1
|
Wang Y, Liu Y, Du C, Zhang Y, Zhu L. Mouse Bone Marrow Neutrophil Extracellular Trap Proteomics by Microbial Stimuli. Sci Data 2025; 12:853. [PMID: 40410159 PMCID: PMC12102246 DOI: 10.1038/s41597-025-05181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/09/2025] [Indexed: 05/25/2025] Open
Abstract
Neutrophils, the most abundant white blood cells in human circulation, play a crucial role in innate immunity. One of their key defense mechanisms is the formation of neutrophil extracellular traps (NETs), web-like structures composed of chromatin and antimicrobial proteins that help capture and neutralize pathogens. While previous studies have identified a limited set of NET-associated proteins, the comprehensive proteomic landscape of NETs induced by different stimuli remains largely unexplored. In this study, we used data-independent acquisition mass spectrometry to analyze the proteomic composition of NETs induced by five distinct stimuli: β-glucan, lipopolysaccharide, polyinosinic-polycytidylic acid sodium, resiquimod, and severe fever with thrombocytopenia syndrome bunyavirus. Across all conditions, we identified 5,868 NET-associated proteins, revealing significant stimulus-dependent differences in protein composition. Notably, differentially expressed proteins were detected in each condition, highlighting unique proteomic signatures that may reflect distinct immune responses. This dataset offers key insights into the proteomic diversity of NETs and their role in immune regulation, providing a foundation for future research on NET-mediated immunity in infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yijie Wang
- Beijing Key Laboratory of Viral Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yujia Liu
- Beijing Key Laboratory of Viral Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chunjing Du
- Beijing Key Laboratory of Viral Infectious Diseases, Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yue Zhang
- Beijing Key Laboratory of Viral Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
- Beijing Institute of Infectious Diseases, Beijing, China.
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Liuluan Zhu
- Beijing Key Laboratory of Viral Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
- Beijing Institute of Infectious Diseases, Beijing, China.
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Rabesahala de Meritens C, Carreras-Sureda A, Rosa N, Pick R, Scheiermann C, Demaurex N. STIM1/2 maintain signaling competence at ER-PM contact sites during neutrophil spreading. J Cell Biol 2025; 224:e202406053. [PMID: 40116769 PMCID: PMC11927589 DOI: 10.1083/jcb.202406053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/26/2024] [Accepted: 02/11/2025] [Indexed: 03/23/2025] Open
Abstract
Neutrophils are highly motile leukocytes that migrate inside tissues to destroy invading pathogens. Ca2+ signals coordinate leukocytes migration, but whether Ca2+ fluxes mediated by Stim proteins at ER-PM contact sites regulate neutrophil actin-based motility is unclear. Here, we show that myeloid-specific Stim1/2 ablation decreases basal cytosolic Ca2+ levels and prevents adhesion-induced Ca2+ elevations in mouse neutrophils, reducing actin fiber formation and impairing spreading. Unexpectedly, more ER-PM contact sites were detected on the actin-poor adhesive membranes of Stim1/2-deficient neutrophils, which had reduced inositol-1,4,5-trisphosphate receptor (IP3R) immunoreactivity on confocal and immunogold micrographs despite preserved IP3R levels on western blots. Remarkably, Stim1/2-deficient neutrophils regained signaling and spreading competence in Ca2+-rich solutions and were recruited more effectively in mouse inflamed cremaster muscles in vivo. Our findings indicate that Stim1/2 preserve IP3R functionality in neutrophils, generating adhesion-dependent Ca2+ signals that control actin dynamics during neutrophil spreading. Stim proteins thus maintain IP3R signaling competence at adhesive membranes, enabling Ca2+-dependent actin remodeling during spreading in mouse neutrophils.
Collapse
Affiliation(s)
| | - Amado Carreras-Sureda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nicolas Rosa
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Robert Pick
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Rys RN, Calcinotto A. Senescent neutrophils: a hidden role in cancer progression. Trends Cell Biol 2025; 35:399-411. [PMID: 39362804 DOI: 10.1016/j.tcb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Neutrophils have recently received increased attention in cancer because they contribute to all stages of cancer. Neutrophils are so far considered to have a short half-life. However, a growing body of literature has shown that tumor-associated neutrophils (TANs) acquire a prolonged lifespan. This review discusses recent work surrounding the mechanisms by which neutrophils can persist in the tumor microenvironment (TME). It also highlights different scenarios for therapeutic targeting of protumorigenic neutrophils, supporting the idea that, in tumors, inhibition of neutrophil recruitment is not sufficient because these cells can persist and remain hidden from current interventions. Hence, the elimination of long-lived neutrophils should be pursued to increase the efficacy of standard therapy.
Collapse
Affiliation(s)
- Ryan N Rys
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Arianna Calcinotto
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland.
| |
Collapse
|
4
|
Flower L, Vozza EG, Bryant CE, Summers C. Role of inflammasomes in acute respiratory distress syndrome. Thorax 2025; 80:255-263. [PMID: 39884849 PMCID: PMC12015084 DOI: 10.1136/thorax-2024-222596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Acute respiratory distress syndrome (ARDS) is present in >10% of all people admitted to critical care and is associated with severe morbidity and mortality. Despite more than half a century since its first description, no efficacious pharmacological therapies have been developed, and little progress has been made in improving clinical outcomes. Neutrophils are the principal drivers of ARDS, with their priming and subsequent aberrant downstream functions, including interleukin (IL) 1β and IL-18 secretion, central to the disease pathogenesis. The dominant pathways through which IL-1β and IL-18 are believed to be elaborated are multimeric protein structures called inflammasomes that consist of sensor proteins, adaptor proteins and an effector enzyme. The inflammasome's initial activation depends on one of a variety of damage-associated (DAMP) or pathogen-associated (PAMP) molecular patterns. However, once activated, a common downstream inflammatory pathway is initiated regardless of the specific DAMP or PAMP involved. Several inflammasomes exist in humans. The nucleotide-binding domain leucine-rich repeat (NLR) family, pyrin domain-containing 3 (NLRP3), inflammasome is the best described in the context of ARDS and is known to be activated in both infective and sterile cases. The NLR family, caspase activation and recruitment domain-containing 4 (NLRC4) and absent in melanoma 2 (AIM2) inflammasomes have also been implicated in various ARDS settings, as have inflammasome-independent pathways. Further work is required to understand human biology as much of our knowledge is extrapolated from rodent experimental models. Experimental lung injury models have demonstrated beneficial responses to inflammasome, IL-1β and IL-18 blockade. However, findings have yet to be successfully translated into humans with ARDS, likely due to an underappreciation of the central role of the neutrophil inflammasome. A thorough understanding of inflammasome pathways is vital for critical care clinicians and researchers and for the development of beneficial therapies. In this review, we describe the central role of the inflammasome in the development of ARDS and its potential for immunomodulation, highlighting key areas for future research.
Collapse
Affiliation(s)
- Luke Flower
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Emilio G Vozza
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Clare E Bryant
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Charlotte Summers
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
5
|
Naito A, Kamakura S, Hayase J, Kohda A, Niiro H, Akashi K, Sumimoto H. The Protein Kinase aPKC as Well as the Small GTPases RhoA and Cdc42 Regulates Neutrophil Chemotaxis Partly by Recruiting the ROCK Kinase to the Leading Edge. Genes Cells 2025; 30:e70002. [PMID: 39906004 PMCID: PMC11795228 DOI: 10.1111/gtc.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
The small GTPases RhoA and Cdc42 and their effector proteins play crucial roles in neutrophil chemotaxis. However, endogenous localization and regulation of these proteins have remained largely unknown. Here, we show, using a trichloroacetic acid fixation method, that endogenous RhoA and Cdc42 are preferentially accumulated at the F-actin-rich leading edge (pseudopod) during chemotaxis of human neutrophil-like PLB-985 cells in response to the chemoattractant C5a. Interestingly, the enrichment of RhoA is impaired by knockdown of Cdc42, indicating a positive regulation by Cdc42. Depletion of Cdc42 or RhoA each induces the formation of multiple pseudopods, confirming their significance in cell polarization with an organized actin network at the front. The Rho-associated kinase ROCK is also recruited to the leading edge during chemotaxis in a manner dependent on not only RhoA and Cdc42 but also aPKC, a Cdc42-interacting kinase that can also bind to ROCK. ROCK promotes phosphorylation of the myosin light chain at the front, possibly regulating pseudopod contractility. Knockdown of aPKC suppresses neutrophil chemotaxis by disturbing pseudopod orientation without forming multiple protrusions. An incorrectly oriented pseudopod is also observed in ROCK-depleted cells. Thus, aPKC, as well as RhoA and Cdc42, likely regulates neutrophil chemotaxis partly by recruiting ROCK to the leading edge for correct directionality.
