-1β inflammasome genes, as well as the profiles of secreted proinflammatory cytokines (e.g., IL-1β, IL-18, IL-33, and IL-6) with the TB clinical profiles, TB-HIV coinfection, and IRIS onset.MethodsThe individuals were divided into four groups: TB-HIV group (n=88; 11 of them with IRIS), HIV-1 group (n=20), TB group (n=24) and healthy volunteers (HC) group (n=10), and were followed up at INI/FIOCRUZ and HGNI (Rio de Janeiro/Brazil) from 2006 to 2016. Real-time PCR was used to determine the genotypes of the Single Nucleotide Polymorphism (SNPs), and ELISA was used to measure the plasma cytokine levels. Unconditional logistic regression models were used to perform risk estimations.ResultsA higher risk for extrapulmonary TB was associated with the TT genotype (aOR=6.76; P=0.026) in the NLRP3 rs4612666 Single Nucleotide Polymorphism (SNP) and the C-C-T-G-C haplotype (aOR=4.99; P= 0.017) in the NLRP3 variants. This same Single Nucleotide Polymorphism (SNP) was associated with lower risk against extrapulmonary TB when the carrier allele C (aOR=0.15; P=0.021) was present. Among those with HIV-1 infections, a higher risk for TB onset was associated with the GA genotype (aOR=5.5; P=0.044) in the IL1-β rs1143634 Single Nucleotide Polymorphism (SNP). In contrast, lower risk against TB onset was associated with the A-G haplotype (aOR=0.17; P= 0.026) in the CARD8 variants. Higher IL-6 and IL-33 levels were observed in individuals with TB. A higher risk for IRIS onset was associated with CD8 counts ≤ 500 cells/mm3 (aOR=12.32; P=0.010), the presence of extrapulmonary TB (aOR=6.6; P=0.038), and the CT genotype (aOR=61.06; P=0.026) or carrier allele T (aOR=61.06; P=0.026) in the AIM2 rs2276405 Single Nucleotide Polymorphism (SNP), whereas lower risk against IRIS onset was associated with the AT genotype (aOR=0.02; P=0.033) or carrier allele T (aOR=0.02; P=0.029) in the CARD8 rs2043211 Single Nucleotide Polymorphism (SNP) and the T-G haplotype (aOR=0.07; P= 0.033) in the CARD8 variants. No other significant associations were observed.ConclusionsOur results depict the involvement of genetic polymorphisms of crucial innate immunity genes and proinflammatory cytokines in the clinical outcomes related to TB-HIV coinfection.
Collapse
Affiliation(s)
- Nathalia Beatriz Ramos de Sá
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- *Correspondence: Mariza Gonçalves Morgado, ; Nathalia Beatriz Ramos de Sá,
| | | | - Milena Neira-Goulart
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Marcelo Ribeiro-Alves
- Laboratory of Clinical Research on STD/AIDS, National Institute of Infectious Diseases Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Tatiana Pereira Da Silva
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Jose Henrique Pilotto
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Nova Iguaçu General Hospital, Nova Iguaçu, Rio de Janeiro, Brazil
| | - Valeria Cavalcanti Rolla
- Clinical Research Laboratory on Mycobacteria, National Institute of Infectious Diseases Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | - Daniel Scott-Algara
- Unité de Biologie Cellulaire des Lymphocytes, Institut Pasteur, Paris, France
| | - Mariza Gonçalves Morgado
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- *Correspondence: Mariza Gonçalves Morgado, ; Nathalia Beatriz Ramos de Sá,
| | | |
Collapse
|
28
|
Duarte RR, Pain O, Furler RL, Nixon DF, Powell TR. Transcriptome-wide association study of HIV-1 acquisition identifies HERC1 as a susceptibility gene. iScience 2022; 25:104854. [PMID: 36034232 PMCID: PMC9403347 DOI: 10.1016/j.isci.2022.104854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
The host genetic factors conferring protection against HIV type 1 (HIV-1) acquisition remain elusive, and in particular the contributions of common genetic variants. Here, we performed the largest genome-wide association meta-analysis of HIV-1 acquisition, which included 7,303 HIV-1-positive individuals and 587,343 population controls. We identified 25 independent genetic loci with suggestive association, of which one was genome-wide significant within the major histocompatibility complex (MHC) locus. After exclusion of the MHC signal, linkage disequilibrium score regression analyses revealed a SNP heritability of 21% and genetic correlations with behavioral factors. A transcriptome-wide association study identified 15 susceptibility genes, including HERC1, UEVLD, and HIST1H4K. Convergent evidence from conditional analyses and fine-mapping identified HERC1 downregulation in immune cells as a robust mechanism associated with HIV-1 acquisition. Functional studies on HERC1 and other identified candidates, as well as larger genetic studies, have the potential to further our understanding of the host mechanisms associated with protection against HIV-1.
Collapse
Affiliation(s)
- Rodrigo R.R. Duarte
- Department of Social, Genetic & Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, UK
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Oliver Pain
- Department of Social, Genetic & Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Robert L. Furler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Douglas F. Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Timothy R. Powell
- Department of Social, Genetic & Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, UK
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| |
Collapse
|
29
|
HLA homozygosity is associated with Non-Hodgkin lymphoma. Hum Immunol 2022; 83:730-735. [PMID: 35953408 DOI: 10.1016/j.humimm.2022.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/04/2022]
Abstract
The "heterozygote advantage" hypothesis has been postulated regarding the role of human leukocyte antigen (HLA) in non-Hodgkin lymphoma (NHL), where homozygous loci are associated with an increased risk of disease. In this retrospective study, we analyzed the HLA homozygosity of 3789 patients with aplastic anemia (AA), acute lymphocytic leukemia (ALL), acute myeloblastic leukemia (AML), chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), myelodysplastic syndrome (MDS), multiple myeloma (MM), and non-Hodgkin lymphoma (NHL) at HLA-A, B, C, DRB1 and DQB1 loci compared to 169,964 normal controls. HLA homozygosity at one or more loci was only associated with an increased risk in NHL patients (OR = 1.28, 95% CI [1.09, 1.50], p = 0.002). This association was not seen in any of the other hematologic diseases. Homozygosity at HLA-A alone, HLA-B + C only, and HLA-DRB1 + DQB1 only was also significantly associated with NHL. Finally, we observed a 17% increased risk of NHL with each additional homozygous locus (OR per locus = 1.17, 95% CI [1.08, 1.25], p trend = 2.4 × 10-5). These results suggest that reduction of HLA diversity could predispose individuals to an increased risk of developing NHL.
