1
|
Radu KR, Baek KH. Insights on the Role of Sialic Acids in Acute Lymphoblastic Leukemia in Children. Int J Mol Sci 2025; 26:2233. [PMID: 40076855 PMCID: PMC11900591 DOI: 10.3390/ijms26052233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Sialic acids serve as crucial terminal sugars on glycoproteins or glycolipids present on cell surfaces. These sugars are involved in diverse physiological and pathological processes through their interactions with carbohydrate-binding proteins, facilitating cell-cell communication and influencing the outcomes of bacterial and viral infections. The role of hypersialylation in tumor growth and metastasis has been widely studied. Recent research has highlighted the significance of aberrant sialylation in enabling tumor cells to escape immune surveillance and sustain their malignant behavior. Acute lymphoblastic leukemia (ALL) is a heterogenous hematological malignancy that primarily affects children and is the second leading cause of mortality among individuals aged 1 to 14. ALL is characterized by the uncontrolled proliferation of immature lymphoid cells in the bone marrow, peripheral blood, and various organs. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are cell surface proteins that can bind to sialic acids. Activation of Siglecs triggers downstream reactions, including induction of cell apoptosis. Siglec-7 and Siglec-9 have been reported to promote cancer progression by driving macrophage polarization, and their expressions on natural killer cells can inhibit tumor cell death. This comprehensive review aims to explore the sialylation mechanisms and their effects on ALL in children. Understanding the complex interplay between sialylation and ALL holds great potential for developing novel diagnostic tools and therapeutic interventions in managing this pediatric malignancy.
Collapse
Affiliation(s)
- Kimberley Rinai Radu
- Department of Life Science, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea;
| | - Kwang-Hyun Baek
- Department of Life Science, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea;
- Department of Bioconvergence, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Liu Y, Li J, Liu Q. Inactivation of the CMAH gene and deficiency of Neu5Gc play a role in human brain evolution. Inflamm Regen 2025; 45:5. [PMID: 39920734 PMCID: PMC11806805 DOI: 10.1186/s41232-025-00368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025] Open
Abstract
During human evolution, some genes were lost or silenced from the genome of hominins. These missing genes might be the key to the evolution of humans' unique cognitive skills. An inactivation mutation in CMP-N-acetylneuraminic acid hydroxylase (CMAH) was the result of natural selection. The inactivation of CMAH protected our ancestors from some pathogens and reduced the level of N-glycolylneuraminic acid (Neu5Gc) in brain tissue. Interestingly, the low level of Neu5Gc promoted the development of brain tissue, which may have played a role in human evolution. As a xenoantigen, Neu5Gc may have been involved in brain evolution by affecting neural conduction, neuronal development, and aging.
Collapse
Affiliation(s)
- Yuxin Liu
- Center of Reproductive Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Jinhong Li
- Department of Laboratory Medicine, Medical Technology and Engineering College, Fujian Medical University, Fuzhou, P.R. China
| | - Qicai Liu
- Center of Reproductive Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China.
- Vanke School of Public Health, National Graduate College for Engineers, Tsinghua University, Beijing, P.R. China.
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Medical University, Fuzhou, P.R. China.
- School of Biomedical Engineering, Tsinghua University, Beijing, P.R. China.
- Department of Reproductive Medicine Centre, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| |
Collapse
|
3
|
Wang S, Ling L, Ding CF. Integrating Chemoselective Labeling and Laser-Cleavable Mass Tagging for Determination of Sialic Acids in Glycoconjugates. Anal Chem 2025; 97:38-42. [PMID: 39749466 DOI: 10.1021/acs.analchem.4c03591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Sialic acids are the terminal units of glycans in glycoproteins or glycolipids. The determination of sialic acids in glycoconjugates is crucial since they regulate essential biological functions and have a significant nutritional value. To achieve a specific and high-throughput in situ determination of sialic acids in glycoconjugates, a laser-desorption/ionization mass spectrometry (LDI-MS)-based strategy is reported by integrating chemoselective labeling and laser-cleavable mass tagging. 1-Pyrenebutyric hydrazide (PBH), a commercially available reagent that contains a pyrene moiety and a hydrazide group, has been developed as a novel laser-cleavable mass tag. For chemoselective labeling, an aldehyde group is introduced to the polyhydroxy side chain of sialic acids through mild periodate oxidation and then reacted with PBH, achieving the in situ determination of sialic acids. The quantitative determination of sialic acids in the range of 5-1000 μM (R2 = 0.99984) was achieved using an internal standard method. Thus, a specific, quantitative, and high-throughput method was developed for the in situ determination of sialic acids in glycoconjugates. Finally, this method has been successfully used to quantify the sialic acid content in EBN proteins and glycoprotein biopharmaceuticals, showing its practical application in the quality control of nutritional and therapeutic glycoprotein products. Additionally, the pyrene moiety, when linked to other reactive groups, can also be utilized to analyze other biomolecules, offering a new route for the rational design of mass tags.
Collapse
Affiliation(s)
- Shuyi Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ling Ling
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Benucci B, Spinello Z, Calvaresi V, Viviani V, Perrotta A, Faleri A, Utrio Lanfaloni S, Pansegrau W, d’Alterio L, Bartolini E, Pinzuti I, Sampieri K, Giordano A, Rappuoli R, Pizza M, Masignani V, Norais N, Maione D, Merola M. Neisserial adhesin A (NadA) binds human Siglec-5 and Siglec-14 with high affinity and promotes bacterial adhesion/invasion. mBio 2024; 15:e0110724. [PMID: 39041817 PMCID: PMC11323535 DOI: 10.1128/mbio.01107-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 07/24/2024] Open
Abstract
Neisserial adhesin A (NadA) is a meningococcal surface protein included as recombinant antigen in 4CMenB, a protein-based vaccine able to induce protective immune responses against Neisseria meningitidis serogroup B (MenB). Although NadA is involved in the adhesion/invasion of epithelial cells and human myeloid cells, its function in meningococcal physiology is still poorly understood. To clarify the role played by NadA in the host-pathogen interaction, we sought to identify its cellular receptors. We screened a protein microarray encompassing 2,846 human and 297 mouse surface/secreted recombinant proteins using recombinant NadA as probe. Efficient NadA binding was revealed on the paired sialic acid-binding immunoglobulin-type lectins receptors 5 and 14 (Siglec-5 and Siglec-14), but not on Siglec-9 therein used as control. The interaction was confirmed by biochemical tools with the determination of the KD value in the order of nanomolar and the identification of the NadA binding site by hydrogen-deuterium exchange coupled to mass spectrometry. The N-terminal domain of the Siglec-5 that recognizes the sialic acid was identified as the NadA binding domain. Intriguingly, exogenously added recombinant soluble Siglecs, including Siglec-9, were found to decorate N. meningitidis surface in a NadA-dependent manner. However, Siglec-5 and Siglec-14 transiently expressed in CHO-K1 cells endorsed NadA binding and increased N. meningitidis adhesion/invasion while Siglec-9 did not. Taken together, Siglec-5 and Siglec-14 satisfy all features of NadA receptors suggesting a possible role of NadA in the acute meningococcal infection.IMPORTANCEBacteria have developed several strategies for cell colonization and immune evasion. Knowledge of the host and pathogen factors involved in these mechanisms is crucial to build efficacious countermoves. Neisserial adhesin A (NadA) is a meningococcal surface protein included in the anti-meningococcus B vaccine 4CMenB, which mediates adhesion to and invasion of epithelial cells. Although NadA has been shown to bind to other cell types, like myeloid and endothelial cells, it still remains orphan of a defined host receptor. We have identified two strong NadA interactors, Siglec-5 and Siglec-14, which are mainly expressed on myeloid cells. This showcases that NadA is an additional and key player among the Neisseria meningitidis factors targeting immune cells. We thus provide novel insights on the strategies exploited by N. meningitidis during the infection process, which can progress to a severe illness and death.
Collapse
MESH Headings
- Humans
- Adhesins, Bacterial/metabolism
- Adhesins, Bacterial/genetics
- Bacterial Adhesion
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Lectins/metabolism
- Lectins/genetics
- Lectins/immunology
- Animals
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Host-Pathogen Interactions
- Protein Binding
- Mice
- CHO Cells
- Cricetulus
- Neisseria meningitidis/genetics
- Neisseria meningitidis/metabolism
- Neisseria meningitidis/immunology
- Recombinant Proteins/metabolism
- Recombinant Proteins/genetics
- Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
- Sialic Acid Binding Immunoglobulin-like Lectins/genetics
- Epithelial Cells/microbiology
- Epithelial Cells/metabolism
- Epithelial Cells/immunology
- Meningococcal Infections/microbiology
- Meningococcal Infections/immunology
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Neisseria meningitidis, Serogroup B/metabolism
Collapse
Affiliation(s)
| | | | - Valeria Calvaresi
- GSK, Siena, Italy
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marcello Merola
- GSK, Siena, Italy
- Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
5
|
Du J, Shui H, Chen R, Dong Y, Xiao C, Hu Y, Wong NK. Neuraminidase-1 (NEU1): Biological Roles and Therapeutic Relevance in Human Disease. Curr Issues Mol Biol 2024; 46:8031-8052. [PMID: 39194692 DOI: 10.3390/cimb46080475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Neuraminidases catalyze the desialylation of cell-surface glycoconjugates and play crucial roles in the development and function of tissues and organs. In both physiological and pathophysiological contexts, neuraminidases mediate diverse biological activities via the catalytic hydrolysis of terminal neuraminic, or sialic acid residues in glycolipid and glycoprotein substrates. The selective modulation of neuraminidase activity constitutes a promising strategy for treating a broad spectrum of human pathologies, including sialidosis and galactosialidosis, neurodegenerative disorders, cancer, cardiovascular diseases, diabetes, and pulmonary disorders. Structurally distinct as a large family of mammalian proteins, neuraminidases (NEU1 through NEU4) possess dissimilar yet overlapping profiles of tissue expression, cellular/subcellular localization, and substrate specificity. NEU1 is well characterized for its lysosomal catabolic functions, with ubiquitous and abundant expression across such tissues as the kidney, pancreas, skeletal muscle, liver, lungs, placenta, and brain. NEU1 also exhibits a broad substrate range on the cell surface, where it plays hitherto underappreciated roles in modulating the structure and function of cellular receptors, providing a basis for it to be a potential drug target in various human diseases. This review seeks to summarize the recent progress in the research on NEU1-associated diseases and highlight the mechanistic implications of NEU1 in disease pathogenesis. An improved understanding of NEU1-associated diseases should help accelerate translational initiatives to develop novel or better therapeutics.
Collapse
Affiliation(s)
- Jingxia Du
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Hanqi Shui
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Rongjun Chen
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yibo Dong
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Chengyao Xiao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Hu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
6
|
Zhao C, Wang X, Wu J, Hu Y, Zhang Q, Zheng Q. Analysis of O-acetylated sialic acids by 3-nitrophenylhydrazine derivatization combined with LC-MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2472-2477. [PMID: 38606501 DOI: 10.1039/d4ay00330f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Sialic acids are a family of monosaccharides that share a nine-carbon backbone and a carboxyl group. A recent derivatization method based on 3-nitrophenylhydrazine (3-NPH) provides a mild chemical labeling technique for biomolecules containing carbonyl or carboxyl groups. In this study, we utilized 3-NPH to label sialic acids via a two-step derivatization process. The derivatized species can produce a common reporter ion corresponding to C1-C3 with two labels, and a fragment differentiating between Neu5Ac, Neu5Gc, and KDN. This method is compatible with O-acetylated sialic acids and provides high sensitivity to Neu5Gc and KDN, and since the utilization of dual labeling significantly enhances the hydrophobicity of derivatives, it can effectively mitigate matrix effects when combined with parallel reaction monitoring technology. Negative-ion tandem mass spectrometry (MS/MS) analysis reveals a distinctive fragmentation profile for the 4-O-acetylated species, while the other sialic acids yield similar MS/MS spectra with a high abundance of reporter ions. Using the reporter ion as a transition, this analytical strategy is effective for analyzing complex biological samples. For example, it was successfully employed to quantify sialic acids in the intestinal tissues of several carp species, demonstrating its potential in sialylation research.