Collapse
Affiliation(s)
- Atsushi Naito
- Department of BiochemistryKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Sachiko Kamakura
- Department of BiochemistryKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Junya Hayase
- Department of BiochemistryKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Akira Kohda
- Department of BiochemistryKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Hiroaki Niiro
- Department of Medical EducationKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Koichi Akashi
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Hideki Sumimoto
- Department of BiochemistryKyushu University Graduate School of Medical SciencesFukuokaJapan
| |
Collapse
|
6
|
Tang Z, Hu J, Li XC, Wang W, Zhang HY, Guo YY, Shuai X, Chu Q, Xie C, Lin D, Zhong B. A subset of neutrophils activates anti-tumor immunity and inhibits non-small-cell lung cancer progression. Dev Cell 2025; 60:379-395.e8. [PMID: 39515330 DOI: 10.1016/j.devcel.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Neutrophils in the tumor microenvironment (TME) are heterogeneous populations associated with cancer prognosis and immunotherapy. However, the plasticity and function of heterogeneous neutrophils in the TME of non-small-cell lung cancer (NSCLC) remain unclear. Here, we show that neutrophils produce high levels of interleukin (IL)-8, which induce the differentiation of CD74highSiglecFlow neutrophils and suppress the generation of CD74lowSiglecFhigh neutrophils in the TME of IL-8-humanized NSCLC mice. The CD74highSiglecFlow neutrophils boost anti-tumor T cell responses via antigen cross-presentation. Deleting CD74 in IL-8-humanized neutrophils impairs T cell activation and exacerbates NSCLC progression, whereas a CD74 agonist enhances T cell activation and the efficacy of anti-programmed cell death 1 (PD-1) or osimertinib therapies. Additionally, the CD74highCD63low neutrophils in the TME and peripheral blood of advanced NSCLC patients phenocopy the CD74highSiglecFlow neutrophils in the TME of NSCLC mice and correlate well with the responsiveness to anti-PD-1 plus chemotherapies. These findings demonstrate an IL-8-CD74high neutrophil axis that promotes anti-tumor immunity in NSCLC.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jing Hu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xu-Chang Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Han-Yue Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yu-Yao Guo
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Shuai
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
7
|
Wenta T, Wang G, Van Buren T, Zolkiewski M, Zolkiewska A. Mitochondrial CLPB is a pro-survival factor at the onset of granulocytic differentiation of mouse myeloblastic cells. Apoptosis 2025; 30:334-348. [PMID: 39644357 DOI: 10.1007/s10495-024-02053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Loss-of-function mutations in the CLPB gene lead to congenital neutropenia due to impaired neutrophil differentiation. CLPB, a member of the AAA+ family of proteins, resides in the intermembrane space of mitochondria. The mechanism by which a loss of CLPB elicits defects in the differentiation program of neutrophil precursor cells is not understood. Here, we used 32D clone 3 (32Dcl3) cells, an interleukin-3 (IL-3)-dependent mouse myeloblastic cell line model, to investigate the effects of CLPB knockout on myeloblast-to-neutrophil differentiation in vitro. We found that CLPB-deficient 32Dcl3 cells showed a decreased mitochondrial membrane potential and increased levels of insoluble HAX1 aggregates in mitochondria, as compared to control cells. Despite those abnormalities, CLPB loss did not affect cell proliferation rates in the presence of IL-3 but it increased apoptosis after IL-3 withdrawal and simultaneous induction of cell differentiation with granulocytic colony stimulating factor (G-CSF). CLPB-deficient cells that survived the stress associated with IL-3 withdrawal/G-CSF treatment expressed the same levels of differentiation markers as control cells. Moreover, we found that increased apoptosis of CLPB-deficient cells is linked to production of reactive oxygen species (ROS). N-acetylcysteine, exogenous free fatty acids, or exogenous citrate protected CLPB-deficient 32Dcl3 cells from apoptosis at the onset of differentiation. The protective effect of citrate was abolished by inhibition of ATP-citrate lyase (ACLY), an enzyme that converts cytosolic citrate into acetyl-CoA, a substrate for protein acetylation. We propose that citrate supplementation may help mitigate the effects of CLPB loss by facilitating ACLY-dependent ROS detoxification in granulocytic precursor cells.
Collapse
Affiliation(s)
- Tomasz Wenta
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Guanpeng Wang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA
- Department of Immunology & Theranostics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Tessa Van Buren
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA
| | - Anna Zolkiewska
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
8
|
McIntosh R. Structural and functional brain correlates of the neutrophil- and monocyte-to-lymphocyte ratio in neuropsychiatric disorders. Brain Behav Immun Health 2025; 43:100940. [PMID: 39877850 PMCID: PMC11773257 DOI: 10.1016/j.bbih.2024.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 11/03/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Skews in the neutrophil-to-lymphocyte ratio (NLR) and monocyte-to-lymphocyte ratio (MLR) increasingly demonstrate prognostic capability in a range of acute and chronic mental health conditions. There has been a recent uptick in structural and functional magnetic responance imaging data corroborating the role of NLR and MLR in a cluster of neuropsychiatric disorders that are characterized by cognitive, affective, and psychomotor dysfunction. Moreover, these deficits are mostly evident in setting of acute and chronic disease comorbidity implicating aging and immunosenescent processes in the manifestation of these geriatric syndromes. The studies reviewed in this special edition implicate neutrophil and monocyte expansion relative to lymphocytopenia in the sequelae of depression, cognitive and functional decline, as well as provide support from a range of neuroimaging techniques that identify brain alteartions concommitant with expansion of the NLR or MLR and the sequelae of depression, dementia, and functional decline.
Collapse
Affiliation(s)
- Roger McIntosh
- Department of Psychology, University of Miami, 5665 Ponce de Leon Blvd, Coral Gables, FL, 33146, USA
- Department of Medicine, University of Miami Miller School of Medicine, 1150 NW 14th Street, Miami, FL, 33136, USA
| |
Collapse
|
9
|
Denz PJ, Papa JL, McFadden MI, Rao PR, Roettger J, Forero A, Yount JS. Accelerated Adaptation of SARS-CoV-2 Variants in Mice Lacking IFITM3 Preserves Distinct Tropism and Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635150. [PMID: 39975176 PMCID: PMC11838348 DOI: 10.1101/2025.01.27.635150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Here we investigated whether interferon induced transmembrane protein 3 (IFITM3), a key antiviral protein deficient in certain human populations, affects interspecies adaptation of SARS-CoV-2. We found that SARS-CoV-2 Beta and Omicron variants passaged through IFITM3-deficient versus wild type mice exhibit enhanced replication and pathogenesis in this new host species. Enhancements associated with amino acid substitutions in the viral genome, suggesting that IFITM3 limits accumulation of adaptive mutations. Mouse-adapted viruses enabled comparative studies of variants in mice. Beta caused lung dysfunction and altered cilia-associated gene programs, consistent with broad viral antigen distribution in lungs. Omicron, which shows low pathogenicity and upper respiratory tract preference in humans, replicated to high nasal titers while showing restrained spatial distribution in lungs and diminished lung inflammatory responses compared to Beta. Our findings demonstrate that IFITM3 deficiency accelerates coronavirus adaptation and reveal that intrinsic SARS-CoV-2 variant traits shape tropism, immunity, and pathogenesis across hosts. HIGHLIGHTS IFITM3 is a critical barrier to SARS-CoV-2 adaptation in new host speciesMouse-adapted SARS-CoV-2 strains enable comparative pathologyOmicron favors nose and large airways, leading to mild lung pathologyBeta exhibits broad lung replication, driving severe inflammation and dysfunction.
Collapse
|
10
|
Freitas IL, Macedo MF, Oliveira L, Oliveira P, do Vale A, dos Santos NM. AIP56, an AB toxin secreted by Photobacterium damselae subsp. piscicida, has tropism for myeloid cells. Front Immunol 2025; 15:1527088. [PMID: 39872526 PMCID: PMC11769971 DOI: 10.3389/fimmu.2024.1527088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction The AB-type toxin AIP56 is a key virulence factor of Photobacterium damselae subsp. piscicida (Phdp), inducing apoptosis in fish immune cells. The discovery of AIP56-like and AIP56-related toxins in diverse organisms, including human-associated Vibrio strains, highlights the evolutionary conservation of this toxin family, suggesting that AIP56 and its homologs may share conserved receptors across species. These toxins have potential for biotechnological applications, such as therapeutic protein delivery and immune modulation. Methods Herein, the cell specificity of AIP56 for immune cells was characterized. The tropism of AIP56 for cells of the sea bass, mouse and human immune system was analyzed by following toxin internalization by flow cytometry and arrival of the toxin in the cytosol by evaluating the cleavage of NF-kB p65 by western blotting. Results Only a small population of sea bass neutrophils internalized AIP56, indicating that most of the neutrophilic destruction during Phdp infection and/or AIP56 intoxication does not result from the direct action of the toxin. Moreover, the cellular tropism of AIP56 for myeloid cells was observed in the three species, including its preference for macrophages. Further, mouse and human M0 and M2-like macrophages internalized more toxin than M1-like macrophages. Despite the limited interaction of lymphoid cells with AIP56, mouse B1-cells were able to internalize the toxin, possibly due to its myeloid features. Conclusion AIP56 has tropism for sea bass, mouse and human myeloid cells, with greater affinity for macrophages. This points to an evolutionary conservation of its receptor(s) and mechanism of action across species, raising the possibility that AIP56-like and -related toxins may also play a role in pathogenesis. These findings are relevant for both pathogenicity and biomedical contexts.
