1
|
Dejoux A, Zhu Q, Woolfe A, Godon O, Ellouze S, Mottet G, Castrillon C, Gillis C, Pecalvel C, Ganneau C, Iannascoli B, Lemoine F, Saul F, England P, Reber LL, Gouel-Chéron A, de Chaisemartin L, Haouz A, Millot GA, Bay S, Gérard A, Jönsson F, Chollet-Martin S, Bruhns P. Antibody-secreting cell repertoires hold high-affinity anti-rocuronium specificities that can induce anaphylaxis in vivo. J Allergy Clin Immunol 2025; 155:1557-1574. [PMID: 39892658 DOI: 10.1016/j.jaci.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Neuromuscular blocking agents (NMBAs) are muscle relaxants used to assist mechanical ventilation but lead in 1 per 10,000 anesthesia cases to severe acute hypersensitivity reactions-that is, anaphylaxis. Incidences vary between types of NMBAs. Rocuronium, a widely used nondepolarizing aminosteroid NMBA, induces among the highest anaphylaxis rates. Rocuronium-induced anaphylaxis is proposed to rely on preexisting rocuronium-binding antibodies, but no such antibodies have ever been identified. OBJECTIVES We sought to identify rocuronium-specific antibody repertoires from plasma cells or plasmablasts of rocuronium-immunized mice to determine the affinities, structures, and anaphylactogenic potential of these antibodies for rocuronium. METHODS We engrafted rocuronium onto carrier proteins allowing immunization of mice against rocuronium, screening for rocuronium-specific antibody responses, and sorting of rocuronium-specific plasma cells using droplet microfluids coupled to single-cell antibody gene (variable heavy chain [VH] and variable light chain [VL]) sequencing. RESULTS The 2 different repertoires of >500 VH-VL pairs were oligoclonal, comprised 3 major clonal families, and displayed convergence. Expressed as human IgG1, these antibodies demonstrated subnanomolar affinities for rocuronium with families either monospecific for rocuronium or cross-reactive only for closely related NMBAs. Expressed as human IgE, they triggered human mast cell and basophil activation, and severe passive systemic anaphylaxis in mice humanized for the IgE receptor FcεRI. Cocrystal structures between rocuronium and antibody representatives of 3 different VH-VL families revealed distinct interaction modes, with the ammonium group involved systematically in the binding interface. CONCLUSIONS This work identifies the epitopes of antibody reactivity to rocuronium, demonstrates anaphylactogenic potential of anti-rocuronium IgE, and establishes the first mouse model of NMBA anaphylaxis.
Collapse
Affiliation(s)
- Alice Dejoux
- Institut Pasteur, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1222, Antibodies in Therapy and Pathology, Paris, France; Collège Doctoral, Sorbonne Université, Paris, France
| | - Qianqian Zhu
- Institut Pasteur, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1222, Antibodies in Therapy and Pathology, Paris, France; Université Paris-Saclay, INSERM, Inflammation Microbiome Immunosurveillance, Orsay, France
| | | | - Ophélie Godon
- Institut Pasteur, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1222, Antibodies in Therapy and Pathology, Paris, France
| | | | - Guillaume Mottet
- Institut Pasteur, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1222, Antibodies in Therapy and Pathology, Paris, France
| | - Carlos Castrillon
- Institut Pasteur, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1222, Antibodies in Therapy and Pathology, Paris, France
| | - Caitlin Gillis
- Institut Pasteur, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1222, Antibodies in Therapy and Pathology, Paris, France
| | - Cyprien Pecalvel
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, Centre National de la Recherche Scientifique (CNRS) UMR5051, University Toulouse III, Toulouse, France
| | - Christelle Ganneau
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Chimie des Biomolécules, Paris, France
| | - Bruno Iannascoli
- Institut Pasteur, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1222, Antibodies in Therapy and Pathology, Paris, France
| | - Frédéric Lemoine
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Frederick Saul
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Plate-forme Cristallographie-C2RT, Paris, France
| | - Patrick England
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Molecular Biophysics Core Facility, Paris, France
| | - Laurent L Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, Centre National de la Recherche Scientifique (CNRS) UMR5051, University Toulouse III, Toulouse, France
| | - Aurélie Gouel-Chéron
- Institut Pasteur, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1222, Antibodies in Therapy and Pathology, Paris, France; Anaesthesiology and Critical Care Medicine Department, DMU Parabol, Bichat-Claude Bernard Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Paris Cité, Paris, France
| | - Luc de Chaisemartin
- Université Paris-Saclay, INSERM, Inflammation Microbiome Immunosurveillance, Orsay, France; Service d'immunologie, Hôpital Bichat, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Ahmed Haouz
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Plate-forme Cristallographie-C2RT, Paris, France
| | - Gaël A Millot
- Institut Pasteur, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1222, Antibodies in Therapy and Pathology, Paris, France; Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Sylvie Bay
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Chimie des Biomolécules, Paris, France
| | | | - Friederike Jönsson
- Institut Pasteur, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1222, Antibodies in Therapy and Pathology, Paris, France; CNRS, F-75015, Paris, France
| | - Sylvie Chollet-Martin
- Université Paris-Saclay, INSERM, Inflammation Microbiome Immunosurveillance, Orsay, France; Service d'immunologie, Hôpital Bichat, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Pierre Bruhns
- Institut Pasteur, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1222, Antibodies in Therapy and Pathology, Paris, France; INSERM 1152, Département Hospitalo-Universitaire FIRE, Labex Inflamex, Université Paris Diderot, Paris, France.
| |
Collapse
|
2
|
Hu SY, Jiang F, Song HM, Wang YK, Tian W, Wu H, Yao S, He CY, Gao HW, Yang TL, Yang Z, Guo Y. Synovial transcriptome-wide association study implicates novel genes underlying rheumatoid arthritis risk. Rheumatology (Oxford) 2025; 64:2515-2524. [PMID: 39656803 DOI: 10.1093/rheumatology/keae654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
OBJECTIVES This study aimed to address the lack of gene expression regulation data in synovial tissues and to identify genes associated with rheumatoid arthritis (RA) in the synovium, a primary target tissue for RA. METHODS Gene expression prediction models were built for synovial tissue using matched genotype and gene expression data from 202 subjects. Using this model, we conducted a transcriptome-wide association study (TWAS), utilizing the largest rheumatoid arthritis (RA) genome-wide association study (GWAS) meta-analysis data (n = 276 020). Further analyses, including conditional and joint analysis, causal analysis, differential expression analysis and gene-set enrichment analysis, were conducted to deepen our understanding of genetic architecture and comorbidity aetiology of RA. RESULTS Our analysis identified eight genes associated with rheumatoid arthritis (RA), including three novel genes: TPRA1 (PTWAS = 9.59 × 10-6), HIP1 (PTWAS = 1.47 × 10-5) and RP11-73E17.2 (PTWAS = 3.32 × 10-7). These genes differed from those identified in previous TWAS studies using alternative tissues and may play a crucial role in the target synovial tissue. We found four genes exhibited significant causal relationships with RA and were differentially expressed in RA patients. Furthermore, we explored potential drug repurposing opportunities for these genes. CONCLUSIONS Our study is the first to model gene expression in synovial tissue, uncovering novel genetic determinants of rheumatoid arthritis (RA). This advancement not only deepens our understanding of RA's genetic architecture, but also offers promising avenues for targeted therapies and drug repurposing.
Collapse
Affiliation(s)
- Shou-Ye Hu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Feng Jiang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Hui-Miao Song
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Ya-Kang Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Wen Tian
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Hao Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Shi Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Chang-Yi He
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Hui-Wu Gao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Zhi Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yan Guo
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Key Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutions, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P. R. China
| |
Collapse
|
3
|
Zhao W, Su J, Xue Q, Gao J, Bai H, Gao Y, Chen X, Liu W, Liu D, Wang G, Zhou X. Impact of foot-and-mouth disease virus on memory T and B cell populations in swine. Vet Microbiol 2025; 302:110406. [PMID: 39978867 DOI: 10.1016/j.vetmic.2025.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/22/2025]
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious picornavirus that poses a serious threat to the global livestock industry. This study aimed to investigate the impact of FMDV infection on the memory immune response in pigs and to analyze the role of type II interferon (IFN-γ) in this process. By comparing pigs artificially infected with FMDV and those vaccinated with inactivated FMDV vaccine, we found that FMDV infection significantly suppressed the development of memory T helper (Th) and B cell populations, affecting the memory immune response. Further experiments showed that pretreatment with IFN-γ could counteract the immunosuppression caused by FMDV, and this counteraction was achieved by promoting the expression of three transcription factors: T-bet, Eomes, and Bcl-6. Our findings emphasize the key role of IFN-γ in regulating the host's immune response to FMDV infection and provide new scientific evidence for the development of effective FMDV vaccines.
Collapse
Affiliation(s)
- Wei Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jia Su
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jie Gao
- Beijing Zhonghai Biotech Co., Ltd., Beijing 100081, China
| | - Hongxu Bai
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yueyi Gao
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Xiaochun Chen
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Weijie Liu
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Dongdong Liu
- Inner Mongolia Bigvet Biotech Co., Ltd., Inner Mongolia 011500, China
| | - Guohua Wang
- Inner Mongolia Bigvet Biotech Co., Ltd., Inner Mongolia 011500, China
| | - Xiangmei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Hernández Ruiz JJ, Romero Malacara AMC, López Mota LA, Pérez Guzmán MJ. Therapeutic development towards T follicular helper cells as a molecular target in myasthenia gravis disease. J Neuroimmunol 2025; 399:578503. [PMID: 39657358 DOI: 10.1016/j.jneuroim.2024.578503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/07/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
This review intends to gather literature to provide a comprehensive understanding of the molecular mechanisms and role of T follicular helper cells (Tfh) in the interaction with germinal centers (GCs) in Myasthenia Gravis (MG) disease regarding new developments focusing on Tfh as a therapeutic target and its key regulator B cell lymphoma 6 (Bcl6). Tfh cells are CD4+ T cells specialized in providing signals for the activation and maturation of B cells plus the formation and maintenance of GCs; the role of Bcl6 stands as the key transcriptional factor for the survival of GCs and promotion of Tfh generation. Previous studies have demonstrated gene therapy to be beneficial by achieving re-establishment of "immune homeostasis" and amelioration of the proinflammatory process.