Collapse
|
30
|
Astbury S, Reynolds CJ, Butler DK, Muñoz‐Sandoval DC, Lin K, Pieper FP, Otter A, Kouraki A, Cusin L, Nightingale J, Vijay A, Craxford S, Aithal GP, Tighe PJ, Gibbons JM, Pade C, Joy G, Maini M, Chain B, Semper A, Brooks T, Ollivere BJ, McKnight Á, Noursadeghi M, Treibel TA, Manisty C, Moon JC, Valdes AM, Boyton RJ, Altmann DM. HLA-DR polymorphism in SARS-CoV-2 infection and susceptibility to symptomatic COVID-19. Immunology 2022; 166:68-77. [PMID: 35156709 PMCID: PMC9111350 DOI: 10.1111/imm.13450] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 infection results in different outcomes ranging from asymptomatic infection to mild or severe disease and death. Reasons for this diversity of outcome include differences in challenge dose, age, gender, comorbidity and host genomic variation. Human leukocyte antigen (HLA) polymorphisms may influence immune response and disease outcome. We investigated the association of HLAII alleles with case definition symptomatic COVID-19, virus-specific antibody and T-cell immunity. A total of 1364 UK healthcare workers (HCWs) were recruited during the first UK SARS-CoV-2 wave and analysed longitudinally, encompassing regular PCR screening for infection, symptom reporting, imputation of HLAII genotype and analysis for antibody and T-cell responses to nucleoprotein (N) and spike (S). Of 272 (20%) HCW who seroconverted, the presence of HLA-DRB1*13:02 was associated with a 6·7-fold increased risk of case definition symptomatic COVID-19. In terms of immune responsiveness, HLA-DRB1*15:02 was associated with lower nucleocapsid T-cell responses. There was no association between DRB1 alleles and anti-spike antibody titres after two COVID vaccine doses. However, HLA DRB1*15:01 was associated with increased spike T-cell responses following both first and second dose vaccination. Trial registration: NCT04318314 and ISRCTN15677965.
Collapse
Affiliation(s)
- Stuart Astbury
- NIHR Nottingham Biomedical Research CentreNottingham University Hospitals NHS Trust and the University of NottinghamNottinghamUK,Nottingham Digestive Diseases CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | | | - David K. Butler
- Department of Infectious DiseaseImperial College LondonLondonUK
| | | | - Kai‐Min Lin
- Department of Infectious DiseaseImperial College LondonLondonUK
| | | | - Ashley Otter
- National Infection ServicePublic Health EnglandPorton DownUK
| | - Afroditi Kouraki
- Division of Rheumatology, Orthopaedics and DermatologySchool of MedicineUniversity of NottinghamNottinghamUK
| | - Lola Cusin
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Jessica Nightingale
- Division of Rheumatology, Orthopaedics and DermatologySchool of MedicineUniversity of NottinghamNottinghamUK
| | - Amrita Vijay
- Division of Rheumatology, Orthopaedics and DermatologySchool of MedicineUniversity of NottinghamNottinghamUK
| | - Simon Craxford
- Division of Rheumatology, Orthopaedics and DermatologySchool of MedicineUniversity of NottinghamNottinghamUK
| | - Guruprasad P. Aithal
- NIHR Nottingham Biomedical Research CentreNottingham University Hospitals NHS Trust and the University of NottinghamNottinghamUK,Nottingham Digestive Diseases CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | | | - Joseph M. Gibbons
- Barts and the London School of Medicine and DentistryBlizard InstituteQueen Mary University of LondonLondonUK
| | - Corinna Pade
- Barts and the London School of Medicine and DentistryBlizard InstituteQueen Mary University of LondonLondonUK
| | - George Joy
- Barts Heart CentreSt. Bartholomew's HospitalLondonUK
| | - Mala Maini
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | - Benny Chain
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | - Amanda Semper
- National Infection ServicePublic Health EnglandPorton DownUK
| | - Timothy Brooks
- National Infection ServicePublic Health EnglandPorton DownUK
| | - Benjamin J. Ollivere
- Division of Rheumatology, Orthopaedics and DermatologySchool of MedicineUniversity of NottinghamNottinghamUK
| | - Áine McKnight
- Barts and the London School of Medicine and DentistryBlizard InstituteQueen Mary University of LondonLondonUK
| | | | - Thomas A. Treibel
- Barts Heart CentreSt. Bartholomew's HospitalLondonUK,Institute of Cardiovascular SciencesUniversity College LondonLondonUK
| | - Charlotte Manisty
- Barts Heart CentreSt. Bartholomew's HospitalLondonUK,Institute of Cardiovascular SciencesUniversity College LondonLondonUK
| | - James C. Moon
- Barts Heart CentreSt. Bartholomew's HospitalLondonUK,Institute of Cardiovascular SciencesUniversity College LondonLondonUK
| | | | - Ana M. Valdes
- NIHR Nottingham Biomedical Research CentreNottingham University Hospitals NHS Trust and the University of NottinghamNottinghamUK,Division of Rheumatology, Orthopaedics and DermatologySchool of MedicineUniversity of NottinghamNottinghamUK
| | - Rosemary J. Boyton
- Department of Infectious DiseaseImperial College LondonLondonUK,Lung DivisionRoyal Brompton and Harefield HospitalsGuy’s and St Thomas’ NHS Foundation TrustLondonUK
| | - Daniel M. Altmann
- Department of Immunology and InflammationImperial College LondonLondonUK
| |
Collapse
|
31
|
Maruthamuthu S, Rajalingam K, Kaur N, Morvan MG, Soto J, Lee N, Kong D, Hu Z, Reyes K, Ng D, Butte AJ, Chiu C, Rajalingam R. Individualized Constellation of Killer Cell Immunoglobulin-Like Receptors and Cognate HLA Class I Ligands that Controls Natural Killer Cell Antiviral Immunity Predisposes COVID-19. Front Genet 2022; 13:845474. [PMID: 35273641 PMCID: PMC8902362 DOI: 10.3389/fgene.2022.845474] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection causes coronavirus disease-2019 (COVID-19) in some individuals, while the majority remain asymptomatic. Natural killer (NK) cells play an essential role in antiviral defense. NK cell maturation and function are regulated mainly by highly polymorphic killer cell immunoglobulin-like receptors (KIR) and cognate HLA class I ligands. Herein, we tested our hypothesis that the individualized KIR and HLA class I ligand combinations that control NK cell function determine the outcome of SARS-CoV-2 infection. Methods: We characterized KIR and HLA genes in 200 patients hospitalized for COVID-19 and 195 healthy general population controls. Results: The KIR3DL1+HLA-Bw4+ [Odds ratio (OR) = 0.65, p = 0.03] and KIR3DL2+HLA-A3/11+ (OR = 0.6, p = 0.02) combinations were encountered at significantly lower frequency in COVID-19 patients than in the controls. Notably, 40% of the patients lacked both of these KIR+HLA+ combinations compared to 24.6% of the controls (OR = 2.04, p = 0.001). Additionally, activating receptors KIR2DS1+KIR2DS5+ are more frequent in patients with severe COVID-19 than patients with mild disease (OR = 1.8, p = 0.05). Individuals carrying KIR2DS1+KIR2DS5+ genes but missing either KIR3DL1+HLA-Bw4+ combination (OR = 1.73, p = 0.04) or KIR3DL2+HLA-A3/11+ combination (OR = 1.75, p = 0.02) or both KIR3DL1+HLA-Bw4+ and KIR2DL2+HLA-A3/11+ combinations (OR = 1.63, p = 0.03) were more frequent in the COVID-19 cohort compared to controls. Conclusions: The absence of KIR3DL1+HLA-Bw4+ and KIR3DL2+HLA-A3/11+ combinations presumably yields inadequate NK cell maturation and reduces anti-SARS-CoV-2 defense, causing COVID-19. An increased frequency of KIR2DS1+KIR2DS5+ in severe COVID-19 patients suggests vigorous NK cell response triggered via these activating receptors and subsequent production of exuberant inflammatory cytokines responsible for severe COVID-19. Our results demonstrate that specific KIR-HLA combinations that control NK cell maturation and function are underlying immunogenetic variables that determine the dual role of NK cells in mediating beneficial antiviral and detrimental pathologic action. These findings offer a framework for developing potential host genetic biomarkers to distinguish individuals prone to COVID-19.