Collapse
Affiliation(s)
- Chenhao Zhao
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, China.
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, Hubei, China
| | - Xingdan Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, China.
| | - Jing Wu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, China.
| | - Yeli Hu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, Hubei, China
| | - Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, China.
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, China.
| |
Collapse
|
7
|
Pinkeova A, Kosutova N, Jane E, Lorencova L, Bertokova A, Bertok T, Tkac J. Medical Relevance, State-of-the-Art and Perspectives of "Sweet Metacode" in Liquid Biopsy Approaches. Diagnostics (Basel) 2024; 14:713. [PMID: 38611626 PMCID: PMC11011756 DOI: 10.3390/diagnostics14070713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This review briefly introduces readers to an area where glycomics meets modern oncodiagnostics with a focus on the analysis of sialic acid (Neu5Ac)-terminated structures. We present the biochemical perspective of aberrant sialylation during tumourigenesis and its significance, as well as an analytical perspective on the detection of these structures using different approaches for diagnostic and therapeutic purposes. We also provide a comparison to other established liquid biopsy approaches, and we mathematically define an early-stage cancer based on the overall prognosis and effect of these approaches on the patient's quality of life. Finally, some barriers including regulations and quality of clinical validations data are discussed, and a perspective and major challenges in this area are summarised.
Collapse
Affiliation(s)
- Andrea Pinkeova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
- Glycanostics, Ltd., Kudlakova 7, 841 08 Bratislava, Slovakia;
| | - Natalia Kosutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
| | - Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
| | - Aniko Bertokova
- Glycanostics, Ltd., Kudlakova 7, 841 08 Bratislava, Slovakia;
| | - Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
- Glycanostics, Ltd., Kudlakova 7, 841 08 Bratislava, Slovakia;
| |
Collapse
|
8
|
Hamrangsekachaee M, Wen K, Yazdani N, Willits RK, Bencherif SA, Ebong EE. Endothelial glycocalyx sensitivity to chemical and mechanical sub-endothelial substrate properties. Front Bioeng Biotechnol 2023; 11:1250348. [PMID: 38026846 PMCID: PMC10643223 DOI: 10.3389/fbioe.2023.1250348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Glycocalyx (GCX) is a carbohydrate-rich structure that coats the surface of endothelial cells (ECs) and lines the blood vessel lumen. Mechanical perturbations in the vascular environment, such as blood vessel stiffness, can be transduced and sent to ECs through mechanosensors such as GCX. Adverse stiffness alters GCX-mediated mechanotransduction and leads to EC dysfunction and eventually atherosclerotic cardiovascular diseases. To understand GCX-regulated mechanotransduction events, an in vitro model emulating in vivo vessel conditions is needed. To this end, we investigated the impact of matrix chemical and mechanical properties on GCX expression via fabricating a tunable non-swelling matrix based on the collagen-derived polypeptide, gelatin. To study the effect of matrix composition, we conducted a comparative analysis of GCX expression using different concentrations (60-25,000 μg/mL) of gelatin and gelatin methacrylate (GelMA) in comparison to fibronectin (60 μg/mL), a standard coating material for GCX-related studies. Using immunocytochemistry analysis, we showed for the first time that different substrate compositions and concentrations altered the overall GCX expression on human umbilical vein ECs (HUVECs). Subsequently, GelMA hydrogels were fabricated with stiffnesses of 2.5 and 5 kPa, representing healthy vessel tissues, and 10 kPa, corresponding to diseased vessel tissues. Immunocytochemistry analysis showed that on hydrogels with different levels of stiffness, the GCX expression in HUVECs remained unchanged, while its major polysaccharide components exhibited dysregulation in distinct patterns. For example, there was a significant decrease in heparan sulfate expression on pathological substrates (10 kPa), while sialic acid expression increased with increased matrix stiffness. This study suggests the specific mechanisms through which GCX may influence ECs in modulating barrier function, immune cell adhesion, and mechanotransduction function under distinct chemical and mechanical conditions of both healthy and diseased substrates.
Collapse
Affiliation(s)
| | - Ke Wen
- Chemical Engineering Department, Northeastern University, Boston, MA, United States
| | - Narges Yazdani
- Bioengineering Department, Northeastern University, Boston, MA, United States
| | - Rebecca K. Willits
- Chemical Engineering Department, Northeastern University, Boston, MA, United States
- Bioengineering Department, Northeastern University, Boston, MA, United States
| | - Sidi A. Bencherif
- Chemical Engineering Department, Northeastern University, Boston, MA, United States
- Bioengineering Department, Northeastern University, Boston, MA, United States
- Laboratoire de BioMécanique et BioIngénierie (BMBI), UMR CNRS, Sorbonne Universités, Université de Technologie of Compiègne (UTC), Compiègne, France
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Eno E. Ebong
- Chemical Engineering Department, Northeastern University, Boston, MA, United States
- Bioengineering Department, Northeastern University, Boston, MA, United States
- Neuroscience Department, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
9
|
Vos GM, Hooijschuur KC, Li Z, Fjeldsted J, Klein C, de Vries RP, Toraño JS, Boons GJ. Sialic acid O-acetylation patterns and glycosidic linkage type determination by ion mobility-mass spectrometry. Nat Commun 2023; 14:6795. [PMID: 37880209 PMCID: PMC10600165 DOI: 10.1038/s41467-023-42575-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
O-acetylation is a common modification of sialic acids that has been implicated in a multitude of biological and disease processes. A lack of analytical methods that can determine exact structures of sialic acid variants is a hurdle to determine roles of distinct O-acetylated sialosides. Here, we describe a drift tube ion mobility-mass spectrometry approach that can elucidate exact O-acetylation patterns as well as glycosidic linkage types of sialosides isolated from complex biological samples. It is based on the use of a library of synthetic O-acetylated sialosides to establish intrinsic collision cross section (CCS) values of diagnostic fragment ions. The CCS values were used to characterize O-acetylated sialosides from mucins and N-linked glycans from biologicals as well as equine tracheal and nasal tissues. It uncovered contrasting sialic acid linkage types of acetylated and non-acetylated sialic acids and provided a rationale for sialic acid binding preferences of equine H7 influenza A viruses.
Collapse
Affiliation(s)
- Gaёl M Vos
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Kevin C Hooijschuur
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Zeshi Li
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | | | | | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Javier Sastre Toraño
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG, Utrecht, The Netherlands.
- Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
| |
Collapse
|
10
|
Weiser-Fuchs MT, Maggauer E, van Poppel MNM, Csapo B, Desoye G, Köfeler HC, Groselj-Strele A, Trajanoski S, Fluhr H, Obermayer-Pietsch B, Jantscher-Krenn E. Human Milk Oligosaccharides in Maternal Serum Respond to Oral Glucose Load and Are Associated with Insulin Sensitivity. Nutrients 2023; 15:4042. [PMID: 37764825 PMCID: PMC10534497 DOI: 10.3390/nu15184042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Pregnancy presents a challenge to maternal glucose homeostasis; suboptimal adaptations can lead to gestational diabetes mellitus (GDM). Human milk oligosaccharides (HMOs) circulate in maternal blood in pregnancy and are altered with GDM, suggesting influence of glucose homeostasis on HMOs. We thus assessed the HMO response to glucose load during an oral glucose tolerance test (OGTT) and investigated HMO associations with glucose tolerance/insulin sensitivity in healthy pregnant women. (2) Methods: Serum of 99 women, collected at 0 h, 1 h and 2 h during a 75 g OGTT at 24-28 gestational weeks was analyzed for HMOs (2'FL, 3'SLN, LDFT, 3'SL) by HPLC; plasma glucose, insulin and C-peptide were analyzed by standard biochemistry methods. (3) Results: Serum 3'SL concentrations significantly increased from fasting to 1 h after glucose load, while concentrations of the other HMOs were unaltered. Higher 3'SL at all OGTT time points was associated with a generally more diabetogenic profile, with higher hepatic insulin resistance (HOMA-IR), lower insulin sensitivity (Matsuda index) and higher insulin secretion (C-peptide index 1). (4) Conclusions: Rapid increase in serum 3'SL post-oral glucose load (fasted-fed transition) indicates utilization of plasma glucose, potentially for sialylation of lactose. Associations of sialylated HMOs with a more diabetogenic profile suggest sustained adaptations to impaired glucose homeostasis in pregnancy. Underlying mechanisms or potential consequences of observed HMO changes remain to be elucidated.
Collapse
Affiliation(s)
- Marie-Therese Weiser-Fuchs
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.-T.W.-F.); (G.D.); (E.J.-K.)
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, 8036 Graz, Austria
| | - Elena Maggauer
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.-T.W.-F.); (G.D.); (E.J.-K.)
| | - Mireille N. M. van Poppel
- Institute of Human Movement Science, Sport and Health, University of Graz, 8010 Graz, Austria;
- BioTechMed, 8010 Graz, Austria;
| | - Bence Csapo
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.-T.W.-F.); (G.D.); (E.J.-K.)
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.-T.W.-F.); (G.D.); (E.J.-K.)
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, 8036 Graz, Austria
| | - Harald C. Köfeler
- BioTechMed, 8010 Graz, Austria;
- Core Facility Mass Spectrometry, Center for Medical Research, Medical University of Graz, 8036 Graz, Austria
| | - Andrea Groselj-Strele
- Core Facility Computational Bioanalytics, Center for Medical Research, Medical University of Graz, 8036 Graz, Austria; (A.G.-S.); (S.T.)
| | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Center for Medical Research, Medical University of Graz, 8036 Graz, Austria; (A.G.-S.); (S.T.)
| | - Herbert Fluhr
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.-T.W.-F.); (G.D.); (E.J.-K.)
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, 8036 Graz, Austria
| | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria;
- Department of Obstetrics and Gynecology, Endocrinology Lab Platform, 8036 Graz, Austria
| | - Evelyn Jantscher-Krenn
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.-T.W.-F.); (G.D.); (E.J.-K.)
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, 8036 Graz, Austria
- BioTechMed, 8010 Graz, Austria;
| |
Collapse
|
11
|
Ye Z, Wang Y, Xiang B, Wang H, Tao H, Zhang C, Zhang S, Sun D, Luo F, Song L. Roles of the Siglec family in bone and bone homeostasis. Biomed Pharmacother 2023; 165:115064. [PMID: 37413904 DOI: 10.1016/j.biopha.2023.115064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Tremendous progress has been seen in the study of the role of sialic acid binding im-munoglobulin type lectins (Siglecs) in osteoimmunology in the past two decades. Interest in Siglecs as immune checkpoints has grown from the recognition that Siglecs have relevance to human disease. Siglecs play important roles in inflammation and cancer, and play key roles in immune cell signaling. By recognizing common sialic acid containing glycans on glycoproteins and glycolipids as regulatory receptors for immune cell signals, Siglecs are expressed on most immune cells and play important roles in normal homeostasis and self-tolerance. In this review, we describe the role that the siglec family plays in bone and bone homeostasis, including the regulation of osteoclast differentiation as well as recent advances in inflammation, cancer and osteoporosis. Particular emphasis is placed on the relevant functions of Siglecs in self-tolerance and as pattern recognition receptors in immune responses, thereby potentially providing emerging strategies for the treatment of bone related diseases.