Collapse
Affiliation(s)
- J J Hernández Ruiz
- Facultad Mexicana de Medicina, Universidad La Salle, Fuentes # 17, Av. San Fernando, Col. Tlalpan, C.P.14000 Del. Tlalpan, Mexico City, Mexico.
| | - A M C Romero Malacara
- Facultad Mexicana de Medicina, Universidad La Salle, Fuentes # 17, Av. San Fernando, Col. Tlalpan, C.P.14000 Del. Tlalpan, Mexico City, Mexico
| | - L A López Mota
- Facultad Mexicana de Medicina, Universidad La Salle, Fuentes # 17, Av. San Fernando, Col. Tlalpan, C.P.14000 Del. Tlalpan, Mexico City, Mexico
| | - M J Pérez Guzmán
- Facultad Mexicana de Medicina, Universidad La Salle, Fuentes # 17, Av. San Fernando, Col. Tlalpan, C.P.14000 Del. Tlalpan, Mexico City, Mexico
| |
Collapse
|
5
|
Matta B, Battaglia J, Lapan M, Sharma V, Barnes BJ. IRF5 Controls Plasma Cell Generation and Antibody Production via Distinct Mechanisms Depending on the Antigenic Trigger. Immunology 2025; 174:226-238. [PMID: 39572974 PMCID: PMC11999051 DOI: 10.1111/imm.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
Elevated levels of serum autoantibodies are a hallmark of systemic lupus erythematosus (SLE) and are produced by plasma cells in response to a variety of antigenic triggers. In SLE, the triggers are complex and may include both T cell-dependent/-independent and TLR-dependent/-independent mechanisms of immune activation, which ultimately contributes to the significant immune dysregulation seen in patients at the level of cytokine production and cellular activation (B cells, T cells, dendritic cells, neutrophils and macrophages). Interferon regulatory factor 5 (IRF5) has been identified as an autoimmune susceptibility gene and polymorphisms in IRF5 associate with altered expression and hyper-activation in distinct SLE immune cell subsets. To gain further insight into the mechanisms that drive IRF5-mediated SLE immune activation, we characterised wild-type (WT) and Irf5 -/- Balb/c mice in response to immunisation. WT and Irf5 -/- Balb/c mice were immunised to activate various signalling pathways in vivo followed by systemic immunophenotyping and detection of antibody production by multi-colour flow cytometry and ELISPOT. We identified two pathways, TLR9-dependent and T cell-dependent that resulted in IRF5 cell type-specific function. Immunisation with either CpG-B + Alum or NP-KLH + Alum but not with R848 + Alum, NP-LPS + Alum or NP-Ficoll+Alum resulted in decreased plasma cell generation and reduced antibody production in Irf5 -/- mice. Notably, the mechanism(s) leading to this downstream phenotype was distinct. In CpG-B + Alum immunised mice, we found reduced activation of plasmacytoid dendritic cells, resulting in reduced IFNα and IL6 production in Irf5 -/- mice. Conversely, mice immunised with NP-KLH + Alum had reduced numbers of T follicular helper cells and germinal centre B cells with reduced expression of Bcl6 in Irf5 -/- mice. Moreover, T follicular helper cells from Irf5 -/- mice were functionally defective. Even though the downstream phenotype of reduced antibody production in Irf5 -/- mice was conserved between T cell-dependent and TLR9-dependent immunisation, the mechanisms leading to this phenotype were antigen- and cell type-specific.
Collapse
Affiliation(s)
- Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Jenna Battaglia
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Margaret Lapan
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Departments of Pediatrics and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
6
|
MacLean AJ, Deimel LP, Zhou P, ElTanbouly MA, Merkenschlager J, Ramos V, Santos GS, Hägglöf T, Mayer CT, Hernandez B, Gazumyan A, Nussenzweig MC. Affinity maturation of antibody responses is mediated by differential plasma cell proliferation. Science 2025; 387:413-420. [PMID: 39700316 PMCID: PMC11938350 DOI: 10.1126/science.adr6896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/08/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
Increased antibody affinity over time after vaccination, known as affinity maturation, is a prototypical feature of immune responses. Recent studies have shown that a diverse collection of B cells, producing antibodies with a wide spectrum of different affinities, is selected into the plasma cell (PC) pathway. How affinity-permissive selection enables PC affinity maturation remains unknown. We found that PC precursors (prePCs) expressing high-affinity antibodies received higher levels of T follicular helper cell (TFH cell)-derived help and divided at higher rates compared with their lower-affinity counterparts once they left the germinal center. Our findings indicate that differential cell division by selected prePCs accounts for how diverse precursors develop into a PC compartment that mediates serological affinity maturation.
Collapse
Affiliation(s)
- Andrew J. MacLean
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Lachlan P. Deimel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Pengcheng Zhou
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Mohamed A. ElTanbouly
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Julia Merkenschlager
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Gabriela S. Santos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Thomas Hägglöf
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Christian T. Mayer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brianna Hernandez
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute (HHMI), The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
7
|
MacLean AJ, Deimel LP, Zhou P, ElTanbouly MA, Merkenschlager J, Ramos V, Santos GS, Hagglof T, Mayer CT, Hernandez B, Gazumyan A, Nussenzweig MC. Affinity maturation of antibody responses is mediated by differential plasma cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625430. [PMID: 39651284 PMCID: PMC11623657 DOI: 10.1101/2024.11.26.625430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Increased antibody affinity over time after vaccination, known as affinity maturation, is a prototypical feature of immune responses. Recent studies have shown that a diverse collection of B cells, producing antibodies with a wide spectrum of different affinities, are selected into the plasma cell (PC) pathway. How affinity-permissive selection enables PC affinity maturation remains unknown. Here we report that PC precursors (prePC) expressing high affinity antibodies receive higher levels of T follicular helper (Tfh)-derived help and divide at higher rates than their lower affinity counterparts once they leave the GC. Thus, differential cell division by selected prePCs accounts for how diverse precursors develop into a PC compartment that mediates serological affinity maturation.
Collapse
|
8
|
Houser CL, Fenner KN, Lawrence BP. Timing influences the impact of aryl hydrocarbon receptor activation on the humoral immune response to respiratory viral infection. Toxicol Appl Pharmacol 2024; 489:117010. [PMID: 38901696 PMCID: PMC11240840 DOI: 10.1016/j.taap.2024.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Humoral responses to respiratory viruses, such as influenza viruses, develop over time and are central to protection from repeated infection with the same or similar viruses. Epidemiological and experimental studies have linked exposures to environmental contaminants that bind the aryl hydrocarbon receptor (AHR) with modulated antibody responses to pathogenic microorganisms and common vaccinations. Other studies have prompted investigation into the potential therapeutic applications of compounds that activate AHR. Herein, using two different AHR ligands [2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid methyl ester (ITE), to modulate the duration of AHR activity, we show that the humoral response to viral infection is dependent upon the duration and timing of AHR signaling, and that different cellular elements of the response have different sensitivities. When AHR activation was initiated prior to infection with influenza A virus, there was suppression of all measured elements of the humoral response (i.e., the frequency of T follicular helper cells, germinal center B cells, plasma cells, and circulating virus-specific antibody). However, when the timing of AHR activation was adjusted to either early (days -1 to +5 relative to infection) or later (days +5 onwards), then AHR activation affected different aspects of the overall humoral response. These findings highlight the importance of considering the timing of AHR activation in relation to triggering an immune response, particularly when targeting the AHR to manipulate disease processes.
Collapse
Affiliation(s)
- Cassandra L Houser
- Department of Microbiology & Immunology, University of Rochester, Rochester NY14642, USA
| | - Kristina N Fenner
- Department of Environmental Medicine, University of Rochester, Rochester NY14642, USA
| | - B Paige Lawrence
- Department of Microbiology & Immunology, University of Rochester, Rochester NY14642, USA; Department of Environmental Medicine, University of Rochester, Rochester NY14642, USA.
| |
Collapse
|
9
|
de Gier M, Pico-Knijnenburg I, van Ostaijen-ten Dam MM, Berghuis D, Smiers FJ, van Beek AA, Jolink H, Jansen PM, Lankester AC, van der Burg M. Case report: Persistent hypogammaglobulinemia and mixed chimerism after HLA class-II disparate-hematopoietic stem cell transplant. Front Immunol 2024; 15:1397567. [PMID: 39044816 PMCID: PMC11263073 DOI: 10.3389/fimmu.2024.1397567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for various hematological, immunological and metabolic diseases, replacing the patient's hematopoietic system with donor-derived healthy hematopoietic stem cells. HSCT can be complicated by early and late events related to impaired immunological recovery such as prolonged hypogammaglobulinemia post-HSCT. We present a 16-year-old female patient with sickle-cell disease who underwent HSCT with stem cells from a human leukocyte antigen (HLA) class-II mismatched family donor. While cellular recovery was good post-HSCT, the patient developed mixed chimerism and suffered from cervical lymphadenopathy, recurrent airway infections and cutaneous SLE. She presented with hypogammaglobulinemia and was started on immunoglobulin substitution therapy and antibiotic prophylaxis. B-cell phenotyping showed that she had increased transitional and naïve mature B cells, reduced memory B cells, and diminished marginal zone/natural effector cells. In-depth immunophenotyping and B-cell receptor repertoire sequencing ruled out an intrinsic B-cell defect by expression of activation-induced cytidine deaminase (AID), presence of somatic hypermutations and differentiation into IgG- and IgA-producing plasma cells in vitro. Immunohistochemistry and flow cytometry of lymph node tissue showed a clear block in terminal B-cell differentiation. Chimerism analysis of sorted lymph node populations showed that exclusively patient-derived B cells populated germinal centers, while only a minor fraction of follicular helper T cells was patient-derived. Given this discrepancy, we deduced that the HLA class-II disparity between patient and donor likely hinders terminal B-cell differentiation in the lymph node. This case highlights that studying disturbed cognate T-B interactions in the secondary lymphoid organs can provide unique insights when deciphering prolonged hypogammaglobulinemia post-HSCT.
Collapse
Affiliation(s)
- Melanie de Gier
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Ingrid Pico-Knijnenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Monique M. van Ostaijen-ten Dam
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Dagmar Berghuis
- Department of Pediatrics, Division of Pediatric Immunology, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Frans J. Smiers
- Department of Pediatrics, Division of Pediatric Immunology, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Adriaan A. van Beek
- HLA Laboratory, Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Hetty Jolink
- Department of Infectious Diseases, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Patty M. Jansen
- Department of Pathology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Arjan C. Lankester
- Department of Pediatrics, Division of Pediatric Immunology, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
10
|
Zhang L, Toboso-Navasa A, Gunawan A, Camara A, Nakagawa R, Katja F, Chakravarty P, Newman R, Zhang Y, Eilers M, Wack A, Tolar P, Toellner KM, Calado DP. Regulation of BCR-mediated Ca 2+ mobilization by MIZ1-TMBIM4 safeguards IgG1 + GC B cell-positive selection. Sci Immunol 2024; 9:eadk0092. [PMID: 38579014 PMCID: PMC7615907 DOI: 10.1126/sciimmunol.adk0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/26/2024] [Indexed: 04/07/2024]
Abstract
The transition from immunoglobulin M (IgM) to affinity-matured IgG antibodies is vital for effective humoral immunity. This is facilitated by germinal centers (GCs) through affinity maturation and preferential maintenance of IgG+ B cells over IgM+ B cells. However, it is not known whether the positive selection of the different Ig isotypes within GCs is dependent on specific transcriptional mechanisms. Here, we explored IgG1+ GC B cell transcription factor dependency using a CRISPR-Cas9 screen and conditional mouse genetics. We found that MIZ1 was specifically required for IgG1+ GC B cell survival during positive selection, whereas IgM+ GC B cells were largely independent. Mechanistically, MIZ1 induced TMBIM4, an ancestral anti-apoptotic protein that regulated inositol trisphosphate receptor (IP3R)-mediated calcium (Ca2+) mobilization downstream of B cell receptor (BCR) signaling in IgG1+ B cells. The MIZ1-TMBIM4 axis prevented mitochondrial dysfunction-induced IgG1+ GC cell death caused by excessive Ca2+ accumulation. This study uncovers a unique Ig isotype-specific dependency on a hitherto unidentified mechanism in GC-positive selection.