Collapse
Affiliation(s)
- Stalinraja Maruthamuthu
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Karan Rajalingam
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Navchetan Kaur
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Maelig G Morvan
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Jair Soto
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Nancy Lee
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Denice Kong
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin Reyes
- UCSF-Abbott Viral Diagnostics and Discovery Center, Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States.,Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Dianna Ng
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Charles Chiu
- UCSF-Abbott Viral Diagnostics and Discovery Center, Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States.,Department of Pathology, University of California, San Francisco, San Francisco, CA, United States.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
32
|
Pymm P, Tenzer S, Wee E, Weimershaus M, Burgevin A, Kollnberger S, Gerstoft J, Josephs TM, Ladell K, McLaren JE, Appay V, Price DA, Fugger L, Bell JI, Schild H, van Endert P, Harkiolaki M, Iversen AKN. Epitope length variants balance protective immune responses and viral escape in HIV-1 infection. Cell Rep 2022; 38:110449. [PMID: 35235807 PMCID: PMC9631117 DOI: 10.1016/j.celrep.2022.110449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/31/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses to a single optimal 10-mer epitope (KK10) in the human immunodeficiency virus type-1 (HIV-1) protein p24Gag are associated with enhanced immune control in patients expressing human leukocyte antigen (HLA)-B∗27:05. We find that proteasomal activity generates multiple length variants of KK10 (4-14 amino acids), which bind TAP and HLA-B∗27:05. However, only epitope forms ≥8 amino acids evoke peptide length-specific and cross-reactive CTL responses. Structural analyses reveal that all epitope forms bind HLA-B∗27:05 via a conserved N-terminal motif, and competition experiments show that the truncated epitope forms outcompete immunogenic epitope forms for binding to HLA-B∗27:05. Common viral escape mutations abolish (L136M) or impair (R132K) production of KK10 and longer epitope forms. Peptide length influences how well the inhibitory NK cell receptor KIR3DL1 binds HLA-B∗27:05 peptide complexes and how intraepitope mutations affect this interaction. These results identify a viral escape mechanism from CTL and NK responses based on differential antigen processing and peptide competition.
Collapse
Affiliation(s)
- Phillip Pymm
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK; Walter and Eliza Hall Institute of Medical Research, University of Melbourne, 1G Royalparade, Parkville, VIC 3052, Australia
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Edmund Wee
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Mirjana Weimershaus
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France
| | - Anne Burgevin
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France
| | - Simon Kollnberger
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK
| | - Jan Gerstoft
- Department of Infectious Diseases, Rigshospitalet, The National University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK
| | - Victor Appay
- Institut National de la Santé et de la Recherche Médicale, Unité 1135, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Boulevard de l'Hopital, 75013 Paris, France; International Research Center of Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Tenovus Building, CF14 4XN Cardiff, UK
| | - Lars Fugger
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, OX3 9DS Oxford, UK
| | - John I Bell
- Office of the Regius Professor of Medicine, The Richard Doll Building, University of Oxford, Old Road Campus, OX3 7LF Oxford, UK
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France
| | - Maria Harkiolaki
- Structural Biology Group, Wellcome Trust Centre for Human Genetics, University of Oxford, Old Road Campus, OX3 7LF Oxford, UK; Diamond Light Source, Harwell Science and Innovation Campus, Fermi Avenue, OX11 0DE Didcot, UK
| | - Astrid K N Iversen
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK.
| |
Collapse
|
33
|
Douillard V, Castelli EC, Mack SJ, Hollenbach JA, Gourraud PA, Vince N, Limou S. Approaching Genetics Through the MHC Lens: Tools and Methods for HLA Research. Front Genet 2021; 12:774916. [PMID: 34925459 PMCID: PMC8677840 DOI: 10.3389/fgene.2021.774916] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Abstract
The current SARS-CoV-2 pandemic era launched an immediate and broad response of the research community with studies both about the virus and host genetics. Research in genetics investigated HLA association with COVID-19 based on in silico, population, and individual data. However, they were conducted with variable scale and success; convincing results were mostly obtained with broader whole-genome association studies. Here, we propose a technical review of HLA analysis, including basic HLA knowledge as well as available tools and advice. We notably describe recent algorithms to infer and call HLA genotypes from GWAS SNPs and NGS data, respectively, which opens the possibility to investigate HLA from large datasets without a specific initial focus on this region. We thus hope this overview will empower geneticists who were unfamiliar with HLA to run MHC-focused analyses following the footsteps of the Covid-19|HLA & Immunogenetics Consortium.