Collapse
Affiliation(s)
- Inês Lua Freitas
- Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- McBiology Doctoral Program, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Maria Fátima Macedo
- Cell Activation and Gene Expression, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Cell Activation and Gene Expression, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Liliana Oliveira
- Cell Activation and Gene Expression, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Cell Activation and Gene Expression, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Pedro Oliveira
- EPIUnit, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Nuno M.S. dos Santos
- Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Zheng J, Dhakal H, Qing E, Shrestha R, Geller AE, Morrissey SM, Saxena D, Hu X, Li H, Li H, Wilhelmsen K, Wendt LH, Klumpp K, Hume PS, Janssen WJ, Brody R, Palmer KE, Uriarte SM, Ten Eyck P, Meyerholz DK, Merchant ML, McLeish K, Gallagher T, Huang J, Yan J, Perlman S. CXCL12 ameliorates neutrophilia and disease severity in SARS-CoV-2 infection. J Clin Invest 2025; 135:e188222. [PMID: 39773555 PMCID: PMC11827850 DOI: 10.1172/jci188222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025] Open
Abstract
Neutrophils, particularly low-density neutrophils (LDNs), are believed to contribute to acute COVID-19 severity. Here, we showed that neutrophilia can be detected acutely and even months after SARS-CoV-2 infection in patients and mice, while neutrophil depletion reduced disease severity in mice. A key factor in neutrophilia and severe disease in infected mice was traced to the chemokine CXCL12 secreted by bone marrow cells and unexpectedly, endothelial cells. CXCL12 levels were negatively correlated with LDN numbers in longitudinal analyses of patient blood samples. CXCL12 blockade in SARS-CoV-2-infected mice increased blood/lung neutrophil numbers, thereby accelerating disease progression without changing lung virus titers. The exaggerated mortality caused by CXCL12 blockade could be reversed by neutrophil depletion. In addition, blocking interactions between SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2) reduced CXCL12 levels, suggesting a signal transduction from virus-mediated ACE2 ligation to increased CXCL12 secretion. Collectively, these results demonstrate a previously unappreciated role of CXCL12 in diminishing neutrophilia, including low-density neutrophilia, and its deleterious effects in SARS-CoV-2 infections. The results also support the involvement of SARS-CoV-2-endothelial cell interactions in viral pathogenesis.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Microbiology and Immunology and
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Hima Dhakal
- Department of Microbiology and Immunology and
| | - Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Rejeena Shrestha
- Department of Microbiology and Immunology and
- Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, Brown Cancer Center and
| | - Anne E. Geller
- Department of Microbiology and Immunology and
- Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, Brown Cancer Center and
| | - Samantha M. Morrissey
- Department of Microbiology and Immunology and
- Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, Brown Cancer Center and
| | - Divyasha Saxena
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Xiaoling Hu
- Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, Brown Cancer Center and
| | - Hong Li
- Functional Immunomics Core, Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Haiyan Li
- Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, Brown Cancer Center and
| | | | - Linder H. Wendt
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, Iowa, USA
| | | | - Patrick S. Hume
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - William J. Janssen
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - Rachel Brody
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kenneth E. Palmer
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology and
| | - Silvia M. Uriarte
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Patrick Ten Eyck
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, Iowa, USA
| | | | | | - Kenneth McLeish
- Department of Medicine, Division of Nephrology and Hypertension and
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Jun Yan
- Department of Microbiology and Immunology and
- Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, Brown Cancer Center and
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
12
|
Koenderman L, Vrisekoop N. Neutrophils in cancer: from biology to therapy. Cell Mol Immunol 2025; 22:4-23. [PMID: 39653768 PMCID: PMC11686117 DOI: 10.1038/s41423-024-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
The view of neutrophils has shifted from simple phagocytic cells, whose main function is to kill pathogens, to very complex cells that are also involved in immune regulation and tissue repair. These cells are essential for maintaining and regaining tissue homeostasis. Neutrophils can be viewed as double-edged swords in a range of situations. The potent killing machinery necessary for immune responses to pathogens can easily lead to collateral damage to host tissues when inappropriately controlled. Furthermore, some subtypes of neutrophils are potent pathogen killers, whereas others are immunosuppressive or can aid in tissue healing. Finally, in tumor immunology, many examples of both protumorigenic and antitumorigenic properties of neutrophils have been described. This has important consequences for cancer therapy, as targeting neutrophils can lead to either suppressed or stimulated antitumor responses. This review will discuss the current knowledge regarding the pro- and antitumorigenic roles of neutrophils, leading to the concept of a confused state of neutrophil-driven pro-/antitumor responses.
Collapse
Affiliation(s)
- Leo Koenderman
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Nienke Vrisekoop
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
13
|
Wu Y, Park J, Le QV, Byun J, Choi J, Xu E, Lee J, Oh YK. NET formation-mediated in situ protein delivery to the inflamed central nervous system. Nat Commun 2024; 15:10747. [PMID: 39737919 PMCID: PMC11686318 DOI: 10.1038/s41467-024-54817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Delivering protein drugs to the central nervous system (CNS) is challenging due to the blood-brain and blood-spinal cord barrier. Here we show that neutrophils, which naturally migrate through these barriers to inflamed CNS sites and release neutrophil extracellular traps (NETs), can be leveraged for therapeutic delivery. Tannic acid nanoparticles tethered with anti-Ly6G antibody and interferon-β (aLy6G-IFNβ@TLP) are constructed for targeted neutrophil delivery. These nanoparticles protect interferon-β from reactive oxygen species and preferentially accumulate in neutrophils over other immune cells. Upon encountering inflammation, neutrophils release the nanoparticles during NET formation. In the female mouse model of experimental autoimmune encephalomyelitis, intravenous administration of aLy6G-IFNβ@TLP reduce disease progression and restore motor function. Although this study focuses on IFNβ and autoimmune encephalomyelitis, the concept of hitchhiking neutrophils for CNS delivery and employing NET formation for inflamed site-specific nanoparticle release can be further applied for delivery of other protein drugs in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Quoc-Viet Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Junho Byun
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jaehyun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Enzhen Xu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
- College of Pharmacy, Korea University, Sejong, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Karlsson V, Stål E, Stoopendahl E, Ivarsson A, Leffler H, Lycke M, Sundqvist M, Sundfeldt K, Christenson K, Bernson E. Elevated Galectin-3 levels in the tumor microenvironment of ovarian cancer - implication of ROS mediated suppression of NK cell antitumor response via tumor-associated neutrophils. Front Immunol 2024; 15:1506236. [PMID: 39759523 PMCID: PMC11695286 DOI: 10.3389/fimmu.2024.1506236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Ovarian cancer is a lethal disease with low survival rates for women diagnosed in advanced stages. Current cancer immunotherapies are not efficient in ovarian cancer, and there is therefore a significant need for novel treatment options. The β-galactoside-binding lectin, Galectin-3, is involved in different immune processes and has been associated with poor outcome in various cancer diagnoses. Here, we investigated how Galectin-3 affects the interaction between natural killer (NK) cells and neutrophils in the tumor microenvironment of ovarian cancer. Method Ascites from the metastatic tumor microenvironment and cyst fluid from the primary tumor site were collected from patients with high-grade serous carcinoma (HGSC) together with peripheral blood samples. Galectin-3 concentration was measured in ascites, cyst fluid and serum or plasma. Neutrophils isolated from HGSC ascites and autologous blood were analyzed to evaluate priming status and production of reactive oxygen species. In vitro co-culture assays with NK cells, neutrophils and K562 target cells (cancer cell line) were conducted to evaluate NK cell viability, degranulation and cytotoxicity. Results High levels of Galectin-3 were observed in cyst fluid and ascites from patients with HGSC. Neutrophils present in HGSC ascites showed signs of priming; however, the priming status varied greatly among the patient samples. Galectin-3 induced production of reactive oxygen species in ascites neutrophils, but only from a fraction of the patient samples, which is in line with the heterogenous priming status of the ascites neutrophils. In co-cultures with NK cells and K562 target cells, we observed that Galectin-3-induced production of reactive oxygen species in neutrophils resulted in decreased NK cell viability and lowered anti-tumor responses. Conclusion Taken together, our results demonstrate high levels of Galectin-3 in the tumormicroenvironment of HGSC. High levels of Galectin-3 may induce production of reactiveoxygen species in ascites neutrophils in some patients. In turn, reactive oxygen species produced by neutrophils may modulate the NK cell anti-tumor immunity. Together, this study suggests further investigation to evaluate if a Galectin-3-targeting therapy may be used in ovarian cancer.
Collapse
Affiliation(s)
- Veronika Karlsson
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ebba Stål
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Emma Stoopendahl
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Anton Ivarsson
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Maria Lycke
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Sundfeldt
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elin Bernson
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Rouaen JRC, Salerno A, Shai-Hee T, Murray JE, Castrogiovanni G, McHenry C, Jue TR, Pham V, Bell JL, Poursani E, Valli E, Cazzoli R, Damstra N, Nelson DJ, Stevens KLP, Chee J, Slapetova I, Kasherman M, Whan R, Lin F, Cochran BJ, Tedla N, Veli FC, Yuksel A, Mayoh C, Saletta F, Mercatelli D, Chtanova T, Kulasinghe A, Catchpoole D, Cirillo G, Biro M, Lode HN, Luciani F, Haber M, Gray JC, Trahair TN, Vittorio O. Copper chelation redirects neutrophil function to enhance anti-GD2 antibody therapy in neuroblastoma. Nat Commun 2024; 15:10462. [PMID: 39668192 PMCID: PMC11638255 DOI: 10.1038/s41467-024-54689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
Anti-disialoganglioside (GD2) antibody therapy has provided clinical benefit to patients with neuroblastoma however efficacy is likely impaired by the immunosuppressive tumor microenvironment. We have previously defined a link between intratumoral copper levels and immune evasion. Here, we report that adjuvant copper chelation potentiates anti-GD2 antibody therapy to confer durable tumor control in immunocompetent models of neuroblastoma. Mechanistic studies reveal copper chelation creates an immune-primed tumor microenvironment through enhanced infiltration and activity of Fc-receptor-bearing cells, specifically neutrophils which are emerging as key effectors of antibody therapy. Moreover, we report copper sequestration by neuroblastoma attenuates neutrophil function which can be successfully reversed using copper chelation to increase pro-inflammatory effector functions. Importantly, we repurpose the clinically approved copper chelating agent Cuprior as a non-toxic, efficacious immunomodulatory strategy. Collectively, our findings provide evidence for the clinical testing of Cuprior as an adjuvant to enhance the activity of anti-GD2 antibody therapy and improve outcomes for patients with neuroblastoma.