Collapse
Affiliation(s)
- Lingling Zhang
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | - Arief Gunawan
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | | | | | | | - Rebecca Newman
- Immune Receptor Activation Laboratory, Francis Crick Institute, London, UK
| | - Yang Zhang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Martin Eilers
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Pavel Tolar
- Immune Receptor Activation Laboratory, Francis Crick Institute, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
11
|
Kitaoka T, Ohe R, Kabasawa T, Kaneko M, Sasahara N, Kono M, Suzuki K, Uchiyama N, Ogawa R, Futakuchi M. Activation of fibroblasts by plasma cells via PDGF/PDGFR signaling in IgG4-related sialadenitis. J Clin Exp Hematop 2024; 64:223-231. [PMID: 39343610 PMCID: PMC11528260 DOI: 10.3960/jslrt.24040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 10/01/2024] Open
Abstract
IgG4-related sialadenitis (IgG4-SA) is one of the IgG4-related disease. The histological features of IgG4-SA include dense lymphoplasmacytic infiltrates and fibrosis. This study aimed to reveal the involvement of plasma cells in the development of fibrosis and the mechanism underlying fibrosis in IgG4-SA. Hematoxylin-eosin staining, Azan staining, silver staining, and immunohistochemistry (IHC) were performed on IgG4-SA and chronic sialadenitis specimens, and theses samples were analyzed by image analysis software. Histological spatial analysis was used to analyze the localization of IHC-positive cells and the distances between these cells. In the IgG4-SA group, many secondary lymphoid follicles with germinal centers were found, and many collagen fibers developed around these germinal centers. Collagen fibers composed mainly of type I collagen was abundant at sites away from secondary lymphoid follicles, and reticular fibers composed of type III collagen was abundant near secondary lymphoid follicles. Many FAP+ fibroblasts and MUM1+ plasma cells were localized near secondary lymphoid follicles. Histological spatial analysis demonstrated that 90.4% of MUM1+ plasma cells accumulated within 20 µm of FAP+ fibroblasts. Multiple immunofluorescence assays revealed that MUM1+ plasma cells expressed platelet-derived growth factor (PDGF) β, and FAP+ fibroblasts expressed PDGF receptor (PDGFR) β and pSTAT3 in IgG4-SA. We have shown that fibrosis is localized around secondary lymphoid follicles and that fibroblasts are activated by plasma cells via PDGF/PDGFR signaling in IgG4-SA.
Collapse
|
12
|
Brookens SK, Cho SH, Paik Y, Meyer K, Raybuck AL, Park C, Greenwood DL, Rathmell JC, Boothby MR. Plasma Cell Differentiation, Antibody Quality, and Initial Germinal Center B Cell Population Depend on Glucose Influx Rate. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:43-56. [PMID: 37955416 PMCID: PMC10841396 DOI: 10.4049/jimmunol.2200756] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
Serum Ab concentrations, selection for higher affinity BCRs, and generation of higher Ab affinities are important elements of immune response optimization and functions of germinal center (GC) reactions. B cell proliferation requires nutrients to support the anabolism inherent in clonal expansion. Glucose usage by mouse GC B cells has been reported to contribute little to their energy needs, with questions raised as to whether glucose uptake or glycolysis increases in GC B cells compared with their naive precursors. Indeed, metabolism can be highly flexible, such that supply shortage along one pathway may be compensated by increased flux on others. We now show that reduction of the glucose transporter GLUT1 in mice after establishment of a preimmune B cell repertoire, even after initiation of the GC B cell gene expression program, decreased initial GC B cell population numbers, affinity maturation, and plasma cell outputs. Glucose oxidation was heightened in GC B cells, but this hexose flowed more into the pentose phosphate pathway, whose activity was important in controlling reactive oxygen species (ROS) and Ab-secreting cell production. In modeling how glucose usage by B cells promotes the Ab response, the control of ROS appeared insufficient. Surprisingly, the combination of galactose, which mitigated ROS, with provision of mannose, an efficient precursor to glycosylation, supported robust production of and normal Ab secretion by Ab-secreting cells under glucose-free conditions. Collectively, the findings indicate that GCs depend on normal glucose influx, especially in plasma cell production, but reveal an unexpected metabolic flexibility in hexose requirements.
Collapse
Affiliation(s)
- Shawna K. Brookens
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Cancer Biology Program, Vanderbilt University
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104
| | - Sung Hoon Cho
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Inflammation, & Immunology
| | - Yeeun Paik
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kaylor Meyer
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Ariel L. Raybuck
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Chloe Park
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dalton L. Greenwood
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jeffrey C. Rathmell
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Cancer Biology Program, Vanderbilt University
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Inflammation, & Immunology
| | - Mark R. Boothby
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Cancer Biology Program, Vanderbilt University
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Inflammation, & Immunology
| |
Collapse
|
13
|
Yada Y, Matsumoto M, Inoue T, Baba A, Higuchi R, Kawai C, Yanagisawa M, Kitamura D, Ohga S, Kurosaki T, Baba Y. STIM-mediated calcium influx regulates maintenance and selection of germinal center B cells. J Exp Med 2024; 221:e20222178. [PMID: 37902601 PMCID: PMC10615893 DOI: 10.1084/jem.20222178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/02/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023] Open
Abstract
Positive selection of high-affinity germinal center (GC) B cells is driven by antigen internalization through their B cell receptor (BCR) and presentation to follicular helper T cells. However, the requirements of BCR signaling in GC B cells remain poorly understood. Store-operated Ca2+ entry, mediated by stromal interacting molecule 1 (STIM1) and STIM2, is the main Ca2+ influx pathway triggered by BCR engagement. Here, we showed that STIM-deficient B cells have reduced B cell competitiveness compared with wild-type B cells during GC responses. B cell-specific deletion of STIM proteins decreased the number of high-affinity B cells in the late phase of GC formation. STIM deficiency did not affect GC B cell proliferation and antigen presentation but led to the enhancement of apoptosis due to the impaired upregulation of anti-apoptotic Bcl2a1. STIM-mediated activation of NFAT was required for the expression of Bcl2a1 after BCR stimulation. These findings suggest that STIM-mediated survival signals after antigen capture regulate the optimal selection and maintenance of GC B cells.
Collapse
Affiliation(s)
- Yutaro Yada
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masanori Matsumoto
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akemi Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Ryota Higuchi
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Chie Kawai
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Brookens SK, Cho SH, Paik Y, Meyer K, Raybuck AL, Park C, Greenwood DL, Rathmell JC, Boothby MR. Plasma cell differentiation, antibody quality, and initial germinal center B cell population depend on glucose influx rate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557599. [PMID: 37745429 PMCID: PMC10515901 DOI: 10.1101/2023.09.13.557599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Antibody secretion into sera, selection for higher affinity BCR, and the generation of higher Ab affinities are important elements of immune response optimization, and a core function of germinal center reactions. B cell proliferation requires nutrients to support the anabolism inherent in clonal expansion. Glucose usage by GC B cells has been reported to contribute little to their energy needs, with questions raised as to whether or not glucose uptake or glycolysis increases in GC B cells compared to their naïve precursors. Indeed, metabolism can be highly flexible, such that supply shortage along one pathway may be compensated by increased flux on others. We now show that elimination of the glucose transporter GLUT1 after establishment of a pre-immune B cell repertoire, even after initiation of the GC B cell gene expression program, decreased initial GC B cell population numbers, affinity maturation, and PC outputs. Glucose oxidation was heightened in GC B cells, but this hexose flowed more into the pentose phosphate pathway (PPP), whose activity was important in controlling reactive oxygen (ROS) and ASC production. In modeling how glucose usage by B cells promotes the Ab response, the control of ROS appeared insufficient. Surprisingly, the combination of galactose, which mitigated ROS, with provision of mannose - an efficient precursor to glycosylation - supported robust production of and normal Ab secretion by ASC under glucose-free conditions. Collectively, the findings indicate that GC depend on normal glucose influx, especially in PC production, but reveal an unexpected metabolic flexibility in hexose requirements. KEY POINTS Glucose influx is critical for GC homeostasis, affinity maturation and the generation of Ab-secreting cells.Plasma cell development uses the Pentose Phosphate Pathway, and hexose sugars maintain redox homeostasis.PCs can develop and achieve robust Ab secretion in the absence of glucose using a combination of hexose alternatives.
Collapse
|
15
|
Cousu C, Mulot E, De Smet A, Formichetti S, Lecoeuche D, Ren J, Muegge K, Boulard M, Weill JC, Reynaud CA, Storck S. Germinal center output is sustained by HELLS-dependent DNA-methylation-maintenance in B cells. Nat Commun 2023; 14:5695. [PMID: 37709749 PMCID: PMC10502085 DOI: 10.1038/s41467-023-41317-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
HELLS/LSH (Helicase, Lymphoid Specific) is a SNF2-like chromatin remodelling protein involved in DNA methylation. Its loss-of-function in humans causes humoral immunodeficiency, called ICF4 syndrome (Immunodeficiency, Centromeric Instability, Facial anomalies). Here we show by our newly generated B-cell-specific Hells conditional knockout mouse model that HELLS plays a pivotal role in T-dependent B-cell responses. HELLS deficiency induces accelerated decay of germinal center (GC) B cells and impairs the generation of high affinity memory B cells and circulating antibodies. Mutant GC B cells undergo dramatic DNA hypomethylation and massive de-repression of evolutionary recent retrotransposons, which surprisingly does not directly affect their survival. Instead, they prematurely upregulate either memory B cell markers or the transcription factor ATF4, which is driving an mTORC1-dependent metabolic program typical of plasma cells. Treatment of wild type mice with a DNMT1-specific inhibitor phenocopies the accelerated kinetics, thus pointing towards DNA-methylation maintenance by HELLS being a crucial mechanism to fine-tune the GC transcriptional program and enable long-lasting humoral immunity.
Collapse
Affiliation(s)
- Clara Cousu
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Eléonore Mulot
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Annie De Smet
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Sara Formichetti
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), 00015, Monterotondo, Italy
- Joint PhD degree program, European Molecular Biology Laboratory and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Damiana Lecoeuche
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Jianke Ren
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
- NHC Key Lab of Reproduction Regulation,Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Kathrin Muegge
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Matthieu Boulard
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), 00015, Monterotondo, Italy
| | - Jean-Claude Weill
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Claude-Agnès Reynaud
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Sébastien Storck
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France.
| |
Collapse
|
16
|
Bechara R, Vagner S, Mariette X. Post-transcriptional checkpoints in autoimmunity. Nat Rev Rheumatol 2023; 19:486-502. [PMID: 37311941 DOI: 10.1038/s41584-023-00980-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/15/2023]
Abstract
Post-transcriptional regulation is a fundamental process in gene expression that has a role in diverse cellular processes, including immune responses. A core concept underlying post-transcriptional regulation is that protein abundance is not solely determined by transcript abundance. Indeed, transcription and translation are not directly coupled, and intervening steps occur between these processes, including the regulation of mRNA stability, localization and alternative splicing, which can impact protein abundance. These steps are controlled by various post-transcription factors such as RNA-binding proteins and non-coding RNAs, including microRNAs, and aberrant post-transcriptional regulation has been implicated in various pathological conditions. Indeed, studies on the pathogenesis of autoimmune and inflammatory diseases have identified various post-transcription factors as important regulators of immune cell-mediated and target effector cell-mediated pathological conditions. This Review summarizes current knowledge regarding the roles of post-transcriptional checkpoints in autoimmunity, as evidenced by studies in both haematopoietic and non-haematopoietic cells, and discusses the relevance of these findings for developing new anti-inflammatory therapies.