Collapse
Affiliation(s)
- Venceslas Douillard
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
| | | | - Steven J. Mack
- Division of Allergy, Immunology and Bone Marrow Transplantation, Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jill A. Hollenbach
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Pierre-Antoine Gourraud
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
| | - Nicolas Vince
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
| | - Sophie Limou
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
- Ecole Centrale de Nantes, Department of Computer Sciences and Mathematics in Biology, Nantes, France
| |
Collapse
|
34
|
Abedini F, Rahmanian N, Heidari Z, Feizi A, Sherkat R, Rezaei M. Diversity of HLA class I and class II alleles in Iran populations: Systematic review and Meta-Analaysis. Transpl Immunol 2021; 69:101472. [PMID: 34555503 DOI: 10.1016/j.trim.2021.101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
The human leukocyte antigen (HLA) system plays an essential role in the peptides antigen presentation and more regulation of immune responses. Regarding all HLA molecules' associations with various diseases and their clinical utilities in understanding drug reactions or prediction of transplantation outcome, there is a need for much more extensive HLA data generated from Asian countries. METHOD A comprehensive search was conducted in electronic databases between 1990 and 2021 to identify relevant articles to HLA frequency in the normal Iranian population. Two independent reviewers screened and selected the eligible studies. After data extraction, the meta-analysis was performed using STATA version 14. The overall frequencies and their 95% confidence intervals (CIs) were obtained using the random-effects model. RESULTS Among 1141 studies 78 were eligible for this study and the sample sizes varied from 14 to 15,600. The most frequent alleles of HLA class I were HLA-A*02 (22%; 95%CI: 20-24%; I2 = 88.63%), -B*35 (18%; 95%CI: 16-21%; I2 = 90.95%), -C*12 (18%; 95%CI: 13-22%; I2 = 89.51%). HLA-DQA1*01 (42%; 95%CI: 40-44%; I2 = 56.80%), -DQB1*03 (38%; 95%CI: 35-42%; I2 = 92.38%), and -DRB1*11 (24%; 95%CI: 22-26%; I2 = 90.72%) were the most frequent alleles of HLA class II in Iran. DISCUSSION Our meta-analysis results point out that the comprehensive report of HLA allele frequency in the Iranian population could be helpful as reference data for planning and managing transplantation and immune disease treatment in Iran.
Collapse
Affiliation(s)
- Fateme Abedini
- Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Rahmanian
- Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical sciences, Isfahan, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
35
|
Liu Z, Hildesheim A. Association Between Human Leukocyte Antigen Class I and II Diversity and Non-virus-associated Solid Tumors. Front Genet 2021; 12:675860. [PMID: 34421988 PMCID: PMC8371526 DOI: 10.3389/fgene.2021.675860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
Homozygosity at human leukocyte antigen (HLA) loci might lead to reduced immunosurveillance and increased disease risk, including cancers caused by infection or of hematopoietic origin. To investigate the association between HLA zygosity and risk of non-virus-associated solid tumors, we leveraged genome-wide association study (GWAS) data from over 28,000 individuals of European ancestry who participated in studies of 12 cancer sites (bladder, brain, breast, colon, endometrial, kidney, lung, ovary, pancreas, prostate, skin, and testis). Information on HLA zygosity was obtained by imputation; individuals were classified as homozygotes at a given locus when imputed to carry the same four-digit allele at that locus. We observed no evidence for an association between zygosity at six HLA loci and all cancers combined. Increase in number of homozygous at HLA class I loci, class II loci, or class I and II loci was also not associated with cancer overall (P trend = 0.28), with adjusted odds ratios (ORs) for risk-per-locus of 1.00 [95% confidence intervals (CIs) = 0.97, 1.03], 1.02 (0.99, 1.04), and 1.01 (0.99, 1.02), respectively. This study does not support a strong role for HLA zygosity on risk of non-virus-associated solid tumors.
Collapse
Affiliation(s)
- Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | | |
Collapse
|
36
|
Wang MG, Wang J, He JQ. Genetic association of TOLLIP gene polymorphisms and HIV infection: a case-control study. BMC Infect Dis 2021; 21:590. [PMID: 34154540 PMCID: PMC8215734 DOI: 10.1186/s12879-021-06303-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
Background Previous studies have indicated that host genetic factors play an essential role in immunity to human immunodeficiency virus (HIV) infection. We aimed to investigate the association between the toll-interacting protein (TOLLIP) and mannose-binding lectin 2 (MBL2) genes and HIV infection susceptibility among Chinese Han patients. Methods This is a case-control study. A total of 435 HIV-infected patients and 1013 seronegative healthy individuals were recruited. DNA was extracted from whole blood. Two SNPs in the MBL2 gene (rs7096206 and rs1800450) and three SNPs in the TOLLIP gene (rs5743899, rs3750920, and rs5743867) were selected and genotyped using a SNPscan Kit (Cat#: G0104, Genesky Biotechnologies Inc., Shanghai, China). Odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated using unconditional binary logistic regression. Results A significant association between the minor alleles rs5743899 (C allele) and rs5743867 (G allele) in the TOLLIP gene and susceptibility to HIV infection was found in this study after adjusting for age and sex (Pa = 0.011 and < 0.001, respectively). The rs5743867 in the TOLLIP gene was significantly associated with the risk of HIV infection in dominant, recessive, and additive models when adjusted for age and sex (Pa < 0.05). No significant association was found between MBL2 gene polymorphisms and HIV infection. Conclusion Our study found a statistically significant association between the two SNPs (rs5743867 and rs5743899) in the TOLLIP gene and susceptibility to HIV infection in a Chinese Han population. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06303-4.
Collapse
Affiliation(s)
- Ming-Gui Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Jing Wang
- Department of Infectious Disease, Neijiang Second People's Hospital, Neijiang, Sichuan Province, People's Republic of China
| | - Jian-Qing He
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
37
|
Piersma SJ, Brizić I. Natural killer cell effector functions in antiviral defense. FEBS J 2021; 289:3982-3999. [PMID: 34125493 DOI: 10.1111/febs.16073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Accepted: 06/14/2021] [Indexed: 11/27/2022]
Abstract
Natural killer (NK) cells are innate lymphoid cells involved in the control of tumors and viral infections. They provide protection by producing cytokines and by directly lysing target cells. Both effector mechanisms have been identified to contribute to viral control, depending on the context of infection. Activation of NK cells depends on the integration of signals received by cytokine receptors and activation and inhibitory receptors recognizing ligands expressed by virus-infected cells. While the control of viral infections by NK cells is well established, the signals perceived by NK cells and how these signals integrate to mediate optimal viral control have been focus of ongoing research. Here, we discuss the current knowledge on NK cell activation and integration of signals that lead to interferon gamma production and cytotoxicity in viral infections. We review NK cell interactions with viruses, with particular focus on murine cytomegalovirus studies, which helped elucidate crucial aspects of antiviral NK cell immunity.