Collapse
Affiliation(s)
- Zi Ye
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Yetong Wang
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Binqing Xiang
- Department of Surgical Anesthesia, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Heng Wang
- Army Border Defense 331st Brigade, Dandong 118000, China
| | - Haiyan Tao
- Health Management Center, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Chengmin Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Shuai Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Dong Sun
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Fei Luo
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Lei Song
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
12
|
Anim MT, Tuffour I, Willis R, Schell M, Ostlund T, Mahnashi MH, Halaweish F, Willand-Charnley R. Deacetylated Sialic Acid Sensitizes Lung and Colon Cancers to Novel Cucurbitacin-Inspired Estrone Epidermal Growth Factor Receptor (EGFR) Inhibitor Analogs. Molecules 2023; 28:6257. [PMID: 37687086 PMCID: PMC10488366 DOI: 10.3390/molecules28176257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Cancers utilize sugar residues such as sialic acids (Sia) to improve their ability to survive. Sia presents a variety of functional group alterations, including O-acetylation on the C6 hydroxylated tail. Previously, sialylation has been reported to suppress EGFR activation and increase cancer cell sensitivity to Tyrosine Kinase Inhibitors (TKIs). In this study, we report on the effect of deacetylated Sia on the activity of three novel EGFR-targeting Cucurbitacin-inspired estrone analogs (CIEAs), MMA 294, MMA 321, and MMA 320, in lung and colon cancer cells. Acetylation was modulated by the removal of Sialate O-Acetyltransferase, also known as CAS1 Domain-containing protein (CASD1) gene via CRISPR-Cas9 gene editing. Using a variety of cell-based approaches including MTT cell viability assay, flow cytometry, immunofluorescence assay and in-cell ELISA we observed that deacetylated Sia-expressing knockout cells (1.24-6.49 μM) were highly sensitive to all CIEAs compared with the control cells (8.82-20.97 μM). Apoptosis and varied stage cell cycle arrest (G0/G1 and G2/M) were elucidated as mechanistic modes of action of the CIEAs. Further studies implicated overexpression of CIEAs' cognate protein target, phosphorylated EGFR, in the chemosensitivity of the deacetylated Sia-expressing knockout cells. This observation correlated with significantly decreased levels of key downstream proteins (phosphorylated ERK and mTOR) of the EGFR pathway in knockout cells compared with controls when treated with CIEAs. Collectively, our findings indicate that Sia deacetylation renders lung and colon cancer cells susceptible to EGFR therapeutics and provide insights for future therapeutic interventions.
Collapse
Affiliation(s)
- Mathias T. Anim
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; (M.T.A.); (I.T.); (R.W.); (M.S.); (T.O.); (F.H.)
| | - Isaac Tuffour
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; (M.T.A.); (I.T.); (R.W.); (M.S.); (T.O.); (F.H.)
| | - Rylan Willis
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; (M.T.A.); (I.T.); (R.W.); (M.S.); (T.O.); (F.H.)
| | - Matthew Schell
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; (M.T.A.); (I.T.); (R.W.); (M.S.); (T.O.); (F.H.)
| | - Trevor Ostlund
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; (M.T.A.); (I.T.); (R.W.); (M.S.); (T.O.); (F.H.)
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, Najran University, Najran P.O. Box 1988, Saudi Arabia;
| | - Fathi Halaweish
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; (M.T.A.); (I.T.); (R.W.); (M.S.); (T.O.); (F.H.)
| | - Rachel Willand-Charnley
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; (M.T.A.); (I.T.); (R.W.); (M.S.); (T.O.); (F.H.)
| |
Collapse
|
13
|
Yi S, Feng Y, Wang Y, Ma F. Sialylation: fate decision of mammalian sperm development, fertilization, and male fertility†. Biol Reprod 2023; 109:137-155. [PMID: 37379321 DOI: 10.1093/biolre/ioad067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Sperm development, maturation, and successful fertilization within the female reproductive tract are intricate and orderly processes that involve protein translation and post-translational modifications. Among these modifications, sialylation plays a crucial role. Any disruptions occurring throughout the sperm's life cycle can result in male infertility, yet our current understanding of this process remains limited. Conventional semen analysis often fails to diagnose some infertility cases associated with sperm sialylation, emphasizing the need to comprehend and investigate the characteristics of sperm sialylation. This review reanalyzes the significance of sialylation in sperm development and fertilization and evaluates the impact of sialylation damage on male fertility under pathological conditions. Sialylation serves a vital role in the life journey of sperm, providing a negatively charged glycocalyx and enriching the molecular structure of the sperm surface, which is beneficial to sperm reversible recognition and immune interaction. These characteristics are particularly crucial during sperm maturation and fertilization within the female reproductive tract. Moreover, enhancing the understanding of the mechanism underlying sperm sialylation can promote the development of relevant clinical indicators for infertility detection and treatment.
Collapse
Affiliation(s)
- Shiqi Yi
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Trzos S, Link-Lenczowski P, Pocheć E. The role of N-glycosylation in B-cell biology and IgG activity. The aspects of autoimmunity and anti-inflammatory therapy. Front Immunol 2023; 14:1188838. [PMID: 37575234 PMCID: PMC10415207 DOI: 10.3389/fimmu.2023.1188838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
The immune system is strictly regulated by glycosylation through the addition of highly diverse and dynamically changing sugar structures (glycans) to the majority of immune cell receptors. Although knowledge in the field of glycoimmunology is still limited, numerous studies point to the key role of glycosylation in maintaining homeostasis, but also in reflecting its disruption. Changes in oligosaccharide patterns can lead to impairment of both innate and acquired immune responses, with important implications in the pathogenesis of diseases, including autoimmunity. B cells appear to be unique within the immune system, since they exhibit both innate and adaptive immune activity. B cell surface is rich in glycosylated proteins and lectins which recognise glycosylated ligands on other cells. Glycans are important in the development, selection, and maturation of B cells. Changes in sialylation and fucosylation of cell surface proteins affect B cell signal transduction through BCRs, CD22 inhibitory coreceptor and Siglec-G. Plasmocytes, as the final stage of B cell differentiation, produce and secrete immunoglobulins (Igs), of which IgGs are the most abundant N-glycosylated proteins in human serum with the conserved N-glycosylation site at Asn297. N-oligosaccharide composition of the IgG Fc region affects its secretion, structure, half-life and effector functions (ADCC, CDC). IgG N-glycosylation undergoes little change during homeostasis, and may gradually be modified with age and during ongoing inflammatory processes. Hyperactivated B lymphocytes secrete autoreactive antibodies responsible for the development of autoimmunity. The altered profile of IgG N-glycans contributes to disease progression and remission and is sensitive to the application of therapeutic substances and immunosuppressive agents. In this review, we focus on the role of N-glycans in B-cell biology and IgG activity, the rearrangement of IgG oligosaccharides in aging, autoimmunity and immunosuppressive therapy.
Collapse
Affiliation(s)
- Sara Trzos
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
15
|
Tuffour I, Amuzu S, Bayoumi H, Surtaj I, Parrish C, Willand-Charnley R. Early in vitro evidence indicates that deacetylated sialic acids modulate multi-drug resistance in colon and lung cancers via breast cancer resistance protein. Front Oncol 2023; 13:1145333. [PMID: 37377914 PMCID: PMC10291187 DOI: 10.3389/fonc.2023.1145333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Cancers utilize sugar residues to engage in multidrug resistance. The underlying mechanism of action involving glycans, specifically the glycan sialic acid (Sia) and its various functional group alterations, has not been explored. ATP-binding cassette (ABC) transporter proteins, key proteins utilized by cancers to engage in multidrug resistant (MDR) pathways, contain Sias in their extracellular domains. The core structure of Sia can contain a variety of functional groups, including O-acetylation on the C6 tail. Modulating the expression of acetylated-Sias on Breast Cancer Resistance Protein (BCRP), a significant ABC transporter implicated in MDR, in lung and colon cancer cells directly impacted the ability of cancer cells to either retain or efflux chemotherapeutics. Via CRISPR-Cas-9 gene editing, acetylation was modulated by the removal of CAS1 Domain-containing protein (CASD1) and Sialate O-Acetyl esterase (SIAE) genes. Using western blot, immunofluorescence, gene expression, and drug sensitivity analysis, we confirmed that deacetylated Sias regulated a MDR pathway in colon and lung cancer in early in vitro models. When deacetylated Sias were expressed on BCRP, colon and lung cancer cells were able to export high levels of BCRP to the cell's surface, resulting in an increased BCRP efflux activity, reduced sensitivity to the anticancer drug Mitoxantrone, and high proliferation relative to control cells. These observations correlated with increased levels of cell survival proteins, BcL-2 and PARP1. Further studies also implicated the lysosomal pathway for the observed variation in BCRP levels among the cell variants. RNASeq data analysis of clinical samples revealed higher CASD1 expression as a favorable marker of survival in lung adenocarcinoma. Collectively, our findings indicate that deacetylated Sia is utilized by colon and lung cancers to engage in MDR via overexpression and efflux action of BCRP.
Collapse
Affiliation(s)
- Isaac Tuffour
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
| | - Setor Amuzu
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Hala Bayoumi
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
| | - Iram Surtaj
- Department of Medical Sciences, American University of Iraq, Sulaimani, Iraq
| | - Colin Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Rachel Willand-Charnley
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
16
|
Martínez-Bailén M, Rojo J, Ramos-Soriano J. Multivalent glycosystems for human lectins. Chem Soc Rev 2023; 52:536-572. [PMID: 36545903 DOI: 10.1039/d2cs00736c] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
17
|
Wiewiora M, Jopek J, Świętochowska E, Sławomir G, Piecuch J, Gąska M, Piecuch J. Blood-based protein biomarkers and red blood cell aggregation in pancreatic cancer. Clin Hemorheol Microcirc 2023; 85:371-383. [PMID: 37718785 DOI: 10.3233/ch-231814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is highly malignant with a low 5-year survival rate. Blood biomarkers may be of value for the noninvasive diagnosis of pancreatic cancer. OBJECTIVE This study assessed blood-based biomarkers and disturbances in red blood cell aggregation associated with pancreatic cancer. METHODS We studied 61 patients who underwent pancreatic resection. Of these 61 patients, 46 patients had PDAC, and 15 patients had inflammatory tumours. Serum VEGF, hypoxia-inducible factor (HIF-1α), elastin-derived peptides (EDPs), total sialic acid (TSA) and resistin levels were measured. Red blood cell aggregation was assessed by a laser-assisted optical rotational cell analyser. RESULTS VEGF (p < 0.000001), HIF-1α (p = 0.000002), resistin (p = 0.000349), EDP (p = 0.000089) and TSA (p = 0.000013) levels were significantly higher in the PDAC group than in the inflammatory tumour group. The aggregation index (AI), syllectogram amplitude (AMP) and threshold shear rate (γthr) were significantly higher in the PDAC group, whereas the aggregation half-time (t1/2) was lower than in the inflammatory tumour group. Multivariate analyses revealed that VEGF, TSA and EDP levels were variables that predicted PDAC. VEGF levels were the most powerful predictor of PDAC independent of CA 19-9 levels. The cut-off points for VEGF, TSA and EDP levels were 134.56 pg/ml, 109.11 mg/dl and 36.4 ng/ml, respectively, with sensitivities of 97.8%, 87% and 69.6%, respectively, and specificities of 86.7%, 86.7% and 93.3%, respectively. CONCLUSION This study indicated that there are significant differences in blood-based biomarkers for differentiating between PDAC and inflammatory tumours of the pancreas. We also confirmed that PDAC is associated with the excessive aggregation of RBCs.