Collapse
Affiliation(s)
- Rami Bechara
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Le Kremlin Bicêtre, France.
| | - Stephan Vagner
- Institut Curie, CNRS UMR3348, INSERM U1278, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Xavier Mariette
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Le Kremlin Bicêtre, France
- Assistance Publique - Hôpitaux de Paris, Hôpital Bicêtre, Department of Rheumatology, Le Kremlin Bicêtre, France
| |
Collapse
|
17
|
Steinmetz TD, Verstappen GM, Suurmond J, Kroese FGM. Targeting plasma cells in systemic autoimmune rheumatic diseases - Promises and pitfalls. Immunol Lett 2023; 260:44-57. [PMID: 37315847 DOI: 10.1016/j.imlet.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Plasma cells are the antibody secretors of the immune system. Continuous antibody secretion over years can provide long-term immune protection but could also be held responsible for long-lasting autoimmunity in case of self-reactive plasma cells. Systemic autoimmune rheumatic diseases (ARD) affect multiple organ systems and are associated with a plethora of different autoantibodies. Two prototypic systemic ARDs are systemic lupus erythematosus (SLE) and Sjögren's disease (SjD). Both diseases are characterized by B-cell hyperactivity and the production of autoantibodies against nuclear antigens. Analogues to other immune cells, different subsets of plasma cells have been described. Plasma cell subsets are often defined dependent on their current state of maturation, that also depend on the precursor B-cell subset from which they derived. But, a universal definition of plasma cell subsets is not available so far. Furthermore, the ability for long-term survival and effector functions may differ, potentially in a disease-specific manner. Characterization of plasma cell subsets and their specificity in individual patients can help to choose a suitable targeting approach for either a broad or more selective plasma cell depletion. Targeting plasma cells in systemic ARDs is currently challenging because of side effects or varying depletion efficacies in the tissue. Recent developments, however, like antigen-specific targeting and CAR-T-cell therapy might open up major benefits for patients beyond current treatment options.
Collapse
Affiliation(s)
- Tobit D Steinmetz
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Gwenny M Verstappen
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolien Suurmond
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans G M Kroese
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Luo W, Conter L, Elsner RA, Smita S, Weisel F, Callahan D, Wu S, Chikina M, Shlomchik M. IL-21R signal reprogramming cooperates with CD40 and BCR signals to select and differentiate germinal center B cells. Sci Immunol 2023; 8:eadd1823. [PMID: 36800413 PMCID: PMC10206726 DOI: 10.1126/sciimmunol.add1823] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023]
Abstract
Both B cell receptor (BCR) and CD40 signaling are rewired in germinal center (GC) B cells (GCBCs) to synergistically induce c-MYC and phosphorylated S6 ribosomal protein (p-S6), markers of positive selection. How interleukin-21 (IL-21), a key T follicular helper (TFH)-derived cytokine, affects GCBCs is unclear. Like BCR and CD40 signals, IL-21 receptor (IL-21R) plus CD40 signals also synergize to induce c-MYC and p-S6 in GCBCs. However, IL-21R plus CD40 stimulation differentially affects GCBC fate compared with BCR plus CD40 ligation-engaging unique molecular mechanisms-as revealed by bulk RNA sequencing (RNA-seq), single-cell RNA-seq, and flow cytometry of GCBCs in vitro and in vivo. Whereas both signal pairs induced BLIMP1 in some GCBCs, only the IL-21R/CD40 combination induced IRF4hi/CD138+ cells, indicative of plasma cell differentiation, along with CCR6+/CD38+ memory B cell precursors. These findings reveal a second positive selection pathway in GCBCs, document rewired IL-21R signaling in GCBCs, and link specific TFH- and Ag-derived signals to GCBC differentiation.
Collapse
Affiliation(s)
- Wei Luo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- These authors contributed equally
- Present address: Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Laura Conter
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- These authors contributed equally
| | - Rebecca A. Elsner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- These authors contributed equally
| | - Shuchi Smita
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Florian Weisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Derrick Callahan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Shuxian Wu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Mark Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Lead contact
| |
Collapse
|
19
|
Chen Z, Cui Y, Yao Y, Liu B, Yunis J, Gao X, Wang N, Cañete PF, Tuong ZK, Sun H, Wang H, Yang S, Wang R, Leong YA, Simon Davis D, Qin J, Liang K, Deng J, Wang CK, Huang YH, Roco JA, Nettelfield S, Zhu H, Xu H, Yu Z, Craik D, Liu Z, Qi H, Parish C, Yu D. Heparan sulfate regulates IL-21 bioavailability and signal strength that control germinal center B cell selection and differentiation. Sci Immunol 2023; 8:eadd1728. [PMID: 36800411 DOI: 10.1126/sciimmunol.add1728] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In antibody responses, mutated germinal center B (BGC) cells are positively selected for reentry or differentiation. As the products from GCs, memory B cells and antibody-secreting cells (ASCs) support high-affinity and long-lasting immunity. Positive selection of BGC cells is controlled by signals received through the B cell receptor (BCR) and follicular helper T (TFH) cell-derived signals, in particular costimulation through CD40. Here, we demonstrate that the TFH cell effector cytokine interleukin-21 (IL-21) joins BCR and CD40 in supporting BGC selection and reveal that strong IL-21 signaling prioritizes ASC differentiation in vivo. BGC cells, compared with non-BGC cells, show significantly reduced IL-21 binding and attenuated signaling, which is mediated by low cellular heparan sulfate (HS) sulfation. Mechanistically, N-deacetylase and N-sulfotransferase 1 (Ndst1)-mediated N-sulfation of HS in B cells promotes IL-21 binding and signal strength. Ndst1 is down-regulated in BGC cells and up-regulated in ASC precursors, suggesting selective desensitization to IL-21 in BGC cells. Thus, specialized biochemical regulation of IL-21 bioavailability and signal strength sets a balance between the stringency and efficiency of GC selection.
Collapse
Affiliation(s)
- Zhian Chen
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Yanfang Cui
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Central China Normal University, Wuhan, China
| | - Yin Yao
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Department of Otolaryngology-Head and Neck Surgery, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing, China
| | - Joseph Yunis
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Xin Gao
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Naiqi Wang
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Pablo F Cañete
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK.,Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Hongjian Sun
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Hao Wang
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Siling Yang
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Runli Wang
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Yew Ann Leong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - David Simon Davis
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jiahuan Qin
- China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaili Liang
- China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Deng
- China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Conan K Wang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Jonathan A Roco
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Sam Nettelfield
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Huaming Zhu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Huajun Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhijia Yu
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - David Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD, Australia
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing, China
| | - Christopher Parish
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Chloroquine treatment influences immunological memory through the PD-1/PD-L1 pathway during the initiation of Plasmodium chabaudi infection. Int Immunopharmacol 2022; 113:109403. [DOI: 10.1016/j.intimp.2022.109403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/10/2022]
|
21
|
Jmjd1c demethylates STAT3 to restrain plasma cell differentiation and rheumatoid arthritis. Nat Immunol 2022; 23:1342-1354. [PMID: 35995859 DOI: 10.1038/s41590-022-01287-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022]
Abstract
Appropriate regulation of B cell differentiation into plasma cells is essential for humoral immunity while preventing antibody-mediated autoimmunity; however, the underlying mechanisms, especially those with pathological consequences, remain unclear. Here, we found that the expression of Jmjd1c, a member of JmjC domain histone demethylase, in B cells but not in other immune cells, protected mice from rheumatoid arthritis (RA). In humans with RA, JMJD1C expression levels in B cells were negatively associated with plasma cell frequency and disease severity. Mechanistically, Jmjd1c demethylated STAT3, rather than histone substrate, to restrain plasma cell differentiation. STAT3 Lys140 hypermethylation caused by Jmjd1c deletion inhibited the interaction with phosphatase Ptpn6 and resulted in abnormally sustained STAT3 phosphorylation and activity, which in turn promoted plasma cell generation. Germinal center B cells devoid of Jmjd1c also acquired strikingly increased propensity to differentiate into plasma cells. STAT3 Lys140Arg point mutation completely abrogated the effect caused by Jmjd1c loss. Mice with Jmjd1c overexpression in B cells exhibited opposite phenotypes to Jmjd1c-deficient mice. Overall, our study revealed Jmjd1c as a critical regulator of plasma cell differentiation and RA and also highlighted the importance of demethylation modification for STAT3 in B cells.
Collapse
|
22
|
Yi SG, Gaber AO, Chen W. B-cell response in solid organ transplantation. Front Immunol 2022; 13:895157. [PMID: 36016958 PMCID: PMC9395675 DOI: 10.3389/fimmu.2022.895157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
The transcriptional regulation of B-cell response to antigen stimulation is complex and involves an intricate network of dynamic signals from cytokines and transcription factors propagated from T-cell interaction. Long-term alloimmunity, in the setting of organ transplantation, is dependent on this B-cell response, which does not appear to be halted by current immunosuppressive regimens which are targeted at T cells. There is emerging evidence that shows that B cells have a diverse response to solid organ transplantation that extends beyond plasma cell antibody production. In this review, we discuss the mechanistic pathways of B-cell activation and differentiation as they relate to the transcriptional regulation of germinal center B cells, plasma cells, and memory B cells in the setting of solid organ transplantation.
Collapse
Affiliation(s)
- Stephanie G. Yi
- Division of Transplantation, Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
- *Correspondence: Stephanie G. Yi,
| | - Ahmed Osama Gaber
- Division of Transplant Immunology, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Wenhao Chen
- Division of Transplantation, Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
23
|
Encoding and decoding NF-κB nuclear dynamics. Curr Opin Cell Biol 2022; 77:102103. [DOI: 10.1016/j.ceb.2022.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/16/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022]
|
24
|
Diverging regulation of Bach2 protein and RNA expression determine cell fate in early B cell response. Cell Rep 2022; 40:111035. [PMID: 35793628 DOI: 10.1016/j.celrep.2022.111035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/01/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
During the early phase of primary humoral responses, activated B cells can differentiate into different types of effector cells, dependent on B cell receptor affinity for antigen. However, the pivotal transcription factors governing these processes remain to be elucidated. Here, we show that transcription factor Bach2 protein in activated B cells is transiently induced by affinity-related signals and mechanistic target of rapamycin complex 1 (mTORC1)-dependent translation to restrain their expansion and differentiation into plasma cells while promoting memory and germinal center (GC) B cell fates. Affinity-related signals also downregulate Bach2 mRNA expression in activated B cells and their descendant memory B cells. Sustained and higher concentrations of Bach2 antagonize the GC fate. Repression of Bach2 in memory B cells predisposes their cell-fate choices upon memory recall. Our study reveals that differential dynamics of Bach2 protein and transcripts in activated B cells control their cell-fate outcomes and imprint the fates of their descendant effector cells.