Collapse
Affiliation(s)
- Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Croatia
| |
Collapse
|
38
|
Jongsma MLM, Neefjes J, Spaapen RM. Playing hide and seek: Tumor cells in control of MHC class I antigen presentation. Mol Immunol 2021; 136:36-44. [PMID: 34082257 DOI: 10.1016/j.molimm.2021.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/07/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
MHC class I (MHC-I) molecules present a blueprint of the intracellular proteome to T cells allowing them to control infection or malignant transformation. As a response, pathogens and tumor cells often downmodulate MHC-I mediated antigen presentation to escape from immune surveillance. Although the fundamental rules of antigen presentation are known in detail, the players in this system are not saturated and new modules of regulation have recently been uncovered. Here, we update the understanding of antigen presentation by MHC-I molecules and how this can be exploited by tumors to prevent exposure of the intracellular proteome. This knowledge can provide new ways to improve immune responses against tumors and pathogens.
Collapse
Affiliation(s)
- M L M Jongsma
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - J Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - R M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
39
|
Singh MV, Suwunnakorn S, Simpson SR, Weber EA, Singh VB, Kalinski P, Maggirwar SB. Monocytes complexed to platelets differentiate into functionally deficient dendritic cells. J Leukoc Biol 2021; 109:807-820. [PMID: 32663904 PMCID: PMC7854860 DOI: 10.1002/jlb.3a0620-460rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022] Open
Abstract
In addition to their role in hemostasis, platelets store numerous immunoregulatory molecules such as CD40L, TGFβ, β2-microglobulin, and IL-1β and release them upon activation. Previous studies indicate that activated platelets form transient complexes with monocytes, especially in HIV infected individuals and induce a proinflammatory monocyte phenotype. Because monocytes can act as precursors of dendritic cells (DCs) during infection/inflammation as well as for generation of DC-based vaccine therapies, we evaluated the impact of activated platelets on monocyte differentiation into DCs. We observed that in vitro cultured DCs derived from platelet-monocyte complexes (PMCs) exhibit reduced levels of molecules critical to DC function (CD206, dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin, CD80, CD86, CCR7) and reduced antigen uptake capacity. DCs derived from PMCs also showed reduced ability to activate naïve CD4+ and CD8+ T cells, and secrete IL-12p70 in response to CD40L stimulation, resulting in decreased ability to promote type-1 immune responses to HIV antigens. Our results indicate that formation of complexes with activated platelets can suppress the development of functional DCs from such monocytes. Disruption of PMCs in vivo via antiplatelet drugs such as Clopidogrel/Prasugrel or the application of platelet-free monocytes for DCs generation in vitro, may be used to enhance immunization and augment the immune control of HIV.
Collapse
Affiliation(s)
- Meera V Singh
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sumanun Suwunnakorn
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Microbiology and Immunology and Tropical Medicine, George Washington School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Sydney R Simpson
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Emily A Weber
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Vir B Singh
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Pawel Kalinski
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Microbiology and Immunology and Tropical Medicine, George Washington School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
40
|
Huot N, Rascle P, Petitdemange C, Contreras V, Stürzel CM, Baquero E, Harper JL, Passaes C, Legendre R, Varet H, Madec Y, Sauermann U, Stahl-Hennig C, Nattermann J, Saez-Cirion A, Le Grand R, Keith Reeves R, Paiardini M, Kirchhoff F, Jacquelin B, Müller-Trutwin M. SIV-induced terminally differentiated adaptive NK cells in lymph nodes associated with enhanced MHC-E restricted activity. Nat Commun 2021; 12:1282. [PMID: 33627642 PMCID: PMC7904927 DOI: 10.1038/s41467-021-21402-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells play a critical understudied role during HIV infection in tissues. In a natural host of SIV, the African green monkey (AGM), NK cells mediate a strong control of SIVagm infection in secondary lymphoid tissues. We demonstrate that SIVagm infection induces the expansion of terminally differentiated NKG2alow NK cells in secondary lymphoid organs displaying an adaptive transcriptional profile and increased MHC-E-restricted cytotoxicity in response to SIV Env peptides while expressing little IFN-γ. Such NK cell differentiation was lacking in SIVmac-infected macaques. Adaptive NK cells displayed no increased NKG2C expression. This study reveals a previously unknown profile of NK cell adaptation to a viral infection, thus accelerating strategies toward NK-cell directed therapies and viral control in tissues.
Collapse
Affiliation(s)
- Nicolas Huot
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Philippe Rascle
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France ,grid.508487.60000 0004 7885 7602Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Caroline Petitdemange
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | | | - Eduard Baquero
- grid.462718.eInstitut Pasteur, Unité de Virologie Structurale, Paris, France
| | - Justin L. Harper
- grid.189967.80000 0001 0941 6502Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA USA
| | - Caroline Passaes
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Rachel Legendre
- grid.428999.70000 0001 2353 6535Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Hugo Varet
- grid.428999.70000 0001 2353 6535Biomics Platform, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Yoann Madec
- grid.428999.70000 0001 2353 6535 Institut Pasteur; Epidemiology of Emerging Diseases Unit, Paris, France
| | - Ulrike Sauermann
- grid.418215.b0000 0000 8502 7018Deutsches Primatenzentrum - Leibniz Institut für Primatenforschung, Göttingen, Germany
| | - Christiane Stahl-Hennig
- grid.418215.b0000 0000 8502 7018Deutsches Primatenzentrum - Leibniz Institut für Primatenforschung, Göttingen, Germany
| | - Jacob Nattermann
- grid.452463.2Medizinische Klinik und Poliklinik I, Universitätsklinikum Bonn, Germany; German Center for Infection Research (DZIF), Bonn, Germany
| | - Asier Saez-Cirion
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - R. Keith Reeves
- grid.38142.3c000000041936754XCenter for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Mirko Paiardini
- grid.189967.80000 0001 0941 6502Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA USA
| | | | - Beatrice Jacquelin
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Michaela Müller-Trutwin
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| |
Collapse
|
41
|
Legrand N, David G, Rodallec A, Gaultier A, Salmon D, Cesbron A, Wittkop L, Raffi F, Gendzekhadze K, Retière C, Allavena C, Gagne K. Influence of HLA-C environment on the spontaneous clearance of hepatitis C in European HIV-HCV co-infected individuals. Clin Exp Immunol 2021; 204:107-124. [PMID: 33314121 DOI: 10.1111/cei.13562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cell functions are regulated by diverse inhibitory and activating receptors, including killer cell immunoglobulin-like receptors (KIR), which interact with human leukocyte antigen (HLA) class I molecules. Some KIR/HLA genetic combinations were reported associated with spontaneous clearance (SC) of hepatitis C virus (HCV) but with discordant results, possibly reflecting KIR and/or HLA gene polymorphism according to populations. KIR/HLA genetic combinations associated with both an exhaustive NK and T cell repertoire were investigated in a cohort of HIV-HCV co-infected individuals with either SC (n = 68) or chronic infection (CI, n = 163) compared to uninfected blood donors [controls (Ctrl), n = 100]. Multivariate analysis showed that the HLA C2C2 environment was associated with SC only in European HIV-HCV co-infected individuals [odds ratio (OR) = 4·30, 95% confidence interval = 1·57-12·25, P = 0·005]. KIR2D+ NK cell repertoire and potential of degranulation of KIR2DL1/S1+ NK cells were similar in the SC European cohort compared to uninfected individuals. In contrast, decreased frequencies of KIR2DS1+ and KIR2DL2+ NK cells were detected in the CI group of Europeans compared to SC and a decreased frequency of KIR2DL1/S1+ NK cells compared to controls. Regarding T cells, higher frequencies of DNAX accessory molecule-1 (DNAM-1)+ and CD57+ T cells were observed in SC in comparison to controls. Interestingly, SC subjects emphasized increased frequencies of KIR2DL2/L3/S2+ T cells compared to CI subjects. Our study underlines that the C2 environment may activate efficient KIR2DL1+ NK cells in a viral context and maintain a KIR2DL2/L3/S2+ mature T cell response in the absence of KIR2DL2 engagement with its cognate ligands in SC group of HCV-HIV co-infected European patients.