Collapse
Affiliation(s)
- Maciej Wiewiora
- Department of Cardiac Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Janusz Jopek
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Gregorczyn Sławomir
- Chair and Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Jerzy Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Mateusz Gąska
- Department of Cardiac Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Jerzy Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
18
|
Efficient TurboID-based proximity labelling method for identifying terminal sialic acid glycosylation in living cells. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1841-1853. [PMID: 36789692 PMCID: PMC10157534 DOI: 10.3724/abbs.2022184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
TurboID, a proximity labelling method based on mutant biotin ligase, is an efficient new technique for recognizing protein-protein interactions and has been successfully applied to living cells. Sialic acid is typically the terminal monosaccharide attached to many glycoproteins and plays many important roles in many biological processes. However, the lack of enrichment methods for terminal sialic acid glycosylation in vivo hinders the identification and analysis of this glycosylation. Here, we introduce TurboID to identify terminal sialic acid glycosylation in living cells. SpCBM, the carbohydrate-binding domain of sialidase from Streptococcus pneumoniae, is fused with TurboID and overexpressed in HeLa cells. After streptavidin-based purification and detection by mass spectrometry, 31 terminal sialic acid N-glycosylated sites and 1359 putative terminal sialic acid glycosylated proteins are identified, many of which are located in the cytoplasm and nucleus.
Collapse
|
19
|
Ricken F, Can AD, Gräber S, Häusler M, Jahnen-Dechent W. Post-translational modifications glycosylation and phosphorylation of the major hepatic plasma protein fetuin-A are associated with CNS inflammation in children. PLoS One 2022; 17:e0268592. [PMID: 36206263 PMCID: PMC9544022 DOI: 10.1371/journal.pone.0268592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/24/2022] [Indexed: 12/03/2022] Open
Abstract
Fetuin-A is a liver derived plasma protein showing highest serum concentrations in utero, preterm infants, and neonates. Fetuin-A is also present in cerebrospinal fluid (CSF). The origin of CSF fetuin-A, blood-derived via the blood-CSF barrier or synthesized intrathecally, is presently unclear. Fetuin-A prevents ectopic calcification by stabilizing calcium and phosphate as colloidal calciprotein particles mediating their transport and clearance. Thus, fetuin-A plays a suppressive role in inflammation. Fetuin-A is a negative acute-phase protein under investigation as a biomarker for multiple sclerosis (MS). Here we studied the association of pediatric inflammatory CNS diseases with fetuin-A glycosylation and phosphorylation. Paired blood and CSF samples from 66 children were included in the study. Concentration measurements were performed using a commercial human fetuin-A/AHSG ELISA. Of 60 pairs, 23 pairs were analyzed by SDS-PAGE following glycosidase digestion with PNGase-F and Sialidase-AU. Phosphorylation was analyzed in 43 pairs by Phos-TagTM acrylamide electrophoresis following alkaline phosphatase digestion. Mean serum and CSF fetuin-A levels were 0.30 ± 0.06 mg/ml and 0.644 ± 0.55 μg/ml, respectively. This study showed that serum fetuin-A levels decreased in inflammation corroborating its role as a negative acute-phase protein. Blood-CSF barrier disruption was associated with elevated fetuin-A in CSF. A strong positive correlation was found between the CSF fetuin-A/serum fetuin-A quotient and the CSF albumin/serum albumin quotient, suggesting predominantly transport across the blood-CSF barrier rather than intrathecal fetuin-A synthesis. Sialidase digestion showed increased asialofetuin-A levels in serum and CSF samples from children with neuroinflammatory diseases. Desialylation enhanced hepatic fetuin-A clearance via the asialoglycoprotein receptor thus rapidly reducing serum levels during inflammation. Phosphorylation of fetuin-A was more abundant in serum samples than in CSF, suggesting that phosphorylation may regulate fetuin-A influx into the CNS. These results may help establish Fetuin-A as a potential biomarker for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Frederik Ricken
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, RWTH Aachen University Hospital, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University Hospital, Aachen, Germany
| | - Ahu Damla Can
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, RWTH Aachen University Hospital, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University Hospital, Aachen, Germany
| | - Steffen Gräber
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University Hospital, Aachen, Germany
| | - Martin Häusler
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, RWTH Aachen University Hospital, Aachen, Germany
| | - Willi Jahnen-Dechent
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University Hospital, Aachen, Germany
- * E-mail:
| |
Collapse
|
20
|
Almeida‐Marrero V, Bethlehem F, Longo S, Bertolino MC, Torres T, Huskens J, de la Escosura A. Tailored Multivalent Targeting of Siglecs with Photosensitizing Liposome Nanocarriers. Angew Chem Int Ed Engl 2022; 61:e202206900. [PMID: 35652453 PMCID: PMC9401027 DOI: 10.1002/anie.202206900] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/18/2022]
Abstract
The modification of surfaces with multiple ligands allows the formation of platforms for the study of multivalency in diverse processes. Herein we use this approach for the implementation of a photosensitizer (PS)-nanocarrier system that binds efficiently to siglec-10, a member of the CD33 family of siglecs (sialic acid (SA)-binding immunoglobulin-like lectins). In particular, a zinc phthalocyanine derivative bearing three SA moieties (PcSA) has been incorporated in the membrane of small unilamellar vesicles (SUVs), retaining its photophysical properties upon insertion into the SUV's membrane. The interaction of these biohybrid systems with human siglec-10-displaying supported lipid bilayers (SLBs) has shown the occurrence of weakly multivalent, superselective interactions between vesicle and SLB. The SLB therefore acts as an excellent cell membrane mimic, while the binding with PS-loaded SUVs shows the potential for targeting siglec-expressing cells with photosensitizing nanocarriers.
Collapse
Affiliation(s)
- Verónica Almeida‐Marrero
- Department of Organic ChemistryUniversidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain
| | - Fleur Bethlehem
- Department of Molecules & MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteP.O. Box 2177500 AEEnschedeThe Netherlands
| | - Sara Longo
- Department of Molecules & MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteP.O. Box 2177500 AEEnschedeThe Netherlands
| | - M. Candelaria Bertolino
- Department of Molecules & MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteP.O. Box 2177500 AEEnschedeThe Netherlands
| | - Tomás Torres
- Department of Organic ChemistryUniversidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain
- Institute for Advanced Research in Chemistry (IAdChem)Campus de Cantoblanco28049MadridSpain
- Tomás TorresIMDEA NanoscienceCampus de Cantoblanco28049MadridSpain
| | - Jurriaan Huskens
- Department of Molecules & MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteP.O. Box 2177500 AEEnschedeThe Netherlands
| | - Andrés de la Escosura
- Department of Organic ChemistryUniversidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain
- Institute for Advanced Research in Chemistry (IAdChem)Campus de Cantoblanco28049MadridSpain
| |
Collapse
|
21
|
Radovani B, Gudelj I. N-Glycosylation and Inflammation; the Not-So-Sweet Relation. Front Immunol 2022; 13:893365. [PMID: 35833138 PMCID: PMC9272703 DOI: 10.3389/fimmu.2022.893365] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/30/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammation is the main feature of many long-term inflammatory diseases such as autoimmune diseases, metabolic disorders, and cancer. There is a growing number of studies in which alterations of N-glycosylation have been observed in many pathophysiological conditions, yet studies of the underlying mechanisms that precede N-glycome changes are still sparse. Proinflammatory cytokines have been shown to alter the substrate synthesis pathways as well as the expression of glycosyltransferases required for the biosynthesis of N-glycans. The resulting N-glycosylation changes can further contribute to disease pathogenesis through modulation of various aspects of immune cell processes, including those relevant to pathogen recognition and fine-tuning the inflammatory response. This review summarizes our current knowledge of inflammation-induced N-glycosylation changes, with a particular focus on specific subsets of immune cells of innate and adaptive immunity and how these changes affect their effector functions, cell interactions, and signal transduction.
Collapse
Affiliation(s)
- Barbara Radovani
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Ivan Gudelj
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
22
|
Almeida-Marrero V, Bethlehem F, Longo S, Bertolino MC, Torres T, Huskens J, de la Escosura A. Tailored Multivalent Targeting of Siglecs with Photosensitizing Liposome Nanocarriers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Verónica Almeida-Marrero
- Universidad Autonoma de Madrid - Campus de Cantoblanco: Universidad Autonoma de Madrid Organic Chemistry SPAIN
| | - Fleur Bethlehem
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Institute for Nanotechnology MESA+ NETHERLANDS
| | - Sara Longo
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Institute for Nanotechnology MESA+ NETHERLANDS
| | - M. Candelaria Bertolino
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Institute for Nanotechnology MESA+ NETHERLANDS
| | - Tomas Torres
- Universidad Autonoma de Madrid - Campus de Cantoblanco: Universidad Autonoma de Madrid Departmento de Química Orgánica Cantoblanco 28049 Madrid SPAIN
| | - Jurriaan Huskens
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Institute for Nanotechnology MESA+ NETHERLANDS
| | - Andrés de la Escosura
- Universidad Autonoma de Madrid - Campus de Cantoblanco: Universidad Autonoma de Madrid Organic Chemistry C/ Francisco Tomás y Valiente 7, Facultad de CienciasMódulo 01, Planta 4, L-401 28049 Madrid SPAIN
| |
Collapse
|
23
|
Erickson JJ, Archer-Hartmann S, Yarawsky AE, Miller JLC, Seveau S, Shao TY, Severance AL, Miller-Handley H, Wu Y, Pham G, Wasik BR, Parrish CR, Hu YC, Lau JTY, Azadi P, Herr AB, Way SS. Pregnancy enables antibody protection against intracellular infection. Nature 2022; 606:769-775. [PMID: 35676476 PMCID: PMC9233044 DOI: 10.1038/s41586-022-04816-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 04/27/2022] [Indexed: 12/17/2022]
Abstract
Adaptive immune components are thought to exert non-overlapping roles in antimicrobial host defence, with antibodies targeting pathogens in the extracellular environment and T cells eliminating infection inside cells1,2. Reliance on antibodies for vertically transferred immunity from mothers to babies may explain neonatal susceptibility to intracellular infections3,4. Here we show that pregnancy-induced post-translational antibody modification enables protection against the prototypical intracellular pathogen Listeria monocytogenes. Infection susceptibility was reversed in neonatal mice born to preconceptually primed mothers possessing L. monocytogenes-specific IgG or after passive transfer of antibodies from primed pregnant, but not virgin, mice. Although maternal B cells were essential for producing IgGs that mediate vertically transferred protection, they were dispensable for antibody acquisition of protective function, which instead required sialic acid acetyl esterase5 to deacetylate terminal sialic acid residues on IgG variable-region N-linked glycans. Deacetylated L. monocytogenes-specific IgG protected neonates through the sialic acid receptor CD226,7, which suppressed IL-10 production by B cells leading to antibody-mediated protection. Consideration of the maternal-fetal dyad as a joined immunological unit reveals protective roles for antibodies against intracellular infection and fine-tuned adaptations to enhance host defence during pregnancy and early life.