Collapse
|
25
|
From affinity selection to kinetic selection in Germinal Centre modelling. PLoS Comput Biol 2022; 18:e1010168. [PMID: 35658003 PMCID: PMC9200358 DOI: 10.1371/journal.pcbi.1010168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 06/15/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Affinity maturation is an evolutionary process by which the affinity of antibodies (Abs) against specific antigens (Ags) increases through rounds of B-cell proliferation, somatic hypermutation, and positive selection in germinal centres (GC). The positive selection of B cells depends on affinity, but the underlying mechanisms of affinity discrimination and affinity-based selection are not well understood. It has been suggested that selection in GC depends on both rapid binding of B-cell receptors (BcRs) to Ags which is kinetically favourable and tight binding of BcRs to Ags, which is thermodynamically favourable; however, it has not been shown whether a selection bias for kinetic properties is present in the GC. To investigate the GC selection bias towards rapid and tight binding, we developed an agent-based model of GC and compared the evolution of founder B cells with initially identical low affinities but with different association/dissociation rates for Ag presented by follicular dendritic cells in three Ag collection mechanisms. We compared an Ag collection mechanism based on association/dissociation rates of B-cell interaction with presented Ag, which includes a probabilistic rupture of bonds between the B-cell and Ag (Scenario-1) with a reference scenario based on an affinity-based Ag collection mechanism (Scenario-0). Simulations showed that the mechanism of Ag collection affects the GC dynamics and the GC outputs concerning fast/slow (un)binding of B cells to FDC-presented Ags. In particular, clones with lower dissociation rates outcompete clones with higher association rates in Scenario-1, while remaining B cells from clones with higher association rates reach higher affinities. Accordingly, plasma cell and memory B cell populations were biased towards B-cell clones with lower dissociation rates. Without such probabilistic ruptures during the Ag extraction process (Scenario-2), the selective advantage for clones with very low dissociation rates diminished, and the affinity maturation level of all clones decreased to the reference level. Adaptive immunity is one of the vital defence mechanisms of the human body to fight virtually unlimited types of pathogens by producing antigen-specific high-affinity antibodies that bind to pathogens and neutralise them or mark them for further elimination. Affinity is a quantity used to measure and report the strength of interaction between antibodies and antigens that depends both on how fast antibodies bind to antigens (association rate) and how long the bond lasts (dissociation rate). The affinity of produced antibodies for a specific antigen increases in germinal centres through a process called affinity maturation, during which B cells with higher affinities have a competitive advantage and get positively selected to differentiate to antibody-producing plasma cells. Our research shows that the mechanism by which B cells capture Ag affects GC dynamics and GC output with respect to B-cell receptor kinetics. Notably, in a mechanism where rupture of CC-FDC bonds is possible during Ag extraction, B-cell clones with low dissociation rates outcompete clones with high association rates over time. Understanding how B cells get selected in germinal centres could help to develop an optimised and effective immune response against a disease through vaccination for a fast-operating and long-lasting immune response.
Collapse
|
26
|
Goyal G, Prabhala P, Mahajan G, Bausk B, Gilboa T, Xie L, Zhai Y, Lazarovits R, Mansour A, Kim MS, Patil A, Curran D, Long JM, Sharma S, Junaid A, Cohen L, Ferrante TC, Levy O, Prantil‐Baun R, Walt DR, Ingber DE. Ectopic Lymphoid Follicle Formation and Human Seasonal Influenza Vaccination Responses Recapitulated in an Organ-on-a-Chip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103241. [PMID: 35289122 PMCID: PMC9109055 DOI: 10.1002/advs.202103241] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/08/2021] [Indexed: 05/13/2023]
Abstract
Lymphoid follicles (LFs) are responsible for generation of adaptive immune responses in secondary lymphoid organs and form ectopically during chronic inflammation. A human model of ectopic LF formation will provide a tool to understand LF development and an alternative to non-human primates for preclinical evaluation of vaccines. Here, it is shown that primary human blood B- and T-lymphocytes autonomously assemble into ectopic LFs when cultured in a 3D extracellular matrix gel within one channel of a two-channel organ-on-a-chip microfluidic device. Superfusion via a parallel channel separated by a microporous membrane is required for LF formation and prevents lymphocyte autoactivation. These germinal center-like LFs contain B cells expressing Activation-Induced Cytidine Deaminase and exhibit plasma cell differentiation upon activation. To explore their utility for seasonal vaccine testing, autologous monocyte-derived dendritic cells are integrated into LF Chips. The human LF chips demonstrate improved antibody responses to split virion influenza vaccination compared to 2D cultures, which are enhanced by a squalene-in-water emulsion adjuvant, and this is accompanied by increases in LF size and number. When inoculated with commercial influenza vaccine, plasma cell formation and production of anti-hemagglutinin IgG are observed, as well as secretion of cytokines similar to vaccinated humans over clinically relevant timescales.
Collapse
Affiliation(s)
- Girija Goyal
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Pranav Prabhala
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Gautam Mahajan
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Bruce Bausk
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Tal Gilboa
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Liangxia Xie
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Yunhao Zhai
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Roey Lazarovits
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Adam Mansour
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Min Sun Kim
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Aditya Patil
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Danielle Curran
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Jaclyn M. Long
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Sanjay Sharma
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Abidemi Junaid
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Limor Cohen
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Thomas C. Ferrante
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Oren Levy
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - Rachelle Prantil‐Baun
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
| | - David R. Walt
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Vascular Biology Program and Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMA02115USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02139USA
| |
Collapse
|
27
|
Ovchinnikov V, Karplus M. A Coarse-Grained Model of Affinity Maturation Indicates the Importance of B-Cell Receptor Avidity in Epitope Subdominance. Front Immunol 2022; 13:816634. [PMID: 35371013 PMCID: PMC8971376 DOI: 10.3389/fimmu.2022.816634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 12/02/2022] Open
Abstract
The elicitation of broadly neutralizing antibodies (bnAbs) is a major goal in the design of vaccines against rapidly-mutating viruses. In the case of influenza, many bnAbs that target conserved epitopes on the stem of the hemagglutinin protein (HA) have been discovered. However, these antibodies are rare, are not boosted well upon reinfection, and often have low neutralization potency, compared to strain-specific antibodies directed to the HA head. Different hypotheses have been proposed to explain this phenomenon. We use a coarse-grained computational model of the germinal center reaction to investigate how B-cell receptor binding valency affects the growth and affinity maturation of competing B-cells. We find that receptors that are unable to bind antigen bivalently, and also those that do not bind antigen cooperatively, have significantly slower rates of growth, memory B-cell production, and, under certain conditions, rates of affinity maturation. The corresponding B-cells are predicted to be outcompeted by B-cells that bind bivalently and cooperatively. We use the model to explore strategies for a universal influenza vaccine, e.g., how to boost the concentrations of the slower growing cross-reactive antibodies directed to the stem. The results suggest that, upon natural reinfections subsequent to vaccination, the protectiveness of such vaccines would erode, possibly requiring regular boosts. Collectively, our results strongly support the importance of bivalent antibody binding in immunodominance, and suggest guidelines for developing a universal influenza vaccine.
Collapse
Affiliation(s)
- Victor Ovchinnikov
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | - Martin Karplus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
- Laboratoire de Chimie Biophysique, ISIS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
28
|
Inoue T, Shinnakasu R, Kurosaki T. Generation of High Quality Memory B Cells. Front Immunol 2022; 12:825813. [PMID: 35095929 PMCID: PMC8790150 DOI: 10.3389/fimmu.2021.825813] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 02/04/2023] Open
Abstract
Protection against pathogen re-infection is mediated, in large part, by two humoral cellular compartments, namely, long-lived plasma cells and memory B cells. Recent data have reinforced the importance of memory B cells, particularly in response to re-infection of different viral subtypes or in response with viral escape mutants. In regard to memory B cell generation, considerable advancements have been made in recent years in elucidating its basic mechanism, which seems to well explain why the memory B cells pool can deal with variant viruses. Despite such progress, efforts to develop vaccines that induce broadly protective memory B cells to fight against rapidly mutating pathogens such as influenza virus and HIV have not yet been successful. Here, we discuss recent advances regarding the key signals and factors regulating germinal center-derived memory B cell development and activation and highlight the challenges for successful vaccine development.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
29
|
Broketa M, Bruhns P. Single-Cell Technologies for the Study of Antibody-Secreting Cells. Front Immunol 2022; 12:821729. [PMID: 35173713 PMCID: PMC8841722 DOI: 10.3389/fimmu.2021.821729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/29/2021] [Indexed: 01/05/2023] Open
Abstract
Antibody-secreting cells (ASC), plasmablasts and plasma cells, are terminally differentiated B cells responsible for large-scale production and secretion of antibodies. ASC are derived from activated B cells, which may differentiate extrafollicularly or form germinal center (GC) reactions within secondary lymphoid organs. ASC therefore consist of short-lived, poorly matured plasmablasts that generally secrete lower-affinity antibodies, or long-lived, highly matured plasma cells that generally secrete higher-affinity antibodies. The ASC population is responsible for producing an immediate humoral B cell response, the polyclonal antibody repertoire, as well as in parallel building effective humoral memory and immunity, or potentially driving pathology in the case of autoimmunity. ASC are phenotypically and transcriptionally distinct from other B cells and further distinguishable by morphology, varied lifespans, and anatomical localization. Single cell analyses are required to interrogate the functional and transcriptional diversity of ASC and their secreted antibody repertoire and understand the contribution of individual ASC responses to the polyclonal humoral response. Here we summarize the current and emerging functional and molecular techniques for high-throughput characterization of ASC with single cell resolution, including flow and mass cytometry, spot-based and microfluidic-based assays, focusing on functional approaches of the secreted antibodies: specificity, affinity, and secretion rate.
Collapse
Affiliation(s)
- Matteo Broketa
- Institut Pasteur, Université de Paris, INSERM UMR 1222, Unit of Antibodies in Therapy and Pathology, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Pierre Bruhns
- Institut Pasteur, Université de Paris, INSERM UMR 1222, Unit of Antibodies in Therapy and Pathology, Paris, France
| |
Collapse
|
30
|
Chen Z, Gao X, Yu D. Longevity of vaccine protection: Immunological mechanism, assessment methods, and improving strategy. VIEW 2022. [DOI: 10.1002/viw.20200103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhian Chen
- The University of Queensland Diamantina Institute, Faculty of Medicine The University of Queensland Brisbane Queensland Australia
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research Australian National University Canberra Australia
| | - Xin Gao
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research Australian National University Canberra Australia
| | - Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine The University of Queensland Brisbane Queensland Australia
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research Australian National University Canberra Australia
| |
Collapse
|
31
|
Thobe K, Konrath F, Chapuy B, Wolf J. Patient-Specific Modeling of Diffuse Large B-Cell Lymphoma. Biomedicines 2021; 9:biomedicines9111655. [PMID: 34829885 PMCID: PMC8615565 DOI: 10.3390/biomedicines9111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Personalized medicine aims to tailor treatment to patients based on their individual genetic or molecular background. Especially in diseases with a large molecular heterogeneity, such as diffuse large B-cell lymphoma (DLBCL), personalized medicine has the potential to improve outcome and/or to reduce resistance towards treatment. However, integration of patient-specific information into a computational model is challenging and has not been achieved for DLBCL. Here, we developed a computational model describing signaling pathways and expression of critical germinal center markers. The model integrates the regulatory mechanism of the signaling and gene expression network and covers more than 50 components, many carrying genetic lesions common in DLBCL. Using clinical and genomic data of 164 primary DLBCL patients, we implemented mutations, structural variants and copy number alterations as perturbations in the model using the CoLoMoTo notebook. Leveraging patient-specific genotypes and simulation of the expression of marker genes in specific germinal center conditions allows us to predict the consequence of the modeled pathways for each patient. Finally, besides modeling how genetic perturbations alter physiological signaling, we also predicted for each patient model the effect of rational inhibitors, such as Ibrutinib, that are currently discussed as possible DLBCL treatments, showing patient-dependent variations in effectiveness and synergies.