Collapse
Affiliation(s)
- N Legrand
- Etablissement Français du Sang (EFS), Nantes, France.,Université de Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France
| | - G David
- Etablissement Français du Sang (EFS), Nantes, France.,Université de Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France
| | - A Rodallec
- Department of Virology, CHU Nantes Hotel Dieu, Nantes, France
| | - A Gaultier
- Department of Biostatistics, CHU Hotel Dieu, Nantes, France
| | - D Salmon
- AP-HP Department of Infectious Diseases, Université Paris Descartes, Paris, France
| | | | - L Wittkop
- INSERM UMR1219, Université de Bordeaux ISPED, Bordeaux, France
| | - F Raffi
- Department of Infectious Diseases, Nantes, France
| | - K Gendzekhadze
- Division of Hematology and Bone Marrow Transplantation, Duarte, CA, USA
| | - C Retière
- Etablissement Français du Sang (EFS), Nantes, France.,Université de Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France.,LabEx IGO, Nantes, France
| | - C Allavena
- Department of Infectious Diseases, Nantes, France
| | - K Gagne
- Etablissement Français du Sang (EFS), Nantes, France.,Université de Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France.,LabEx IGO, Nantes, France.,LabEx Transplantex, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
42
|
Abstract
Over the past four decades, research on the natural history of HIV infection has described how HIV wreaks havoc on human immunity and causes AIDS. HIV host genomic research, which aims to understand how human genetic variation affects our response to HIV infection, has progressed from early candidate gene studies to recent multi-omic efforts, benefiting from spectacular advances in sequencing technology and data science. In addition to invading cells and co-opting the host machinery for replication, HIV also stably integrates into our own genome. The study of the complex interactions between the human and retroviral genomes has improved our understanding of pathogenic mechanisms and suggested novel preventive and therapeutic approaches against HIV infection.
Collapse
Affiliation(s)
- Paul J. McLaren
- grid.415368.d0000 0001 0805 4386National HIV and Retrovirology Laboratory at the JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB Canada ,grid.21613.370000 0004 1936 9609Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB Canada
| | - Jacques Fellay
- grid.5333.60000000121839049School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ,grid.419765.80000 0001 2223 3006Swiss Institute of Bioinformatics, Lausanne, Switzerland ,grid.8515.90000 0001 0423 4662Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
43
|
Fu DH, Deng WJ, Yang Z, Hong S, Ding QL, Zhao Y, Chen J, Su DK. Association between polymorphisms in the interleukin-10 gene and susceptibility to human immunodeficiency virus-1 infection: A systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23069. [PMID: 33235068 PMCID: PMC7710169 DOI: 10.1097/md.0000000000023069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND This study meta-analyzed the literature on possible association of 3 polymorphisms (-592, -1082, -819) in the interleukin-10 (IL-10) gene with susceptibility to human immunodeficiency virus (HIV)-1 infection. METHODS PubMed, EMBASE, MEDLINE and Google Scholar were systematically searched to identify relevant studies in English. Meta-analyses were performed to examine the association of IL-10 polymorphisms -592, -1082, and -819 with susceptibility to HIV-1 infection. RESULTS A significant association between the -592 polymorphism and susceptibility to HIV-1 infection was found in the total population (recessive model, odds ratios (OR) = 1.44, 95% CI = 1.06-1.96, P = .02; homozygous model, OR = 1.44, 95% CI = 1.02-2.02, P = .04). However, these results were not observed in subgroups based on ethnicity. The -1082 polymorphism was significantly associated with susceptibility to HIV-1 infection in Caucasians (OR = 1.30, 95% CI = 1.05-1.62, P = .02; recessive model, OR = 1.49, 95% CI = 1.09-2.03, P = .01; homozygous model, OR = 1.58, 95% CI = 1.01-2.46, P = .04), but not in Asians or the total population. None of the 5 genetic models suggested a significant association between the -819 polymorphism and HIV-1 infection. CONCLUSION The available evidence indicates that the AA genotype of IL-10 -592 may confer increased susceptibility to HIV-1 infection, and that the AA genotype of -1082 may confer increased susceptibility in Caucasians. In contrast, the -819 polymorphism may not be associated with HIV-1 infection risk. These conclusions should be verified in large, well-designed studies.
Collapse
Affiliation(s)
| | | | - Zhi Yang
- Department of Nuclear Medicine, Tumor Hospital Affiliated to Guangxi Medical University, Nanning, China
| | | | | | | | | | | |
Collapse
|
44
|
Prator CA, Donatelli J, Henrich TJ. From Berlin to London: HIV-1 Reservoir Reduction Following Stem Cell Transplantation. Curr HIV/AIDS Rep 2020; 17:385-393. [PMID: 32519184 DOI: 10.1007/s11904-020-00505-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Few interventional strategies lead to significant reductions in HIV-1 reservoir size or prolonged antiretroviral (ART)-free remission. Allogeneic stem cell transplantations (SCT) with or without donor cells harboring genetic mutations preventing functional expression of CCR5, an HIV coreceptor, lead to dramatic reductions in residual HIV burden. However, the mechanisms by which SCT reduces viral reservoirs and leads to a potential functional HIV cure are not well understood. RECENT FINDINGS A growing number of studies involving allogeneic SCT in people with HIV are emerging, including those with and without transplants involving CCR5Δ32/Δ32 mutations. Donor cells resistant to HIV entry are likely required in order to achieve permanent ART-free viral remission. However, dramatic reductions in the HIV reservoir secondary to beneficial graft-versus-host effects may lead to loss of HIV detection in blood and various tissues and lead to prolonged time to HIV rebound in individuals with wild-type CCR5 donors. Studies of SCT recipients and those who started very early ART during hyperacute infection suggest that dramatic reductions in reservoir size or restriction of initial reservoir seeding may lead to 8-10 months of time prior to eventual, and rapid, HIV recrudescence. Studies of allogeneic SCT in people with HIV have provided important insights into the size and nature of the HIV reservoir, and have invigorated other gene therapies to achieve HIV cure.