Collapse
Affiliation(s)
- John J Erickson
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, Division of Neonatology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | | | - Alexander E Yarawsky
- Department of Pediatrics, Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Jeanette L C Miller
- Department of Pediatrics, Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Tzu-Yu Shao
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Ashley L Severance
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Hilary Miller-Handley
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Yuehong Wu
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Giang Pham
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Brian R Wasik
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Colin R Parrish
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Yueh-Chiang Hu
- Department of Pediatrics, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Joseph T Y Lau
- Department of Molecular and Cell Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Andrew B Herr
- Department of Pediatrics, Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Sing Sing Way
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
24
|
Trzos S, Link-Lenczowski P, Sokołowski G, Pocheć E. Changes of IgG N-Glycosylation in Thyroid Autoimmunity: The Modulatory Effect of Methimazole in Graves' Disease and the Association With the Severity of Inflammation in Hashimoto's Thyroiditis. Front Immunol 2022; 13:841710. [PMID: 35370997 PMCID: PMC8965101 DOI: 10.3389/fimmu.2022.841710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/18/2022] [Indexed: 01/16/2023] Open
Abstract
The N-glycome of immunoglobulin G (IgG), the most abundant glycoprotein in human blood serum, reflects pathological conditions of autoimmunity and is sensitive to medicines applied in disease therapy. Due to the high sensitivity of N-glycosylation, the IgG N-glycan profile may serve as an indicator of an ongoing inflammatory process. The IgG structure and its effector functions are strongly dependent on the composition of N-glycans attached to the Fc fragment, and the binding of antigens is regulated by Fab sugar moieties. Because of the crucial role of N-glycans in IgG function, remodeling of its N-oligosaccharides can induce pathological changes that ultimately contribute to the development of autoimmunity; restoration of their physiological structure is critical to the reduction of disease symptoms. Our recently published data have shown that the pathology of autoimmune thyroid diseases (AITDs), including Hashimoto’s thyroiditis (HT) and Graves’ disease (GD), is accompanied by alterations of the composition of IgG N-glycans. The present study is a more in-depth investigation of IgG glycosylation in both AITDs, designed to determine the relationship between the severity of thyroid inflammation and IgG N-glycan structures in HT, and to assess the impact of immunosuppressive therapy on the N-glycan profile in GD patients. The study material consisted of human serum samples collected from donors with elevated anti-thyroglobulin (Tg) and/or anti-thyroperoxidase (TPO) IgGs without symptoms of hypothyroidism (n=68), HT patients characterized by high autoantibody titers and advanced destruction of the thyroid gland (n=113), GD patients with up-regulated IgG against thyroid-stimulating hormone receptor (TSHR) before (n=62) and after (n=47) stabilization of TSH level as a result of methimazole therapy (study groups), and healthy donors (control group, n=90). IgG was isolated from blood serum using protein G affinity chromatography. N-glycans were released from IgG by PNGase F digestion and analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) after 2-aminobenzamide (2-AB) labeling. UPLC-MS chromatograms were integrated into 25 peaks (GP) in the Waters UNIFI Scientific Information System, and N-glycans were assigned based on the glucose unit values and mass-to-charge ratios (m/z) of the detected ions. The Kruskal-Wallis non-parametric test was used to determine the statistical significance of the results (p<0.05). The obtained results suggest that modifications of IgG sialylation, galactosylation and core-fucosylation are associated with the severity of HT symptoms. Methimazole therapy implemented in GD patients affected the IgG N-glycan profile; as a result, the content of the sialylated and galactosylated oligosaccharides with core fucose differed after treatment. Our results suggest that N-glycosylation of IgG undergoes dynamic changes during the intensification of thyroiditis in HT, and that in GD autoimmunity it is affected significantly by immunosuppressive therapy.
Collapse
Affiliation(s)
- Sara Trzos
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Sokołowski
- Department of Endocrinology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
25
|
[Tumor necrosis factor-α promotes osteoclast differentiation via sialylation in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1773-1779. [PMID: 35012907 PMCID: PMC8752434 DOI: 10.12122/j.issn.1673-4254.2021.12.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To explore the mechanism through which tumor necrosis factor-α (TNF-α) promotes osteoclast differentiation. METHODS Bilateral knee joint samples were collected from 4-month-old wild-type mice and TNF-α transgenic mice for CT scan analysis, TRAP staining and sialic acid staining analysis. The osteoclast precursor (RAW264.7) cells were cultured for 3 days in induction medium in the presence of vehicle, TNF-α, or TNF-α and sialidase, and were then examined with RT-qPCR, TRAP staining, and sialic acid immunofluorescence co-localization staining. Bone marrow-derived macrophages isolated from the wild-type mice and TNF-α transgenic mouse and cultured in induction medium with or without the addition of sialidase, and TRAP and sialic acid staining was performed after 3 days of cell culture. RESULTS TRAP staining showed that the number of osteoclasts increased significantly in TNF-α transgenic mice as compared with the wild-type mice (P < 0.0001), and micro-CT analysis revealed significant reductions of BV/TV, Tb.N, and Tb.Th in TNF-α transgenic mice (P < 0.001). The osteoclasts in TNF-α transgenic mice also showed a significantly increased expression of sialic acid (P=0.004). In the cell experiment, RAW264.7 cells cultured with TNF-α showed a significantly higher expression of sialic acid (P < 0.0001) and a greater osteoclast formation rate (P=0.0007) than the the control cells, while the addition of sialidase significantly reduced sialic acid expression, osteoclast formation rate and TRAP mRNA level in TNF-α-treated cells (P < 0.0001). Similarly, in the bone marrow-derived macrophages, sialic acid expression and osteoclast formation rate were significantly increased by incubation with TNF-α (P < 0.0001), but the increments were obviously reduced by addition of sialidase in the medium (P < 0.0001). CONCLUSION TNF-α can promote the differentiation and activity of osteoclasts by increasing the sialylation level in the osteoclasts.
Collapse
|
26
|
Horeth E, Oyelakin A, Song EAC, Che M, Bard J, Min S, Kiripolsky J, Kramer JM, Sinha S, Romano RA. Transcriptomic and Single-Cell Analysis Reveals Regulatory Networks and Cellular Heterogeneity in Mouse Primary Sjögren's Syndrome Salivary Glands. Front Immunol 2021; 12:729040. [PMID: 34912329 PMCID: PMC8666453 DOI: 10.3389/fimmu.2021.729040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Sjögren’s Syndrome (SS) is a chronic autoimmune disease of unknown etiology which primarily affects the salivary and lacrimal glands resulting in the loss of secretory function. Treatment options for SS have been hampered due to the lack of a better understanding of the underlying gene regulatory circuitry and the interplay between the myriad pathological cellular states that contribute to salivary gland dysfunction. To better elucidate the molecular nature of SS, we have performed RNA-sequencing analysis of the submandibular glands (SMG) of a well-established primary Sjögren’s Syndrome (pSS) mouse model. Our comprehensive examination of global gene expression and comparative analyses with additional SS mouse models and human datasets, have identified a number of important pathways and regulatory networks that are relevant in SS pathobiology. To complement these studies, we have performed single-cell RNA sequencing to examine and identify the molecular and cellular heterogeneity of the diseased cell populations of the mouse SMG. Interrogation of the single-cell transcriptomes has shed light on the diversity of immune cells that are dysregulated in SS and importantly, revealed an activated state of the salivary gland epithelial cells that contribute to the global immune mediated responses. Overall, our broad studies have not only revealed key pathways, mediators and new biomarkers, but have also uncovered the complex nature of the cellular populations in the SMG that are likely to drive the progression of SS. These newly discovered insights into the underlying molecular mechanisms and cellular states of SS will better inform targeted therapeutic discoveries.
Collapse
Affiliation(s)
- Erich Horeth
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Akinsola Oyelakin
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Eun-Ah Christine Song
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Monika Che
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jonathan Bard
- Genomics and Bioinformatics Core, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Sangwon Min
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jeremy Kiripolsky
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jill M Kramer
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Rose-Anne Romano
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
27
|
Jung J, Enterina JR, Bui DT, Mozaneh F, Lin PH, Nitin, Kuo CW, Rodrigues E, Bhattacherjee A, Raeisimakiani P, Daskhan GC, St. Laurent CD, Khoo KH, Mahal LK, Zandberg WF, Huang X, Klassen JS, Macauley MS. Carbohydrate Sulfation As a Mechanism for Fine-Tuning Siglec Ligands. ACS Chem Biol 2021; 16:2673-2689. [PMID: 34661385 DOI: 10.1021/acschembio.1c00501] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The immunomodulatory family of Siglecs recognizes sialic acid-containing glycans as "self", which is exploited in cancer for immune evasion. The biochemical nature of Siglec ligands remains incompletely understood, with emerging evidence suggesting the importance of carbohydrate sulfation. Here, we investigate how specific sulfate modifications affect Siglec ligands by overexpressing eight carbohydrate sulfotransferases (CHSTs) in five cell lines. Overexpression of three CHSTs─CHST1, CHST2, or CHST4─significantly enhance the binding of numerous Siglecs. Unexpectedly, two other CHSTs (Gal3ST2 and Gal3ST3) diminish Siglec binding, suggesting a new mode to modulate Siglec ligands via sulfation. Results are cell type dependent, indicating that the context in which sulfated glycans are presented is important. Moreover, a pharmacological blockade of N- and O-glycan maturation reveals a cell-type-specific pattern of importance for either class of glycan. Production of a highly homogeneous Siglec-3 (CD33) fragment enabled a mass-spectrometry-based binding assay to determine ≥8-fold and ≥2-fold enhanced affinity for Neu5Acα2-3(6-O-sulfo)Galβ1-4GlcNAc and Neu5Acα2-3Galβ1-4(6-O-sulfo)GlcNAc, respectively, over Neu5Acα2-3Galβ1-4GlcNAc. CD33 shows significant additivity in affinity (≥28-fold) for the disulfated ligand, Neu5Acα2-3(6-O-sulfo)Galβ1-4(6-O-sulfo)GlcNAc. Moreover, joint overexpression of CHST1 with CHST2 in cells greatly enhanced the binding of CD33 and several other Siglecs. Finally, we reveal that CHST1 is upregulated in numerous cancers, correlating with poorer survival rates and sodium chlorate sensitivity for the binding of Siglecs to cancer cell lines. These results provide new insights into carbohydrate sulfation as a general mechanism for tuning Siglec ligands on cells, including in cancer.
Collapse
Affiliation(s)
- Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Jhon R. Enterina
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2J7, Canada
| | - Duong T. Bui
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Fahima Mozaneh
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Po-Han Lin
- Departments of Chemistry and Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Nitin
- Department of Chemistry, The University of British Columbia, Kelowna, V1V 1V7, Canada
| | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Emily Rodrigues
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | | | | | - Gour C. Daskhan
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | | | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Wesley F. Zandberg
- Department of Chemistry, The University of British Columbia, Kelowna, V1V 1V7, Canada
| | - Xuefei Huang
- Departments of Chemistry and Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - John S. Klassen
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Matthew S. Macauley
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2J7, Canada
| |
Collapse
|
28
|
Zeng J, Aryal RP, Stavenhagen K, Luo C, Liu R, Wang X, Chen J, Li H, Matsumoto Y, Wang Y, Wang J, Ju T, Cummings RD. Cosmc deficiency causes spontaneous autoimmunity by breaking B cell tolerance. SCIENCE ADVANCES 2021; 7:eabg9118. [PMID: 34613773 PMCID: PMC8494437 DOI: 10.1126/sciadv.abg9118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/17/2021] [Indexed: 05/12/2023]
Abstract
Factors regulating the induction and development of B cell–mediated autoimmunity are not well understood. Here, we report that targeted deletion in murine B cells of X-linked Cosmc, encoding the chaperone required for expression of core 1 O-glycans, causes the spontaneous development of autoimmune pathologies due to a breakdown of B cell tolerance. BC-CosmcKO mice display multiple phenotypic abnormalities, including severe weight loss, ocular manifestations, lymphadenopathy, and increased female-associated mortality. Disruption of B cell tolerance in BC-CosmcKO mice is manifested as elevated self-reactive IgM and IgG autoantibodies. Cosmc-deficient B cells exhibit enhanced basal activation and responsiveness to stimuli. There is also an elevated frequency of spontaneous germinal center B cells in BC-CosmcKO mice. Mechanistically, loss of Cosmc confers enhanced B cell receptor (BCR) signaling through diminished BCR internalization. The results demonstrate that Cosmc, through control of core 1 O-glycans, is a previously unidentified immune checkpoint gene in maintaining B cell tolerance.