Collapse
Affiliation(s)
- Kirsten Thobe
- Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine, 13125 Berlin-Buch, Germany; (K.T.); (F.K.)
| | - Fabian Konrath
- Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine, 13125 Berlin-Buch, Germany; (K.T.); (F.K.)
| | - Björn Chapuy
- Department of Hematology and Medical Oncology, University of Göttingen, 37075 Göttingen, Germany;
- Department of Hematology, Oncology and Cancer Immunology, Berlin Medical Center Charité, 12203 Berlin, Germany
| | - Jana Wolf
- Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine, 13125 Berlin-Buch, Germany; (K.T.); (F.K.)
- Department of Mathematics and Computer Science, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany
- Correspondence:
| |
Collapse
|
32
|
Gu S, Qian L, Zhang Y, Chen K, Li Y, Wang J, Wang P. Significance of intratumoral infiltration of B cells in cancer immunotherapy: From a single cell perspective. Biochim Biophys Acta Rev Cancer 2021; 1876:188632. [PMID: 34626740 DOI: 10.1016/j.bbcan.2021.188632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
Immunotherapy for cancer has provided new treatment approaches for malignant tumors, but there are low rates of response and high rates of resistance. The most recent sequencing method which is called single-cell RNA sequencing(scRNA-seq) determines the transcriptome at the single cell level, which allows high-resolution dynamic monitoring of the tumor microenvironment (TME) during immunotherapy. As an important part of humoral immunity, tumor-infiltrated B cells have been reported to have distinct functions in anti-tumor immunity, which are characterized by their RNA transcriptome, membrane surface receptors, and immunoglobulin secretion, suggesting great immunotherapeutic effects. On the basis of the important roles of B cells in immunotherapy reported in recent publications, we discuss the tumor-infiltrated B cells' subpopulations, differentiation trajectory, and interactions with other cells in the TME in this review, hoping to illustrate its significance in potential clinical application as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Sijia Gu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ling Qian
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yalei Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kun Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ye Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
33
|
Grenov AC, Moss L, Edelheit S, Cordiner R, Schmiedel D, Biram A, Hanna JH, Jensen TH, Schwartz S, Shulman Z. The germinal center reaction depends on RNA methylation and divergent functions of specific methyl readers. J Exp Med 2021; 218:e20210360. [PMID: 34402854 PMCID: PMC8374864 DOI: 10.1084/jem.20210360] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/02/2021] [Accepted: 07/22/2021] [Indexed: 12/19/2022] Open
Abstract
Long-lasting immunity depends on the generation of protective antibodies through the germinal center (GC) reaction. N6-methyladenosine (m6A) modification of mRNAs by METTL3 activity modulates transcript lifetime primarily through the function of m6A readers; however, the physiological role of this molecular machinery in the GC remains unknown. Here, we show that m6A modifications by METTL3 are required for GC maintenance through the differential functions of m6A readers. Mettl3-deficient GC B cells exhibited reduced cell-cycle progression and decreased expression of proliferation- and oxidative phosphorylation-related genes. The m6A binder, IGF2BP3, was required for stabilization of Myc mRNA and expression of its target genes, whereas the m6A reader, YTHDF2, indirectly regulated the expression of the oxidative phosphorylation gene program. Our findings demonstrate how two independent gene networks that support critical GC functions are modulated by m6A through distinct mRNA binders.
Collapse
Affiliation(s)
- Amalie C. Grenov
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lihee Moss
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sarit Edelheit
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ross Cordiner
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dominik Schmiedel
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Biram
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob H. Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
34
|
Yang M, Yi P, Jiang J, Zhao M, Wu H, Lu Q. Dysregulated translational factors and epigenetic regulations orchestrate in B cells contributing to autoimmune diseases. Int Rev Immunol 2021; 42:1-25. [PMID: 34445929 DOI: 10.1080/08830185.2021.1964498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
B cells play a crucial role in antigen presentation, antibody production and pro-/anti-inflammatory cytokine secretion in adaptive immunity. Several translational factors including transcription factors and cytokines participate in the regulation of B cell development, with the cooperation of epigenetic regulations. Autoimmune diseases are generally characterized with autoreactive B cells and high-level pathogenic autoantibodies. The success of B cell depletion therapy in mouse model and clinical trials has proven the role of B cells in pathogenesis of autoimmune diseases. The failure of B cell tolerance in immune checkpoints results in accumulated autoreactive naïve B (BN) cells with aberrant B cell receptor signaling and dysregulated B cell response, contributing to self-antibody-mediated autoimmune reaction. Dysregulation of translational factors and epigenetic alterations in B cells has been demonstrated to correlate with aberrant B cell compartment in autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, primary Sjögren's syndrome, multiple sclerosis, diabetes mellitus and pemphigus. This review is intended to summarize the interaction of translational factors and epigenetic regulations that are involved with development and differentiation of B cells, and the mechanism of dysregulation in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ping Yi
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Jiao Jiang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.,Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
35
|
Lu J, Wu J, Xia X, Peng H, Wang S. Follicular helper T cells: potential therapeutic targets in rheumatoid arthritis. Cell Mol Life Sci 2021; 78:5095-5106. [PMID: 33880615 PMCID: PMC11073436 DOI: 10.1007/s00018-021-03839-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease with joint and systemic inflammation that is accompanied by the production of autoantibodies, such as rheumatoid factor and anti-cyclic citrullinated peptide (anti-CCP) antibodies. Follicular helper T (Tfh) cells, which are a subset of CD4+ T cells, facilitate germinal center (GC) reactions by providing signals required for high-affinity antibody production and the generation of long-lived antibody-secreting plasma cells. Uncontrolled expansion of Tfh cells is observed in various systemic autoimmune diseases. Particularly, the frequencies of circulating Tfh-like (cTfh-like) cells, their subtypes and synovial-infiltrated T helper cells correlate with disease activity in RA patients. Therefore, reducing autoantibody production and restricting excessive Tfh cell responses are ideal ways to control RA pathogenesis. The present review summarizes current knowledge of the involvement of Tfh cells in RA pathogenesis and highlights the potential of these cells as therapeutic targets.
Collapse
Affiliation(s)
- Jian Lu
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Jing Wu
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Xueli Xia
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Huiyong Peng
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China.
| |
Collapse
|
36
|
Elsner RA, Shlomchik MJ. Germinal Center and Extrafollicular B Cell Responses in Vaccination, Immunity, and Autoimmunity. Immunity 2021; 53:1136-1150. [PMID: 33326765 DOI: 10.1016/j.immuni.2020.11.006] [Citation(s) in RCA: 300] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Activated B cells participate in either extrafollicular (EF) or germinal center (GC) responses. Canonical responses are composed of a short wave of plasmablasts (PBs) arising from EF sites, followed by GC producing somatically mutated memory B cells (MBC) and long-lived plasma cells. However, somatic hypermutation (SHM) and affinity maturation can take place at both sites, and a substantial fraction of MBC are produced prior to GC formation. Infection responses range from GC responses that persist for months to persistent EF responses with dominant suppression of GCs. Here, we review the current understanding of the functional output of EF and GC responses and the molecular switches promoting them. We discuss the signals that regulate the magnitude and duration of these responses, and outline gaps in knowledge and important areas of inquiry. Understanding such molecular switches will be critical for vaccine development, interpretation of vaccine efficacy and the treatment for autoimmune diseases.
Collapse
Affiliation(s)
- Rebecca A Elsner
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA.
| |
Collapse
|
37
|
Holmes AB, Corinaldesi C, Shen Q, Kumar R, Compagno N, Wang Z, Nitzan M, Grunstein E, Pasqualucci L, Dalla-Favera R, Basso K. Single-cell analysis of germinal-center B cells informs on lymphoma cell of origin and outcome. J Exp Med 2021; 217:151908. [PMID: 32603407 PMCID: PMC7537389 DOI: 10.1084/jem.20200483] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
In response to T cell-dependent antigens, mature B cells are stimulated to form germinal centers (GCs), the sites of B cell affinity maturation and the cell of origin (COO) of most B cell lymphomas. To explore the dynamics of GC B cell development beyond the known dark zone and light zone compartments, we performed single-cell (sc) transcriptomic analysis on human GC B cells and identified multiple functionally linked subpopulations, including the distinct precursors of memory B cells and plasma cells. The gene expression signatures associated with these GC subpopulations were effective in providing a sc-COO for ∼80% of diffuse large B cell lymphomas (DLBCLs) and identified novel prognostic subgroups of DLBCL.
Collapse
Affiliation(s)
- Antony B Holmes
- Institute for Cancer Genetics, Columbia University, New York, NY
| | | | - Qiong Shen
- Institute for Cancer Genetics, Columbia University, New York, NY
| | - Rahul Kumar
- Institute for Cancer Genetics, Columbia University, New York, NY
| | - Nicolo Compagno
- Institute for Cancer Genetics, Columbia University, New York, NY
| | - Zhong Wang
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | | | - Eli Grunstein
- Department of Otolaryngology Head and Neck Surgery, Columbia University, New York, NY
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY.,Department of Pathology and Cell Biology, Columbia University, New York, NY.,The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, NY.,Department of Pathology and Cell Biology, Columbia University, New York, NY.,Department of Microbiology and Immunology, Columbia University, New York, NY.,Department of Genetics and Development, Columbia University, New York, NY.,The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, NY.,Department of Pathology and Cell Biology, Columbia University, New York, NY
| |
Collapse
|
38
|
Zhong MC, Lu Y, Qian J, Zhu Y, Dong L, Zahn A, Di Noia JM, Karo-Atar D, King IL, Veillette A. SLAM family receptors control pro-survival effectors in germinal center B cells to promote humoral immunity. J Exp Med 2021; 218:e20200756. [PMID: 33237304 PMCID: PMC7694575 DOI: 10.1084/jem.20200756] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 12/05/2022] Open
Abstract
Expression of the signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is critical for the germinal center (GC) reaction and T cell-dependent antibody production. However, when SAP is expressed normally, the role of the associated SLAM family receptors (SFRs) in these processes is nebulous. Herein, we established that in the presence of SAP, SFRs suppressed the expansion of the GC reaction but facilitated the generation of antigen-specific B cells and antibodies. SFRs favored the generation of antigen-reactive B cells and antibodies by boosting expression of pro-survival effectors, such as the B cell antigen receptor (BCR) and Bcl-2, in activated GC B cells. The effects of SFRs on the GC reaction and T cell-dependent antibody production necessitated expression of multiple SFRs, both in T cells and in B cells. Hence, while in the presence of SAP, SFRs inhibit the GC reaction, they are critical for the induction of T cell-mediated humoral immunity by enhancing expression of pro-survival effectors in GC B cells.