Collapse
Affiliation(s)
- Cecilia A Prator
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA
| | - Joanna Donatelli
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA.,California Institute of Regenerative Medicine, Bridges to Stem Cell Research Program, San Francisco State University, San Francisco, CA, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA.
| |
Collapse
|
45
|
Leen G, Stein JE, Robinson J, Maldonado Torres H, Marsh SGE. The HLA diversity of the Anthony Nolan register. HLA 2020; 97:15-29. [PMID: 33128327 PMCID: PMC7756289 DOI: 10.1111/tan.14127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/15/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
While the success of allogeneic stem cell transplantation depends on a high degree of HLA compatibility between donor and patient, finding a suitable donor remains challenging due to the hyperpolymorphic nature of HLA genes. We calculated high-resolution allele, haplotype and phenotype frequencies for HLA-A, -C, -B, -DRB1 and -DQB1 for 10 subpopulations of the Anthony Nolan (AN) register using an in-house expectation-maximisation (EM) algorithm run on mixed resolution HLA data, covering 676 155 individuals. Sample sizes range from 599 410 for British/Irish North West European (BINWE) individuals, the largest subpopulation in the United Kingdom to 1105 for the British Bangladeshi population. Calculation of genetic distance between the subpopulations based on haplotype frequencies shows three broad clusters, each following a major continental group: European, African and Asian. We further analysed the HLA haplotype and phenotype diversity of each subpopulation, and found that 35.52% of BINWE individuals ranging to 98.34% of Middle Eastern individuals on the register had a unique phenotype within their subpopulation. These analyses and the allele, haplotype and phenotype frequency data of the subpopulation on the AN register are a valuable resource in understanding the HLA diversity in the United Kingdom and can be used to improve the accuracy of match likelihoods and to inform future donor recruitment strategies.
Collapse
Affiliation(s)
- Gayle Leen
- Anthony Nolan Research Institute, Royal Free Campus, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| | - Jeremy E Stein
- Anthony Nolan Research Institute, Royal Free Campus, London, UK
| | - James Robinson
- Anthony Nolan Research Institute, Royal Free Campus, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| | - Hazael Maldonado Torres
- Anthony Nolan Research Institute, Royal Free Campus, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Campus, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| |
Collapse
|
46
|
Mehlotra RK. New Knowledge About CCR5, HIV Infection, and Disease Progression: Is "Old" Still Valuable? AIDS Res Hum Retroviruses 2020; 36:795-799. [PMID: 32615790 DOI: 10.1089/aid.2020.0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
C-C chemokine receptor (CCR) 5 (CCR5) is the main HIV-1 coreceptor involved in virus entry and cell-to-cell spread during acute and chronic infections: such CCR5 and T cell tropic viruses are adapted to and replicate in CD4+ memory T cells. Polymorphisms in CCR5 regulate CCR5 expression, which, in turn, influences HIV infection acquisition and subsequent disease progression. Among these polymorphisms, a 32-bp deletion in the CCR5 open reading frame (CCR5 Δ32) and a single nucleotide polymorphism (SNP) in the promoter (-2459G/A) are the most well-characterized polymorphisms. CCR5 Δ32 provides partial to full protection against HIV infection and, therefore, serves as a basis for gene deletion studies attempting to achieve a permanent HIV cure. Recent studies have discovered that certain SNPs in the CCR region, not within CCR5, also affect CCR5 expression, HIV infection, and disease progression. Although these studies provide further valuable information regarding the role of human genetic variation in HIV/AIDS, they did not incorporate -2459G/A. In this article, the author summarizes the knowledge gained through the discovery of these new SNPs and introduces the idea that by not incorporating -2459G/A, less comprehensive conclusions may have been reached. Until a strategy that delivers a cure to the millions is found, every piece of information that may help curtail the HIV/AIDS threat to public health should be considered useful.
Collapse
Affiliation(s)
- Rajeev K. Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
47
|
HIV-1 induced changes in HLA-C*03 : 04-presented peptide repertoires lead to reduced engagement of inhibitory natural killer cell receptors. AIDS 2020; 34:1713-1723. [PMID: 32501836 PMCID: PMC8635260 DOI: 10.1097/qad.0000000000002596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Viral infections influence intracellular peptide repertoires available for presentation by HLA-I. Alterations in HLA-I/peptide complexes can modulate binding of killer immunoglobuline-like receptors (KIRs) and thereby the function of natural killer (NK) cells. Although multiple studies have provided evidence that HLA-I/KIR interactions play a role in HIV-1 disease progression, the consequence of HIV-1 infection for HLA-I/KIR interactions remain largely unknown. DESIGN We determined changes in HLA-I presented peptides resulting from HIV-1-infection of primary human CD4 T cells and assessed the impact of changes in peptide repertoires on HLA-I/KIR interactions. METHODS Liquid chromatography-coupled tandem mass spectrometry to identify HLA-I presented peptides, cell-based in-vitro assays to evaluate functional consequences of alterations in immunopeptidome and atomistic molecular dynamics simulations to confirm experimental data. RESULTS A total of 583 peptides exclusively presented on HIV-1-infected cells were identified, of which only 0.2% represented HIV-1 derived peptides. Focusing on HLA-C*03 : 04/KIR2DL3 interactions, we observed that HLA-C*03 : 04-presented peptides derived from noninfected CD4 T cells mediated stronger binding of inhibitory KIR2DL3 than peptides derived from HIV-1-infected cells. Furthermore, the most abundant peptide presented by HLA-C*03 : 04 on noninfected CD4 T cells (VIYPARISL) mediated the strongest KIR2DL3-binding, while the most abundant peptide presented on HIV-1-infected cells (YAIQATETL) did not mediate KIR2DL3-binding. Molecular dynamics simulations of HLA-C*03 : 04/KIR2DL3 interactions in the context of these two peptides revealed that VIYPARISL significantly enhanced the HLA-C*03 : 04/peptide contact area to KIR2DL3 compared with YAIQATETL. CONCLUSION These data demonstrate that HIV-1 infection-induced changes in HLA-I-presented peptides can reduce engagement of inhibitory KIRs, providing a mechanism for enhanced activation of NK cells by virus-infected cells.