Collapse
Affiliation(s)
- Jourdin R C Rouaen
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Antonietta Salerno
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Tyler Shai-Hee
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Jayne E Murray
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Giulia Castrogiovanni
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Charlotte McHenry
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Toni Rose Jue
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Vu Pham
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jessica Lilian Bell
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Ensieh Poursani
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Emanuele Valli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Riccardo Cazzoli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Naomi Damstra
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, University of Western Australia, Perth, WA, Australia
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Delia J Nelson
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
- Curtin Health Innovation Research Institute, Bentley, WA, Australia
| | - Kofi L P Stevens
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, University of Western Australia, Perth, WA, Australia
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Jonathan Chee
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, University of Western Australia, Perth, WA, Australia
| | - Iveta Slapetova
- Katharina Gaus Light Microscopy Facility, University of New South Wales, Sydney, NSW, Australia
| | - Maria Kasherman
- Katharina Gaus Light Microscopy Facility, University of New South Wales, Sydney, NSW, Australia
| | - Renee Whan
- Katharina Gaus Light Microscopy Facility, University of New South Wales, Sydney, NSW, Australia
| | - Francis Lin
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW, Australia
| | - Blake J Cochran
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Nicodemus Tedla
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Feyza Colakoglu Veli
- EMBL Australia, Single Molecule Science Node, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Aysen Yuksel
- Tumour Bank, Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Chelsea Mayoh
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Federica Saletta
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tatyana Chtanova
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Arutha Kulasinghe
- Frazer Institute, University of Queensland, Brisbane, QLD, Australia
| | - Daniel Catchpoole
- Tumour Bank, Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, Rende, Italy
| | - Maté Biro
- EMBL Australia, Single Molecule Science Node, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Holger N Lode
- Department of Pediatric Hematology-Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Fabio Luciani
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Kirby Institute for Infection and Immunity, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Haber
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Juliet C Gray
- Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Toby N Trahair
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Orazio Vittorio
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Ghosh S, Tuz AA, Stenzel M, Singh V, Richter M, Soehnlein O, Lange E, Heyer R, Cibir Z, Beer A, Jung M, Nagel D, Hermann DM, Hasenberg A, Grüneboom A, Sickmann A, Gunzer M. Proteomic Characterization of 1000 Human and Murine Neutrophils Freshly Isolated From Blood and Sites of Sterile Inflammation. Mol Cell Proteomics 2024; 23:100858. [PMID: 39395581 PMCID: PMC11630641 DOI: 10.1016/j.mcpro.2024.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024] Open
Abstract
Neutrophils are indispensable for defense against pathogens. Injured tissue-infiltrated neutrophils can establish a niche of chronic inflammation and promote degeneration. Studies investigated transcriptome of single-infiltrated neutrophils which could misinterpret molecular states of these post mitotic cells. However, neutrophil proteome characterization has been challenging due to low harvests from affected tissues. Here, we present a workflow to obtain proteome of 1000 murine and human tissue-infiltrated neutrophils. We generated spectral libraries containing ∼6200 mouse and ∼5300 human proteins from circulating neutrophils. 4800 mouse and 3400 human proteins were recovered from 1000 cells with 102-108 copies/cell. Neutrophils from stroke-affected mouse brains adapted to the glucose-deprived environment with increased mitochondrial activity and ROS-production, while cells invading inflamed human oral cavities increased phagocytosis and granule release. We provide an extensive protein repository for resting human and mouse neutrophils, identify proteins lost in low input samples, thus enabling the proteomic characterization of limited tissue-infiltrated neutrophils.
Collapse
Affiliation(s)
- Susmita Ghosh
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Ali Ata Tuz
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Martin Stenzel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Mathis Richter
- Institute for Experimental Pathology, University of Münster, Münster, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, University of Münster, Münster, Germany
| | - Emanuel Lange
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Robert Heyer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Multidimensional Omics Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße 25, Bielefeld, Germany
| | - Zülal Cibir
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Alexander Beer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Marcel Jung
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dennis Nagel
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK.
| | - Matthias Gunzer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
17
|
Atteberry B, Berman BP, Kelly TK, Cayford J. Understanding the complex chromatin dynamics in primary human neutrophils during PMA-induced NET formation. Front Immunol 2024; 15:1445638. [PMID: 39524441 PMCID: PMC11544126 DOI: 10.3389/fimmu.2024.1445638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Primary human neutrophils play a pivotal role in innate immunity, mainly through the formation of neutrophil extracellular traps (NETs) in a process known as NETosis. This cell-death pathway is crucial for combating infections but is also implicated in many inflammatory diseases, such as sepsis, systemic lupus erythematosus, and rheumatoid arthritis. Methods The study presented here investigates chromatin dynamics during NET formation by stimulating primary human neutrophils with phorbol 12-myristate 13-acetate (PMA). We adapt the ATAC-Seq (assay for transposase-accessible chromatin using sequencing) method to isolated neutrophils and characterize a time-dependent chromatin response. Results We found that chromatin accessibility patterns are consistent across individual donors and most chromatin changes occur within 30 min, with many continuing across the 90 min assessed in this study. Regulatory regions gaining accessibility were associated with the activity of pathways that have been implicated in NOX-dependent NET formation. Conclusions Our findings increase the understanding of the chromatin changes underlying NET formation and also identify potential early-acting targets for modulating this process in inflammatory diseases.
Collapse
Affiliation(s)
- Brandi Atteberry
- Innovation Laboratory, Volition America, Carlsbad, CA, United States
| | - Benjamin P. Berman
- Innovation Laboratory, Volition America, Carlsbad, CA, United States
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Theresa K. Kelly
- Innovation Laboratory, Volition America, Carlsbad, CA, United States
| | - Justin Cayford
- Innovation Laboratory, Volition America, Carlsbad, CA, United States
| |
Collapse
|
18
|
Michels EHA, Chouchane O, de Brabander J, de Vos AF, Faber DR, Douma RA, Smit ER, Wiersinga WJ, van den Biggelaar M, van der Poll T, Hoogendijk AJ. Proteomic profiling of neutrophils and plasma in community-acquired pneumonia reveals crucial proteins in diverse biological pathways linked to clinical outcome. Front Immunol 2024; 15:1470383. [PMID: 39493755 PMCID: PMC11527607 DOI: 10.3389/fimmu.2024.1470383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Neutrophils play a dichotomous role in community-acquired pneumonia (CAP), providing protection and potentially causing damage. Existing research on neutrophil function in CAP relies on animal studies, leaving a gap in patient-centered investigations. Methods We used mass spectrometry to characterize the neutrophil proteome of moderately ill CAP patients at general ward admission and related the proteome to controls and clinical outcomes. Results We prospectively included 57 CAP patients and 26 controls and quantified 3482 proteins in neutrophil lysates and 386 proteins in concurrently collected plasma. The extensively studied granule-related proteins in animal models did not drive the neutrophil proteome changes associated with human CAP. Proteome alterations were primarily characterized by an increased abundance of proteins related to (aerobic) metabolic activity and (m)RNA translation/processing, concurrent with a diminished presence of cytoskeletal organization-related proteins (all pathways p<0.001). Higher and lower abundances of specific proteins, primarily constituents of these pathways, were associated with prolonged time to clinical stability in CAP. Moreover, we identified a pronounced presence of platelet-related proteins in neutrophil lysates of particularly viral CAP patients, suggesting the existence of neutrophil-platelet complexes in non-critically ill CAP patients. Of the proteins measured in neutrophils, 4.3% were detected in plasma. Discussion Our study presents new perspectives on the neutrophil proteome associated with CAP, laying the groundwork for forthcoming patient-centred investigations. Our results could pave the way for targeted strategies to fine-tune neutrophil responses, potentially improving CAP outcomes.
Collapse
Affiliation(s)
- Erik H. A. Michels
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Osoul Chouchane
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Justin de Brabander
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Alex F. de Vos
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Daniël R. Faber
- Department of Internal Medicine, BovenIJ Hospital, Amsterdam, Netherlands
| | - Renée A. Douma
- Department of Internal Medicine, Flevo Hospital, Almere, Netherlands
| | - Eva R. Smit
- Department of Molecular Hematology, Sanquin Research, Amsterdam, Netherlands
| | - W. Joost Wiersinga
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | | | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Arie J. Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, Netherlands
| |
Collapse
|
19
|
Strickland E, Pan D, Godfrey C, Kim JS, Hopke A, Ji W, Degrange M, Villavicencio B, Mansour MK, Zerbe CS, Irimia D, Amir A, Weiner OD. Self-extinguishing relay waves enable homeostatic control of human neutrophil swarming. Dev Cell 2024; 59:2659-2671.e4. [PMID: 38971157 PMCID: PMC11461132 DOI: 10.1016/j.devcel.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/16/2024] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
Neutrophils collectively migrate to sites of injury and infection. How these swarms are coordinated to ensure the proper level of recruitment is unknown. Using an ex vivo model of infection, we show that human neutrophil swarming is organized by multiple pulsatile chemoattractant waves. These waves propagate through active relay in which stimulated neutrophils trigger their neighbors to release additional swarming cues. Unlike canonical active relays, we find these waves to be self-terminating, limiting the spatial range of cell recruitment. We identify an NADPH-oxidase-based negative feedback loop that is needed for this self-terminating behavior. We observe near-constant levels of neutrophil recruitment over a wide range of starting conditions, revealing surprising robustness in the swarming process. This homeostatic control is achieved by larger and more numerous swarming waves at lower cell densities. We link defective wave termination to a broken recruitment homeostat in the context of human chronic granulomatous disease.
Collapse
Affiliation(s)
- Evelyn Strickland
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Deng Pan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Christian Godfrey
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Julia S Kim
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Alex Hopke
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Burns Hospital, Boston, MA 02114, USA
| | - Wencheng Ji
- Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maureen Degrange
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | - Michael K Mansour
- Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel Irimia
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Burns Hospital, Boston, MA 02114, USA
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA; Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
20
|
Zukas K, Cayford J, Serneo F, Atteberry B, Retter A, Eccleston M, Kelly TK. Rapid high-throughput method for investigating physiological regulation of neutrophil extracellular trap formation. J Thromb Haemost 2024; 22:2543-2554. [PMID: 38866247 DOI: 10.1016/j.jtha.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Neutrophils, the most abundant white blood cells in humans, play pivotal roles in innate immunity, rapidly migrating to sites of infection and inflammation to phagocytose, neutralize, and eliminate invading pathogens. Neutrophil extracellular trap (NET) formation is increasingly recognized as an essential rapid innate immune response, but when dysregulated, it contributes to pathogenesis of sepsis and immunothrombotic disease. OBJECTIVES Current NETosis models are limited, routinely employing nonphysiological triggers that can bypass natural NET regulatory pathways. Models utilizing isolated neutrophils and immortalized cell lines do not reflect the complex biology underlying neutrophil activation and NETosis that occurs in whole blood. To our knowledge, we report the first human ex vivo model utilizing naturally occurring molecules to induce NETosis in whole blood. This approach could be used for drug screening and, importantly, inadvertent activators of NETosis. METHODS Here we describe a novel, high-throughput ex vivo whole blood-induced NETosis model using combinatorial pooling of native NETosis-inducing factors in a more biologically relevant Synthetic-Sepsis model. RESULTS We found different combinations of factors evoked distinct neutrophil responses in the rate of NET generation and/or magnitude of NETosis. Despite interdonor variability, similar sets of proinflammatory molecules induced consistent responses across donors. We found that at least 3 biological triggers were necessary to induce NETosis in our system including either tumor necrosis factor-α or lymphotoxin-α. CONCLUSION These findings emphasize the importance of investigating neutrophil physiology in a biologically relevant context to enable a better understanding of disease pathology, risk factors, and therapeutic targets, potentially providing novel strategies for disease intervention and treatment.