Collapse
Affiliation(s)
- Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Yan Lu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Jin Qian
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Yingzi Zhu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Astrid Zahn
- Laboratory of Mechanisms of Genetic Diversity, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Javier M. Di Noia
- Laboratory of Mechanisms of Genetic Diversity, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, University of Montréal, Montréal, Québec, Canada
- Department of Medicine, University of Montréal, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Danielle Karo-Atar
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada
| | - Irah L. King
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Medicine, University of Montréal, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
39
|
Merino Tejero E, Lashgari D, García-Valiente R, Gao X, Crauste F, Robert PA, Meyer-Hermann M, Martínez MR, van Ham SM, Guikema JEJ, Hoefsloot H, van Kampen AHC. Multiscale Modeling of Germinal Center Recapitulates the Temporal Transition From Memory B Cells to Plasma Cells Differentiation as Regulated by Antigen Affinity-Based Tfh Cell Help. Front Immunol 2021; 11:620716. [PMID: 33613551 PMCID: PMC7892951 DOI: 10.3389/fimmu.2020.620716] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 01/10/2023] Open
Abstract
Germinal centers play a key role in the adaptive immune system since they are able to produce memory B cells and plasma cells that produce high affinity antibodies for an effective immune protection. The mechanisms underlying cell-fate decisions are not well understood but asymmetric division of antigen, B-cell receptor affinity, interactions between B-cells and T follicular helper cells (triggering CD40 signaling), and regulatory interactions of transcription factors have all been proposed to play a role. In addition, a temporal switch from memory B-cell to plasma cell differentiation during the germinal center reaction has been shown. To investigate if antigen affinity-based Tfh cell help recapitulates the temporal switch we implemented a multiscale model that integrates cellular interactions with a core gene regulatory network comprising BCL6, IRF4, and BLIMP1. Using this model we show that affinity-based CD40 signaling in combination with asymmetric division of B-cells result in switch from memory B-cell to plasma cell generation during the course of the germinal center reaction. We also show that cell fate division is unlikely to be (solely) based on asymmetric division of Ag but that BLIMP1 is a more important factor. Altogether, our model enables to test the influence of molecular modulations of the CD40 signaling pathway on the production of germinal center output cells.
Collapse
Affiliation(s)
- Elena Merino Tejero
- Bioinformatics Laboratory, Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Danial Lashgari
- Bioinformatics Laboratory, Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Rodrigo García-Valiente
- Bioinformatics Laboratory, Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, China
| | | | - Philippe A Robert
- Department for Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department for Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Huub Hoefsloot
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Antoine H C van Kampen
- Bioinformatics Laboratory, Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands.,Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
40
|
Rivas MA, Meydan C, Chin CR, Challman MF, Kim D, Bhinder B, Kloetgen A, Viny AD, Teater MR, McNally DR, Doane AS, Béguelin W, Fernández MTC, Shen H, Wang X, Levine RL, Chen Z, Tsirigos A, Elemento O, Mason CE, Melnick AM. Smc3 dosage regulates B cell transit through germinal centers and restricts their malignant transformation. Nat Immunol 2021; 22:240-253. [PMID: 33432228 PMCID: PMC7855695 DOI: 10.1038/s41590-020-00827-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/25/2020] [Indexed: 01/28/2023]
Abstract
During the germinal center (GC) reaction, B cells undergo extensive redistribution of cohesin complex and three-dimensional reorganization of their genomes. Yet, the significance of cohesin and architectural programming in the humoral immune response is unknown. Herein we report that homozygous deletion of Smc3, encoding the cohesin ATPase subunit, abrogated GC formation, while, in marked contrast, Smc3 haploinsufficiency resulted in GC hyperplasia, skewing of GC polarity and impaired plasma cell (PC) differentiation. Genome-wide chromosomal conformation and transcriptional profiling revealed defects in GC B cell terminal differentiation programs controlled by the lymphoma epigenetic tumor suppressors Tet2 and Kmt2d and failure of Smc3-haploinsufficient GC B cells to switch from B cell- to PC-defining transcription factors. Smc3 haploinsufficiency preferentially impaired the connectivity of enhancer elements controlling various lymphoma tumor suppressor genes, and, accordingly, Smc3 haploinsufficiency accelerated lymphomagenesis in mice with constitutive Bcl6 expression. Collectively, our data indicate a dose-dependent function for cohesin in humoral immunity to facilitate the B cell to PC phenotypic switch while restricting malignant transformation.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cell Cycle Proteins/deficiency
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Differentiation
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Chondroitin Sulfate Proteoglycans/deficiency
- Chondroitin Sulfate Proteoglycans/genetics
- Chondroitin Sulfate Proteoglycans/metabolism
- Chromosomal Proteins, Non-Histone/deficiency
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dioxygenases
- Gene Deletion
- Gene Dosage
- Gene Expression Regulation, Neoplastic
- Germinal Center/immunology
- Germinal Center/metabolism
- Germinal Center/pathology
- Haploinsufficiency
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Humans
- Immunity, Humoral
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Signal Transduction
- Cohesins
- Mice
Collapse
Affiliation(s)
- Martín A Rivas
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Christopher R Chin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Matt F Challman
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Daleum Kim
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Bhavneet Bhinder
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andreas Kloetgen
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Aaron D Viny
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matt R Teater
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Dylan R McNally
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ashley S Doane
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Wendy Béguelin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Hao Shen
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Xiang Wang
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ross L Levine
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhengming Chen
- Division of Biostatistics and Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Institute for Computational Medicine, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ari M Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
41
|
Hernandez-Franco JF, Mosley YYC, Franco J, Ragland D, Yao Y, HogenEsch H. Effective and Safe Stimulation of Humoral and Cell-Mediated Immunity by Intradermal Immunization with a Cyclic Dinucleotide/Nanoparticle Combination Adjuvant. THE JOURNAL OF IMMUNOLOGY 2020; 206:700-711. [PMID: 33380496 DOI: 10.4049/jimmunol.2000703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023]
Abstract
Intradermal (ID) immunization is an attractive route of vaccination because it targets tissue rich in dendritic cells, has dose-sparing potential, and allows needle-free delivery. However, few adjuvants are effective, nonreactogenic, and compatible with needle-free delivery devices. In this study, we demonstrate that a combination adjuvant composed of cyclic-di-AMP (cdAMP) and the plant-derived nanoparticle adjuvant Nano-11 significantly enhanced the immune response to ID-injected vaccines in mice and pigs with minimal local reaction at the injection site. The cdAMP/Nano-11 combination adjuvant increased Ag uptake by lymph node-resident and migratory skin dendritic cell subpopulations, including Langerhans cells. ID immunization with cdAMP/Nano-11 expanded the population of germinal center B cells and follicular helper T cells in the draining lymph node and Ag-specific Th1 and Th17 cells in the spleen. It elicited an enhanced immune response with a significant increase of IgG1 and IgG2a responses in mice at a reduced dose compared with i.m. immunization. An increased IgG response was observed following needle-free ID immunization of pigs. Nano-11 and cdAMP demonstrated a strong synergistic interaction, as shown in the activation of mouse, human, and porcine APC, with increased expression of costimulatory molecules and secretion of TNF and IL-1β. The combination adjuvant induced robust activation of both NF-κB and IFN regulatory factor signaling pathways and the NLRP3 inflammasome. We conclude that the combination of Nano-11 and cdAMP is a promising adjuvant for ID delivery of vaccines that supports a balanced immune response.
Collapse
Affiliation(s)
| | - Yung-Yi C Mosley
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
| | - Jackeline Franco
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
| | - Darryl Ragland
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907
| | - Yuan Yao
- Department of Food Science, Purdue University, West Lafayette, IN 47907; and
| | - Harm HogenEsch
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907; .,Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47907
| |
Collapse
|
42
|
Haase P, Voehringer D. Regulation of the humoral type 2 immune response against allergens and helminths. Eur J Immunol 2020; 51:273-279. [PMID: 33305358 DOI: 10.1002/eji.202048864] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 12/08/2020] [Indexed: 11/10/2022]
Abstract
The type 2 immune response is associated with helminth infections and allergic inflammation where antibody production of the IgG1 and IgE isotypes can elicit protective or proinflammatory functions. Studies over the past few years revealed important new insights regarding the regulatory mechanisms orchestrating the humoral type 2 immune response. This includes investigations on B-cell extrinsic signals, such IL-4 and IL-21, derived from different T-helper cell subsets or discovery of new follicular helper T cells with regulatory or IgE-promoting activities. In addition, studies on B-cell intrinsic factors required for germinal center formation and class switch recombination, including the transcription factors STAT3, STAT6, and BCL-6, led to a better understanding of these processes in type 2 immune responses. Here, we review the current understanding of mechanisms controlling humoral type 2 immunity in vivo including the generation of IgE-producing plasma cells and the memory IgE response.
Collapse
Affiliation(s)
- Paul Haase
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| |
Collapse
|
43
|
Negron A, Stüve O, Forsthuber TG. Ectopic Lymphoid Follicles in Multiple Sclerosis: Centers for Disease Control? Front Neurol 2020; 11:607766. [PMID: 33363512 PMCID: PMC7753025 DOI: 10.3389/fneur.2020.607766] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
While the contribution of autoreactive CD4+ T cells to the pathogenesis of Multiple Sclerosis (MS) is widely accepted, the advent of B cell-depleting monoclonal antibody (mAb) therapies has shed new light on the complex cellular mechanisms underlying MS pathogenesis. Evidence supports the involvement of B cells in both antibody-dependent and -independent capacities. T cell-dependent B cell responses originate and take shape in germinal centers (GCs), specialized microenvironments that regulate B cell activation and subsequent differentiation into antibody-secreting cells (ASCs) or memory B cells, a process for which CD4+ T cells, namely follicular T helper (TFH) cells, are indispensable. ASCs carry out their effector function primarily via secreted Ig but also through the secretion of both pro- and anti-inflammatory cytokines. Memory B cells, in addition to being capable of rapidly differentiating into ASCs, can function as potent antigen-presenting cells (APCs) to cognate memory CD4+ T cells. Aberrant B cell responses are prevented, at least in part, by follicular regulatory T (TFR) cells, which are key suppressors of GC-derived autoreactive B cell responses through the expression of inhibitory receptors and cytokines, such as CTLA4 and IL-10, respectively. Therefore, GCs represent a critical site of peripheral B cell tolerance, and their dysregulation has been implicated in the pathogenesis of several autoimmune diseases. In MS patients, the presence of GC-like leptomeningeal ectopic lymphoid follicles (eLFs) has prompted their investigation as potential sources of pathogenic B and T cell responses. This hypothesis is supported by elevated levels of CXCL13 and circulating TFH cells in the cerebrospinal fluid (CSF) of MS patients, both of which are required to initiate and maintain GC reactions. Additionally, eLFs in post-mortem MS patient samples are notably devoid of TFR cells. The ability of GCs to generate and perpetuate, but also regulate autoreactive B and T cell responses driving MS pathology makes them an attractive target for therapeutic intervention. In this review, we will summarize the evidence from both humans and animal models supporting B cells as drivers of MS, the role of GC-like eLFs in the pathogenesis of MS, and mechanisms controlling GC-derived autoreactive B cell responses in MS.