Collapse
|
48
|
Fu DH, Deng WJ, Yang Z, Hong S, Ding QL, Zhao Y, Chen J, Su DK. RETRACTED: Association Between Polymorphisms in the Interleukin-10 Gene and Susceptibility to HIV-1 Infection. AIDS Res Hum Retroviruses 2020:AID.2020.0011. [PMID: 32546004 DOI: 10.1089/aid.2020.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIDS Research and Human Retroviruses officially retracts the paper entitled, "Association Between Polymorphisms in the Interleukin-10 Gene and Susceptibility to HIV-1 Infection," by Dan-Hui Fu, Wen-Juan Deng, Zhi Yang, Sen Hong, Qian-Ling Ding, Yang Zhao, Jia Chen, and Dan-Ke Su (AIDS Res Hum Retroviruses, epub: 16 Jun 2020; DOI: 10.1089/AID.2020.0011) due to a final, post-acceptance plagiarism review of the paper revealed a level of duplication of published sources that exceeded normal thresholds. The authors were provided an opportunity to adjust the problem, but the revision was returned with an even higher degree of duplication. The Editor and Publisher of AIDS Research and Human Retroviruses are committed to preserving the scientific literature and the community it serves.
Collapse
Affiliation(s)
- Dan-Hui Fu
- Tumor Hospital Affiliated to Guangxi Medical University, Department of Radiology, Nanning, Guangxi, China;
| | - Wen-Juan Deng
- Tumor Hospital Affiliated to Guangxi Medical University, Department of Radiology, Nanning, Guangxi, China;
| | - Zhi Yang
- Tumor Hospital Affiliated to Guangxi Medical University, Department of nuclear medicine, Nanning, Guangxi, China;
| | - Sen Hong
- Tumor Hospital Affiliated to Guangxi Medical University, Department of Radiology, Nanning, Guangxi, China;
| | - Qian-Ling Ding
- Tumor Hospital Affiliated to Guangxi Medical University, Department of Radiology, Nanning, Guangxi, China;
| | - Yang Zhao
- Tumor Hospital Affiliated to Guangxi Medical University, Department of Radiology, Nanning, Guangxi, China;
| | - Jia Chen
- Tumor Hospital Affiliated to Guangxi Medical University, Department of Radiology, Nanning, Guangxi, China;
| | - Dan-Ke Su
- Tumor Hospital Affiliated to Guangxi Medical University, Department of Radiology, He Di Rd. #71, Nanning, Guangxi, China, 530021;
| |
Collapse
|
49
|
Singh P, Rajput R, Mehra N, Vajpayee M. Analysis of HLA association among North Indian HIV positive individuals with and without tuberculosis. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
50
|
Kovacs AAZ, Kono N, Wang CH, Wang D, Frederick T, Operskalski E, Tien PC, French AL, Minkoff H, Kassaye S, T. Golub E, Aouizerat BE, Kuniholm MH, Millstein J. Association of HLA Genotype With T-Cell Activation in Human Immunodeficiency Virus (HIV) and HIV/Hepatitis C Virus-Coinfected Women. J Infect Dis 2020; 221:1156-1166. [PMID: 31802115 PMCID: PMC7325713 DOI: 10.1093/infdis/jiz589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/06/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Global immune activation and HLA alleles are each associated with the pathogenesis of human immunodeficiency virus (HIV) and hepatitis C virus . METHODS We evaluated the relationship between 44 HLA class I and 28 class II alleles and percentages of activated CD8 (CD8+CD38+DR+) and CD4 (CD4+CD38+DR+) T cells in 586 women who were naive to highly active antiretroviral therapy. We used linear generalized estimating equation regression models, adjusting for race/ethnicity, age, HIV load, and hepatitis C virus infection and controlling for multiplicity using a false discovery rate threshold of 0.10. RESULTS Ten HLA alleles were associated with CD8 and/or CD4 T-cell activation. Lower percentages of activated CD8 and/or CD4 T cells were associated with protective alleles B*57:03 (CD8 T cells, -6.6% [P = .002]; CD4 T cells, -2.7% [P = .007]), C*18:01 (CD8 T cells, -6.6%; P < .0008) and DRB1*13:01 (CD4 T cells, -2.7%; P < .0004), and higher percentages were found with B*18:01 (CD8 T cells, 6.2%; P < .0003), a detrimental allele. Other alleles/allele groups associated with activation included C*12:03, group DQA1*01:00, DQB1*03:01, DQB1*03:02, DQB1*06:02, and DQB1*06:03. CONCLUSION These findings suggest that a person's HLA type may play a role in modulating T-cell activation independent of viral load and sheds light on the relationship between HLA, T-cell activation, immune control, and HIV pathogenesis.
Collapse
Affiliation(s)
- Andrea A Z Kovacs
- Department of Pediatrics, Maternal, Child and Adolescent Center for Infectious Diseases and Virology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Naoko Kono
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chia-Hao Wang
- Department of Pediatrics, Maternal, Child and Adolescent Center for Infectious Diseases and Virology, Keck School of Medicine, University of Southern California, Los Angeles, California
- City of Hope National Medical Center, Duarte, California
| | - Daidong Wang
- Department of Pediatrics, Maternal, Child and Adolescent Center for Infectious Diseases and Virology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Toni Frederick
- Department of Pediatrics, Maternal, Child and Adolescent Center for Infectious Diseases and Virology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Eva Operskalski
- Department of Pediatrics, Maternal, Child and Adolescent Center for Infectious Diseases and Virology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Phyllis C Tien
- Department of Medicine, University of California, San Francisco and Department of Veterans Affairs, San Francisco, California
| | - Audrey L French
- Department of Medicine, Stroger Hospital of Cook County/CORE Center, Rush Medical School, Chicago, Illinois
| | - Howard Minkoff
- Departments of Obstetrics and Gynecology Maimonides Medical Center and SUNY Downstate, Brooklyn, New York
| | - Seble Kassaye
- Department of Medicine, Georgetown University School of Medicine, Washington, DC
| | - Elizabeth T. Golub
- Johns Hopkins Bloomberg School of Public Health, Department of Epidemiology, Baltimore, Maryland
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, New York University, New York, New York
- Department of Oral and Maxillofacial Surgery, New York University, New York, New York
| | - Mark H Kuniholm
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York
| | - Joshua Millstein
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|