Collapse
Affiliation(s)
- Kieran Zukas
- Innovation Lab, Volition America, Carlsbad, CA 92011, USA
| | - Justin Cayford
- Innovation Lab, Volition America, Carlsbad, CA 92011, USA
| | - Finley Serneo
- Innovation Lab, Volition America, Carlsbad, CA 92011, USA
| | | | - Andrew Retter
- Department of Critical Care, Guy's & St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Mark Eccleston
- Innovation Lab, Volition America, Carlsbad, CA 92011, USA
| | | |
Collapse
|
21
|
Criado M, Silva M, Mendívil P, Molina E, Pérez V, Benavides J, Elguezabal N, Gutiérrez-Expósito D. No Evidence of Neutrophil Response Modulation in Goats after Immunization against Paratuberculosis with a Heat-Inactivated Vaccine. Animals (Basel) 2024; 14:1694. [PMID: 38891741 PMCID: PMC11171245 DOI: 10.3390/ani14111694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Neutrophils are believed to play a role in the initial stages of paratuberculosis, and it has recently been demonstrated that vaccination can modulate their function via priming or through epigenetic and metabolic reprogramming (training). Modulation of the neutrophil response against Mycobacterium avium subspecies paratuberculosis (Map) through vaccination has been demonstrated in a rabbit model but not in ruminants. Therefore, in the present work, the effect of vaccination on the response of caprine neutrophils against Map was studied. Neutrophils were isolated from non-vaccinated (n = 7) and Gudair®-vaccinated goat kids (n = 7), before vaccination and 30 days post-vaccination. Then, several neutrophil functions were quantified ex vivo: cell-free and anchored neutrophil extracellular trap (NET) release, phagocytosis, and the differential expression of several cytokines and TLR2. The induction of cell-free NETosis and TLR2 expression by Map is reported for the first time. However, vaccination showed no significant effect on any of the functions studied. This suggests that the protection conferred by Gudair® vaccination is based on mechanisms that are independent of the neutrophil function modulation. Further research into the impact of alternative vaccination strategies or the paratuberculosis infection stage on ruminant neutrophil function could provide valuable insights into its role in paratuberculosis.
Collapse
Affiliation(s)
- Miguel Criado
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Ctra León-Vega de Infanzones, 24346 León, Spain; (M.S.); (P.M.); (V.P.); (J.B.); (D.G.-E.)
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Marta Silva
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Ctra León-Vega de Infanzones, 24346 León, Spain; (M.S.); (P.M.); (V.P.); (J.B.); (D.G.-E.)
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Pedro Mendívil
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Ctra León-Vega de Infanzones, 24346 León, Spain; (M.S.); (P.M.); (V.P.); (J.B.); (D.G.-E.)
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Elena Molina
- Departamento de Sanidad Animal, NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, 48160 Derio, Spain; (E.M.); (N.E.)
| | - Valentín Pérez
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Ctra León-Vega de Infanzones, 24346 León, Spain; (M.S.); (P.M.); (V.P.); (J.B.); (D.G.-E.)
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Julio Benavides
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Ctra León-Vega de Infanzones, 24346 León, Spain; (M.S.); (P.M.); (V.P.); (J.B.); (D.G.-E.)
| | - Natalia Elguezabal
- Departamento de Sanidad Animal, NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, 48160 Derio, Spain; (E.M.); (N.E.)
| | - Daniel Gutiérrez-Expósito
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Ctra León-Vega de Infanzones, 24346 León, Spain; (M.S.); (P.M.); (V.P.); (J.B.); (D.G.-E.)
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
22
|
López-Arredondo A, Cruz-Cardenas JA, Cázares-Preciado JA, Timmins NE, Brunck ME. Neutrophils, an emerging new therapeutic platform. Curr Opin Biotechnol 2024; 87:103106. [PMID: 38490109 DOI: 10.1016/j.copbio.2024.103106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Neutrophils possess unique characteristics that render them indispensable to health, and patients with irregular neutrophil counts or functions suffer from increased morbidity and mortality. As neutrophils are short-lived postmitotic cells, genetic aberrations cannot be corrected directly in neutrophils and must be targeted in their progenitors. Neutrophils are increasingly being contemplated for a range of therapeutic applications, including restoration or modulation of immune function and targeting of solid tumors. This review addresses the state-of-the-art in neutrophil transfusions and their possible applications for infectious disease prevention and treatment. It offers a landscape of the most recent gene therapy approaches to address neutrophil-related genetic diseases. We also discuss how ongoing research could broaden the applicability of neutrophil-based therapies to solid cancer treatments and beyond.
Collapse
Affiliation(s)
- Alejandra López-Arredondo
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849 Monterrey, Nuevo León, Mexico
| | - José A Cruz-Cardenas
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849 Monterrey, Nuevo León, Mexico
| | - Jorge A Cázares-Preciado
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849 Monterrey, Nuevo León, Mexico
| | - Nicholas E Timmins
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Marion Eg Brunck
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849 Monterrey, Nuevo León, Mexico; The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849 Monterrey, Nuevo León, Mexico.
| |
Collapse
|
23
|
Golenkina EA, Viryasova GM, Galkina SI, Iakushkina IV, Gaponova TV, Romanova YM, Sud’ina GF. ATP and Formyl Peptides Facilitate Chemoattractant Leukotriene-B4 Synthesis and Drive Calcium Fluxes, Which May Contribute to Neutrophil Swarming at Sites of Cell Damage and Pathogens Invasion. Biomedicines 2024; 12:1184. [PMID: 38927391 PMCID: PMC11201259 DOI: 10.3390/biomedicines12061184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Here, we demonstrate that human neutrophil interaction with the bacterium Salmonella typhimurium fuels leukotriene B4 synthesis induced by the chemoattractant fMLP. In this work, we found that extracellular ATP (eATP), the amount of which increases sharply during tissue damage, can effectively regulate fMLP-induced leukotriene B4 synthesis. The vector of influence strongly depends on the particular stage of sequential stimulation of neutrophils by bacteria and on the stage at which fMLP purinergic signaling occurs. Activation of 5-lipoxygenase (5-LOX), key enzyme of leukotriene biosynthesis, depends on an increase in the cytosolic concentration of Ca2+. We demonstrate that eATP treatment prior to fMLP, by markedly reducing the amplitude of the fMLP-induced Ca2+ transient jump, inhibits leukotriene synthesis. At the same time, when added with or shortly after fMLP, eATP effectively potentiates arachidonic acid metabolism, including by Ca2+ fluxes stimulation. Flufenamic acid, glibenclamide, and calmodulin antagonist R24571, all of which block calcium signaling in different ways, all suppressed 5-LOX product synthesis in our experimental model, indicating the dominance of calcium-mediated mechanisms in eATP regulatory potential. Investigation into the adhesive properties of neutrophils revealed the formation of cell clusters when adding fMLP to neutrophils exposed to the bacterium Salmonella typhimurium. eATP added simultaneously with fMLP supported neutrophil polarization and clustering. A cell-derived chemoattractant such as leukotriene B4 plays a crucial role in the recruitment of additional neutrophils to the foci of tissue damage or pathogen invasion, and eATP, through the dynamics of changes in [Ca2+]i, plays an important decisive role in fMLP-induced leukotrienes synthesis during neutrophil interactions with the bacterium Salmonella typhimurium.
Collapse
Affiliation(s)
- Ekaterina A. Golenkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Galina M. Viryasova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Svetlana I. Galkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Iuliia V. Iakushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Tatjana V. Gaponova
- National Research Center for Hematology, Russia Federation Ministry of Public Health, 125167 Moscow, Russia;
| | - Yulia M. Romanova
- Department of Genetics and Molecular Biology, Gamaleya National Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Galina F. Sud’ina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| |
Collapse
|
24
|
Nasirabadi FKR, Doosti A. Dermaseptin B2 bioactive gene's potential for anticancer and anti-proliferative effect is linked to the regulation of the BAX/BBC3/AKT pathway. Med Oncol 2024; 41:162. [PMID: 38767753 DOI: 10.1007/s12032-024-02384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Dermaseptin B2 (DrsB2) is an antimicrobial peptide with anticancer and angiostatic properties. We aimed to assess the in vitro inhibitory effect of pDNA/DrsB2 on the growth of breast cancer cells and its impact on the expression of genes involved in the BAX/BBC3/AKT pathway. The nucleic acid sequence of DrsB2 was artificially synthesized and inserted into the pcDNA3.1( +) Mammalian Expression Plasmid. PCR testing and enzyme digesting procedures evaluated the accuracy of cloning. The vectors were introduced into cells using LipofectamineTM2000 transfection reagent. The breast cancer cells were assessed by flow cytometry, MTT assessment, soft agar colony method, and wound healing investigation. The gene's transcription was evaluated using real-time PCR with a significance level of P < 0.05. The recombinant plasmid harboring the pDNA/DrsB2 vector was effectively produced, and the gene sequence showed absolute homogeneity (100% similarity) with the DrsB2 gene. The transfection effectiveness of MCF-7 and MCF-10A cells was 79% and 68%, respectively. The findings are measured using the growth inhibition 50% (GI50) metric, which indicates the concentration of pDNA/DrsB2 that stops 50% of cell growth. The proportions of early apoptosis, late apoptosis, necrosis, and viable MCF-7 cells in the pDNA/DrsB2 group were 40.50%, 2.31%, 1.69%, and 55.50%, respectively. The results showed a 100% increase in gene expression in programmed cell death following treatment with pDNA/DrsB2 (**P < 0.01). To summarize, the results described in this work offer new possibilities for treating cancer by targeting malignancies via pDNA/DrsB2 and activating the BAX/BBC3/AKT signaling pathways.