Collapse
Affiliation(s)
- Austin Negron
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Olaf Stüve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Neurology Section, Veterans Affairs North Texas Health Care System, Medical Service, Dallas, TX, United States
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
44
|
Viant C, Weymar GHJ, Escolano A, Chen S, Hartweger H, Cipolla M, Gazumyan A, Nussenzweig MC. Antibody Affinity Shapes the Choice between Memory and Germinal Center B Cell Fates. Cell 2020; 183:1298-1311.e11. [PMID: 33125897 DOI: 10.1016/j.cell.2020.09.063] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 01/17/2023]
Abstract
Immunological memory is required for protection against repeated infections and is the basis of all effective vaccines. Antibodies produced by memory B cells play an essential role in many of these responses. We have combined lineage tracing with antibody cloning from single B cells to examine the role of affinity in B cell selection into germinal centers (GCs) and the memory B cell compartment in mice immunized with an HIV-1 antigen. We find that contemporaneously developing memory and GC B cells differ in their affinity for antigen throughout the immune response. Whereas GC cells and their precursors are enriched in antigen binding, memory B cells are not. Thus, the polyclonal memory B cell compartment is composed of B cells that were activated during the immune response but whose antigen binding affinity failed to support further clonal expansion in the GC.
Collapse
Affiliation(s)
- Charlotte Viant
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Georg H J Weymar
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Charité Universitätsmedizin, 10117 Berlin, Germany
| | - Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Spencer Chen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Harald Hartweger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute (HHMI), The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
45
|
Davidzohn N, Biram A, Stoler-Barak L, Grenov A, Dassa B, Shulman Z. Syk degradation restrains plasma cell formation and promotes zonal transitions in germinal centers. J Exp Med 2020; 217:133542. [PMID: 31873727 PMCID: PMC7062533 DOI: 10.1084/jem.20191043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/08/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
In germinal centers, B cells interact with antigen in the light zone and clonally expand in the dark zone. Davidzohn et al. show that BCR-induced Syk degradation in the light zone attenuates signal transduction, impedes plasma cell formation, and promotes B cell transition to the dark zone. Germinal centers (GCs) are sites at which B cells proliferate and mutate their antibody-encoding genes in the dark zone (DZ), followed by affinity-based selection in the light zone (LZ). B cell antigen receptor (BCR) signals induce Syk activation followed by rapid phosphatase-mediated desensitization; however, how degradation events regulate BCR functions in GCs is unclear. Here, we found that Syk degradation restrains plasma cell (PC) formation in GCs and promotes B cell LZ to DZ transition. Using a mouse model defective in Cbl-mediated Syk degradation, we demonstrate that this machinery attenuates BCR signaling intensity by mitigating the Kras/Erk and PI3K/Foxo1 pathways, and restricting the expression of PC transcription factors in GC B cells. Inhibition of Syk degradation perturbed gene expression, specifically in the LZ, and enhanced the generation of PCs without affecting B cell proliferation. These findings reveal how long-lasting attenuation of signal transduction by degradation events regulates cell fate within specialized microanatomical sites.
Collapse
Affiliation(s)
- Natalia Davidzohn
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Biram
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Liat Stoler-Barak
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Amalie Grenov
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
46
|
Palli R, Seaton KE, Piepenbrink MS, Hural J, Goepfert PA, Laher F, Buchbinder SP, Churchyard G, Gray GE, Robinson HL, Huang Y, Janes H, Kobie JJ, Keefer MC, Tomaras GD, Thakar J. Impact of vaccine type on HIV-1 vaccine elicited antibody durability and B cell gene signature. Sci Rep 2020; 10:13031. [PMID: 32747654 PMCID: PMC7398916 DOI: 10.1038/s41598-020-69007-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Efficacious HIV-1 vaccination requires elicitation of long-lived antibody responses. However, our understanding of how different vaccine types elicit durable antibody responses is lacking. To assess the impact of vaccine type on antibody responses, we measured IgG isotypes against four consensus HIV antigens from 2 weeks to 10 years post HIV-1 vaccination and used mixed effects models to estimate half-life of responses in four human clinical trials. Compared to protein-boosted regimens, half-lives of gp120-specific antibodies were longer but peak magnitudes were lower in Modified Vaccinia Ankara (MVA)-boosted regimens. Furthermore, gp120-specific B cell transcriptomics from MVA-boosted and protein-boosted vaccines revealed a distinct signature at a peak (2 weeks after last vaccination) including CD19, CD40, and FCRL2-5 activation along with increased B cell receptor signaling. Additional analysis revealed contributions of RIG-I-like receptor pathway and genes such as SMAD5 and IL-32 to antibody durability. Thus, this study provides novel insights into vaccine induced antibody durability and B-cell receptor signaling.
Collapse
Affiliation(s)
- Rohith Palli
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Biophysics, Structural, and Computational Biology Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Kelly E Seaton
- Duke Human Vaccine Institute and Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Michael S Piepenbrink
- Infectious Diseases Division, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Paul A Goepfert
- Infectious Diseases Division, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fatima Laher
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan P Buchbinder
- Bridge HIV, San Francisco Department of Public Health and Departments of Medicine, Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | | | - Glenda E Gray
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African Medical Research Council, Cape Town, South Africa
| | | | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - James J Kobie
- Infectious Diseases Division, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael C Keefer
- Department of Medicine, Infectious Diseases Division, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute and Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Juilee Thakar
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, 14620, USA.
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, 14620, USA.
| |
Collapse
|
47
|
Wing JB, Lim EL, Sakaguchi S. Control of foreign Ag-specific Ab responses by Treg and Tfr. Immunol Rev 2020; 296:104-119. [PMID: 32564426 DOI: 10.1111/imr.12888] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Tregs) expressing the transcription factor Foxp3 play a critical role in the control of immune homeostasis including the regulation of humoral immunity. Recently, it has become clear that a specialized subset of Tregs, T-follicular regulatory cells (Tfr), have a particular role in the control of T-follicular helper (Tfh) cell-driven germinal center (GC) responses. Following similar differentiation signals as received by Tfh, Tfr gain expression of characteristic chemokine receptors and transcription factors such as CXCR5 and BCL6 allowing them to travel to the B-cell follicle and deliver in situ suppression. It seems clear that Tfr are critical for the prevention of autoimmune antibody induction. However, their role in the control of foreign antigen-specific antibody responses appears more complex with various reports demonstrating either increased or decreased antigen-specific antibody responses following inhibition of Tfr function. Due to their recent discovery, our understanding of Tfr formation and function still has many gaps. In this review, we discuss our current knowledge of both Tregs and Tfr in the context of humoral immunity and how these cells might be manipulated in order to better control vaccine responses.
Collapse
Affiliation(s)
- James B Wing
- Laboritory of Human Immunology (Single Cell Immunology), Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Ee Lyn Lim
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
48
|
Biram A, Shulman Z. T cell help to B cells: Cognate and atypical interactions in peripheral and intestinal lymphoid tissues. Immunol Rev 2020; 296:36-47. [PMID: 32557712 DOI: 10.1111/imr.12890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
Enduring immunity against harmful pathogens depends on the generation of immunological memory. Serum immunoglobulins are constantly secreted by long-lived antibody-producing cells, which provide extended protection from recurrent exposures. These cells originate mainly from germinal center structures, wherein B cells introduce mutations to their immunoglobulin genes followed by affinity-based selection. Generation of high-affinity antibodies relies on physical contacts between T and B cells, a process that facilitates the delivery of fate decision signals. T-B cellular engagements are mediated through interactions between the T cell receptor and its cognate peptide presented on B cell major histocompatibility class II molecules. Here, we describe the cellular and molecular aspects of these cognate T-B interactions, and highlight exceptional cases, especially those arising at intestinal lymphoid organs, at which T cells provide help to B cells in an atypical manner, independent of T cell specificity.
Collapse
Affiliation(s)
- Adi Biram
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
49
|
Pélissier A, Akrout Y, Jahn K, Kuipers J, Klein U, Beerenwinkel N, Rodríguez Martínez M. Computational Model Reveals a Stochastic Mechanism behind Germinal Center Clonal Bursts. Cells 2020; 9:E1448. [PMID: 32532145 PMCID: PMC7349200 DOI: 10.3390/cells9061448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Germinal centers (GCs) are specialized compartments within the secondary lymphoid organs where B cells proliferate, differentiate, and mutate their antibody genes in response to the presence of foreign antigens. Through the GC lifespan, interclonal competition between B cells leads to increased affinity of the B cell receptors for antigens accompanied by a loss of clonal diversity, although the mechanisms underlying clonal dynamics are not completely understood. We present here a multi-scale quantitative model of the GC reaction that integrates an intracellular component, accounting for the genetic events that shape B cell differentiation, and an extracellular stochastic component, which accounts for the random cellular interactions within the GC. In addition, B cell receptors are represented as sequences of nucleotides that mature and diversify through somatic hypermutations. We exploit extensive experimental characterizations of the GC dynamics to parameterize our model, and visualize affinity maturation by means of evolutionary phylogenetic trees. Our explicit modeling of B cell maturation enables us to characterise the evolutionary processes and competition at the heart of the GC dynamics, and explains the emergence of clonal dominance as a result of initially small stochastic advantages in the affinity to antigen. Interestingly, a subset of the GC undergoes massive expansion of higher-affinity B cell variants (clonal bursts), leading to a loss of clonal diversity at a significantly faster rate than in GCs that do not exhibit clonal dominance. Our work contributes towards an in silico vaccine design, and has implications for the better understanding of the mechanisms underlying autoimmune disease and GC-derived lymphomas.
Collapse
Affiliation(s)
- Aurélien Pélissier
- IBM Research Zurich, 8803 Rüschlikon, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; (K.J.); (J.K.); (N.B.)
| | | | - Katharina Jahn
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; (K.J.); (J.K.); (N.B.)
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; (K.J.); (J.K.); (N.B.)
| | - Ulf Klein
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds LS9 7TF, UK;
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; (K.J.); (J.K.); (N.B.)
| | | |
Collapse
|
50
|
Zhang YN, Chen C, Deng CL, Zhang CG, Li N, Wang Z, Zhao L, Zhang B. A novel rabies vaccine based on infectious propagating particles derived from hybrid VEEV-Rabies replicon. EBioMedicine 2020; 56:102819. [PMID: 32512518 PMCID: PMC7273168 DOI: 10.1016/j.ebiom.2020.102819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Live attenuated vaccines (LAVs) can mimic natural infection and have advantages to stimulate a robust and sustained immune response as well as to confer long-term protection. However, safety concerns is one of the major obstacles for LAVs development. In an effort to achieve the optimal balance between immunogenicity and safety, researchers currently have taken different strategies for the development of LAVs. METHODS We constructed a novel infectious self-propagating hybrid replicon particle (PRP), VEEV-RABV-G, through replacing the entire structural proteins of the Venezuelan equine encephalitis virus (VEEV) with the glycoprotein of rabies virus (RABV-G) as the single structural protein. We evaluated the potential of VEEV-RABV-G as a safe live attenuated vaccine in mice model. FINDINGS We found that VEEV-RABV-G could self-propagate efficiently in cell culture and induce a robust humoral immunity and provide protection against virulent RABV challenge in immunized mice. Remarkably, VEEV-RABV-G is highly attenuated in both adult and sucking mice, causing much weaker inflammatory and apoptotic effects in the brains of infected adult mice and significantly lower weight loss and morbidity compared with the commonly used RABV-derived LAVs. INTERPRETATION This study reveals the feasibility of developing novel rabies vaccines based on the self-replicating PRPs. FUNDING This work was supported by the National Key Research and Development Program of China (2016YFD0500400).
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Guang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Na Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Wang
- Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|