Collapse
Affiliation(s)
- Junwei Zeng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rajindra P. Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Chi Luo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Renyan Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiaohui Wang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yingchun Wang
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Jianmei Wang
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Tongzhong Ju
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Choe HM, Luo ZB, Kang JD, Oh MJ, An HJ, Yin XJ. Pathological features in 'humanized' neonatal pig. Anim Biotechnol 2021; 34:301-309. [PMID: 34392816 DOI: 10.1080/10495398.2021.1962896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cytidine monophosphate-Nacetylneuraminic acid (Neu5Ac) hydroxylase (CMAH) and glycoprotein, alpha1, 3-galactosyltransferase (GGTA1) double knockout (DKO) pig models were produced to reduce immune reaction for xenotransplantation. However, the role of Neu5Gc and α-Gal in pigs has not been fully elucidated and it is necessary to consider the after-effect of inactivation of GGTA1 and CMAH in pigs. Hematological profiles of DKO pigs were analyzed through complete blood count (CBC). Histology of liver and spleen of DKO were investigated, and lectin blotting and mass spectrometry (MS) were performed to explore glycosylation changes in red blood cell (RBC) membranes of DKO pigs. DKO pigs showed common clinical signs such as weakness (100%), dyspnea (90%) and constipation (65%). DKO pigs revealed a significant decrease in RBC, hemoglobin (HGB) and hematocrit (HGB), and an increase in white blood cell (WBC), lymphocyte (LYM), monocyte (MON), and erythrocyte mean corpuscular volume (MCV). DKO piglets showed swollen liver and spleen, and exhibited raised deposition of hemosiderin and severe bleeding. Lectin assay and MS proved variations in glycosylation on RBC membranes. GGTA1/CMAH DKO pigs developed pathological features which are similar to anemic symptoms, and the variations in glycosylation on RBC membranes of DKO pigs may be attributed to the pathologies observed.
Collapse
Affiliation(s)
- Hak Myong Choe
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, China
| | - Zhao-Bo Luo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, China
| | - Jin-Dan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, China
| | - Myung Jin Oh
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, China
| |
Collapse
|
30
|
Aslan Çetin B, Ocal P, Irez T, Uslu E, Irmak K, Karataş S. The Association Between Follicular Fluid Sialic Acid Levels, Oocyte Quality, and Pregnancy Rates. Reprod Sci 2021; 29:633-638. [PMID: 34264515 DOI: 10.1007/s43032-021-00688-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/03/2021] [Indexed: 11/29/2022]
Abstract
Sialic acid residues perform important roles in both physiological and pathologic processes. Our aim was to measure the levels of sialic acid in the follicular fluid of women undergoing in vitro fertilization (IVF) and to assess correlations between IVF parameters and sialic acid levels. All women meeting the inclusion criteria underwent gonadotropin-releasing hormone agonist treatment and during oocyte retrieval, follicular fluids of mature follicles were collected and pooled for each patient. Correlation analysis was made between sialic acid levels and oocyte quality. Eighty-seven patients meeting the inclusion criteria were enrolled. In terms of oocyte quality and sialic acid, follicular fluid total sialic acid (FF-TSA) levels positively correlated with germinal vesicle oocytes and metaphase I oocytes. In terms of clinical parameters, no correlation between sialic acid levels and body mass index, serum levels of hormones, duration of infertility, and the total dose of gonadotropins was observed. The mean FF-TSA was 86.1±35.19 mg/dl in the clinical pregnancy positive group and was 73.64±22.15 mg/dl in the clinical pregnancy negative group. FF-TSA levels positively correlated with immature oocytes. This can be either as part of the normal oocyte maturation or as a compensatory mechanism against reactive oxygen species during the oocyte maturation process.
Collapse
Affiliation(s)
- Berna Aslan Çetin
- Department of Obstetrics and Gynecology, Kanuni Sultan Suleyman Research and Training Hospital, Istanbul, Turkey.
| | - Pelin Ocal
- Faculty of Medicine, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Tulay Irez
- Faculty of Medicine, Department of Histology and Embryology, Biruni University, Istanbul, Turkey
| | - Ezel Uslu
- Faculty of Medicine, Department of Biochemistry, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Kübra Irmak
- Department of Obstetrics and Gynecology, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
| | - Suat Karataş
- Department of Obstetrics and Gynecology, Yedikule Surp Pırgiç Hospital, Istanbul, Turkey
| |
Collapse
|
31
|
Gianchecchi E, Arena A, Fierabracci A. Sialic Acid-Siglec Axis in Human Immune Regulation, Involvement in Autoimmunity and Cancer and Potential Therapeutic Treatments. Int J Mol Sci 2021; 22:5774. [PMID: 34071314 PMCID: PMC8198044 DOI: 10.3390/ijms22115774] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Siglecs are sialic acid-binding immunoglobulin-like lectins. Most Siglecs function as transmembrane receptors mainly expressed on blood cells in a cell type-specific manner. They recognize and bind sialic acids in specific linkages on glycoproteins and glycolipids. Since Sia is a self-molecule, Siglecs play a role in innate immune responses by distinguishing molecules as self or non-self. Increasing evidence supports the involvement of Siglecs in immune signaling representing immune checkpoints able to regulate immune responses in inflammatory diseases as well as cancer. Although further studies are necessary to fully understand the involvement of Siglecs in pathological conditions as well as their interactions with other immune regulators, the development of therapeutic approaches that exploit these molecules represents a tremendous opportunity for future treatments of several human diseases, as demonstrated by their application in several clinical trials. In the present review, we discuss the involvement of Siglecs in the regulation of immune responses, with particular focus on autoimmunity and cancer and the chance to target the sialic acid-Siglec axis as novel treatment strategy.
Collapse
Affiliation(s)
- Elena Gianchecchi
- VisMederi srl, Strada del Petriccio e Belriguardo, 35, 53100 Siena, Italy;
- Infectivology and Clinical Trials Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy;
| | - Andrea Arena
- Infectivology and Clinical Trials Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy;
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy;
| |
Collapse
|
32
|
Abstract
BACKGROUND Lupus B cells not only produce autoantibodies against nuclear antigens but also provide co-stimulation to T cells. However, there is still a lack of comprehensive understanding of the mechanism underlying lupus B cell hyperactivation. METHODS This study focuses on the detection of B cell activation status, analysis of early BCR signaling response, DNA sequencing, and quantity determination of BCR signaling regulators in murine lupus models. RESULTS Our result showed that there is a B cell hyperactivation with a significant elevation of B cell activation markers, and a BCR signaling hyperactivity with an abnormal increase of phosphorylated BCR signaling molecules and cytoplasmic calcium in the early response to BCR crosslinking in B6.Sle1/2/3 lupus mouse. Whole exome sequencing identified a multiple point mutation in the exon of many BCR signaling regulators in common murine lupus models, MRL/lpr, NZM2410, BXSB, NZB, and NZW strains. cNDA sequencing confirmed FcγR2b, Ly9, Pirb, Siglecg, and CD22 BCR signaling regulator variants in B6.Sle1/2/3 lupus mouse, but surface protein expression of these regulators on B cells showed an abnormal increase. CONCLUSION Our findings support that these BCR signaling regulator variants are potential causative genes of B cell hyperactivation in murine lupus models through their possible functional reduction.
Collapse
Affiliation(s)
- J Y Ju
- Department of Immunology, 372527Weifang Medical University, Weifang, China
| | - Z W Xu
- Department of Immunology, 372527Weifang Medical University, Weifang, China
| |
Collapse
|
33
|
Bordron A, Morel M, Bagacean C, Dueymes M, Pochard P, Harduin-Lepers A, Jamin C, Pers JO. Hyposialylation Must Be Considered to Develop Future Therapies in Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms22073402. [PMID: 33810246 PMCID: PMC8036829 DOI: 10.3390/ijms22073402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune disease development depends on multiple factors, including genetic and environmental. Abnormalities such as sialylation levels and/or quality have been recently highlighted. The adjunction of sialic acid at the terminal end of glycoproteins and glycolipids is essential for distinguishing between self and non-self-antigens and the control of pro- or anti-inflammatory immune reactions. In autoimmunity, hyposialylation is responsible for chronic inflammation, the anarchic activation of the immune system and organ lesions. A detailed characterization of this mechanism is a key element for improving the understanding of these diseases and the development of innovative therapies. This review focuses on the impact of sialylation in autoimmunity in order to determine future treatments based on the regulation of hyposialylation.
Collapse
Affiliation(s)
- Anne Bordron
- Univ Brest, Inserm, LBAI, UMR1227 Brest, France; (M.M.); (C.B.); (M.D.); (C.J.); (J.-O.P.)
- Correspondence:
| | - Marie Morel
- Univ Brest, Inserm, LBAI, UMR1227 Brest, France; (M.M.); (C.B.); (M.D.); (C.J.); (J.-O.P.)
| | - Cristina Bagacean
- Univ Brest, Inserm, LBAI, UMR1227 Brest, France; (M.M.); (C.B.); (M.D.); (C.J.); (J.-O.P.)
- CHU de Brest, Laboratory of Immunolgy, 29200 Brest, France;
| | - Maryvonne Dueymes
- Univ Brest, Inserm, LBAI, UMR1227 Brest, France; (M.M.); (C.B.); (M.D.); (C.J.); (J.-O.P.)
- CHU de Brest, Laboratory of Immunolgy, 29200 Brest, France;
| | - Pierre Pochard
- CHU de Brest, Laboratory of Immunolgy, 29200 Brest, France;
| | - Anne Harduin-Lepers
- Univ. Lille, CNRS UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France;
| | - Christophe Jamin
- Univ Brest, Inserm, LBAI, UMR1227 Brest, France; (M.M.); (C.B.); (M.D.); (C.J.); (J.-O.P.)
- CHU de Brest, Laboratory of Immunolgy, 29200 Brest, France;
| | - Jacques-Olivier Pers
- Univ Brest, Inserm, LBAI, UMR1227 Brest, France; (M.M.); (C.B.); (M.D.); (C.J.); (J.-O.P.)