Collapse
Affiliation(s)
- Fatemeh Khak-Rah Nasirabadi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
25
|
Liu X, Ou X, Zhang T, Li X, Qiao Q, Jia L, Xu Z, Zhang F, Tian T, Lan H, Yang C, Kong L, Zhang Z. In situ neutrophil apoptosis and macrophage efferocytosis mediated by Glycyrrhiza protein nanoparticles for acute inflammation therapy. J Control Release 2024; 369:215-230. [PMID: 38508529 DOI: 10.1016/j.jconrel.2024.03.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
In the progression of acute inflammation, the activation and recruitment of macrophages and neutrophils are mutually reinforcing, leading to amplified inflammatory response and severe tissue damage. Therefore, to regulate the axis of neutrophils and macrophages is essential to avoid tissue damage induced from acute inflammatory. Apoptotic neutrophils can regulate the anti-inflammatory activity of macrophages through the efferocytosis. The strategy of in situ targeting and inducing neutrophil apoptosis has the potential to modulate macrophage activity and transfer anti-inflammatory drugs. Herein, a natural glycyrrhiza protein nanoparticle loaded with dexamethasone (Dex@GNPs) was constructed, which could simultaneously regulate neutrophil and macrophage function during acute inflammation treatment by combining in situ neutrophil apoptosis and macrophage efferocytosis. Dex@GNPs can be rapidly and selectively internalized by neutrophils and subsequently induce neutrophils apoptosis through a ROS-dependent mechanism. The efferocytosis of apoptotic neutrophils not only promoted the polarization of macrophages into anti-inflammatory state, but also facilitated the transfer of Dex@GNPs to macrophages. This enabled dexamethasone to further modulate macrophage function. In mouse models of acute respiratory distress syndrome and sepsis, Dex@GNPs significantly ameliorated the disordered immune microenvironment and alleviated tissue injury. This study presents a novel strategy for drug delivery and inflammation regulation to effectively treat acute inflammatory diseases.
Collapse
Affiliation(s)
- Xiong Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangjun Ou
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tiantian Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Qiao
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liyuan Jia
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhangxi Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fangming Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongbing Lan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
26
|
López-Ramírez LA, Martínez-Álvarez JA, Martínez-Duncker I, Lozoya-Pérez NE, Mora-Montes HM. Silencing of Sporothrix schenckii GP70 Reveals Its Contribution to Fungal Adhesion, Virulence, and the Host-Fungus Interaction. J Fungi (Basel) 2024; 10:302. [PMID: 38786657 PMCID: PMC11121839 DOI: 10.3390/jof10050302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Sporothrix schenckii is one of the etiological agents of sporotrichosis, a cutaneous and subcutaneous infection distributed worldwide. Like other medically relevant fungi, its cell wall is a molecular scaffold to display virulence factors, such as protective pigments, hydrolytic enzymes, and adhesins. Cell wall proteins with adhesive properties have been previously reported, but only a handful of them have been identified and characterized. One of them is Gp70, an abundant cell wall protein mainly found on the surface of yeast-like cells. Since the protein also has a role in the activity of 3-carboxy-cis,cis-muconate cyclase and its abundance is low in highly virulent strains, its role in the Sporothrix-host interaction remains unclear. Here, a set of GP70-silenced strains was generated, and the molecular and phenotypical characterization was performed. The results showed that mutants with high silencing levels showed a significant reduction in the adhesion to laminin and fibrinogen, enzyme activity, and defects in the cell wall composition, which included reduced mannose, rhamnose, and protein content, accompanied by an increment in β-1,3-glucans levels. The cell wall N-linked glycan content was significantly reduced. These strains induced poor TNFα and IL-6 levels when interacting with human peripheral blood mononuclear cells in a dectin-1-, TLR2-, and TLR4-dependent stimulation. The IL-1β and IL-10 levels were significantly higher and were stimulated via dectin-1. Phagocytosis and stimulation of neutrophil extracellular traps by human granulocytes were increased in highly GP70-silenced strains. Furthermore, these mutants showed virulence attenuation in the invertebrate model Galleria mellonella. Our results demonstrate that Gp70 is a versatile protein with adhesin properties, is responsible for the activity of 3-carboxy-cis,cis-muconate cyclase, and is relevant for the S. schenckii-host interaction.
Collapse
Affiliation(s)
- Luz A. López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto. 36050, Mexico; (L.A.L.-R.); (J.A.M.-Á.); (N.E.L.-P.)
| | - José A. Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto. 36050, Mexico; (L.A.L.-R.); (J.A.M.-Á.); (N.E.L.-P.)
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca Mor. 62209, Mexico;
| | - Nancy E. Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto. 36050, Mexico; (L.A.L.-R.); (J.A.M.-Á.); (N.E.L.-P.)
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto. 36050, Mexico; (L.A.L.-R.); (J.A.M.-Á.); (N.E.L.-P.)
| |
Collapse
|
27
|
Brenchley L, McDermott DH, Gardner PJ, Silva LM, Gao JL, Cho E, Velez D, Moutsopoulos NM, Murphy PM, Fraser D. Periodontal disease in patients with WHIM syndrome. J Clin Periodontol 2024; 51:464-473. [PMID: 38185798 PMCID: PMC11000827 DOI: 10.1111/jcpe.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]
Abstract
AIM WHIM (warts, hypogammaglobulinaemia, infections and myelokathexis) syndrome is a rare combined primary immunodeficiency disease caused by gain-of-function (GOF) mutations in the chemokine receptor CXCR4 and includes severe neutropenia as a common feature. Neutropenia is a known risk factor for periodontitis; however, a detailed periodontal evaluation of a WHIM syndrome cohort is lacking. This study aimed to establish the evidence base for the periodontal status of patients with WHIM syndrome. MATERIALS AND METHODS Twenty-two adult WHIM syndrome patients and 22 age- and gender-matched healthy volunteers (HVs) were evaluated through a comprehensive medical and periodontal examination. A mouse model of WHIM syndrome was assessed for susceptibility to naturally progressing or inducible periodontitis. RESULTS Fourteen patients with WHIM syndrome (63.6%) and one HV (4.5%) were diagnosed with Stage III/IV periodontitis. No WHIM patient presented with the early onset, dramatic clinical phenotypes typically associated with genetic forms of neutropenia. Age, but not the specific CXCR4 mutation or absolute neutrophil count, was associated with periodontitis severity in the WHIM cohort. Mice with a Cxcr4 GOF mutation did not exhibit increased alveolar bone loss in spontaneous or ligature-induced periodontitis. CONCLUSIONS Overall, WHIM syndrome patients presented with an increased severity of periodontitis despite past and ongoing neutrophil mobilization treatments. GOF mutations in CXCR4 may be a risk factor for periodontitis in humans.
Collapse
Affiliation(s)
- Laurie Brenchley
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 2089
| | - David H. McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Pamela J. Gardner
- Office of the Clinical Director, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892
| | - Lakmali M. Silva
- Department of Oral Medicine, Immunity, and Infection. Harvard School of Dental Medicine, Boston, MA 02115
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Elena Cho
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Daniel Velez
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Niki M. Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 2089
| | - Philip M. Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - David Fraser
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 2089
| |
Collapse
|
28
|
Chu G, Guan M, Jin J, Luo Y, Luo Z, Shi T, Liu T, Zhang C, Wang Y. Mechanochemically Reprogrammed Interface Orchestrates Neutrophil Bactericidal Activity and Apoptosis for Preventing Implant-Associated Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311855. [PMID: 38164817 DOI: 10.1002/adma.202311855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/13/2023] [Indexed: 01/03/2024]
Abstract
The onset of implant-associated infection (IAI) triggers a cascade of immune responses, which are initially dominated by neutrophils. Bacterial aggregate formation and hypoxic microenvironment, which occur shortly after implantation, may be two major risk factors that impair neutrophil function and lead to IAI. Here, the implant surface with phytic acid-Zn2+ coordinated TiO2 nanopillar arrays (PA-Zn@TiNPs) and oxygen self-supporting CaO2 nanoparticles, named as CPZTs, is mechanochemically reprogrammed. The engineered CPZTs interface integrates multiple properties to inhibit the formation of nascent biofilm, encompassing antibacterial adhesion, mechanobactericidal effect, and chemobiocidal effect. Meanwhile, continuous oxygenation fuels the neutrophils with reactive oxygen species (ROS) for efficient bacterial elimination on the implant surface and inside the neutrophils. Furthermore, this surface modulation strategy accelerates neutrophil apoptosis and promotes M2 macrophage-mediated osteogenesis both in vitro and in a rat model of IAI. In conclusion, targeting neutrophils for immunomodulation is a practical and effective strategy to prevent IAI and promote bone-implant integration.
Collapse
Affiliation(s)
- Guangyu Chu
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ming Guan
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiale Jin
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yao Luo
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zhiyuan Luo
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Tingwang Shi
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Tao Liu
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chunlei Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
29
|
Singhal S, Rao AS, Stadanlick J, Bruns K, Sullivan NT, Bermudez A, Honig-Frand A, Krouse R, Arambepola S, Guo E, Moon EK, Georgiou G, Valerius T, Albelda SM, Eruslanov EB. Human Tumor-Associated Macrophages and Neutrophils Regulate Antitumor Antibody Efficacy through Lethal and Sublethal Trogocytosis. Cancer Res 2024; 84:1029-1047. [PMID: 38270915 PMCID: PMC10982649 DOI: 10.1158/0008-5472.can-23-2135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/29/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
The clinical benefits of tumor-targeting antibodies (tAb) are modest in solid human tumors. The efficacy of many tAbs is dependent on Fc receptor (FcR)-expressing leukocytes that bind Fc fragments of tAb. Tumor-associated macrophages (TAM) and neutrophils (TAN) represent the majority of FcR+ effectors in solid tumors. A better understanding of the mechanisms by which TAMs and TANs regulate tAb response could help improve the efficacy of cancer treatments. Here, we found that myeloid effectors interacting with tAb-opsonized lung cancer cells used antibody-dependent trogocytosis (ADT) but not antibody-dependent phagocytosis. During this process, myeloid cells "nibbled off" tumor cell fragments containing tAb/targeted antigen (tAg) complexes. ADT was only tumoricidal when the tumor cells expressed high levels of tAg and the effectors were present at high effector-to-tumor ratios. If either of these conditions were not met, which is typical for solid tumors, ADT was sublethal. Sublethal ADT, mainly mediated by CD32hiCD64hi TAM, led to two outcomes: (i) removal of surface tAg/tAb complexes from the tumor that facilitated tumor cell escape from the tumoricidal effects of tAb; and (ii) acquisition of bystander tAgs by TAM with subsequent cross-presentation and stimulation of tumor-specific T-cell responses. CD89hiCD32loCD64lo peripheral blood neutrophils (PBN) and TAN stimulated tumor cell growth in the presence of the IgG1 anti-EGFR Ab cetuximab; however, IgA anti-EGFR Abs triggered the tumoricidal activity of PBN and negated the stimulatory effect of TAN. Overall, this study provides insights into the mechanisms by which myeloid effectors mediate tumor cell killing or resistance during tAb therapy. SIGNIFICANCE The elucidation of the conditions and mechanisms by which human FcR+ myeloid effectors mediate cancer cell resistance and killing during antibody treatment could help develop improved strategies for treating solid tumors.
Collapse
Affiliation(s)
- Sunil Singhal
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abhishek S. Rao
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason Stadanlick
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kyle Bruns
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Neil T. Sullivan
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andres Bermudez
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam Honig-Frand
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryan Krouse
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sachinthani Arambepola
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emily Guo
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edmund K. Moon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas
| | - Thomas Valerius
- Department of Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Steven M. Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evgeniy B. Eruslanov
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Xin Y, Xiong S, Zhou L, Lin X. Activation of leukotriene B 4 receptor 1 is a prerequisite for complement receptor 3-mediated antifungal responses of neutrophils. Cell Mol Immunol 2024; 21:245-259. [PMID: 38297112 PMCID: PMC10901876 DOI: 10.1038/s41423-024-01130-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/31/2023] [Indexed: 02/02/2024] Open
Abstract
Invasive fungal infections are life-threatening, and neutrophils are vital cells of the innate immune system that defend against them. The role of LTA4H-LTB4-BLT1 axis in regulation of neutrophil responses to fungal infection remains poorly understood. Here, we demonstrated that the LTA4H-LTB4-BLT1 axis protects the host against Candida albicans and Aspergillus fumigatus, but not Cryptococcus neoformans infection, by regulating the antifungal activity of neutrophils. Our results show that deleting Lta4h or Blt1 substantially impairs the fungal-specific phagocytic capacity of neutrophils. Moreover, defective activation of the spleen tyrosine kinase (Syk) and extracellular signal-related kinase (ERK1/2) pathways in neutrophils accompanies this impairment. Mechanistically, BLT1 regulates CR3-mediated, β-1,3-glucan-induced neutrophil phagocytosis, while a physical interaction with CR3 with slight influence on its dynamics is observed. Our findings thus demonstrate that the LTA4H-LTB4-BLT1 axis is essential for the phagocytic function of neutrophils in host antifungal immune response against Candida albicans and Aspergillus fumigatus.
Collapse
Affiliation(s)
- Yan Xin
- Institute for Immunology and School of Medicine, Tsinghua University, 100084, Beijing, China
- Tsinghua University-Peking University Center for Life Sciences, 100084, Beijing, China
| | - Sihan Xiong
- Institute for Immunology and School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Linghong Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xin Lin
- Institute for Immunology and School of Medicine, Tsinghua University, 100084, Beijing, China.
- Tsinghua University-Peking University Center for Life Sciences, 100084, Beijing, China.
| |
Collapse
|
31
|
Brandau S. Mononuclear myeloid cells can shape neutrophils in brain tumors. Trends Immunol 2024; 45:78-80. [PMID: 38267278 DOI: 10.1016/j.it.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
In most human solid cancer types, a high frequency of intratumoral neutrophils is associated with poor prognosis. In a recent study, Maas et al. identified an intratumoral niche in which mononuclear myeloid cells drive proinflammatory neutrophil activation in brain tumors. This study sheds new light on the intratumoral modulation of neutrophils.
Collapse
Affiliation(s)
- Sven Brandau
- Research Division, Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Essen, Essen, Germany; German Cancer Consortium, partner site Essen-Düsseldorf, Essen, Germany.
| |
Collapse
|
32
|
Hackert NS, Radtke FA, Exner T, Lorenz HM, Müller-Tidow C, Nigrovic PA, Wabnitz G, Grieshaber-Bouyer R. Human and mouse neutrophils share core transcriptional programs in both homeostatic and inflamed contexts. Nat Commun 2023; 14:8133. [PMID: 38065997 PMCID: PMC10709367 DOI: 10.1038/s41467-023-43573-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Neutrophils are frequently studied in mouse models, but the extent to which findings translate to humans remains poorly defined. In an integrative analysis of 11 mouse and 13 human datasets, we find a strong correlation of neutrophil gene expression across species. In inflammation, neutrophils display substantial transcriptional diversity but share a core inflammation program. This program includes genes encoding IL-1 family members, CD14, IL-4R, CD69, and PD-L1. Chromatin accessibility of core inflammation genes increases in blood compared to bone marrow and further in tissue. Transcription factor enrichment analysis implicates members of the NF-κB family and AP-1 complex as important drivers, and HoxB8 neutrophils with JunB knockout show a reduced expression of core inflammation genes in resting and activated cells. In independent single-cell validation data, neutrophil activation by type I or type II interferon, G-CSF, and E. coli leads to upregulation in core inflammation genes. In COVID-19 patients, higher expression of core inflammation genes in neutrophils is associated with more severe disease. In vitro treatment with GM-CSF, LPS, and type II interferon induces surface protein upregulation of core inflammation members. Together, we demonstrate transcriptional conservation in neutrophils in homeostasis and identify a core inflammation program shared across heterogeneous inflammatory conditions.
Collapse
Affiliation(s)
- Nicolaj S Hackert
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Felix A Radtke
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tarik Exner
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Guido Wabnitz
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ricardo Grieshaber-Bouyer
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany.
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany.
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
33
|
Macedo IS, Lara FA, Barbosa HS, Saraiva EM, Menna-Barreto RFS, Mariante RM. Human neutrophil extracellular traps do not impair in vitro Toxoplasma gondii infection. Front Immunol 2023; 14:1282278. [PMID: 38115994 PMCID: PMC10728484 DOI: 10.3389/fimmu.2023.1282278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction Toxoplasma gondii, responsible for causing toxoplasmosis, is a prevalent food and waterborne pathogen worldwide. It commonly infects warm-blooded animals and affects more than a third of the global human population. Once ingested, the parasite enters the host's small intestine and rapidly disseminates throughout the body via the bloodstream, infiltrating various tissues. Leukocyte-driven responses are vital against T. gondii, with neutrophils playing a dual role: swiftly recruited to infection sites, releasing inflammatory mediators, and serving as a replication hub and Trojan horses, aiding parasite spread. Neutrophils from various hosts release extracellular traps (NETs) against the protozoan. However, gaps persist regarding the mechanisms of NETs production to parasite and their significance in infection control. This study investigates the interplay between human neutrophils and T. gondii, exploring dynamics, key molecules, and signaling pathways involved in NETs production upon protozoan challenge. Methods and Results Using confocal and electron microscopy, live cell imaging, pharmacological inhibitors, and DNA quantification assays, we find that human neutrophils promptly release both classical and rapid NETs upon pathogen stimulation. The NETs structure exhibits diverse phenotypes over time and is consistently associated with microorganisms. Mechanisms involve neutrophil elastase and peptidylarginine deiminase, along with intracellular calcium signaling and the PI3K pathway. Unexpectedly, human traps do not diminish viability or infectivity, but potentially aid in capturing parasites for subsequent neutrophil phagocytosis and elimination. Discussion By revealing NETs formation mechanisms and their nuanced impact on T. gondii infection dynamics, our findings contribute to broader insights into host-pathogen relationships.
Collapse
Affiliation(s)
- Isabela S. Macedo
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Flávio A. Lara
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Helene S. Barbosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Elvira M. Saraiva
- Laboratório de Imunobiologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rafael M. Mariante
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Yang F, Suo M, Weli H, Wong M, Junidi A, Cummings C, Johnson R, Mallory K, Liu AY, Greenberg ZJ, Schuettpelz LG, Miller MJ, Luke CJ, Randolph GJ, Zinselmeyer BH, Wardenburg JB, Clemens RA. Staphylococcus aureus α-toxin impairs early neutrophil localization via electrogenic disruption of store-operated calcium entry. Cell Rep 2023; 42:113394. [PMID: 37950870 PMCID: PMC10731421 DOI: 10.1016/j.celrep.2023.113394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/13/2023] Open
Abstract
The pore-forming S. aureus α-toxin (Hla) contributes to virulence and disease pathogenesis. While high concentrations of toxin induce cell death, neutrophils exhibit relative resistance to lysis, suggesting that the action of Hla may not be solely conferred by lytic susceptibility. Using intravital microscopy, we observed that Hla disrupts neutrophil localization and clustering early in infection. Hla forms a narrow, ion-selective pore, suggesting that Hla may dysregulate calcium or other ions to impair neutrophil function. We found that sub-lytic Hla did not permit calcium influx but caused rapid membrane depolarization. Depolarization decreases the electrogenic driving force for calcium, and concordantly, Hla suppressed calcium signaling in vitro and in vivo and calcium-dependent leukotriene B4 (LTB4) production, a key mediator of neutrophil clustering. Thus, Hla disrupts the early patterning of the neutrophil response to infection, in part through direct impairment of neutrophil calcium signaling. This early mis-localization of neutrophils may contribute to establishment of infection.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mingyi Suo
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Homayemem Weli
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mason Wong
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alex Junidi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Celeste Cummings
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan Johnson
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kiara Mallory
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Annie Y Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zev J Greenberg
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura G Schuettpelz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark J Miller
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cliff J Luke
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Regina A Clemens
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
35
|
Salafranca J, Ko JK, Mukherjee AK, Fritzsche M, van Grinsven E, Udalova IA. Neutrophil nucleus: shaping the past and the future. J Leukoc Biol 2023; 114:585-594. [PMID: 37480361 PMCID: PMC10673716 DOI: 10.1093/jleuko/qiad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023] Open
Abstract
Neutrophils are innate immune cells that are key to protecting the host against infection and maintaining body homeostasis. However, if dysregulated, they can contribute to disease, such as in cancer or chronic autoinflammatory disorders. Recent studies have highlighted the heterogeneity in the neutrophil compartment and identified the presence of immature neutrophils and their precursors in these pathologies. Therefore, understanding neutrophil maturity and the mechanisms through which they contribute to disease is critical. Neutrophils were first characterized morphologically by Ehrlich in 1879 using microscopy, and since then, different technologies have been used to assess neutrophil maturity. The advances in the imaging field, including state-of-the-art microscopy and machine learning algorithms for image analysis, reinforce the use of neutrophil nuclear morphology as a fundamental marker of maturity, applicable for objective classification in clinical diagnostics. New emerging approaches, such as the capture of changes in chromatin topology, will provide mechanistic links between the nuclear shape, chromatin organization, and transcriptional regulation during neutrophil maturation.