- CHU de Brest, Laboratory of Immunolgy, 29200 Brest, France;
| |
Collapse
|
34
|
DeRogatis JM, Viramontes KM, Neubert EN, Tinoco R. PSGL-1 Immune Checkpoint Inhibition for CD4 + T Cell Cancer Immunotherapy. Front Immunol 2021; 12:636238. [PMID: 33708224 PMCID: PMC7940186 DOI: 10.3389/fimmu.2021.636238] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023] Open
Abstract
Immune checkpoint inhibition targeting T cells has shown tremendous promise in the treatment of many cancer types and are now standard therapies for patients. While standard therapies have focused on PD-1 and CTLA-4 blockade, additional immune checkpoints have shown promise in promoting anti-tumor immunity. PSGL-1, primarily known for its role in cellular migration, has also been shown to function as a negative regulator of CD4+ T cells in numerous disease settings including cancer. PSGL-1 is highly expressed on T cells and can engage numerous ligands that impact signaling pathways, which may modulate CD4+ T cell differentiation and function. PSGL-1 engagement in the tumor microenvironment may promote CD4+ T cell exhaustion pathways that favor tumor growth. Here we highlight that blocking the PSGL-1 pathway on CD4+ T cells may represent a new cancer therapy approach to eradicate tumors.
Collapse
Affiliation(s)
| | | | | | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
35
|
Di Carluccio C, Forgione RE, Montefiori M, Civera M, Sattin S, Smaldone G, Fukase K, Manabe Y, Crocker PR, Molinaro A, Marchetti R, Silipo A. Behavior of glycolylated sialoglycans in the binding pockets of murine and human CD22. iScience 2021; 24:101998. [PMID: 33490906 PMCID: PMC7811138 DOI: 10.1016/j.isci.2020.101998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Siglecs (sialic acid binding immunoglobulin (Ig)-like lectins) constitute a group of 15 human and 9 murine cell-surface transmembrane receptors belonging to the I-type lectin family, mostly expressed on innate immune cells and characterized by broadly similar structural features. Here, the prominent inhibitory CD22 (Siglec-2), well known in maintaining tolerance and preventing autoimmune responses on B cells, is studied in its human and murine forms in complex with sialoglycans. In detail, the role of the N-glycolyl neuraminic acid (Neu5Gc) moiety in the interaction with both orthologues was explored. The analysis of the binding mode was carried out by the combination of NMR spectroscopy, computational approaches, and CORCEMA-ST calculations. Our findings provide a first model of Neu5Gc recognition by h-CD22 and show a comparable molecular recognition profile by h- and m-CD22. These data open the way to innovative diagnostic and/or therapeutic methodologies to be used in the modulation of the immune responses.
Collapse
Affiliation(s)
- Cristina Di Carluccio
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Rosa Ester Forgione
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Marco Montefiori
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy
| | - Monica Civera
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy
| | - Sara Sattin
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy
| | | | - K. Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Suita, Japan
| | - Y. Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Suita, Japan
| | - Paul R. Crocker
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Antonio Molinaro
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Roberta Marchetti
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Alba Silipo
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy
| |
Collapse
|
36
|
Coker JK, Moyne O, Rodionov DA, Zengler K. Carbohydrates great and small, from dietary fiber to sialic acids: How glycans influence the gut microbiome and affect human health. Gut Microbes 2021; 13:1-18. [PMID: 33615984 PMCID: PMC7899658 DOI: 10.1080/19490976.2020.1869502] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/20/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Gut microbiome composition depends heavily upon diet and has strong ties to human health. Dietary carbohydrates shape the gut microbiome by providing a potent nutrient source for particular microbes. This review explores how dietary carbohydrates in general, including individual monosaccharides and complex polysaccharides, influence the gut microbiome with subsequent effects on host health and disease. In particular, the effects of sialic acids, a prominent and influential class of monosaccharides, are discussed. Complex plant carbohydrates, such as dietary fiber, generally promote microbial production of compounds beneficial to the host while preventing degradation of host carbohydrates from colonic mucus. In contrast, simple and easily digestible sugars such as glucose are often associated with adverse effects on health and the microbiome. The monosaccharide class of sialic acids exerts a powerful but nuanced effect on gut microbiota. Sialic acid consumption (in monosaccharide form, or as part of human milk oligosaccharides or certain animal-based foods) drives the growth of organisms with sialic acid metabolism capabilities. Minor chemical modifications of Neu5Ac, the most common form of sialic acid, can alter these effects. All aspects of carbohydrate composition are therefore relevant to consider when designing dietary therapeutic strategies to alter the gut microbiome.
Collapse
Affiliation(s)
- Joanna K Coker
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
| | - Oriane Moyne
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
| | - Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| |
Collapse
|
37
|
Functions and therapeutic targets of Siglec-mediated infections, inflammations and cancers. J Formos Med Assoc 2021; 120:5-24. [DOI: 10.1016/j.jfma.2019.10.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/11/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
|
38
|
Cao Y, Han S, Zhang H, Wang J, Jiang QY, Zhou Y, Yu YJ, Wang J, Chen F, Ng DKP. Detection of cell-surface sialic acids and photodynamic eradication of cancer cells using dye-modified polydopamine-coated gold nanobipyramids. J Mater Chem B 2021; 9:5780-5784. [PMID: 34269776 DOI: 10.1039/d1tb01274f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A nanoprobe based on polydopamine-coated gold nanobipyramids surface modified with molecules of a phenylboronic acid-substituted distyryl boron dipyrromethene has been fabricated and characterised using various physical and spectroscopic methods. It serves as an ultrasensitive sensor for sialic acids on the surface of cancer cells based on its dual surface-enhanced Raman scattering and fluorescence response. This biomarker can also trigger the photodynamic activity of these nanobipyramids, effectively eradicating the cancer cells mainly through apoptosis as shown by various bioassays.
Collapse
Affiliation(s)
- Yue Cao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China. and Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Shenghua Han
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Jie Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Qiao-Yan Jiang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Yimin Zhou
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - You-Jia Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| |
Collapse
|
39
|
Pleass RJ. The therapeutic potential of sialylated Fc domains of human IgG. MAbs 2021; 13:1953220. [PMID: 34288809 PMCID: PMC8296966 DOI: 10.1080/19420862.2021.1953220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Pathogens frequently use multivalent binding to sialic acid to infect cells or to modulate immunity through interactions with human sialic acid-binding immunoglobulin-type lectins (Siglecs). Molecules that interfere with these interactions could be of interest as diagnostics, anti-infectives or as immune modulators. This review describes the development of molecular scaffolds based on the crystallizable fragment (Fc) region of immunoglobulin (Ig) G that deliver high-avidity binding to innate immune receptors, including sialic acid-dependent receptors. The ways in which the sialylated Fc may be engineered as immune modulators that mimic the anti-inflammatory properties of intravenous polyclonal Ig or as blockers of sialic-acid-dependent infectivity by viruses are also discussed.
Collapse
Affiliation(s)
- Richard J. Pleass
- Department of Tropical Disease Biology, Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
40
|
Khouili SC, Cook ECL, Hernández-García E, Martínez-López M, Conde-Garrosa R, Iborra S. SHP-1 Regulates Antigen Cross-Presentation and Is Exploited by Leishmania to Evade Immunity. Cell Rep 2020; 33:108468. [PMID: 33264612 DOI: 10.1016/j.celrep.2020.108468] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/15/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Intracellular pathogens have evolved strategies to evade detection by cytotoxic CD8+ T lymphocytes (CTLs). Here, we ask whether Leishmania parasites trigger the SHP-1-FcRγ chain inhibitory axis to dampen antigen cross-presentation in dendritic cells expressing the C-type lectin receptor Mincle. We find increased cross-priming of CTLs in Leishmania-infected mice deficient for Mincle or with a selective loss of SHP-1 in CD11c+ cells. The latter also shows improved cross-presentation of cell-associated viral antigens. CTL activation in vitro reveals increased MHC class I-peptide complex expression in Mincle- or SHP-1-deficient CD11c+ cells. Neuraminidase treatment also boosts cross-presentation, suggesting that Leishmania triggers SHP-1-associated sialic-acid-binding receptors. Mechanistically, enhanced antigen processing correlates with reduced endosomal acidification in the absence of SHP-1. Finally, we demonstrate that SHP-1 inhibition improves CD11c+ cell-based vaccination against the parasite. Thus, SHP-1-mediated impairment of cross-presentation can be exploited by pathogens to evade CTLs, and SHP-1 inhibition improves CTL responses during vaccination.
Collapse
Affiliation(s)
- Sofía C Khouili
- Immunobiology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Emma C L Cook
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Elena Hernández-García
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - María Martínez-López
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisboa, Portugal
| | - Ruth Conde-Garrosa
- Immunobiology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Salvador Iborra
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain.
| |
Collapse
|
41
|
Changes in the Physicochemical Properties of Blood and Skin Cell Membranes as a Result of Psoriasis Vulgaris and Psoriatic Arthritis Development. Int J Mol Sci 2020; 21:ijms21239129. [PMID: 33266237 PMCID: PMC7731289 DOI: 10.3390/ijms21239129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is accompanied by disturbed redox homeostasis, with systemic and local oxidative stress promoting the modification of basic components of cellular membranes. Therefore, the aim of the study was to investigate the effect of development of psoriasis vulgaris and psoriatic arthritis on the composition and physicochemical properties of skin cell membranes (keratinocytes and fibroblasts) and blood cells (lymphocytes, granulocytes and erythrocytes). Both forms of psoriasis are characterized by decreased levels and changes in the localization of membrane phospholipids, and an increased level of sialic acid as well as the lipid peroxidation product (malondialdehyde), which resulted in an increase in the zeta potential of skin cells and blood cells, with granulocytes and lymphocytes affected more than erythrocytes. Using theoretical equations and the dependence of the cell membrane surface charge density as a function of pH, it was shown that patients with psoriatic arthritis have a greater increase in the concentration of negatively charged groups on the membrane surface and reduced the value of the association constant with H+ compared to patients with psoriasis vulgaris. Therefore, it can be suggested that the physicochemical parameters of membranes, skin and blood cells, especially lymphocytes, can be used to assess the severity of the disease.
Collapse
|
42
|
Progress in research into the role of abnormal glycosylation modification in tumor immunity. Immunol Lett 2020; 229:8-17. [PMID: 33186635 DOI: 10.1016/j.imlet.2020.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/25/2020] [Accepted: 11/07/2020] [Indexed: 12/22/2022]
Abstract
In abnormal glycosylation, molecules of glucose or other carbohydrates in living organisms are inappropriately attached to proteins, which causes protein denaturation. Abnormal glycosylation modification is known to directly or indirectly affect the tumor escape process, but very few studies have been performed on whether protein glycosylation changes the structure and function of immune cells and immune molecules and thereby regulates the occurrence and development of tumor escape. Therefore, this article summarizes the effect of the immune system on tumor escape in association with the abnormal glycosylation process from an immunological perspective.
Collapse
|
43
|
Misumi I, Cook KD, Mitchell JE, Lund MM, Vick SC, Lee RH, Uchimura T, Bergmeier W, Mieczkowski P, Pardo-Manuel de Villena F, Ting JPY, Whitmire JK. Identification of a Locus in Mice that Regulates the Collateral Damage and Lethality of Virus Infection. Cell Rep 2020; 27:1387-1396.e5. [PMID: 31042467 DOI: 10.1016/j.celrep.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/10/2019] [Accepted: 03/28/2019] [Indexed: 10/26/2022] Open
Abstract
Arenaviruses can cause severe hemorrhagic disease in humans, which can progress to organ failure and death. The underlying mechanisms causing lethality and person-to-person variation in outcome remain incompletely explained. Herein, we characterize a mouse model that recapitulates many features of pathogenesis observed in humans with arenavirus-induced hemorrhagic disease, including thrombocytopenia, severe vascular leakage, lung edema, and lethality. The susceptibility of congenic B6.PL mice to lymphocytic choriomeningitis virus (LCMV) infection is associated with increased antiviral T cell responses in B6.PL mice compared with C57BL/6 mice and is T cell dependent. Pathogenesis imparted by the causative locus is inherited in a semi-dominant manner in F1 crosses. The locus includes PL-derived sequence variants in both poorly annotated genes and genes known to contribute to immune responses. This model can be used to further interrogate how limited genetic differences in the host can remarkably alter the disease course of viral infection.