Collapse
Affiliation(s)
- Julia Salafranca
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Jacky Ka Ko
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Ananda K Mukherjee
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Marco Fritzsche
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Erinke van Grinsven
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Irina A Udalova
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
36
|
Galván-Hernández AK, Gómez-Gaviria M, Martínez-Duncker I, Martínez-Álvarez JA, Mora-Montes HM. Differential Recognition of Clinically Relevant Sporothrix Species by Human Granulocytes. J Fungi (Basel) 2023; 9:986. [PMID: 37888242 PMCID: PMC10607474 DOI: 10.3390/jof9100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Sporotrichosis is a cutaneous mycosis that affects humans and animals and has a worldwide distribution. This infection is mainly caused by Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. Current research about anti-Sporothrix immunity has been mainly focused on S. schenckii and S. brasiliensis, using different types of human or animal immune cells. Granulocytes are a group of cells relevant for cytokine production, with the capacity for phagocytosis and the generation of neutrophil extracellular traps (NETs). Considering their importance, this study aimed to compare the capacity of human granulocytes to stimulate cytokines, uptake, and form NETs when interacting with different Sporothrix species. We found that conidia, germlings, and yeast-like cells from S. schenckii, S. brasiliensis, and S. globosa play an important role in the interaction with these immune cells, establishing morphology- and species-specific cytokine profiles. S. brasil-iensis tended to stimulate an anti-inflammatory cytokine profile, whilst the other two species had a proinflammatory one. S. globosa cells were the most phagocytosed cells, which occurred through a dectin-1-dependent mechanism, while the uptake of S. brasiliensis mainly occurred via TLR4 and CR3. Cell wall N-linked and O-linked glycans, along with β-1,3-glucan, played a significant role in the interaction of these Sporothrix species with human granulocytes. Finally, this study indicates that conidia and yeast-like cells are capable of inducing NETs, with the latter being a better stimulant. To the best of our knowledge, this is the first study that reports the cytokine profiles produced by human granulocytes interacting with Sporothrix cells.
Collapse
Affiliation(s)
- Ana K. Galván-Hernández
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico; (A.K.G.-H.); (M.G.-G.); (J.A.M.-Á.)
| | - Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico; (A.K.G.-H.); (M.G.-G.); (J.A.M.-Á.)
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca Mor. 62209, Mexico;
| | - José A. Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico; (A.K.G.-H.); (M.G.-G.); (J.A.M.-Á.)
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico; (A.K.G.-H.); (M.G.-G.); (J.A.M.-Á.)
| |
Collapse
|
37
|
Allen LAH. Closing the gap between murine neutrophils and neutrophil-like cell lines. J Leukoc Biol 2023; 114:199-201. [PMID: 37403206 PMCID: PMC10473255 DOI: 10.1093/jleuko/qiad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Advantages of cloned Hoxb8 neutrophil-like cells are discussed and contrasted with weaknesses of human HL-60 and PLB-985 neutrophil-like cell lines, and shared and distinct features of primary murine and human neutrophils are summarized.
Collapse
Affiliation(s)
- Lee-Ann H Allen
- Department of Molecular Microbiology and Immunology, One Hospital Dr., Medical Sciences Building, Room M616, University of Missouri, Columbia, MO 65212, United States
- Harry S. Truman Memorial Veterans' Hospital, 800 Hospital Drive, Columbia, MO 65201, United States
| |
Collapse
|
38
|
Strickland E, Pan D, Godfrey C, Kim JS, Hopke A, Degrange M, Villavicencio B, Mansour MK, Zerbe CS, Irimia D, Amir A, Weiner OD. Self-extinguishing relay waves enable homeostatic control of human neutrophil swarming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546744. [PMID: 37425711 PMCID: PMC10327146 DOI: 10.1101/2023.06.27.546744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Neutrophils exhibit self-amplified swarming to sites of injury and infection. How swarming is controlled to ensure the proper level of neutrophil recruitment is unknown. Using an ex vivo model of infection, we find that human neutrophils use active relay to generate multiple pulsatile waves of swarming signals. Unlike classic active relay systems such as action potentials, neutrophil swarming relay waves are self-extinguishing, limiting the spatial range of cell recruitment. We identify an NADPH-oxidase-based negative feedback loop that is needed for this self-extinguishing behavior. Through this circuit, neutrophils adjust the number and size of swarming waves for homeostatic levels of cell recruitment over a wide range of initial cell densities. We link a broken homeostat to neutrophil over-recruitment in the context of human chronic granulomatous disease.
Collapse
Affiliation(s)
- Evelyn Strickland
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Deng Pan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Christian Godfrey
- BioMEMS Resource Center and Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Julia S Kim
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, UCSF, San Francisco, CA, USA
| | - Alex Hopke
- BioMEMS Resource Center and Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Maureen Degrange
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | - Michael K Mansour
- Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel Irimia
- BioMEMS Resource Center and Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Complex Systems, Faculty of Physics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
39
|
Aries ML, Hensley-McBain T. Neutrophils as a potential therapeutic target in Alzheimer's disease. Front Immunol 2023; 14:1123149. [PMID: 36936930 PMCID: PMC10020508 DOI: 10.3389/fimmu.2023.1123149] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the United States. Sporadic or late-onset AD remains incompletely understood, with age as the current greatest risk factor. Inflammation in general and neutrophils, a potent mediator of inflammation, have been shown to exacerbate AD associated dementia. This review explores the latest research on neutrophils in AD mouse models and in human cohort studies and discusses current gaps in research and needs for future studies. AD mouse models have shown neutrophil chemotactic migration towards amyloid beta plaques in the brain. Capillary blood flow stalling decreases blood perfusion to associated brain regions and mouse studies have demonstrated that anti-Ly6G antibodies lead to a decrease in capillary blood flow stalling and memory improvement. Several recent transcriptomic studies of blood and brain tissue from persons with AD have shown an upregulation in neutrophil-related genes, and studies have demonstrated neutrophil involvement in brain capillary adhesion, blood brain barrier breaching, myeloperoxidase release, and the propensity for neutrophil extracellular trap release in AD. Neutrophil-derived inflammation and regulation are a potential potent novel therapeutic target for AD progression. Future studies should further investigate neutrophil functionality in AD. In addition, other aspects of AD that may impact neutrophils including the microbiome and the APOE4 allele should be studied.
Collapse
|
40
|
Cassatella MA, Nauseef WM. Neutrophils and their friends. Immunol Rev 2023; 314:6-12. [PMID: 36693675 DOI: 10.1111/imr.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - William M Nauseef
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
41
|
Dubyak GR, Miller BA, Pearlman E. Pyroptosis in neutrophils: Multimodal integration of inflammasome and regulated cell death signaling pathways. Immunol Rev 2023; 314:229-249. [PMID: 36656082 PMCID: PMC10407921 DOI: 10.1111/imr.13186] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pyroptosis is a proinflammatory mode of lytic cell death mediated by accumulation of plasma membrane (PM) macropores composed of gasdermin-family (GSDM) proteins. It facilitates two major functions in innate immunity: (i) elimination of intracellular replicative niches for pathogenic bacteria; and (ii) non-classical secretion of IL-1 family cytokines that amplify host-beneficial inflammatory responses to microbial infection or tissue damage. Physiological roles for gasdermin D (GSDMD) in pyroptosis and IL-1β release during inflammasome signaling have been extensively characterized in macrophages. This involves cleavage of GSDMD by caspase-1 to generate GSDMD macropores that mediate IL-1β efflux and progression to pyroptotic lysis. Neutrophils, which rapidly accumulate in large numbers at sites of tissue infection or damage, become the predominant local source of IL-1β in coordination with their potent microbiocidal capacity. Similar to macrophages, neutrophils express GSDMD and utilize the same spectrum of diverse inflammasome platforms for caspase-1-mediated cleavage of GSDMD. Distinct from macrophages, neutrophils possess a remarkable capacity to resist progression to GSDMD-dependent pyroptotic lysis to preserve their viability for efficient microbial killing while maintaining GSDMD-dependent mechanisms for export of bioactive IL-1β. Rather, neutrophils employ cell-specific mechanisms to conditionally engage GSDMD-mediated pyroptosis in response to bacterial pathogens that use neutrophils as replicative niches. GSDMD and pyroptosis have also been mechanistically linked to induction of NETosis, a signature neutrophil pathway that expels decondensed nuclear DNA into extracellular compartments for immobilization and killing of microbial pathogens. This review summarizes a rapidly growing number of recent studies that have produced new insights, unexpected mechanistic nuances, and some controversies regarding the regulation of, and roles for, neutrophil inflammasomes, pyroptosis, and GSDMs in diverse innate immune responses.
Collapse
Affiliation(s)
- George R. Dubyak
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brandon A. Miller
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Eric Pearlman
- Department of Ophthalmology, University of California, Irvine, California, USA
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| |
Collapse
|