Collapse
Affiliation(s)
- Ichiro Misumi
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Kevin D Cook
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Joseph E Mitchell
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Makayla M Lund
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Sarah C Vick
- Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Robert H Lee
- Department of Biochemistry/Biophysics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Toru Uchimura
- Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Wolfgang Bergmeier
- Department of Biochemistry/Biophysics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Piotr Mieczkowski
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jenny P Y Ting
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason K Whitmire
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
44
|
Wielgat P, Rogowski K, Niemirowicz-Laskowska K, Car H. Sialic Acid-Siglec Axis as Molecular Checkpoints Targeting of Immune System: Smart Players in Pathology and Conventional Therapy. Int J Mol Sci 2020; 21:ijms21124361. [PMID: 32575400 PMCID: PMC7352527 DOI: 10.3390/ijms21124361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
The sialic acid-based molecular mimicry in pathogens and malignant cells is a regulatory mechanism that leads to cross-reactivity with host antigens resulting in suppression and tolerance in the immune system. The interplay between sialoglycans and immunoregulatory Siglec receptors promotes foreign antigens hiding and immunosurveillance impairment. Therefore, molecular targeting of immune checkpoints, including sialic acid-Siglec axis, is a promising new field of inflammatory disorders and cancer therapy. However, the conventional drugs used in regular management can interfere with glycome machinery and exert a divergent effect on immune controlling systems. Here, we focus on the known effects of standard therapies on the sialoglycan-Siglec checkpoint and their importance in diagnosis, prediction, and clinical outcomes.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-7450-647
| | - Karol Rogowski
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| |
Collapse
|
45
|
Loss of core fucosylation in both ST6GAL1 and its substrate enhances glycoprotein sialylation in mice. Biochem J 2020; 477:1179-1201. [DOI: 10.1042/bcj20190789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 01/16/2023]
Abstract
Fucosyltransferase 8 (FUT8) and β-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) are glycosyltransferases that catalyze α1,6-fucosylation and α2,6-sialylation, respectively, in the mammalian N-glycosylation pathway. They are aberrantly expressed in various human diseases. FUT8 is non-glycosylated but is responsible for the fucosylation of ST6GAL1. However, the mechanism for the interaction between these two enzymes is unknown. In this study, we show that serum levels of α2,6-sialylated N-glycans are increased in Fut8−/− mice, whereas the mRNA and protein levels of ST6GAL1 are unchanged in mouse live tissues. The level of α2,6-sialylation on IgG was also enhanced in Fut8−/− mice along with ST6GAL1 catalytic activity increase in both serum and liver. Moreover, it was observed that ST6GAL1 prefers non-fucosylated substrates. Interestingly, increased core fucosylation accompanied by a reduction in α2,6-sialylation, was detected in rheumatoid arthritis patient serum. These findings provide new insight into the interactions between FUT8 and ST6GAL1.
Collapse
|
46
|
Blundell PA, Lu D, Dell A, Haslam S, Pleass RJ. Choice of Host Cell Line Is Essential for the Functional Glycosylation of the Fc Region of Human IgG1 Inhibitors of Influenza B Viruses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1022-1034. [PMID: 31907284 PMCID: PMC6994840 DOI: 10.4049/jimmunol.1901145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
Abs are glycoproteins that carry a conserved N-linked carbohydrate attached to the Fc whose presence and fine structure profoundly impacts on their in vivo immunogenicity, pharmacokinetics, and functional attributes. The host cell line used to produce IgG plays a major role in this glycosylation, as different systems express different glycosylation enzymes and transporters that contribute to the specificity and heterogeneity of the final IgG-Fc glycosylation profile. In this study, we compare two panels of glycan-adapted IgG1-Fc mutants expressed in either the human endothelial kidney 293-F or Chinese hamster ovary-K1 systems. We show that the types of N-linked glycans between matched pairs of Fc mutants vary greatly and in particular, with respect, to sialylation. These cell line effects on glycosylation profoundly influence the ability of the engineered Fcs to interact with either human or pathogen receptors. For example, we describe Fc mutants that potently disrupted influenza B-mediated agglutination of human erythrocytes when expressed in Chinese hamster ovary-K1, but not in human endothelial kidney 293-F cells.
Collapse
Affiliation(s)
- Patricia A Blundell
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; and
| | - Dongli Lu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stuart Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard J Pleass
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; and
| |
Collapse
|
47
|
Quin C, Vicaretti SD, Mohtarudin NA, Garner AM, Vollman DM, Gibson DL, Zandberg WF. Influence of sulfonated and diet-derived human milk oligosaccharides on the infant microbiome and immune markers. J Biol Chem 2020; 295:4035-4048. [PMID: 32014993 DOI: 10.1074/jbc.ra119.011351] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Human milk oligosaccharides (HMOs) promote the development of the neonatal intestinal, immune, and nervous systems and has recently received considerable attention. Here we investigated how the maternal diet affects HMO biosynthesis and how any diet-induced HMO alterations influence the infant gut microbiome and immunity. Using capillary electrophoresis and MS-based analyses, we extracted and measured HMOs from breast milk samples and then correlated their levels with results from validated 24-h diet recall surveys and breast milk fatty acids. We found that fruit intake and unsaturated fatty acids in breast milk were positively correlated with an increased absolute abundance of numerous HMOs, including 16 sulfonated HMOs we identified here in humans for the first time. The diet-derived monosaccharide 5-N-glycolyl-neuraminic acid (Neu5Gc) was unambiguously detected in all samples. To gain insights into the potential impact of Neu5Gc on the infant microbiome, we used a constrained ordination approach and identified correlations between Neu5Gc levels and Bacteroides spp. in infant stool. However, Neu5Gc was not associated with marked changes in infant immune markers, in contrast with sulfonated HMOs, whose expression correlated with suppression of two major Th2 cytokines, IL-10 and IL-13. The findings of our work highlight the importance of maternal diet for HMO biosynthesis and provide as yet unexplored targets for future studies investigating interactions between HMOs and the intestinal microbiome and immunity in infants.
Collapse
Affiliation(s)
- Candice Quin
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7
| | - Sara D Vicaretti
- Department of Chemistry, I. K. Barber School of Arts and Sciences, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| | - Nina A Mohtarudin
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7
| | - Alexander M Garner
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7
| | - Deanna M Vollman
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7
| | - Deanna L Gibson
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7 .,Department of Medicine, Faculty of Medicine, 317-2194 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Wesley F Zandberg
- Department of Chemistry, I. K. Barber School of Arts and Sciences, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| |
Collapse
|
48
|
Abstract
Sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed on the majority of white blood cells of the immune system and play critical roles in immune cell signaling. Through recognition of sialic acid-containing glycans as ligands, they help the immune system distinguish between self and nonself. Because of their restricted cell type expression and roles as checkpoints in immune cell responses in human diseases such as cancer, asthma, allergy, neurodegeneration, and autoimmune diseases they have gained attention as targets for therapeutic interventions. In this review we describe the Siglec family, its roles in regulation of immune cell signaling, current efforts to define its roles in disease processes, and approaches to target Siglecs for treatment of human disease.
Collapse
Affiliation(s)
- Shiteng Duan
- Departments of Molecular Medicine, and Immunology and Microbiology, Scripps Research, La Jolla, California 92037, USA;
| | - James C Paulson
- Departments of Molecular Medicine, and Immunology and Microbiology, Scripps Research, La Jolla, California 92037, USA;
| |
Collapse
|
49
|
Sialic acid and biology of life: An introduction. SIALIC ACIDS AND SIALOGLYCOCONJUGATES IN THE BIOLOGY OF LIFE, HEALTH AND DISEASE 2020. [PMCID: PMC7153325 DOI: 10.1016/b978-0-12-816126-5.00001-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sialic acids are important molecule with high structural diversity. They are known to occur in higher animals such as Echinoderms, Hemichordata, Cephalochorda, and Vertebrata and also in other animals such as Platyhelminthes, Cephalopoda, and Crustaceae. Plants are known to lack sialic acid. But they are reported to occur in viruses, bacteria, protozoa, and fungi. Deaminated neuraminic acid although occurs in vertebrates and bacteria, is reported to occur in abundance in the lower vertebrates. Sialic acids are mostly located in terminal ends of glycoproteins and glycolipids, capsular and tissue polysialic acids, bacterial lipooligosaccharides/polysaccharides, and in different forms that dictate their role in biology. Sialic acid play important roles in human physiology of cell-cell interaction, communication, cell-cell signaling, carbohydrate-protein interactions, cellular aggregation, development processes, immune reactions, reproduction, and in neurobiology and human diseases in enabling the infection process by bacteria and virus, tumor growth and metastasis, microbiome biology, and pathology. It enables molecular mimicry in pathogens that allows them to escape host immune responses. Recently sialic acid has found role in therapeutics. In this chapter we have highlighted the (i) diversity of sialic acid, (ii) their occurrence in the diverse life forms, (iii) sialylation and disease, and (iv) sialic acid and therapeutics.
Collapse
|
50
|
Barnard KN, Wasik BR, LaClair JR, Buchholz DW, Weichert WS, Alford-Lawrence BK, Aguilar HC, Parrish CR. Expression of 9- O- and 7,9- O-Acetyl Modified Sialic Acid in Cells and Their Effects on Influenza Viruses. mBio 2019; 10:e02490-19. [PMID: 31796537 PMCID: PMC6890989 DOI: 10.1128/mbio.02490-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Sialic acids (Sia) are widely displayed on the surfaces of cells and tissues. Sia come in a variety of chemically modified forms, including those with acetyl modifications at the C-7, C-8, and C-9 positions. Here, we analyzed the distribution and amounts of these acetyl modifications in different human and canine cells. Since Sia or their variant forms are receptors for influenza A, B, C, and D viruses, we examined the effects of these modifications on virus infections. We confirmed that 9-O-acetyl and 7,9-O-acetyl modified Sia are widely but variably expressed across cell lines from both humans and canines. Although they were expressed on the cell surfaces of canine MDCK cell lines, they were located primarily within the Golgi compartment of human HEK-293 and A549 cells. The O-acetyl modified Sia were expressed at low levels of 1 to 2% of total Sia in these cell lines. We knocked out and overexpressed the sialate O-acetyltransferase gene (CasD1) and knocked out the sialate O-acetylesterase gene (SIAE) using CRISPR/Cas9 editing. Knocking out CasD1 removed 7,9-O- and 9-O-acetyl Sia expression, confirming previous reports. However, overexpression of CasD1 and knockout of SIAE gave only modest increases in 9-O-acetyl levels in cells and no change in 7,9-O-acetyl levels, indicating that there are complex regulations of these modifications. These modifications were essential for influenza C and D infection but had no obvious effect on influenza A and B infection.IMPORTANCE Sialic acids are key glycans that are involved in many different normal cellular functions, as well as being receptors for many pathogens. However, Sia come in diverse chemically modified forms. Here, we examined and manipulated the expression of 7,9-O- and 9-O-acetyl modified Sia on cells commonly used in influenza virus and other research by engineering the enzymes that produce or remove the acetyl groups.
Collapse
Affiliation(s)
- Karen N Barnard
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Justin R LaClair
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - David W Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Wendy S Weichert
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brynn K Alford-Lawrence
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|